1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "compiler/disassembler.hpp" 30 #include "crc32c.h" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/collectedHeap.inline.hpp" 34 #include "gc/shared/tlab_globals.hpp" 35 #include "interpreter/bytecodeHistogram.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "jvm.h" 38 #include "memory/resourceArea.hpp" 39 #include "memory/universe.hpp" 40 #include "oops/accessDecorators.hpp" 41 #include "oops/compressedOops.inline.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/continuation.hpp" 45 #include "runtime/interfaceSupport.inline.hpp" 46 #include "runtime/javaThread.hpp" 47 #include "runtime/jniHandles.hpp" 48 #include "runtime/objectMonitor.hpp" 49 #include "runtime/os.hpp" 50 #include "runtime/safepoint.hpp" 51 #include "runtime/safepointMechanism.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "utilities/macros.hpp" 55 56 #ifdef PRODUCT 57 #define BLOCK_COMMENT(str) /* nothing */ 58 #define STOP(error) stop(error) 59 #else 60 #define BLOCK_COMMENT(str) block_comment(str) 61 #define STOP(error) block_comment(error); stop(error) 62 #endif 63 64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 65 66 #ifdef ASSERT 67 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 68 #endif 69 70 static const Assembler::Condition reverse[] = { 71 Assembler::noOverflow /* overflow = 0x0 */ , 72 Assembler::overflow /* noOverflow = 0x1 */ , 73 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 74 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 75 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 76 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 77 Assembler::above /* belowEqual = 0x6 */ , 78 Assembler::belowEqual /* above = 0x7 */ , 79 Assembler::positive /* negative = 0x8 */ , 80 Assembler::negative /* positive = 0x9 */ , 81 Assembler::noParity /* parity = 0xa */ , 82 Assembler::parity /* noParity = 0xb */ , 83 Assembler::greaterEqual /* less = 0xc */ , 84 Assembler::less /* greaterEqual = 0xd */ , 85 Assembler::greater /* lessEqual = 0xe */ , 86 Assembler::lessEqual /* greater = 0xf, */ 87 88 }; 89 90 91 // Implementation of MacroAssembler 92 93 // First all the versions that have distinct versions depending on 32/64 bit 94 // Unless the difference is trivial (1 line or so). 95 96 #ifndef _LP64 97 98 // 32bit versions 99 100 Address MacroAssembler::as_Address(AddressLiteral adr) { 101 return Address(adr.target(), adr.rspec()); 102 } 103 104 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 105 assert(rscratch == noreg, ""); 106 return Address::make_array(adr); 107 } 108 109 void MacroAssembler::call_VM_leaf_base(address entry_point, 110 int number_of_arguments) { 111 call(RuntimeAddress(entry_point)); 112 increment(rsp, number_of_arguments * wordSize); 113 } 114 115 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 116 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 117 } 118 119 120 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 121 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 122 } 123 124 void MacroAssembler::cmpoop(Address src1, jobject obj) { 125 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 126 } 127 128 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 129 assert(rscratch == noreg, "redundant"); 130 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 131 } 132 133 void MacroAssembler::extend_sign(Register hi, Register lo) { 134 // According to Intel Doc. AP-526, "Integer Divide", p.18. 135 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 136 cdql(); 137 } else { 138 movl(hi, lo); 139 sarl(hi, 31); 140 } 141 } 142 143 void MacroAssembler::jC2(Register tmp, Label& L) { 144 // set parity bit if FPU flag C2 is set (via rax) 145 save_rax(tmp); 146 fwait(); fnstsw_ax(); 147 sahf(); 148 restore_rax(tmp); 149 // branch 150 jcc(Assembler::parity, L); 151 } 152 153 void MacroAssembler::jnC2(Register tmp, Label& L) { 154 // set parity bit if FPU flag C2 is set (via rax) 155 save_rax(tmp); 156 fwait(); fnstsw_ax(); 157 sahf(); 158 restore_rax(tmp); 159 // branch 160 jcc(Assembler::noParity, L); 161 } 162 163 // 32bit can do a case table jump in one instruction but we no longer allow the base 164 // to be installed in the Address class 165 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 166 assert(rscratch == noreg, "not needed"); 167 jmp(as_Address(entry, noreg)); 168 } 169 170 // Note: y_lo will be destroyed 171 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 172 // Long compare for Java (semantics as described in JVM spec.) 173 Label high, low, done; 174 175 cmpl(x_hi, y_hi); 176 jcc(Assembler::less, low); 177 jcc(Assembler::greater, high); 178 // x_hi is the return register 179 xorl(x_hi, x_hi); 180 cmpl(x_lo, y_lo); 181 jcc(Assembler::below, low); 182 jcc(Assembler::equal, done); 183 184 bind(high); 185 xorl(x_hi, x_hi); 186 increment(x_hi); 187 jmp(done); 188 189 bind(low); 190 xorl(x_hi, x_hi); 191 decrementl(x_hi); 192 193 bind(done); 194 } 195 196 void MacroAssembler::lea(Register dst, AddressLiteral src) { 197 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 198 } 199 200 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 201 assert(rscratch == noreg, "not needed"); 202 203 // leal(dst, as_Address(adr)); 204 // see note in movl as to why we must use a move 205 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 206 } 207 208 void MacroAssembler::leave() { 209 mov(rsp, rbp); 210 pop(rbp); 211 } 212 213 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 214 // Multiplication of two Java long values stored on the stack 215 // as illustrated below. Result is in rdx:rax. 216 // 217 // rsp ---> [ ?? ] \ \ 218 // .... | y_rsp_offset | 219 // [ y_lo ] / (in bytes) | x_rsp_offset 220 // [ y_hi ] | (in bytes) 221 // .... | 222 // [ x_lo ] / 223 // [ x_hi ] 224 // .... 225 // 226 // Basic idea: lo(result) = lo(x_lo * y_lo) 227 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 228 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 229 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 230 Label quick; 231 // load x_hi, y_hi and check if quick 232 // multiplication is possible 233 movl(rbx, x_hi); 234 movl(rcx, y_hi); 235 movl(rax, rbx); 236 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 237 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 238 // do full multiplication 239 // 1st step 240 mull(y_lo); // x_hi * y_lo 241 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 242 // 2nd step 243 movl(rax, x_lo); 244 mull(rcx); // x_lo * y_hi 245 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 246 // 3rd step 247 bind(quick); // note: rbx, = 0 if quick multiply! 248 movl(rax, x_lo); 249 mull(y_lo); // x_lo * y_lo 250 addl(rdx, rbx); // correct hi(x_lo * y_lo) 251 } 252 253 void MacroAssembler::lneg(Register hi, Register lo) { 254 negl(lo); 255 adcl(hi, 0); 256 negl(hi); 257 } 258 259 void MacroAssembler::lshl(Register hi, Register lo) { 260 // Java shift left long support (semantics as described in JVM spec., p.305) 261 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 262 // shift value is in rcx ! 263 assert(hi != rcx, "must not use rcx"); 264 assert(lo != rcx, "must not use rcx"); 265 const Register s = rcx; // shift count 266 const int n = BitsPerWord; 267 Label L; 268 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 269 cmpl(s, n); // if (s < n) 270 jcc(Assembler::less, L); // else (s >= n) 271 movl(hi, lo); // x := x << n 272 xorl(lo, lo); 273 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 274 bind(L); // s (mod n) < n 275 shldl(hi, lo); // x := x << s 276 shll(lo); 277 } 278 279 280 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 281 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 282 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 283 assert(hi != rcx, "must not use rcx"); 284 assert(lo != rcx, "must not use rcx"); 285 const Register s = rcx; // shift count 286 const int n = BitsPerWord; 287 Label L; 288 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 289 cmpl(s, n); // if (s < n) 290 jcc(Assembler::less, L); // else (s >= n) 291 movl(lo, hi); // x := x >> n 292 if (sign_extension) sarl(hi, 31); 293 else xorl(hi, hi); 294 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 295 bind(L); // s (mod n) < n 296 shrdl(lo, hi); // x := x >> s 297 if (sign_extension) sarl(hi); 298 else shrl(hi); 299 } 300 301 void MacroAssembler::movoop(Register dst, jobject obj) { 302 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 303 } 304 305 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 306 assert(rscratch == noreg, "redundant"); 307 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 308 } 309 310 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 311 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 312 } 313 314 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 315 assert(rscratch == noreg, "redundant"); 316 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 317 } 318 319 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 320 if (src.is_lval()) { 321 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 322 } else { 323 movl(dst, as_Address(src)); 324 } 325 } 326 327 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 328 assert(rscratch == noreg, "redundant"); 329 movl(as_Address(dst, noreg), src); 330 } 331 332 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 333 movl(dst, as_Address(src, noreg)); 334 } 335 336 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 337 assert(rscratch == noreg, "redundant"); 338 movl(dst, src); 339 } 340 341 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 342 assert(rscratch == noreg, "redundant"); 343 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 344 } 345 346 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 347 assert(rscratch == noreg, "redundant"); 348 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 349 } 350 351 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 352 assert(rscratch == noreg, "redundant"); 353 if (src.is_lval()) { 354 push_literal32((int32_t)src.target(), src.rspec()); 355 } else { 356 pushl(as_Address(src)); 357 } 358 } 359 360 static void pass_arg0(MacroAssembler* masm, Register arg) { 361 masm->push(arg); 362 } 363 364 static void pass_arg1(MacroAssembler* masm, Register arg) { 365 masm->push(arg); 366 } 367 368 static void pass_arg2(MacroAssembler* masm, Register arg) { 369 masm->push(arg); 370 } 371 372 static void pass_arg3(MacroAssembler* masm, Register arg) { 373 masm->push(arg); 374 } 375 376 #ifndef PRODUCT 377 extern "C" void findpc(intptr_t x); 378 #endif 379 380 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 381 // In order to get locks to work, we need to fake a in_VM state 382 JavaThread* thread = JavaThread::current(); 383 JavaThreadState saved_state = thread->thread_state(); 384 thread->set_thread_state(_thread_in_vm); 385 if (ShowMessageBoxOnError) { 386 JavaThread* thread = JavaThread::current(); 387 JavaThreadState saved_state = thread->thread_state(); 388 thread->set_thread_state(_thread_in_vm); 389 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 390 ttyLocker ttyl; 391 BytecodeCounter::print(); 392 } 393 // To see where a verify_oop failed, get $ebx+40/X for this frame. 394 // This is the value of eip which points to where verify_oop will return. 395 if (os::message_box(msg, "Execution stopped, print registers?")) { 396 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 397 BREAKPOINT; 398 } 399 } 400 fatal("DEBUG MESSAGE: %s", msg); 401 } 402 403 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 404 ttyLocker ttyl; 405 DebuggingContext debugging{}; 406 tty->print_cr("eip = 0x%08x", eip); 407 #ifndef PRODUCT 408 if ((WizardMode || Verbose) && PrintMiscellaneous) { 409 tty->cr(); 410 findpc(eip); 411 tty->cr(); 412 } 413 #endif 414 #define PRINT_REG(rax) \ 415 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 416 PRINT_REG(rax); 417 PRINT_REG(rbx); 418 PRINT_REG(rcx); 419 PRINT_REG(rdx); 420 PRINT_REG(rdi); 421 PRINT_REG(rsi); 422 PRINT_REG(rbp); 423 PRINT_REG(rsp); 424 #undef PRINT_REG 425 // Print some words near top of staack. 426 int* dump_sp = (int*) rsp; 427 for (int col1 = 0; col1 < 8; col1++) { 428 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 429 os::print_location(tty, *dump_sp++); 430 } 431 for (int row = 0; row < 16; row++) { 432 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 433 for (int col = 0; col < 8; col++) { 434 tty->print(" 0x%08x", *dump_sp++); 435 } 436 tty->cr(); 437 } 438 // Print some instructions around pc: 439 Disassembler::decode((address)eip-64, (address)eip); 440 tty->print_cr("--------"); 441 Disassembler::decode((address)eip, (address)eip+32); 442 } 443 444 void MacroAssembler::stop(const char* msg) { 445 // push address of message 446 ExternalAddress message((address)msg); 447 pushptr(message.addr(), noreg); 448 { Label L; call(L, relocInfo::none); bind(L); } // push eip 449 pusha(); // push registers 450 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 451 hlt(); 452 } 453 454 void MacroAssembler::warn(const char* msg) { 455 push_CPU_state(); 456 457 // push address of message 458 ExternalAddress message((address)msg); 459 pushptr(message.addr(), noreg); 460 461 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 462 addl(rsp, wordSize); // discard argument 463 pop_CPU_state(); 464 } 465 466 void MacroAssembler::print_state() { 467 { Label L; call(L, relocInfo::none); bind(L); } // push eip 468 pusha(); // push registers 469 470 push_CPU_state(); 471 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 472 pop_CPU_state(); 473 474 popa(); 475 addl(rsp, wordSize); 476 } 477 478 #else // _LP64 479 480 // 64 bit versions 481 482 Address MacroAssembler::as_Address(AddressLiteral adr) { 483 // amd64 always does this as a pc-rel 484 // we can be absolute or disp based on the instruction type 485 // jmp/call are displacements others are absolute 486 assert(!adr.is_lval(), "must be rval"); 487 assert(reachable(adr), "must be"); 488 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 489 490 } 491 492 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 493 AddressLiteral base = adr.base(); 494 lea(rscratch, base); 495 Address index = adr.index(); 496 assert(index._disp == 0, "must not have disp"); // maybe it can? 497 Address array(rscratch, index._index, index._scale, index._disp); 498 return array; 499 } 500 501 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 502 Label L, E; 503 504 #ifdef _WIN64 505 // Windows always allocates space for it's register args 506 assert(num_args <= 4, "only register arguments supported"); 507 subq(rsp, frame::arg_reg_save_area_bytes); 508 #endif 509 510 // Align stack if necessary 511 testl(rsp, 15); 512 jcc(Assembler::zero, L); 513 514 subq(rsp, 8); 515 call(RuntimeAddress(entry_point)); 516 addq(rsp, 8); 517 jmp(E); 518 519 bind(L); 520 call(RuntimeAddress(entry_point)); 521 522 bind(E); 523 524 #ifdef _WIN64 525 // restore stack pointer 526 addq(rsp, frame::arg_reg_save_area_bytes); 527 #endif 528 529 } 530 531 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 532 assert(!src2.is_lval(), "should use cmpptr"); 533 assert(rscratch != noreg || always_reachable(src2), "missing"); 534 535 if (reachable(src2)) { 536 cmpq(src1, as_Address(src2)); 537 } else { 538 lea(rscratch, src2); 539 Assembler::cmpq(src1, Address(rscratch, 0)); 540 } 541 } 542 543 int MacroAssembler::corrected_idivq(Register reg) { 544 // Full implementation of Java ldiv and lrem; checks for special 545 // case as described in JVM spec., p.243 & p.271. The function 546 // returns the (pc) offset of the idivl instruction - may be needed 547 // for implicit exceptions. 548 // 549 // normal case special case 550 // 551 // input : rax: dividend min_long 552 // reg: divisor (may not be eax/edx) -1 553 // 554 // output: rax: quotient (= rax idiv reg) min_long 555 // rdx: remainder (= rax irem reg) 0 556 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 557 static const int64_t min_long = 0x8000000000000000; 558 Label normal_case, special_case; 559 560 // check for special case 561 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 562 jcc(Assembler::notEqual, normal_case); 563 xorl(rdx, rdx); // prepare rdx for possible special case (where 564 // remainder = 0) 565 cmpq(reg, -1); 566 jcc(Assembler::equal, special_case); 567 568 // handle normal case 569 bind(normal_case); 570 cdqq(); 571 int idivq_offset = offset(); 572 idivq(reg); 573 574 // normal and special case exit 575 bind(special_case); 576 577 return idivq_offset; 578 } 579 580 void MacroAssembler::decrementq(Register reg, int value) { 581 if (value == min_jint) { subq(reg, value); return; } 582 if (value < 0) { incrementq(reg, -value); return; } 583 if (value == 0) { ; return; } 584 if (value == 1 && UseIncDec) { decq(reg) ; return; } 585 /* else */ { subq(reg, value) ; return; } 586 } 587 588 void MacroAssembler::decrementq(Address dst, int value) { 589 if (value == min_jint) { subq(dst, value); return; } 590 if (value < 0) { incrementq(dst, -value); return; } 591 if (value == 0) { ; return; } 592 if (value == 1 && UseIncDec) { decq(dst) ; return; } 593 /* else */ { subq(dst, value) ; return; } 594 } 595 596 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 597 assert(rscratch != noreg || always_reachable(dst), "missing"); 598 599 if (reachable(dst)) { 600 incrementq(as_Address(dst)); 601 } else { 602 lea(rscratch, dst); 603 incrementq(Address(rscratch, 0)); 604 } 605 } 606 607 void MacroAssembler::incrementq(Register reg, int value) { 608 if (value == min_jint) { addq(reg, value); return; } 609 if (value < 0) { decrementq(reg, -value); return; } 610 if (value == 0) { ; return; } 611 if (value == 1 && UseIncDec) { incq(reg) ; return; } 612 /* else */ { addq(reg, value) ; return; } 613 } 614 615 void MacroAssembler::incrementq(Address dst, int value) { 616 if (value == min_jint) { addq(dst, value); return; } 617 if (value < 0) { decrementq(dst, -value); return; } 618 if (value == 0) { ; return; } 619 if (value == 1 && UseIncDec) { incq(dst) ; return; } 620 /* else */ { addq(dst, value) ; return; } 621 } 622 623 // 32bit can do a case table jump in one instruction but we no longer allow the base 624 // to be installed in the Address class 625 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 626 lea(rscratch, entry.base()); 627 Address dispatch = entry.index(); 628 assert(dispatch._base == noreg, "must be"); 629 dispatch._base = rscratch; 630 jmp(dispatch); 631 } 632 633 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 634 ShouldNotReachHere(); // 64bit doesn't use two regs 635 cmpq(x_lo, y_lo); 636 } 637 638 void MacroAssembler::lea(Register dst, AddressLiteral src) { 639 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 640 } 641 642 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 643 lea(rscratch, adr); 644 movptr(dst, rscratch); 645 } 646 647 void MacroAssembler::leave() { 648 // %%% is this really better? Why not on 32bit too? 649 emit_int8((unsigned char)0xC9); // LEAVE 650 } 651 652 void MacroAssembler::lneg(Register hi, Register lo) { 653 ShouldNotReachHere(); // 64bit doesn't use two regs 654 negq(lo); 655 } 656 657 void MacroAssembler::movoop(Register dst, jobject obj) { 658 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 659 } 660 661 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 662 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 663 movq(dst, rscratch); 664 } 665 666 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 667 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 668 } 669 670 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 671 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 672 movq(dst, rscratch); 673 } 674 675 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 676 if (src.is_lval()) { 677 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 678 } else { 679 if (reachable(src)) { 680 movq(dst, as_Address(src)); 681 } else { 682 lea(dst, src); 683 movq(dst, Address(dst, 0)); 684 } 685 } 686 } 687 688 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 689 movq(as_Address(dst, rscratch), src); 690 } 691 692 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 693 movq(dst, as_Address(src, dst /*rscratch*/)); 694 } 695 696 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 697 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 698 if (is_simm32(src)) { 699 movptr(dst, checked_cast<int32_t>(src)); 700 } else { 701 mov64(rscratch, src); 702 movq(dst, rscratch); 703 } 704 } 705 706 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 707 movoop(rscratch, obj); 708 push(rscratch); 709 } 710 711 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 712 mov_metadata(rscratch, obj); 713 push(rscratch); 714 } 715 716 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 717 lea(rscratch, src); 718 if (src.is_lval()) { 719 push(rscratch); 720 } else { 721 pushq(Address(rscratch, 0)); 722 } 723 } 724 725 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 726 reset_last_Java_frame(r15_thread, clear_fp); 727 } 728 729 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 730 Register last_java_fp, 731 address last_java_pc, 732 Register rscratch) { 733 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 734 } 735 736 static void pass_arg0(MacroAssembler* masm, Register arg) { 737 if (c_rarg0 != arg ) { 738 masm->mov(c_rarg0, arg); 739 } 740 } 741 742 static void pass_arg1(MacroAssembler* masm, Register arg) { 743 if (c_rarg1 != arg ) { 744 masm->mov(c_rarg1, arg); 745 } 746 } 747 748 static void pass_arg2(MacroAssembler* masm, Register arg) { 749 if (c_rarg2 != arg ) { 750 masm->mov(c_rarg2, arg); 751 } 752 } 753 754 static void pass_arg3(MacroAssembler* masm, Register arg) { 755 if (c_rarg3 != arg ) { 756 masm->mov(c_rarg3, arg); 757 } 758 } 759 760 void MacroAssembler::stop(const char* msg) { 761 if (ShowMessageBoxOnError) { 762 address rip = pc(); 763 pusha(); // get regs on stack 764 lea(c_rarg1, InternalAddress(rip)); 765 movq(c_rarg2, rsp); // pass pointer to regs array 766 } 767 lea(c_rarg0, ExternalAddress((address) msg)); 768 andq(rsp, -16); // align stack as required by ABI 769 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 770 hlt(); 771 } 772 773 void MacroAssembler::warn(const char* msg) { 774 push(rbp); 775 movq(rbp, rsp); 776 andq(rsp, -16); // align stack as required by push_CPU_state and call 777 push_CPU_state(); // keeps alignment at 16 bytes 778 779 lea(c_rarg0, ExternalAddress((address) msg)); 780 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 781 782 pop_CPU_state(); 783 mov(rsp, rbp); 784 pop(rbp); 785 } 786 787 void MacroAssembler::print_state() { 788 address rip = pc(); 789 pusha(); // get regs on stack 790 push(rbp); 791 movq(rbp, rsp); 792 andq(rsp, -16); // align stack as required by push_CPU_state and call 793 push_CPU_state(); // keeps alignment at 16 bytes 794 795 lea(c_rarg0, InternalAddress(rip)); 796 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 797 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 798 799 pop_CPU_state(); 800 mov(rsp, rbp); 801 pop(rbp); 802 popa(); 803 } 804 805 #ifndef PRODUCT 806 extern "C" void findpc(intptr_t x); 807 #endif 808 809 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 810 // In order to get locks to work, we need to fake a in_VM state 811 if (ShowMessageBoxOnError) { 812 JavaThread* thread = JavaThread::current(); 813 JavaThreadState saved_state = thread->thread_state(); 814 thread->set_thread_state(_thread_in_vm); 815 #ifndef PRODUCT 816 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 817 ttyLocker ttyl; 818 BytecodeCounter::print(); 819 } 820 #endif 821 // To see where a verify_oop failed, get $ebx+40/X for this frame. 822 // XXX correct this offset for amd64 823 // This is the value of eip which points to where verify_oop will return. 824 if (os::message_box(msg, "Execution stopped, print registers?")) { 825 print_state64(pc, regs); 826 BREAKPOINT; 827 } 828 } 829 fatal("DEBUG MESSAGE: %s", msg); 830 } 831 832 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 833 ttyLocker ttyl; 834 DebuggingContext debugging{}; 835 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 836 #ifndef PRODUCT 837 tty->cr(); 838 findpc(pc); 839 tty->cr(); 840 #endif 841 #define PRINT_REG(rax, value) \ 842 { tty->print("%s = ", #rax); os::print_location(tty, value); } 843 PRINT_REG(rax, regs[15]); 844 PRINT_REG(rbx, regs[12]); 845 PRINT_REG(rcx, regs[14]); 846 PRINT_REG(rdx, regs[13]); 847 PRINT_REG(rdi, regs[8]); 848 PRINT_REG(rsi, regs[9]); 849 PRINT_REG(rbp, regs[10]); 850 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 851 PRINT_REG(rsp, (intptr_t)(®s[16])); 852 PRINT_REG(r8 , regs[7]); 853 PRINT_REG(r9 , regs[6]); 854 PRINT_REG(r10, regs[5]); 855 PRINT_REG(r11, regs[4]); 856 PRINT_REG(r12, regs[3]); 857 PRINT_REG(r13, regs[2]); 858 PRINT_REG(r14, regs[1]); 859 PRINT_REG(r15, regs[0]); 860 #undef PRINT_REG 861 // Print some words near the top of the stack. 862 int64_t* rsp = ®s[16]; 863 int64_t* dump_sp = rsp; 864 for (int col1 = 0; col1 < 8; col1++) { 865 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 866 os::print_location(tty, *dump_sp++); 867 } 868 for (int row = 0; row < 25; row++) { 869 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 870 for (int col = 0; col < 4; col++) { 871 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 872 } 873 tty->cr(); 874 } 875 // Print some instructions around pc: 876 Disassembler::decode((address)pc-64, (address)pc); 877 tty->print_cr("--------"); 878 Disassembler::decode((address)pc, (address)pc+32); 879 } 880 881 // The java_calling_convention describes stack locations as ideal slots on 882 // a frame with no abi restrictions. Since we must observe abi restrictions 883 // (like the placement of the register window) the slots must be biased by 884 // the following value. 885 static int reg2offset_in(VMReg r) { 886 // Account for saved rbp and return address 887 // This should really be in_preserve_stack_slots 888 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 889 } 890 891 static int reg2offset_out(VMReg r) { 892 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 893 } 894 895 // A long move 896 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 897 898 // The calling conventions assures us that each VMregpair is either 899 // all really one physical register or adjacent stack slots. 900 901 if (src.is_single_phys_reg() ) { 902 if (dst.is_single_phys_reg()) { 903 if (dst.first() != src.first()) { 904 mov(dst.first()->as_Register(), src.first()->as_Register()); 905 } 906 } else { 907 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 908 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 909 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 910 } 911 } else if (dst.is_single_phys_reg()) { 912 assert(src.is_single_reg(), "not a stack pair"); 913 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 914 } else { 915 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 916 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 917 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 918 } 919 } 920 921 // A double move 922 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 923 924 // The calling conventions assures us that each VMregpair is either 925 // all really one physical register or adjacent stack slots. 926 927 if (src.is_single_phys_reg() ) { 928 if (dst.is_single_phys_reg()) { 929 // In theory these overlap but the ordering is such that this is likely a nop 930 if ( src.first() != dst.first()) { 931 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 932 } 933 } else { 934 assert(dst.is_single_reg(), "not a stack pair"); 935 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 936 } 937 } else if (dst.is_single_phys_reg()) { 938 assert(src.is_single_reg(), "not a stack pair"); 939 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 940 } else { 941 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 942 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 943 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 944 } 945 } 946 947 948 // A float arg may have to do float reg int reg conversion 949 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 950 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 951 952 // The calling conventions assures us that each VMregpair is either 953 // all really one physical register or adjacent stack slots. 954 955 if (src.first()->is_stack()) { 956 if (dst.first()->is_stack()) { 957 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 958 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 959 } else { 960 // stack to reg 961 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 962 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 963 } 964 } else if (dst.first()->is_stack()) { 965 // reg to stack 966 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 967 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 968 } else { 969 // reg to reg 970 // In theory these overlap but the ordering is such that this is likely a nop 971 if ( src.first() != dst.first()) { 972 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 973 } 974 } 975 } 976 977 // On 64 bit we will store integer like items to the stack as 978 // 64 bits items (x86_32/64 abi) even though java would only store 979 // 32bits for a parameter. On 32bit it will simply be 32 bits 980 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 981 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 982 if (src.first()->is_stack()) { 983 if (dst.first()->is_stack()) { 984 // stack to stack 985 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 986 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 987 } else { 988 // stack to reg 989 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 990 } 991 } else if (dst.first()->is_stack()) { 992 // reg to stack 993 // Do we really have to sign extend??? 994 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 995 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 996 } else { 997 // Do we really have to sign extend??? 998 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 999 if (dst.first() != src.first()) { 1000 movq(dst.first()->as_Register(), src.first()->as_Register()); 1001 } 1002 } 1003 } 1004 1005 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1006 if (src.first()->is_stack()) { 1007 if (dst.first()->is_stack()) { 1008 // stack to stack 1009 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1010 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1011 } else { 1012 // stack to reg 1013 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1014 } 1015 } else if (dst.first()->is_stack()) { 1016 // reg to stack 1017 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1018 } else { 1019 if (dst.first() != src.first()) { 1020 movq(dst.first()->as_Register(), src.first()->as_Register()); 1021 } 1022 } 1023 } 1024 1025 // An oop arg. Must pass a handle not the oop itself 1026 void MacroAssembler::object_move(OopMap* map, 1027 int oop_handle_offset, 1028 int framesize_in_slots, 1029 VMRegPair src, 1030 VMRegPair dst, 1031 bool is_receiver, 1032 int* receiver_offset) { 1033 1034 // must pass a handle. First figure out the location we use as a handle 1035 1036 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1037 1038 // See if oop is null if it is we need no handle 1039 1040 if (src.first()->is_stack()) { 1041 1042 // Oop is already on the stack as an argument 1043 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1044 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1045 if (is_receiver) { 1046 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1047 } 1048 1049 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1050 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1051 // conditionally move a null 1052 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1053 } else { 1054 1055 // Oop is in a register we must store it to the space we reserve 1056 // on the stack for oop_handles and pass a handle if oop is non-null 1057 1058 const Register rOop = src.first()->as_Register(); 1059 int oop_slot; 1060 if (rOop == j_rarg0) 1061 oop_slot = 0; 1062 else if (rOop == j_rarg1) 1063 oop_slot = 1; 1064 else if (rOop == j_rarg2) 1065 oop_slot = 2; 1066 else if (rOop == j_rarg3) 1067 oop_slot = 3; 1068 else if (rOop == j_rarg4) 1069 oop_slot = 4; 1070 else { 1071 assert(rOop == j_rarg5, "wrong register"); 1072 oop_slot = 5; 1073 } 1074 1075 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1076 int offset = oop_slot*VMRegImpl::stack_slot_size; 1077 1078 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1079 // Store oop in handle area, may be null 1080 movptr(Address(rsp, offset), rOop); 1081 if (is_receiver) { 1082 *receiver_offset = offset; 1083 } 1084 1085 cmpptr(rOop, NULL_WORD); 1086 lea(rHandle, Address(rsp, offset)); 1087 // conditionally move a null from the handle area where it was just stored 1088 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1089 } 1090 1091 // If arg is on the stack then place it otherwise it is already in correct reg. 1092 if (dst.first()->is_stack()) { 1093 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1094 } 1095 } 1096 1097 #endif // _LP64 1098 1099 // Now versions that are common to 32/64 bit 1100 1101 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1102 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1103 } 1104 1105 void MacroAssembler::addptr(Register dst, Register src) { 1106 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1107 } 1108 1109 void MacroAssembler::addptr(Address dst, Register src) { 1110 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1111 } 1112 1113 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1114 assert(rscratch != noreg || always_reachable(src), "missing"); 1115 1116 if (reachable(src)) { 1117 Assembler::addsd(dst, as_Address(src)); 1118 } else { 1119 lea(rscratch, src); 1120 Assembler::addsd(dst, Address(rscratch, 0)); 1121 } 1122 } 1123 1124 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1125 assert(rscratch != noreg || always_reachable(src), "missing"); 1126 1127 if (reachable(src)) { 1128 addss(dst, as_Address(src)); 1129 } else { 1130 lea(rscratch, src); 1131 addss(dst, Address(rscratch, 0)); 1132 } 1133 } 1134 1135 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1136 assert(rscratch != noreg || always_reachable(src), "missing"); 1137 1138 if (reachable(src)) { 1139 Assembler::addpd(dst, as_Address(src)); 1140 } else { 1141 lea(rscratch, src); 1142 Assembler::addpd(dst, Address(rscratch, 0)); 1143 } 1144 } 1145 1146 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1147 // Stub code is generated once and never copied. 1148 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1149 void MacroAssembler::align64() { 1150 align(64, (unsigned long long) pc()); 1151 } 1152 1153 void MacroAssembler::align32() { 1154 align(32, (unsigned long long) pc()); 1155 } 1156 1157 void MacroAssembler::align(int modulus) { 1158 // 8273459: Ensure alignment is possible with current segment alignment 1159 assert(modulus <= CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1160 align(modulus, offset()); 1161 } 1162 1163 void MacroAssembler::align(int modulus, int target) { 1164 if (target % modulus != 0) { 1165 nop(modulus - (target % modulus)); 1166 } 1167 } 1168 1169 void MacroAssembler::push_f(XMMRegister r) { 1170 subptr(rsp, wordSize); 1171 movflt(Address(rsp, 0), r); 1172 } 1173 1174 void MacroAssembler::pop_f(XMMRegister r) { 1175 movflt(r, Address(rsp, 0)); 1176 addptr(rsp, wordSize); 1177 } 1178 1179 void MacroAssembler::push_d(XMMRegister r) { 1180 subptr(rsp, 2 * wordSize); 1181 movdbl(Address(rsp, 0), r); 1182 } 1183 1184 void MacroAssembler::pop_d(XMMRegister r) { 1185 movdbl(r, Address(rsp, 0)); 1186 addptr(rsp, 2 * Interpreter::stackElementSize); 1187 } 1188 1189 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1190 // Used in sign-masking with aligned address. 1191 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1192 assert(rscratch != noreg || always_reachable(src), "missing"); 1193 1194 if (reachable(src)) { 1195 Assembler::andpd(dst, as_Address(src)); 1196 } else { 1197 lea(rscratch, src); 1198 Assembler::andpd(dst, Address(rscratch, 0)); 1199 } 1200 } 1201 1202 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1203 // Used in sign-masking with aligned address. 1204 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1205 assert(rscratch != noreg || always_reachable(src), "missing"); 1206 1207 if (reachable(src)) { 1208 Assembler::andps(dst, as_Address(src)); 1209 } else { 1210 lea(rscratch, src); 1211 Assembler::andps(dst, Address(rscratch, 0)); 1212 } 1213 } 1214 1215 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1216 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1217 } 1218 1219 #ifdef _LP64 1220 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1221 assert(rscratch != noreg || always_reachable(src), "missing"); 1222 1223 if (reachable(src)) { 1224 andq(dst, as_Address(src)); 1225 } else { 1226 lea(rscratch, src); 1227 andq(dst, Address(rscratch, 0)); 1228 } 1229 } 1230 #endif 1231 1232 void MacroAssembler::atomic_incl(Address counter_addr) { 1233 lock(); 1234 incrementl(counter_addr); 1235 } 1236 1237 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1238 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1239 1240 if (reachable(counter_addr)) { 1241 atomic_incl(as_Address(counter_addr)); 1242 } else { 1243 lea(rscratch, counter_addr); 1244 atomic_incl(Address(rscratch, 0)); 1245 } 1246 } 1247 1248 #ifdef _LP64 1249 void MacroAssembler::atomic_incq(Address counter_addr) { 1250 lock(); 1251 incrementq(counter_addr); 1252 } 1253 1254 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1255 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1256 1257 if (reachable(counter_addr)) { 1258 atomic_incq(as_Address(counter_addr)); 1259 } else { 1260 lea(rscratch, counter_addr); 1261 atomic_incq(Address(rscratch, 0)); 1262 } 1263 } 1264 #endif 1265 1266 // Writes to stack successive pages until offset reached to check for 1267 // stack overflow + shadow pages. This clobbers tmp. 1268 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1269 movptr(tmp, rsp); 1270 // Bang stack for total size given plus shadow page size. 1271 // Bang one page at a time because large size can bang beyond yellow and 1272 // red zones. 1273 Label loop; 1274 bind(loop); 1275 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1276 subptr(tmp, (int)os::vm_page_size()); 1277 subl(size, (int)os::vm_page_size()); 1278 jcc(Assembler::greater, loop); 1279 1280 // Bang down shadow pages too. 1281 // At this point, (tmp-0) is the last address touched, so don't 1282 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1283 // was post-decremented.) Skip this address by starting at i=1, and 1284 // touch a few more pages below. N.B. It is important to touch all 1285 // the way down including all pages in the shadow zone. 1286 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1287 // this could be any sized move but this is can be a debugging crumb 1288 // so the bigger the better. 1289 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1290 } 1291 } 1292 1293 void MacroAssembler::reserved_stack_check() { 1294 // testing if reserved zone needs to be enabled 1295 Label no_reserved_zone_enabling; 1296 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1297 NOT_LP64(get_thread(rsi);) 1298 1299 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1300 jcc(Assembler::below, no_reserved_zone_enabling); 1301 1302 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1303 jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 1304 should_not_reach_here(); 1305 1306 bind(no_reserved_zone_enabling); 1307 } 1308 1309 void MacroAssembler::c2bool(Register x) { 1310 // implements x == 0 ? 0 : 1 1311 // note: must only look at least-significant byte of x 1312 // since C-style booleans are stored in one byte 1313 // only! (was bug) 1314 andl(x, 0xFF); 1315 setb(Assembler::notZero, x); 1316 } 1317 1318 // Wouldn't need if AddressLiteral version had new name 1319 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1320 Assembler::call(L, rtype); 1321 } 1322 1323 void MacroAssembler::call(Register entry) { 1324 Assembler::call(entry); 1325 } 1326 1327 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1328 assert(rscratch != noreg || always_reachable(entry), "missing"); 1329 1330 if (reachable(entry)) { 1331 Assembler::call_literal(entry.target(), entry.rspec()); 1332 } else { 1333 lea(rscratch, entry); 1334 Assembler::call(rscratch); 1335 } 1336 } 1337 1338 void MacroAssembler::ic_call(address entry, jint method_index) { 1339 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1340 #ifdef _LP64 1341 // Needs full 64-bit immediate for later patching. 1342 mov64(rax, (intptr_t)Universe::non_oop_word()); 1343 #else 1344 movptr(rax, (intptr_t)Universe::non_oop_word()); 1345 #endif 1346 call(AddressLiteral(entry, rh)); 1347 } 1348 1349 void MacroAssembler::emit_static_call_stub() { 1350 // Static stub relocation also tags the Method* in the code-stream. 1351 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1352 // This is recognized as unresolved by relocs/nativeinst/ic code. 1353 jump(RuntimeAddress(pc())); 1354 } 1355 1356 // Implementation of call_VM versions 1357 1358 void MacroAssembler::call_VM(Register oop_result, 1359 address entry_point, 1360 bool check_exceptions) { 1361 Label C, E; 1362 call(C, relocInfo::none); 1363 jmp(E); 1364 1365 bind(C); 1366 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1367 ret(0); 1368 1369 bind(E); 1370 } 1371 1372 void MacroAssembler::call_VM(Register oop_result, 1373 address entry_point, 1374 Register arg_1, 1375 bool check_exceptions) { 1376 Label C, E; 1377 call(C, relocInfo::none); 1378 jmp(E); 1379 1380 bind(C); 1381 pass_arg1(this, arg_1); 1382 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1383 ret(0); 1384 1385 bind(E); 1386 } 1387 1388 void MacroAssembler::call_VM(Register oop_result, 1389 address entry_point, 1390 Register arg_1, 1391 Register arg_2, 1392 bool check_exceptions) { 1393 Label C, E; 1394 call(C, relocInfo::none); 1395 jmp(E); 1396 1397 bind(C); 1398 1399 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1400 1401 pass_arg2(this, arg_2); 1402 pass_arg1(this, arg_1); 1403 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1404 ret(0); 1405 1406 bind(E); 1407 } 1408 1409 void MacroAssembler::call_VM(Register oop_result, 1410 address entry_point, 1411 Register arg_1, 1412 Register arg_2, 1413 Register arg_3, 1414 bool check_exceptions) { 1415 Label C, E; 1416 call(C, relocInfo::none); 1417 jmp(E); 1418 1419 bind(C); 1420 1421 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1422 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1423 pass_arg3(this, arg_3); 1424 1425 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1426 pass_arg2(this, arg_2); 1427 1428 pass_arg1(this, arg_1); 1429 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1430 ret(0); 1431 1432 bind(E); 1433 } 1434 1435 void MacroAssembler::call_VM(Register oop_result, 1436 Register last_java_sp, 1437 address entry_point, 1438 int number_of_arguments, 1439 bool check_exceptions) { 1440 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1441 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1442 } 1443 1444 void MacroAssembler::call_VM(Register oop_result, 1445 Register last_java_sp, 1446 address entry_point, 1447 Register arg_1, 1448 bool check_exceptions) { 1449 pass_arg1(this, arg_1); 1450 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1451 } 1452 1453 void MacroAssembler::call_VM(Register oop_result, 1454 Register last_java_sp, 1455 address entry_point, 1456 Register arg_1, 1457 Register arg_2, 1458 bool check_exceptions) { 1459 1460 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1461 pass_arg2(this, arg_2); 1462 pass_arg1(this, arg_1); 1463 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1464 } 1465 1466 void MacroAssembler::call_VM(Register oop_result, 1467 Register last_java_sp, 1468 address entry_point, 1469 Register arg_1, 1470 Register arg_2, 1471 Register arg_3, 1472 bool check_exceptions) { 1473 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1474 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1475 pass_arg3(this, arg_3); 1476 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1477 pass_arg2(this, arg_2); 1478 pass_arg1(this, arg_1); 1479 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1480 } 1481 1482 void MacroAssembler::super_call_VM(Register oop_result, 1483 Register last_java_sp, 1484 address entry_point, 1485 int number_of_arguments, 1486 bool check_exceptions) { 1487 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1488 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1489 } 1490 1491 void MacroAssembler::super_call_VM(Register oop_result, 1492 Register last_java_sp, 1493 address entry_point, 1494 Register arg_1, 1495 bool check_exceptions) { 1496 pass_arg1(this, arg_1); 1497 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1498 } 1499 1500 void MacroAssembler::super_call_VM(Register oop_result, 1501 Register last_java_sp, 1502 address entry_point, 1503 Register arg_1, 1504 Register arg_2, 1505 bool check_exceptions) { 1506 1507 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1508 pass_arg2(this, arg_2); 1509 pass_arg1(this, arg_1); 1510 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1511 } 1512 1513 void MacroAssembler::super_call_VM(Register oop_result, 1514 Register last_java_sp, 1515 address entry_point, 1516 Register arg_1, 1517 Register arg_2, 1518 Register arg_3, 1519 bool check_exceptions) { 1520 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1521 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1522 pass_arg3(this, arg_3); 1523 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1524 pass_arg2(this, arg_2); 1525 pass_arg1(this, arg_1); 1526 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1527 } 1528 1529 void MacroAssembler::call_VM_base(Register oop_result, 1530 Register java_thread, 1531 Register last_java_sp, 1532 address entry_point, 1533 int number_of_arguments, 1534 bool check_exceptions) { 1535 // determine java_thread register 1536 if (!java_thread->is_valid()) { 1537 #ifdef _LP64 1538 java_thread = r15_thread; 1539 #else 1540 java_thread = rdi; 1541 get_thread(java_thread); 1542 #endif // LP64 1543 } 1544 // determine last_java_sp register 1545 if (!last_java_sp->is_valid()) { 1546 last_java_sp = rsp; 1547 } 1548 // debugging support 1549 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1550 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1551 #ifdef ASSERT 1552 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1553 // r12 is the heapbase. 1554 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1555 #endif // ASSERT 1556 1557 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1558 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1559 1560 // push java thread (becomes first argument of C function) 1561 1562 NOT_LP64(push(java_thread); number_of_arguments++); 1563 LP64_ONLY(mov(c_rarg0, r15_thread)); 1564 1565 // set last Java frame before call 1566 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1567 1568 // Only interpreter should have to set fp 1569 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1570 1571 // do the call, remove parameters 1572 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1573 1574 // restore the thread (cannot use the pushed argument since arguments 1575 // may be overwritten by C code generated by an optimizing compiler); 1576 // however can use the register value directly if it is callee saved. 1577 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1578 // rdi & rsi (also r15) are callee saved -> nothing to do 1579 #ifdef ASSERT 1580 guarantee(java_thread != rax, "change this code"); 1581 push(rax); 1582 { Label L; 1583 get_thread(rax); 1584 cmpptr(java_thread, rax); 1585 jcc(Assembler::equal, L); 1586 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1587 bind(L); 1588 } 1589 pop(rax); 1590 #endif 1591 } else { 1592 get_thread(java_thread); 1593 } 1594 // reset last Java frame 1595 // Only interpreter should have to clear fp 1596 reset_last_Java_frame(java_thread, true); 1597 1598 // C++ interp handles this in the interpreter 1599 check_and_handle_popframe(java_thread); 1600 check_and_handle_earlyret(java_thread); 1601 1602 if (check_exceptions) { 1603 // check for pending exceptions (java_thread is set upon return) 1604 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1605 #ifndef _LP64 1606 jump_cc(Assembler::notEqual, 1607 RuntimeAddress(StubRoutines::forward_exception_entry())); 1608 #else 1609 // This used to conditionally jump to forward_exception however it is 1610 // possible if we relocate that the branch will not reach. So we must jump 1611 // around so we can always reach 1612 1613 Label ok; 1614 jcc(Assembler::equal, ok); 1615 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1616 bind(ok); 1617 #endif // LP64 1618 } 1619 1620 // get oop result if there is one and reset the value in the thread 1621 if (oop_result->is_valid()) { 1622 get_vm_result(oop_result, java_thread); 1623 } 1624 } 1625 1626 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1627 1628 // Calculate the value for last_Java_sp 1629 // somewhat subtle. call_VM does an intermediate call 1630 // which places a return address on the stack just under the 1631 // stack pointer as the user finished with it. This allows 1632 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1633 // On 32bit we then have to push additional args on the stack to accomplish 1634 // the actual requested call. On 64bit call_VM only can use register args 1635 // so the only extra space is the return address that call_VM created. 1636 // This hopefully explains the calculations here. 1637 1638 #ifdef _LP64 1639 // We've pushed one address, correct last_Java_sp 1640 lea(rax, Address(rsp, wordSize)); 1641 #else 1642 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1643 #endif // LP64 1644 1645 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1646 1647 } 1648 1649 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1650 void MacroAssembler::call_VM_leaf0(address entry_point) { 1651 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1652 } 1653 1654 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1655 call_VM_leaf_base(entry_point, number_of_arguments); 1656 } 1657 1658 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1659 pass_arg0(this, arg_0); 1660 call_VM_leaf(entry_point, 1); 1661 } 1662 1663 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1664 1665 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1666 pass_arg1(this, arg_1); 1667 pass_arg0(this, arg_0); 1668 call_VM_leaf(entry_point, 2); 1669 } 1670 1671 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1672 LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); 1673 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1674 pass_arg2(this, arg_2); 1675 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1676 pass_arg1(this, arg_1); 1677 pass_arg0(this, arg_0); 1678 call_VM_leaf(entry_point, 3); 1679 } 1680 1681 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1682 LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg")); 1683 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1684 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1685 pass_arg3(this, arg_3); 1686 LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); 1687 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1688 pass_arg2(this, arg_2); 1689 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1690 pass_arg1(this, arg_1); 1691 pass_arg0(this, arg_0); 1692 call_VM_leaf(entry_point, 3); 1693 } 1694 1695 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1696 pass_arg0(this, arg_0); 1697 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1698 } 1699 1700 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1701 1702 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1703 pass_arg1(this, arg_1); 1704 pass_arg0(this, arg_0); 1705 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1706 } 1707 1708 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1709 LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); 1710 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1711 pass_arg2(this, arg_2); 1712 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1713 pass_arg1(this, arg_1); 1714 pass_arg0(this, arg_0); 1715 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1716 } 1717 1718 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1719 LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg")); 1720 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1721 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1722 pass_arg3(this, arg_3); 1723 LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); 1724 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1725 pass_arg2(this, arg_2); 1726 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1727 pass_arg1(this, arg_1); 1728 pass_arg0(this, arg_0); 1729 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1730 } 1731 1732 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1733 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1734 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1735 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1736 } 1737 1738 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1739 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1740 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1741 } 1742 1743 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1744 } 1745 1746 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1747 } 1748 1749 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1750 assert(rscratch != noreg || always_reachable(src1), "missing"); 1751 1752 if (reachable(src1)) { 1753 cmpl(as_Address(src1), imm); 1754 } else { 1755 lea(rscratch, src1); 1756 cmpl(Address(rscratch, 0), imm); 1757 } 1758 } 1759 1760 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1761 assert(!src2.is_lval(), "use cmpptr"); 1762 assert(rscratch != noreg || always_reachable(src2), "missing"); 1763 1764 if (reachable(src2)) { 1765 cmpl(src1, as_Address(src2)); 1766 } else { 1767 lea(rscratch, src2); 1768 cmpl(src1, Address(rscratch, 0)); 1769 } 1770 } 1771 1772 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1773 Assembler::cmpl(src1, imm); 1774 } 1775 1776 void MacroAssembler::cmp32(Register src1, Address src2) { 1777 Assembler::cmpl(src1, src2); 1778 } 1779 1780 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1781 ucomisd(opr1, opr2); 1782 1783 Label L; 1784 if (unordered_is_less) { 1785 movl(dst, -1); 1786 jcc(Assembler::parity, L); 1787 jcc(Assembler::below , L); 1788 movl(dst, 0); 1789 jcc(Assembler::equal , L); 1790 increment(dst); 1791 } else { // unordered is greater 1792 movl(dst, 1); 1793 jcc(Assembler::parity, L); 1794 jcc(Assembler::above , L); 1795 movl(dst, 0); 1796 jcc(Assembler::equal , L); 1797 decrementl(dst); 1798 } 1799 bind(L); 1800 } 1801 1802 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1803 ucomiss(opr1, opr2); 1804 1805 Label L; 1806 if (unordered_is_less) { 1807 movl(dst, -1); 1808 jcc(Assembler::parity, L); 1809 jcc(Assembler::below , L); 1810 movl(dst, 0); 1811 jcc(Assembler::equal , L); 1812 increment(dst); 1813 } else { // unordered is greater 1814 movl(dst, 1); 1815 jcc(Assembler::parity, L); 1816 jcc(Assembler::above , L); 1817 movl(dst, 0); 1818 jcc(Assembler::equal , L); 1819 decrementl(dst); 1820 } 1821 bind(L); 1822 } 1823 1824 1825 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1826 assert(rscratch != noreg || always_reachable(src1), "missing"); 1827 1828 if (reachable(src1)) { 1829 cmpb(as_Address(src1), imm); 1830 } else { 1831 lea(rscratch, src1); 1832 cmpb(Address(rscratch, 0), imm); 1833 } 1834 } 1835 1836 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1837 #ifdef _LP64 1838 assert(rscratch != noreg || always_reachable(src2), "missing"); 1839 1840 if (src2.is_lval()) { 1841 movptr(rscratch, src2); 1842 Assembler::cmpq(src1, rscratch); 1843 } else if (reachable(src2)) { 1844 cmpq(src1, as_Address(src2)); 1845 } else { 1846 lea(rscratch, src2); 1847 Assembler::cmpq(src1, Address(rscratch, 0)); 1848 } 1849 #else 1850 assert(rscratch == noreg, "not needed"); 1851 if (src2.is_lval()) { 1852 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1853 } else { 1854 cmpl(src1, as_Address(src2)); 1855 } 1856 #endif // _LP64 1857 } 1858 1859 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1860 assert(src2.is_lval(), "not a mem-mem compare"); 1861 #ifdef _LP64 1862 // moves src2's literal address 1863 movptr(rscratch, src2); 1864 Assembler::cmpq(src1, rscratch); 1865 #else 1866 assert(rscratch == noreg, "not needed"); 1867 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1868 #endif // _LP64 1869 } 1870 1871 void MacroAssembler::cmpoop(Register src1, Register src2) { 1872 cmpptr(src1, src2); 1873 } 1874 1875 void MacroAssembler::cmpoop(Register src1, Address src2) { 1876 cmpptr(src1, src2); 1877 } 1878 1879 #ifdef _LP64 1880 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1881 movoop(rscratch, src2); 1882 cmpptr(src1, rscratch); 1883 } 1884 #endif 1885 1886 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1887 assert(rscratch != noreg || always_reachable(adr), "missing"); 1888 1889 if (reachable(adr)) { 1890 lock(); 1891 cmpxchgptr(reg, as_Address(adr)); 1892 } else { 1893 lea(rscratch, adr); 1894 lock(); 1895 cmpxchgptr(reg, Address(rscratch, 0)); 1896 } 1897 } 1898 1899 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1900 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1901 } 1902 1903 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1904 assert(rscratch != noreg || always_reachable(src), "missing"); 1905 1906 if (reachable(src)) { 1907 Assembler::comisd(dst, as_Address(src)); 1908 } else { 1909 lea(rscratch, src); 1910 Assembler::comisd(dst, Address(rscratch, 0)); 1911 } 1912 } 1913 1914 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1915 assert(rscratch != noreg || always_reachable(src), "missing"); 1916 1917 if (reachable(src)) { 1918 Assembler::comiss(dst, as_Address(src)); 1919 } else { 1920 lea(rscratch, src); 1921 Assembler::comiss(dst, Address(rscratch, 0)); 1922 } 1923 } 1924 1925 1926 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1927 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1928 1929 Condition negated_cond = negate_condition(cond); 1930 Label L; 1931 jcc(negated_cond, L); 1932 pushf(); // Preserve flags 1933 atomic_incl(counter_addr, rscratch); 1934 popf(); 1935 bind(L); 1936 } 1937 1938 int MacroAssembler::corrected_idivl(Register reg) { 1939 // Full implementation of Java idiv and irem; checks for 1940 // special case as described in JVM spec., p.243 & p.271. 1941 // The function returns the (pc) offset of the idivl 1942 // instruction - may be needed for implicit exceptions. 1943 // 1944 // normal case special case 1945 // 1946 // input : rax,: dividend min_int 1947 // reg: divisor (may not be rax,/rdx) -1 1948 // 1949 // output: rax,: quotient (= rax, idiv reg) min_int 1950 // rdx: remainder (= rax, irem reg) 0 1951 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1952 const int min_int = 0x80000000; 1953 Label normal_case, special_case; 1954 1955 // check for special case 1956 cmpl(rax, min_int); 1957 jcc(Assembler::notEqual, normal_case); 1958 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1959 cmpl(reg, -1); 1960 jcc(Assembler::equal, special_case); 1961 1962 // handle normal case 1963 bind(normal_case); 1964 cdql(); 1965 int idivl_offset = offset(); 1966 idivl(reg); 1967 1968 // normal and special case exit 1969 bind(special_case); 1970 1971 return idivl_offset; 1972 } 1973 1974 1975 1976 void MacroAssembler::decrementl(Register reg, int value) { 1977 if (value == min_jint) {subl(reg, value) ; return; } 1978 if (value < 0) { incrementl(reg, -value); return; } 1979 if (value == 0) { ; return; } 1980 if (value == 1 && UseIncDec) { decl(reg) ; return; } 1981 /* else */ { subl(reg, value) ; return; } 1982 } 1983 1984 void MacroAssembler::decrementl(Address dst, int value) { 1985 if (value == min_jint) {subl(dst, value) ; return; } 1986 if (value < 0) { incrementl(dst, -value); return; } 1987 if (value == 0) { ; return; } 1988 if (value == 1 && UseIncDec) { decl(dst) ; return; } 1989 /* else */ { subl(dst, value) ; return; } 1990 } 1991 1992 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 1993 assert(shift_value > 0, "illegal shift value"); 1994 Label _is_positive; 1995 testl (reg, reg); 1996 jcc (Assembler::positive, _is_positive); 1997 int offset = (1 << shift_value) - 1 ; 1998 1999 if (offset == 1) { 2000 incrementl(reg); 2001 } else { 2002 addl(reg, offset); 2003 } 2004 2005 bind (_is_positive); 2006 sarl(reg, shift_value); 2007 } 2008 2009 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2010 assert(rscratch != noreg || always_reachable(src), "missing"); 2011 2012 if (reachable(src)) { 2013 Assembler::divsd(dst, as_Address(src)); 2014 } else { 2015 lea(rscratch, src); 2016 Assembler::divsd(dst, Address(rscratch, 0)); 2017 } 2018 } 2019 2020 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2021 assert(rscratch != noreg || always_reachable(src), "missing"); 2022 2023 if (reachable(src)) { 2024 Assembler::divss(dst, as_Address(src)); 2025 } else { 2026 lea(rscratch, src); 2027 Assembler::divss(dst, Address(rscratch, 0)); 2028 } 2029 } 2030 2031 void MacroAssembler::enter() { 2032 push(rbp); 2033 mov(rbp, rsp); 2034 } 2035 2036 void MacroAssembler::post_call_nop() { 2037 if (!Continuations::enabled()) { 2038 return; 2039 } 2040 InstructionMark im(this); 2041 relocate(post_call_nop_Relocation::spec()); 2042 InlineSkippedInstructionsCounter skipCounter(this); 2043 emit_int8((uint8_t)0x0f); 2044 emit_int8((uint8_t)0x1f); 2045 emit_int8((uint8_t)0x84); 2046 emit_int8((uint8_t)0x00); 2047 emit_int32(0x00); 2048 } 2049 2050 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2051 void MacroAssembler::fat_nop() { 2052 if (UseAddressNop) { 2053 addr_nop_5(); 2054 } else { 2055 emit_int8((uint8_t)0x26); // es: 2056 emit_int8((uint8_t)0x2e); // cs: 2057 emit_int8((uint8_t)0x64); // fs: 2058 emit_int8((uint8_t)0x65); // gs: 2059 emit_int8((uint8_t)0x90); 2060 } 2061 } 2062 2063 #ifndef _LP64 2064 void MacroAssembler::fcmp(Register tmp) { 2065 fcmp(tmp, 1, true, true); 2066 } 2067 2068 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2069 assert(!pop_right || pop_left, "usage error"); 2070 if (VM_Version::supports_cmov()) { 2071 assert(tmp == noreg, "unneeded temp"); 2072 if (pop_left) { 2073 fucomip(index); 2074 } else { 2075 fucomi(index); 2076 } 2077 if (pop_right) { 2078 fpop(); 2079 } 2080 } else { 2081 assert(tmp != noreg, "need temp"); 2082 if (pop_left) { 2083 if (pop_right) { 2084 fcompp(); 2085 } else { 2086 fcomp(index); 2087 } 2088 } else { 2089 fcom(index); 2090 } 2091 // convert FPU condition into eflags condition via rax, 2092 save_rax(tmp); 2093 fwait(); fnstsw_ax(); 2094 sahf(); 2095 restore_rax(tmp); 2096 } 2097 // condition codes set as follows: 2098 // 2099 // CF (corresponds to C0) if x < y 2100 // PF (corresponds to C2) if unordered 2101 // ZF (corresponds to C3) if x = y 2102 } 2103 2104 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2105 fcmp2int(dst, unordered_is_less, 1, true, true); 2106 } 2107 2108 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2109 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2110 Label L; 2111 if (unordered_is_less) { 2112 movl(dst, -1); 2113 jcc(Assembler::parity, L); 2114 jcc(Assembler::below , L); 2115 movl(dst, 0); 2116 jcc(Assembler::equal , L); 2117 increment(dst); 2118 } else { // unordered is greater 2119 movl(dst, 1); 2120 jcc(Assembler::parity, L); 2121 jcc(Assembler::above , L); 2122 movl(dst, 0); 2123 jcc(Assembler::equal , L); 2124 decrementl(dst); 2125 } 2126 bind(L); 2127 } 2128 2129 void MacroAssembler::fld_d(AddressLiteral src) { 2130 fld_d(as_Address(src)); 2131 } 2132 2133 void MacroAssembler::fld_s(AddressLiteral src) { 2134 fld_s(as_Address(src)); 2135 } 2136 2137 void MacroAssembler::fldcw(AddressLiteral src) { 2138 fldcw(as_Address(src)); 2139 } 2140 2141 void MacroAssembler::fpop() { 2142 ffree(); 2143 fincstp(); 2144 } 2145 2146 void MacroAssembler::fremr(Register tmp) { 2147 save_rax(tmp); 2148 { Label L; 2149 bind(L); 2150 fprem(); 2151 fwait(); fnstsw_ax(); 2152 sahf(); 2153 jcc(Assembler::parity, L); 2154 } 2155 restore_rax(tmp); 2156 // Result is in ST0. 2157 // Note: fxch & fpop to get rid of ST1 2158 // (otherwise FPU stack could overflow eventually) 2159 fxch(1); 2160 fpop(); 2161 } 2162 2163 void MacroAssembler::empty_FPU_stack() { 2164 if (VM_Version::supports_mmx()) { 2165 emms(); 2166 } else { 2167 for (int i = 8; i-- > 0; ) ffree(i); 2168 } 2169 } 2170 #endif // !LP64 2171 2172 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2173 assert(rscratch != noreg || always_reachable(src), "missing"); 2174 if (reachable(src)) { 2175 Assembler::mulpd(dst, as_Address(src)); 2176 } else { 2177 lea(rscratch, src); 2178 Assembler::mulpd(dst, Address(rscratch, 0)); 2179 } 2180 } 2181 2182 void MacroAssembler::load_float(Address src) { 2183 #ifdef _LP64 2184 movflt(xmm0, src); 2185 #else 2186 if (UseSSE >= 1) { 2187 movflt(xmm0, src); 2188 } else { 2189 fld_s(src); 2190 } 2191 #endif // LP64 2192 } 2193 2194 void MacroAssembler::store_float(Address dst) { 2195 #ifdef _LP64 2196 movflt(dst, xmm0); 2197 #else 2198 if (UseSSE >= 1) { 2199 movflt(dst, xmm0); 2200 } else { 2201 fstp_s(dst); 2202 } 2203 #endif // LP64 2204 } 2205 2206 void MacroAssembler::load_double(Address src) { 2207 #ifdef _LP64 2208 movdbl(xmm0, src); 2209 #else 2210 if (UseSSE >= 2) { 2211 movdbl(xmm0, src); 2212 } else { 2213 fld_d(src); 2214 } 2215 #endif // LP64 2216 } 2217 2218 void MacroAssembler::store_double(Address dst) { 2219 #ifdef _LP64 2220 movdbl(dst, xmm0); 2221 #else 2222 if (UseSSE >= 2) { 2223 movdbl(dst, xmm0); 2224 } else { 2225 fstp_d(dst); 2226 } 2227 #endif // LP64 2228 } 2229 2230 // dst = c = a * b + c 2231 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2232 Assembler::vfmadd231sd(c, a, b); 2233 if (dst != c) { 2234 movdbl(dst, c); 2235 } 2236 } 2237 2238 // dst = c = a * b + c 2239 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2240 Assembler::vfmadd231ss(c, a, b); 2241 if (dst != c) { 2242 movflt(dst, c); 2243 } 2244 } 2245 2246 // dst = c = a * b + c 2247 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2248 Assembler::vfmadd231pd(c, a, b, vector_len); 2249 if (dst != c) { 2250 vmovdqu(dst, c); 2251 } 2252 } 2253 2254 // dst = c = a * b + c 2255 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2256 Assembler::vfmadd231ps(c, a, b, vector_len); 2257 if (dst != c) { 2258 vmovdqu(dst, c); 2259 } 2260 } 2261 2262 // dst = c = a * b + c 2263 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2264 Assembler::vfmadd231pd(c, a, b, vector_len); 2265 if (dst != c) { 2266 vmovdqu(dst, c); 2267 } 2268 } 2269 2270 // dst = c = a * b + c 2271 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2272 Assembler::vfmadd231ps(c, a, b, vector_len); 2273 if (dst != c) { 2274 vmovdqu(dst, c); 2275 } 2276 } 2277 2278 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2279 assert(rscratch != noreg || always_reachable(dst), "missing"); 2280 2281 if (reachable(dst)) { 2282 incrementl(as_Address(dst)); 2283 } else { 2284 lea(rscratch, dst); 2285 incrementl(Address(rscratch, 0)); 2286 } 2287 } 2288 2289 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2290 incrementl(as_Address(dst, rscratch)); 2291 } 2292 2293 void MacroAssembler::incrementl(Register reg, int value) { 2294 if (value == min_jint) {addl(reg, value) ; return; } 2295 if (value < 0) { decrementl(reg, -value); return; } 2296 if (value == 0) { ; return; } 2297 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2298 /* else */ { addl(reg, value) ; return; } 2299 } 2300 2301 void MacroAssembler::incrementl(Address dst, int value) { 2302 if (value == min_jint) {addl(dst, value) ; return; } 2303 if (value < 0) { decrementl(dst, -value); return; } 2304 if (value == 0) { ; return; } 2305 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2306 /* else */ { addl(dst, value) ; return; } 2307 } 2308 2309 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2310 assert(rscratch != noreg || always_reachable(dst), "missing"); 2311 2312 if (reachable(dst)) { 2313 jmp_literal(dst.target(), dst.rspec()); 2314 } else { 2315 lea(rscratch, dst); 2316 jmp(rscratch); 2317 } 2318 } 2319 2320 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2321 assert(rscratch != noreg || always_reachable(dst), "missing"); 2322 2323 if (reachable(dst)) { 2324 InstructionMark im(this); 2325 relocate(dst.reloc()); 2326 const int short_size = 2; 2327 const int long_size = 6; 2328 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2329 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2330 // 0111 tttn #8-bit disp 2331 emit_int8(0x70 | cc); 2332 emit_int8((offs - short_size) & 0xFF); 2333 } else { 2334 // 0000 1111 1000 tttn #32-bit disp 2335 emit_int8(0x0F); 2336 emit_int8((unsigned char)(0x80 | cc)); 2337 emit_int32(offs - long_size); 2338 } 2339 } else { 2340 #ifdef ASSERT 2341 warning("reversing conditional branch"); 2342 #endif /* ASSERT */ 2343 Label skip; 2344 jccb(reverse[cc], skip); 2345 lea(rscratch, dst); 2346 Assembler::jmp(rscratch); 2347 bind(skip); 2348 } 2349 } 2350 2351 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2352 assert(rscratch != noreg || always_reachable(src), "missing"); 2353 2354 if (reachable(src)) { 2355 Assembler::ldmxcsr(as_Address(src)); 2356 } else { 2357 lea(rscratch, src); 2358 Assembler::ldmxcsr(Address(rscratch, 0)); 2359 } 2360 } 2361 2362 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2363 int off; 2364 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2365 off = offset(); 2366 movsbl(dst, src); // movsxb 2367 } else { 2368 off = load_unsigned_byte(dst, src); 2369 shll(dst, 24); 2370 sarl(dst, 24); 2371 } 2372 return off; 2373 } 2374 2375 // Note: load_signed_short used to be called load_signed_word. 2376 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2377 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2378 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2379 int MacroAssembler::load_signed_short(Register dst, Address src) { 2380 int off; 2381 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2382 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2383 // version but this is what 64bit has always done. This seems to imply 2384 // that users are only using 32bits worth. 2385 off = offset(); 2386 movswl(dst, src); // movsxw 2387 } else { 2388 off = load_unsigned_short(dst, src); 2389 shll(dst, 16); 2390 sarl(dst, 16); 2391 } 2392 return off; 2393 } 2394 2395 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2396 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2397 // and "3.9 Partial Register Penalties", p. 22). 2398 int off; 2399 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2400 off = offset(); 2401 movzbl(dst, src); // movzxb 2402 } else { 2403 xorl(dst, dst); 2404 off = offset(); 2405 movb(dst, src); 2406 } 2407 return off; 2408 } 2409 2410 // Note: load_unsigned_short used to be called load_unsigned_word. 2411 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2412 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2413 // and "3.9 Partial Register Penalties", p. 22). 2414 int off; 2415 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2416 off = offset(); 2417 movzwl(dst, src); // movzxw 2418 } else { 2419 xorl(dst, dst); 2420 off = offset(); 2421 movw(dst, src); 2422 } 2423 return off; 2424 } 2425 2426 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2427 switch (size_in_bytes) { 2428 #ifndef _LP64 2429 case 8: 2430 assert(dst2 != noreg, "second dest register required"); 2431 movl(dst, src); 2432 movl(dst2, src.plus_disp(BytesPerInt)); 2433 break; 2434 #else 2435 case 8: movq(dst, src); break; 2436 #endif 2437 case 4: movl(dst, src); break; 2438 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2439 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2440 default: ShouldNotReachHere(); 2441 } 2442 } 2443 2444 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2445 switch (size_in_bytes) { 2446 #ifndef _LP64 2447 case 8: 2448 assert(src2 != noreg, "second source register required"); 2449 movl(dst, src); 2450 movl(dst.plus_disp(BytesPerInt), src2); 2451 break; 2452 #else 2453 case 8: movq(dst, src); break; 2454 #endif 2455 case 4: movl(dst, src); break; 2456 case 2: movw(dst, src); break; 2457 case 1: movb(dst, src); break; 2458 default: ShouldNotReachHere(); 2459 } 2460 } 2461 2462 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2463 assert(rscratch != noreg || always_reachable(dst), "missing"); 2464 2465 if (reachable(dst)) { 2466 movl(as_Address(dst), src); 2467 } else { 2468 lea(rscratch, dst); 2469 movl(Address(rscratch, 0), src); 2470 } 2471 } 2472 2473 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2474 if (reachable(src)) { 2475 movl(dst, as_Address(src)); 2476 } else { 2477 lea(dst, src); 2478 movl(dst, Address(dst, 0)); 2479 } 2480 } 2481 2482 // C++ bool manipulation 2483 2484 void MacroAssembler::movbool(Register dst, Address src) { 2485 if(sizeof(bool) == 1) 2486 movb(dst, src); 2487 else if(sizeof(bool) == 2) 2488 movw(dst, src); 2489 else if(sizeof(bool) == 4) 2490 movl(dst, src); 2491 else 2492 // unsupported 2493 ShouldNotReachHere(); 2494 } 2495 2496 void MacroAssembler::movbool(Address dst, bool boolconst) { 2497 if(sizeof(bool) == 1) 2498 movb(dst, (int) boolconst); 2499 else if(sizeof(bool) == 2) 2500 movw(dst, (int) boolconst); 2501 else if(sizeof(bool) == 4) 2502 movl(dst, (int) boolconst); 2503 else 2504 // unsupported 2505 ShouldNotReachHere(); 2506 } 2507 2508 void MacroAssembler::movbool(Address dst, Register src) { 2509 if(sizeof(bool) == 1) 2510 movb(dst, src); 2511 else if(sizeof(bool) == 2) 2512 movw(dst, src); 2513 else if(sizeof(bool) == 4) 2514 movl(dst, src); 2515 else 2516 // unsupported 2517 ShouldNotReachHere(); 2518 } 2519 2520 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2521 assert(rscratch != noreg || always_reachable(src), "missing"); 2522 2523 if (reachable(src)) { 2524 movdl(dst, as_Address(src)); 2525 } else { 2526 lea(rscratch, src); 2527 movdl(dst, Address(rscratch, 0)); 2528 } 2529 } 2530 2531 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2532 assert(rscratch != noreg || always_reachable(src), "missing"); 2533 2534 if (reachable(src)) { 2535 movq(dst, as_Address(src)); 2536 } else { 2537 lea(rscratch, src); 2538 movq(dst, Address(rscratch, 0)); 2539 } 2540 } 2541 2542 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2543 assert(rscratch != noreg || always_reachable(src), "missing"); 2544 2545 if (reachable(src)) { 2546 if (UseXmmLoadAndClearUpper) { 2547 movsd (dst, as_Address(src)); 2548 } else { 2549 movlpd(dst, as_Address(src)); 2550 } 2551 } else { 2552 lea(rscratch, src); 2553 if (UseXmmLoadAndClearUpper) { 2554 movsd (dst, Address(rscratch, 0)); 2555 } else { 2556 movlpd(dst, Address(rscratch, 0)); 2557 } 2558 } 2559 } 2560 2561 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2562 assert(rscratch != noreg || always_reachable(src), "missing"); 2563 2564 if (reachable(src)) { 2565 movss(dst, as_Address(src)); 2566 } else { 2567 lea(rscratch, src); 2568 movss(dst, Address(rscratch, 0)); 2569 } 2570 } 2571 2572 void MacroAssembler::movptr(Register dst, Register src) { 2573 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2574 } 2575 2576 void MacroAssembler::movptr(Register dst, Address src) { 2577 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2578 } 2579 2580 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2581 void MacroAssembler::movptr(Register dst, intptr_t src) { 2582 #ifdef _LP64 2583 if (is_simm32(src)) { 2584 movq(dst, checked_cast<int32_t>(src)); 2585 } else { 2586 mov64(dst, src); 2587 } 2588 #else 2589 movl(dst, src); 2590 #endif 2591 } 2592 2593 void MacroAssembler::movptr(Address dst, Register src) { 2594 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2595 } 2596 2597 void MacroAssembler::movptr(Address dst, int32_t src) { 2598 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2599 } 2600 2601 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2602 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2603 Assembler::movdqu(dst, src); 2604 } 2605 2606 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2607 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2608 Assembler::movdqu(dst, src); 2609 } 2610 2611 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2612 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2613 Assembler::movdqu(dst, src); 2614 } 2615 2616 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2617 assert(rscratch != noreg || always_reachable(src), "missing"); 2618 2619 if (reachable(src)) { 2620 movdqu(dst, as_Address(src)); 2621 } else { 2622 lea(rscratch, src); 2623 movdqu(dst, Address(rscratch, 0)); 2624 } 2625 } 2626 2627 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2628 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2629 Assembler::vmovdqu(dst, src); 2630 } 2631 2632 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2633 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2634 Assembler::vmovdqu(dst, src); 2635 } 2636 2637 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2638 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2639 Assembler::vmovdqu(dst, src); 2640 } 2641 2642 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2643 assert(rscratch != noreg || always_reachable(src), "missing"); 2644 2645 if (reachable(src)) { 2646 vmovdqu(dst, as_Address(src)); 2647 } 2648 else { 2649 lea(rscratch, src); 2650 vmovdqu(dst, Address(rscratch, 0)); 2651 } 2652 } 2653 2654 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2655 assert(rscratch != noreg || always_reachable(src), "missing"); 2656 2657 if (vector_len == AVX_512bit) { 2658 evmovdquq(dst, src, AVX_512bit, rscratch); 2659 } else if (vector_len == AVX_256bit) { 2660 vmovdqu(dst, src, rscratch); 2661 } else { 2662 movdqu(dst, src, rscratch); 2663 } 2664 } 2665 2666 void MacroAssembler::kmov(KRegister dst, Address src) { 2667 if (VM_Version::supports_avx512bw()) { 2668 kmovql(dst, src); 2669 } else { 2670 assert(VM_Version::supports_evex(), ""); 2671 kmovwl(dst, src); 2672 } 2673 } 2674 2675 void MacroAssembler::kmov(Address dst, KRegister src) { 2676 if (VM_Version::supports_avx512bw()) { 2677 kmovql(dst, src); 2678 } else { 2679 assert(VM_Version::supports_evex(), ""); 2680 kmovwl(dst, src); 2681 } 2682 } 2683 2684 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2685 if (VM_Version::supports_avx512bw()) { 2686 kmovql(dst, src); 2687 } else { 2688 assert(VM_Version::supports_evex(), ""); 2689 kmovwl(dst, src); 2690 } 2691 } 2692 2693 void MacroAssembler::kmov(Register dst, KRegister src) { 2694 if (VM_Version::supports_avx512bw()) { 2695 kmovql(dst, src); 2696 } else { 2697 assert(VM_Version::supports_evex(), ""); 2698 kmovwl(dst, src); 2699 } 2700 } 2701 2702 void MacroAssembler::kmov(KRegister dst, Register src) { 2703 if (VM_Version::supports_avx512bw()) { 2704 kmovql(dst, src); 2705 } else { 2706 assert(VM_Version::supports_evex(), ""); 2707 kmovwl(dst, src); 2708 } 2709 } 2710 2711 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2712 assert(rscratch != noreg || always_reachable(src), "missing"); 2713 2714 if (reachable(src)) { 2715 kmovql(dst, as_Address(src)); 2716 } else { 2717 lea(rscratch, src); 2718 kmovql(dst, Address(rscratch, 0)); 2719 } 2720 } 2721 2722 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2723 assert(rscratch != noreg || always_reachable(src), "missing"); 2724 2725 if (reachable(src)) { 2726 kmovwl(dst, as_Address(src)); 2727 } else { 2728 lea(rscratch, src); 2729 kmovwl(dst, Address(rscratch, 0)); 2730 } 2731 } 2732 2733 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2734 int vector_len, Register rscratch) { 2735 assert(rscratch != noreg || always_reachable(src), "missing"); 2736 2737 if (reachable(src)) { 2738 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2739 } else { 2740 lea(rscratch, src); 2741 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2742 } 2743 } 2744 2745 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2746 int vector_len, Register rscratch) { 2747 assert(rscratch != noreg || always_reachable(src), "missing"); 2748 2749 if (reachable(src)) { 2750 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2751 } else { 2752 lea(rscratch, src); 2753 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2754 } 2755 } 2756 2757 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2758 assert(rscratch != noreg || always_reachable(src), "missing"); 2759 2760 if (reachable(src)) { 2761 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2762 } else { 2763 lea(rscratch, src); 2764 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2765 } 2766 } 2767 2768 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2769 assert(rscratch != noreg || always_reachable(src), "missing"); 2770 2771 if (reachable(src)) { 2772 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2773 } else { 2774 lea(rscratch, src); 2775 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2776 } 2777 } 2778 2779 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2780 assert(rscratch != noreg || always_reachable(src), "missing"); 2781 2782 if (reachable(src)) { 2783 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2784 } else { 2785 lea(rscratch, src); 2786 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2787 } 2788 } 2789 2790 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2791 assert(rscratch != noreg || always_reachable(src), "missing"); 2792 2793 if (reachable(src)) { 2794 Assembler::movdqa(dst, as_Address(src)); 2795 } else { 2796 lea(rscratch, src); 2797 Assembler::movdqa(dst, Address(rscratch, 0)); 2798 } 2799 } 2800 2801 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2802 assert(rscratch != noreg || always_reachable(src), "missing"); 2803 2804 if (reachable(src)) { 2805 Assembler::movsd(dst, as_Address(src)); 2806 } else { 2807 lea(rscratch, src); 2808 Assembler::movsd(dst, Address(rscratch, 0)); 2809 } 2810 } 2811 2812 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2813 assert(rscratch != noreg || always_reachable(src), "missing"); 2814 2815 if (reachable(src)) { 2816 Assembler::movss(dst, as_Address(src)); 2817 } else { 2818 lea(rscratch, src); 2819 Assembler::movss(dst, Address(rscratch, 0)); 2820 } 2821 } 2822 2823 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2824 assert(rscratch != noreg || always_reachable(src), "missing"); 2825 2826 if (reachable(src)) { 2827 Assembler::movddup(dst, as_Address(src)); 2828 } else { 2829 lea(rscratch, src); 2830 Assembler::movddup(dst, Address(rscratch, 0)); 2831 } 2832 } 2833 2834 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2835 assert(rscratch != noreg || always_reachable(src), "missing"); 2836 2837 if (reachable(src)) { 2838 Assembler::vmovddup(dst, as_Address(src), vector_len); 2839 } else { 2840 lea(rscratch, src); 2841 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2842 } 2843 } 2844 2845 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2846 assert(rscratch != noreg || always_reachable(src), "missing"); 2847 2848 if (reachable(src)) { 2849 Assembler::mulsd(dst, as_Address(src)); 2850 } else { 2851 lea(rscratch, src); 2852 Assembler::mulsd(dst, Address(rscratch, 0)); 2853 } 2854 } 2855 2856 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2857 assert(rscratch != noreg || always_reachable(src), "missing"); 2858 2859 if (reachable(src)) { 2860 Assembler::mulss(dst, as_Address(src)); 2861 } else { 2862 lea(rscratch, src); 2863 Assembler::mulss(dst, Address(rscratch, 0)); 2864 } 2865 } 2866 2867 void MacroAssembler::null_check(Register reg, int offset) { 2868 if (needs_explicit_null_check(offset)) { 2869 // provoke OS null exception if reg is null by 2870 // accessing M[reg] w/o changing any (non-CC) registers 2871 // NOTE: cmpl is plenty here to provoke a segv 2872 cmpptr(rax, Address(reg, 0)); 2873 // Note: should probably use testl(rax, Address(reg, 0)); 2874 // may be shorter code (however, this version of 2875 // testl needs to be implemented first) 2876 } else { 2877 // nothing to do, (later) access of M[reg + offset] 2878 // will provoke OS null exception if reg is null 2879 } 2880 } 2881 2882 void MacroAssembler::os_breakpoint() { 2883 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2884 // (e.g., MSVC can't call ps() otherwise) 2885 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2886 } 2887 2888 void MacroAssembler::unimplemented(const char* what) { 2889 const char* buf = nullptr; 2890 { 2891 ResourceMark rm; 2892 stringStream ss; 2893 ss.print("unimplemented: %s", what); 2894 buf = code_string(ss.as_string()); 2895 } 2896 stop(buf); 2897 } 2898 2899 #ifdef _LP64 2900 #define XSTATE_BV 0x200 2901 #endif 2902 2903 void MacroAssembler::pop_CPU_state() { 2904 pop_FPU_state(); 2905 pop_IU_state(); 2906 } 2907 2908 void MacroAssembler::pop_FPU_state() { 2909 #ifndef _LP64 2910 frstor(Address(rsp, 0)); 2911 #else 2912 fxrstor(Address(rsp, 0)); 2913 #endif 2914 addptr(rsp, FPUStateSizeInWords * wordSize); 2915 } 2916 2917 void MacroAssembler::pop_IU_state() { 2918 popa(); 2919 LP64_ONLY(addq(rsp, 8)); 2920 popf(); 2921 } 2922 2923 // Save Integer and Float state 2924 // Warning: Stack must be 16 byte aligned (64bit) 2925 void MacroAssembler::push_CPU_state() { 2926 push_IU_state(); 2927 push_FPU_state(); 2928 } 2929 2930 void MacroAssembler::push_FPU_state() { 2931 subptr(rsp, FPUStateSizeInWords * wordSize); 2932 #ifndef _LP64 2933 fnsave(Address(rsp, 0)); 2934 fwait(); 2935 #else 2936 fxsave(Address(rsp, 0)); 2937 #endif // LP64 2938 } 2939 2940 void MacroAssembler::push_IU_state() { 2941 // Push flags first because pusha kills them 2942 pushf(); 2943 // Make sure rsp stays 16-byte aligned 2944 LP64_ONLY(subq(rsp, 8)); 2945 pusha(); 2946 } 2947 2948 void MacroAssembler::push_cont_fastpath() { 2949 if (!Continuations::enabled()) return; 2950 2951 #ifndef _LP64 2952 Register rthread = rax; 2953 Register rrealsp = rbx; 2954 push(rthread); 2955 push(rrealsp); 2956 2957 get_thread(rthread); 2958 2959 // The code below wants the original RSP. 2960 // Move it back after the pushes above. 2961 movptr(rrealsp, rsp); 2962 addptr(rrealsp, 2*wordSize); 2963 #else 2964 Register rthread = r15_thread; 2965 Register rrealsp = rsp; 2966 #endif 2967 2968 Label done; 2969 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 2970 jccb(Assembler::belowEqual, done); 2971 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 2972 bind(done); 2973 2974 #ifndef _LP64 2975 pop(rrealsp); 2976 pop(rthread); 2977 #endif 2978 } 2979 2980 void MacroAssembler::pop_cont_fastpath() { 2981 if (!Continuations::enabled()) return; 2982 2983 #ifndef _LP64 2984 Register rthread = rax; 2985 Register rrealsp = rbx; 2986 push(rthread); 2987 push(rrealsp); 2988 2989 get_thread(rthread); 2990 2991 // The code below wants the original RSP. 2992 // Move it back after the pushes above. 2993 movptr(rrealsp, rsp); 2994 addptr(rrealsp, 2*wordSize); 2995 #else 2996 Register rthread = r15_thread; 2997 Register rrealsp = rsp; 2998 #endif 2999 3000 Label done; 3001 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3002 jccb(Assembler::below, done); 3003 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3004 bind(done); 3005 3006 #ifndef _LP64 3007 pop(rrealsp); 3008 pop(rthread); 3009 #endif 3010 } 3011 3012 void MacroAssembler::inc_held_monitor_count() { 3013 #ifndef _LP64 3014 Register thread = rax; 3015 push(thread); 3016 get_thread(thread); 3017 incrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3018 pop(thread); 3019 #else // LP64 3020 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3021 #endif 3022 } 3023 3024 void MacroAssembler::dec_held_monitor_count() { 3025 #ifndef _LP64 3026 Register thread = rax; 3027 push(thread); 3028 get_thread(thread); 3029 decrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3030 pop(thread); 3031 #else // LP64 3032 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3033 #endif 3034 } 3035 3036 #ifdef ASSERT 3037 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3038 #ifdef _LP64 3039 Label no_cont; 3040 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3041 testl(cont, cont); 3042 jcc(Assembler::zero, no_cont); 3043 stop(name); 3044 bind(no_cont); 3045 #else 3046 Unimplemented(); 3047 #endif 3048 } 3049 #endif 3050 3051 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3052 if (!java_thread->is_valid()) { 3053 java_thread = rdi; 3054 get_thread(java_thread); 3055 } 3056 // we must set sp to zero to clear frame 3057 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3058 // must clear fp, so that compiled frames are not confused; it is 3059 // possible that we need it only for debugging 3060 if (clear_fp) { 3061 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3062 } 3063 // Always clear the pc because it could have been set by make_walkable() 3064 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3065 vzeroupper(); 3066 } 3067 3068 void MacroAssembler::restore_rax(Register tmp) { 3069 if (tmp == noreg) pop(rax); 3070 else if (tmp != rax) mov(rax, tmp); 3071 } 3072 3073 void MacroAssembler::round_to(Register reg, int modulus) { 3074 addptr(reg, modulus - 1); 3075 andptr(reg, -modulus); 3076 } 3077 3078 void MacroAssembler::save_rax(Register tmp) { 3079 if (tmp == noreg) push(rax); 3080 else if (tmp != rax) mov(tmp, rax); 3081 } 3082 3083 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3084 if (at_return) { 3085 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3086 // we may safely use rsp instead to perform the stack watermark check. 3087 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3088 jcc(Assembler::above, slow_path); 3089 return; 3090 } 3091 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3092 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3093 } 3094 3095 // Calls to C land 3096 // 3097 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3098 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3099 // has to be reset to 0. This is required to allow proper stack traversal. 3100 void MacroAssembler::set_last_Java_frame(Register java_thread, 3101 Register last_java_sp, 3102 Register last_java_fp, 3103 address last_java_pc, 3104 Register rscratch) { 3105 vzeroupper(); 3106 // determine java_thread register 3107 if (!java_thread->is_valid()) { 3108 java_thread = rdi; 3109 get_thread(java_thread); 3110 } 3111 // determine last_java_sp register 3112 if (!last_java_sp->is_valid()) { 3113 last_java_sp = rsp; 3114 } 3115 // last_java_fp is optional 3116 if (last_java_fp->is_valid()) { 3117 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3118 } 3119 // last_java_pc is optional 3120 if (last_java_pc != nullptr) { 3121 Address java_pc(java_thread, 3122 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3123 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3124 } 3125 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3126 } 3127 3128 void MacroAssembler::shlptr(Register dst, int imm8) { 3129 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3130 } 3131 3132 void MacroAssembler::shrptr(Register dst, int imm8) { 3133 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3134 } 3135 3136 void MacroAssembler::sign_extend_byte(Register reg) { 3137 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3138 movsbl(reg, reg); // movsxb 3139 } else { 3140 shll(reg, 24); 3141 sarl(reg, 24); 3142 } 3143 } 3144 3145 void MacroAssembler::sign_extend_short(Register reg) { 3146 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3147 movswl(reg, reg); // movsxw 3148 } else { 3149 shll(reg, 16); 3150 sarl(reg, 16); 3151 } 3152 } 3153 3154 void MacroAssembler::testl(Address dst, int32_t imm32) { 3155 if (imm32 >= 0 && is8bit(imm32)) { 3156 testb(dst, imm32); 3157 } else { 3158 Assembler::testl(dst, imm32); 3159 } 3160 } 3161 3162 void MacroAssembler::testl(Register dst, int32_t imm32) { 3163 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3164 testb(dst, imm32); 3165 } else { 3166 Assembler::testl(dst, imm32); 3167 } 3168 } 3169 3170 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3171 assert(always_reachable(src), "Address should be reachable"); 3172 testl(dst, as_Address(src)); 3173 } 3174 3175 #ifdef _LP64 3176 3177 void MacroAssembler::testq(Address dst, int32_t imm32) { 3178 if (imm32 >= 0) { 3179 testl(dst, imm32); 3180 } else { 3181 Assembler::testq(dst, imm32); 3182 } 3183 } 3184 3185 void MacroAssembler::testq(Register dst, int32_t imm32) { 3186 if (imm32 >= 0) { 3187 testl(dst, imm32); 3188 } else { 3189 Assembler::testq(dst, imm32); 3190 } 3191 } 3192 3193 #endif 3194 3195 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3196 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3197 Assembler::pcmpeqb(dst, src); 3198 } 3199 3200 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3201 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3202 Assembler::pcmpeqw(dst, src); 3203 } 3204 3205 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3206 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3207 Assembler::pcmpestri(dst, src, imm8); 3208 } 3209 3210 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3211 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3212 Assembler::pcmpestri(dst, src, imm8); 3213 } 3214 3215 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3216 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3217 Assembler::pmovzxbw(dst, src); 3218 } 3219 3220 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3221 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3222 Assembler::pmovzxbw(dst, src); 3223 } 3224 3225 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3226 assert((src->encoding() < 16),"XMM register should be 0-15"); 3227 Assembler::pmovmskb(dst, src); 3228 } 3229 3230 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3231 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3232 Assembler::ptest(dst, src); 3233 } 3234 3235 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3236 assert(rscratch != noreg || always_reachable(src), "missing"); 3237 3238 if (reachable(src)) { 3239 Assembler::sqrtss(dst, as_Address(src)); 3240 } else { 3241 lea(rscratch, src); 3242 Assembler::sqrtss(dst, Address(rscratch, 0)); 3243 } 3244 } 3245 3246 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3247 assert(rscratch != noreg || always_reachable(src), "missing"); 3248 3249 if (reachable(src)) { 3250 Assembler::subsd(dst, as_Address(src)); 3251 } else { 3252 lea(rscratch, src); 3253 Assembler::subsd(dst, Address(rscratch, 0)); 3254 } 3255 } 3256 3257 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3258 assert(rscratch != noreg || always_reachable(src), "missing"); 3259 3260 if (reachable(src)) { 3261 Assembler::roundsd(dst, as_Address(src), rmode); 3262 } else { 3263 lea(rscratch, src); 3264 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3265 } 3266 } 3267 3268 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3269 assert(rscratch != noreg || always_reachable(src), "missing"); 3270 3271 if (reachable(src)) { 3272 Assembler::subss(dst, as_Address(src)); 3273 } else { 3274 lea(rscratch, src); 3275 Assembler::subss(dst, Address(rscratch, 0)); 3276 } 3277 } 3278 3279 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3280 assert(rscratch != noreg || always_reachable(src), "missing"); 3281 3282 if (reachable(src)) { 3283 Assembler::ucomisd(dst, as_Address(src)); 3284 } else { 3285 lea(rscratch, src); 3286 Assembler::ucomisd(dst, Address(rscratch, 0)); 3287 } 3288 } 3289 3290 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3291 assert(rscratch != noreg || always_reachable(src), "missing"); 3292 3293 if (reachable(src)) { 3294 Assembler::ucomiss(dst, as_Address(src)); 3295 } else { 3296 lea(rscratch, src); 3297 Assembler::ucomiss(dst, Address(rscratch, 0)); 3298 } 3299 } 3300 3301 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3302 assert(rscratch != noreg || always_reachable(src), "missing"); 3303 3304 // Used in sign-bit flipping with aligned address. 3305 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3306 if (reachable(src)) { 3307 Assembler::xorpd(dst, as_Address(src)); 3308 } else { 3309 lea(rscratch, src); 3310 Assembler::xorpd(dst, Address(rscratch, 0)); 3311 } 3312 } 3313 3314 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3315 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3316 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3317 } 3318 else { 3319 Assembler::xorpd(dst, src); 3320 } 3321 } 3322 3323 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3324 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3325 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3326 } else { 3327 Assembler::xorps(dst, src); 3328 } 3329 } 3330 3331 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3332 assert(rscratch != noreg || always_reachable(src), "missing"); 3333 3334 // Used in sign-bit flipping with aligned address. 3335 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3336 if (reachable(src)) { 3337 Assembler::xorps(dst, as_Address(src)); 3338 } else { 3339 lea(rscratch, src); 3340 Assembler::xorps(dst, Address(rscratch, 0)); 3341 } 3342 } 3343 3344 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3345 assert(rscratch != noreg || always_reachable(src), "missing"); 3346 3347 // Used in sign-bit flipping with aligned address. 3348 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3349 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3350 if (reachable(src)) { 3351 Assembler::pshufb(dst, as_Address(src)); 3352 } else { 3353 lea(rscratch, src); 3354 Assembler::pshufb(dst, Address(rscratch, 0)); 3355 } 3356 } 3357 3358 // AVX 3-operands instructions 3359 3360 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3361 assert(rscratch != noreg || always_reachable(src), "missing"); 3362 3363 if (reachable(src)) { 3364 vaddsd(dst, nds, as_Address(src)); 3365 } else { 3366 lea(rscratch, src); 3367 vaddsd(dst, nds, Address(rscratch, 0)); 3368 } 3369 } 3370 3371 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3372 assert(rscratch != noreg || always_reachable(src), "missing"); 3373 3374 if (reachable(src)) { 3375 vaddss(dst, nds, as_Address(src)); 3376 } else { 3377 lea(rscratch, src); 3378 vaddss(dst, nds, Address(rscratch, 0)); 3379 } 3380 } 3381 3382 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3383 assert(UseAVX > 0, "requires some form of AVX"); 3384 assert(rscratch != noreg || always_reachable(src), "missing"); 3385 3386 if (reachable(src)) { 3387 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3388 } else { 3389 lea(rscratch, src); 3390 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3391 } 3392 } 3393 3394 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3395 assert(UseAVX > 0, "requires some form of AVX"); 3396 assert(rscratch != noreg || always_reachable(src), "missing"); 3397 3398 if (reachable(src)) { 3399 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3400 } else { 3401 lea(rscratch, src); 3402 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3403 } 3404 } 3405 3406 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3407 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3408 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3409 3410 vandps(dst, nds, negate_field, vector_len, rscratch); 3411 } 3412 3413 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3414 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3415 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3416 3417 vandpd(dst, nds, negate_field, vector_len, rscratch); 3418 } 3419 3420 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3421 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3422 Assembler::vpaddb(dst, nds, src, vector_len); 3423 } 3424 3425 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3426 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3427 Assembler::vpaddb(dst, nds, src, vector_len); 3428 } 3429 3430 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3431 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3432 Assembler::vpaddw(dst, nds, src, vector_len); 3433 } 3434 3435 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3436 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3437 Assembler::vpaddw(dst, nds, src, vector_len); 3438 } 3439 3440 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3441 assert(rscratch != noreg || always_reachable(src), "missing"); 3442 3443 if (reachable(src)) { 3444 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3445 } else { 3446 lea(rscratch, src); 3447 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3448 } 3449 } 3450 3451 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3452 assert(rscratch != noreg || always_reachable(src), "missing"); 3453 3454 if (reachable(src)) { 3455 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3456 } else { 3457 lea(rscratch, src); 3458 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3459 } 3460 } 3461 3462 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3463 assert(rscratch != noreg || always_reachable(src), "missing"); 3464 3465 if (reachable(src)) { 3466 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3467 } else { 3468 lea(rscratch, src); 3469 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3470 } 3471 } 3472 3473 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3474 assert(rscratch != noreg || always_reachable(src), "missing"); 3475 3476 if (reachable(src)) { 3477 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3478 } else { 3479 lea(rscratch, src); 3480 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3481 } 3482 } 3483 3484 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3485 assert(rscratch != noreg || always_reachable(src), "missing"); 3486 3487 if (reachable(src)) { 3488 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3489 } else { 3490 lea(rscratch, src); 3491 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3492 } 3493 } 3494 3495 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3496 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3497 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3498 } 3499 3500 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3501 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3502 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3503 } 3504 3505 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3506 assert(rscratch != noreg || always_reachable(src), "missing"); 3507 3508 if (reachable(src)) { 3509 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3510 } else { 3511 lea(rscratch, src); 3512 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3513 } 3514 } 3515 3516 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3517 int comparison, bool is_signed, int vector_len, Register rscratch) { 3518 assert(rscratch != noreg || always_reachable(src), "missing"); 3519 3520 if (reachable(src)) { 3521 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3522 } else { 3523 lea(rscratch, src); 3524 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3525 } 3526 } 3527 3528 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3529 int comparison, bool is_signed, int vector_len, Register rscratch) { 3530 assert(rscratch != noreg || always_reachable(src), "missing"); 3531 3532 if (reachable(src)) { 3533 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3534 } else { 3535 lea(rscratch, src); 3536 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3537 } 3538 } 3539 3540 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3541 int comparison, bool is_signed, int vector_len, Register rscratch) { 3542 assert(rscratch != noreg || always_reachable(src), "missing"); 3543 3544 if (reachable(src)) { 3545 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3546 } else { 3547 lea(rscratch, src); 3548 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3549 } 3550 } 3551 3552 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3553 int comparison, bool is_signed, int vector_len, Register rscratch) { 3554 assert(rscratch != noreg || always_reachable(src), "missing"); 3555 3556 if (reachable(src)) { 3557 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3558 } else { 3559 lea(rscratch, src); 3560 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3561 } 3562 } 3563 3564 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3565 if (width == Assembler::Q) { 3566 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3567 } else { 3568 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3569 } 3570 } 3571 3572 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3573 int eq_cond_enc = 0x29; 3574 int gt_cond_enc = 0x37; 3575 if (width != Assembler::Q) { 3576 eq_cond_enc = 0x74 + width; 3577 gt_cond_enc = 0x64 + width; 3578 } 3579 switch (cond) { 3580 case eq: 3581 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3582 break; 3583 case neq: 3584 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3585 vallones(xtmp, vector_len); 3586 vpxor(dst, xtmp, dst, vector_len); 3587 break; 3588 case le: 3589 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3590 vallones(xtmp, vector_len); 3591 vpxor(dst, xtmp, dst, vector_len); 3592 break; 3593 case nlt: 3594 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3595 vallones(xtmp, vector_len); 3596 vpxor(dst, xtmp, dst, vector_len); 3597 break; 3598 case lt: 3599 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3600 break; 3601 case nle: 3602 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3603 break; 3604 default: 3605 assert(false, "Should not reach here"); 3606 } 3607 } 3608 3609 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3610 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3611 Assembler::vpmovzxbw(dst, src, vector_len); 3612 } 3613 3614 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3615 assert((src->encoding() < 16),"XMM register should be 0-15"); 3616 Assembler::vpmovmskb(dst, src, vector_len); 3617 } 3618 3619 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3620 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3621 Assembler::vpmullw(dst, nds, src, vector_len); 3622 } 3623 3624 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3625 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3626 Assembler::vpmullw(dst, nds, src, vector_len); 3627 } 3628 3629 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3630 assert((UseAVX > 0), "AVX support is needed"); 3631 assert(rscratch != noreg || always_reachable(src), "missing"); 3632 3633 if (reachable(src)) { 3634 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3635 } else { 3636 lea(rscratch, src); 3637 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3638 } 3639 } 3640 3641 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3642 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3643 Assembler::vpsubb(dst, nds, src, vector_len); 3644 } 3645 3646 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3647 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3648 Assembler::vpsubb(dst, nds, src, vector_len); 3649 } 3650 3651 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3652 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3653 Assembler::vpsubw(dst, nds, src, vector_len); 3654 } 3655 3656 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3657 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3658 Assembler::vpsubw(dst, nds, src, vector_len); 3659 } 3660 3661 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3662 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3663 Assembler::vpsraw(dst, nds, shift, vector_len); 3664 } 3665 3666 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3667 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3668 Assembler::vpsraw(dst, nds, shift, vector_len); 3669 } 3670 3671 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3672 assert(UseAVX > 2,""); 3673 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3674 vector_len = 2; 3675 } 3676 Assembler::evpsraq(dst, nds, shift, vector_len); 3677 } 3678 3679 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3680 assert(UseAVX > 2,""); 3681 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3682 vector_len = 2; 3683 } 3684 Assembler::evpsraq(dst, nds, shift, vector_len); 3685 } 3686 3687 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3688 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3689 Assembler::vpsrlw(dst, nds, shift, vector_len); 3690 } 3691 3692 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3693 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3694 Assembler::vpsrlw(dst, nds, shift, vector_len); 3695 } 3696 3697 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3698 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3699 Assembler::vpsllw(dst, nds, shift, vector_len); 3700 } 3701 3702 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3703 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3704 Assembler::vpsllw(dst, nds, shift, vector_len); 3705 } 3706 3707 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3708 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3709 Assembler::vptest(dst, src); 3710 } 3711 3712 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3713 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3714 Assembler::punpcklbw(dst, src); 3715 } 3716 3717 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3718 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3719 Assembler::pshufd(dst, src, mode); 3720 } 3721 3722 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3723 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3724 Assembler::pshuflw(dst, src, mode); 3725 } 3726 3727 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3728 assert(rscratch != noreg || always_reachable(src), "missing"); 3729 3730 if (reachable(src)) { 3731 vandpd(dst, nds, as_Address(src), vector_len); 3732 } else { 3733 lea(rscratch, src); 3734 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3735 } 3736 } 3737 3738 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3739 assert(rscratch != noreg || always_reachable(src), "missing"); 3740 3741 if (reachable(src)) { 3742 vandps(dst, nds, as_Address(src), vector_len); 3743 } else { 3744 lea(rscratch, src); 3745 vandps(dst, nds, Address(rscratch, 0), vector_len); 3746 } 3747 } 3748 3749 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3750 bool merge, int vector_len, Register rscratch) { 3751 assert(rscratch != noreg || always_reachable(src), "missing"); 3752 3753 if (reachable(src)) { 3754 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3755 } else { 3756 lea(rscratch, src); 3757 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3758 } 3759 } 3760 3761 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3762 assert(rscratch != noreg || always_reachable(src), "missing"); 3763 3764 if (reachable(src)) { 3765 vdivsd(dst, nds, as_Address(src)); 3766 } else { 3767 lea(rscratch, src); 3768 vdivsd(dst, nds, Address(rscratch, 0)); 3769 } 3770 } 3771 3772 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3773 assert(rscratch != noreg || always_reachable(src), "missing"); 3774 3775 if (reachable(src)) { 3776 vdivss(dst, nds, as_Address(src)); 3777 } else { 3778 lea(rscratch, src); 3779 vdivss(dst, nds, Address(rscratch, 0)); 3780 } 3781 } 3782 3783 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3784 assert(rscratch != noreg || always_reachable(src), "missing"); 3785 3786 if (reachable(src)) { 3787 vmulsd(dst, nds, as_Address(src)); 3788 } else { 3789 lea(rscratch, src); 3790 vmulsd(dst, nds, Address(rscratch, 0)); 3791 } 3792 } 3793 3794 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3795 assert(rscratch != noreg || always_reachable(src), "missing"); 3796 3797 if (reachable(src)) { 3798 vmulss(dst, nds, as_Address(src)); 3799 } else { 3800 lea(rscratch, src); 3801 vmulss(dst, nds, Address(rscratch, 0)); 3802 } 3803 } 3804 3805 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3806 assert(rscratch != noreg || always_reachable(src), "missing"); 3807 3808 if (reachable(src)) { 3809 vsubsd(dst, nds, as_Address(src)); 3810 } else { 3811 lea(rscratch, src); 3812 vsubsd(dst, nds, Address(rscratch, 0)); 3813 } 3814 } 3815 3816 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3817 assert(rscratch != noreg || always_reachable(src), "missing"); 3818 3819 if (reachable(src)) { 3820 vsubss(dst, nds, as_Address(src)); 3821 } else { 3822 lea(rscratch, src); 3823 vsubss(dst, nds, Address(rscratch, 0)); 3824 } 3825 } 3826 3827 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3828 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3829 assert(rscratch != noreg || always_reachable(src), "missing"); 3830 3831 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3832 } 3833 3834 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3835 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3836 assert(rscratch != noreg || always_reachable(src), "missing"); 3837 3838 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3839 } 3840 3841 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3842 assert(rscratch != noreg || always_reachable(src), "missing"); 3843 3844 if (reachable(src)) { 3845 vxorpd(dst, nds, as_Address(src), vector_len); 3846 } else { 3847 lea(rscratch, src); 3848 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3849 } 3850 } 3851 3852 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3853 assert(rscratch != noreg || always_reachable(src), "missing"); 3854 3855 if (reachable(src)) { 3856 vxorps(dst, nds, as_Address(src), vector_len); 3857 } else { 3858 lea(rscratch, src); 3859 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3860 } 3861 } 3862 3863 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3864 assert(rscratch != noreg || always_reachable(src), "missing"); 3865 3866 if (UseAVX > 1 || (vector_len < 1)) { 3867 if (reachable(src)) { 3868 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3869 } else { 3870 lea(rscratch, src); 3871 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3872 } 3873 } else { 3874 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3875 } 3876 } 3877 3878 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3879 assert(rscratch != noreg || always_reachable(src), "missing"); 3880 3881 if (reachable(src)) { 3882 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3883 } else { 3884 lea(rscratch, src); 3885 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3886 } 3887 } 3888 3889 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3890 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3891 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3892 // The inverted mask is sign-extended 3893 andptr(possibly_non_local, inverted_mask); 3894 } 3895 3896 void MacroAssembler::resolve_jobject(Register value, 3897 Register thread, 3898 Register tmp) { 3899 assert_different_registers(value, thread, tmp); 3900 Label done, tagged, weak_tagged; 3901 testptr(value, value); 3902 jcc(Assembler::zero, done); // Use null as-is. 3903 testptr(value, JNIHandles::tag_mask); // Test for tag. 3904 jcc(Assembler::notZero, tagged); 3905 3906 // Resolve local handle 3907 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 3908 verify_oop(value); 3909 jmp(done); 3910 3911 bind(tagged); 3912 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 3913 jcc(Assembler::notZero, weak_tagged); 3914 3915 // Resolve global handle 3916 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 3917 verify_oop(value); 3918 jmp(done); 3919 3920 bind(weak_tagged); 3921 // Resolve jweak. 3922 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3923 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 3924 verify_oop(value); 3925 3926 bind(done); 3927 } 3928 3929 void MacroAssembler::resolve_global_jobject(Register value, 3930 Register thread, 3931 Register tmp) { 3932 assert_different_registers(value, thread, tmp); 3933 Label done; 3934 3935 testptr(value, value); 3936 jcc(Assembler::zero, done); // Use null as-is. 3937 3938 #ifdef ASSERT 3939 { 3940 Label valid_global_tag; 3941 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 3942 jcc(Assembler::notZero, valid_global_tag); 3943 stop("non global jobject using resolve_global_jobject"); 3944 bind(valid_global_tag); 3945 } 3946 #endif 3947 3948 // Resolve global handle 3949 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 3950 verify_oop(value); 3951 3952 bind(done); 3953 } 3954 3955 void MacroAssembler::subptr(Register dst, int32_t imm32) { 3956 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 3957 } 3958 3959 // Force generation of a 4 byte immediate value even if it fits into 8bit 3960 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 3961 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 3962 } 3963 3964 void MacroAssembler::subptr(Register dst, Register src) { 3965 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 3966 } 3967 3968 // C++ bool manipulation 3969 void MacroAssembler::testbool(Register dst) { 3970 if(sizeof(bool) == 1) 3971 testb(dst, 0xff); 3972 else if(sizeof(bool) == 2) { 3973 // testw implementation needed for two byte bools 3974 ShouldNotReachHere(); 3975 } else if(sizeof(bool) == 4) 3976 testl(dst, dst); 3977 else 3978 // unsupported 3979 ShouldNotReachHere(); 3980 } 3981 3982 void MacroAssembler::testptr(Register dst, Register src) { 3983 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 3984 } 3985 3986 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3987 void MacroAssembler::tlab_allocate(Register thread, Register obj, 3988 Register var_size_in_bytes, 3989 int con_size_in_bytes, 3990 Register t1, 3991 Register t2, 3992 Label& slow_case) { 3993 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 3994 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 3995 } 3996 3997 RegSet MacroAssembler::call_clobbered_gp_registers() { 3998 RegSet regs; 3999 #ifdef _LP64 4000 regs += RegSet::of(rax, rcx, rdx); 4001 #ifndef WINDOWS 4002 regs += RegSet::of(rsi, rdi); 4003 #endif 4004 regs += RegSet::range(r8, r11); 4005 #else 4006 regs += RegSet::of(rax, rcx, rdx); 4007 #endif 4008 return regs; 4009 } 4010 4011 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4012 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4013 #if defined(WINDOWS) && defined(_LP64) 4014 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4015 if (num_xmm_registers > 16) { 4016 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4017 } 4018 return result; 4019 #else 4020 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4021 #endif 4022 } 4023 4024 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4025 4026 #ifndef _LP64 4027 static bool use_x87_registers() { return UseSSE < 2; } 4028 #endif 4029 static bool use_xmm_registers() { return UseSSE >= 1; } 4030 4031 // C1 only ever uses the first double/float of the XMM register. 4032 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4033 4034 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4035 if (UseSSE == 1) { 4036 masm->movflt(Address(rsp, offset), reg); 4037 } else { 4038 masm->movdbl(Address(rsp, offset), reg); 4039 } 4040 } 4041 4042 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4043 if (UseSSE == 1) { 4044 masm->movflt(reg, Address(rsp, offset)); 4045 } else { 4046 masm->movdbl(reg, Address(rsp, offset)); 4047 } 4048 } 4049 4050 int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, bool save_fpu, 4051 int& gp_area_size, int& fp_area_size, int& xmm_area_size) { 4052 4053 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4054 StackAlignmentInBytes); 4055 #ifdef _LP64 4056 fp_area_size = 0; 4057 #else 4058 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4059 #endif 4060 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4061 4062 return gp_area_size + fp_area_size + xmm_area_size; 4063 } 4064 4065 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4066 block_comment("push_call_clobbered_registers start"); 4067 // Regular registers 4068 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4069 4070 int gp_area_size; 4071 int fp_area_size; 4072 int xmm_area_size; 4073 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4074 gp_area_size, fp_area_size, xmm_area_size); 4075 subptr(rsp, total_save_size); 4076 4077 push_set(gp_registers_to_push, 0); 4078 4079 #ifndef _LP64 4080 if (save_fpu && use_x87_registers()) { 4081 fnsave(Address(rsp, gp_area_size)); 4082 fwait(); 4083 } 4084 #endif 4085 if (save_fpu && use_xmm_registers()) { 4086 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4087 } 4088 4089 block_comment("push_call_clobbered_registers end"); 4090 } 4091 4092 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4093 block_comment("pop_call_clobbered_registers start"); 4094 4095 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4096 4097 int gp_area_size; 4098 int fp_area_size; 4099 int xmm_area_size; 4100 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4101 gp_area_size, fp_area_size, xmm_area_size); 4102 4103 if (restore_fpu && use_xmm_registers()) { 4104 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4105 } 4106 #ifndef _LP64 4107 if (restore_fpu && use_x87_registers()) { 4108 frstor(Address(rsp, gp_area_size)); 4109 } 4110 #endif 4111 4112 pop_set(gp_registers_to_pop, 0); 4113 4114 addptr(rsp, total_save_size); 4115 4116 vzeroupper(); 4117 4118 block_comment("pop_call_clobbered_registers end"); 4119 } 4120 4121 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4122 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4123 int spill_offset = offset; 4124 4125 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4126 save_xmm_register(this, spill_offset, *it); 4127 spill_offset += xmm_save_size(); 4128 } 4129 } 4130 4131 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4132 int restore_size = set.size() * xmm_save_size(); 4133 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4134 4135 int restore_offset = offset + restore_size - xmm_save_size(); 4136 4137 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4138 restore_xmm_register(this, restore_offset, *it); 4139 restore_offset -= xmm_save_size(); 4140 } 4141 } 4142 4143 void MacroAssembler::push_set(RegSet set, int offset) { 4144 int spill_offset; 4145 if (offset == -1) { 4146 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4147 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4148 subptr(rsp, aligned_size); 4149 spill_offset = 0; 4150 } else { 4151 spill_offset = offset; 4152 } 4153 4154 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4155 movptr(Address(rsp, spill_offset), *it); 4156 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4157 } 4158 } 4159 4160 void MacroAssembler::pop_set(RegSet set, int offset) { 4161 4162 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4163 int restore_size = set.size() * gp_reg_size; 4164 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4165 4166 int restore_offset; 4167 if (offset == -1) { 4168 restore_offset = restore_size - gp_reg_size; 4169 } else { 4170 restore_offset = offset + restore_size - gp_reg_size; 4171 } 4172 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4173 movptr(*it, Address(rsp, restore_offset)); 4174 restore_offset -= gp_reg_size; 4175 } 4176 4177 if (offset == -1) { 4178 addptr(rsp, aligned_size); 4179 } 4180 } 4181 4182 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4183 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4184 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4185 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4186 Label done; 4187 4188 testptr(length_in_bytes, length_in_bytes); 4189 jcc(Assembler::zero, done); 4190 4191 // initialize topmost word, divide index by 2, check if odd and test if zero 4192 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4193 #ifdef ASSERT 4194 { 4195 Label L; 4196 testptr(length_in_bytes, BytesPerWord - 1); 4197 jcc(Assembler::zero, L); 4198 stop("length must be a multiple of BytesPerWord"); 4199 bind(L); 4200 } 4201 #endif 4202 Register index = length_in_bytes; 4203 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4204 if (UseIncDec) { 4205 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4206 } else { 4207 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4208 shrptr(index, 1); 4209 } 4210 #ifndef _LP64 4211 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4212 { 4213 Label even; 4214 // note: if index was a multiple of 8, then it cannot 4215 // be 0 now otherwise it must have been 0 before 4216 // => if it is even, we don't need to check for 0 again 4217 jcc(Assembler::carryClear, even); 4218 // clear topmost word (no jump would be needed if conditional assignment worked here) 4219 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4220 // index could be 0 now, must check again 4221 jcc(Assembler::zero, done); 4222 bind(even); 4223 } 4224 #endif // !_LP64 4225 // initialize remaining object fields: index is a multiple of 2 now 4226 { 4227 Label loop; 4228 bind(loop); 4229 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4230 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4231 decrement(index); 4232 jcc(Assembler::notZero, loop); 4233 } 4234 4235 bind(done); 4236 } 4237 4238 // Look up the method for a megamorphic invokeinterface call. 4239 // The target method is determined by <intf_klass, itable_index>. 4240 // The receiver klass is in recv_klass. 4241 // On success, the result will be in method_result, and execution falls through. 4242 // On failure, execution transfers to the given label. 4243 void MacroAssembler::lookup_interface_method(Register recv_klass, 4244 Register intf_klass, 4245 RegisterOrConstant itable_index, 4246 Register method_result, 4247 Register scan_temp, 4248 Label& L_no_such_interface, 4249 bool return_method) { 4250 assert_different_registers(recv_klass, intf_klass, scan_temp); 4251 assert_different_registers(method_result, intf_klass, scan_temp); 4252 assert(recv_klass != method_result || !return_method, 4253 "recv_klass can be destroyed when method isn't needed"); 4254 4255 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4256 "caller must use same register for non-constant itable index as for method"); 4257 4258 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4259 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4260 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4261 int scan_step = itableOffsetEntry::size() * wordSize; 4262 int vte_size = vtableEntry::size_in_bytes(); 4263 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4264 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4265 4266 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4267 4268 // %%% Could store the aligned, prescaled offset in the klassoop. 4269 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4270 4271 if (return_method) { 4272 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4273 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4274 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4275 } 4276 4277 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4278 // if (scan->interface() == intf) { 4279 // result = (klass + scan->offset() + itable_index); 4280 // } 4281 // } 4282 Label search, found_method; 4283 4284 for (int peel = 1; peel >= 0; peel--) { 4285 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4286 cmpptr(intf_klass, method_result); 4287 4288 if (peel) { 4289 jccb(Assembler::equal, found_method); 4290 } else { 4291 jccb(Assembler::notEqual, search); 4292 // (invert the test to fall through to found_method...) 4293 } 4294 4295 if (!peel) break; 4296 4297 bind(search); 4298 4299 // Check that the previous entry is non-null. A null entry means that 4300 // the receiver class doesn't implement the interface, and wasn't the 4301 // same as when the caller was compiled. 4302 testptr(method_result, method_result); 4303 jcc(Assembler::zero, L_no_such_interface); 4304 addptr(scan_temp, scan_step); 4305 } 4306 4307 bind(found_method); 4308 4309 if (return_method) { 4310 // Got a hit. 4311 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4312 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4313 } 4314 } 4315 4316 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4317 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICHolder 4318 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4319 // The target method is determined by <holder_klass, itable_index>. 4320 // The receiver klass is in recv_klass. 4321 // On success, the result will be in method_result, and execution falls through. 4322 // On failure, execution transfers to the given label. 4323 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4324 Register holder_klass, 4325 Register resolved_klass, 4326 Register method_result, 4327 Register scan_temp, 4328 Register temp_reg2, 4329 Register receiver, 4330 int itable_index, 4331 Label& L_no_such_interface) { 4332 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4333 Register temp_itbl_klass = method_result; 4334 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4335 4336 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4337 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4338 int scan_step = itableOffsetEntry::size() * wordSize; 4339 int vte_size = vtableEntry::size_in_bytes(); 4340 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4341 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4342 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4343 assert(vte_size == wordSize, "adjust times_vte_scale"); 4344 4345 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4346 4347 // temp_itbl_klass = recv_klass.itable[0] 4348 // scan_temp = &recv_klass.itable[0] + step 4349 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4350 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4351 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4352 xorptr(temp_reg, temp_reg); 4353 4354 // Initial checks: 4355 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4356 // - if (itable[0] == 0), no such interface 4357 // - if (itable[0] == holder_klass), shortcut to "holder found" 4358 cmpptr(holder_klass, resolved_klass); 4359 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4360 testptr(temp_itbl_klass, temp_itbl_klass); 4361 jccb(Assembler::zero, L_no_such_interface); 4362 cmpptr(holder_klass, temp_itbl_klass); 4363 jccb(Assembler::equal, L_holder_found); 4364 4365 // Loop: Look for holder_klass record in itable 4366 // do { 4367 // tmp = itable[index]; 4368 // index += step; 4369 // if (tmp == holder_klass) { 4370 // goto L_holder_found; // Found! 4371 // } 4372 // } while (tmp != 0); 4373 // goto L_no_such_interface // Not found. 4374 Label L_scan_holder; 4375 bind(L_scan_holder); 4376 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4377 addptr(scan_temp, scan_step); 4378 cmpptr(holder_klass, temp_itbl_klass); 4379 jccb(Assembler::equal, L_holder_found); 4380 testptr(temp_itbl_klass, temp_itbl_klass); 4381 jccb(Assembler::notZero, L_scan_holder); 4382 4383 jmpb(L_no_such_interface); 4384 4385 // Loop: Look for resolved_class record in itable 4386 // do { 4387 // tmp = itable[index]; 4388 // index += step; 4389 // if (tmp == holder_klass) { 4390 // // Also check if we have met a holder klass 4391 // holder_tmp = itable[index-step-ioffset]; 4392 // } 4393 // if (tmp == resolved_klass) { 4394 // goto L_resolved_found; // Found! 4395 // } 4396 // } while (tmp != 0); 4397 // goto L_no_such_interface // Not found. 4398 // 4399 Label L_loop_scan_resolved; 4400 bind(L_loop_scan_resolved); 4401 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4402 addptr(scan_temp, scan_step); 4403 bind(L_loop_scan_resolved_entry); 4404 cmpptr(holder_klass, temp_itbl_klass); 4405 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4406 cmpptr(resolved_klass, temp_itbl_klass); 4407 jccb(Assembler::equal, L_resolved_found); 4408 testptr(temp_itbl_klass, temp_itbl_klass); 4409 jccb(Assembler::notZero, L_loop_scan_resolved); 4410 4411 jmpb(L_no_such_interface); 4412 4413 Label L_ready; 4414 4415 // See if we already have a holder klass. If not, go and scan for it. 4416 bind(L_resolved_found); 4417 testptr(temp_reg, temp_reg); 4418 jccb(Assembler::zero, L_scan_holder); 4419 jmpb(L_ready); 4420 4421 bind(L_holder_found); 4422 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4423 4424 // Finally, temp_reg contains holder_klass vtable offset 4425 bind(L_ready); 4426 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4427 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4428 load_klass(scan_temp, receiver, noreg); 4429 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4430 } else { 4431 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4432 } 4433 } 4434 4435 4436 // virtual method calling 4437 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4438 RegisterOrConstant vtable_index, 4439 Register method_result) { 4440 const ByteSize base = Klass::vtable_start_offset(); 4441 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4442 Address vtable_entry_addr(recv_klass, 4443 vtable_index, Address::times_ptr, 4444 base + vtableEntry::method_offset()); 4445 movptr(method_result, vtable_entry_addr); 4446 } 4447 4448 4449 void MacroAssembler::check_klass_subtype(Register sub_klass, 4450 Register super_klass, 4451 Register temp_reg, 4452 Label& L_success) { 4453 Label L_failure; 4454 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4455 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4456 bind(L_failure); 4457 } 4458 4459 4460 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4461 Register super_klass, 4462 Register temp_reg, 4463 Label* L_success, 4464 Label* L_failure, 4465 Label* L_slow_path, 4466 RegisterOrConstant super_check_offset) { 4467 assert_different_registers(sub_klass, super_klass, temp_reg); 4468 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4469 if (super_check_offset.is_register()) { 4470 assert_different_registers(sub_klass, super_klass, 4471 super_check_offset.as_register()); 4472 } else if (must_load_sco) { 4473 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4474 } 4475 4476 Label L_fallthrough; 4477 int label_nulls = 0; 4478 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4479 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4480 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4481 assert(label_nulls <= 1, "at most one null in the batch"); 4482 4483 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4484 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4485 Address super_check_offset_addr(super_klass, sco_offset); 4486 4487 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4488 // range of a jccb. If this routine grows larger, reconsider at 4489 // least some of these. 4490 #define local_jcc(assembler_cond, label) \ 4491 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4492 else jcc( assembler_cond, label) /*omit semi*/ 4493 4494 // Hacked jmp, which may only be used just before L_fallthrough. 4495 #define final_jmp(label) \ 4496 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4497 else jmp(label) /*omit semi*/ 4498 4499 // If the pointers are equal, we are done (e.g., String[] elements). 4500 // This self-check enables sharing of secondary supertype arrays among 4501 // non-primary types such as array-of-interface. Otherwise, each such 4502 // type would need its own customized SSA. 4503 // We move this check to the front of the fast path because many 4504 // type checks are in fact trivially successful in this manner, 4505 // so we get a nicely predicted branch right at the start of the check. 4506 cmpptr(sub_klass, super_klass); 4507 local_jcc(Assembler::equal, *L_success); 4508 4509 // Check the supertype display: 4510 if (must_load_sco) { 4511 // Positive movl does right thing on LP64. 4512 movl(temp_reg, super_check_offset_addr); 4513 super_check_offset = RegisterOrConstant(temp_reg); 4514 } 4515 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4516 cmpptr(super_klass, super_check_addr); // load displayed supertype 4517 4518 // This check has worked decisively for primary supers. 4519 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4520 // (Secondary supers are interfaces and very deeply nested subtypes.) 4521 // This works in the same check above because of a tricky aliasing 4522 // between the super_cache and the primary super display elements. 4523 // (The 'super_check_addr' can address either, as the case requires.) 4524 // Note that the cache is updated below if it does not help us find 4525 // what we need immediately. 4526 // So if it was a primary super, we can just fail immediately. 4527 // Otherwise, it's the slow path for us (no success at this point). 4528 4529 if (super_check_offset.is_register()) { 4530 local_jcc(Assembler::equal, *L_success); 4531 cmpl(super_check_offset.as_register(), sc_offset); 4532 if (L_failure == &L_fallthrough) { 4533 local_jcc(Assembler::equal, *L_slow_path); 4534 } else { 4535 local_jcc(Assembler::notEqual, *L_failure); 4536 final_jmp(*L_slow_path); 4537 } 4538 } else if (super_check_offset.as_constant() == sc_offset) { 4539 // Need a slow path; fast failure is impossible. 4540 if (L_slow_path == &L_fallthrough) { 4541 local_jcc(Assembler::equal, *L_success); 4542 } else { 4543 local_jcc(Assembler::notEqual, *L_slow_path); 4544 final_jmp(*L_success); 4545 } 4546 } else { 4547 // No slow path; it's a fast decision. 4548 if (L_failure == &L_fallthrough) { 4549 local_jcc(Assembler::equal, *L_success); 4550 } else { 4551 local_jcc(Assembler::notEqual, *L_failure); 4552 final_jmp(*L_success); 4553 } 4554 } 4555 4556 bind(L_fallthrough); 4557 4558 #undef local_jcc 4559 #undef final_jmp 4560 } 4561 4562 4563 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4564 Register super_klass, 4565 Register temp_reg, 4566 Register temp2_reg, 4567 Label* L_success, 4568 Label* L_failure, 4569 bool set_cond_codes) { 4570 assert_different_registers(sub_klass, super_klass, temp_reg); 4571 if (temp2_reg != noreg) 4572 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4573 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4574 4575 Label L_fallthrough; 4576 int label_nulls = 0; 4577 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4578 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4579 assert(label_nulls <= 1, "at most one null in the batch"); 4580 4581 // a couple of useful fields in sub_klass: 4582 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4583 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4584 Address secondary_supers_addr(sub_klass, ss_offset); 4585 Address super_cache_addr( sub_klass, sc_offset); 4586 4587 // Do a linear scan of the secondary super-klass chain. 4588 // This code is rarely used, so simplicity is a virtue here. 4589 // The repne_scan instruction uses fixed registers, which we must spill. 4590 // Don't worry too much about pre-existing connections with the input regs. 4591 4592 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4593 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4594 4595 // Get super_klass value into rax (even if it was in rdi or rcx). 4596 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4597 if (super_klass != rax) { 4598 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4599 mov(rax, super_klass); 4600 } 4601 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4602 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4603 4604 #ifndef PRODUCT 4605 int* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4606 ExternalAddress pst_counter_addr((address) pst_counter); 4607 NOT_LP64( incrementl(pst_counter_addr) ); 4608 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4609 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4610 #endif //PRODUCT 4611 4612 // We will consult the secondary-super array. 4613 movptr(rdi, secondary_supers_addr); 4614 // Load the array length. (Positive movl does right thing on LP64.) 4615 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4616 // Skip to start of data. 4617 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4618 4619 // Scan RCX words at [RDI] for an occurrence of RAX. 4620 // Set NZ/Z based on last compare. 4621 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4622 // not change flags (only scas instruction which is repeated sets flags). 4623 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4624 4625 testptr(rax,rax); // Set Z = 0 4626 repne_scan(); 4627 4628 // Unspill the temp. registers: 4629 if (pushed_rdi) pop(rdi); 4630 if (pushed_rcx) pop(rcx); 4631 if (pushed_rax) pop(rax); 4632 4633 if (set_cond_codes) { 4634 // Special hack for the AD files: rdi is guaranteed non-zero. 4635 assert(!pushed_rdi, "rdi must be left non-null"); 4636 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4637 } 4638 4639 if (L_failure == &L_fallthrough) 4640 jccb(Assembler::notEqual, *L_failure); 4641 else jcc(Assembler::notEqual, *L_failure); 4642 4643 // Success. Cache the super we found and proceed in triumph. 4644 movptr(super_cache_addr, super_klass); 4645 4646 if (L_success != &L_fallthrough) { 4647 jmp(*L_success); 4648 } 4649 4650 #undef IS_A_TEMP 4651 4652 bind(L_fallthrough); 4653 } 4654 4655 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 4656 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 4657 4658 Label L_fallthrough; 4659 if (L_fast_path == nullptr) { 4660 L_fast_path = &L_fallthrough; 4661 } else if (L_slow_path == nullptr) { 4662 L_slow_path = &L_fallthrough; 4663 } 4664 4665 // Fast path check: class is fully initialized 4666 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4667 jcc(Assembler::equal, *L_fast_path); 4668 4669 // Fast path check: current thread is initializer thread 4670 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 4671 if (L_slow_path == &L_fallthrough) { 4672 jcc(Assembler::equal, *L_fast_path); 4673 bind(*L_slow_path); 4674 } else if (L_fast_path == &L_fallthrough) { 4675 jcc(Assembler::notEqual, *L_slow_path); 4676 bind(*L_fast_path); 4677 } else { 4678 Unimplemented(); 4679 } 4680 } 4681 4682 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 4683 if (VM_Version::supports_cmov()) { 4684 cmovl(cc, dst, src); 4685 } else { 4686 Label L; 4687 jccb(negate_condition(cc), L); 4688 movl(dst, src); 4689 bind(L); 4690 } 4691 } 4692 4693 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 4694 if (VM_Version::supports_cmov()) { 4695 cmovl(cc, dst, src); 4696 } else { 4697 Label L; 4698 jccb(negate_condition(cc), L); 4699 movl(dst, src); 4700 bind(L); 4701 } 4702 } 4703 4704 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 4705 if (!VerifyOops) return; 4706 4707 BLOCK_COMMENT("verify_oop {"); 4708 #ifdef _LP64 4709 push(rscratch1); 4710 #endif 4711 push(rax); // save rax 4712 push(reg); // pass register argument 4713 4714 // Pass register number to verify_oop_subroutine 4715 const char* b = nullptr; 4716 { 4717 ResourceMark rm; 4718 stringStream ss; 4719 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 4720 b = code_string(ss.as_string()); 4721 } 4722 ExternalAddress buffer((address) b); 4723 pushptr(buffer.addr(), rscratch1); 4724 4725 // call indirectly to solve generation ordering problem 4726 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4727 call(rax); 4728 // Caller pops the arguments (oop, message) and restores rax, r10 4729 BLOCK_COMMENT("} verify_oop"); 4730 } 4731 4732 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 4733 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 4734 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 4735 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 4736 vpternlogd(dst, 0xFF, dst, dst, vector_len); 4737 } else if (VM_Version::supports_avx()) { 4738 vpcmpeqd(dst, dst, dst, vector_len); 4739 } else { 4740 assert(VM_Version::supports_sse2(), ""); 4741 pcmpeqd(dst, dst); 4742 } 4743 } 4744 4745 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 4746 int extra_slot_offset) { 4747 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 4748 int stackElementSize = Interpreter::stackElementSize; 4749 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 4750 #ifdef ASSERT 4751 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 4752 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 4753 #endif 4754 Register scale_reg = noreg; 4755 Address::ScaleFactor scale_factor = Address::no_scale; 4756 if (arg_slot.is_constant()) { 4757 offset += arg_slot.as_constant() * stackElementSize; 4758 } else { 4759 scale_reg = arg_slot.as_register(); 4760 scale_factor = Address::times(stackElementSize); 4761 } 4762 offset += wordSize; // return PC is on stack 4763 return Address(rsp, scale_reg, scale_factor, offset); 4764 } 4765 4766 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 4767 if (!VerifyOops) return; 4768 4769 #ifdef _LP64 4770 push(rscratch1); 4771 #endif 4772 push(rax); // save rax, 4773 // addr may contain rsp so we will have to adjust it based on the push 4774 // we just did (and on 64 bit we do two pushes) 4775 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 4776 // stores rax into addr which is backwards of what was intended. 4777 if (addr.uses(rsp)) { 4778 lea(rax, addr); 4779 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 4780 } else { 4781 pushptr(addr); 4782 } 4783 4784 // Pass register number to verify_oop_subroutine 4785 const char* b = nullptr; 4786 { 4787 ResourceMark rm; 4788 stringStream ss; 4789 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 4790 b = code_string(ss.as_string()); 4791 } 4792 ExternalAddress buffer((address) b); 4793 pushptr(buffer.addr(), rscratch1); 4794 4795 // call indirectly to solve generation ordering problem 4796 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4797 call(rax); 4798 // Caller pops the arguments (addr, message) and restores rax, r10. 4799 } 4800 4801 void MacroAssembler::verify_tlab() { 4802 #ifdef ASSERT 4803 if (UseTLAB && VerifyOops) { 4804 Label next, ok; 4805 Register t1 = rsi; 4806 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 4807 4808 push(t1); 4809 NOT_LP64(push(thread_reg)); 4810 NOT_LP64(get_thread(thread_reg)); 4811 4812 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 4813 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 4814 jcc(Assembler::aboveEqual, next); 4815 STOP("assert(top >= start)"); 4816 should_not_reach_here(); 4817 4818 bind(next); 4819 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 4820 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 4821 jcc(Assembler::aboveEqual, ok); 4822 STOP("assert(top <= end)"); 4823 should_not_reach_here(); 4824 4825 bind(ok); 4826 NOT_LP64(pop(thread_reg)); 4827 pop(t1); 4828 } 4829 #endif 4830 } 4831 4832 class ControlWord { 4833 public: 4834 int32_t _value; 4835 4836 int rounding_control() const { return (_value >> 10) & 3 ; } 4837 int precision_control() const { return (_value >> 8) & 3 ; } 4838 bool precision() const { return ((_value >> 5) & 1) != 0; } 4839 bool underflow() const { return ((_value >> 4) & 1) != 0; } 4840 bool overflow() const { return ((_value >> 3) & 1) != 0; } 4841 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 4842 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 4843 bool invalid() const { return ((_value >> 0) & 1) != 0; } 4844 4845 void print() const { 4846 // rounding control 4847 const char* rc; 4848 switch (rounding_control()) { 4849 case 0: rc = "round near"; break; 4850 case 1: rc = "round down"; break; 4851 case 2: rc = "round up "; break; 4852 case 3: rc = "chop "; break; 4853 default: 4854 rc = nullptr; // silence compiler warnings 4855 fatal("Unknown rounding control: %d", rounding_control()); 4856 }; 4857 // precision control 4858 const char* pc; 4859 switch (precision_control()) { 4860 case 0: pc = "24 bits "; break; 4861 case 1: pc = "reserved"; break; 4862 case 2: pc = "53 bits "; break; 4863 case 3: pc = "64 bits "; break; 4864 default: 4865 pc = nullptr; // silence compiler warnings 4866 fatal("Unknown precision control: %d", precision_control()); 4867 }; 4868 // flags 4869 char f[9]; 4870 f[0] = ' '; 4871 f[1] = ' '; 4872 f[2] = (precision ()) ? 'P' : 'p'; 4873 f[3] = (underflow ()) ? 'U' : 'u'; 4874 f[4] = (overflow ()) ? 'O' : 'o'; 4875 f[5] = (zero_divide ()) ? 'Z' : 'z'; 4876 f[6] = (denormalized()) ? 'D' : 'd'; 4877 f[7] = (invalid ()) ? 'I' : 'i'; 4878 f[8] = '\x0'; 4879 // output 4880 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 4881 } 4882 4883 }; 4884 4885 class StatusWord { 4886 public: 4887 int32_t _value; 4888 4889 bool busy() const { return ((_value >> 15) & 1) != 0; } 4890 bool C3() const { return ((_value >> 14) & 1) != 0; } 4891 bool C2() const { return ((_value >> 10) & 1) != 0; } 4892 bool C1() const { return ((_value >> 9) & 1) != 0; } 4893 bool C0() const { return ((_value >> 8) & 1) != 0; } 4894 int top() const { return (_value >> 11) & 7 ; } 4895 bool error_status() const { return ((_value >> 7) & 1) != 0; } 4896 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 4897 bool precision() const { return ((_value >> 5) & 1) != 0; } 4898 bool underflow() const { return ((_value >> 4) & 1) != 0; } 4899 bool overflow() const { return ((_value >> 3) & 1) != 0; } 4900 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 4901 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 4902 bool invalid() const { return ((_value >> 0) & 1) != 0; } 4903 4904 void print() const { 4905 // condition codes 4906 char c[5]; 4907 c[0] = (C3()) ? '3' : '-'; 4908 c[1] = (C2()) ? '2' : '-'; 4909 c[2] = (C1()) ? '1' : '-'; 4910 c[3] = (C0()) ? '0' : '-'; 4911 c[4] = '\x0'; 4912 // flags 4913 char f[9]; 4914 f[0] = (error_status()) ? 'E' : '-'; 4915 f[1] = (stack_fault ()) ? 'S' : '-'; 4916 f[2] = (precision ()) ? 'P' : '-'; 4917 f[3] = (underflow ()) ? 'U' : '-'; 4918 f[4] = (overflow ()) ? 'O' : '-'; 4919 f[5] = (zero_divide ()) ? 'Z' : '-'; 4920 f[6] = (denormalized()) ? 'D' : '-'; 4921 f[7] = (invalid ()) ? 'I' : '-'; 4922 f[8] = '\x0'; 4923 // output 4924 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 4925 } 4926 4927 }; 4928 4929 class TagWord { 4930 public: 4931 int32_t _value; 4932 4933 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 4934 4935 void print() const { 4936 printf("%04x", _value & 0xFFFF); 4937 } 4938 4939 }; 4940 4941 class FPU_Register { 4942 public: 4943 int32_t _m0; 4944 int32_t _m1; 4945 int16_t _ex; 4946 4947 bool is_indefinite() const { 4948 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 4949 } 4950 4951 void print() const { 4952 char sign = (_ex < 0) ? '-' : '+'; 4953 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 4954 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 4955 }; 4956 4957 }; 4958 4959 class FPU_State { 4960 public: 4961 enum { 4962 register_size = 10, 4963 number_of_registers = 8, 4964 register_mask = 7 4965 }; 4966 4967 ControlWord _control_word; 4968 StatusWord _status_word; 4969 TagWord _tag_word; 4970 int32_t _error_offset; 4971 int32_t _error_selector; 4972 int32_t _data_offset; 4973 int32_t _data_selector; 4974 int8_t _register[register_size * number_of_registers]; 4975 4976 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 4977 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 4978 4979 const char* tag_as_string(int tag) const { 4980 switch (tag) { 4981 case 0: return "valid"; 4982 case 1: return "zero"; 4983 case 2: return "special"; 4984 case 3: return "empty"; 4985 } 4986 ShouldNotReachHere(); 4987 return nullptr; 4988 } 4989 4990 void print() const { 4991 // print computation registers 4992 { int t = _status_word.top(); 4993 for (int i = 0; i < number_of_registers; i++) { 4994 int j = (i - t) & register_mask; 4995 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 4996 st(j)->print(); 4997 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 4998 } 4999 } 5000 printf("\n"); 5001 // print control registers 5002 printf("ctrl = "); _control_word.print(); printf("\n"); 5003 printf("stat = "); _status_word .print(); printf("\n"); 5004 printf("tags = "); _tag_word .print(); printf("\n"); 5005 } 5006 5007 }; 5008 5009 class Flag_Register { 5010 public: 5011 int32_t _value; 5012 5013 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5014 bool direction() const { return ((_value >> 10) & 1) != 0; } 5015 bool sign() const { return ((_value >> 7) & 1) != 0; } 5016 bool zero() const { return ((_value >> 6) & 1) != 0; } 5017 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5018 bool parity() const { return ((_value >> 2) & 1) != 0; } 5019 bool carry() const { return ((_value >> 0) & 1) != 0; } 5020 5021 void print() const { 5022 // flags 5023 char f[8]; 5024 f[0] = (overflow ()) ? 'O' : '-'; 5025 f[1] = (direction ()) ? 'D' : '-'; 5026 f[2] = (sign ()) ? 'S' : '-'; 5027 f[3] = (zero ()) ? 'Z' : '-'; 5028 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5029 f[5] = (parity ()) ? 'P' : '-'; 5030 f[6] = (carry ()) ? 'C' : '-'; 5031 f[7] = '\x0'; 5032 // output 5033 printf("%08x flags = %s", _value, f); 5034 } 5035 5036 }; 5037 5038 class IU_Register { 5039 public: 5040 int32_t _value; 5041 5042 void print() const { 5043 printf("%08x %11d", _value, _value); 5044 } 5045 5046 }; 5047 5048 class IU_State { 5049 public: 5050 Flag_Register _eflags; 5051 IU_Register _rdi; 5052 IU_Register _rsi; 5053 IU_Register _rbp; 5054 IU_Register _rsp; 5055 IU_Register _rbx; 5056 IU_Register _rdx; 5057 IU_Register _rcx; 5058 IU_Register _rax; 5059 5060 void print() const { 5061 // computation registers 5062 printf("rax, = "); _rax.print(); printf("\n"); 5063 printf("rbx, = "); _rbx.print(); printf("\n"); 5064 printf("rcx = "); _rcx.print(); printf("\n"); 5065 printf("rdx = "); _rdx.print(); printf("\n"); 5066 printf("rdi = "); _rdi.print(); printf("\n"); 5067 printf("rsi = "); _rsi.print(); printf("\n"); 5068 printf("rbp, = "); _rbp.print(); printf("\n"); 5069 printf("rsp = "); _rsp.print(); printf("\n"); 5070 printf("\n"); 5071 // control registers 5072 printf("flgs = "); _eflags.print(); printf("\n"); 5073 } 5074 }; 5075 5076 5077 class CPU_State { 5078 public: 5079 FPU_State _fpu_state; 5080 IU_State _iu_state; 5081 5082 void print() const { 5083 printf("--------------------------------------------------\n"); 5084 _iu_state .print(); 5085 printf("\n"); 5086 _fpu_state.print(); 5087 printf("--------------------------------------------------\n"); 5088 } 5089 5090 }; 5091 5092 5093 static void _print_CPU_state(CPU_State* state) { 5094 state->print(); 5095 }; 5096 5097 5098 void MacroAssembler::print_CPU_state() { 5099 push_CPU_state(); 5100 push(rsp); // pass CPU state 5101 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5102 addptr(rsp, wordSize); // discard argument 5103 pop_CPU_state(); 5104 } 5105 5106 5107 #ifndef _LP64 5108 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5109 static int counter = 0; 5110 FPU_State* fs = &state->_fpu_state; 5111 counter++; 5112 // For leaf calls, only verify that the top few elements remain empty. 5113 // We only need 1 empty at the top for C2 code. 5114 if( stack_depth < 0 ) { 5115 if( fs->tag_for_st(7) != 3 ) { 5116 printf("FPR7 not empty\n"); 5117 state->print(); 5118 assert(false, "error"); 5119 return false; 5120 } 5121 return true; // All other stack states do not matter 5122 } 5123 5124 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5125 "bad FPU control word"); 5126 5127 // compute stack depth 5128 int i = 0; 5129 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5130 int d = i; 5131 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5132 // verify findings 5133 if (i != FPU_State::number_of_registers) { 5134 // stack not contiguous 5135 printf("%s: stack not contiguous at ST%d\n", s, i); 5136 state->print(); 5137 assert(false, "error"); 5138 return false; 5139 } 5140 // check if computed stack depth corresponds to expected stack depth 5141 if (stack_depth < 0) { 5142 // expected stack depth is -stack_depth or less 5143 if (d > -stack_depth) { 5144 // too many elements on the stack 5145 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5146 state->print(); 5147 assert(false, "error"); 5148 return false; 5149 } 5150 } else { 5151 // expected stack depth is stack_depth 5152 if (d != stack_depth) { 5153 // wrong stack depth 5154 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5155 state->print(); 5156 assert(false, "error"); 5157 return false; 5158 } 5159 } 5160 // everything is cool 5161 return true; 5162 } 5163 5164 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5165 if (!VerifyFPU) return; 5166 push_CPU_state(); 5167 push(rsp); // pass CPU state 5168 ExternalAddress msg((address) s); 5169 // pass message string s 5170 pushptr(msg.addr(), noreg); 5171 push(stack_depth); // pass stack depth 5172 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5173 addptr(rsp, 3 * wordSize); // discard arguments 5174 // check for error 5175 { Label L; 5176 testl(rax, rax); 5177 jcc(Assembler::notZero, L); 5178 int3(); // break if error condition 5179 bind(L); 5180 } 5181 pop_CPU_state(); 5182 } 5183 #endif // _LP64 5184 5185 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5186 // Either restore the MXCSR register after returning from the JNI Call 5187 // or verify that it wasn't changed (with -Xcheck:jni flag). 5188 if (VM_Version::supports_sse()) { 5189 if (RestoreMXCSROnJNICalls) { 5190 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5191 } else if (CheckJNICalls) { 5192 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5193 } 5194 } 5195 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5196 vzeroupper(); 5197 5198 #ifndef _LP64 5199 // Either restore the x87 floating pointer control word after returning 5200 // from the JNI call or verify that it wasn't changed. 5201 if (CheckJNICalls) { 5202 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5203 } 5204 #endif // _LP64 5205 } 5206 5207 // ((OopHandle)result).resolve(); 5208 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5209 assert_different_registers(result, tmp); 5210 5211 // Only 64 bit platforms support GCs that require a tmp register 5212 // Only IN_HEAP loads require a thread_tmp register 5213 // OopHandle::resolve is an indirection like jobject. 5214 access_load_at(T_OBJECT, IN_NATIVE, 5215 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5216 } 5217 5218 // ((WeakHandle)result).resolve(); 5219 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5220 assert_different_registers(rresult, rtmp); 5221 Label resolved; 5222 5223 // A null weak handle resolves to null. 5224 cmpptr(rresult, 0); 5225 jcc(Assembler::equal, resolved); 5226 5227 // Only 64 bit platforms support GCs that require a tmp register 5228 // Only IN_HEAP loads require a thread_tmp register 5229 // WeakHandle::resolve is an indirection like jweak. 5230 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5231 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 5232 bind(resolved); 5233 } 5234 5235 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5236 // get mirror 5237 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5238 load_method_holder(mirror, method); 5239 movptr(mirror, Address(mirror, mirror_offset)); 5240 resolve_oop_handle(mirror, tmp); 5241 } 5242 5243 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5244 load_method_holder(rresult, rmethod); 5245 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5246 } 5247 5248 void MacroAssembler::load_method_holder(Register holder, Register method) { 5249 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5250 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5251 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5252 } 5253 5254 #ifdef _LP64 5255 void MacroAssembler::load_nklass_compact(Register dst, Register src) { 5256 assert(UseCompactObjectHeaders, "expect compact object headers"); 5257 5258 Label fast; 5259 movq(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5260 testb(dst, markWord::monitor_value); 5261 jccb(Assembler::zero, fast); 5262 5263 // Fetch displaced header 5264 movq(dst, Address(dst, OM_OFFSET_NO_MONITOR_VALUE_TAG(header))); 5265 5266 bind(fast); 5267 shrq(dst, markWord::klass_shift); 5268 } 5269 #endif 5270 5271 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5272 assert_different_registers(src, tmp); 5273 assert_different_registers(dst, tmp); 5274 #ifdef _LP64 5275 if (UseCompactObjectHeaders) { 5276 load_nklass_compact(dst, src); 5277 decode_klass_not_null(dst, tmp); 5278 } else if (UseCompressedClassPointers) { 5279 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5280 decode_klass_not_null(dst, tmp); 5281 } else 5282 #endif 5283 { 5284 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5285 } 5286 } 5287 5288 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5289 assert(!UseCompactObjectHeaders, "not with compact headers"); 5290 assert_different_registers(src, tmp); 5291 assert_different_registers(dst, tmp); 5292 #ifdef _LP64 5293 if (UseCompressedClassPointers) { 5294 encode_klass_not_null(src, tmp); 5295 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5296 } else 5297 #endif 5298 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5299 } 5300 5301 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) { 5302 #ifdef _LP64 5303 if (UseCompactObjectHeaders) { 5304 load_nklass_compact(tmp, obj); 5305 cmpl(klass, tmp); 5306 } else if (UseCompressedClassPointers) { 5307 cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5308 } else 5309 #endif 5310 { 5311 cmpptr(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 5312 } 5313 } 5314 5315 void MacroAssembler::cmp_klass(Register src, Register dst, Register tmp1, Register tmp2) { 5316 #ifdef _LP64 5317 if (UseCompactObjectHeaders) { 5318 assert(tmp2 != noreg, "need tmp2"); 5319 assert_different_registers(src, dst, tmp1, tmp2); 5320 load_nklass_compact(tmp1, src); 5321 load_nklass_compact(tmp2, dst); 5322 cmpl(tmp1, tmp2); 5323 } else if (UseCompressedClassPointers) { 5324 movl(tmp1, Address(src, oopDesc::klass_offset_in_bytes())); 5325 cmpl(tmp1, Address(dst, oopDesc::klass_offset_in_bytes())); 5326 } else 5327 #endif 5328 { 5329 movptr(tmp1, Address(src, oopDesc::klass_offset_in_bytes())); 5330 cmpptr(tmp1, Address(dst, oopDesc::klass_offset_in_bytes())); 5331 } 5332 } 5333 5334 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5335 Register tmp1, Register thread_tmp) { 5336 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5337 decorators = AccessInternal::decorator_fixup(decorators, type); 5338 bool as_raw = (decorators & AS_RAW) != 0; 5339 if (as_raw) { 5340 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5341 } else { 5342 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5343 } 5344 } 5345 5346 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5347 Register tmp1, Register tmp2, Register tmp3) { 5348 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5349 decorators = AccessInternal::decorator_fixup(decorators, type); 5350 bool as_raw = (decorators & AS_RAW) != 0; 5351 if (as_raw) { 5352 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5353 } else { 5354 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5355 } 5356 } 5357 5358 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5359 Register thread_tmp, DecoratorSet decorators) { 5360 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 5361 } 5362 5363 // Doesn't do verification, generates fixed size code 5364 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5365 Register thread_tmp, DecoratorSet decorators) { 5366 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 5367 } 5368 5369 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5370 Register tmp2, Register tmp3, DecoratorSet decorators) { 5371 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5372 } 5373 5374 // Used for storing nulls. 5375 void MacroAssembler::store_heap_oop_null(Address dst) { 5376 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5377 } 5378 5379 #ifdef _LP64 5380 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5381 assert(!UseCompactObjectHeaders, "Don't use with compact headers"); 5382 if (UseCompressedClassPointers) { 5383 // Store to klass gap in destination 5384 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 5385 } 5386 } 5387 5388 #ifdef ASSERT 5389 void MacroAssembler::verify_heapbase(const char* msg) { 5390 assert (UseCompressedOops, "should be compressed"); 5391 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5392 if (CheckCompressedOops) { 5393 Label ok; 5394 ExternalAddress src2(CompressedOops::ptrs_base_addr()); 5395 const bool is_src2_reachable = reachable(src2); 5396 if (!is_src2_reachable) { 5397 push(rscratch1); // cmpptr trashes rscratch1 5398 } 5399 cmpptr(r12_heapbase, src2, rscratch1); 5400 jcc(Assembler::equal, ok); 5401 STOP(msg); 5402 bind(ok); 5403 if (!is_src2_reachable) { 5404 pop(rscratch1); 5405 } 5406 } 5407 } 5408 #endif 5409 5410 // Algorithm must match oop.inline.hpp encode_heap_oop. 5411 void MacroAssembler::encode_heap_oop(Register r) { 5412 #ifdef ASSERT 5413 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5414 #endif 5415 verify_oop_msg(r, "broken oop in encode_heap_oop"); 5416 if (CompressedOops::base() == nullptr) { 5417 if (CompressedOops::shift() != 0) { 5418 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5419 shrq(r, LogMinObjAlignmentInBytes); 5420 } 5421 return; 5422 } 5423 testq(r, r); 5424 cmovq(Assembler::equal, r, r12_heapbase); 5425 subq(r, r12_heapbase); 5426 shrq(r, LogMinObjAlignmentInBytes); 5427 } 5428 5429 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5430 #ifdef ASSERT 5431 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5432 if (CheckCompressedOops) { 5433 Label ok; 5434 testq(r, r); 5435 jcc(Assembler::notEqual, ok); 5436 STOP("null oop passed to encode_heap_oop_not_null"); 5437 bind(ok); 5438 } 5439 #endif 5440 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5441 if (CompressedOops::base() != nullptr) { 5442 subq(r, r12_heapbase); 5443 } 5444 if (CompressedOops::shift() != 0) { 5445 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5446 shrq(r, LogMinObjAlignmentInBytes); 5447 } 5448 } 5449 5450 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5451 #ifdef ASSERT 5452 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5453 if (CheckCompressedOops) { 5454 Label ok; 5455 testq(src, src); 5456 jcc(Assembler::notEqual, ok); 5457 STOP("null oop passed to encode_heap_oop_not_null2"); 5458 bind(ok); 5459 } 5460 #endif 5461 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5462 if (dst != src) { 5463 movq(dst, src); 5464 } 5465 if (CompressedOops::base() != nullptr) { 5466 subq(dst, r12_heapbase); 5467 } 5468 if (CompressedOops::shift() != 0) { 5469 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5470 shrq(dst, LogMinObjAlignmentInBytes); 5471 } 5472 } 5473 5474 void MacroAssembler::decode_heap_oop(Register r) { 5475 #ifdef ASSERT 5476 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5477 #endif 5478 if (CompressedOops::base() == nullptr) { 5479 if (CompressedOops::shift() != 0) { 5480 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5481 shlq(r, LogMinObjAlignmentInBytes); 5482 } 5483 } else { 5484 Label done; 5485 shlq(r, LogMinObjAlignmentInBytes); 5486 jccb(Assembler::equal, done); 5487 addq(r, r12_heapbase); 5488 bind(done); 5489 } 5490 verify_oop_msg(r, "broken oop in decode_heap_oop"); 5491 } 5492 5493 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5494 // Note: it will change flags 5495 assert (UseCompressedOops, "should only be used for compressed headers"); 5496 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5497 // Cannot assert, unverified entry point counts instructions (see .ad file) 5498 // vtableStubs also counts instructions in pd_code_size_limit. 5499 // Also do not verify_oop as this is called by verify_oop. 5500 if (CompressedOops::shift() != 0) { 5501 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5502 shlq(r, LogMinObjAlignmentInBytes); 5503 if (CompressedOops::base() != nullptr) { 5504 addq(r, r12_heapbase); 5505 } 5506 } else { 5507 assert (CompressedOops::base() == nullptr, "sanity"); 5508 } 5509 } 5510 5511 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5512 // Note: it will change flags 5513 assert (UseCompressedOops, "should only be used for compressed headers"); 5514 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5515 // Cannot assert, unverified entry point counts instructions (see .ad file) 5516 // vtableStubs also counts instructions in pd_code_size_limit. 5517 // Also do not verify_oop as this is called by verify_oop. 5518 if (CompressedOops::shift() != 0) { 5519 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5520 if (LogMinObjAlignmentInBytes == Address::times_8) { 5521 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 5522 } else { 5523 if (dst != src) { 5524 movq(dst, src); 5525 } 5526 shlq(dst, LogMinObjAlignmentInBytes); 5527 if (CompressedOops::base() != nullptr) { 5528 addq(dst, r12_heapbase); 5529 } 5530 } 5531 } else { 5532 assert (CompressedOops::base() == nullptr, "sanity"); 5533 if (dst != src) { 5534 movq(dst, src); 5535 } 5536 } 5537 } 5538 5539 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 5540 assert_different_registers(r, tmp); 5541 if (CompressedKlassPointers::base() != nullptr) { 5542 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5543 subq(r, tmp); 5544 } 5545 if (CompressedKlassPointers::shift() != 0) { 5546 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5547 shrq(r, LogKlassAlignmentInBytes); 5548 } 5549 } 5550 5551 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 5552 assert_different_registers(src, dst); 5553 if (CompressedKlassPointers::base() != nullptr) { 5554 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 5555 addq(dst, src); 5556 } else { 5557 movptr(dst, src); 5558 } 5559 if (CompressedKlassPointers::shift() != 0) { 5560 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5561 shrq(dst, LogKlassAlignmentInBytes); 5562 } 5563 } 5564 5565 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 5566 assert_different_registers(r, tmp); 5567 // Note: it will change flags 5568 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 5569 // Cannot assert, unverified entry point counts instructions (see .ad file) 5570 // vtableStubs also counts instructions in pd_code_size_limit. 5571 // Also do not verify_oop as this is called by verify_oop. 5572 if (CompressedKlassPointers::shift() != 0) { 5573 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5574 shlq(r, LogKlassAlignmentInBytes); 5575 } 5576 if (CompressedKlassPointers::base() != nullptr) { 5577 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5578 addq(r, tmp); 5579 } 5580 } 5581 5582 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 5583 assert_different_registers(src, dst); 5584 // Note: it will change flags 5585 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5586 // Cannot assert, unverified entry point counts instructions (see .ad file) 5587 // vtableStubs also counts instructions in pd_code_size_limit. 5588 // Also do not verify_oop as this is called by verify_oop. 5589 5590 if (CompressedKlassPointers::base() == nullptr && 5591 CompressedKlassPointers::shift() == 0) { 5592 // The best case scenario is that there is no base or shift. Then it is already 5593 // a pointer that needs nothing but a register rename. 5594 movl(dst, src); 5595 } else { 5596 if (CompressedKlassPointers::base() != nullptr) { 5597 mov64(dst, (int64_t)CompressedKlassPointers::base()); 5598 } else { 5599 xorq(dst, dst); 5600 } 5601 if (CompressedKlassPointers::shift() != 0) { 5602 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5603 assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?"); 5604 leaq(dst, Address(dst, src, Address::times_8, 0)); 5605 } else { 5606 addq(dst, src); 5607 } 5608 } 5609 } 5610 5611 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5612 assert (UseCompressedOops, "should only be used for compressed headers"); 5613 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5614 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5615 int oop_index = oop_recorder()->find_index(obj); 5616 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5617 mov_narrow_oop(dst, oop_index, rspec); 5618 } 5619 5620 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 5621 assert (UseCompressedOops, "should only be used for compressed headers"); 5622 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5623 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5624 int oop_index = oop_recorder()->find_index(obj); 5625 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5626 mov_narrow_oop(dst, oop_index, rspec); 5627 } 5628 5629 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5630 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5631 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5632 int klass_index = oop_recorder()->find_index(k); 5633 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5634 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5635 } 5636 5637 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 5638 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5639 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5640 int klass_index = oop_recorder()->find_index(k); 5641 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5642 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5643 } 5644 5645 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 5646 assert (UseCompressedOops, "should only be used for compressed headers"); 5647 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5648 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5649 int oop_index = oop_recorder()->find_index(obj); 5650 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5651 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5652 } 5653 5654 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 5655 assert (UseCompressedOops, "should only be used for compressed headers"); 5656 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5657 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5658 int oop_index = oop_recorder()->find_index(obj); 5659 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5660 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5661 } 5662 5663 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 5664 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5665 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5666 int klass_index = oop_recorder()->find_index(k); 5667 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5668 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5669 } 5670 5671 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 5672 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5673 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5674 int klass_index = oop_recorder()->find_index(k); 5675 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5676 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5677 } 5678 5679 void MacroAssembler::reinit_heapbase() { 5680 if (UseCompressedOops) { 5681 if (Universe::heap() != nullptr) { 5682 if (CompressedOops::base() == nullptr) { 5683 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 5684 } else { 5685 mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base()); 5686 } 5687 } else { 5688 movptr(r12_heapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 5689 } 5690 } 5691 } 5692 5693 #endif // _LP64 5694 5695 #if COMPILER2_OR_JVMCI 5696 5697 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 5698 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 5699 // cnt - number of qwords (8-byte words). 5700 // base - start address, qword aligned. 5701 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 5702 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 5703 if (use64byteVector) { 5704 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 5705 } else if (MaxVectorSize >= 32) { 5706 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 5707 } else { 5708 pxor(xtmp, xtmp); 5709 } 5710 jmp(L_zero_64_bytes); 5711 5712 BIND(L_loop); 5713 if (MaxVectorSize >= 32) { 5714 fill64(base, 0, xtmp, use64byteVector); 5715 } else { 5716 movdqu(Address(base, 0), xtmp); 5717 movdqu(Address(base, 16), xtmp); 5718 movdqu(Address(base, 32), xtmp); 5719 movdqu(Address(base, 48), xtmp); 5720 } 5721 addptr(base, 64); 5722 5723 BIND(L_zero_64_bytes); 5724 subptr(cnt, 8); 5725 jccb(Assembler::greaterEqual, L_loop); 5726 5727 // Copy trailing 64 bytes 5728 if (use64byteVector) { 5729 addptr(cnt, 8); 5730 jccb(Assembler::equal, L_end); 5731 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 5732 jmp(L_end); 5733 } else { 5734 addptr(cnt, 4); 5735 jccb(Assembler::less, L_tail); 5736 if (MaxVectorSize >= 32) { 5737 vmovdqu(Address(base, 0), xtmp); 5738 } else { 5739 movdqu(Address(base, 0), xtmp); 5740 movdqu(Address(base, 16), xtmp); 5741 } 5742 } 5743 addptr(base, 32); 5744 subptr(cnt, 4); 5745 5746 BIND(L_tail); 5747 addptr(cnt, 4); 5748 jccb(Assembler::lessEqual, L_end); 5749 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 5750 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 5751 } else { 5752 decrement(cnt); 5753 5754 BIND(L_sloop); 5755 movq(Address(base, 0), xtmp); 5756 addptr(base, 8); 5757 decrement(cnt); 5758 jccb(Assembler::greaterEqual, L_sloop); 5759 } 5760 BIND(L_end); 5761 } 5762 5763 // Clearing constant sized memory using YMM/ZMM registers. 5764 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 5765 assert(UseAVX > 2 && VM_Version::supports_avx512vlbw(), ""); 5766 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 5767 5768 int vector64_count = (cnt & (~0x7)) >> 3; 5769 cnt = cnt & 0x7; 5770 const int fill64_per_loop = 4; 5771 const int max_unrolled_fill64 = 8; 5772 5773 // 64 byte initialization loop. 5774 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 5775 int start64 = 0; 5776 if (vector64_count > max_unrolled_fill64) { 5777 Label LOOP; 5778 Register index = rtmp; 5779 5780 start64 = vector64_count - (vector64_count % fill64_per_loop); 5781 5782 movl(index, 0); 5783 BIND(LOOP); 5784 for (int i = 0; i < fill64_per_loop; i++) { 5785 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 5786 } 5787 addl(index, fill64_per_loop * 64); 5788 cmpl(index, start64 * 64); 5789 jccb(Assembler::less, LOOP); 5790 } 5791 for (int i = start64; i < vector64_count; i++) { 5792 fill64(base, i * 64, xtmp, use64byteVector); 5793 } 5794 5795 // Clear remaining 64 byte tail. 5796 int disp = vector64_count * 64; 5797 if (cnt) { 5798 switch (cnt) { 5799 case 1: 5800 movq(Address(base, disp), xtmp); 5801 break; 5802 case 2: 5803 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 5804 break; 5805 case 3: 5806 movl(rtmp, 0x7); 5807 kmovwl(mask, rtmp); 5808 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 5809 break; 5810 case 4: 5811 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5812 break; 5813 case 5: 5814 if (use64byteVector) { 5815 movl(rtmp, 0x1F); 5816 kmovwl(mask, rtmp); 5817 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5818 } else { 5819 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5820 movq(Address(base, disp + 32), xtmp); 5821 } 5822 break; 5823 case 6: 5824 if (use64byteVector) { 5825 movl(rtmp, 0x3F); 5826 kmovwl(mask, rtmp); 5827 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5828 } else { 5829 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5830 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 5831 } 5832 break; 5833 case 7: 5834 if (use64byteVector) { 5835 movl(rtmp, 0x7F); 5836 kmovwl(mask, rtmp); 5837 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5838 } else { 5839 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5840 movl(rtmp, 0x7); 5841 kmovwl(mask, rtmp); 5842 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 5843 } 5844 break; 5845 default: 5846 fatal("Unexpected length : %d\n",cnt); 5847 break; 5848 } 5849 } 5850 } 5851 5852 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 5853 bool is_large, KRegister mask) { 5854 // cnt - number of qwords (8-byte words). 5855 // base - start address, qword aligned. 5856 // is_large - if optimizers know cnt is larger than InitArrayShortSize 5857 assert(base==rdi, "base register must be edi for rep stos"); 5858 assert(tmp==rax, "tmp register must be eax for rep stos"); 5859 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 5860 assert(InitArrayShortSize % BytesPerLong == 0, 5861 "InitArrayShortSize should be the multiple of BytesPerLong"); 5862 5863 Label DONE; 5864 if (!is_large || !UseXMMForObjInit) { 5865 xorptr(tmp, tmp); 5866 } 5867 5868 if (!is_large) { 5869 Label LOOP, LONG; 5870 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 5871 jccb(Assembler::greater, LONG); 5872 5873 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 5874 5875 decrement(cnt); 5876 jccb(Assembler::negative, DONE); // Zero length 5877 5878 // Use individual pointer-sized stores for small counts: 5879 BIND(LOOP); 5880 movptr(Address(base, cnt, Address::times_ptr), tmp); 5881 decrement(cnt); 5882 jccb(Assembler::greaterEqual, LOOP); 5883 jmpb(DONE); 5884 5885 BIND(LONG); 5886 } 5887 5888 // Use longer rep-prefixed ops for non-small counts: 5889 if (UseFastStosb) { 5890 shlptr(cnt, 3); // convert to number of bytes 5891 rep_stosb(); 5892 } else if (UseXMMForObjInit) { 5893 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 5894 } else { 5895 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 5896 rep_stos(); 5897 } 5898 5899 BIND(DONE); 5900 } 5901 5902 #endif //COMPILER2_OR_JVMCI 5903 5904 5905 void MacroAssembler::generate_fill(BasicType t, bool aligned, 5906 Register to, Register value, Register count, 5907 Register rtmp, XMMRegister xtmp) { 5908 ShortBranchVerifier sbv(this); 5909 assert_different_registers(to, value, count, rtmp); 5910 Label L_exit; 5911 Label L_fill_2_bytes, L_fill_4_bytes; 5912 5913 #if defined(COMPILER2) && defined(_LP64) 5914 if(MaxVectorSize >=32 && 5915 VM_Version::supports_avx512vlbw() && 5916 VM_Version::supports_bmi2()) { 5917 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 5918 return; 5919 } 5920 #endif 5921 5922 int shift = -1; 5923 switch (t) { 5924 case T_BYTE: 5925 shift = 2; 5926 break; 5927 case T_SHORT: 5928 shift = 1; 5929 break; 5930 case T_INT: 5931 shift = 0; 5932 break; 5933 default: ShouldNotReachHere(); 5934 } 5935 5936 if (t == T_BYTE) { 5937 andl(value, 0xff); 5938 movl(rtmp, value); 5939 shll(rtmp, 8); 5940 orl(value, rtmp); 5941 } 5942 if (t == T_SHORT) { 5943 andl(value, 0xffff); 5944 } 5945 if (t == T_BYTE || t == T_SHORT) { 5946 movl(rtmp, value); 5947 shll(rtmp, 16); 5948 orl(value, rtmp); 5949 } 5950 5951 cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 5952 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 5953 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 5954 Label L_skip_align2; 5955 // align source address at 4 bytes address boundary 5956 if (t == T_BYTE) { 5957 Label L_skip_align1; 5958 // One byte misalignment happens only for byte arrays 5959 testptr(to, 1); 5960 jccb(Assembler::zero, L_skip_align1); 5961 movb(Address(to, 0), value); 5962 increment(to); 5963 decrement(count); 5964 BIND(L_skip_align1); 5965 } 5966 // Two bytes misalignment happens only for byte and short (char) arrays 5967 testptr(to, 2); 5968 jccb(Assembler::zero, L_skip_align2); 5969 movw(Address(to, 0), value); 5970 addptr(to, 2); 5971 subl(count, 1<<(shift-1)); 5972 BIND(L_skip_align2); 5973 } 5974 if (UseSSE < 2) { 5975 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 5976 // Fill 32-byte chunks 5977 subl(count, 8 << shift); 5978 jcc(Assembler::less, L_check_fill_8_bytes); 5979 align(16); 5980 5981 BIND(L_fill_32_bytes_loop); 5982 5983 for (int i = 0; i < 32; i += 4) { 5984 movl(Address(to, i), value); 5985 } 5986 5987 addptr(to, 32); 5988 subl(count, 8 << shift); 5989 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 5990 BIND(L_check_fill_8_bytes); 5991 addl(count, 8 << shift); 5992 jccb(Assembler::zero, L_exit); 5993 jmpb(L_fill_8_bytes); 5994 5995 // 5996 // length is too short, just fill qwords 5997 // 5998 BIND(L_fill_8_bytes_loop); 5999 movl(Address(to, 0), value); 6000 movl(Address(to, 4), value); 6001 addptr(to, 8); 6002 BIND(L_fill_8_bytes); 6003 subl(count, 1 << (shift + 1)); 6004 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6005 // fall through to fill 4 bytes 6006 } else { 6007 Label L_fill_32_bytes; 6008 if (!UseUnalignedLoadStores) { 6009 // align to 8 bytes, we know we are 4 byte aligned to start 6010 testptr(to, 4); 6011 jccb(Assembler::zero, L_fill_32_bytes); 6012 movl(Address(to, 0), value); 6013 addptr(to, 4); 6014 subl(count, 1<<shift); 6015 } 6016 BIND(L_fill_32_bytes); 6017 { 6018 assert( UseSSE >= 2, "supported cpu only" ); 6019 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6020 movdl(xtmp, value); 6021 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6022 Label L_check_fill_32_bytes; 6023 if (UseAVX > 2) { 6024 // Fill 64-byte chunks 6025 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6026 6027 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6028 cmpl(count, VM_Version::avx3_threshold()); 6029 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6030 6031 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6032 6033 subl(count, 16 << shift); 6034 jccb(Assembler::less, L_check_fill_32_bytes); 6035 align(16); 6036 6037 BIND(L_fill_64_bytes_loop_avx3); 6038 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6039 addptr(to, 64); 6040 subl(count, 16 << shift); 6041 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6042 jmpb(L_check_fill_32_bytes); 6043 6044 BIND(L_check_fill_64_bytes_avx2); 6045 } 6046 // Fill 64-byte chunks 6047 Label L_fill_64_bytes_loop; 6048 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6049 6050 subl(count, 16 << shift); 6051 jcc(Assembler::less, L_check_fill_32_bytes); 6052 align(16); 6053 6054 BIND(L_fill_64_bytes_loop); 6055 vmovdqu(Address(to, 0), xtmp); 6056 vmovdqu(Address(to, 32), xtmp); 6057 addptr(to, 64); 6058 subl(count, 16 << shift); 6059 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6060 6061 BIND(L_check_fill_32_bytes); 6062 addl(count, 8 << shift); 6063 jccb(Assembler::less, L_check_fill_8_bytes); 6064 vmovdqu(Address(to, 0), xtmp); 6065 addptr(to, 32); 6066 subl(count, 8 << shift); 6067 6068 BIND(L_check_fill_8_bytes); 6069 // clean upper bits of YMM registers 6070 movdl(xtmp, value); 6071 pshufd(xtmp, xtmp, 0); 6072 } else { 6073 // Fill 32-byte chunks 6074 pshufd(xtmp, xtmp, 0); 6075 6076 subl(count, 8 << shift); 6077 jcc(Assembler::less, L_check_fill_8_bytes); 6078 align(16); 6079 6080 BIND(L_fill_32_bytes_loop); 6081 6082 if (UseUnalignedLoadStores) { 6083 movdqu(Address(to, 0), xtmp); 6084 movdqu(Address(to, 16), xtmp); 6085 } else { 6086 movq(Address(to, 0), xtmp); 6087 movq(Address(to, 8), xtmp); 6088 movq(Address(to, 16), xtmp); 6089 movq(Address(to, 24), xtmp); 6090 } 6091 6092 addptr(to, 32); 6093 subl(count, 8 << shift); 6094 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6095 6096 BIND(L_check_fill_8_bytes); 6097 } 6098 addl(count, 8 << shift); 6099 jccb(Assembler::zero, L_exit); 6100 jmpb(L_fill_8_bytes); 6101 6102 // 6103 // length is too short, just fill qwords 6104 // 6105 BIND(L_fill_8_bytes_loop); 6106 movq(Address(to, 0), xtmp); 6107 addptr(to, 8); 6108 BIND(L_fill_8_bytes); 6109 subl(count, 1 << (shift + 1)); 6110 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6111 } 6112 } 6113 // fill trailing 4 bytes 6114 BIND(L_fill_4_bytes); 6115 testl(count, 1<<shift); 6116 jccb(Assembler::zero, L_fill_2_bytes); 6117 movl(Address(to, 0), value); 6118 if (t == T_BYTE || t == T_SHORT) { 6119 Label L_fill_byte; 6120 addptr(to, 4); 6121 BIND(L_fill_2_bytes); 6122 // fill trailing 2 bytes 6123 testl(count, 1<<(shift-1)); 6124 jccb(Assembler::zero, L_fill_byte); 6125 movw(Address(to, 0), value); 6126 if (t == T_BYTE) { 6127 addptr(to, 2); 6128 BIND(L_fill_byte); 6129 // fill trailing byte 6130 testl(count, 1); 6131 jccb(Assembler::zero, L_exit); 6132 movb(Address(to, 0), value); 6133 } else { 6134 BIND(L_fill_byte); 6135 } 6136 } else { 6137 BIND(L_fill_2_bytes); 6138 } 6139 BIND(L_exit); 6140 } 6141 6142 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6143 switch(type) { 6144 case T_BYTE: 6145 case T_BOOLEAN: 6146 evpbroadcastb(dst, src, vector_len); 6147 break; 6148 case T_SHORT: 6149 case T_CHAR: 6150 evpbroadcastw(dst, src, vector_len); 6151 break; 6152 case T_INT: 6153 case T_FLOAT: 6154 evpbroadcastd(dst, src, vector_len); 6155 break; 6156 case T_LONG: 6157 case T_DOUBLE: 6158 evpbroadcastq(dst, src, vector_len); 6159 break; 6160 default: 6161 fatal("Unhandled type : %s", type2name(type)); 6162 break; 6163 } 6164 } 6165 6166 // encode char[] to byte[] in ISO_8859_1 or ASCII 6167 //@IntrinsicCandidate 6168 //private static int implEncodeISOArray(byte[] sa, int sp, 6169 //byte[] da, int dp, int len) { 6170 // int i = 0; 6171 // for (; i < len; i++) { 6172 // char c = StringUTF16.getChar(sa, sp++); 6173 // if (c > '\u00FF') 6174 // break; 6175 // da[dp++] = (byte)c; 6176 // } 6177 // return i; 6178 //} 6179 // 6180 //@IntrinsicCandidate 6181 //private static int implEncodeAsciiArray(char[] sa, int sp, 6182 // byte[] da, int dp, int len) { 6183 // int i = 0; 6184 // for (; i < len; i++) { 6185 // char c = sa[sp++]; 6186 // if (c >= '\u0080') 6187 // break; 6188 // da[dp++] = (byte)c; 6189 // } 6190 // return i; 6191 //} 6192 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6193 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6194 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6195 Register tmp5, Register result, bool ascii) { 6196 6197 // rsi: src 6198 // rdi: dst 6199 // rdx: len 6200 // rcx: tmp5 6201 // rax: result 6202 ShortBranchVerifier sbv(this); 6203 assert_different_registers(src, dst, len, tmp5, result); 6204 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6205 6206 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6207 int short_mask = ascii ? 0xff80 : 0xff00; 6208 6209 // set result 6210 xorl(result, result); 6211 // check for zero length 6212 testl(len, len); 6213 jcc(Assembler::zero, L_done); 6214 6215 movl(result, len); 6216 6217 // Setup pointers 6218 lea(src, Address(src, len, Address::times_2)); // char[] 6219 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6220 negptr(len); 6221 6222 if (UseSSE42Intrinsics || UseAVX >= 2) { 6223 Label L_copy_8_chars, L_copy_8_chars_exit; 6224 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6225 6226 if (UseAVX >= 2) { 6227 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6228 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6229 movdl(tmp1Reg, tmp5); 6230 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6231 jmp(L_chars_32_check); 6232 6233 bind(L_copy_32_chars); 6234 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6235 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6236 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6237 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6238 jccb(Assembler::notZero, L_copy_32_chars_exit); 6239 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6240 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6241 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6242 6243 bind(L_chars_32_check); 6244 addptr(len, 32); 6245 jcc(Assembler::lessEqual, L_copy_32_chars); 6246 6247 bind(L_copy_32_chars_exit); 6248 subptr(len, 16); 6249 jccb(Assembler::greater, L_copy_16_chars_exit); 6250 6251 } else if (UseSSE42Intrinsics) { 6252 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6253 movdl(tmp1Reg, tmp5); 6254 pshufd(tmp1Reg, tmp1Reg, 0); 6255 jmpb(L_chars_16_check); 6256 } 6257 6258 bind(L_copy_16_chars); 6259 if (UseAVX >= 2) { 6260 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6261 vptest(tmp2Reg, tmp1Reg); 6262 jcc(Assembler::notZero, L_copy_16_chars_exit); 6263 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6264 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6265 } else { 6266 if (UseAVX > 0) { 6267 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6268 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6269 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6270 } else { 6271 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6272 por(tmp2Reg, tmp3Reg); 6273 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6274 por(tmp2Reg, tmp4Reg); 6275 } 6276 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6277 jccb(Assembler::notZero, L_copy_16_chars_exit); 6278 packuswb(tmp3Reg, tmp4Reg); 6279 } 6280 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6281 6282 bind(L_chars_16_check); 6283 addptr(len, 16); 6284 jcc(Assembler::lessEqual, L_copy_16_chars); 6285 6286 bind(L_copy_16_chars_exit); 6287 if (UseAVX >= 2) { 6288 // clean upper bits of YMM registers 6289 vpxor(tmp2Reg, tmp2Reg); 6290 vpxor(tmp3Reg, tmp3Reg); 6291 vpxor(tmp4Reg, tmp4Reg); 6292 movdl(tmp1Reg, tmp5); 6293 pshufd(tmp1Reg, tmp1Reg, 0); 6294 } 6295 subptr(len, 8); 6296 jccb(Assembler::greater, L_copy_8_chars_exit); 6297 6298 bind(L_copy_8_chars); 6299 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6300 ptest(tmp3Reg, tmp1Reg); 6301 jccb(Assembler::notZero, L_copy_8_chars_exit); 6302 packuswb(tmp3Reg, tmp1Reg); 6303 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6304 addptr(len, 8); 6305 jccb(Assembler::lessEqual, L_copy_8_chars); 6306 6307 bind(L_copy_8_chars_exit); 6308 subptr(len, 8); 6309 jccb(Assembler::zero, L_done); 6310 } 6311 6312 bind(L_copy_1_char); 6313 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6314 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6315 jccb(Assembler::notZero, L_copy_1_char_exit); 6316 movb(Address(dst, len, Address::times_1, 0), tmp5); 6317 addptr(len, 1); 6318 jccb(Assembler::less, L_copy_1_char); 6319 6320 bind(L_copy_1_char_exit); 6321 addptr(result, len); // len is negative count of not processed elements 6322 6323 bind(L_done); 6324 } 6325 6326 #ifdef _LP64 6327 /** 6328 * Helper for multiply_to_len(). 6329 */ 6330 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6331 addq(dest_lo, src1); 6332 adcq(dest_hi, 0); 6333 addq(dest_lo, src2); 6334 adcq(dest_hi, 0); 6335 } 6336 6337 /** 6338 * Multiply 64 bit by 64 bit first loop. 6339 */ 6340 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6341 Register y, Register y_idx, Register z, 6342 Register carry, Register product, 6343 Register idx, Register kdx) { 6344 // 6345 // jlong carry, x[], y[], z[]; 6346 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6347 // huge_128 product = y[idx] * x[xstart] + carry; 6348 // z[kdx] = (jlong)product; 6349 // carry = (jlong)(product >>> 64); 6350 // } 6351 // z[xstart] = carry; 6352 // 6353 6354 Label L_first_loop, L_first_loop_exit; 6355 Label L_one_x, L_one_y, L_multiply; 6356 6357 decrementl(xstart); 6358 jcc(Assembler::negative, L_one_x); 6359 6360 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6361 rorq(x_xstart, 32); // convert big-endian to little-endian 6362 6363 bind(L_first_loop); 6364 decrementl(idx); 6365 jcc(Assembler::negative, L_first_loop_exit); 6366 decrementl(idx); 6367 jcc(Assembler::negative, L_one_y); 6368 movq(y_idx, Address(y, idx, Address::times_4, 0)); 6369 rorq(y_idx, 32); // convert big-endian to little-endian 6370 bind(L_multiply); 6371 movq(product, x_xstart); 6372 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 6373 addq(product, carry); 6374 adcq(rdx, 0); 6375 subl(kdx, 2); 6376 movl(Address(z, kdx, Address::times_4, 4), product); 6377 shrq(product, 32); 6378 movl(Address(z, kdx, Address::times_4, 0), product); 6379 movq(carry, rdx); 6380 jmp(L_first_loop); 6381 6382 bind(L_one_y); 6383 movl(y_idx, Address(y, 0)); 6384 jmp(L_multiply); 6385 6386 bind(L_one_x); 6387 movl(x_xstart, Address(x, 0)); 6388 jmp(L_first_loop); 6389 6390 bind(L_first_loop_exit); 6391 } 6392 6393 /** 6394 * Multiply 64 bit by 64 bit and add 128 bit. 6395 */ 6396 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 6397 Register yz_idx, Register idx, 6398 Register carry, Register product, int offset) { 6399 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 6400 // z[kdx] = (jlong)product; 6401 6402 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 6403 rorq(yz_idx, 32); // convert big-endian to little-endian 6404 movq(product, x_xstart); 6405 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6406 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 6407 rorq(yz_idx, 32); // convert big-endian to little-endian 6408 6409 add2_with_carry(rdx, product, carry, yz_idx); 6410 6411 movl(Address(z, idx, Address::times_4, offset+4), product); 6412 shrq(product, 32); 6413 movl(Address(z, idx, Address::times_4, offset), product); 6414 6415 } 6416 6417 /** 6418 * Multiply 128 bit by 128 bit. Unrolled inner loop. 6419 */ 6420 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 6421 Register yz_idx, Register idx, Register jdx, 6422 Register carry, Register product, 6423 Register carry2) { 6424 // jlong carry, x[], y[], z[]; 6425 // int kdx = ystart+1; 6426 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6427 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 6428 // z[kdx+idx+1] = (jlong)product; 6429 // jlong carry2 = (jlong)(product >>> 64); 6430 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 6431 // z[kdx+idx] = (jlong)product; 6432 // carry = (jlong)(product >>> 64); 6433 // } 6434 // idx += 2; 6435 // if (idx > 0) { 6436 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 6437 // z[kdx+idx] = (jlong)product; 6438 // carry = (jlong)(product >>> 64); 6439 // } 6440 // 6441 6442 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6443 6444 movl(jdx, idx); 6445 andl(jdx, 0xFFFFFFFC); 6446 shrl(jdx, 2); 6447 6448 bind(L_third_loop); 6449 subl(jdx, 1); 6450 jcc(Assembler::negative, L_third_loop_exit); 6451 subl(idx, 4); 6452 6453 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 6454 movq(carry2, rdx); 6455 6456 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 6457 movq(carry, rdx); 6458 jmp(L_third_loop); 6459 6460 bind (L_third_loop_exit); 6461 6462 andl (idx, 0x3); 6463 jcc(Assembler::zero, L_post_third_loop_done); 6464 6465 Label L_check_1; 6466 subl(idx, 2); 6467 jcc(Assembler::negative, L_check_1); 6468 6469 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 6470 movq(carry, rdx); 6471 6472 bind (L_check_1); 6473 addl (idx, 0x2); 6474 andl (idx, 0x1); 6475 subl(idx, 1); 6476 jcc(Assembler::negative, L_post_third_loop_done); 6477 6478 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 6479 movq(product, x_xstart); 6480 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6481 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 6482 6483 add2_with_carry(rdx, product, yz_idx, carry); 6484 6485 movl(Address(z, idx, Address::times_4, 0), product); 6486 shrq(product, 32); 6487 6488 shlq(rdx, 32); 6489 orq(product, rdx); 6490 movq(carry, product); 6491 6492 bind(L_post_third_loop_done); 6493 } 6494 6495 /** 6496 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 6497 * 6498 */ 6499 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 6500 Register carry, Register carry2, 6501 Register idx, Register jdx, 6502 Register yz_idx1, Register yz_idx2, 6503 Register tmp, Register tmp3, Register tmp4) { 6504 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 6505 6506 // jlong carry, x[], y[], z[]; 6507 // int kdx = ystart+1; 6508 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6509 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 6510 // jlong carry2 = (jlong)(tmp3 >>> 64); 6511 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 6512 // carry = (jlong)(tmp4 >>> 64); 6513 // z[kdx+idx+1] = (jlong)tmp3; 6514 // z[kdx+idx] = (jlong)tmp4; 6515 // } 6516 // idx += 2; 6517 // if (idx > 0) { 6518 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 6519 // z[kdx+idx] = (jlong)yz_idx1; 6520 // carry = (jlong)(yz_idx1 >>> 64); 6521 // } 6522 // 6523 6524 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6525 6526 movl(jdx, idx); 6527 andl(jdx, 0xFFFFFFFC); 6528 shrl(jdx, 2); 6529 6530 bind(L_third_loop); 6531 subl(jdx, 1); 6532 jcc(Assembler::negative, L_third_loop_exit); 6533 subl(idx, 4); 6534 6535 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 6536 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 6537 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 6538 rorxq(yz_idx2, yz_idx2, 32); 6539 6540 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6541 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 6542 6543 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 6544 rorxq(yz_idx1, yz_idx1, 32); 6545 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6546 rorxq(yz_idx2, yz_idx2, 32); 6547 6548 if (VM_Version::supports_adx()) { 6549 adcxq(tmp3, carry); 6550 adoxq(tmp3, yz_idx1); 6551 6552 adcxq(tmp4, tmp); 6553 adoxq(tmp4, yz_idx2); 6554 6555 movl(carry, 0); // does not affect flags 6556 adcxq(carry2, carry); 6557 adoxq(carry2, carry); 6558 } else { 6559 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 6560 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 6561 } 6562 movq(carry, carry2); 6563 6564 movl(Address(z, idx, Address::times_4, 12), tmp3); 6565 shrq(tmp3, 32); 6566 movl(Address(z, idx, Address::times_4, 8), tmp3); 6567 6568 movl(Address(z, idx, Address::times_4, 4), tmp4); 6569 shrq(tmp4, 32); 6570 movl(Address(z, idx, Address::times_4, 0), tmp4); 6571 6572 jmp(L_third_loop); 6573 6574 bind (L_third_loop_exit); 6575 6576 andl (idx, 0x3); 6577 jcc(Assembler::zero, L_post_third_loop_done); 6578 6579 Label L_check_1; 6580 subl(idx, 2); 6581 jcc(Assembler::negative, L_check_1); 6582 6583 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 6584 rorxq(yz_idx1, yz_idx1, 32); 6585 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6586 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6587 rorxq(yz_idx2, yz_idx2, 32); 6588 6589 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 6590 6591 movl(Address(z, idx, Address::times_4, 4), tmp3); 6592 shrq(tmp3, 32); 6593 movl(Address(z, idx, Address::times_4, 0), tmp3); 6594 movq(carry, tmp4); 6595 6596 bind (L_check_1); 6597 addl (idx, 0x2); 6598 andl (idx, 0x1); 6599 subl(idx, 1); 6600 jcc(Assembler::negative, L_post_third_loop_done); 6601 movl(tmp4, Address(y, idx, Address::times_4, 0)); 6602 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 6603 movl(tmp4, Address(z, idx, Address::times_4, 0)); 6604 6605 add2_with_carry(carry2, tmp3, tmp4, carry); 6606 6607 movl(Address(z, idx, Address::times_4, 0), tmp3); 6608 shrq(tmp3, 32); 6609 6610 shlq(carry2, 32); 6611 orq(tmp3, carry2); 6612 movq(carry, tmp3); 6613 6614 bind(L_post_third_loop_done); 6615 } 6616 6617 /** 6618 * Code for BigInteger::multiplyToLen() intrinsic. 6619 * 6620 * rdi: x 6621 * rax: xlen 6622 * rsi: y 6623 * rcx: ylen 6624 * r8: z 6625 * r11: zlen 6626 * r12: tmp1 6627 * r13: tmp2 6628 * r14: tmp3 6629 * r15: tmp4 6630 * rbx: tmp5 6631 * 6632 */ 6633 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen, 6634 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 6635 ShortBranchVerifier sbv(this); 6636 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 6637 6638 push(tmp1); 6639 push(tmp2); 6640 push(tmp3); 6641 push(tmp4); 6642 push(tmp5); 6643 6644 push(xlen); 6645 push(zlen); 6646 6647 const Register idx = tmp1; 6648 const Register kdx = tmp2; 6649 const Register xstart = tmp3; 6650 6651 const Register y_idx = tmp4; 6652 const Register carry = tmp5; 6653 const Register product = xlen; 6654 const Register x_xstart = zlen; // reuse register 6655 6656 // First Loop. 6657 // 6658 // final static long LONG_MASK = 0xffffffffL; 6659 // int xstart = xlen - 1; 6660 // int ystart = ylen - 1; 6661 // long carry = 0; 6662 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6663 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 6664 // z[kdx] = (int)product; 6665 // carry = product >>> 32; 6666 // } 6667 // z[xstart] = (int)carry; 6668 // 6669 6670 movl(idx, ylen); // idx = ylen; 6671 movl(kdx, zlen); // kdx = xlen+ylen; 6672 xorq(carry, carry); // carry = 0; 6673 6674 Label L_done; 6675 6676 movl(xstart, xlen); 6677 decrementl(xstart); 6678 jcc(Assembler::negative, L_done); 6679 6680 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 6681 6682 Label L_second_loop; 6683 testl(kdx, kdx); 6684 jcc(Assembler::zero, L_second_loop); 6685 6686 Label L_carry; 6687 subl(kdx, 1); 6688 jcc(Assembler::zero, L_carry); 6689 6690 movl(Address(z, kdx, Address::times_4, 0), carry); 6691 shrq(carry, 32); 6692 subl(kdx, 1); 6693 6694 bind(L_carry); 6695 movl(Address(z, kdx, Address::times_4, 0), carry); 6696 6697 // Second and third (nested) loops. 6698 // 6699 // for (int i = xstart-1; i >= 0; i--) { // Second loop 6700 // carry = 0; 6701 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 6702 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 6703 // (z[k] & LONG_MASK) + carry; 6704 // z[k] = (int)product; 6705 // carry = product >>> 32; 6706 // } 6707 // z[i] = (int)carry; 6708 // } 6709 // 6710 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 6711 6712 const Register jdx = tmp1; 6713 6714 bind(L_second_loop); 6715 xorl(carry, carry); // carry = 0; 6716 movl(jdx, ylen); // j = ystart+1 6717 6718 subl(xstart, 1); // i = xstart-1; 6719 jcc(Assembler::negative, L_done); 6720 6721 push (z); 6722 6723 Label L_last_x; 6724 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 6725 subl(xstart, 1); // i = xstart-1; 6726 jcc(Assembler::negative, L_last_x); 6727 6728 if (UseBMI2Instructions) { 6729 movq(rdx, Address(x, xstart, Address::times_4, 0)); 6730 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 6731 } else { 6732 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6733 rorq(x_xstart, 32); // convert big-endian to little-endian 6734 } 6735 6736 Label L_third_loop_prologue; 6737 bind(L_third_loop_prologue); 6738 6739 push (x); 6740 push (xstart); 6741 push (ylen); 6742 6743 6744 if (UseBMI2Instructions) { 6745 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 6746 } else { // !UseBMI2Instructions 6747 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 6748 } 6749 6750 pop(ylen); 6751 pop(xlen); 6752 pop(x); 6753 pop(z); 6754 6755 movl(tmp3, xlen); 6756 addl(tmp3, 1); 6757 movl(Address(z, tmp3, Address::times_4, 0), carry); 6758 subl(tmp3, 1); 6759 jccb(Assembler::negative, L_done); 6760 6761 shrq(carry, 32); 6762 movl(Address(z, tmp3, Address::times_4, 0), carry); 6763 jmp(L_second_loop); 6764 6765 // Next infrequent code is moved outside loops. 6766 bind(L_last_x); 6767 if (UseBMI2Instructions) { 6768 movl(rdx, Address(x, 0)); 6769 } else { 6770 movl(x_xstart, Address(x, 0)); 6771 } 6772 jmp(L_third_loop_prologue); 6773 6774 bind(L_done); 6775 6776 pop(zlen); 6777 pop(xlen); 6778 6779 pop(tmp5); 6780 pop(tmp4); 6781 pop(tmp3); 6782 pop(tmp2); 6783 pop(tmp1); 6784 } 6785 6786 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 6787 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 6788 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 6789 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 6790 Label VECTOR8_TAIL, VECTOR4_TAIL; 6791 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 6792 Label SAME_TILL_END, DONE; 6793 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 6794 6795 //scale is in rcx in both Win64 and Unix 6796 ShortBranchVerifier sbv(this); 6797 6798 shlq(length); 6799 xorq(result, result); 6800 6801 if ((AVX3Threshold == 0) && (UseAVX > 2) && 6802 VM_Version::supports_avx512vlbw()) { 6803 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 6804 6805 cmpq(length, 64); 6806 jcc(Assembler::less, VECTOR32_TAIL); 6807 6808 movq(tmp1, length); 6809 andq(tmp1, 0x3F); // tail count 6810 andq(length, ~(0x3F)); //vector count 6811 6812 bind(VECTOR64_LOOP); 6813 // AVX512 code to compare 64 byte vectors. 6814 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 6815 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 6816 kortestql(k7, k7); 6817 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 6818 addq(result, 64); 6819 subq(length, 64); 6820 jccb(Assembler::notZero, VECTOR64_LOOP); 6821 6822 //bind(VECTOR64_TAIL); 6823 testq(tmp1, tmp1); 6824 jcc(Assembler::zero, SAME_TILL_END); 6825 6826 //bind(VECTOR64_TAIL); 6827 // AVX512 code to compare up to 63 byte vectors. 6828 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 6829 shlxq(tmp2, tmp2, tmp1); 6830 notq(tmp2); 6831 kmovql(k3, tmp2); 6832 6833 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 6834 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 6835 6836 ktestql(k7, k3); 6837 jcc(Assembler::below, SAME_TILL_END); // not mismatch 6838 6839 bind(VECTOR64_NOT_EQUAL); 6840 kmovql(tmp1, k7); 6841 notq(tmp1); 6842 tzcntq(tmp1, tmp1); 6843 addq(result, tmp1); 6844 shrq(result); 6845 jmp(DONE); 6846 bind(VECTOR32_TAIL); 6847 } 6848 6849 cmpq(length, 8); 6850 jcc(Assembler::equal, VECTOR8_LOOP); 6851 jcc(Assembler::less, VECTOR4_TAIL); 6852 6853 if (UseAVX >= 2) { 6854 Label VECTOR16_TAIL, VECTOR32_LOOP; 6855 6856 cmpq(length, 16); 6857 jcc(Assembler::equal, VECTOR16_LOOP); 6858 jcc(Assembler::less, VECTOR8_LOOP); 6859 6860 cmpq(length, 32); 6861 jccb(Assembler::less, VECTOR16_TAIL); 6862 6863 subq(length, 32); 6864 bind(VECTOR32_LOOP); 6865 vmovdqu(rymm0, Address(obja, result)); 6866 vmovdqu(rymm1, Address(objb, result)); 6867 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 6868 vptest(rymm2, rymm2); 6869 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 6870 addq(result, 32); 6871 subq(length, 32); 6872 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 6873 addq(length, 32); 6874 jcc(Assembler::equal, SAME_TILL_END); 6875 //falling through if less than 32 bytes left //close the branch here. 6876 6877 bind(VECTOR16_TAIL); 6878 cmpq(length, 16); 6879 jccb(Assembler::less, VECTOR8_TAIL); 6880 bind(VECTOR16_LOOP); 6881 movdqu(rymm0, Address(obja, result)); 6882 movdqu(rymm1, Address(objb, result)); 6883 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 6884 ptest(rymm2, rymm2); 6885 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 6886 addq(result, 16); 6887 subq(length, 16); 6888 jcc(Assembler::equal, SAME_TILL_END); 6889 //falling through if less than 16 bytes left 6890 } else {//regular intrinsics 6891 6892 cmpq(length, 16); 6893 jccb(Assembler::less, VECTOR8_TAIL); 6894 6895 subq(length, 16); 6896 bind(VECTOR16_LOOP); 6897 movdqu(rymm0, Address(obja, result)); 6898 movdqu(rymm1, Address(objb, result)); 6899 pxor(rymm0, rymm1); 6900 ptest(rymm0, rymm0); 6901 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 6902 addq(result, 16); 6903 subq(length, 16); 6904 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 6905 addq(length, 16); 6906 jcc(Assembler::equal, SAME_TILL_END); 6907 //falling through if less than 16 bytes left 6908 } 6909 6910 bind(VECTOR8_TAIL); 6911 cmpq(length, 8); 6912 jccb(Assembler::less, VECTOR4_TAIL); 6913 bind(VECTOR8_LOOP); 6914 movq(tmp1, Address(obja, result)); 6915 movq(tmp2, Address(objb, result)); 6916 xorq(tmp1, tmp2); 6917 testq(tmp1, tmp1); 6918 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 6919 addq(result, 8); 6920 subq(length, 8); 6921 jcc(Assembler::equal, SAME_TILL_END); 6922 //falling through if less than 8 bytes left 6923 6924 bind(VECTOR4_TAIL); 6925 cmpq(length, 4); 6926 jccb(Assembler::less, BYTES_TAIL); 6927 bind(VECTOR4_LOOP); 6928 movl(tmp1, Address(obja, result)); 6929 xorl(tmp1, Address(objb, result)); 6930 testl(tmp1, tmp1); 6931 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 6932 addq(result, 4); 6933 subq(length, 4); 6934 jcc(Assembler::equal, SAME_TILL_END); 6935 //falling through if less than 4 bytes left 6936 6937 bind(BYTES_TAIL); 6938 bind(BYTES_LOOP); 6939 load_unsigned_byte(tmp1, Address(obja, result)); 6940 load_unsigned_byte(tmp2, Address(objb, result)); 6941 xorl(tmp1, tmp2); 6942 testl(tmp1, tmp1); 6943 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6944 decq(length); 6945 jcc(Assembler::zero, SAME_TILL_END); 6946 incq(result); 6947 load_unsigned_byte(tmp1, Address(obja, result)); 6948 load_unsigned_byte(tmp2, Address(objb, result)); 6949 xorl(tmp1, tmp2); 6950 testl(tmp1, tmp1); 6951 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6952 decq(length); 6953 jcc(Assembler::zero, SAME_TILL_END); 6954 incq(result); 6955 load_unsigned_byte(tmp1, Address(obja, result)); 6956 load_unsigned_byte(tmp2, Address(objb, result)); 6957 xorl(tmp1, tmp2); 6958 testl(tmp1, tmp1); 6959 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6960 jmp(SAME_TILL_END); 6961 6962 if (UseAVX >= 2) { 6963 bind(VECTOR32_NOT_EQUAL); 6964 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 6965 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 6966 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 6967 vpmovmskb(tmp1, rymm0); 6968 bsfq(tmp1, tmp1); 6969 addq(result, tmp1); 6970 shrq(result); 6971 jmp(DONE); 6972 } 6973 6974 bind(VECTOR16_NOT_EQUAL); 6975 if (UseAVX >= 2) { 6976 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 6977 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 6978 pxor(rymm0, rymm2); 6979 } else { 6980 pcmpeqb(rymm2, rymm2); 6981 pxor(rymm0, rymm1); 6982 pcmpeqb(rymm0, rymm1); 6983 pxor(rymm0, rymm2); 6984 } 6985 pmovmskb(tmp1, rymm0); 6986 bsfq(tmp1, tmp1); 6987 addq(result, tmp1); 6988 shrq(result); 6989 jmpb(DONE); 6990 6991 bind(VECTOR8_NOT_EQUAL); 6992 bind(VECTOR4_NOT_EQUAL); 6993 bsfq(tmp1, tmp1); 6994 shrq(tmp1, 3); 6995 addq(result, tmp1); 6996 bind(BYTES_NOT_EQUAL); 6997 shrq(result); 6998 jmpb(DONE); 6999 7000 bind(SAME_TILL_END); 7001 mov64(result, -1); 7002 7003 bind(DONE); 7004 } 7005 7006 //Helper functions for square_to_len() 7007 7008 /** 7009 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7010 * Preserves x and z and modifies rest of the registers. 7011 */ 7012 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7013 // Perform square and right shift by 1 7014 // Handle odd xlen case first, then for even xlen do the following 7015 // jlong carry = 0; 7016 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7017 // huge_128 product = x[j:j+1] * x[j:j+1]; 7018 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7019 // z[i+2:i+3] = (jlong)(product >>> 1); 7020 // carry = (jlong)product; 7021 // } 7022 7023 xorq(tmp5, tmp5); // carry 7024 xorq(rdxReg, rdxReg); 7025 xorl(tmp1, tmp1); // index for x 7026 xorl(tmp4, tmp4); // index for z 7027 7028 Label L_first_loop, L_first_loop_exit; 7029 7030 testl(xlen, 1); 7031 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7032 7033 // Square and right shift by 1 the odd element using 32 bit multiply 7034 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7035 imulq(raxReg, raxReg); 7036 shrq(raxReg, 1); 7037 adcq(tmp5, 0); 7038 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7039 incrementl(tmp1); 7040 addl(tmp4, 2); 7041 7042 // Square and right shift by 1 the rest using 64 bit multiply 7043 bind(L_first_loop); 7044 cmpptr(tmp1, xlen); 7045 jccb(Assembler::equal, L_first_loop_exit); 7046 7047 // Square 7048 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7049 rorq(raxReg, 32); // convert big-endian to little-endian 7050 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7051 7052 // Right shift by 1 and save carry 7053 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7054 rcrq(rdxReg, 1); 7055 rcrq(raxReg, 1); 7056 adcq(tmp5, 0); 7057 7058 // Store result in z 7059 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7060 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7061 7062 // Update indices for x and z 7063 addl(tmp1, 2); 7064 addl(tmp4, 4); 7065 jmp(L_first_loop); 7066 7067 bind(L_first_loop_exit); 7068 } 7069 7070 7071 /** 7072 * Perform the following multiply add operation using BMI2 instructions 7073 * carry:sum = sum + op1*op2 + carry 7074 * op2 should be in rdx 7075 * op2 is preserved, all other registers are modified 7076 */ 7077 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7078 // assert op2 is rdx 7079 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7080 addq(sum, carry); 7081 adcq(tmp2, 0); 7082 addq(sum, op1); 7083 adcq(tmp2, 0); 7084 movq(carry, tmp2); 7085 } 7086 7087 /** 7088 * Perform the following multiply add operation: 7089 * carry:sum = sum + op1*op2 + carry 7090 * Preserves op1, op2 and modifies rest of registers 7091 */ 7092 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7093 // rdx:rax = op1 * op2 7094 movq(raxReg, op2); 7095 mulq(op1); 7096 7097 // rdx:rax = sum + carry + rdx:rax 7098 addq(sum, carry); 7099 adcq(rdxReg, 0); 7100 addq(sum, raxReg); 7101 adcq(rdxReg, 0); 7102 7103 // carry:sum = rdx:sum 7104 movq(carry, rdxReg); 7105 } 7106 7107 /** 7108 * Add 64 bit long carry into z[] with carry propagation. 7109 * Preserves z and carry register values and modifies rest of registers. 7110 * 7111 */ 7112 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7113 Label L_fourth_loop, L_fourth_loop_exit; 7114 7115 movl(tmp1, 1); 7116 subl(zlen, 2); 7117 addq(Address(z, zlen, Address::times_4, 0), carry); 7118 7119 bind(L_fourth_loop); 7120 jccb(Assembler::carryClear, L_fourth_loop_exit); 7121 subl(zlen, 2); 7122 jccb(Assembler::negative, L_fourth_loop_exit); 7123 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7124 jmp(L_fourth_loop); 7125 bind(L_fourth_loop_exit); 7126 } 7127 7128 /** 7129 * Shift z[] left by 1 bit. 7130 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7131 * 7132 */ 7133 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7134 7135 Label L_fifth_loop, L_fifth_loop_exit; 7136 7137 // Fifth loop 7138 // Perform primitiveLeftShift(z, zlen, 1) 7139 7140 const Register prev_carry = tmp1; 7141 const Register new_carry = tmp4; 7142 const Register value = tmp2; 7143 const Register zidx = tmp3; 7144 7145 // int zidx, carry; 7146 // long value; 7147 // carry = 0; 7148 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7149 // (carry:value) = (z[i] << 1) | carry ; 7150 // z[i] = value; 7151 // } 7152 7153 movl(zidx, zlen); 7154 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7155 7156 bind(L_fifth_loop); 7157 decl(zidx); // Use decl to preserve carry flag 7158 decl(zidx); 7159 jccb(Assembler::negative, L_fifth_loop_exit); 7160 7161 if (UseBMI2Instructions) { 7162 movq(value, Address(z, zidx, Address::times_4, 0)); 7163 rclq(value, 1); 7164 rorxq(value, value, 32); 7165 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7166 } 7167 else { 7168 // clear new_carry 7169 xorl(new_carry, new_carry); 7170 7171 // Shift z[i] by 1, or in previous carry and save new carry 7172 movq(value, Address(z, zidx, Address::times_4, 0)); 7173 shlq(value, 1); 7174 adcl(new_carry, 0); 7175 7176 orq(value, prev_carry); 7177 rorq(value, 0x20); 7178 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7179 7180 // Set previous carry = new carry 7181 movl(prev_carry, new_carry); 7182 } 7183 jmp(L_fifth_loop); 7184 7185 bind(L_fifth_loop_exit); 7186 } 7187 7188 7189 /** 7190 * Code for BigInteger::squareToLen() intrinsic 7191 * 7192 * rdi: x 7193 * rsi: len 7194 * r8: z 7195 * rcx: zlen 7196 * r12: tmp1 7197 * r13: tmp2 7198 * r14: tmp3 7199 * r15: tmp4 7200 * rbx: tmp5 7201 * 7202 */ 7203 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7204 7205 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7206 push(tmp1); 7207 push(tmp2); 7208 push(tmp3); 7209 push(tmp4); 7210 push(tmp5); 7211 7212 // First loop 7213 // Store the squares, right shifted one bit (i.e., divided by 2). 7214 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7215 7216 // Add in off-diagonal sums. 7217 // 7218 // Second, third (nested) and fourth loops. 7219 // zlen +=2; 7220 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7221 // carry = 0; 7222 // long op2 = x[xidx:xidx+1]; 7223 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7224 // k -= 2; 7225 // long op1 = x[j:j+1]; 7226 // long sum = z[k:k+1]; 7227 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7228 // z[k:k+1] = sum; 7229 // } 7230 // add_one_64(z, k, carry, tmp_regs); 7231 // } 7232 7233 const Register carry = tmp5; 7234 const Register sum = tmp3; 7235 const Register op1 = tmp4; 7236 Register op2 = tmp2; 7237 7238 push(zlen); 7239 push(len); 7240 addl(zlen,2); 7241 bind(L_second_loop); 7242 xorq(carry, carry); 7243 subl(zlen, 4); 7244 subl(len, 2); 7245 push(zlen); 7246 push(len); 7247 cmpl(len, 0); 7248 jccb(Assembler::lessEqual, L_second_loop_exit); 7249 7250 // Multiply an array by one 64 bit long. 7251 if (UseBMI2Instructions) { 7252 op2 = rdxReg; 7253 movq(op2, Address(x, len, Address::times_4, 0)); 7254 rorxq(op2, op2, 32); 7255 } 7256 else { 7257 movq(op2, Address(x, len, Address::times_4, 0)); 7258 rorq(op2, 32); 7259 } 7260 7261 bind(L_third_loop); 7262 decrementl(len); 7263 jccb(Assembler::negative, L_third_loop_exit); 7264 decrementl(len); 7265 jccb(Assembler::negative, L_last_x); 7266 7267 movq(op1, Address(x, len, Address::times_4, 0)); 7268 rorq(op1, 32); 7269 7270 bind(L_multiply); 7271 subl(zlen, 2); 7272 movq(sum, Address(z, zlen, Address::times_4, 0)); 7273 7274 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7275 if (UseBMI2Instructions) { 7276 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7277 } 7278 else { 7279 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7280 } 7281 7282 movq(Address(z, zlen, Address::times_4, 0), sum); 7283 7284 jmp(L_third_loop); 7285 bind(L_third_loop_exit); 7286 7287 // Fourth loop 7288 // Add 64 bit long carry into z with carry propagation. 7289 // Uses offsetted zlen. 7290 add_one_64(z, zlen, carry, tmp1); 7291 7292 pop(len); 7293 pop(zlen); 7294 jmp(L_second_loop); 7295 7296 // Next infrequent code is moved outside loops. 7297 bind(L_last_x); 7298 movl(op1, Address(x, 0)); 7299 jmp(L_multiply); 7300 7301 bind(L_second_loop_exit); 7302 pop(len); 7303 pop(zlen); 7304 pop(len); 7305 pop(zlen); 7306 7307 // Fifth loop 7308 // Shift z left 1 bit. 7309 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7310 7311 // z[zlen-1] |= x[len-1] & 1; 7312 movl(tmp3, Address(x, len, Address::times_4, -4)); 7313 andl(tmp3, 1); 7314 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7315 7316 pop(tmp5); 7317 pop(tmp4); 7318 pop(tmp3); 7319 pop(tmp2); 7320 pop(tmp1); 7321 } 7322 7323 /** 7324 * Helper function for mul_add() 7325 * Multiply the in[] by int k and add to out[] starting at offset offs using 7326 * 128 bit by 32 bit multiply and return the carry in tmp5. 7327 * Only quad int aligned length of in[] is operated on in this function. 7328 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7329 * This function preserves out, in and k registers. 7330 * len and offset point to the appropriate index in "in" & "out" correspondingly 7331 * tmp5 has the carry. 7332 * other registers are temporary and are modified. 7333 * 7334 */ 7335 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7336 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7337 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7338 7339 Label L_first_loop, L_first_loop_exit; 7340 7341 movl(tmp1, len); 7342 shrl(tmp1, 2); 7343 7344 bind(L_first_loop); 7345 subl(tmp1, 1); 7346 jccb(Assembler::negative, L_first_loop_exit); 7347 7348 subl(len, 4); 7349 subl(offset, 4); 7350 7351 Register op2 = tmp2; 7352 const Register sum = tmp3; 7353 const Register op1 = tmp4; 7354 const Register carry = tmp5; 7355 7356 if (UseBMI2Instructions) { 7357 op2 = rdxReg; 7358 } 7359 7360 movq(op1, Address(in, len, Address::times_4, 8)); 7361 rorq(op1, 32); 7362 movq(sum, Address(out, offset, Address::times_4, 8)); 7363 rorq(sum, 32); 7364 if (UseBMI2Instructions) { 7365 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7366 } 7367 else { 7368 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7369 } 7370 // Store back in big endian from little endian 7371 rorq(sum, 0x20); 7372 movq(Address(out, offset, Address::times_4, 8), sum); 7373 7374 movq(op1, Address(in, len, Address::times_4, 0)); 7375 rorq(op1, 32); 7376 movq(sum, Address(out, offset, Address::times_4, 0)); 7377 rorq(sum, 32); 7378 if (UseBMI2Instructions) { 7379 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7380 } 7381 else { 7382 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7383 } 7384 // Store back in big endian from little endian 7385 rorq(sum, 0x20); 7386 movq(Address(out, offset, Address::times_4, 0), sum); 7387 7388 jmp(L_first_loop); 7389 bind(L_first_loop_exit); 7390 } 7391 7392 /** 7393 * Code for BigInteger::mulAdd() intrinsic 7394 * 7395 * rdi: out 7396 * rsi: in 7397 * r11: offs (out.length - offset) 7398 * rcx: len 7399 * r8: k 7400 * r12: tmp1 7401 * r13: tmp2 7402 * r14: tmp3 7403 * r15: tmp4 7404 * rbx: tmp5 7405 * Multiply the in[] by word k and add to out[], return the carry in rax 7406 */ 7407 void MacroAssembler::mul_add(Register out, Register in, Register offs, 7408 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 7409 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7410 7411 Label L_carry, L_last_in, L_done; 7412 7413 // carry = 0; 7414 // for (int j=len-1; j >= 0; j--) { 7415 // long product = (in[j] & LONG_MASK) * kLong + 7416 // (out[offs] & LONG_MASK) + carry; 7417 // out[offs--] = (int)product; 7418 // carry = product >>> 32; 7419 // } 7420 // 7421 push(tmp1); 7422 push(tmp2); 7423 push(tmp3); 7424 push(tmp4); 7425 push(tmp5); 7426 7427 Register op2 = tmp2; 7428 const Register sum = tmp3; 7429 const Register op1 = tmp4; 7430 const Register carry = tmp5; 7431 7432 if (UseBMI2Instructions) { 7433 op2 = rdxReg; 7434 movl(op2, k); 7435 } 7436 else { 7437 movl(op2, k); 7438 } 7439 7440 xorq(carry, carry); 7441 7442 //First loop 7443 7444 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 7445 //The carry is in tmp5 7446 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 7447 7448 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 7449 decrementl(len); 7450 jccb(Assembler::negative, L_carry); 7451 decrementl(len); 7452 jccb(Assembler::negative, L_last_in); 7453 7454 movq(op1, Address(in, len, Address::times_4, 0)); 7455 rorq(op1, 32); 7456 7457 subl(offs, 2); 7458 movq(sum, Address(out, offs, Address::times_4, 0)); 7459 rorq(sum, 32); 7460 7461 if (UseBMI2Instructions) { 7462 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7463 } 7464 else { 7465 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7466 } 7467 7468 // Store back in big endian from little endian 7469 rorq(sum, 0x20); 7470 movq(Address(out, offs, Address::times_4, 0), sum); 7471 7472 testl(len, len); 7473 jccb(Assembler::zero, L_carry); 7474 7475 //Multiply the last in[] entry, if any 7476 bind(L_last_in); 7477 movl(op1, Address(in, 0)); 7478 movl(sum, Address(out, offs, Address::times_4, -4)); 7479 7480 movl(raxReg, k); 7481 mull(op1); //tmp4 * eax -> edx:eax 7482 addl(sum, carry); 7483 adcl(rdxReg, 0); 7484 addl(sum, raxReg); 7485 adcl(rdxReg, 0); 7486 movl(carry, rdxReg); 7487 7488 movl(Address(out, offs, Address::times_4, -4), sum); 7489 7490 bind(L_carry); 7491 //return tmp5/carry as carry in rax 7492 movl(rax, carry); 7493 7494 bind(L_done); 7495 pop(tmp5); 7496 pop(tmp4); 7497 pop(tmp3); 7498 pop(tmp2); 7499 pop(tmp1); 7500 } 7501 #endif 7502 7503 /** 7504 * Emits code to update CRC-32 with a byte value according to constants in table 7505 * 7506 * @param [in,out]crc Register containing the crc. 7507 * @param [in]val Register containing the byte to fold into the CRC. 7508 * @param [in]table Register containing the table of crc constants. 7509 * 7510 * uint32_t crc; 7511 * val = crc_table[(val ^ crc) & 0xFF]; 7512 * crc = val ^ (crc >> 8); 7513 * 7514 */ 7515 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 7516 xorl(val, crc); 7517 andl(val, 0xFF); 7518 shrl(crc, 8); // unsigned shift 7519 xorl(crc, Address(table, val, Address::times_4, 0)); 7520 } 7521 7522 /** 7523 * Fold 128-bit data chunk 7524 */ 7525 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 7526 if (UseAVX > 0) { 7527 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 7528 vpclmulldq(xcrc, xK, xcrc); // [63:0] 7529 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 7530 pxor(xcrc, xtmp); 7531 } else { 7532 movdqa(xtmp, xcrc); 7533 pclmulhdq(xtmp, xK); // [123:64] 7534 pclmulldq(xcrc, xK); // [63:0] 7535 pxor(xcrc, xtmp); 7536 movdqu(xtmp, Address(buf, offset)); 7537 pxor(xcrc, xtmp); 7538 } 7539 } 7540 7541 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 7542 if (UseAVX > 0) { 7543 vpclmulhdq(xtmp, xK, xcrc); 7544 vpclmulldq(xcrc, xK, xcrc); 7545 pxor(xcrc, xbuf); 7546 pxor(xcrc, xtmp); 7547 } else { 7548 movdqa(xtmp, xcrc); 7549 pclmulhdq(xtmp, xK); 7550 pclmulldq(xcrc, xK); 7551 pxor(xcrc, xbuf); 7552 pxor(xcrc, xtmp); 7553 } 7554 } 7555 7556 /** 7557 * 8-bit folds to compute 32-bit CRC 7558 * 7559 * uint64_t xcrc; 7560 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 7561 */ 7562 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 7563 movdl(tmp, xcrc); 7564 andl(tmp, 0xFF); 7565 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 7566 psrldq(xcrc, 1); // unsigned shift one byte 7567 pxor(xcrc, xtmp); 7568 } 7569 7570 /** 7571 * uint32_t crc; 7572 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 7573 */ 7574 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 7575 movl(tmp, crc); 7576 andl(tmp, 0xFF); 7577 shrl(crc, 8); 7578 xorl(crc, Address(table, tmp, Address::times_4, 0)); 7579 } 7580 7581 /** 7582 * @param crc register containing existing CRC (32-bit) 7583 * @param buf register pointing to input byte buffer (byte*) 7584 * @param len register containing number of bytes 7585 * @param table register that will contain address of CRC table 7586 * @param tmp scratch register 7587 */ 7588 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 7589 assert_different_registers(crc, buf, len, table, tmp, rax); 7590 7591 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7592 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7593 7594 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7595 // context for the registers used, where all instructions below are using 128-bit mode 7596 // On EVEX without VL and BW, these instructions will all be AVX. 7597 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 7598 notl(crc); // ~crc 7599 cmpl(len, 16); 7600 jcc(Assembler::less, L_tail); 7601 7602 // Align buffer to 16 bytes 7603 movl(tmp, buf); 7604 andl(tmp, 0xF); 7605 jccb(Assembler::zero, L_aligned); 7606 subl(tmp, 16); 7607 addl(len, tmp); 7608 7609 align(4); 7610 BIND(L_align_loop); 7611 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7612 update_byte_crc32(crc, rax, table); 7613 increment(buf); 7614 incrementl(tmp); 7615 jccb(Assembler::less, L_align_loop); 7616 7617 BIND(L_aligned); 7618 movl(tmp, len); // save 7619 shrl(len, 4); 7620 jcc(Assembler::zero, L_tail_restore); 7621 7622 // Fold crc into first bytes of vector 7623 movdqa(xmm1, Address(buf, 0)); 7624 movdl(rax, xmm1); 7625 xorl(crc, rax); 7626 if (VM_Version::supports_sse4_1()) { 7627 pinsrd(xmm1, crc, 0); 7628 } else { 7629 pinsrw(xmm1, crc, 0); 7630 shrl(crc, 16); 7631 pinsrw(xmm1, crc, 1); 7632 } 7633 addptr(buf, 16); 7634 subl(len, 4); // len > 0 7635 jcc(Assembler::less, L_fold_tail); 7636 7637 movdqa(xmm2, Address(buf, 0)); 7638 movdqa(xmm3, Address(buf, 16)); 7639 movdqa(xmm4, Address(buf, 32)); 7640 addptr(buf, 48); 7641 subl(len, 3); 7642 jcc(Assembler::lessEqual, L_fold_512b); 7643 7644 // Fold total 512 bits of polynomial on each iteration, 7645 // 128 bits per each of 4 parallel streams. 7646 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 7647 7648 align32(); 7649 BIND(L_fold_512b_loop); 7650 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 7651 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 7652 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 7653 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 7654 addptr(buf, 64); 7655 subl(len, 4); 7656 jcc(Assembler::greater, L_fold_512b_loop); 7657 7658 // Fold 512 bits to 128 bits. 7659 BIND(L_fold_512b); 7660 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 7661 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 7662 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 7663 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 7664 7665 // Fold the rest of 128 bits data chunks 7666 BIND(L_fold_tail); 7667 addl(len, 3); 7668 jccb(Assembler::lessEqual, L_fold_128b); 7669 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 7670 7671 BIND(L_fold_tail_loop); 7672 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 7673 addptr(buf, 16); 7674 decrementl(len); 7675 jccb(Assembler::greater, L_fold_tail_loop); 7676 7677 // Fold 128 bits in xmm1 down into 32 bits in crc register. 7678 BIND(L_fold_128b); 7679 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 7680 if (UseAVX > 0) { 7681 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 7682 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 7683 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 7684 } else { 7685 movdqa(xmm2, xmm0); 7686 pclmulqdq(xmm2, xmm1, 0x1); 7687 movdqa(xmm3, xmm0); 7688 pand(xmm3, xmm2); 7689 pclmulqdq(xmm0, xmm3, 0x1); 7690 } 7691 psrldq(xmm1, 8); 7692 psrldq(xmm2, 4); 7693 pxor(xmm0, xmm1); 7694 pxor(xmm0, xmm2); 7695 7696 // 8 8-bit folds to compute 32-bit CRC. 7697 for (int j = 0; j < 4; j++) { 7698 fold_8bit_crc32(xmm0, table, xmm1, rax); 7699 } 7700 movdl(crc, xmm0); // mov 32 bits to general register 7701 for (int j = 0; j < 4; j++) { 7702 fold_8bit_crc32(crc, table, rax); 7703 } 7704 7705 BIND(L_tail_restore); 7706 movl(len, tmp); // restore 7707 BIND(L_tail); 7708 andl(len, 0xf); 7709 jccb(Assembler::zero, L_exit); 7710 7711 // Fold the rest of bytes 7712 align(4); 7713 BIND(L_tail_loop); 7714 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7715 update_byte_crc32(crc, rax, table); 7716 increment(buf); 7717 decrementl(len); 7718 jccb(Assembler::greater, L_tail_loop); 7719 7720 BIND(L_exit); 7721 notl(crc); // ~c 7722 } 7723 7724 #ifdef _LP64 7725 // Helper function for AVX 512 CRC32 7726 // Fold 512-bit data chunks 7727 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 7728 Register pos, int offset) { 7729 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 7730 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 7731 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 7732 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 7733 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 7734 } 7735 7736 // Helper function for AVX 512 CRC32 7737 // Compute CRC32 for < 256B buffers 7738 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 7739 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 7740 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 7741 7742 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 7743 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 7744 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 7745 7746 // check if there is enough buffer to be able to fold 16B at a time 7747 cmpl(len, 32); 7748 jcc(Assembler::less, L_less_than_32); 7749 7750 // if there is, load the constants 7751 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 7752 movdl(xmm0, crc); // get the initial crc value 7753 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 7754 pxor(xmm7, xmm0); 7755 7756 // update the buffer pointer 7757 addl(pos, 16); 7758 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 7759 subl(len, 32); 7760 jmp(L_16B_reduction_loop); 7761 7762 bind(L_less_than_32); 7763 //mov initial crc to the return value. this is necessary for zero - length buffers. 7764 movl(rax, crc); 7765 testl(len, len); 7766 jcc(Assembler::equal, L_cleanup); 7767 7768 movdl(xmm0, crc); //get the initial crc value 7769 7770 cmpl(len, 16); 7771 jcc(Assembler::equal, L_exact_16_left); 7772 jcc(Assembler::less, L_less_than_16_left); 7773 7774 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 7775 pxor(xmm7, xmm0); //xor the initial crc value 7776 addl(pos, 16); 7777 subl(len, 16); 7778 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 7779 jmp(L_get_last_two_xmms); 7780 7781 bind(L_less_than_16_left); 7782 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 7783 pxor(xmm1, xmm1); 7784 movptr(tmp1, rsp); 7785 movdqu(Address(tmp1, 0 * 16), xmm1); 7786 7787 cmpl(len, 4); 7788 jcc(Assembler::less, L_only_less_than_4); 7789 7790 //backup the counter value 7791 movl(tmp2, len); 7792 cmpl(len, 8); 7793 jcc(Assembler::less, L_less_than_8_left); 7794 7795 //load 8 Bytes 7796 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 7797 movq(Address(tmp1, 0 * 16), rax); 7798 addptr(tmp1, 8); 7799 subl(len, 8); 7800 addl(pos, 8); 7801 7802 bind(L_less_than_8_left); 7803 cmpl(len, 4); 7804 jcc(Assembler::less, L_less_than_4_left); 7805 7806 //load 4 Bytes 7807 movl(rax, Address(buf, pos, Address::times_1, 0)); 7808 movl(Address(tmp1, 0 * 16), rax); 7809 addptr(tmp1, 4); 7810 subl(len, 4); 7811 addl(pos, 4); 7812 7813 bind(L_less_than_4_left); 7814 cmpl(len, 2); 7815 jcc(Assembler::less, L_less_than_2_left); 7816 7817 // load 2 Bytes 7818 movw(rax, Address(buf, pos, Address::times_1, 0)); 7819 movl(Address(tmp1, 0 * 16), rax); 7820 addptr(tmp1, 2); 7821 subl(len, 2); 7822 addl(pos, 2); 7823 7824 bind(L_less_than_2_left); 7825 cmpl(len, 1); 7826 jcc(Assembler::less, L_zero_left); 7827 7828 // load 1 Byte 7829 movb(rax, Address(buf, pos, Address::times_1, 0)); 7830 movb(Address(tmp1, 0 * 16), rax); 7831 7832 bind(L_zero_left); 7833 movdqu(xmm7, Address(rsp, 0)); 7834 pxor(xmm7, xmm0); //xor the initial crc value 7835 7836 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 7837 movdqu(xmm0, Address(rax, tmp2)); 7838 pshufb(xmm7, xmm0); 7839 jmp(L_128_done); 7840 7841 bind(L_exact_16_left); 7842 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 7843 pxor(xmm7, xmm0); //xor the initial crc value 7844 jmp(L_128_done); 7845 7846 bind(L_only_less_than_4); 7847 cmpl(len, 3); 7848 jcc(Assembler::less, L_only_less_than_3); 7849 7850 // load 3 Bytes 7851 movb(rax, Address(buf, pos, Address::times_1, 0)); 7852 movb(Address(tmp1, 0), rax); 7853 7854 movb(rax, Address(buf, pos, Address::times_1, 1)); 7855 movb(Address(tmp1, 1), rax); 7856 7857 movb(rax, Address(buf, pos, Address::times_1, 2)); 7858 movb(Address(tmp1, 2), rax); 7859 7860 movdqu(xmm7, Address(rsp, 0)); 7861 pxor(xmm7, xmm0); //xor the initial crc value 7862 7863 pslldq(xmm7, 0x5); 7864 jmp(L_barrett); 7865 bind(L_only_less_than_3); 7866 cmpl(len, 2); 7867 jcc(Assembler::less, L_only_less_than_2); 7868 7869 // load 2 Bytes 7870 movb(rax, Address(buf, pos, Address::times_1, 0)); 7871 movb(Address(tmp1, 0), rax); 7872 7873 movb(rax, Address(buf, pos, Address::times_1, 1)); 7874 movb(Address(tmp1, 1), rax); 7875 7876 movdqu(xmm7, Address(rsp, 0)); 7877 pxor(xmm7, xmm0); //xor the initial crc value 7878 7879 pslldq(xmm7, 0x6); 7880 jmp(L_barrett); 7881 7882 bind(L_only_less_than_2); 7883 //load 1 Byte 7884 movb(rax, Address(buf, pos, Address::times_1, 0)); 7885 movb(Address(tmp1, 0), rax); 7886 7887 movdqu(xmm7, Address(rsp, 0)); 7888 pxor(xmm7, xmm0); //xor the initial crc value 7889 7890 pslldq(xmm7, 0x7); 7891 } 7892 7893 /** 7894 * Compute CRC32 using AVX512 instructions 7895 * param crc register containing existing CRC (32-bit) 7896 * param buf register pointing to input byte buffer (byte*) 7897 * param len register containing number of bytes 7898 * param table address of crc or crc32c table 7899 * param tmp1 scratch register 7900 * param tmp2 scratch register 7901 * return rax result register 7902 * 7903 * This routine is identical for crc32c with the exception of the precomputed constant 7904 * table which will be passed as the table argument. The calculation steps are 7905 * the same for both variants. 7906 */ 7907 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 7908 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 7909 7910 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7911 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7912 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 7913 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 7914 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 7915 7916 const Register pos = r12; 7917 push(r12); 7918 subptr(rsp, 16 * 2 + 8); 7919 7920 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7921 // context for the registers used, where all instructions below are using 128-bit mode 7922 // On EVEX without VL and BW, these instructions will all be AVX. 7923 movl(pos, 0); 7924 7925 // check if smaller than 256B 7926 cmpl(len, 256); 7927 jcc(Assembler::less, L_less_than_256); 7928 7929 // load the initial crc value 7930 movdl(xmm10, crc); 7931 7932 // receive the initial 64B data, xor the initial crc value 7933 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 7934 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 7935 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 7936 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 7937 7938 subl(len, 256); 7939 cmpl(len, 256); 7940 jcc(Assembler::less, L_fold_128_B_loop); 7941 7942 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 7943 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 7944 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 7945 subl(len, 256); 7946 7947 bind(L_fold_256_B_loop); 7948 addl(pos, 256); 7949 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 7950 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 7951 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 7952 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 7953 7954 subl(len, 256); 7955 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 7956 7957 // Fold 256 into 128 7958 addl(pos, 256); 7959 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 7960 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 7961 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 7962 7963 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 7964 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 7965 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 7966 7967 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 7968 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 7969 7970 addl(len, 128); 7971 jmp(L_fold_128_B_register); 7972 7973 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 7974 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 7975 7976 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 7977 bind(L_fold_128_B_loop); 7978 addl(pos, 128); 7979 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 7980 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 7981 7982 subl(len, 128); 7983 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 7984 7985 addl(pos, 128); 7986 7987 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 7988 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 7989 bind(L_fold_128_B_register); 7990 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 7991 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 7992 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 7993 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 7994 // save last that has no multiplicand 7995 vextracti64x2(xmm7, xmm4, 3); 7996 7997 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 7998 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 7999 // Needed later in reduction loop 8000 movdqu(xmm10, Address(table, 1 * 16)); 8001 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8002 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8003 8004 // Swap 1,0,3,2 - 01 00 11 10 8005 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8006 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8007 vextracti128(xmm5, xmm8, 1); 8008 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8009 8010 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8011 // instead of a cmp instruction, we use the negative flag with the jl instruction 8012 addl(len, 128 - 16); 8013 jcc(Assembler::less, L_final_reduction_for_128); 8014 8015 bind(L_16B_reduction_loop); 8016 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8017 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8018 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8019 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8020 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8021 addl(pos, 16); 8022 subl(len, 16); 8023 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8024 8025 bind(L_final_reduction_for_128); 8026 addl(len, 16); 8027 jcc(Assembler::equal, L_128_done); 8028 8029 bind(L_get_last_two_xmms); 8030 movdqu(xmm2, xmm7); 8031 addl(pos, len); 8032 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8033 subl(pos, len); 8034 8035 // get rid of the extra data that was loaded before 8036 // load the shift constant 8037 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8038 movdqu(xmm0, Address(rax, len)); 8039 addl(rax, len); 8040 8041 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8042 //Change mask to 512 8043 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8044 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8045 8046 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8047 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8048 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8049 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8050 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8051 8052 bind(L_128_done); 8053 // compute crc of a 128-bit value 8054 movdqu(xmm10, Address(table, 3 * 16)); 8055 movdqu(xmm0, xmm7); 8056 8057 // 64b fold 8058 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8059 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8060 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8061 8062 // 32b fold 8063 movdqu(xmm0, xmm7); 8064 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8065 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8066 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8067 jmp(L_barrett); 8068 8069 bind(L_less_than_256); 8070 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8071 8072 //barrett reduction 8073 bind(L_barrett); 8074 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8075 movdqu(xmm1, xmm7); 8076 movdqu(xmm2, xmm7); 8077 movdqu(xmm10, Address(table, 4 * 16)); 8078 8079 pclmulqdq(xmm7, xmm10, 0x0); 8080 pxor(xmm7, xmm2); 8081 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8082 movdqu(xmm2, xmm7); 8083 pclmulqdq(xmm7, xmm10, 0x10); 8084 pxor(xmm7, xmm2); 8085 pxor(xmm7, xmm1); 8086 pextrd(crc, xmm7, 2); 8087 8088 bind(L_cleanup); 8089 addptr(rsp, 16 * 2 + 8); 8090 pop(r12); 8091 } 8092 8093 // S. Gueron / Information Processing Letters 112 (2012) 184 8094 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8095 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8096 // Output: the 64-bit carry-less product of B * CONST 8097 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8098 Register tmp1, Register tmp2, Register tmp3) { 8099 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8100 if (n > 0) { 8101 addq(tmp3, n * 256 * 8); 8102 } 8103 // Q1 = TABLEExt[n][B & 0xFF]; 8104 movl(tmp1, in); 8105 andl(tmp1, 0x000000FF); 8106 shll(tmp1, 3); 8107 addq(tmp1, tmp3); 8108 movq(tmp1, Address(tmp1, 0)); 8109 8110 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8111 movl(tmp2, in); 8112 shrl(tmp2, 8); 8113 andl(tmp2, 0x000000FF); 8114 shll(tmp2, 3); 8115 addq(tmp2, tmp3); 8116 movq(tmp2, Address(tmp2, 0)); 8117 8118 shlq(tmp2, 8); 8119 xorq(tmp1, tmp2); 8120 8121 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8122 movl(tmp2, in); 8123 shrl(tmp2, 16); 8124 andl(tmp2, 0x000000FF); 8125 shll(tmp2, 3); 8126 addq(tmp2, tmp3); 8127 movq(tmp2, Address(tmp2, 0)); 8128 8129 shlq(tmp2, 16); 8130 xorq(tmp1, tmp2); 8131 8132 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8133 shrl(in, 24); 8134 andl(in, 0x000000FF); 8135 shll(in, 3); 8136 addq(in, tmp3); 8137 movq(in, Address(in, 0)); 8138 8139 shlq(in, 24); 8140 xorq(in, tmp1); 8141 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8142 } 8143 8144 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8145 Register in_out, 8146 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8147 XMMRegister w_xtmp2, 8148 Register tmp1, 8149 Register n_tmp2, Register n_tmp3) { 8150 if (is_pclmulqdq_supported) { 8151 movdl(w_xtmp1, in_out); // modified blindly 8152 8153 movl(tmp1, const_or_pre_comp_const_index); 8154 movdl(w_xtmp2, tmp1); 8155 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8156 8157 movdq(in_out, w_xtmp1); 8158 } else { 8159 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8160 } 8161 } 8162 8163 // Recombination Alternative 2: No bit-reflections 8164 // T1 = (CRC_A * U1) << 1 8165 // T2 = (CRC_B * U2) << 1 8166 // C1 = T1 >> 32 8167 // C2 = T2 >> 32 8168 // T1 = T1 & 0xFFFFFFFF 8169 // T2 = T2 & 0xFFFFFFFF 8170 // T1 = CRC32(0, T1) 8171 // T2 = CRC32(0, T2) 8172 // C1 = C1 ^ T1 8173 // C2 = C2 ^ T2 8174 // CRC = C1 ^ C2 ^ CRC_C 8175 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8176 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8177 Register tmp1, Register tmp2, 8178 Register n_tmp3) { 8179 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8180 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8181 shlq(in_out, 1); 8182 movl(tmp1, in_out); 8183 shrq(in_out, 32); 8184 xorl(tmp2, tmp2); 8185 crc32(tmp2, tmp1, 4); 8186 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8187 shlq(in1, 1); 8188 movl(tmp1, in1); 8189 shrq(in1, 32); 8190 xorl(tmp2, tmp2); 8191 crc32(tmp2, tmp1, 4); 8192 xorl(in1, tmp2); 8193 xorl(in_out, in1); 8194 xorl(in_out, in2); 8195 } 8196 8197 // Set N to predefined value 8198 // Subtract from a length of a buffer 8199 // execute in a loop: 8200 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8201 // for i = 1 to N do 8202 // CRC_A = CRC32(CRC_A, A[i]) 8203 // CRC_B = CRC32(CRC_B, B[i]) 8204 // CRC_C = CRC32(CRC_C, C[i]) 8205 // end for 8206 // Recombine 8207 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8208 Register in_out1, Register in_out2, Register in_out3, 8209 Register tmp1, Register tmp2, Register tmp3, 8210 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8211 Register tmp4, Register tmp5, 8212 Register n_tmp6) { 8213 Label L_processPartitions; 8214 Label L_processPartition; 8215 Label L_exit; 8216 8217 bind(L_processPartitions); 8218 cmpl(in_out1, 3 * size); 8219 jcc(Assembler::less, L_exit); 8220 xorl(tmp1, tmp1); 8221 xorl(tmp2, tmp2); 8222 movq(tmp3, in_out2); 8223 addq(tmp3, size); 8224 8225 bind(L_processPartition); 8226 crc32(in_out3, Address(in_out2, 0), 8); 8227 crc32(tmp1, Address(in_out2, size), 8); 8228 crc32(tmp2, Address(in_out2, size * 2), 8); 8229 addq(in_out2, 8); 8230 cmpq(in_out2, tmp3); 8231 jcc(Assembler::less, L_processPartition); 8232 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8233 w_xtmp1, w_xtmp2, w_xtmp3, 8234 tmp4, tmp5, 8235 n_tmp6); 8236 addq(in_out2, 2 * size); 8237 subl(in_out1, 3 * size); 8238 jmp(L_processPartitions); 8239 8240 bind(L_exit); 8241 } 8242 #else 8243 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 8244 Register tmp1, Register tmp2, Register tmp3, 8245 XMMRegister xtmp1, XMMRegister xtmp2) { 8246 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8247 if (n > 0) { 8248 addl(tmp3, n * 256 * 8); 8249 } 8250 // Q1 = TABLEExt[n][B & 0xFF]; 8251 movl(tmp1, in_out); 8252 andl(tmp1, 0x000000FF); 8253 shll(tmp1, 3); 8254 addl(tmp1, tmp3); 8255 movq(xtmp1, Address(tmp1, 0)); 8256 8257 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8258 movl(tmp2, in_out); 8259 shrl(tmp2, 8); 8260 andl(tmp2, 0x000000FF); 8261 shll(tmp2, 3); 8262 addl(tmp2, tmp3); 8263 movq(xtmp2, Address(tmp2, 0)); 8264 8265 psllq(xtmp2, 8); 8266 pxor(xtmp1, xtmp2); 8267 8268 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8269 movl(tmp2, in_out); 8270 shrl(tmp2, 16); 8271 andl(tmp2, 0x000000FF); 8272 shll(tmp2, 3); 8273 addl(tmp2, tmp3); 8274 movq(xtmp2, Address(tmp2, 0)); 8275 8276 psllq(xtmp2, 16); 8277 pxor(xtmp1, xtmp2); 8278 8279 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8280 shrl(in_out, 24); 8281 andl(in_out, 0x000000FF); 8282 shll(in_out, 3); 8283 addl(in_out, tmp3); 8284 movq(xtmp2, Address(in_out, 0)); 8285 8286 psllq(xtmp2, 24); 8287 pxor(xtmp1, xtmp2); // Result in CXMM 8288 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8289 } 8290 8291 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8292 Register in_out, 8293 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8294 XMMRegister w_xtmp2, 8295 Register tmp1, 8296 Register n_tmp2, Register n_tmp3) { 8297 if (is_pclmulqdq_supported) { 8298 movdl(w_xtmp1, in_out); 8299 8300 movl(tmp1, const_or_pre_comp_const_index); 8301 movdl(w_xtmp2, tmp1); 8302 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8303 // Keep result in XMM since GPR is 32 bit in length 8304 } else { 8305 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 8306 } 8307 } 8308 8309 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8310 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8311 Register tmp1, Register tmp2, 8312 Register n_tmp3) { 8313 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8314 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8315 8316 psllq(w_xtmp1, 1); 8317 movdl(tmp1, w_xtmp1); 8318 psrlq(w_xtmp1, 32); 8319 movdl(in_out, w_xtmp1); 8320 8321 xorl(tmp2, tmp2); 8322 crc32(tmp2, tmp1, 4); 8323 xorl(in_out, tmp2); 8324 8325 psllq(w_xtmp2, 1); 8326 movdl(tmp1, w_xtmp2); 8327 psrlq(w_xtmp2, 32); 8328 movdl(in1, w_xtmp2); 8329 8330 xorl(tmp2, tmp2); 8331 crc32(tmp2, tmp1, 4); 8332 xorl(in1, tmp2); 8333 xorl(in_out, in1); 8334 xorl(in_out, in2); 8335 } 8336 8337 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8338 Register in_out1, Register in_out2, Register in_out3, 8339 Register tmp1, Register tmp2, Register tmp3, 8340 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8341 Register tmp4, Register tmp5, 8342 Register n_tmp6) { 8343 Label L_processPartitions; 8344 Label L_processPartition; 8345 Label L_exit; 8346 8347 bind(L_processPartitions); 8348 cmpl(in_out1, 3 * size); 8349 jcc(Assembler::less, L_exit); 8350 xorl(tmp1, tmp1); 8351 xorl(tmp2, tmp2); 8352 movl(tmp3, in_out2); 8353 addl(tmp3, size); 8354 8355 bind(L_processPartition); 8356 crc32(in_out3, Address(in_out2, 0), 4); 8357 crc32(tmp1, Address(in_out2, size), 4); 8358 crc32(tmp2, Address(in_out2, size*2), 4); 8359 crc32(in_out3, Address(in_out2, 0+4), 4); 8360 crc32(tmp1, Address(in_out2, size+4), 4); 8361 crc32(tmp2, Address(in_out2, size*2+4), 4); 8362 addl(in_out2, 8); 8363 cmpl(in_out2, tmp3); 8364 jcc(Assembler::less, L_processPartition); 8365 8366 push(tmp3); 8367 push(in_out1); 8368 push(in_out2); 8369 tmp4 = tmp3; 8370 tmp5 = in_out1; 8371 n_tmp6 = in_out2; 8372 8373 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8374 w_xtmp1, w_xtmp2, w_xtmp3, 8375 tmp4, tmp5, 8376 n_tmp6); 8377 8378 pop(in_out2); 8379 pop(in_out1); 8380 pop(tmp3); 8381 8382 addl(in_out2, 2 * size); 8383 subl(in_out1, 3 * size); 8384 jmp(L_processPartitions); 8385 8386 bind(L_exit); 8387 } 8388 #endif //LP64 8389 8390 #ifdef _LP64 8391 // Algorithm 2: Pipelined usage of the CRC32 instruction. 8392 // Input: A buffer I of L bytes. 8393 // Output: the CRC32C value of the buffer. 8394 // Notations: 8395 // Write L = 24N + r, with N = floor (L/24). 8396 // r = L mod 24 (0 <= r < 24). 8397 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 8398 // N quadwords, and R consists of r bytes. 8399 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 8400 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 8401 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 8402 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 8403 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8404 Register tmp1, Register tmp2, Register tmp3, 8405 Register tmp4, Register tmp5, Register tmp6, 8406 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8407 bool is_pclmulqdq_supported) { 8408 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8409 Label L_wordByWord; 8410 Label L_byteByByteProlog; 8411 Label L_byteByByte; 8412 Label L_exit; 8413 8414 if (is_pclmulqdq_supported ) { 8415 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8416 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1); 8417 8418 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8419 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8420 8421 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8422 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8423 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 8424 } else { 8425 const_or_pre_comp_const_index[0] = 1; 8426 const_or_pre_comp_const_index[1] = 0; 8427 8428 const_or_pre_comp_const_index[2] = 3; 8429 const_or_pre_comp_const_index[3] = 2; 8430 8431 const_or_pre_comp_const_index[4] = 5; 8432 const_or_pre_comp_const_index[5] = 4; 8433 } 8434 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8435 in2, in1, in_out, 8436 tmp1, tmp2, tmp3, 8437 w_xtmp1, w_xtmp2, w_xtmp3, 8438 tmp4, tmp5, 8439 tmp6); 8440 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8441 in2, in1, in_out, 8442 tmp1, tmp2, tmp3, 8443 w_xtmp1, w_xtmp2, w_xtmp3, 8444 tmp4, tmp5, 8445 tmp6); 8446 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8447 in2, in1, in_out, 8448 tmp1, tmp2, tmp3, 8449 w_xtmp1, w_xtmp2, w_xtmp3, 8450 tmp4, tmp5, 8451 tmp6); 8452 movl(tmp1, in2); 8453 andl(tmp1, 0x00000007); 8454 negl(tmp1); 8455 addl(tmp1, in2); 8456 addq(tmp1, in1); 8457 8458 cmpq(in1, tmp1); 8459 jccb(Assembler::greaterEqual, L_byteByByteProlog); 8460 align(16); 8461 BIND(L_wordByWord); 8462 crc32(in_out, Address(in1, 0), 8); 8463 addq(in1, 8); 8464 cmpq(in1, tmp1); 8465 jcc(Assembler::less, L_wordByWord); 8466 8467 BIND(L_byteByByteProlog); 8468 andl(in2, 0x00000007); 8469 movl(tmp2, 1); 8470 8471 cmpl(tmp2, in2); 8472 jccb(Assembler::greater, L_exit); 8473 BIND(L_byteByByte); 8474 crc32(in_out, Address(in1, 0), 1); 8475 incq(in1); 8476 incl(tmp2); 8477 cmpl(tmp2, in2); 8478 jcc(Assembler::lessEqual, L_byteByByte); 8479 8480 BIND(L_exit); 8481 } 8482 #else 8483 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8484 Register tmp1, Register tmp2, Register tmp3, 8485 Register tmp4, Register tmp5, Register tmp6, 8486 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8487 bool is_pclmulqdq_supported) { 8488 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8489 Label L_wordByWord; 8490 Label L_byteByByteProlog; 8491 Label L_byteByByte; 8492 Label L_exit; 8493 8494 if (is_pclmulqdq_supported) { 8495 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8496 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1); 8497 8498 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8499 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8500 8501 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8502 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8503 } else { 8504 const_or_pre_comp_const_index[0] = 1; 8505 const_or_pre_comp_const_index[1] = 0; 8506 8507 const_or_pre_comp_const_index[2] = 3; 8508 const_or_pre_comp_const_index[3] = 2; 8509 8510 const_or_pre_comp_const_index[4] = 5; 8511 const_or_pre_comp_const_index[5] = 4; 8512 } 8513 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8514 in2, in1, in_out, 8515 tmp1, tmp2, tmp3, 8516 w_xtmp1, w_xtmp2, w_xtmp3, 8517 tmp4, tmp5, 8518 tmp6); 8519 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8520 in2, in1, in_out, 8521 tmp1, tmp2, tmp3, 8522 w_xtmp1, w_xtmp2, w_xtmp3, 8523 tmp4, tmp5, 8524 tmp6); 8525 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8526 in2, in1, in_out, 8527 tmp1, tmp2, tmp3, 8528 w_xtmp1, w_xtmp2, w_xtmp3, 8529 tmp4, tmp5, 8530 tmp6); 8531 movl(tmp1, in2); 8532 andl(tmp1, 0x00000007); 8533 negl(tmp1); 8534 addl(tmp1, in2); 8535 addl(tmp1, in1); 8536 8537 BIND(L_wordByWord); 8538 cmpl(in1, tmp1); 8539 jcc(Assembler::greaterEqual, L_byteByByteProlog); 8540 crc32(in_out, Address(in1,0), 4); 8541 addl(in1, 4); 8542 jmp(L_wordByWord); 8543 8544 BIND(L_byteByByteProlog); 8545 andl(in2, 0x00000007); 8546 movl(tmp2, 1); 8547 8548 BIND(L_byteByByte); 8549 cmpl(tmp2, in2); 8550 jccb(Assembler::greater, L_exit); 8551 movb(tmp1, Address(in1, 0)); 8552 crc32(in_out, tmp1, 1); 8553 incl(in1); 8554 incl(tmp2); 8555 jmp(L_byteByByte); 8556 8557 BIND(L_exit); 8558 } 8559 #endif // LP64 8560 #undef BIND 8561 #undef BLOCK_COMMENT 8562 8563 // Compress char[] array to byte[]. 8564 // ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java 8565 // @IntrinsicCandidate 8566 // private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 8567 // for (int i = 0; i < len; i++) { 8568 // int c = src[srcOff++]; 8569 // if (c >>> 8 != 0) { 8570 // return 0; 8571 // } 8572 // dst[dstOff++] = (byte)c; 8573 // } 8574 // return len; 8575 // } 8576 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 8577 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 8578 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 8579 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 8580 Label copy_chars_loop, return_length, return_zero, done; 8581 8582 // rsi: src 8583 // rdi: dst 8584 // rdx: len 8585 // rcx: tmp5 8586 // rax: result 8587 8588 // rsi holds start addr of source char[] to be compressed 8589 // rdi holds start addr of destination byte[] 8590 // rdx holds length 8591 8592 assert(len != result, ""); 8593 8594 // save length for return 8595 push(len); 8596 8597 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 8598 VM_Version::supports_avx512vlbw() && 8599 VM_Version::supports_bmi2()) { 8600 8601 Label copy_32_loop, copy_loop_tail, below_threshold; 8602 8603 // alignment 8604 Label post_alignment; 8605 8606 // if length of the string is less than 16, handle it in an old fashioned way 8607 testl(len, -32); 8608 jcc(Assembler::zero, below_threshold); 8609 8610 // First check whether a character is compressible ( <= 0xFF). 8611 // Create mask to test for Unicode chars inside zmm vector 8612 movl(result, 0x00FF); 8613 evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit); 8614 8615 testl(len, -64); 8616 jcc(Assembler::zero, post_alignment); 8617 8618 movl(tmp5, dst); 8619 andl(tmp5, (32 - 1)); 8620 negl(tmp5); 8621 andl(tmp5, (32 - 1)); 8622 8623 // bail out when there is nothing to be done 8624 testl(tmp5, 0xFFFFFFFF); 8625 jcc(Assembler::zero, post_alignment); 8626 8627 // ~(~0 << len), where len is the # of remaining elements to process 8628 movl(result, 0xFFFFFFFF); 8629 shlxl(result, result, tmp5); 8630 notl(result); 8631 kmovdl(mask2, result); 8632 8633 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 8634 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 8635 ktestd(mask1, mask2); 8636 jcc(Assembler::carryClear, return_zero); 8637 8638 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 8639 8640 addptr(src, tmp5); 8641 addptr(src, tmp5); 8642 addptr(dst, tmp5); 8643 subl(len, tmp5); 8644 8645 bind(post_alignment); 8646 // end of alignment 8647 8648 movl(tmp5, len); 8649 andl(tmp5, (32 - 1)); // tail count (in chars) 8650 andl(len, ~(32 - 1)); // vector count (in chars) 8651 jcc(Assembler::zero, copy_loop_tail); 8652 8653 lea(src, Address(src, len, Address::times_2)); 8654 lea(dst, Address(dst, len, Address::times_1)); 8655 negptr(len); 8656 8657 bind(copy_32_loop); 8658 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 8659 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 8660 kortestdl(mask1, mask1); 8661 jcc(Assembler::carryClear, return_zero); 8662 8663 // All elements in current processed chunk are valid candidates for 8664 // compression. Write a truncated byte elements to the memory. 8665 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 8666 addptr(len, 32); 8667 jcc(Assembler::notZero, copy_32_loop); 8668 8669 bind(copy_loop_tail); 8670 // bail out when there is nothing to be done 8671 testl(tmp5, 0xFFFFFFFF); 8672 jcc(Assembler::zero, return_length); 8673 8674 movl(len, tmp5); 8675 8676 // ~(~0 << len), where len is the # of remaining elements to process 8677 movl(result, 0xFFFFFFFF); 8678 shlxl(result, result, len); 8679 notl(result); 8680 8681 kmovdl(mask2, result); 8682 8683 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 8684 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 8685 ktestd(mask1, mask2); 8686 jcc(Assembler::carryClear, return_zero); 8687 8688 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 8689 jmp(return_length); 8690 8691 bind(below_threshold); 8692 } 8693 8694 if (UseSSE42Intrinsics) { 8695 Label copy_32_loop, copy_16, copy_tail; 8696 8697 movl(result, len); 8698 8699 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 8700 8701 // vectored compression 8702 andl(len, 0xfffffff0); // vector count (in chars) 8703 andl(result, 0x0000000f); // tail count (in chars) 8704 testl(len, len); 8705 jcc(Assembler::zero, copy_16); 8706 8707 // compress 16 chars per iter 8708 movdl(tmp1Reg, tmp5); 8709 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 8710 pxor(tmp4Reg, tmp4Reg); 8711 8712 lea(src, Address(src, len, Address::times_2)); 8713 lea(dst, Address(dst, len, Address::times_1)); 8714 negptr(len); 8715 8716 bind(copy_32_loop); 8717 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 8718 por(tmp4Reg, tmp2Reg); 8719 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 8720 por(tmp4Reg, tmp3Reg); 8721 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 8722 jcc(Assembler::notZero, return_zero); 8723 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 8724 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 8725 addptr(len, 16); 8726 jcc(Assembler::notZero, copy_32_loop); 8727 8728 // compress next vector of 8 chars (if any) 8729 bind(copy_16); 8730 movl(len, result); 8731 andl(len, 0xfffffff8); // vector count (in chars) 8732 andl(result, 0x00000007); // tail count (in chars) 8733 testl(len, len); 8734 jccb(Assembler::zero, copy_tail); 8735 8736 movdl(tmp1Reg, tmp5); 8737 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 8738 pxor(tmp3Reg, tmp3Reg); 8739 8740 movdqu(tmp2Reg, Address(src, 0)); 8741 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 8742 jccb(Assembler::notZero, return_zero); 8743 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 8744 movq(Address(dst, 0), tmp2Reg); 8745 addptr(src, 16); 8746 addptr(dst, 8); 8747 8748 bind(copy_tail); 8749 movl(len, result); 8750 } 8751 // compress 1 char per iter 8752 testl(len, len); 8753 jccb(Assembler::zero, return_length); 8754 lea(src, Address(src, len, Address::times_2)); 8755 lea(dst, Address(dst, len, Address::times_1)); 8756 negptr(len); 8757 8758 bind(copy_chars_loop); 8759 load_unsigned_short(result, Address(src, len, Address::times_2)); 8760 testl(result, 0xff00); // check if Unicode char 8761 jccb(Assembler::notZero, return_zero); 8762 movb(Address(dst, len, Address::times_1), result); // ASCII char; compress to 1 byte 8763 increment(len); 8764 jcc(Assembler::notZero, copy_chars_loop); 8765 8766 // if compression succeeded, return length 8767 bind(return_length); 8768 pop(result); 8769 jmpb(done); 8770 8771 // if compression failed, return 0 8772 bind(return_zero); 8773 xorl(result, result); 8774 addptr(rsp, wordSize); 8775 8776 bind(done); 8777 } 8778 8779 // Inflate byte[] array to char[]. 8780 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 8781 // @IntrinsicCandidate 8782 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 8783 // for (int i = 0; i < len; i++) { 8784 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 8785 // } 8786 // } 8787 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 8788 XMMRegister tmp1, Register tmp2, KRegister mask) { 8789 Label copy_chars_loop, done, below_threshold, avx3_threshold; 8790 // rsi: src 8791 // rdi: dst 8792 // rdx: len 8793 // rcx: tmp2 8794 8795 // rsi holds start addr of source byte[] to be inflated 8796 // rdi holds start addr of destination char[] 8797 // rdx holds length 8798 assert_different_registers(src, dst, len, tmp2); 8799 movl(tmp2, len); 8800 if ((UseAVX > 2) && // AVX512 8801 VM_Version::supports_avx512vlbw() && 8802 VM_Version::supports_bmi2()) { 8803 8804 Label copy_32_loop, copy_tail; 8805 Register tmp3_aliased = len; 8806 8807 // if length of the string is less than 16, handle it in an old fashioned way 8808 testl(len, -16); 8809 jcc(Assembler::zero, below_threshold); 8810 8811 testl(len, -1 * AVX3Threshold); 8812 jcc(Assembler::zero, avx3_threshold); 8813 8814 // In order to use only one arithmetic operation for the main loop we use 8815 // this pre-calculation 8816 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 8817 andl(len, -32); // vector count 8818 jccb(Assembler::zero, copy_tail); 8819 8820 lea(src, Address(src, len, Address::times_1)); 8821 lea(dst, Address(dst, len, Address::times_2)); 8822 negptr(len); 8823 8824 8825 // inflate 32 chars per iter 8826 bind(copy_32_loop); 8827 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 8828 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 8829 addptr(len, 32); 8830 jcc(Assembler::notZero, copy_32_loop); 8831 8832 bind(copy_tail); 8833 // bail out when there is nothing to be done 8834 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 8835 jcc(Assembler::zero, done); 8836 8837 // ~(~0 << length), where length is the # of remaining elements to process 8838 movl(tmp3_aliased, -1); 8839 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 8840 notl(tmp3_aliased); 8841 kmovdl(mask, tmp3_aliased); 8842 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 8843 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 8844 8845 jmp(done); 8846 bind(avx3_threshold); 8847 } 8848 if (UseSSE42Intrinsics) { 8849 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 8850 8851 if (UseAVX > 1) { 8852 andl(tmp2, (16 - 1)); 8853 andl(len, -16); 8854 jccb(Assembler::zero, copy_new_tail); 8855 } else { 8856 andl(tmp2, 0x00000007); // tail count (in chars) 8857 andl(len, 0xfffffff8); // vector count (in chars) 8858 jccb(Assembler::zero, copy_tail); 8859 } 8860 8861 // vectored inflation 8862 lea(src, Address(src, len, Address::times_1)); 8863 lea(dst, Address(dst, len, Address::times_2)); 8864 negptr(len); 8865 8866 if (UseAVX > 1) { 8867 bind(copy_16_loop); 8868 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 8869 vmovdqu(Address(dst, len, Address::times_2), tmp1); 8870 addptr(len, 16); 8871 jcc(Assembler::notZero, copy_16_loop); 8872 8873 bind(below_threshold); 8874 bind(copy_new_tail); 8875 movl(len, tmp2); 8876 andl(tmp2, 0x00000007); 8877 andl(len, 0xFFFFFFF8); 8878 jccb(Assembler::zero, copy_tail); 8879 8880 pmovzxbw(tmp1, Address(src, 0)); 8881 movdqu(Address(dst, 0), tmp1); 8882 addptr(src, 8); 8883 addptr(dst, 2 * 8); 8884 8885 jmp(copy_tail, true); 8886 } 8887 8888 // inflate 8 chars per iter 8889 bind(copy_8_loop); 8890 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 8891 movdqu(Address(dst, len, Address::times_2), tmp1); 8892 addptr(len, 8); 8893 jcc(Assembler::notZero, copy_8_loop); 8894 8895 bind(copy_tail); 8896 movl(len, tmp2); 8897 8898 cmpl(len, 4); 8899 jccb(Assembler::less, copy_bytes); 8900 8901 movdl(tmp1, Address(src, 0)); // load 4 byte chars 8902 pmovzxbw(tmp1, tmp1); 8903 movq(Address(dst, 0), tmp1); 8904 subptr(len, 4); 8905 addptr(src, 4); 8906 addptr(dst, 8); 8907 8908 bind(copy_bytes); 8909 } else { 8910 bind(below_threshold); 8911 } 8912 8913 testl(len, len); 8914 jccb(Assembler::zero, done); 8915 lea(src, Address(src, len, Address::times_1)); 8916 lea(dst, Address(dst, len, Address::times_2)); 8917 negptr(len); 8918 8919 // inflate 1 char per iter 8920 bind(copy_chars_loop); 8921 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 8922 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 8923 increment(len); 8924 jcc(Assembler::notZero, copy_chars_loop); 8925 8926 bind(done); 8927 } 8928 8929 8930 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 8931 switch(type) { 8932 case T_BYTE: 8933 case T_BOOLEAN: 8934 evmovdqub(dst, kmask, src, merge, vector_len); 8935 break; 8936 case T_CHAR: 8937 case T_SHORT: 8938 evmovdquw(dst, kmask, src, merge, vector_len); 8939 break; 8940 case T_INT: 8941 case T_FLOAT: 8942 evmovdqul(dst, kmask, src, merge, vector_len); 8943 break; 8944 case T_LONG: 8945 case T_DOUBLE: 8946 evmovdquq(dst, kmask, src, merge, vector_len); 8947 break; 8948 default: 8949 fatal("Unexpected type argument %s", type2name(type)); 8950 break; 8951 } 8952 } 8953 8954 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 8955 switch(type) { 8956 case T_BYTE: 8957 case T_BOOLEAN: 8958 evmovdqub(dst, kmask, src, merge, vector_len); 8959 break; 8960 case T_CHAR: 8961 case T_SHORT: 8962 evmovdquw(dst, kmask, src, merge, vector_len); 8963 break; 8964 case T_INT: 8965 case T_FLOAT: 8966 evmovdqul(dst, kmask, src, merge, vector_len); 8967 break; 8968 case T_LONG: 8969 case T_DOUBLE: 8970 evmovdquq(dst, kmask, src, merge, vector_len); 8971 break; 8972 default: 8973 fatal("Unexpected type argument %s", type2name(type)); 8974 break; 8975 } 8976 } 8977 8978 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 8979 switch(masklen) { 8980 case 2: 8981 knotbl(dst, src); 8982 movl(rtmp, 3); 8983 kmovbl(ktmp, rtmp); 8984 kandbl(dst, ktmp, dst); 8985 break; 8986 case 4: 8987 knotbl(dst, src); 8988 movl(rtmp, 15); 8989 kmovbl(ktmp, rtmp); 8990 kandbl(dst, ktmp, dst); 8991 break; 8992 case 8: 8993 knotbl(dst, src); 8994 break; 8995 case 16: 8996 knotwl(dst, src); 8997 break; 8998 case 32: 8999 knotdl(dst, src); 9000 break; 9001 case 64: 9002 knotql(dst, src); 9003 break; 9004 default: 9005 fatal("Unexpected vector length %d", masklen); 9006 break; 9007 } 9008 } 9009 9010 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9011 switch(type) { 9012 case T_BOOLEAN: 9013 case T_BYTE: 9014 kandbl(dst, src1, src2); 9015 break; 9016 case T_CHAR: 9017 case T_SHORT: 9018 kandwl(dst, src1, src2); 9019 break; 9020 case T_INT: 9021 case T_FLOAT: 9022 kanddl(dst, src1, src2); 9023 break; 9024 case T_LONG: 9025 case T_DOUBLE: 9026 kandql(dst, src1, src2); 9027 break; 9028 default: 9029 fatal("Unexpected type argument %s", type2name(type)); 9030 break; 9031 } 9032 } 9033 9034 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9035 switch(type) { 9036 case T_BOOLEAN: 9037 case T_BYTE: 9038 korbl(dst, src1, src2); 9039 break; 9040 case T_CHAR: 9041 case T_SHORT: 9042 korwl(dst, src1, src2); 9043 break; 9044 case T_INT: 9045 case T_FLOAT: 9046 kordl(dst, src1, src2); 9047 break; 9048 case T_LONG: 9049 case T_DOUBLE: 9050 korql(dst, src1, src2); 9051 break; 9052 default: 9053 fatal("Unexpected type argument %s", type2name(type)); 9054 break; 9055 } 9056 } 9057 9058 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9059 switch(type) { 9060 case T_BOOLEAN: 9061 case T_BYTE: 9062 kxorbl(dst, src1, src2); 9063 break; 9064 case T_CHAR: 9065 case T_SHORT: 9066 kxorwl(dst, src1, src2); 9067 break; 9068 case T_INT: 9069 case T_FLOAT: 9070 kxordl(dst, src1, src2); 9071 break; 9072 case T_LONG: 9073 case T_DOUBLE: 9074 kxorql(dst, src1, src2); 9075 break; 9076 default: 9077 fatal("Unexpected type argument %s", type2name(type)); 9078 break; 9079 } 9080 } 9081 9082 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9083 switch(type) { 9084 case T_BOOLEAN: 9085 case T_BYTE: 9086 evpermb(dst, mask, nds, src, merge, vector_len); break; 9087 case T_CHAR: 9088 case T_SHORT: 9089 evpermw(dst, mask, nds, src, merge, vector_len); break; 9090 case T_INT: 9091 case T_FLOAT: 9092 evpermd(dst, mask, nds, src, merge, vector_len); break; 9093 case T_LONG: 9094 case T_DOUBLE: 9095 evpermq(dst, mask, nds, src, merge, vector_len); break; 9096 default: 9097 fatal("Unexpected type argument %s", type2name(type)); break; 9098 } 9099 } 9100 9101 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9102 switch(type) { 9103 case T_BOOLEAN: 9104 case T_BYTE: 9105 evpermb(dst, mask, nds, src, merge, vector_len); break; 9106 case T_CHAR: 9107 case T_SHORT: 9108 evpermw(dst, mask, nds, src, merge, vector_len); break; 9109 case T_INT: 9110 case T_FLOAT: 9111 evpermd(dst, mask, nds, src, merge, vector_len); break; 9112 case T_LONG: 9113 case T_DOUBLE: 9114 evpermq(dst, mask, nds, src, merge, vector_len); break; 9115 default: 9116 fatal("Unexpected type argument %s", type2name(type)); break; 9117 } 9118 } 9119 9120 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9121 switch(type) { 9122 case T_BYTE: 9123 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9124 case T_SHORT: 9125 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9126 case T_INT: 9127 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9128 case T_LONG: 9129 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9130 default: 9131 fatal("Unexpected type argument %s", type2name(type)); break; 9132 } 9133 } 9134 9135 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9136 switch(type) { 9137 case T_BYTE: 9138 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9139 case T_SHORT: 9140 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9141 case T_INT: 9142 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9143 case T_LONG: 9144 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9145 default: 9146 fatal("Unexpected type argument %s", type2name(type)); break; 9147 } 9148 } 9149 9150 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9151 switch(type) { 9152 case T_BYTE: 9153 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9154 case T_SHORT: 9155 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9156 case T_INT: 9157 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9158 case T_LONG: 9159 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9160 default: 9161 fatal("Unexpected type argument %s", type2name(type)); break; 9162 } 9163 } 9164 9165 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9166 switch(type) { 9167 case T_BYTE: 9168 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9169 case T_SHORT: 9170 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9171 case T_INT: 9172 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9173 case T_LONG: 9174 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9175 default: 9176 fatal("Unexpected type argument %s", type2name(type)); break; 9177 } 9178 } 9179 9180 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9181 switch(type) { 9182 case T_INT: 9183 evpxord(dst, mask, nds, src, merge, vector_len); break; 9184 case T_LONG: 9185 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9186 default: 9187 fatal("Unexpected type argument %s", type2name(type)); break; 9188 } 9189 } 9190 9191 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9192 switch(type) { 9193 case T_INT: 9194 evpxord(dst, mask, nds, src, merge, vector_len); break; 9195 case T_LONG: 9196 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9197 default: 9198 fatal("Unexpected type argument %s", type2name(type)); break; 9199 } 9200 } 9201 9202 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9203 switch(type) { 9204 case T_INT: 9205 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9206 case T_LONG: 9207 evporq(dst, mask, nds, src, merge, vector_len); break; 9208 default: 9209 fatal("Unexpected type argument %s", type2name(type)); break; 9210 } 9211 } 9212 9213 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9214 switch(type) { 9215 case T_INT: 9216 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9217 case T_LONG: 9218 evporq(dst, mask, nds, src, merge, vector_len); break; 9219 default: 9220 fatal("Unexpected type argument %s", type2name(type)); break; 9221 } 9222 } 9223 9224 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9225 switch(type) { 9226 case T_INT: 9227 evpandd(dst, mask, nds, src, merge, vector_len); break; 9228 case T_LONG: 9229 evpandq(dst, mask, nds, src, merge, vector_len); break; 9230 default: 9231 fatal("Unexpected type argument %s", type2name(type)); break; 9232 } 9233 } 9234 9235 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9236 switch(type) { 9237 case T_INT: 9238 evpandd(dst, mask, nds, src, merge, vector_len); break; 9239 case T_LONG: 9240 evpandq(dst, mask, nds, src, merge, vector_len); break; 9241 default: 9242 fatal("Unexpected type argument %s", type2name(type)); break; 9243 } 9244 } 9245 9246 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 9247 switch(masklen) { 9248 case 8: 9249 kortestbl(src1, src2); 9250 break; 9251 case 16: 9252 kortestwl(src1, src2); 9253 break; 9254 case 32: 9255 kortestdl(src1, src2); 9256 break; 9257 case 64: 9258 kortestql(src1, src2); 9259 break; 9260 default: 9261 fatal("Unexpected mask length %d", masklen); 9262 break; 9263 } 9264 } 9265 9266 9267 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 9268 switch(masklen) { 9269 case 8: 9270 ktestbl(src1, src2); 9271 break; 9272 case 16: 9273 ktestwl(src1, src2); 9274 break; 9275 case 32: 9276 ktestdl(src1, src2); 9277 break; 9278 case 64: 9279 ktestql(src1, src2); 9280 break; 9281 default: 9282 fatal("Unexpected mask length %d", masklen); 9283 break; 9284 } 9285 } 9286 9287 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9288 switch(type) { 9289 case T_INT: 9290 evprold(dst, mask, src, shift, merge, vlen_enc); break; 9291 case T_LONG: 9292 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 9293 default: 9294 fatal("Unexpected type argument %s", type2name(type)); break; 9295 break; 9296 } 9297 } 9298 9299 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9300 switch(type) { 9301 case T_INT: 9302 evprord(dst, mask, src, shift, merge, vlen_enc); break; 9303 case T_LONG: 9304 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 9305 default: 9306 fatal("Unexpected type argument %s", type2name(type)); break; 9307 } 9308 } 9309 9310 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9311 switch(type) { 9312 case T_INT: 9313 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 9314 case T_LONG: 9315 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 9316 default: 9317 fatal("Unexpected type argument %s", type2name(type)); break; 9318 } 9319 } 9320 9321 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9322 switch(type) { 9323 case T_INT: 9324 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 9325 case T_LONG: 9326 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 9327 default: 9328 fatal("Unexpected type argument %s", type2name(type)); break; 9329 } 9330 } 9331 9332 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9333 assert(rscratch != noreg || always_reachable(src), "missing"); 9334 9335 if (reachable(src)) { 9336 evpandq(dst, nds, as_Address(src), vector_len); 9337 } else { 9338 lea(rscratch, src); 9339 evpandq(dst, nds, Address(rscratch, 0), vector_len); 9340 } 9341 } 9342 9343 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 9344 assert(rscratch != noreg || always_reachable(src), "missing"); 9345 9346 if (reachable(src)) { 9347 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 9348 } else { 9349 lea(rscratch, src); 9350 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 9351 } 9352 } 9353 9354 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9355 assert(rscratch != noreg || always_reachable(src), "missing"); 9356 9357 if (reachable(src)) { 9358 evporq(dst, nds, as_Address(src), vector_len); 9359 } else { 9360 lea(rscratch, src); 9361 evporq(dst, nds, Address(rscratch, 0), vector_len); 9362 } 9363 } 9364 9365 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 9366 assert(rscratch != noreg || always_reachable(src3), "missing"); 9367 9368 if (reachable(src3)) { 9369 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 9370 } else { 9371 lea(rscratch, src3); 9372 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 9373 } 9374 } 9375 9376 #if COMPILER2_OR_JVMCI 9377 9378 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 9379 Register length, Register temp, int vec_enc) { 9380 // Computing mask for predicated vector store. 9381 movptr(temp, -1); 9382 bzhiq(temp, temp, length); 9383 kmov(mask, temp); 9384 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 9385 } 9386 9387 // Set memory operation for length "less than" 64 bytes. 9388 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 9389 XMMRegister xmm, KRegister mask, Register length, 9390 Register temp, bool use64byteVector) { 9391 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9392 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9393 if (!use64byteVector) { 9394 fill32(dst, disp, xmm); 9395 subptr(length, 32 >> shift); 9396 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 9397 } else { 9398 assert(MaxVectorSize == 64, "vector length != 64"); 9399 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 9400 } 9401 } 9402 9403 9404 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 9405 XMMRegister xmm, KRegister mask, Register length, 9406 Register temp) { 9407 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9408 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9409 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 9410 } 9411 9412 9413 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 9414 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9415 vmovdqu(dst, xmm); 9416 } 9417 9418 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 9419 fill32(Address(dst, disp), xmm); 9420 } 9421 9422 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 9423 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9424 if (!use64byteVector) { 9425 fill32(dst, xmm); 9426 fill32(dst.plus_disp(32), xmm); 9427 } else { 9428 evmovdquq(dst, xmm, Assembler::AVX_512bit); 9429 } 9430 } 9431 9432 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 9433 fill64(Address(dst, disp), xmm, use64byteVector); 9434 } 9435 9436 #ifdef _LP64 9437 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 9438 Register count, Register rtmp, XMMRegister xtmp) { 9439 Label L_exit; 9440 Label L_fill_start; 9441 Label L_fill_64_bytes; 9442 Label L_fill_96_bytes; 9443 Label L_fill_128_bytes; 9444 Label L_fill_128_bytes_loop; 9445 Label L_fill_128_loop_header; 9446 Label L_fill_128_bytes_loop_header; 9447 Label L_fill_128_bytes_loop_pre_header; 9448 Label L_fill_zmm_sequence; 9449 9450 int shift = -1; 9451 int avx3threshold = VM_Version::avx3_threshold(); 9452 switch(type) { 9453 case T_BYTE: shift = 0; 9454 break; 9455 case T_SHORT: shift = 1; 9456 break; 9457 case T_INT: shift = 2; 9458 break; 9459 /* Uncomment when LONG fill stubs are supported. 9460 case T_LONG: shift = 3; 9461 break; 9462 */ 9463 default: 9464 fatal("Unhandled type: %s\n", type2name(type)); 9465 } 9466 9467 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 9468 9469 if (MaxVectorSize == 64) { 9470 cmpq(count, avx3threshold >> shift); 9471 jcc(Assembler::greater, L_fill_zmm_sequence); 9472 } 9473 9474 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 9475 9476 bind(L_fill_start); 9477 9478 cmpq(count, 32 >> shift); 9479 jccb(Assembler::greater, L_fill_64_bytes); 9480 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 9481 jmp(L_exit); 9482 9483 bind(L_fill_64_bytes); 9484 cmpq(count, 64 >> shift); 9485 jccb(Assembler::greater, L_fill_96_bytes); 9486 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 9487 jmp(L_exit); 9488 9489 bind(L_fill_96_bytes); 9490 cmpq(count, 96 >> shift); 9491 jccb(Assembler::greater, L_fill_128_bytes); 9492 fill64(to, 0, xtmp); 9493 subq(count, 64 >> shift); 9494 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 9495 jmp(L_exit); 9496 9497 bind(L_fill_128_bytes); 9498 cmpq(count, 128 >> shift); 9499 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 9500 fill64(to, 0, xtmp); 9501 fill32(to, 64, xtmp); 9502 subq(count, 96 >> shift); 9503 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 9504 jmp(L_exit); 9505 9506 bind(L_fill_128_bytes_loop_pre_header); 9507 { 9508 mov(rtmp, to); 9509 andq(rtmp, 31); 9510 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 9511 negq(rtmp); 9512 addq(rtmp, 32); 9513 mov64(r8, -1L); 9514 bzhiq(r8, r8, rtmp); 9515 kmovql(k2, r8); 9516 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 9517 addq(to, rtmp); 9518 shrq(rtmp, shift); 9519 subq(count, rtmp); 9520 } 9521 9522 cmpq(count, 128 >> shift); 9523 jcc(Assembler::less, L_fill_start); 9524 9525 bind(L_fill_128_bytes_loop_header); 9526 subq(count, 128 >> shift); 9527 9528 align32(); 9529 bind(L_fill_128_bytes_loop); 9530 fill64(to, 0, xtmp); 9531 fill64(to, 64, xtmp); 9532 addq(to, 128); 9533 subq(count, 128 >> shift); 9534 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 9535 9536 addq(count, 128 >> shift); 9537 jcc(Assembler::zero, L_exit); 9538 jmp(L_fill_start); 9539 } 9540 9541 if (MaxVectorSize == 64) { 9542 // Sequence using 64 byte ZMM register. 9543 Label L_fill_128_bytes_zmm; 9544 Label L_fill_192_bytes_zmm; 9545 Label L_fill_192_bytes_loop_zmm; 9546 Label L_fill_192_bytes_loop_header_zmm; 9547 Label L_fill_192_bytes_loop_pre_header_zmm; 9548 Label L_fill_start_zmm_sequence; 9549 9550 bind(L_fill_zmm_sequence); 9551 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 9552 9553 bind(L_fill_start_zmm_sequence); 9554 cmpq(count, 64 >> shift); 9555 jccb(Assembler::greater, L_fill_128_bytes_zmm); 9556 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 9557 jmp(L_exit); 9558 9559 bind(L_fill_128_bytes_zmm); 9560 cmpq(count, 128 >> shift); 9561 jccb(Assembler::greater, L_fill_192_bytes_zmm); 9562 fill64(to, 0, xtmp, true); 9563 subq(count, 64 >> shift); 9564 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 9565 jmp(L_exit); 9566 9567 bind(L_fill_192_bytes_zmm); 9568 cmpq(count, 192 >> shift); 9569 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 9570 fill64(to, 0, xtmp, true); 9571 fill64(to, 64, xtmp, true); 9572 subq(count, 128 >> shift); 9573 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 9574 jmp(L_exit); 9575 9576 bind(L_fill_192_bytes_loop_pre_header_zmm); 9577 { 9578 movq(rtmp, to); 9579 andq(rtmp, 63); 9580 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 9581 negq(rtmp); 9582 addq(rtmp, 64); 9583 mov64(r8, -1L); 9584 bzhiq(r8, r8, rtmp); 9585 kmovql(k2, r8); 9586 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 9587 addq(to, rtmp); 9588 shrq(rtmp, shift); 9589 subq(count, rtmp); 9590 } 9591 9592 cmpq(count, 192 >> shift); 9593 jcc(Assembler::less, L_fill_start_zmm_sequence); 9594 9595 bind(L_fill_192_bytes_loop_header_zmm); 9596 subq(count, 192 >> shift); 9597 9598 align32(); 9599 bind(L_fill_192_bytes_loop_zmm); 9600 fill64(to, 0, xtmp, true); 9601 fill64(to, 64, xtmp, true); 9602 fill64(to, 128, xtmp, true); 9603 addq(to, 192); 9604 subq(count, 192 >> shift); 9605 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 9606 9607 addq(count, 192 >> shift); 9608 jcc(Assembler::zero, L_exit); 9609 jmp(L_fill_start_zmm_sequence); 9610 } 9611 bind(L_exit); 9612 } 9613 #endif 9614 #endif //COMPILER2_OR_JVMCI 9615 9616 9617 #ifdef _LP64 9618 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 9619 Label done; 9620 cvttss2sil(dst, src); 9621 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 9622 cmpl(dst, 0x80000000); // float_sign_flip 9623 jccb(Assembler::notEqual, done); 9624 subptr(rsp, 8); 9625 movflt(Address(rsp, 0), src); 9626 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 9627 pop(dst); 9628 bind(done); 9629 } 9630 9631 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 9632 Label done; 9633 cvttsd2sil(dst, src); 9634 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 9635 cmpl(dst, 0x80000000); // float_sign_flip 9636 jccb(Assembler::notEqual, done); 9637 subptr(rsp, 8); 9638 movdbl(Address(rsp, 0), src); 9639 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 9640 pop(dst); 9641 bind(done); 9642 } 9643 9644 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 9645 Label done; 9646 cvttss2siq(dst, src); 9647 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 9648 jccb(Assembler::notEqual, done); 9649 subptr(rsp, 8); 9650 movflt(Address(rsp, 0), src); 9651 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 9652 pop(dst); 9653 bind(done); 9654 } 9655 9656 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 9657 // Following code is line by line assembly translation rounding algorithm. 9658 // Please refer to java.lang.Math.round(float) algorithm for details. 9659 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 9660 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 9661 const int32_t FloatConsts_EXP_BIAS = 127; 9662 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 9663 const int32_t MINUS_32 = 0xFFFFFFE0; 9664 Label L_special_case, L_block1, L_exit; 9665 movl(rtmp, FloatConsts_EXP_BIT_MASK); 9666 movdl(dst, src); 9667 andl(dst, rtmp); 9668 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 9669 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 9670 subl(rtmp, dst); 9671 movl(rcx, rtmp); 9672 movl(dst, MINUS_32); 9673 testl(rtmp, dst); 9674 jccb(Assembler::notEqual, L_special_case); 9675 movdl(dst, src); 9676 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 9677 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 9678 movdl(rtmp, src); 9679 testl(rtmp, rtmp); 9680 jccb(Assembler::greaterEqual, L_block1); 9681 negl(dst); 9682 bind(L_block1); 9683 sarl(dst); 9684 addl(dst, 0x1); 9685 sarl(dst, 0x1); 9686 jmp(L_exit); 9687 bind(L_special_case); 9688 convert_f2i(dst, src); 9689 bind(L_exit); 9690 } 9691 9692 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 9693 // Following code is line by line assembly translation rounding algorithm. 9694 // Please refer to java.lang.Math.round(double) algorithm for details. 9695 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 9696 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 9697 const int64_t DoubleConsts_EXP_BIAS = 1023; 9698 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 9699 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 9700 Label L_special_case, L_block1, L_exit; 9701 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 9702 movq(dst, src); 9703 andq(dst, rtmp); 9704 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 9705 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 9706 subq(rtmp, dst); 9707 movq(rcx, rtmp); 9708 mov64(dst, MINUS_64); 9709 testq(rtmp, dst); 9710 jccb(Assembler::notEqual, L_special_case); 9711 movq(dst, src); 9712 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 9713 andq(dst, rtmp); 9714 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 9715 orq(dst, rtmp); 9716 movq(rtmp, src); 9717 testq(rtmp, rtmp); 9718 jccb(Assembler::greaterEqual, L_block1); 9719 negq(dst); 9720 bind(L_block1); 9721 sarq(dst); 9722 addq(dst, 0x1); 9723 sarq(dst, 0x1); 9724 jmp(L_exit); 9725 bind(L_special_case); 9726 convert_d2l(dst, src); 9727 bind(L_exit); 9728 } 9729 9730 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 9731 Label done; 9732 cvttsd2siq(dst, src); 9733 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 9734 jccb(Assembler::notEqual, done); 9735 subptr(rsp, 8); 9736 movdbl(Address(rsp, 0), src); 9737 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 9738 pop(dst); 9739 bind(done); 9740 } 9741 9742 void MacroAssembler::cache_wb(Address line) 9743 { 9744 // 64 bit cpus always support clflush 9745 assert(VM_Version::supports_clflush(), "clflush should be available"); 9746 bool optimized = VM_Version::supports_clflushopt(); 9747 bool no_evict = VM_Version::supports_clwb(); 9748 9749 // prefer clwb (writeback without evict) otherwise 9750 // prefer clflushopt (potentially parallel writeback with evict) 9751 // otherwise fallback on clflush (serial writeback with evict) 9752 9753 if (optimized) { 9754 if (no_evict) { 9755 clwb(line); 9756 } else { 9757 clflushopt(line); 9758 } 9759 } else { 9760 // no need for fence when using CLFLUSH 9761 clflush(line); 9762 } 9763 } 9764 9765 void MacroAssembler::cache_wbsync(bool is_pre) 9766 { 9767 assert(VM_Version::supports_clflush(), "clflush should be available"); 9768 bool optimized = VM_Version::supports_clflushopt(); 9769 bool no_evict = VM_Version::supports_clwb(); 9770 9771 // pick the correct implementation 9772 9773 if (!is_pre && (optimized || no_evict)) { 9774 // need an sfence for post flush when using clflushopt or clwb 9775 // otherwise no no need for any synchroniaztion 9776 9777 sfence(); 9778 } 9779 } 9780 9781 #endif // _LP64 9782 9783 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 9784 switch (cond) { 9785 // Note some conditions are synonyms for others 9786 case Assembler::zero: return Assembler::notZero; 9787 case Assembler::notZero: return Assembler::zero; 9788 case Assembler::less: return Assembler::greaterEqual; 9789 case Assembler::lessEqual: return Assembler::greater; 9790 case Assembler::greater: return Assembler::lessEqual; 9791 case Assembler::greaterEqual: return Assembler::less; 9792 case Assembler::below: return Assembler::aboveEqual; 9793 case Assembler::belowEqual: return Assembler::above; 9794 case Assembler::above: return Assembler::belowEqual; 9795 case Assembler::aboveEqual: return Assembler::below; 9796 case Assembler::overflow: return Assembler::noOverflow; 9797 case Assembler::noOverflow: return Assembler::overflow; 9798 case Assembler::negative: return Assembler::positive; 9799 case Assembler::positive: return Assembler::negative; 9800 case Assembler::parity: return Assembler::noParity; 9801 case Assembler::noParity: return Assembler::parity; 9802 } 9803 ShouldNotReachHere(); return Assembler::overflow; 9804 } 9805 9806 SkipIfEqual::SkipIfEqual( 9807 MacroAssembler* masm, const bool* flag_addr, bool value, Register rscratch) { 9808 _masm = masm; 9809 _masm->cmp8(ExternalAddress((address)flag_addr), value, rscratch); 9810 _masm->jcc(Assembler::equal, _label); 9811 } 9812 9813 SkipIfEqual::~SkipIfEqual() { 9814 _masm->bind(_label); 9815 } 9816 9817 // 32-bit Windows has its own fast-path implementation 9818 // of get_thread 9819 #if !defined(WIN32) || defined(_LP64) 9820 9821 // This is simply a call to Thread::current() 9822 void MacroAssembler::get_thread(Register thread) { 9823 if (thread != rax) { 9824 push(rax); 9825 } 9826 LP64_ONLY(push(rdi);) 9827 LP64_ONLY(push(rsi);) 9828 push(rdx); 9829 push(rcx); 9830 #ifdef _LP64 9831 push(r8); 9832 push(r9); 9833 push(r10); 9834 push(r11); 9835 #endif 9836 9837 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 9838 9839 #ifdef _LP64 9840 pop(r11); 9841 pop(r10); 9842 pop(r9); 9843 pop(r8); 9844 #endif 9845 pop(rcx); 9846 pop(rdx); 9847 LP64_ONLY(pop(rsi);) 9848 LP64_ONLY(pop(rdi);) 9849 if (thread != rax) { 9850 mov(thread, rax); 9851 pop(rax); 9852 } 9853 } 9854 9855 9856 #endif // !WIN32 || _LP64 9857 9858 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 9859 Label L_stack_ok; 9860 if (bias == 0) { 9861 testptr(sp, 2 * wordSize - 1); 9862 } else { 9863 // lea(tmp, Address(rsp, bias); 9864 mov(tmp, sp); 9865 addptr(tmp, bias); 9866 testptr(tmp, 2 * wordSize - 1); 9867 } 9868 jcc(Assembler::equal, L_stack_ok); 9869 block_comment(msg); 9870 stop(msg); 9871 bind(L_stack_ok); 9872 } 9873 9874 // Implements lightweight-locking. 9875 // 9876 // obj: the object to be locked 9877 // reg_rax: rax 9878 // thread: the thread which attempts to lock obj 9879 // tmp: a temporary register 9880 void MacroAssembler::lightweight_lock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 9881 assert(reg_rax == rax, ""); 9882 assert_different_registers(obj, reg_rax, thread, tmp); 9883 9884 Label push; 9885 const Register top = tmp; 9886 9887 // Preload the markWord. It is important that this is the first 9888 // instruction emitted as it is part of C1's null check semantics. 9889 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 9890 9891 // Load top. 9892 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9893 9894 // Check if the lock-stack is full. 9895 cmpl(top, LockStack::end_offset()); 9896 jcc(Assembler::greaterEqual, slow); 9897 9898 // Check for recursion. 9899 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 9900 jcc(Assembler::equal, push); 9901 9902 // Check header for monitor (0b10). 9903 testptr(reg_rax, markWord::monitor_value); 9904 jcc(Assembler::notZero, slow); 9905 9906 // Try to lock. Transition lock bits 0b01 => 0b00 9907 movptr(tmp, reg_rax); 9908 andptr(tmp, ~(int32_t)markWord::unlocked_value); 9909 orptr(reg_rax, markWord::unlocked_value); 9910 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 9911 jcc(Assembler::notEqual, slow); 9912 9913 // Restore top, CAS clobbers register. 9914 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9915 9916 bind(push); 9917 // After successful lock, push object on lock-stack. 9918 movptr(Address(thread, top), obj); 9919 incrementl(top, oopSize); 9920 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 9921 } 9922 9923 // Implements lightweight-unlocking. 9924 // 9925 // obj: the object to be unlocked 9926 // reg_rax: rax 9927 // thread: the thread 9928 // tmp: a temporary register 9929 // 9930 // x86_32 Note: reg_rax and thread may alias each other due to limited register 9931 // availiability. 9932 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 9933 assert(reg_rax == rax, ""); 9934 assert_different_registers(obj, reg_rax, tmp); 9935 LP64_ONLY(assert_different_registers(obj, reg_rax, thread, tmp);) 9936 9937 Label unlocked, push_and_slow; 9938 const Register top = tmp; 9939 9940 // Check if obj is top of lock-stack. 9941 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9942 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 9943 jcc(Assembler::notEqual, slow); 9944 9945 // Pop lock-stack. 9946 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 9947 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 9948 9949 // Check if recursive. 9950 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 9951 jcc(Assembler::equal, unlocked); 9952 9953 // Not recursive. Check header for monitor (0b10). 9954 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 9955 testptr(reg_rax, markWord::monitor_value); 9956 jcc(Assembler::notZero, push_and_slow); 9957 9958 #ifdef ASSERT 9959 // Check header not unlocked (0b01). 9960 Label not_unlocked; 9961 testptr(reg_rax, markWord::unlocked_value); 9962 jcc(Assembler::zero, not_unlocked); 9963 stop("lightweight_unlock already unlocked"); 9964 bind(not_unlocked); 9965 #endif 9966 9967 // Try to unlock. Transition lock bits 0b00 => 0b01 9968 movptr(tmp, reg_rax); 9969 orptr(tmp, markWord::unlocked_value); 9970 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 9971 jcc(Assembler::equal, unlocked); 9972 9973 bind(push_and_slow); 9974 // Restore lock-stack and handle the unlock in runtime. 9975 if (thread == reg_rax) { 9976 // On x86_32 we may lose the thread. 9977 get_thread(thread); 9978 } 9979 #ifdef ASSERT 9980 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 9981 movptr(Address(thread, top), obj); 9982 #endif 9983 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 9984 jmp(slow); 9985 9986 bind(unlocked); 9987 }