1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP 26 #define CPU_X86_MACROASSEMBLER_X86_HPP 27 28 #include "asm/assembler.hpp" 29 #include "asm/register.hpp" 30 #include "code/vmreg.inline.hpp" 31 #include "compiler/oopMap.hpp" 32 #include "utilities/macros.hpp" 33 #include "runtime/rtmLocking.hpp" 34 #include "runtime/vm_version.hpp" 35 36 // MacroAssembler extends Assembler by frequently used macros. 37 // 38 // Instructions for which a 'better' code sequence exists depending 39 // on arguments should also go in here. 40 41 class MacroAssembler: public Assembler { 42 friend class LIR_Assembler; 43 friend class Runtime1; // as_Address() 44 45 public: 46 // Support for VM calls 47 // 48 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 49 // may customize this version by overriding it for its purposes (e.g., to save/restore 50 // additional registers when doing a VM call). 51 52 virtual void call_VM_leaf_base( 53 address entry_point, // the entry point 54 int number_of_arguments // the number of arguments to pop after the call 55 ); 56 57 protected: 58 // This is the base routine called by the different versions of call_VM. The interpreter 59 // may customize this version by overriding it for its purposes (e.g., to save/restore 60 // additional registers when doing a VM call). 61 // 62 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base 63 // returns the register which contains the thread upon return. If a thread register has been 64 // specified, the return value will correspond to that register. If no last_java_sp is specified 65 // (noreg) than rsp will be used instead. 66 virtual void call_VM_base( // returns the register containing the thread upon return 67 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 68 Register java_thread, // the thread if computed before ; use noreg otherwise 69 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 70 address entry_point, // the entry point 71 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 72 bool check_exceptions // whether to check for pending exceptions after return 73 ); 74 75 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 76 77 // helpers for FPU flag access 78 // tmp is a temporary register, if none is available use noreg 79 void save_rax (Register tmp); 80 void restore_rax(Register tmp); 81 82 public: 83 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 84 85 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 86 // The implementation is only non-empty for the InterpreterMacroAssembler, 87 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 88 virtual void check_and_handle_popframe(Register java_thread); 89 virtual void check_and_handle_earlyret(Register java_thread); 90 91 Address as_Address(AddressLiteral adr); 92 Address as_Address(ArrayAddress adr, Register rscratch); 93 94 // Support for null-checks 95 // 96 // Generates code that causes a null OS exception if the content of reg is null. 97 // If the accessed location is M[reg + offset] and the offset is known, provide the 98 // offset. No explicit code generation is needed if the offset is within a certain 99 // range (0 <= offset <= page_size). 100 101 void null_check(Register reg, int offset = -1); 102 static bool needs_explicit_null_check(intptr_t offset); 103 static bool uses_implicit_null_check(void* address); 104 105 // Required platform-specific helpers for Label::patch_instructions. 106 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 107 void pd_patch_instruction(address branch, address target, const char* file, int line) { 108 unsigned char op = branch[0]; 109 assert(op == 0xE8 /* call */ || 110 op == 0xE9 /* jmp */ || 111 op == 0xEB /* short jmp */ || 112 (op & 0xF0) == 0x70 /* short jcc */ || 113 op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ || 114 op == 0xC7 && branch[1] == 0xF8 /* xbegin */, 115 "Invalid opcode at patch point"); 116 117 if (op == 0xEB || (op & 0xF0) == 0x70) { 118 // short offset operators (jmp and jcc) 119 char* disp = (char*) &branch[1]; 120 int imm8 = target - (address) &disp[1]; 121 guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d", 122 file == nullptr ? "<null>" : file, line); 123 *disp = imm8; 124 } else { 125 int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1]; 126 int imm32 = target - (address) &disp[1]; 127 *disp = imm32; 128 } 129 } 130 131 // The following 4 methods return the offset of the appropriate move instruction 132 133 // Support for fast byte/short loading with zero extension (depending on particular CPU) 134 int load_unsigned_byte(Register dst, Address src); 135 int load_unsigned_short(Register dst, Address src); 136 137 // Support for fast byte/short loading with sign extension (depending on particular CPU) 138 int load_signed_byte(Register dst, Address src); 139 int load_signed_short(Register dst, Address src); 140 141 // Support for sign-extension (hi:lo = extend_sign(lo)) 142 void extend_sign(Register hi, Register lo); 143 144 // Load and store values by size and signed-ness 145 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg); 146 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg); 147 148 // Support for inc/dec with optimal instruction selection depending on value 149 150 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; } 151 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; } 152 void increment(Address dst, int value = 1) { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; } 153 void decrement(Address dst, int value = 1) { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; } 154 155 void decrementl(Address dst, int value = 1); 156 void decrementl(Register reg, int value = 1); 157 158 void decrementq(Register reg, int value = 1); 159 void decrementq(Address dst, int value = 1); 160 161 void incrementl(Address dst, int value = 1); 162 void incrementl(Register reg, int value = 1); 163 164 void incrementq(Register reg, int value = 1); 165 void incrementq(Address dst, int value = 1); 166 167 void incrementl(AddressLiteral dst, Register rscratch = noreg); 168 void incrementl(ArrayAddress dst, Register rscratch); 169 170 void incrementq(AddressLiteral dst, Register rscratch = noreg); 171 172 // Support optimal SSE move instructions. 173 void movflt(XMMRegister dst, XMMRegister src) { 174 if (dst-> encoding() == src->encoding()) return; 175 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; } 176 else { movss (dst, src); return; } 177 } 178 void movflt(XMMRegister dst, Address src) { movss(dst, src); } 179 void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 180 void movflt(Address dst, XMMRegister src) { movss(dst, src); } 181 182 // Move with zero extension 183 void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); } 184 185 void movdbl(XMMRegister dst, XMMRegister src) { 186 if (dst-> encoding() == src->encoding()) return; 187 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; } 188 else { movsd (dst, src); return; } 189 } 190 191 void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 192 193 void movdbl(XMMRegister dst, Address src) { 194 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; } 195 else { movlpd(dst, src); return; } 196 } 197 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); } 198 199 void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) { 200 // Use separate tmp XMM register because caller may 201 // requires src XMM register to be unchanged (as in x86.ad). 202 vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit); 203 movdl(dst, tmp); 204 movswl(dst, dst); 205 } 206 207 void flt16_to_flt(XMMRegister dst, Register src) { 208 movdl(dst, src); 209 vcvtph2ps(dst, dst, Assembler::AVX_128bit); 210 } 211 212 // Alignment 213 void align32(); 214 void align64(); 215 void align(int modulus); 216 void align(int modulus, int target); 217 218 void post_call_nop(); 219 // A 5 byte nop that is safe for patching (see patch_verified_entry) 220 void fat_nop(); 221 222 // Stack frame creation/removal 223 void enter(); 224 void leave(); 225 226 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 227 // The pointer will be loaded into the thread register. 228 void get_thread(Register thread); 229 230 #ifdef _LP64 231 // Support for argument shuffling 232 233 // bias in bytes 234 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0); 235 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0); 236 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0); 237 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0); 238 void move_ptr(VMRegPair src, VMRegPair dst); 239 void object_move(OopMap* map, 240 int oop_handle_offset, 241 int framesize_in_slots, 242 VMRegPair src, 243 VMRegPair dst, 244 bool is_receiver, 245 int* receiver_offset); 246 #endif // _LP64 247 248 // Support for VM calls 249 // 250 // It is imperative that all calls into the VM are handled via the call_VM macros. 251 // They make sure that the stack linkage is setup correctly. call_VM's correspond 252 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 253 254 255 void call_VM(Register oop_result, 256 address entry_point, 257 bool check_exceptions = true); 258 void call_VM(Register oop_result, 259 address entry_point, 260 Register arg_1, 261 bool check_exceptions = true); 262 void call_VM(Register oop_result, 263 address entry_point, 264 Register arg_1, Register arg_2, 265 bool check_exceptions = true); 266 void call_VM(Register oop_result, 267 address entry_point, 268 Register arg_1, Register arg_2, Register arg_3, 269 bool check_exceptions = true); 270 271 // Overloadings with last_Java_sp 272 void call_VM(Register oop_result, 273 Register last_java_sp, 274 address entry_point, 275 int number_of_arguments = 0, 276 bool check_exceptions = true); 277 void call_VM(Register oop_result, 278 Register last_java_sp, 279 address entry_point, 280 Register arg_1, bool 281 check_exceptions = true); 282 void call_VM(Register oop_result, 283 Register last_java_sp, 284 address entry_point, 285 Register arg_1, Register arg_2, 286 bool check_exceptions = true); 287 void call_VM(Register oop_result, 288 Register last_java_sp, 289 address entry_point, 290 Register arg_1, Register arg_2, Register arg_3, 291 bool check_exceptions = true); 292 293 void get_vm_result (Register oop_result, Register thread); 294 void get_vm_result_2(Register metadata_result, Register thread); 295 296 // These always tightly bind to MacroAssembler::call_VM_base 297 // bypassing the virtual implementation 298 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 299 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 300 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 301 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 302 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 303 304 void call_VM_leaf0(address entry_point); 305 void call_VM_leaf(address entry_point, 306 int number_of_arguments = 0); 307 void call_VM_leaf(address entry_point, 308 Register arg_1); 309 void call_VM_leaf(address entry_point, 310 Register arg_1, Register arg_2); 311 void call_VM_leaf(address entry_point, 312 Register arg_1, Register arg_2, Register arg_3); 313 314 void call_VM_leaf(address entry_point, 315 Register arg_1, Register arg_2, Register arg_3, Register arg_4); 316 317 // These always tightly bind to MacroAssembler::call_VM_leaf_base 318 // bypassing the virtual implementation 319 void super_call_VM_leaf(address entry_point); 320 void super_call_VM_leaf(address entry_point, Register arg_1); 321 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 322 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 323 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 324 325 // last Java Frame (fills frame anchor) 326 void set_last_Java_frame(Register thread, 327 Register last_java_sp, 328 Register last_java_fp, 329 address last_java_pc, 330 Register rscratch); 331 332 // thread in the default location (r15_thread on 64bit) 333 void set_last_Java_frame(Register last_java_sp, 334 Register last_java_fp, 335 address last_java_pc, 336 Register rscratch); 337 338 void reset_last_Java_frame(Register thread, bool clear_fp); 339 340 // thread in the default location (r15_thread on 64bit) 341 void reset_last_Java_frame(bool clear_fp); 342 343 // jobjects 344 void clear_jobject_tag(Register possibly_non_local); 345 void resolve_jobject(Register value, Register thread, Register tmp); 346 void resolve_global_jobject(Register value, Register thread, Register tmp); 347 348 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 349 void c2bool(Register x); 350 351 // C++ bool manipulation 352 353 void movbool(Register dst, Address src); 354 void movbool(Address dst, bool boolconst); 355 void movbool(Address dst, Register src); 356 void testbool(Register dst); 357 358 void resolve_oop_handle(Register result, Register tmp); 359 void resolve_weak_handle(Register result, Register tmp); 360 void load_mirror(Register mirror, Register method, Register tmp); 361 void load_method_holder_cld(Register rresult, Register rmethod); 362 363 void load_method_holder(Register holder, Register method); 364 365 // oop manipulations 366 #ifdef _LP64 367 void load_nklass_compact(Register dst, Register src); 368 #endif 369 void load_klass(Register dst, Register src, Register tmp); 370 void store_klass(Register dst, Register src, Register tmp); 371 372 // Compares the Klass pointer of an object to a given Klass (which might be narrow, 373 // depending on UseCompressedClassPointers). 374 void cmp_klass(Register klass, Register dst, Register tmp); 375 376 // Compares the Klass pointer of two objects o1 and o2. Result is in the condition flags. 377 // Uses tmp1 and tmp2 as temporary registers. 378 void cmp_klass(Register src, Register dst, Register tmp1, Register tmp2); 379 380 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 381 Register tmp1, Register thread_tmp); 382 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 383 Register tmp1, Register tmp2, Register tmp3); 384 385 void load_heap_oop(Register dst, Address src, Register tmp1 = noreg, 386 Register thread_tmp = noreg, DecoratorSet decorators = 0); 387 void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg, 388 Register thread_tmp = noreg, DecoratorSet decorators = 0); 389 void store_heap_oop(Address dst, Register val, Register tmp1 = noreg, 390 Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0); 391 392 // Used for storing null. All other oop constants should be 393 // stored using routines that take a jobject. 394 void store_heap_oop_null(Address dst); 395 396 #ifdef _LP64 397 void store_klass_gap(Register dst, Register src); 398 399 // This dummy is to prevent a call to store_heap_oop from 400 // converting a zero (like null) into a Register by giving 401 // the compiler two choices it can't resolve 402 403 void store_heap_oop(Address dst, void* dummy); 404 405 void encode_heap_oop(Register r); 406 void decode_heap_oop(Register r); 407 void encode_heap_oop_not_null(Register r); 408 void decode_heap_oop_not_null(Register r); 409 void encode_heap_oop_not_null(Register dst, Register src); 410 void decode_heap_oop_not_null(Register dst, Register src); 411 412 void set_narrow_oop(Register dst, jobject obj); 413 void set_narrow_oop(Address dst, jobject obj); 414 void cmp_narrow_oop(Register dst, jobject obj); 415 void cmp_narrow_oop(Address dst, jobject obj); 416 417 void encode_klass_not_null(Register r, Register tmp); 418 void decode_klass_not_null(Register r, Register tmp); 419 void encode_and_move_klass_not_null(Register dst, Register src); 420 void decode_and_move_klass_not_null(Register dst, Register src); 421 void set_narrow_klass(Register dst, Klass* k); 422 void set_narrow_klass(Address dst, Klass* k); 423 void cmp_narrow_klass(Register dst, Klass* k); 424 void cmp_narrow_klass(Address dst, Klass* k); 425 426 // if heap base register is used - reinit it with the correct value 427 void reinit_heapbase(); 428 429 DEBUG_ONLY(void verify_heapbase(const char* msg);) 430 431 #endif // _LP64 432 433 // Int division/remainder for Java 434 // (as idivl, but checks for special case as described in JVM spec.) 435 // returns idivl instruction offset for implicit exception handling 436 int corrected_idivl(Register reg); 437 438 // Long division/remainder for Java 439 // (as idivq, but checks for special case as described in JVM spec.) 440 // returns idivq instruction offset for implicit exception handling 441 int corrected_idivq(Register reg); 442 443 void int3(); 444 445 // Long operation macros for a 32bit cpu 446 // Long negation for Java 447 void lneg(Register hi, Register lo); 448 449 // Long multiplication for Java 450 // (destroys contents of eax, ebx, ecx and edx) 451 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y 452 453 // Long shifts for Java 454 // (semantics as described in JVM spec.) 455 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f) 456 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f) 457 458 // Long compare for Java 459 // (semantics as described in JVM spec.) 460 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y) 461 462 463 // misc 464 465 // Sign extension 466 void sign_extend_short(Register reg); 467 void sign_extend_byte(Register reg); 468 469 // Division by power of 2, rounding towards 0 470 void division_with_shift(Register reg, int shift_value); 471 472 #ifndef _LP64 473 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows: 474 // 475 // CF (corresponds to C0) if x < y 476 // PF (corresponds to C2) if unordered 477 // ZF (corresponds to C3) if x = y 478 // 479 // The arguments are in reversed order on the stack (i.e., top of stack is first argument). 480 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code) 481 void fcmp(Register tmp); 482 // Variant of the above which allows y to be further down the stack 483 // and which only pops x and y if specified. If pop_right is 484 // specified then pop_left must also be specified. 485 void fcmp(Register tmp, int index, bool pop_left, bool pop_right); 486 487 // Floating-point comparison for Java 488 // Compares the top-most stack entries on the FPU stack and stores the result in dst. 489 // The arguments are in reversed order on the stack (i.e., top of stack is first argument). 490 // (semantics as described in JVM spec.) 491 void fcmp2int(Register dst, bool unordered_is_less); 492 // Variant of the above which allows y to be further down the stack 493 // and which only pops x and y if specified. If pop_right is 494 // specified then pop_left must also be specified. 495 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right); 496 497 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards) 498 // tmp is a temporary register, if none is available use noreg 499 void fremr(Register tmp); 500 501 // only if +VerifyFPU 502 void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); 503 #endif // !LP64 504 505 // dst = c = a * b + c 506 void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c); 507 void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c); 508 509 void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len); 510 void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len); 511 void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len); 512 void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len); 513 514 515 // same as fcmp2int, but using SSE2 516 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); 517 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); 518 519 // branch to L if FPU flag C2 is set/not set 520 // tmp is a temporary register, if none is available use noreg 521 void jC2 (Register tmp, Label& L); 522 void jnC2(Register tmp, Label& L); 523 524 // Load float value from 'address'. If UseSSE >= 1, the value is loaded into 525 // register xmm0. Otherwise, the value is loaded onto the FPU stack. 526 void load_float(Address src); 527 528 // Store float value to 'address'. If UseSSE >= 1, the value is stored 529 // from register xmm0. Otherwise, the value is stored from the FPU stack. 530 void store_float(Address dst); 531 532 // Load double value from 'address'. If UseSSE >= 2, the value is loaded into 533 // register xmm0. Otherwise, the value is loaded onto the FPU stack. 534 void load_double(Address src); 535 536 // Store double value to 'address'. If UseSSE >= 2, the value is stored 537 // from register xmm0. Otherwise, the value is stored from the FPU stack. 538 void store_double(Address dst); 539 540 #ifndef _LP64 541 // Pop ST (ffree & fincstp combined) 542 void fpop(); 543 544 void empty_FPU_stack(); 545 #endif // !_LP64 546 547 void push_IU_state(); 548 void pop_IU_state(); 549 550 void push_FPU_state(); 551 void pop_FPU_state(); 552 553 void push_CPU_state(); 554 void pop_CPU_state(); 555 556 void push_cont_fastpath(); 557 void pop_cont_fastpath(); 558 559 void inc_held_monitor_count(); 560 void dec_held_monitor_count(); 561 562 DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);) 563 564 // Round up to a power of two 565 void round_to(Register reg, int modulus); 566 567 private: 568 // General purpose and XMM registers potentially clobbered by native code; there 569 // is no need for FPU or AVX opmask related methods because C1/interpreter 570 // - we save/restore FPU state as a whole always 571 // - do not care about AVX-512 opmask 572 static RegSet call_clobbered_gp_registers(); 573 static XMMRegSet call_clobbered_xmm_registers(); 574 575 void push_set(XMMRegSet set, int offset); 576 void pop_set(XMMRegSet set, int offset); 577 578 public: 579 void push_set(RegSet set, int offset = -1); 580 void pop_set(RegSet set, int offset = -1); 581 582 // Push and pop everything that might be clobbered by a native 583 // runtime call. 584 // Only save the lower 64 bits of each vector register. 585 // Additional registers can be excluded in a passed RegSet. 586 void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true); 587 void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true); 588 589 void push_call_clobbered_registers(bool save_fpu = true) { 590 push_call_clobbered_registers_except(RegSet(), save_fpu); 591 } 592 void pop_call_clobbered_registers(bool restore_fpu = true) { 593 pop_call_clobbered_registers_except(RegSet(), restore_fpu); 594 } 595 596 // allocation 597 void tlab_allocate( 598 Register thread, // Current thread 599 Register obj, // result: pointer to object after successful allocation 600 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 601 int con_size_in_bytes, // object size in bytes if known at compile time 602 Register t1, // temp register 603 Register t2, // temp register 604 Label& slow_case // continuation point if fast allocation fails 605 ); 606 void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp); 607 608 // interface method calling 609 void lookup_interface_method(Register recv_klass, 610 Register intf_klass, 611 RegisterOrConstant itable_index, 612 Register method_result, 613 Register scan_temp, 614 Label& no_such_interface, 615 bool return_method = true); 616 617 void lookup_interface_method_stub(Register recv_klass, 618 Register holder_klass, 619 Register resolved_klass, 620 Register method_result, 621 Register scan_temp, 622 Register temp_reg2, 623 Register receiver, 624 int itable_index, 625 Label& L_no_such_interface); 626 627 // virtual method calling 628 void lookup_virtual_method(Register recv_klass, 629 RegisterOrConstant vtable_index, 630 Register method_result); 631 632 // Test sub_klass against super_klass, with fast and slow paths. 633 634 // The fast path produces a tri-state answer: yes / no / maybe-slow. 635 // One of the three labels can be null, meaning take the fall-through. 636 // If super_check_offset is -1, the value is loaded up from super_klass. 637 // No registers are killed, except temp_reg. 638 void check_klass_subtype_fast_path(Register sub_klass, 639 Register super_klass, 640 Register temp_reg, 641 Label* L_success, 642 Label* L_failure, 643 Label* L_slow_path, 644 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 645 646 // The rest of the type check; must be wired to a corresponding fast path. 647 // It does not repeat the fast path logic, so don't use it standalone. 648 // The temp_reg and temp2_reg can be noreg, if no temps are available. 649 // Updates the sub's secondary super cache as necessary. 650 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 651 void check_klass_subtype_slow_path(Register sub_klass, 652 Register super_klass, 653 Register temp_reg, 654 Register temp2_reg, 655 Label* L_success, 656 Label* L_failure, 657 bool set_cond_codes = false); 658 659 // Simplified, combined version, good for typical uses. 660 // Falls through on failure. 661 void check_klass_subtype(Register sub_klass, 662 Register super_klass, 663 Register temp_reg, 664 Label& L_success); 665 666 void clinit_barrier(Register klass, 667 Register thread, 668 Label* L_fast_path = nullptr, 669 Label* L_slow_path = nullptr); 670 671 // method handles (JSR 292) 672 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 673 674 // Debugging 675 676 // only if +VerifyOops 677 void _verify_oop(Register reg, const char* s, const char* file, int line); 678 void _verify_oop_addr(Address addr, const char* s, const char* file, int line); 679 680 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 681 if (VerifyOops) { 682 _verify_oop(reg, s, file, line); 683 } 684 } 685 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 686 if (VerifyOops) { 687 _verify_oop_addr(reg, s, file, line); 688 } 689 } 690 691 // TODO: verify method and klass metadata (compare against vptr?) 692 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 693 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 694 695 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 696 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 697 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 698 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 699 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 700 701 // Verify or restore cpu control state after JNI call 702 void restore_cpu_control_state_after_jni(Register rscratch); 703 704 // prints msg, dumps registers and stops execution 705 void stop(const char* msg); 706 707 // prints msg and continues 708 void warn(const char* msg); 709 710 // dumps registers and other state 711 void print_state(); 712 713 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg); 714 static void debug64(char* msg, int64_t pc, int64_t regs[]); 715 static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip); 716 static void print_state64(int64_t pc, int64_t regs[]); 717 718 void os_breakpoint(); 719 720 void untested() { stop("untested"); } 721 722 void unimplemented(const char* what = ""); 723 724 void should_not_reach_here() { stop("should not reach here"); } 725 726 void print_CPU_state(); 727 728 // Stack overflow checking 729 void bang_stack_with_offset(int offset) { 730 // stack grows down, caller passes positive offset 731 assert(offset > 0, "must bang with negative offset"); 732 movl(Address(rsp, (-offset)), rax); 733 } 734 735 // Writes to stack successive pages until offset reached to check for 736 // stack overflow + shadow pages. Also, clobbers tmp 737 void bang_stack_size(Register size, Register tmp); 738 739 // Check for reserved stack access in method being exited (for JIT) 740 void reserved_stack_check(); 741 742 void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod); 743 744 void verify_tlab(); 745 746 static Condition negate_condition(Condition cond); 747 748 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit 749 // operands. In general the names are modified to avoid hiding the instruction in Assembler 750 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers 751 // here in MacroAssembler. The major exception to this rule is call 752 753 // Arithmetics 754 755 756 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; } 757 void addptr(Address dst, Register src); 758 759 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); } 760 void addptr(Register dst, int32_t src); 761 void addptr(Register dst, Register src); 762 void addptr(Register dst, RegisterOrConstant src) { 763 if (src.is_constant()) addptr(dst, src.as_constant()); 764 else addptr(dst, src.as_register()); 765 } 766 767 void andptr(Register dst, int32_t src); 768 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; } 769 770 #ifdef _LP64 771 using Assembler::andq; 772 void andq(Register dst, AddressLiteral src, Register rscratch = noreg); 773 #endif 774 775 void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg); 776 777 // renamed to drag out the casting of address to int32_t/intptr_t 778 void cmp32(Register src1, int32_t imm); 779 780 void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg); 781 // compare reg - mem, or reg - &mem 782 void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg); 783 784 void cmp32(Register src1, Address src2); 785 786 #ifndef _LP64 787 void cmpklass(Address dst, Metadata* obj); 788 void cmpklass(Register dst, Metadata* obj); 789 void cmpoop(Address dst, jobject obj); 790 #endif // _LP64 791 792 void cmpoop(Register src1, Register src2); 793 void cmpoop(Register src1, Address src2); 794 void cmpoop(Register dst, jobject obj, Register rscratch); 795 796 // NOTE src2 must be the lval. This is NOT an mem-mem compare 797 void cmpptr(Address src1, AddressLiteral src2, Register rscratch); 798 799 void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg); 800 801 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 802 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 803 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 804 805 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 806 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } 807 808 // cmp64 to avoild hiding cmpq 809 void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg); 810 811 void cmpxchgptr(Register reg, Address adr); 812 813 void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg); 814 815 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); } 816 void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); } 817 818 819 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); } 820 821 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); } 822 823 void shlptr(Register dst, int32_t shift); 824 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); } 825 826 void shrptr(Register dst, int32_t shift); 827 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); } 828 829 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); } 830 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); } 831 832 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } 833 834 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } 835 void subptr(Register dst, int32_t src); 836 // Force generation of a 4 byte immediate value even if it fits into 8bit 837 void subptr_imm32(Register dst, int32_t src); 838 void subptr(Register dst, Register src); 839 void subptr(Register dst, RegisterOrConstant src) { 840 if (src.is_constant()) subptr(dst, (int) src.as_constant()); 841 else subptr(dst, src.as_register()); 842 } 843 844 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } 845 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } 846 847 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } 848 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } 849 850 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; } 851 852 853 854 // Helper functions for statistics gathering. 855 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes. 856 void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg); 857 // Unconditional atomic increment. 858 void atomic_incl(Address counter_addr); 859 void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg); 860 #ifdef _LP64 861 void atomic_incq(Address counter_addr); 862 void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg); 863 #endif 864 void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; } 865 void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; } 866 867 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); } 868 void lea(Register dst, AddressLiteral adr); 869 void lea(Address dst, AddressLiteral adr, Register rscratch); 870 871 void leal32(Register dst, Address src) { leal(dst, src); } 872 873 // Import other testl() methods from the parent class or else 874 // they will be hidden by the following overriding declaration. 875 using Assembler::testl; 876 void testl(Address dst, int32_t imm32); 877 void testl(Register dst, int32_t imm32); 878 void testl(Register dst, AddressLiteral src); // requires reachable address 879 using Assembler::testq; 880 void testq(Address dst, int32_t imm32); 881 void testq(Register dst, int32_t imm32); 882 883 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } 884 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } 885 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } 886 void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); } 887 888 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); } 889 void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); } 890 void testptr(Register src1, Register src2); 891 892 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } 893 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } 894 895 // Calls 896 897 void call(Label& L, relocInfo::relocType rtype); 898 void call(Register entry); 899 void call(Address addr) { Assembler::call(addr); } 900 901 // NOTE: this call transfers to the effective address of entry NOT 902 // the address contained by entry. This is because this is more natural 903 // for jumps/calls. 904 void call(AddressLiteral entry, Register rscratch = rax); 905 906 // Emit the CompiledIC call idiom 907 void ic_call(address entry, jint method_index = 0); 908 909 void emit_static_call_stub(); 910 911 // Jumps 912 913 // NOTE: these jumps transfer to the effective address of dst NOT 914 // the address contained by dst. This is because this is more natural 915 // for jumps/calls. 916 void jump(AddressLiteral dst, Register rscratch = noreg); 917 918 void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg); 919 920 // 32bit can do a case table jump in one instruction but we no longer allow the base 921 // to be installed in the Address class. This jump will transfer to the address 922 // contained in the location described by entry (not the address of entry) 923 void jump(ArrayAddress entry, Register rscratch); 924 925 // Floating 926 927 void push_f(XMMRegister r); 928 void pop_f(XMMRegister r); 929 void push_d(XMMRegister r); 930 void pop_d(XMMRegister r); 931 932 void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); } 933 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); } 934 void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 935 936 void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); } 937 void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); } 938 void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 939 940 void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); } 941 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); } 942 void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 943 944 void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); } 945 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); } 946 void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 947 948 #ifndef _LP64 949 void fadd_s(Address src) { Assembler::fadd_s(src); } 950 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); } 951 952 void fldcw(Address src) { Assembler::fldcw(src); } 953 void fldcw(AddressLiteral src); 954 955 void fld_s(int index) { Assembler::fld_s(index); } 956 void fld_s(Address src) { Assembler::fld_s(src); } 957 void fld_s(AddressLiteral src); 958 959 void fld_d(Address src) { Assembler::fld_d(src); } 960 void fld_d(AddressLiteral src); 961 962 void fld_x(Address src) { Assembler::fld_x(src); } 963 void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); } 964 965 void fmul_s(Address src) { Assembler::fmul_s(src); } 966 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); } 967 #endif // !_LP64 968 969 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); } 970 void ldmxcsr(AddressLiteral src, Register rscratch = noreg); 971 972 #ifdef _LP64 973 private: 974 void sha256_AVX2_one_round_compute( 975 Register reg_old_h, 976 Register reg_a, 977 Register reg_b, 978 Register reg_c, 979 Register reg_d, 980 Register reg_e, 981 Register reg_f, 982 Register reg_g, 983 Register reg_h, 984 int iter); 985 void sha256_AVX2_four_rounds_compute_first(int start); 986 void sha256_AVX2_four_rounds_compute_last(int start); 987 void sha256_AVX2_one_round_and_sched( 988 XMMRegister xmm_0, /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */ 989 XMMRegister xmm_1, /* ymm5 */ /* full cycle is 16 iterations */ 990 XMMRegister xmm_2, /* ymm6 */ 991 XMMRegister xmm_3, /* ymm7 */ 992 Register reg_a, /* == eax on 0 iteration, then rotate 8 register right on each next iteration */ 993 Register reg_b, /* ebx */ /* full cycle is 8 iterations */ 994 Register reg_c, /* edi */ 995 Register reg_d, /* esi */ 996 Register reg_e, /* r8d */ 997 Register reg_f, /* r9d */ 998 Register reg_g, /* r10d */ 999 Register reg_h, /* r11d */ 1000 int iter); 1001 1002 void addm(int disp, Register r1, Register r2); 1003 1004 void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d, 1005 Register e, Register f, Register g, Register h, int iteration); 1006 1007 void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1008 Register a, Register b, Register c, Register d, Register e, Register f, 1009 Register g, Register h, int iteration); 1010 1011 void addmq(int disp, Register r1, Register r2); 1012 public: 1013 void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0, 1014 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4, 1015 Register buf, Register state, Register ofs, Register limit, Register rsp, 1016 bool multi_block, XMMRegister shuf_mask); 1017 void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0, 1018 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4, 1019 Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block, 1020 XMMRegister shuf_mask); 1021 #endif // _LP64 1022 1023 void fast_md5(Register buf, Address state, Address ofs, Address limit, 1024 bool multi_block); 1025 1026 void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0, 1027 XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask, 1028 Register buf, Register state, Register ofs, Register limit, Register rsp, 1029 bool multi_block); 1030 1031 #ifdef _LP64 1032 void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0, 1033 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4, 1034 Register buf, Register state, Register ofs, Register limit, Register rsp, 1035 bool multi_block, XMMRegister shuf_mask); 1036 #else 1037 void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0, 1038 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4, 1039 Register buf, Register state, Register ofs, Register limit, Register rsp, 1040 bool multi_block); 1041 #endif 1042 1043 void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1044 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1045 Register rax, Register rcx, Register rdx, Register tmp); 1046 1047 #ifndef _LP64 1048 private: 1049 // Initialized in macroAssembler_x86_constants.cpp 1050 static address ONES; 1051 static address L_2IL0FLOATPACKET_0; 1052 static address PI4_INV; 1053 static address PI4X3; 1054 static address PI4X4; 1055 1056 public: 1057 void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1058 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1059 Register rax, Register rcx, Register rdx, Register tmp1); 1060 1061 void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1062 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1063 Register rax, Register rcx, Register rdx, Register tmp); 1064 1065 void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, 1066 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx, 1067 Register rdx, Register tmp); 1068 1069 void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1070 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1071 Register rax, Register rbx, Register rdx); 1072 1073 void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1074 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1075 Register rax, Register rcx, Register rdx, Register tmp); 1076 1077 void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx, 1078 Register edx, Register ebx, Register esi, Register edi, 1079 Register ebp, Register esp); 1080 1081 void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx, 1082 Register esi, Register edi, Register ebp, Register esp); 1083 1084 void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx, 1085 Register edx, Register ebx, Register esi, Register edi, 1086 Register ebp, Register esp); 1087 1088 void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, 1089 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, 1090 Register rax, Register rcx, Register rdx, Register tmp); 1091 #endif // !_LP64 1092 1093 private: 1094 1095 // these are private because users should be doing movflt/movdbl 1096 1097 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); } 1098 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); } 1099 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); } 1100 void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1101 1102 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); } 1103 void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1104 1105 public: 1106 1107 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); } 1108 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); } 1109 void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1110 1111 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); } 1112 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); } 1113 void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1114 1115 void addpd(XMMRegister dst, XMMRegister src) { Assembler::addpd(dst, src); } 1116 void addpd(XMMRegister dst, Address src) { Assembler::addpd(dst, src); } 1117 void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1118 1119 using Assembler::vbroadcastsd; 1120 void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1121 1122 using Assembler::vbroadcastss; 1123 void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1124 1125 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); } 1126 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); } 1127 void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1128 1129 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); } 1130 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); } 1131 void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1132 1133 // Move Unaligned Double Quadword 1134 void movdqu(Address dst, XMMRegister src); 1135 void movdqu(XMMRegister dst, XMMRegister src); 1136 void movdqu(XMMRegister dst, Address src); 1137 void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1138 1139 void kmovwl(Register dst, KRegister src) { Assembler::kmovwl(dst, src); } 1140 void kmovwl(Address dst, KRegister src) { Assembler::kmovwl(dst, src); } 1141 void kmovwl(KRegister dst, KRegister src) { Assembler::kmovwl(dst, src); } 1142 void kmovwl(KRegister dst, Register src) { Assembler::kmovwl(dst, src); } 1143 void kmovwl(KRegister dst, Address src) { Assembler::kmovwl(dst, src); } 1144 void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg); 1145 1146 void kmovql(KRegister dst, KRegister src) { Assembler::kmovql(dst, src); } 1147 void kmovql(KRegister dst, Register src) { Assembler::kmovql(dst, src); } 1148 void kmovql(Register dst, KRegister src) { Assembler::kmovql(dst, src); } 1149 void kmovql(KRegister dst, Address src) { Assembler::kmovql(dst, src); } 1150 void kmovql(Address dst, KRegister src) { Assembler::kmovql(dst, src); } 1151 void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg); 1152 1153 // Safe move operation, lowers down to 16bit moves for targets supporting 1154 // AVX512F feature and 64bit moves for targets supporting AVX512BW feature. 1155 void kmov(Address dst, KRegister src); 1156 void kmov(KRegister dst, Address src); 1157 void kmov(KRegister dst, KRegister src); 1158 void kmov(Register dst, KRegister src); 1159 void kmov(KRegister dst, Register src); 1160 1161 using Assembler::movddup; 1162 void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1163 1164 using Assembler::vmovddup; 1165 void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1166 1167 // AVX Unaligned forms 1168 void vmovdqu(Address dst, XMMRegister src); 1169 void vmovdqu(XMMRegister dst, Address src); 1170 void vmovdqu(XMMRegister dst, XMMRegister src); 1171 void vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1172 void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1173 1174 // AVX512 Unaligned 1175 void evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len); 1176 void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len); 1177 1178 void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); } 1179 void evmovdqub(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); } 1180 1181 void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { 1182 if (dst->encoding() != src->encoding() || mask != k0) { 1183 Assembler::evmovdqub(dst, mask, src, merge, vector_len); 1184 } 1185 } 1186 void evmovdqub(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); } 1187 void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); } 1188 void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1189 1190 void evmovdquw(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); } 1191 void evmovdquw(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); } 1192 1193 void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { 1194 if (dst->encoding() != src->encoding() || mask != k0) { 1195 Assembler::evmovdquw(dst, mask, src, merge, vector_len); 1196 } 1197 } 1198 void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); } 1199 void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); } 1200 void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1201 1202 void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) { 1203 if (dst->encoding() != src->encoding()) { 1204 Assembler::evmovdqul(dst, src, vector_len); 1205 } 1206 } 1207 void evmovdqul(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); } 1208 void evmovdqul(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); } 1209 1210 void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { 1211 if (dst->encoding() != src->encoding() || mask != k0) { 1212 Assembler::evmovdqul(dst, mask, src, merge, vector_len); 1213 } 1214 } 1215 void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); } 1216 void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); } 1217 void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1218 1219 void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { 1220 if (dst->encoding() != src->encoding()) { 1221 Assembler::evmovdquq(dst, src, vector_len); 1222 } 1223 } 1224 void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); } 1225 void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); } 1226 void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1227 1228 void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { 1229 if (dst->encoding() != src->encoding() || mask != k0) { 1230 Assembler::evmovdquq(dst, mask, src, merge, vector_len); 1231 } 1232 } 1233 void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); } 1234 void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); } 1235 void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1236 1237 // Move Aligned Double Quadword 1238 void movdqa(XMMRegister dst, XMMRegister src) { Assembler::movdqa(dst, src); } 1239 void movdqa(XMMRegister dst, Address src) { Assembler::movdqa(dst, src); } 1240 void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1241 1242 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); } 1243 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); } 1244 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); } 1245 void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1246 1247 void mulpd(XMMRegister dst, XMMRegister src) { Assembler::mulpd(dst, src); } 1248 void mulpd(XMMRegister dst, Address src) { Assembler::mulpd(dst, src); } 1249 void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1250 1251 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); } 1252 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); } 1253 void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1254 1255 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); } 1256 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); } 1257 void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1258 1259 // Carry-Less Multiplication Quadword 1260 void pclmulldq(XMMRegister dst, XMMRegister src) { 1261 // 0x00 - multiply lower 64 bits [0:63] 1262 Assembler::pclmulqdq(dst, src, 0x00); 1263 } 1264 void pclmulhdq(XMMRegister dst, XMMRegister src) { 1265 // 0x11 - multiply upper 64 bits [64:127] 1266 Assembler::pclmulqdq(dst, src, 0x11); 1267 } 1268 1269 void pcmpeqb(XMMRegister dst, XMMRegister src); 1270 void pcmpeqw(XMMRegister dst, XMMRegister src); 1271 1272 void pcmpestri(XMMRegister dst, Address src, int imm8); 1273 void pcmpestri(XMMRegister dst, XMMRegister src, int imm8); 1274 1275 void pmovzxbw(XMMRegister dst, XMMRegister src); 1276 void pmovzxbw(XMMRegister dst, Address src); 1277 1278 void pmovmskb(Register dst, XMMRegister src); 1279 1280 void ptest(XMMRegister dst, XMMRegister src); 1281 1282 void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); } 1283 void roundsd(XMMRegister dst, Address src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); } 1284 void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg); 1285 1286 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); } 1287 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); } 1288 void sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1289 1290 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); } 1291 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); } 1292 void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1293 1294 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); } 1295 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); } 1296 void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1297 1298 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); } 1299 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); } 1300 void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1301 1302 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); } 1303 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); } 1304 void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1305 1306 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values 1307 void xorpd(XMMRegister dst, XMMRegister src); 1308 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); } 1309 void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1310 1311 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values 1312 void xorps(XMMRegister dst, XMMRegister src); 1313 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); } 1314 void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1315 1316 // Shuffle Bytes 1317 void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); } 1318 void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); } 1319 void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1320 // AVX 3-operands instructions 1321 1322 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); } 1323 void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); } 1324 void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1325 1326 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); } 1327 void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); } 1328 void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1329 1330 void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg); 1331 void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg); 1332 1333 void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1334 void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1335 void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1336 1337 void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1338 void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1339 1340 void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); } 1341 void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); } 1342 void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1343 1344 void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); } 1345 void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); } 1346 void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1347 1348 using Assembler::vpbroadcastd; 1349 void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1350 1351 using Assembler::vpbroadcastq; 1352 void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg); 1353 1354 void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1355 1356 void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1357 void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1358 1359 // Vector compares 1360 void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) { 1361 Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len); 1362 } 1363 void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg); 1364 1365 void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) { 1366 Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len); 1367 } 1368 void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg); 1369 1370 void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) { 1371 Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len); 1372 } 1373 void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg); 1374 1375 void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) { 1376 Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len); 1377 } 1378 void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg); 1379 1380 void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len); 1381 1382 // Emit comparison instruction for the specified comparison predicate. 1383 void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len); 1384 void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len); 1385 1386 void vpmovzxbw(XMMRegister dst, Address src, int vector_len); 1387 void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); } 1388 1389 void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit); 1390 1391 void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1392 void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1393 1394 void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); } 1395 void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); } 1396 void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1397 1398 void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1399 void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1400 1401 void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); 1402 void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); 1403 1404 void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len); 1405 void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len); 1406 1407 void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len); 1408 void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len); 1409 1410 void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1411 if (!is_varshift) { 1412 Assembler::evpsllw(dst, mask, nds, src, merge, vector_len); 1413 } else { 1414 Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len); 1415 } 1416 } 1417 void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1418 if (!is_varshift) { 1419 Assembler::evpslld(dst, mask, nds, src, merge, vector_len); 1420 } else { 1421 Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len); 1422 } 1423 } 1424 void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1425 if (!is_varshift) { 1426 Assembler::evpsllq(dst, mask, nds, src, merge, vector_len); 1427 } else { 1428 Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len); 1429 } 1430 } 1431 void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1432 if (!is_varshift) { 1433 Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len); 1434 } else { 1435 Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len); 1436 } 1437 } 1438 void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1439 if (!is_varshift) { 1440 Assembler::evpsrld(dst, mask, nds, src, merge, vector_len); 1441 } else { 1442 Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len); 1443 } 1444 } 1445 void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1446 if (!is_varshift) { 1447 Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len); 1448 } else { 1449 Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len); 1450 } 1451 } 1452 void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1453 if (!is_varshift) { 1454 Assembler::evpsraw(dst, mask, nds, src, merge, vector_len); 1455 } else { 1456 Assembler::evpsravw(dst, mask, nds, src, merge, vector_len); 1457 } 1458 } 1459 void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1460 if (!is_varshift) { 1461 Assembler::evpsrad(dst, mask, nds, src, merge, vector_len); 1462 } else { 1463 Assembler::evpsravd(dst, mask, nds, src, merge, vector_len); 1464 } 1465 } 1466 void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) { 1467 if (!is_varshift) { 1468 Assembler::evpsraq(dst, mask, nds, src, merge, vector_len); 1469 } else { 1470 Assembler::evpsravq(dst, mask, nds, src, merge, vector_len); 1471 } 1472 } 1473 1474 void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1475 void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1476 void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1477 void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1478 1479 void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len); 1480 void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len); 1481 1482 void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len); 1483 void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len); 1484 1485 void vptest(XMMRegister dst, XMMRegister src); 1486 void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); } 1487 1488 void punpcklbw(XMMRegister dst, XMMRegister src); 1489 void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); } 1490 1491 void pshufd(XMMRegister dst, Address src, int mode); 1492 void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); } 1493 1494 void pshuflw(XMMRegister dst, XMMRegister src, int mode); 1495 void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); } 1496 1497 void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); } 1498 void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); } 1499 void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1500 1501 void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); } 1502 void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); } 1503 void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1504 1505 void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1506 1507 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); } 1508 void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); } 1509 void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1510 1511 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); } 1512 void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); } 1513 void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1514 1515 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); } 1516 void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); } 1517 void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1518 1519 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); } 1520 void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); } 1521 void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1522 1523 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); } 1524 void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); } 1525 void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1526 1527 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); } 1528 void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); } 1529 void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1530 1531 void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1532 void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg); 1533 1534 // AVX Vector instructions 1535 1536 void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); } 1537 void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); } 1538 void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1539 1540 void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); } 1541 void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); } 1542 void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1543 1544 void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 1545 if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2 1546 Assembler::vpxor(dst, nds, src, vector_len); 1547 else 1548 Assembler::vxorpd(dst, nds, src, vector_len); 1549 } 1550 void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 1551 if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2 1552 Assembler::vpxor(dst, nds, src, vector_len); 1553 else 1554 Assembler::vxorpd(dst, nds, src, vector_len); 1555 } 1556 void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1557 1558 // Simple version for AVX2 256bit vectors 1559 void vpxor(XMMRegister dst, XMMRegister src) { 1560 assert(UseAVX >= 2, "Should be at least AVX2"); 1561 Assembler::vpxor(dst, dst, src, AVX_256bit); 1562 } 1563 void vpxor(XMMRegister dst, Address src) { 1564 assert(UseAVX >= 2, "Should be at least AVX2"); 1565 Assembler::vpxor(dst, dst, src, AVX_256bit); 1566 } 1567 1568 void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); } 1569 void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1570 1571 void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) { 1572 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1573 Assembler::vinserti32x4(dst, nds, src, imm8); 1574 } else if (UseAVX > 1) { 1575 // vinserti128 is available only in AVX2 1576 Assembler::vinserti128(dst, nds, src, imm8); 1577 } else { 1578 Assembler::vinsertf128(dst, nds, src, imm8); 1579 } 1580 } 1581 1582 void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) { 1583 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1584 Assembler::vinserti32x4(dst, nds, src, imm8); 1585 } else if (UseAVX > 1) { 1586 // vinserti128 is available only in AVX2 1587 Assembler::vinserti128(dst, nds, src, imm8); 1588 } else { 1589 Assembler::vinsertf128(dst, nds, src, imm8); 1590 } 1591 } 1592 1593 void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) { 1594 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1595 Assembler::vextracti32x4(dst, src, imm8); 1596 } else if (UseAVX > 1) { 1597 // vextracti128 is available only in AVX2 1598 Assembler::vextracti128(dst, src, imm8); 1599 } else { 1600 Assembler::vextractf128(dst, src, imm8); 1601 } 1602 } 1603 1604 void vextracti128(Address dst, XMMRegister src, uint8_t imm8) { 1605 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1606 Assembler::vextracti32x4(dst, src, imm8); 1607 } else if (UseAVX > 1) { 1608 // vextracti128 is available only in AVX2 1609 Assembler::vextracti128(dst, src, imm8); 1610 } else { 1611 Assembler::vextractf128(dst, src, imm8); 1612 } 1613 } 1614 1615 // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers 1616 void vinserti128_high(XMMRegister dst, XMMRegister src) { 1617 vinserti128(dst, dst, src, 1); 1618 } 1619 void vinserti128_high(XMMRegister dst, Address src) { 1620 vinserti128(dst, dst, src, 1); 1621 } 1622 void vextracti128_high(XMMRegister dst, XMMRegister src) { 1623 vextracti128(dst, src, 1); 1624 } 1625 void vextracti128_high(Address dst, XMMRegister src) { 1626 vextracti128(dst, src, 1); 1627 } 1628 1629 void vinsertf128_high(XMMRegister dst, XMMRegister src) { 1630 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1631 Assembler::vinsertf32x4(dst, dst, src, 1); 1632 } else { 1633 Assembler::vinsertf128(dst, dst, src, 1); 1634 } 1635 } 1636 1637 void vinsertf128_high(XMMRegister dst, Address src) { 1638 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1639 Assembler::vinsertf32x4(dst, dst, src, 1); 1640 } else { 1641 Assembler::vinsertf128(dst, dst, src, 1); 1642 } 1643 } 1644 1645 void vextractf128_high(XMMRegister dst, XMMRegister src) { 1646 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1647 Assembler::vextractf32x4(dst, src, 1); 1648 } else { 1649 Assembler::vextractf128(dst, src, 1); 1650 } 1651 } 1652 1653 void vextractf128_high(Address dst, XMMRegister src) { 1654 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1655 Assembler::vextractf32x4(dst, src, 1); 1656 } else { 1657 Assembler::vextractf128(dst, src, 1); 1658 } 1659 } 1660 1661 // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers 1662 void vinserti64x4_high(XMMRegister dst, XMMRegister src) { 1663 Assembler::vinserti64x4(dst, dst, src, 1); 1664 } 1665 void vinsertf64x4_high(XMMRegister dst, XMMRegister src) { 1666 Assembler::vinsertf64x4(dst, dst, src, 1); 1667 } 1668 void vextracti64x4_high(XMMRegister dst, XMMRegister src) { 1669 Assembler::vextracti64x4(dst, src, 1); 1670 } 1671 void vextractf64x4_high(XMMRegister dst, XMMRegister src) { 1672 Assembler::vextractf64x4(dst, src, 1); 1673 } 1674 void vextractf64x4_high(Address dst, XMMRegister src) { 1675 Assembler::vextractf64x4(dst, src, 1); 1676 } 1677 void vinsertf64x4_high(XMMRegister dst, Address src) { 1678 Assembler::vinsertf64x4(dst, dst, src, 1); 1679 } 1680 1681 // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers 1682 void vinserti128_low(XMMRegister dst, XMMRegister src) { 1683 vinserti128(dst, dst, src, 0); 1684 } 1685 void vinserti128_low(XMMRegister dst, Address src) { 1686 vinserti128(dst, dst, src, 0); 1687 } 1688 void vextracti128_low(XMMRegister dst, XMMRegister src) { 1689 vextracti128(dst, src, 0); 1690 } 1691 void vextracti128_low(Address dst, XMMRegister src) { 1692 vextracti128(dst, src, 0); 1693 } 1694 1695 void vinsertf128_low(XMMRegister dst, XMMRegister src) { 1696 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1697 Assembler::vinsertf32x4(dst, dst, src, 0); 1698 } else { 1699 Assembler::vinsertf128(dst, dst, src, 0); 1700 } 1701 } 1702 1703 void vinsertf128_low(XMMRegister dst, Address src) { 1704 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1705 Assembler::vinsertf32x4(dst, dst, src, 0); 1706 } else { 1707 Assembler::vinsertf128(dst, dst, src, 0); 1708 } 1709 } 1710 1711 void vextractf128_low(XMMRegister dst, XMMRegister src) { 1712 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1713 Assembler::vextractf32x4(dst, src, 0); 1714 } else { 1715 Assembler::vextractf128(dst, src, 0); 1716 } 1717 } 1718 1719 void vextractf128_low(Address dst, XMMRegister src) { 1720 if (UseAVX > 2 && VM_Version::supports_avx512novl()) { 1721 Assembler::vextractf32x4(dst, src, 0); 1722 } else { 1723 Assembler::vextractf128(dst, src, 0); 1724 } 1725 } 1726 1727 // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers 1728 void vinserti64x4_low(XMMRegister dst, XMMRegister src) { 1729 Assembler::vinserti64x4(dst, dst, src, 0); 1730 } 1731 void vinsertf64x4_low(XMMRegister dst, XMMRegister src) { 1732 Assembler::vinsertf64x4(dst, dst, src, 0); 1733 } 1734 void vextracti64x4_low(XMMRegister dst, XMMRegister src) { 1735 Assembler::vextracti64x4(dst, src, 0); 1736 } 1737 void vextractf64x4_low(XMMRegister dst, XMMRegister src) { 1738 Assembler::vextractf64x4(dst, src, 0); 1739 } 1740 void vextractf64x4_low(Address dst, XMMRegister src) { 1741 Assembler::vextractf64x4(dst, src, 0); 1742 } 1743 void vinsertf64x4_low(XMMRegister dst, Address src) { 1744 Assembler::vinsertf64x4(dst, dst, src, 0); 1745 } 1746 1747 // Carry-Less Multiplication Quadword 1748 void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) { 1749 // 0x00 - multiply lower 64 bits [0:63] 1750 Assembler::vpclmulqdq(dst, nds, src, 0x00); 1751 } 1752 void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) { 1753 // 0x11 - multiply upper 64 bits [64:127] 1754 Assembler::vpclmulqdq(dst, nds, src, 0x11); 1755 } 1756 void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) { 1757 // 0x10 - multiply nds[0:63] and src[64:127] 1758 Assembler::vpclmulqdq(dst, nds, src, 0x10); 1759 } 1760 void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) { 1761 //0x01 - multiply nds[64:127] and src[0:63] 1762 Assembler::vpclmulqdq(dst, nds, src, 0x01); 1763 } 1764 1765 void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 1766 // 0x00 - multiply lower 64 bits [0:63] 1767 Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len); 1768 } 1769 void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 1770 // 0x11 - multiply upper 64 bits [64:127] 1771 Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len); 1772 } 1773 1774 // AVX-512 mask operations. 1775 void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2); 1776 void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2); 1777 void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg); 1778 void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2); 1779 void kortest(uint masklen, KRegister src1, KRegister src2); 1780 void ktest(uint masklen, KRegister src1, KRegister src2); 1781 1782 void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1783 void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1784 1785 void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1786 void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1787 1788 void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1789 void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1790 1791 void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); 1792 void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); 1793 1794 void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc); 1795 void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc); 1796 void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc); 1797 void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc); 1798 1799 using Assembler::evpandq; 1800 void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1801 1802 using Assembler::evpaddq; 1803 void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg); 1804 1805 using Assembler::evporq; 1806 void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg); 1807 1808 using Assembler::vpternlogq; 1809 void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg); 1810 1811 void cmov32( Condition cc, Register dst, Address src); 1812 void cmov32( Condition cc, Register dst, Register src); 1813 1814 void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); } 1815 1816 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); } 1817 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); } 1818 1819 void movoop(Register dst, jobject obj); 1820 void movoop(Address dst, jobject obj, Register rscratch); 1821 1822 void mov_metadata(Register dst, Metadata* obj); 1823 void mov_metadata(Address dst, Metadata* obj, Register rscratch); 1824 1825 void movptr(Register dst, Register src); 1826 void movptr(Register dst, Address src); 1827 void movptr(Register dst, AddressLiteral src); 1828 void movptr(Register dst, ArrayAddress src); 1829 void movptr(Register dst, intptr_t src); 1830 void movptr(Address dst, Register src); 1831 void movptr(Address dst, int32_t imm); 1832 void movptr(Address dst, intptr_t src, Register rscratch); 1833 void movptr(ArrayAddress dst, Register src, Register rscratch); 1834 1835 void movptr(Register dst, RegisterOrConstant src) { 1836 if (src.is_constant()) movptr(dst, src.as_constant()); 1837 else movptr(dst, src.as_register()); 1838 } 1839 1840 1841 // to avoid hiding movl 1842 void mov32(Register dst, AddressLiteral src); 1843 void mov32(AddressLiteral dst, Register src, Register rscratch = noreg); 1844 1845 // Import other mov() methods from the parent class or else 1846 // they will be hidden by the following overriding declaration. 1847 using Assembler::movdl; 1848 void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1849 1850 using Assembler::movq; 1851 void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg); 1852 1853 // Can push value or effective address 1854 void pushptr(AddressLiteral src, Register rscratch); 1855 1856 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); } 1857 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); } 1858 1859 void pushoop(jobject obj, Register rscratch); 1860 void pushklass(Metadata* obj, Register rscratch); 1861 1862 // sign extend as need a l to ptr sized element 1863 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); } 1864 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); } 1865 1866 1867 public: 1868 // clear memory of size 'cnt' qwords, starting at 'base'; 1869 // if 'is_large' is set, do not try to produce short loop 1870 void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg); 1871 1872 // clear memory initialization sequence for constant size; 1873 void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg); 1874 1875 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers 1876 void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg); 1877 1878 // Fill primitive arrays 1879 void generate_fill(BasicType t, bool aligned, 1880 Register to, Register value, Register count, 1881 Register rtmp, XMMRegister xtmp); 1882 1883 void encode_iso_array(Register src, Register dst, Register len, 1884 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3, 1885 XMMRegister tmp4, Register tmp5, Register result, bool ascii); 1886 1887 #ifdef _LP64 1888 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2); 1889 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1890 Register y, Register y_idx, Register z, 1891 Register carry, Register product, 1892 Register idx, Register kdx); 1893 void multiply_add_128_x_128(Register x_xstart, Register y, Register z, 1894 Register yz_idx, Register idx, 1895 Register carry, Register product, int offset); 1896 void multiply_128_x_128_bmi2_loop(Register y, Register z, 1897 Register carry, Register carry2, 1898 Register idx, Register jdx, 1899 Register yz_idx1, Register yz_idx2, 1900 Register tmp, Register tmp3, Register tmp4); 1901 void multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 1902 Register yz_idx, Register idx, Register jdx, 1903 Register carry, Register product, 1904 Register carry2); 1905 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen, 1906 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5); 1907 void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3, 1908 Register tmp4, Register tmp5, Register rdxReg, Register raxReg); 1909 void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, 1910 Register tmp2); 1911 void multiply_add_64(Register sum, Register op1, Register op2, Register carry, 1912 Register rdxReg, Register raxReg); 1913 void add_one_64(Register z, Register zlen, Register carry, Register tmp1); 1914 void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, 1915 Register tmp3, Register tmp4); 1916 void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, 1917 Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg); 1918 1919 void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1, 1920 Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, 1921 Register raxReg); 1922 void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1, 1923 Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, 1924 Register raxReg); 1925 void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 1926 Register result, Register tmp1, Register tmp2, 1927 XMMRegister vec1, XMMRegister vec2, XMMRegister vec3); 1928 #endif 1929 1930 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1931 void update_byte_crc32(Register crc, Register val, Register table); 1932 void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp); 1933 1934 1935 #ifdef _LP64 1936 void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2); 1937 void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos, 1938 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 1939 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup); 1940 #endif // _LP64 1941 1942 // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic 1943 // Note on a naming convention: 1944 // Prefix w = register only used on a Westmere+ architecture 1945 // Prefix n = register only used on a Nehalem architecture 1946 #ifdef _LP64 1947 void crc32c_ipl_alg4(Register in_out, uint32_t n, 1948 Register tmp1, Register tmp2, Register tmp3); 1949 #else 1950 void crc32c_ipl_alg4(Register in_out, uint32_t n, 1951 Register tmp1, Register tmp2, Register tmp3, 1952 XMMRegister xtmp1, XMMRegister xtmp2); 1953 #endif 1954 void crc32c_pclmulqdq(XMMRegister w_xtmp1, 1955 Register in_out, 1956 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 1957 XMMRegister w_xtmp2, 1958 Register tmp1, 1959 Register n_tmp2, Register n_tmp3); 1960 void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 1961 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 1962 Register tmp1, Register tmp2, 1963 Register n_tmp3); 1964 void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 1965 Register in_out1, Register in_out2, Register in_out3, 1966 Register tmp1, Register tmp2, Register tmp3, 1967 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 1968 Register tmp4, Register tmp5, 1969 Register n_tmp6); 1970 void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 1971 Register tmp1, Register tmp2, Register tmp3, 1972 Register tmp4, Register tmp5, Register tmp6, 1973 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 1974 bool is_pclmulqdq_supported); 1975 // Fold 128-bit data chunk 1976 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset); 1977 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf); 1978 #ifdef _LP64 1979 // Fold 512-bit data chunk 1980 void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset); 1981 #endif // _LP64 1982 // Fold 8-bit data 1983 void fold_8bit_crc32(Register crc, Register table, Register tmp); 1984 void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp); 1985 1986 // Compress char[] array to byte[]. 1987 void char_array_compress(Register src, Register dst, Register len, 1988 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3, 1989 XMMRegister tmp4, Register tmp5, Register result, 1990 KRegister mask1 = knoreg, KRegister mask2 = knoreg); 1991 1992 // Inflate byte[] array to char[]. 1993 void byte_array_inflate(Register src, Register dst, Register len, 1994 XMMRegister tmp1, Register tmp2, KRegister mask = knoreg); 1995 1996 void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 1997 Register length, Register temp, int vec_enc); 1998 1999 void fill64_masked(uint shift, Register dst, int disp, 2000 XMMRegister xmm, KRegister mask, Register length, 2001 Register temp, bool use64byteVector = false); 2002 2003 void fill32_masked(uint shift, Register dst, int disp, 2004 XMMRegister xmm, KRegister mask, Register length, 2005 Register temp); 2006 2007 void fill32(Address dst, XMMRegister xmm); 2008 2009 void fill32(Register dst, int disp, XMMRegister xmm); 2010 2011 void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false); 2012 2013 void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false); 2014 2015 #ifdef _LP64 2016 void convert_f2i(Register dst, XMMRegister src); 2017 void convert_d2i(Register dst, XMMRegister src); 2018 void convert_f2l(Register dst, XMMRegister src); 2019 void convert_d2l(Register dst, XMMRegister src); 2020 void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx); 2021 void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx); 2022 2023 void cache_wb(Address line); 2024 void cache_wbsync(bool is_pre); 2025 2026 #ifdef COMPILER2_OR_JVMCI 2027 void generate_fill_avx3(BasicType type, Register to, Register value, 2028 Register count, Register rtmp, XMMRegister xtmp); 2029 #endif // COMPILER2_OR_JVMCI 2030 #endif // _LP64 2031 2032 void vallones(XMMRegister dst, int vector_len); 2033 2034 void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg); 2035 2036 void fast_lock_impl(Register obj, Register hdr, Register thread, Register tmp, Label& slow); 2037 void fast_unlock_impl(Register obj, Register hdr, Register tmp, Label& slow); 2038 }; 2039 2040 /** 2041 * class SkipIfEqual: 2042 * 2043 * Instantiating this class will result in assembly code being output that will 2044 * jump around any code emitted between the creation of the instance and it's 2045 * automatic destruction at the end of a scope block, depending on the value of 2046 * the flag passed to the constructor, which will be checked at run-time. 2047 */ 2048 class SkipIfEqual { 2049 private: 2050 MacroAssembler* _masm; 2051 Label _label; 2052 2053 public: 2054 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value, Register rscratch); 2055 ~SkipIfEqual(); 2056 }; 2057 2058 #endif // CPU_X86_MACROASSEMBLER_X86_HPP --- EOF ---