1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/vmreg.inline.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "utilities/macros.hpp"
  33 #include "runtime/rtmLocking.hpp"
  34 #include "runtime/vm_version.hpp"
  35 
  36 // MacroAssembler extends Assembler by frequently used macros.
  37 //
  38 // Instructions for which a 'better' code sequence exists depending
  39 // on arguments should also go in here.
  40 
  41 class MacroAssembler: public Assembler {
  42   friend class LIR_Assembler;
  43   friend class Runtime1;      // as_Address()
  44 
  45  public:
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57  protected:
  58   // This is the base routine called by the different versions of call_VM. The interpreter
  59   // may customize this version by overriding it for its purposes (e.g., to save/restore
  60   // additional registers when doing a VM call).
  61   //
  62   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  63   // returns the register which contains the thread upon return. If a thread register has been
  64   // specified, the return value will correspond to that register. If no last_java_sp is specified
  65   // (noreg) than rsp will be used instead.
  66   virtual void call_VM_base(           // returns the register containing the thread upon return
  67     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  68     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  69     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  70     address  entry_point,              // the entry point
  71     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  72     bool     check_exceptions          // whether to check for pending exceptions after return
  73   );
  74 
  75   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  76 
  77   // helpers for FPU flag access
  78   // tmp is a temporary register, if none is available use noreg
  79   void save_rax   (Register tmp);
  80   void restore_rax(Register tmp);
  81 
  82  public:
  83   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  84 
  85  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  86  // The implementation is only non-empty for the InterpreterMacroAssembler,
  87  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  88  virtual void check_and_handle_popframe(Register java_thread);
  89  virtual void check_and_handle_earlyret(Register java_thread);
  90 
  91   Address as_Address(AddressLiteral adr);
  92   Address as_Address(ArrayAddress adr, Register rscratch);
  93 
  94   // Support for null-checks
  95   //
  96   // Generates code that causes a null OS exception if the content of reg is null.
  97   // If the accessed location is M[reg + offset] and the offset is known, provide the
  98   // offset. No explicit code generation is needed if the offset is within a certain
  99   // range (0 <= offset <= page_size).
 100 
 101   void null_check(Register reg, int offset = -1);
 102   static bool needs_explicit_null_check(intptr_t offset);
 103   static bool uses_implicit_null_check(void* address);
 104 
 105   // Required platform-specific helpers for Label::patch_instructions.
 106   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 107   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 108     unsigned char op = branch[0];
 109     assert(op == 0xE8 /* call */ ||
 110         op == 0xE9 /* jmp */ ||
 111         op == 0xEB /* short jmp */ ||
 112         (op & 0xF0) == 0x70 /* short jcc */ ||
 113         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 114         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 115         "Invalid opcode at patch point");
 116 
 117     if (op == 0xEB || (op & 0xF0) == 0x70) {
 118       // short offset operators (jmp and jcc)
 119       char* disp = (char*) &branch[1];
 120       int imm8 = checked_cast<int>(target - (address) &disp[1]);
 121       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 122                 file == nullptr ? "<null>" : file, line);
 123       *disp = (char)imm8;
 124     } else {
 125       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 126       int imm32 = checked_cast<int>(target - (address) &disp[1]);
 127       *disp = imm32;
 128     }
 129   }
 130 
 131   // The following 4 methods return the offset of the appropriate move instruction
 132 
 133   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 134   int load_unsigned_byte(Register dst, Address src);
 135   int load_unsigned_short(Register dst, Address src);
 136 
 137   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 138   int load_signed_byte(Register dst, Address src);
 139   int load_signed_short(Register dst, Address src);
 140 
 141   // Support for sign-extension (hi:lo = extend_sign(lo))
 142   void extend_sign(Register hi, Register lo);
 143 
 144   // Load and store values by size and signed-ness
 145   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 146   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 147 
 148   // Support for inc/dec with optimal instruction selection depending on value
 149 
 150   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 151   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 152   void increment(Address dst, int value = 1)  { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; }
 153   void decrement(Address dst, int value = 1)  { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; }
 154 
 155   void decrementl(Address dst, int value = 1);
 156   void decrementl(Register reg, int value = 1);
 157 
 158   void decrementq(Register reg, int value = 1);
 159   void decrementq(Address dst, int value = 1);
 160 
 161   void incrementl(Address dst, int value = 1);
 162   void incrementl(Register reg, int value = 1);
 163 
 164   void incrementq(Register reg, int value = 1);
 165   void incrementq(Address dst, int value = 1);
 166 
 167   void incrementl(AddressLiteral dst, Register rscratch = noreg);
 168   void incrementl(ArrayAddress   dst, Register rscratch);
 169 
 170   void incrementq(AddressLiteral dst, Register rscratch = noreg);
 171 
 172   // Support optimal SSE move instructions.
 173   void movflt(XMMRegister dst, XMMRegister src) {
 174     if (dst-> encoding() == src->encoding()) return;
 175     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 176     else                       { movss (dst, src); return; }
 177   }
 178   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 179   void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 180   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 181 
 182   // Move with zero extension
 183   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 184 
 185   void movdbl(XMMRegister dst, XMMRegister src) {
 186     if (dst-> encoding() == src->encoding()) return;
 187     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 188     else                       { movsd (dst, src); return; }
 189   }
 190 
 191   void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 192 
 193   void movdbl(XMMRegister dst, Address src) {
 194     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 195     else                         { movlpd(dst, src); return; }
 196   }
 197   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 198 
 199   void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
 200     // Use separate tmp XMM register because caller may
 201     // requires src XMM register to be unchanged (as in x86.ad).
 202     vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
 203     movdl(dst, tmp);
 204     movswl(dst, dst);
 205   }
 206 
 207   void flt16_to_flt(XMMRegister dst, Register src) {
 208     movdl(dst, src);
 209     vcvtph2ps(dst, dst, Assembler::AVX_128bit);
 210   }
 211 
 212   // Alignment
 213   void align32();
 214   void align64();
 215   void align(int modulus);
 216   void align(int modulus, int target);
 217 
 218   void post_call_nop();
 219   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 220   void fat_nop();
 221 
 222   // Stack frame creation/removal
 223   void enter();
 224   void leave();
 225 
 226   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 227   // The pointer will be loaded into the thread register.
 228   void get_thread(Register thread);
 229 
 230 #ifdef _LP64
 231   // Support for argument shuffling
 232 
 233   // bias in bytes
 234   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 235   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 236   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 237   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 238   void move_ptr(VMRegPair src, VMRegPair dst);
 239   void object_move(OopMap* map,
 240                    int oop_handle_offset,
 241                    int framesize_in_slots,
 242                    VMRegPair src,
 243                    VMRegPair dst,
 244                    bool is_receiver,
 245                    int* receiver_offset);
 246 #endif // _LP64
 247 
 248   // Support for VM calls
 249   //
 250   // It is imperative that all calls into the VM are handled via the call_VM macros.
 251   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 252   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 253 
 254 
 255   void call_VM(Register oop_result,
 256                address entry_point,
 257                bool check_exceptions = true);
 258   void call_VM(Register oop_result,
 259                address entry_point,
 260                Register arg_1,
 261                bool check_exceptions = true);
 262   void call_VM(Register oop_result,
 263                address entry_point,
 264                Register arg_1, Register arg_2,
 265                bool check_exceptions = true);
 266   void call_VM(Register oop_result,
 267                address entry_point,
 268                Register arg_1, Register arg_2, Register arg_3,
 269                bool check_exceptions = true);
 270 
 271   // Overloadings with last_Java_sp
 272   void call_VM(Register oop_result,
 273                Register last_java_sp,
 274                address entry_point,
 275                int number_of_arguments = 0,
 276                bool check_exceptions = true);
 277   void call_VM(Register oop_result,
 278                Register last_java_sp,
 279                address entry_point,
 280                Register arg_1, bool
 281                check_exceptions = true);
 282   void call_VM(Register oop_result,
 283                Register last_java_sp,
 284                address entry_point,
 285                Register arg_1, Register arg_2,
 286                bool check_exceptions = true);
 287   void call_VM(Register oop_result,
 288                Register last_java_sp,
 289                address entry_point,
 290                Register arg_1, Register arg_2, Register arg_3,
 291                bool check_exceptions = true);
 292 
 293   void get_vm_result  (Register oop_result, Register thread);
 294   void get_vm_result_2(Register metadata_result, Register thread);
 295 
 296   // These always tightly bind to MacroAssembler::call_VM_base
 297   // bypassing the virtual implementation
 298   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 299   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 300   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 301   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 302   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 303 
 304   void call_VM_leaf0(address entry_point);
 305   void call_VM_leaf(address entry_point,
 306                     int number_of_arguments = 0);
 307   void call_VM_leaf(address entry_point,
 308                     Register arg_1);
 309   void call_VM_leaf(address entry_point,
 310                     Register arg_1, Register arg_2);
 311   void call_VM_leaf(address entry_point,
 312                     Register arg_1, Register arg_2, Register arg_3);
 313 
 314   void call_VM_leaf(address entry_point,
 315                     Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 316 
 317   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 318   // bypassing the virtual implementation
 319   void super_call_VM_leaf(address entry_point);
 320   void super_call_VM_leaf(address entry_point, Register arg_1);
 321   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 322   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 323   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 324 
 325   // last Java Frame (fills frame anchor)
 326   void set_last_Java_frame(Register thread,
 327                            Register last_java_sp,
 328                            Register last_java_fp,
 329                            address  last_java_pc,
 330                            Register rscratch);
 331 
 332   // thread in the default location (r15_thread on 64bit)
 333   void set_last_Java_frame(Register last_java_sp,
 334                            Register last_java_fp,
 335                            address  last_java_pc,
 336                            Register rscratch);
 337 
 338   void reset_last_Java_frame(Register thread, bool clear_fp);
 339 
 340   // thread in the default location (r15_thread on 64bit)
 341   void reset_last_Java_frame(bool clear_fp);
 342 
 343   // jobjects
 344   void clear_jobject_tag(Register possibly_non_local);
 345   void resolve_jobject(Register value, Register thread, Register tmp);
 346   void resolve_global_jobject(Register value, Register thread, Register tmp);
 347 
 348   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 349   void c2bool(Register x);
 350 
 351   // C++ bool manipulation
 352 
 353   void movbool(Register dst, Address src);
 354   void movbool(Address dst, bool boolconst);
 355   void movbool(Address dst, Register src);
 356   void testbool(Register dst);
 357 
 358   void resolve_oop_handle(Register result, Register tmp);
 359   void resolve_weak_handle(Register result, Register tmp);
 360   void load_mirror(Register mirror, Register method, Register tmp);
 361   void load_method_holder_cld(Register rresult, Register rmethod);
 362 
 363   void load_method_holder(Register holder, Register method);
 364 
 365   // oop manipulations
 366   void load_klass(Register dst, Register src, Register tmp);
 367   void store_klass(Register dst, Register src, Register tmp);
 368 
 369   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 370                       Register tmp1, Register thread_tmp);
 371   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 372                        Register tmp1, Register tmp2, Register tmp3);
 373 
 374   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 375                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 376   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 377                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 378   void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
 379                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 380 
 381   // Used for storing null. All other oop constants should be
 382   // stored using routines that take a jobject.
 383   void store_heap_oop_null(Address dst);
 384 
 385 #ifdef _LP64
 386   void store_klass_gap(Register dst, Register src);
 387 
 388   // This dummy is to prevent a call to store_heap_oop from
 389   // converting a zero (like null) into a Register by giving
 390   // the compiler two choices it can't resolve
 391 
 392   void store_heap_oop(Address dst, void* dummy);
 393 
 394   void encode_heap_oop(Register r);
 395   void decode_heap_oop(Register r);
 396   void encode_heap_oop_not_null(Register r);
 397   void decode_heap_oop_not_null(Register r);
 398   void encode_heap_oop_not_null(Register dst, Register src);
 399   void decode_heap_oop_not_null(Register dst, Register src);
 400 
 401   void set_narrow_oop(Register dst, jobject obj);
 402   void set_narrow_oop(Address dst, jobject obj);
 403   void cmp_narrow_oop(Register dst, jobject obj);
 404   void cmp_narrow_oop(Address dst, jobject obj);
 405 
 406   void encode_klass_not_null(Register r, Register tmp);
 407   void decode_klass_not_null(Register r, Register tmp);
 408   void encode_and_move_klass_not_null(Register dst, Register src);
 409   void decode_and_move_klass_not_null(Register dst, Register src);
 410   void set_narrow_klass(Register dst, Klass* k);
 411   void set_narrow_klass(Address dst, Klass* k);
 412   void cmp_narrow_klass(Register dst, Klass* k);
 413   void cmp_narrow_klass(Address dst, Klass* k);
 414 
 415   // if heap base register is used - reinit it with the correct value
 416   void reinit_heapbase();
 417 
 418   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 419 
 420 #endif // _LP64
 421 
 422   // Int division/remainder for Java
 423   // (as idivl, but checks for special case as described in JVM spec.)
 424   // returns idivl instruction offset for implicit exception handling
 425   int corrected_idivl(Register reg);
 426 
 427   // Long division/remainder for Java
 428   // (as idivq, but checks for special case as described in JVM spec.)
 429   // returns idivq instruction offset for implicit exception handling
 430   int corrected_idivq(Register reg);
 431 
 432   void int3();
 433 
 434   // Long operation macros for a 32bit cpu
 435   // Long negation for Java
 436   void lneg(Register hi, Register lo);
 437 
 438   // Long multiplication for Java
 439   // (destroys contents of eax, ebx, ecx and edx)
 440   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 441 
 442   // Long shifts for Java
 443   // (semantics as described in JVM spec.)
 444   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 445   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 446 
 447   // Long compare for Java
 448   // (semantics as described in JVM spec.)
 449   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 450 
 451 
 452   // misc
 453 
 454   // Sign extension
 455   void sign_extend_short(Register reg);
 456   void sign_extend_byte(Register reg);
 457 
 458   // Division by power of 2, rounding towards 0
 459   void division_with_shift(Register reg, int shift_value);
 460 
 461 #ifndef _LP64
 462   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 463   //
 464   // CF (corresponds to C0) if x < y
 465   // PF (corresponds to C2) if unordered
 466   // ZF (corresponds to C3) if x = y
 467   //
 468   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 469   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 470   void fcmp(Register tmp);
 471   // Variant of the above which allows y to be further down the stack
 472   // and which only pops x and y if specified. If pop_right is
 473   // specified then pop_left must also be specified.
 474   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 475 
 476   // Floating-point comparison for Java
 477   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 478   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 479   // (semantics as described in JVM spec.)
 480   void fcmp2int(Register dst, bool unordered_is_less);
 481   // Variant of the above which allows y to be further down the stack
 482   // and which only pops x and y if specified. If pop_right is
 483   // specified then pop_left must also be specified.
 484   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 485 
 486   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 487   // tmp is a temporary register, if none is available use noreg
 488   void fremr(Register tmp);
 489 
 490   // only if +VerifyFPU
 491   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 492 #endif // !LP64
 493 
 494   // dst = c = a * b + c
 495   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 496   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 497 
 498   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 499   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 500   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 501   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 502 
 503 
 504   // same as fcmp2int, but using SSE2
 505   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 506   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 507 
 508   // branch to L if FPU flag C2 is set/not set
 509   // tmp is a temporary register, if none is available use noreg
 510   void jC2 (Register tmp, Label& L);
 511   void jnC2(Register tmp, Label& L);
 512 
 513   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 514   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 515   void load_float(Address src);
 516 
 517   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 518   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 519   void store_float(Address dst);
 520 
 521   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 522   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 523   void load_double(Address src);
 524 
 525   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 526   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 527   void store_double(Address dst);
 528 
 529 #ifndef _LP64
 530   // Pop ST (ffree & fincstp combined)
 531   void fpop();
 532 
 533   void empty_FPU_stack();
 534 #endif // !_LP64
 535 
 536   void push_IU_state();
 537   void pop_IU_state();
 538 
 539   void push_FPU_state();
 540   void pop_FPU_state();
 541 
 542   void push_CPU_state();
 543   void pop_CPU_state();
 544 
 545   void push_cont_fastpath();
 546   void pop_cont_fastpath();
 547 
 548   void inc_held_monitor_count();
 549   void dec_held_monitor_count();
 550 
 551   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 552 
 553   // Round up to a power of two
 554   void round_to(Register reg, int modulus);
 555 
 556 private:
 557   // General purpose and XMM registers potentially clobbered by native code; there
 558   // is no need for FPU or AVX opmask related methods because C1/interpreter
 559   // - we save/restore FPU state as a whole always
 560   // - do not care about AVX-512 opmask
 561   static RegSet call_clobbered_gp_registers();
 562   static XMMRegSet call_clobbered_xmm_registers();
 563 
 564   void push_set(XMMRegSet set, int offset);
 565   void pop_set(XMMRegSet set, int offset);
 566 
 567 public:
 568   void push_set(RegSet set, int offset = -1);
 569   void pop_set(RegSet set, int offset = -1);
 570 
 571   // Push and pop everything that might be clobbered by a native
 572   // runtime call.
 573   // Only save the lower 64 bits of each vector register.
 574   // Additional registers can be excluded in a passed RegSet.
 575   void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
 576   void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
 577 
 578   void push_call_clobbered_registers(bool save_fpu = true) {
 579     push_call_clobbered_registers_except(RegSet(), save_fpu);
 580   }
 581   void pop_call_clobbered_registers(bool restore_fpu = true) {
 582     pop_call_clobbered_registers_except(RegSet(), restore_fpu);
 583   }
 584 
 585   // allocation
 586   void tlab_allocate(
 587     Register thread,                   // Current thread
 588     Register obj,                      // result: pointer to object after successful allocation
 589     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 590     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 591     Register t1,                       // temp register
 592     Register t2,                       // temp register
 593     Label&   slow_case                 // continuation point if fast allocation fails
 594   );
 595   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 596 
 597   // interface method calling
 598   void lookup_interface_method(Register recv_klass,
 599                                Register intf_klass,
 600                                RegisterOrConstant itable_index,
 601                                Register method_result,
 602                                Register scan_temp,
 603                                Label& no_such_interface,
 604                                bool return_method = true);
 605 
 606   void lookup_interface_method_stub(Register recv_klass,
 607                                     Register holder_klass,
 608                                     Register resolved_klass,
 609                                     Register method_result,
 610                                     Register scan_temp,
 611                                     Register temp_reg2,
 612                                     Register receiver,
 613                                     int itable_index,
 614                                     Label& L_no_such_interface);
 615 
 616   // virtual method calling
 617   void lookup_virtual_method(Register recv_klass,
 618                              RegisterOrConstant vtable_index,
 619                              Register method_result);
 620 
 621   // Test sub_klass against super_klass, with fast and slow paths.
 622 
 623   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 624   // One of the three labels can be null, meaning take the fall-through.
 625   // If super_check_offset is -1, the value is loaded up from super_klass.
 626   // No registers are killed, except temp_reg.
 627   void check_klass_subtype_fast_path(Register sub_klass,
 628                                      Register super_klass,
 629                                      Register temp_reg,
 630                                      Label* L_success,
 631                                      Label* L_failure,
 632                                      Label* L_slow_path,
 633                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 634 
 635   // The rest of the type check; must be wired to a corresponding fast path.
 636   // It does not repeat the fast path logic, so don't use it standalone.
 637   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 638   // Updates the sub's secondary super cache as necessary.
 639   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 640   void check_klass_subtype_slow_path(Register sub_klass,
 641                                      Register super_klass,
 642                                      Register temp_reg,
 643                                      Register temp2_reg,
 644                                      Label* L_success,
 645                                      Label* L_failure,
 646                                      bool set_cond_codes = false);
 647 
 648   // Simplified, combined version, good for typical uses.
 649   // Falls through on failure.
 650   void check_klass_subtype(Register sub_klass,
 651                            Register super_klass,
 652                            Register temp_reg,
 653                            Label& L_success);
 654 
 655   void clinit_barrier(Register klass,
 656                       Register thread,
 657                       Label* L_fast_path = nullptr,
 658                       Label* L_slow_path = nullptr);
 659 
 660   // method handles (JSR 292)
 661   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 662 
 663   // Debugging
 664 
 665   // only if +VerifyOops
 666   void _verify_oop(Register reg, const char* s, const char* file, int line);
 667   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 668 
 669   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 670     if (VerifyOops) {
 671       _verify_oop(reg, s, file, line);
 672     }
 673   }
 674   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 675     if (VerifyOops) {
 676       _verify_oop_addr(reg, s, file, line);
 677     }
 678   }
 679 
 680   // TODO: verify method and klass metadata (compare against vptr?)
 681   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 682   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 683 
 684 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 685 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 686 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 687 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 688 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 689 
 690   // Verify or restore cpu control state after JNI call
 691   void restore_cpu_control_state_after_jni(Register rscratch);
 692 
 693   // prints msg, dumps registers and stops execution
 694   void stop(const char* msg);
 695 
 696   // prints msg and continues
 697   void warn(const char* msg);
 698 
 699   // dumps registers and other state
 700   void print_state();
 701 
 702   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 703   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 704   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 705   static void print_state64(int64_t pc, int64_t regs[]);
 706 
 707   void os_breakpoint();
 708 
 709   void untested()                                { stop("untested"); }
 710 
 711   void unimplemented(const char* what = "");
 712 
 713   void should_not_reach_here()                   { stop("should not reach here"); }
 714 
 715   void print_CPU_state();
 716 
 717   // Stack overflow checking
 718   void bang_stack_with_offset(int offset) {
 719     // stack grows down, caller passes positive offset
 720     assert(offset > 0, "must bang with negative offset");
 721     movl(Address(rsp, (-offset)), rax);
 722   }
 723 
 724   // Writes to stack successive pages until offset reached to check for
 725   // stack overflow + shadow pages.  Also, clobbers tmp
 726   void bang_stack_size(Register size, Register tmp);
 727 
 728   // Check for reserved stack access in method being exited (for JIT)
 729   void reserved_stack_check();
 730 
 731   void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
 732 
 733   void verify_tlab();
 734 
 735   static Condition negate_condition(Condition cond);
 736 
 737   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 738   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 739   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 740   // here in MacroAssembler. The major exception to this rule is call
 741 
 742   // Arithmetics
 743 
 744 
 745   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 746   void addptr(Address dst, Register src);
 747 
 748   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 749   void addptr(Register dst, int32_t src);
 750   void addptr(Register dst, Register src);
 751   void addptr(Register dst, RegisterOrConstant src) {
 752     if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant()));
 753     else                   addptr(dst, src.as_register());
 754   }
 755 
 756   void andptr(Register dst, int32_t src);
 757   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 758 
 759 #ifdef _LP64
 760   using Assembler::andq;
 761   void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
 762 #endif
 763 
 764   void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
 765 
 766   // renamed to drag out the casting of address to int32_t/intptr_t
 767   void cmp32(Register src1, int32_t imm);
 768 
 769   void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
 770   // compare reg - mem, or reg - &mem
 771   void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
 772 
 773   void cmp32(Register src1, Address src2);
 774 
 775 #ifndef _LP64
 776   void cmpklass(Address dst, Metadata* obj);
 777   void cmpklass(Register dst, Metadata* obj);
 778   void cmpoop(Address dst, jobject obj);
 779 #endif // _LP64
 780 
 781   void cmpoop(Register src1, Register src2);
 782   void cmpoop(Register src1, Address src2);
 783   void cmpoop(Register dst, jobject obj, Register rscratch);
 784 
 785   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 786   void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
 787 
 788   void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
 789 
 790   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 791   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 792   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 793 
 794   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 795   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 796 
 797   // cmp64 to avoild hiding cmpq
 798   void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
 799 
 800   void cmpxchgptr(Register reg, Address adr);
 801 
 802   void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
 803 
 804   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 805   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 806 
 807 
 808   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 809 
 810   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 811 
 812   void shlptr(Register dst, int32_t shift);
 813   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 814 
 815   void shrptr(Register dst, int32_t shift);
 816   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 817 
 818   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 819   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 820 
 821   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 822 
 823   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 824   void subptr(Register dst, int32_t src);
 825   // Force generation of a 4 byte immediate value even if it fits into 8bit
 826   void subptr_imm32(Register dst, int32_t src);
 827   void subptr(Register dst, Register src);
 828   void subptr(Register dst, RegisterOrConstant src) {
 829     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 830     else                   subptr(dst,       src.as_register());
 831   }
 832 
 833   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 834   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 835 
 836   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 837   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 838 
 839   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 840 
 841 
 842 
 843   // Helper functions for statistics gathering.
 844   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 845   void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
 846   // Unconditional atomic increment.
 847   void atomic_incl(Address counter_addr);
 848   void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
 849 #ifdef _LP64
 850   void atomic_incq(Address counter_addr);
 851   void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
 852 #endif
 853   void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; }
 854   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 855 
 856   void lea(Register dst, Address        adr) { Assembler::lea(dst, adr); }
 857   void lea(Register dst, AddressLiteral adr);
 858   void lea(Address  dst, AddressLiteral adr, Register rscratch);
 859 
 860   void leal32(Register dst, Address src) { leal(dst, src); }
 861 
 862   // Import other testl() methods from the parent class or else
 863   // they will be hidden by the following overriding declaration.
 864   using Assembler::testl;
 865   void testl(Address dst, int32_t imm32);
 866   void testl(Register dst, int32_t imm32);
 867   void testl(Register dst, AddressLiteral src); // requires reachable address
 868   using Assembler::testq;
 869   void testq(Address dst, int32_t imm32);
 870   void testq(Register dst, int32_t imm32);
 871 
 872   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 873   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 874   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 875   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 876 
 877   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 878   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 879   void testptr(Address src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 880   void testptr(Register src1, Register src2);
 881 
 882   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 883   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 884 
 885   // Calls
 886 
 887   void call(Label& L, relocInfo::relocType rtype);
 888   void call(Register entry);
 889   void call(Address addr) { Assembler::call(addr); }
 890 
 891   // NOTE: this call transfers to the effective address of entry NOT
 892   // the address contained by entry. This is because this is more natural
 893   // for jumps/calls.
 894   void call(AddressLiteral entry, Register rscratch = rax);
 895 
 896   // Emit the CompiledIC call idiom
 897   void ic_call(address entry, jint method_index = 0);
 898 
 899   void emit_static_call_stub();
 900 
 901   // Jumps
 902 
 903   // NOTE: these jumps transfer to the effective address of dst NOT
 904   // the address contained by dst. This is because this is more natural
 905   // for jumps/calls.
 906   void jump(AddressLiteral dst, Register rscratch = noreg);
 907 
 908   void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
 909 
 910   // 32bit can do a case table jump in one instruction but we no longer allow the base
 911   // to be installed in the Address class. This jump will transfer to the address
 912   // contained in the location described by entry (not the address of entry)
 913   void jump(ArrayAddress entry, Register rscratch);
 914 
 915   // Floating
 916 
 917   void push_f(XMMRegister r);
 918   void pop_f(XMMRegister r);
 919   void push_d(XMMRegister r);
 920   void pop_d(XMMRegister r);
 921 
 922   void andpd(XMMRegister dst, XMMRegister    src) { Assembler::andpd(dst, src); }
 923   void andpd(XMMRegister dst, Address        src) { Assembler::andpd(dst, src); }
 924   void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 925 
 926   void andps(XMMRegister dst, XMMRegister    src) { Assembler::andps(dst, src); }
 927   void andps(XMMRegister dst, Address        src) { Assembler::andps(dst, src); }
 928   void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 929 
 930   void comiss(XMMRegister dst, XMMRegister    src) { Assembler::comiss(dst, src); }
 931   void comiss(XMMRegister dst, Address        src) { Assembler::comiss(dst, src); }
 932   void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 933 
 934   void comisd(XMMRegister dst, XMMRegister    src) { Assembler::comisd(dst, src); }
 935   void comisd(XMMRegister dst, Address        src) { Assembler::comisd(dst, src); }
 936   void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 937 
 938 #ifndef _LP64
 939   void fadd_s(Address        src) { Assembler::fadd_s(src); }
 940   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 941 
 942   void fldcw(Address        src) { Assembler::fldcw(src); }
 943   void fldcw(AddressLiteral src);
 944 
 945   void fld_s(int index)          { Assembler::fld_s(index); }
 946   void fld_s(Address        src) { Assembler::fld_s(src); }
 947   void fld_s(AddressLiteral src);
 948 
 949   void fld_d(Address        src) { Assembler::fld_d(src); }
 950   void fld_d(AddressLiteral src);
 951 
 952   void fld_x(Address        src) { Assembler::fld_x(src); }
 953   void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); }
 954 
 955   void fmul_s(Address        src) { Assembler::fmul_s(src); }
 956   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 957 #endif // !_LP64
 958 
 959   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 960   void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
 961 
 962 #ifdef _LP64
 963  private:
 964   void sha256_AVX2_one_round_compute(
 965     Register  reg_old_h,
 966     Register  reg_a,
 967     Register  reg_b,
 968     Register  reg_c,
 969     Register  reg_d,
 970     Register  reg_e,
 971     Register  reg_f,
 972     Register  reg_g,
 973     Register  reg_h,
 974     int iter);
 975   void sha256_AVX2_four_rounds_compute_first(int start);
 976   void sha256_AVX2_four_rounds_compute_last(int start);
 977   void sha256_AVX2_one_round_and_sched(
 978         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 979         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 980         XMMRegister xmm_2,     /* ymm6 */
 981         XMMRegister xmm_3,     /* ymm7 */
 982         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 983         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 984         Register    reg_c,      /* edi */
 985         Register    reg_d,      /* esi */
 986         Register    reg_e,      /* r8d */
 987         Register    reg_f,      /* r9d */
 988         Register    reg_g,      /* r10d */
 989         Register    reg_h,      /* r11d */
 990         int iter);
 991 
 992   void addm(int disp, Register r1, Register r2);
 993 
 994   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 995                                      Register e, Register f, Register g, Register h, int iteration);
 996 
 997   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 998                                           Register a, Register b, Register c, Register d, Register e, Register f,
 999                                           Register g, Register h, int iteration);
1000 
1001   void addmq(int disp, Register r1, Register r2);
1002  public:
1003   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1004                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1005                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1006                    bool multi_block, XMMRegister shuf_mask);
1007   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1008                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1009                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1010                    XMMRegister shuf_mask);
1011 #endif // _LP64
1012 
1013   void fast_md5(Register buf, Address state, Address ofs, Address limit,
1014                 bool multi_block);
1015 
1016   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1017                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1018                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1019                  bool multi_block);
1020 
1021 #ifdef _LP64
1022   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1023                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1024                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1025                    bool multi_block, XMMRegister shuf_mask);
1026 #else
1027   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1028                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1029                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1030                    bool multi_block);
1031 #endif
1032 
1033   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1034                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1035                 Register rax, Register rcx, Register rdx, Register tmp);
1036 
1037 #ifndef _LP64
1038  private:
1039   // Initialized in macroAssembler_x86_constants.cpp
1040   static address ONES;
1041   static address L_2IL0FLOATPACKET_0;
1042   static address PI4_INV;
1043   static address PI4X3;
1044   static address PI4X4;
1045 
1046  public:
1047   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1048                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1049                 Register rax, Register rcx, Register rdx, Register tmp1);
1050 
1051   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1052                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1053                 Register rax, Register rcx, Register rdx, Register tmp);
1054 
1055   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1056                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1057                 Register rdx, Register tmp);
1058 
1059   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1060                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1061                 Register rax, Register rbx, Register rdx);
1062 
1063   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1064                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1065                 Register rax, Register rcx, Register rdx, Register tmp);
1066 
1067   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1068                         Register edx, Register ebx, Register esi, Register edi,
1069                         Register ebp, Register esp);
1070 
1071   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1072                          Register esi, Register edi, Register ebp, Register esp);
1073 
1074   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1075                         Register edx, Register ebx, Register esi, Register edi,
1076                         Register ebp, Register esp);
1077 
1078   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1079                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1080                 Register rax, Register rcx, Register rdx, Register tmp);
1081 #endif // !_LP64
1082 
1083 private:
1084 
1085   // these are private because users should be doing movflt/movdbl
1086 
1087   void movss(Address     dst, XMMRegister    src) { Assembler::movss(dst, src); }
1088   void movss(XMMRegister dst, XMMRegister    src) { Assembler::movss(dst, src); }
1089   void movss(XMMRegister dst, Address        src) { Assembler::movss(dst, src); }
1090   void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1091 
1092   void movlpd(XMMRegister dst, Address        src) {Assembler::movlpd(dst, src); }
1093   void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1094 
1095 public:
1096 
1097   void addsd(XMMRegister dst, XMMRegister    src) { Assembler::addsd(dst, src); }
1098   void addsd(XMMRegister dst, Address        src) { Assembler::addsd(dst, src); }
1099   void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1100 
1101   void addss(XMMRegister dst, XMMRegister    src) { Assembler::addss(dst, src); }
1102   void addss(XMMRegister dst, Address        src) { Assembler::addss(dst, src); }
1103   void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1104 
1105   void addpd(XMMRegister dst, XMMRegister    src) { Assembler::addpd(dst, src); }
1106   void addpd(XMMRegister dst, Address        src) { Assembler::addpd(dst, src); }
1107   void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1108 
1109   using Assembler::vbroadcastsd;
1110   void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1111 
1112   using Assembler::vbroadcastss;
1113   void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1114 
1115   void divsd(XMMRegister dst, XMMRegister    src) { Assembler::divsd(dst, src); }
1116   void divsd(XMMRegister dst, Address        src) { Assembler::divsd(dst, src); }
1117   void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1118 
1119   void divss(XMMRegister dst, XMMRegister    src) { Assembler::divss(dst, src); }
1120   void divss(XMMRegister dst, Address        src) { Assembler::divss(dst, src); }
1121   void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1122 
1123   // Move Unaligned Double Quadword
1124   void movdqu(Address     dst, XMMRegister    src);
1125   void movdqu(XMMRegister dst, XMMRegister    src);
1126   void movdqu(XMMRegister dst, Address        src);
1127   void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1128 
1129   void kmovwl(Register  dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1130   void kmovwl(Address   dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1131   void kmovwl(KRegister dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1132   void kmovwl(KRegister dst, Register       src) { Assembler::kmovwl(dst, src); }
1133   void kmovwl(KRegister dst, Address        src) { Assembler::kmovwl(dst, src); }
1134   void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1135 
1136   void kmovql(KRegister dst, KRegister      src) { Assembler::kmovql(dst, src); }
1137   void kmovql(KRegister dst, Register       src) { Assembler::kmovql(dst, src); }
1138   void kmovql(Register  dst, KRegister      src) { Assembler::kmovql(dst, src); }
1139   void kmovql(KRegister dst, Address        src) { Assembler::kmovql(dst, src); }
1140   void kmovql(Address   dst, KRegister      src) { Assembler::kmovql(dst, src); }
1141   void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1142 
1143   // Safe move operation, lowers down to 16bit moves for targets supporting
1144   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1145   void kmov(Address  dst, KRegister src);
1146   void kmov(KRegister dst, Address src);
1147   void kmov(KRegister dst, KRegister src);
1148   void kmov(Register dst, KRegister src);
1149   void kmov(KRegister dst, Register src);
1150 
1151   using Assembler::movddup;
1152   void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1153 
1154   using Assembler::vmovddup;
1155   void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1156 
1157   // AVX Unaligned forms
1158   void vmovdqu(Address     dst, XMMRegister    src);
1159   void vmovdqu(XMMRegister dst, Address        src);
1160   void vmovdqu(XMMRegister dst, XMMRegister    src);
1161   void vmovdqu(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1162   void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1163 
1164   // AVX512 Unaligned
1165   void evmovdqu(BasicType type, KRegister kmask, Address     dst, XMMRegister src, bool merge, int vector_len);
1166   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address     src, bool merge, int vector_len);
1167 
1168   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1169   void evmovdqub(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1170 
1171   void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1172     if (dst->encoding() != src->encoding() || mask != k0)  {
1173       Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1174     }
1175   }
1176   void evmovdqub(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1177   void evmovdqub(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1178   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1179 
1180   void evmovdquw(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1181   void evmovdquw(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1182 
1183   void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1184     if (dst->encoding() != src->encoding() || mask != k0) {
1185       Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1186     }
1187   }
1188   void evmovdquw(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1189   void evmovdquw(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1190   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1191 
1192   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1193      if (dst->encoding() != src->encoding()) {
1194        Assembler::evmovdqul(dst, src, vector_len);
1195      }
1196   }
1197   void evmovdqul(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1198   void evmovdqul(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1199 
1200   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1201     if (dst->encoding() != src->encoding() || mask != k0)  {
1202       Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1203     }
1204   }
1205   void evmovdqul(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1206   void evmovdqul(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1207   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1208 
1209   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1210     if (dst->encoding() != src->encoding()) {
1211       Assembler::evmovdquq(dst, src, vector_len);
1212     }
1213   }
1214   void evmovdquq(XMMRegister dst, Address        src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1215   void evmovdquq(Address     dst, XMMRegister    src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1216   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1217 
1218   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1219     if (dst->encoding() != src->encoding() || mask != k0) {
1220       Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1221     }
1222   }
1223   void evmovdquq(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1224   void evmovdquq(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1225   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1226 
1227   // Move Aligned Double Quadword
1228   void movdqa(XMMRegister dst, XMMRegister    src) { Assembler::movdqa(dst, src); }
1229   void movdqa(XMMRegister dst, Address        src) { Assembler::movdqa(dst, src); }
1230   void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1231 
1232   void movsd(Address     dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1233   void movsd(XMMRegister dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1234   void movsd(XMMRegister dst, Address        src) { Assembler::movsd(dst, src); }
1235   void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1236 
1237   void mulpd(XMMRegister dst, XMMRegister    src) { Assembler::mulpd(dst, src); }
1238   void mulpd(XMMRegister dst, Address        src) { Assembler::mulpd(dst, src); }
1239   void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1240 
1241   void mulsd(XMMRegister dst, XMMRegister    src) { Assembler::mulsd(dst, src); }
1242   void mulsd(XMMRegister dst, Address        src) { Assembler::mulsd(dst, src); }
1243   void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1244 
1245   void mulss(XMMRegister dst, XMMRegister    src) { Assembler::mulss(dst, src); }
1246   void mulss(XMMRegister dst, Address        src) { Assembler::mulss(dst, src); }
1247   void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1248 
1249   // Carry-Less Multiplication Quadword
1250   void pclmulldq(XMMRegister dst, XMMRegister src) {
1251     // 0x00 - multiply lower 64 bits [0:63]
1252     Assembler::pclmulqdq(dst, src, 0x00);
1253   }
1254   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1255     // 0x11 - multiply upper 64 bits [64:127]
1256     Assembler::pclmulqdq(dst, src, 0x11);
1257   }
1258 
1259   void pcmpeqb(XMMRegister dst, XMMRegister src);
1260   void pcmpeqw(XMMRegister dst, XMMRegister src);
1261 
1262   void pcmpestri(XMMRegister dst, Address src, int imm8);
1263   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1264 
1265   void pmovzxbw(XMMRegister dst, XMMRegister src);
1266   void pmovzxbw(XMMRegister dst, Address src);
1267 
1268   void pmovmskb(Register dst, XMMRegister src);
1269 
1270   void ptest(XMMRegister dst, XMMRegister src);
1271 
1272   void roundsd(XMMRegister dst, XMMRegister    src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1273   void roundsd(XMMRegister dst, Address        src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1274   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1275 
1276   void sqrtss(XMMRegister dst, XMMRegister     src) { Assembler::sqrtss(dst, src); }
1277   void sqrtss(XMMRegister dst, Address         src) { Assembler::sqrtss(dst, src); }
1278   void sqrtss(XMMRegister dst, AddressLiteral  src, Register rscratch = noreg);
1279 
1280   void subsd(XMMRegister dst, XMMRegister    src) { Assembler::subsd(dst, src); }
1281   void subsd(XMMRegister dst, Address        src) { Assembler::subsd(dst, src); }
1282   void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1283 
1284   void subss(XMMRegister dst, XMMRegister    src) { Assembler::subss(dst, src); }
1285   void subss(XMMRegister dst, Address        src) { Assembler::subss(dst, src); }
1286   void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1287 
1288   void ucomiss(XMMRegister dst, XMMRegister    src) { Assembler::ucomiss(dst, src); }
1289   void ucomiss(XMMRegister dst, Address        src) { Assembler::ucomiss(dst, src); }
1290   void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1291 
1292   void ucomisd(XMMRegister dst, XMMRegister    src) { Assembler::ucomisd(dst, src); }
1293   void ucomisd(XMMRegister dst, Address        src) { Assembler::ucomisd(dst, src); }
1294   void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1295 
1296   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1297   void xorpd(XMMRegister dst, XMMRegister    src);
1298   void xorpd(XMMRegister dst, Address        src) { Assembler::xorpd(dst, src); }
1299   void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1300 
1301   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1302   void xorps(XMMRegister dst, XMMRegister    src);
1303   void xorps(XMMRegister dst, Address        src) { Assembler::xorps(dst, src); }
1304   void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1305 
1306   // Shuffle Bytes
1307   void pshufb(XMMRegister dst, XMMRegister    src) { Assembler::pshufb(dst, src); }
1308   void pshufb(XMMRegister dst, Address        src) { Assembler::pshufb(dst, src); }
1309   void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1310   // AVX 3-operands instructions
1311 
1312   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddsd(dst, nds, src); }
1313   void vaddsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddsd(dst, nds, src); }
1314   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1315 
1316   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddss(dst, nds, src); }
1317   void vaddss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddss(dst, nds, src); }
1318   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1319 
1320   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1321   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1322 
1323   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len);
1324   void vpaddb(XMMRegister dst, XMMRegister nds, Address        src, int vector_len);
1325   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1326 
1327   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1328   void vpaddw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1329 
1330   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1331   void vpaddd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1332   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1333 
1334   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1335   void vpand(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1336   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1337 
1338   using Assembler::vpbroadcastd;
1339   void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1340 
1341   using Assembler::vpbroadcastq;
1342   void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1343 
1344   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1345 
1346   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1347   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1348 
1349   // Vector compares
1350   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1351     Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1352   }
1353   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1354 
1355   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1356     Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1357   }
1358   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1359 
1360   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1361     Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1362   }
1363   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1364 
1365   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1366     Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1367   }
1368   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1369 
1370   void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1371 
1372   // Emit comparison instruction for the specified comparison predicate.
1373   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1374   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1375 
1376   void vpmovzxbw(XMMRegister dst, Address     src, int vector_len);
1377   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1378 
1379   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1380 
1381   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1382   void vpmullw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1383 
1384   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1385   void vpmulld(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1386   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1387 
1388   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1389   void vpsubb(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1390 
1391   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1392   void vpsubw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1393 
1394   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1395   void vpsraw(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1396 
1397   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1398   void evpsraq(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1399 
1400   void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1401     if (!is_varshift) {
1402       Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1403     } else {
1404       Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1405     }
1406   }
1407   void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1408     if (!is_varshift) {
1409       Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1410     } else {
1411       Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1412     }
1413   }
1414   void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1415     if (!is_varshift) {
1416       Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1417     } else {
1418       Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1419     }
1420   }
1421   void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1422     if (!is_varshift) {
1423       Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1424     } else {
1425       Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1426     }
1427   }
1428   void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1429     if (!is_varshift) {
1430       Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1431     } else {
1432       Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1433     }
1434   }
1435   void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1436     if (!is_varshift) {
1437       Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1438     } else {
1439       Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1440     }
1441   }
1442   void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1443     if (!is_varshift) {
1444       Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1445     } else {
1446       Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1447     }
1448   }
1449   void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1450     if (!is_varshift) {
1451       Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1452     } else {
1453       Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1454     }
1455   }
1456   void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1457     if (!is_varshift) {
1458       Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1459     } else {
1460       Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1461     }
1462   }
1463 
1464   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1465   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1466   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1467   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1468 
1469   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1470   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1471 
1472   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1473   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1474 
1475   void vptest(XMMRegister dst, XMMRegister src);
1476   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1477 
1478   void punpcklbw(XMMRegister dst, XMMRegister src);
1479   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1480 
1481   void pshufd(XMMRegister dst, Address src, int mode);
1482   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1483 
1484   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1485   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1486 
1487   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1488   void vandpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1489   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1490 
1491   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1492   void vandps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1493   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1494 
1495   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1496 
1497   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivsd(dst, nds, src); }
1498   void vdivsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivsd(dst, nds, src); }
1499   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1500 
1501   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivss(dst, nds, src); }
1502   void vdivss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivss(dst, nds, src); }
1503   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1504 
1505   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulsd(dst, nds, src); }
1506   void vmulsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulsd(dst, nds, src); }
1507   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1508 
1509   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulss(dst, nds, src); }
1510   void vmulss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulss(dst, nds, src); }
1511   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1512 
1513   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubsd(dst, nds, src); }
1514   void vsubsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubsd(dst, nds, src); }
1515   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1516 
1517   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubss(dst, nds, src); }
1518   void vsubss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubss(dst, nds, src); }
1519   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1520 
1521   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1522   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1523 
1524   // AVX Vector instructions
1525 
1526   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1527   void vxorpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1528   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1529 
1530   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1531   void vxorps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1532   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1533 
1534   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1535     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1536       Assembler::vpxor(dst, nds, src, vector_len);
1537     else
1538       Assembler::vxorpd(dst, nds, src, vector_len);
1539   }
1540   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1541     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1542       Assembler::vpxor(dst, nds, src, vector_len);
1543     else
1544       Assembler::vxorpd(dst, nds, src, vector_len);
1545   }
1546   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1547 
1548   // Simple version for AVX2 256bit vectors
1549   void vpxor(XMMRegister dst, XMMRegister src) {
1550     assert(UseAVX >= 2, "Should be at least AVX2");
1551     Assembler::vpxor(dst, dst, src, AVX_256bit);
1552   }
1553   void vpxor(XMMRegister dst, Address src) {
1554     assert(UseAVX >= 2, "Should be at least AVX2");
1555     Assembler::vpxor(dst, dst, src, AVX_256bit);
1556   }
1557 
1558   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1559   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1560 
1561   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1562     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1563       Assembler::vinserti32x4(dst, nds, src, imm8);
1564     } else if (UseAVX > 1) {
1565       // vinserti128 is available only in AVX2
1566       Assembler::vinserti128(dst, nds, src, imm8);
1567     } else {
1568       Assembler::vinsertf128(dst, nds, src, imm8);
1569     }
1570   }
1571 
1572   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1573     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1574       Assembler::vinserti32x4(dst, nds, src, imm8);
1575     } else if (UseAVX > 1) {
1576       // vinserti128 is available only in AVX2
1577       Assembler::vinserti128(dst, nds, src, imm8);
1578     } else {
1579       Assembler::vinsertf128(dst, nds, src, imm8);
1580     }
1581   }
1582 
1583   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1584     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1585       Assembler::vextracti32x4(dst, src, imm8);
1586     } else if (UseAVX > 1) {
1587       // vextracti128 is available only in AVX2
1588       Assembler::vextracti128(dst, src, imm8);
1589     } else {
1590       Assembler::vextractf128(dst, src, imm8);
1591     }
1592   }
1593 
1594   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1595     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1596       Assembler::vextracti32x4(dst, src, imm8);
1597     } else if (UseAVX > 1) {
1598       // vextracti128 is available only in AVX2
1599       Assembler::vextracti128(dst, src, imm8);
1600     } else {
1601       Assembler::vextractf128(dst, src, imm8);
1602     }
1603   }
1604 
1605   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1606   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1607     vinserti128(dst, dst, src, 1);
1608   }
1609   void vinserti128_high(XMMRegister dst, Address src) {
1610     vinserti128(dst, dst, src, 1);
1611   }
1612   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1613     vextracti128(dst, src, 1);
1614   }
1615   void vextracti128_high(Address dst, XMMRegister src) {
1616     vextracti128(dst, src, 1);
1617   }
1618 
1619   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1620     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1621       Assembler::vinsertf32x4(dst, dst, src, 1);
1622     } else {
1623       Assembler::vinsertf128(dst, dst, src, 1);
1624     }
1625   }
1626 
1627   void vinsertf128_high(XMMRegister dst, Address src) {
1628     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1629       Assembler::vinsertf32x4(dst, dst, src, 1);
1630     } else {
1631       Assembler::vinsertf128(dst, dst, src, 1);
1632     }
1633   }
1634 
1635   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1636     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1637       Assembler::vextractf32x4(dst, src, 1);
1638     } else {
1639       Assembler::vextractf128(dst, src, 1);
1640     }
1641   }
1642 
1643   void vextractf128_high(Address dst, XMMRegister src) {
1644     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1645       Assembler::vextractf32x4(dst, src, 1);
1646     } else {
1647       Assembler::vextractf128(dst, src, 1);
1648     }
1649   }
1650 
1651   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1652   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1653     Assembler::vinserti64x4(dst, dst, src, 1);
1654   }
1655   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1656     Assembler::vinsertf64x4(dst, dst, src, 1);
1657   }
1658   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1659     Assembler::vextracti64x4(dst, src, 1);
1660   }
1661   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1662     Assembler::vextractf64x4(dst, src, 1);
1663   }
1664   void vextractf64x4_high(Address dst, XMMRegister src) {
1665     Assembler::vextractf64x4(dst, src, 1);
1666   }
1667   void vinsertf64x4_high(XMMRegister dst, Address src) {
1668     Assembler::vinsertf64x4(dst, dst, src, 1);
1669   }
1670 
1671   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1672   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1673     vinserti128(dst, dst, src, 0);
1674   }
1675   void vinserti128_low(XMMRegister dst, Address src) {
1676     vinserti128(dst, dst, src, 0);
1677   }
1678   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1679     vextracti128(dst, src, 0);
1680   }
1681   void vextracti128_low(Address dst, XMMRegister src) {
1682     vextracti128(dst, src, 0);
1683   }
1684 
1685   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1686     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1687       Assembler::vinsertf32x4(dst, dst, src, 0);
1688     } else {
1689       Assembler::vinsertf128(dst, dst, src, 0);
1690     }
1691   }
1692 
1693   void vinsertf128_low(XMMRegister dst, Address src) {
1694     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1695       Assembler::vinsertf32x4(dst, dst, src, 0);
1696     } else {
1697       Assembler::vinsertf128(dst, dst, src, 0);
1698     }
1699   }
1700 
1701   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1702     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1703       Assembler::vextractf32x4(dst, src, 0);
1704     } else {
1705       Assembler::vextractf128(dst, src, 0);
1706     }
1707   }
1708 
1709   void vextractf128_low(Address dst, XMMRegister src) {
1710     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1711       Assembler::vextractf32x4(dst, src, 0);
1712     } else {
1713       Assembler::vextractf128(dst, src, 0);
1714     }
1715   }
1716 
1717   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1718   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1719     Assembler::vinserti64x4(dst, dst, src, 0);
1720   }
1721   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1722     Assembler::vinsertf64x4(dst, dst, src, 0);
1723   }
1724   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1725     Assembler::vextracti64x4(dst, src, 0);
1726   }
1727   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1728     Assembler::vextractf64x4(dst, src, 0);
1729   }
1730   void vextractf64x4_low(Address dst, XMMRegister src) {
1731     Assembler::vextractf64x4(dst, src, 0);
1732   }
1733   void vinsertf64x4_low(XMMRegister dst, Address src) {
1734     Assembler::vinsertf64x4(dst, dst, src, 0);
1735   }
1736 
1737   // Carry-Less Multiplication Quadword
1738   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1739     // 0x00 - multiply lower 64 bits [0:63]
1740     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1741   }
1742   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1743     // 0x11 - multiply upper 64 bits [64:127]
1744     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1745   }
1746   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1747     // 0x10 - multiply nds[0:63] and src[64:127]
1748     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1749   }
1750   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1751     //0x01 - multiply nds[64:127] and src[0:63]
1752     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1753   }
1754 
1755   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1756     // 0x00 - multiply lower 64 bits [0:63]
1757     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1758   }
1759   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1760     // 0x11 - multiply upper 64 bits [64:127]
1761     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1762   }
1763 
1764   // AVX-512 mask operations.
1765   void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
1766   void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1767   void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
1768   void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1769   void kortest(uint masklen, KRegister src1, KRegister src2);
1770   void ktest(uint masklen, KRegister src1, KRegister src2);
1771 
1772   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1773   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1774 
1775   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1776   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1777 
1778   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1779   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1780 
1781   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1782   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1783 
1784   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1785   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1786   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1787   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1788 
1789   using Assembler::evpandq;
1790   void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1791 
1792   using Assembler::evpaddq;
1793   void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1794 
1795   using Assembler::evporq;
1796   void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1797 
1798   using Assembler::vpternlogq;
1799   void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
1800 
1801   void cmov32( Condition cc, Register dst, Address  src);
1802   void cmov32( Condition cc, Register dst, Register src);
1803 
1804   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1805 
1806   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1807   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1808 
1809   void movoop(Register dst, jobject obj);
1810   void movoop(Address  dst, jobject obj, Register rscratch);
1811 
1812   void mov_metadata(Register dst, Metadata* obj);
1813   void mov_metadata(Address  dst, Metadata* obj, Register rscratch);
1814 
1815   void movptr(Register     dst, Register       src);
1816   void movptr(Register     dst, Address        src);
1817   void movptr(Register     dst, AddressLiteral src);
1818   void movptr(Register     dst, ArrayAddress   src);
1819   void movptr(Register     dst, intptr_t       src);
1820   void movptr(Address      dst, Register       src);
1821   void movptr(Address      dst, int32_t        imm);
1822   void movptr(Address      dst, intptr_t       src, Register rscratch);
1823   void movptr(ArrayAddress dst, Register       src, Register rscratch);
1824 
1825   void movptr(Register dst, RegisterOrConstant src) {
1826     if (src.is_constant()) movptr(dst, src.as_constant());
1827     else                   movptr(dst, src.as_register());
1828   }
1829 
1830 
1831   // to avoid hiding movl
1832   void mov32(Register       dst, AddressLiteral src);
1833   void mov32(AddressLiteral dst, Register        src, Register rscratch = noreg);
1834 
1835   // Import other mov() methods from the parent class or else
1836   // they will be hidden by the following overriding declaration.
1837   using Assembler::movdl;
1838   void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1839 
1840   using Assembler::movq;
1841   void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1842 
1843   // Can push value or effective address
1844   void pushptr(AddressLiteral src, Register rscratch);
1845 
1846   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1847   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1848 
1849   void pushoop(jobject obj, Register rscratch);
1850   void pushklass(Metadata* obj, Register rscratch);
1851 
1852   // sign extend as need a l to ptr sized element
1853   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1854   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1855 
1856 
1857  public:
1858   // clear memory of size 'cnt' qwords, starting at 'base';
1859   // if 'is_large' is set, do not try to produce short loop
1860   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);
1861 
1862   // clear memory initialization sequence for constant size;
1863   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1864 
1865   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1866   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1867 
1868   // Fill primitive arrays
1869   void generate_fill(BasicType t, bool aligned,
1870                      Register to, Register value, Register count,
1871                      Register rtmp, XMMRegister xtmp);
1872 
1873   void encode_iso_array(Register src, Register dst, Register len,
1874                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1875                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
1876 
1877 #ifdef _LP64
1878   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1879   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1880                              Register y, Register y_idx, Register z,
1881                              Register carry, Register product,
1882                              Register idx, Register kdx);
1883   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1884                               Register yz_idx, Register idx,
1885                               Register carry, Register product, int offset);
1886   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1887                                     Register carry, Register carry2,
1888                                     Register idx, Register jdx,
1889                                     Register yz_idx1, Register yz_idx2,
1890                                     Register tmp, Register tmp3, Register tmp4);
1891   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1892                                Register yz_idx, Register idx, Register jdx,
1893                                Register carry, Register product,
1894                                Register carry2);
1895   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1896                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1897   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1898                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1899   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1900                             Register tmp2);
1901   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1902                        Register rdxReg, Register raxReg);
1903   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1904   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1905                        Register tmp3, Register tmp4);
1906   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1907                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1908 
1909   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1910                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1911                Register raxReg);
1912   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1913                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1914                Register raxReg);
1915   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1916                            Register result, Register tmp1, Register tmp2,
1917                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1918 #endif
1919 
1920   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1921   void update_byte_crc32(Register crc, Register val, Register table);
1922   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1923 
1924 
1925 #ifdef _LP64
1926   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
1927   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
1928                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
1929                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
1930 #endif // _LP64
1931 
1932   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1933   // Note on a naming convention:
1934   // Prefix w = register only used on a Westmere+ architecture
1935   // Prefix n = register only used on a Nehalem architecture
1936 #ifdef _LP64
1937   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1938                        Register tmp1, Register tmp2, Register tmp3);
1939 #else
1940   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1941                        Register tmp1, Register tmp2, Register tmp3,
1942                        XMMRegister xtmp1, XMMRegister xtmp2);
1943 #endif
1944   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1945                         Register in_out,
1946                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1947                         XMMRegister w_xtmp2,
1948                         Register tmp1,
1949                         Register n_tmp2, Register n_tmp3);
1950   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1951                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1952                        Register tmp1, Register tmp2,
1953                        Register n_tmp3);
1954   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1955                          Register in_out1, Register in_out2, Register in_out3,
1956                          Register tmp1, Register tmp2, Register tmp3,
1957                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1958                          Register tmp4, Register tmp5,
1959                          Register n_tmp6);
1960   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1961                             Register tmp1, Register tmp2, Register tmp3,
1962                             Register tmp4, Register tmp5, Register tmp6,
1963                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1964                             bool is_pclmulqdq_supported);
1965   // Fold 128-bit data chunk
1966   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1967   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1968 #ifdef _LP64
1969   // Fold 512-bit data chunk
1970   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
1971 #endif // _LP64
1972   // Fold 8-bit data
1973   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1974   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1975 
1976   // Compress char[] array to byte[].
1977   void char_array_compress(Register src, Register dst, Register len,
1978                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1979                            XMMRegister tmp4, Register tmp5, Register result,
1980                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
1981 
1982   // Inflate byte[] array to char[].
1983   void byte_array_inflate(Register src, Register dst, Register len,
1984                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
1985 
1986   void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
1987                    Register length, Register temp, int vec_enc);
1988 
1989   void fill64_masked(uint shift, Register dst, int disp,
1990                          XMMRegister xmm, KRegister mask, Register length,
1991                          Register temp, bool use64byteVector = false);
1992 
1993   void fill32_masked(uint shift, Register dst, int disp,
1994                          XMMRegister xmm, KRegister mask, Register length,
1995                          Register temp);
1996 
1997   void fill32(Address dst, XMMRegister xmm);
1998 
1999   void fill32(Register dst, int disp, XMMRegister xmm);
2000 
2001   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2002 
2003   void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2004 
2005 #ifdef _LP64
2006   void convert_f2i(Register dst, XMMRegister src);
2007   void convert_d2i(Register dst, XMMRegister src);
2008   void convert_f2l(Register dst, XMMRegister src);
2009   void convert_d2l(Register dst, XMMRegister src);
2010   void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2011   void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2012 
2013   void cache_wb(Address line);
2014   void cache_wbsync(bool is_pre);
2015 
2016 #ifdef COMPILER2_OR_JVMCI
2017   void generate_fill_avx3(BasicType type, Register to, Register value,
2018                           Register count, Register rtmp, XMMRegister xtmp);
2019 #endif // COMPILER2_OR_JVMCI
2020 #endif // _LP64
2021 
2022   void vallones(XMMRegister dst, int vector_len);
2023 
2024   void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2025 
2026   void lightweight_lock(Register obj, Register hdr, Register thread, Register tmp, Label& slow);
2027   void lightweight_unlock(Register obj, Register hdr, Register tmp, Label& slow);
2028 };
2029 
2030 /**
2031  * class SkipIfEqual:
2032  *
2033  * Instantiating this class will result in assembly code being output that will
2034  * jump around any code emitted between the creation of the instance and it's
2035  * automatic destruction at the end of a scope block, depending on the value of
2036  * the flag passed to the constructor, which will be checked at run-time.
2037  */
2038 class SkipIfEqual {
2039  private:
2040   MacroAssembler* _masm;
2041   Label _label;
2042 
2043  public:
2044    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value, Register rscratch);
2045    ~SkipIfEqual();
2046 };
2047 
2048 #endif // CPU_X86_MACROASSEMBLER_X86_HPP