1 /*
   2  * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nativeInst.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/compiledICHolder.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "prims/methodHandles.hpp"
  42 #include "runtime/jniHandles.hpp"
  43 #include "runtime/safepointMechanism.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "runtime/vm_version.hpp"
  49 #include "utilities/align.hpp"
  50 #include "vmreg_x86.inline.hpp"
  51 #ifdef COMPILER1
  52 #include "c1/c1_Runtime1.hpp"
  53 #endif
  54 #ifdef COMPILER2
  55 #include "opto/runtime.hpp"
  56 #endif
  57 
  58 #define __ masm->
  59 
  60 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  61 
  62 class RegisterSaver {
  63   // Capture info about frame layout
  64 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  65   enum layout {
  66                 fpu_state_off = 0,
  67                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  68                 st0_off, st0H_off,
  69                 st1_off, st1H_off,
  70                 st2_off, st2H_off,
  71                 st3_off, st3H_off,
  72                 st4_off, st4H_off,
  73                 st5_off, st5H_off,
  74                 st6_off, st6H_off,
  75                 st7_off, st7H_off,
  76                 xmm_off,
  77                 DEF_XMM_OFFS(0),
  78                 DEF_XMM_OFFS(1),
  79                 DEF_XMM_OFFS(2),
  80                 DEF_XMM_OFFS(3),
  81                 DEF_XMM_OFFS(4),
  82                 DEF_XMM_OFFS(5),
  83                 DEF_XMM_OFFS(6),
  84                 DEF_XMM_OFFS(7),
  85                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  86                 rdi_off,
  87                 rsi_off,
  88                 ignore_off,  // extra copy of rbp,
  89                 rsp_off,
  90                 rbx_off,
  91                 rdx_off,
  92                 rcx_off,
  93                 rax_off,
  94                 // The frame sender code expects that rbp will be in the "natural" place and
  95                 // will override any oopMap setting for it. We must therefore force the layout
  96                 // so that it agrees with the frame sender code.
  97                 rbp_off,
  98                 return_off,      // slot for return address
  99                 reg_save_size };
 100   enum { FPU_regs_live = flags_off - fpu_state_end };
 101 
 102   public:
 103 
 104   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
 105                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
 106   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 107 
 108   static int rax_offset() { return rax_off; }
 109   static int rbx_offset() { return rbx_off; }
 110 
 111   // Offsets into the register save area
 112   // Used by deoptimization when it is managing result register
 113   // values on its own
 114 
 115   static int raxOffset(void) { return rax_off; }
 116   static int rdxOffset(void) { return rdx_off; }
 117   static int rbxOffset(void) { return rbx_off; }
 118   static int xmm0Offset(void) { return xmm0_off; }
 119   // This really returns a slot in the fp save area, which one is not important
 120   static int fpResultOffset(void) { return st0_off; }
 121 
 122   // During deoptimization only the result register need to be restored
 123   // all the other values have already been extracted.
 124 
 125   static void restore_result_registers(MacroAssembler* masm);
 126 
 127 };
 128 
 129 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 130                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 131   int num_xmm_regs = XMMRegister::number_of_registers;
 132   int ymm_bytes = num_xmm_regs * 16;
 133   int zmm_bytes = num_xmm_regs * 32;
 134 #ifdef COMPILER2
 135   int opmask_state_bytes = KRegister::number_of_registers * 8;
 136   if (save_vectors) {
 137     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 138     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 139     // Save upper half of YMM registers
 140     int vect_bytes = ymm_bytes;
 141     if (UseAVX > 2) {
 142       // Save upper half of ZMM registers as well
 143       vect_bytes += zmm_bytes;
 144       additional_frame_words += opmask_state_bytes / wordSize;
 145     }
 146     additional_frame_words += vect_bytes / wordSize;
 147   }
 148 #else
 149   assert(!save_vectors, "vectors are generated only by C2");
 150 #endif
 151   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 152   int frame_words = frame_size_in_bytes / wordSize;
 153   *total_frame_words = frame_words;
 154 
 155   assert(FPUStateSizeInWords == 27, "update stack layout");
 156 
 157   // save registers, fpu state, and flags
 158   // We assume caller has already has return address slot on the stack
 159   // We push epb twice in this sequence because we want the real rbp,
 160   // to be under the return like a normal enter and we want to use pusha
 161   // We push by hand instead of using push.
 162   __ enter();
 163   __ pusha();
 164   __ pushf();
 165   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 166   __ push_FPU_state();          // Save FPU state & init
 167 
 168   if (verify_fpu) {
 169     // Some stubs may have non standard FPU control word settings so
 170     // only check and reset the value when it required to be the
 171     // standard value.  The safepoint blob in particular can be used
 172     // in methods which are using the 24 bit control word for
 173     // optimized float math.
 174 
 175 #ifdef ASSERT
 176     // Make sure the control word has the expected value
 177     Label ok;
 178     __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 179     __ jccb(Assembler::equal, ok);
 180     __ stop("corrupted control word detected");
 181     __ bind(ok);
 182 #endif
 183 
 184     // Reset the control word to guard against exceptions being unmasked
 185     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 186     // into the on stack copy and then reload that to make sure that the
 187     // current and future values are correct.
 188     __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 189   }
 190 
 191   __ frstor(Address(rsp, 0));
 192   if (!verify_fpu) {
 193     // Set the control word so that exceptions are masked for the
 194     // following code.
 195     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
 196   }
 197 
 198   int off = st0_off;
 199   int delta = st1_off - off;
 200 
 201   // Save the FPU registers in de-opt-able form
 202   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 203     __ fstp_d(Address(rsp, off*wordSize));
 204     off += delta;
 205   }
 206 
 207   off = xmm0_off;
 208   delta = xmm1_off - off;
 209   if(UseSSE == 1) {
 210     // Save the XMM state
 211     for (int n = 0; n < num_xmm_regs; n++) {
 212       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 213       off += delta;
 214     }
 215   } else if(UseSSE >= 2) {
 216     // Save whole 128bit (16 bytes) XMM registers
 217     for (int n = 0; n < num_xmm_regs; n++) {
 218       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 219       off += delta;
 220     }
 221   }
 222 
 223 #ifdef COMPILER2
 224   if (save_vectors) {
 225     __ subptr(rsp, ymm_bytes);
 226     // Save upper half of YMM registers
 227     for (int n = 0; n < num_xmm_regs; n++) {
 228       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 229     }
 230     if (UseAVX > 2) {
 231       __ subptr(rsp, zmm_bytes);
 232       // Save upper half of ZMM registers
 233       for (int n = 0; n < num_xmm_regs; n++) {
 234         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 235       }
 236       __ subptr(rsp, opmask_state_bytes);
 237       // Save opmask registers
 238       for (int n = 0; n < KRegister::number_of_registers; n++) {
 239         __ kmov(Address(rsp, n*8), as_KRegister(n));
 240       }
 241     }
 242   }
 243 #else
 244   assert(!save_vectors, "vectors are generated only by C2");
 245 #endif
 246 
 247   __ vzeroupper();
 248 
 249   // Set an oopmap for the call site.  This oopmap will map all
 250   // oop-registers and debug-info registers as callee-saved.  This
 251   // will allow deoptimization at this safepoint to find all possible
 252   // debug-info recordings, as well as let GC find all oops.
 253 
 254   OopMapSet *oop_maps = new OopMapSet();
 255   OopMap* map =  new OopMap( frame_words, 0 );
 256 
 257 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 258 #define NEXTREG(x) (x)->as_VMReg()->next()
 259 
 260   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 261   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 262   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 263   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 264   // rbp, location is known implicitly, no oopMap
 265   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 266   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 267 
 268   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 269   off = st0_off;
 270   delta = st1_off - off;
 271   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 272     FloatRegister freg_name = as_FloatRegister(n);
 273     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 274     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 275     off += delta;
 276   }
 277   off = xmm0_off;
 278   delta = xmm1_off - off;
 279   for (int n = 0; n < num_xmm_regs; n++) {
 280     XMMRegister xmm_name = as_XMMRegister(n);
 281     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 282     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 283     off += delta;
 284   }
 285 #undef NEXTREG
 286 #undef STACK_OFFSET
 287 
 288   return map;
 289 }
 290 
 291 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 292   int opmask_state_bytes = 0;
 293   int additional_frame_bytes = 0;
 294   int num_xmm_regs = XMMRegister::number_of_registers;
 295   int ymm_bytes = num_xmm_regs * 16;
 296   int zmm_bytes = num_xmm_regs * 32;
 297   // Recover XMM & FPU state
 298 #ifdef COMPILER2
 299   if (restore_vectors) {
 300     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 301     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 302     // Save upper half of YMM registers
 303     additional_frame_bytes = ymm_bytes;
 304     if (UseAVX > 2) {
 305       // Save upper half of ZMM registers as well
 306       additional_frame_bytes += zmm_bytes;
 307       opmask_state_bytes = KRegister::number_of_registers * 8;
 308       additional_frame_bytes += opmask_state_bytes;
 309     }
 310   }
 311 #else
 312   assert(!restore_vectors, "vectors are generated only by C2");
 313 #endif
 314 
 315   int off = xmm0_off;
 316   int delta = xmm1_off - off;
 317 
 318   __ vzeroupper();
 319 
 320   if (UseSSE == 1) {
 321     // Restore XMM registers
 322     assert(additional_frame_bytes == 0, "");
 323     for (int n = 0; n < num_xmm_regs; n++) {
 324       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 325       off += delta;
 326     }
 327   } else if (UseSSE >= 2) {
 328     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 329     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 330     for (int n = 0; n < num_xmm_regs; n++) {
 331       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 332       off += delta;
 333     }
 334   }
 335 
 336   if (restore_vectors) {
 337     off = additional_frame_bytes - ymm_bytes;
 338     // Restore upper half of YMM registers.
 339     for (int n = 0; n < num_xmm_regs; n++) {
 340       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off));
 341     }
 342     if (UseAVX > 2) {
 343       // Restore upper half of ZMM registers.
 344       off = opmask_state_bytes;
 345       for (int n = 0; n < num_xmm_regs; n++) {
 346         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off));
 347       }
 348       for (int n = 0; n < KRegister::number_of_registers; n++) {
 349         __ kmov(as_KRegister(n), Address(rsp, n*8));
 350       }
 351     }
 352     __ addptr(rsp, additional_frame_bytes);
 353   }
 354 
 355   __ pop_FPU_state();
 356   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 357 
 358   __ popf();
 359   __ popa();
 360   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 361   __ pop(rbp);
 362 }
 363 
 364 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 365 
 366   // Just restore result register. Only used by deoptimization. By
 367   // now any callee save register that needs to be restore to a c2
 368   // caller of the deoptee has been extracted into the vframeArray
 369   // and will be stuffed into the c2i adapter we create for later
 370   // restoration so only result registers need to be restored here.
 371   //
 372 
 373   __ frstor(Address(rsp, 0));      // Restore fpu state
 374 
 375   // Recover XMM & FPU state
 376   if( UseSSE == 1 ) {
 377     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 378   } else if( UseSSE >= 2 ) {
 379     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 380   }
 381   __ movptr(rax, Address(rsp, rax_off*wordSize));
 382   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 383   // Pop all of the register save are off the stack except the return address
 384   __ addptr(rsp, return_off * wordSize);
 385 }
 386 
 387 // Is vector's size (in bytes) bigger than a size saved by default?
 388 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 389 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 390 bool SharedRuntime::is_wide_vector(int size) {
 391   return size > 16;
 392 }
 393 
 394 // The java_calling_convention describes stack locations as ideal slots on
 395 // a frame with no abi restrictions. Since we must observe abi restrictions
 396 // (like the placement of the register window) the slots must be biased by
 397 // the following value.
 398 static int reg2offset_in(VMReg r) {
 399   // Account for saved rbp, and return address
 400   // This should really be in_preserve_stack_slots
 401   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 402 }
 403 
 404 static int reg2offset_out(VMReg r) {
 405   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 406 }
 407 
 408 // ---------------------------------------------------------------------------
 409 // Read the array of BasicTypes from a signature, and compute where the
 410 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 411 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 412 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 413 // as framesizes are fixed.
 414 // VMRegImpl::stack0 refers to the first slot 0(sp).
 415 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 416 // Register up to Register::number_of_registers are the 32-bit
 417 // integer registers.
 418 
 419 // Pass first two oop/int args in registers ECX and EDX.
 420 // Pass first two float/double args in registers XMM0 and XMM1.
 421 // Doubles have precedence, so if you pass a mix of floats and doubles
 422 // the doubles will grab the registers before the floats will.
 423 
 424 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 425 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 426 // units regardless of build. Of course for i486 there is no 64 bit build
 427 
 428 
 429 // ---------------------------------------------------------------------------
 430 // The compiled Java calling convention.
 431 // Pass first two oop/int args in registers ECX and EDX.
 432 // Pass first two float/double args in registers XMM0 and XMM1.
 433 // Doubles have precedence, so if you pass a mix of floats and doubles
 434 // the doubles will grab the registers before the floats will.
 435 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 436                                            VMRegPair *regs,
 437                                            int total_args_passed) {
 438   uint    stack = 0;          // Starting stack position for args on stack
 439 
 440 
 441   // Pass first two oop/int args in registers ECX and EDX.
 442   uint reg_arg0 = 9999;
 443   uint reg_arg1 = 9999;
 444 
 445   // Pass first two float/double args in registers XMM0 and XMM1.
 446   // Doubles have precedence, so if you pass a mix of floats and doubles
 447   // the doubles will grab the registers before the floats will.
 448   // CNC - TURNED OFF FOR non-SSE.
 449   //       On Intel we have to round all doubles (and most floats) at
 450   //       call sites by storing to the stack in any case.
 451   // UseSSE=0 ==> Don't Use ==> 9999+0
 452   // UseSSE=1 ==> Floats only ==> 9999+1
 453   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 454   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 455   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 456   uint freg_arg0 = 9999+fargs;
 457   uint freg_arg1 = 9999+fargs;
 458 
 459   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 460   int i;
 461   for( i = 0; i < total_args_passed; i++) {
 462     if( sig_bt[i] == T_DOUBLE ) {
 463       // first 2 doubles go in registers
 464       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 465       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 466       else // Else double is passed low on the stack to be aligned.
 467         stack += 2;
 468     } else if( sig_bt[i] == T_LONG ) {
 469       stack += 2;
 470     }
 471   }
 472   int dstack = 0;             // Separate counter for placing doubles
 473 
 474   // Now pick where all else goes.
 475   for( i = 0; i < total_args_passed; i++) {
 476     // From the type and the argument number (count) compute the location
 477     switch( sig_bt[i] ) {
 478     case T_SHORT:
 479     case T_CHAR:
 480     case T_BYTE:
 481     case T_BOOLEAN:
 482     case T_INT:
 483     case T_ARRAY:
 484     case T_OBJECT:
 485     case T_ADDRESS:
 486       if( reg_arg0 == 9999 )  {
 487         reg_arg0 = i;
 488         regs[i].set1(rcx->as_VMReg());
 489       } else if( reg_arg1 == 9999 )  {
 490         reg_arg1 = i;
 491         regs[i].set1(rdx->as_VMReg());
 492       } else {
 493         regs[i].set1(VMRegImpl::stack2reg(stack++));
 494       }
 495       break;
 496     case T_FLOAT:
 497       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 498         freg_arg0 = i;
 499         regs[i].set1(xmm0->as_VMReg());
 500       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 501         freg_arg1 = i;
 502         regs[i].set1(xmm1->as_VMReg());
 503       } else {
 504         regs[i].set1(VMRegImpl::stack2reg(stack++));
 505       }
 506       break;
 507     case T_LONG:
 508       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 509       regs[i].set2(VMRegImpl::stack2reg(dstack));
 510       dstack += 2;
 511       break;
 512     case T_DOUBLE:
 513       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 514       if( freg_arg0 == (uint)i ) {
 515         regs[i].set2(xmm0->as_VMReg());
 516       } else if( freg_arg1 == (uint)i ) {
 517         regs[i].set2(xmm1->as_VMReg());
 518       } else {
 519         regs[i].set2(VMRegImpl::stack2reg(dstack));
 520         dstack += 2;
 521       }
 522       break;
 523     case T_VOID: regs[i].set_bad(); break;
 524       break;
 525     default:
 526       ShouldNotReachHere();
 527       break;
 528     }
 529   }
 530 
 531   return stack;
 532 }
 533 
 534 // Patch the callers callsite with entry to compiled code if it exists.
 535 static void patch_callers_callsite(MacroAssembler *masm) {
 536   Label L;
 537   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 538   __ jcc(Assembler::equal, L);
 539   // Schedule the branch target address early.
 540   // Call into the VM to patch the caller, then jump to compiled callee
 541   // rax, isn't live so capture return address while we easily can
 542   __ movptr(rax, Address(rsp, 0));
 543   __ pusha();
 544   __ pushf();
 545 
 546   if (UseSSE == 1) {
 547     __ subptr(rsp, 2*wordSize);
 548     __ movflt(Address(rsp, 0), xmm0);
 549     __ movflt(Address(rsp, wordSize), xmm1);
 550   }
 551   if (UseSSE >= 2) {
 552     __ subptr(rsp, 4*wordSize);
 553     __ movdbl(Address(rsp, 0), xmm0);
 554     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 555   }
 556 #ifdef COMPILER2
 557   // C2 may leave the stack dirty if not in SSE2+ mode
 558   if (UseSSE >= 2) {
 559     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 560   } else {
 561     __ empty_FPU_stack();
 562   }
 563 #endif /* COMPILER2 */
 564 
 565   // VM needs caller's callsite
 566   __ push(rax);
 567   // VM needs target method
 568   __ push(rbx);
 569   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 570   __ addptr(rsp, 2*wordSize);
 571 
 572   if (UseSSE == 1) {
 573     __ movflt(xmm0, Address(rsp, 0));
 574     __ movflt(xmm1, Address(rsp, wordSize));
 575     __ addptr(rsp, 2*wordSize);
 576   }
 577   if (UseSSE >= 2) {
 578     __ movdbl(xmm0, Address(rsp, 0));
 579     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 580     __ addptr(rsp, 4*wordSize);
 581   }
 582 
 583   __ popf();
 584   __ popa();
 585   __ bind(L);
 586 }
 587 
 588 
 589 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 590   int next_off = st_off - Interpreter::stackElementSize;
 591   __ movdbl(Address(rsp, next_off), r);
 592 }
 593 
 594 static void gen_c2i_adapter(MacroAssembler *masm,
 595                             int total_args_passed,
 596                             int comp_args_on_stack,
 597                             const BasicType *sig_bt,
 598                             const VMRegPair *regs,
 599                             Label& skip_fixup) {
 600   // Before we get into the guts of the C2I adapter, see if we should be here
 601   // at all.  We've come from compiled code and are attempting to jump to the
 602   // interpreter, which means the caller made a static call to get here
 603   // (vcalls always get a compiled target if there is one).  Check for a
 604   // compiled target.  If there is one, we need to patch the caller's call.
 605   patch_callers_callsite(masm);
 606 
 607   __ bind(skip_fixup);
 608 
 609 #ifdef COMPILER2
 610   // C2 may leave the stack dirty if not in SSE2+ mode
 611   if (UseSSE >= 2) {
 612     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 613   } else {
 614     __ empty_FPU_stack();
 615   }
 616 #endif /* COMPILER2 */
 617 
 618   // Since all args are passed on the stack, total_args_passed * interpreter_
 619   // stack_element_size  is the
 620   // space we need.
 621   int extraspace = total_args_passed * Interpreter::stackElementSize;
 622 
 623   // Get return address
 624   __ pop(rax);
 625 
 626   // set senderSP value
 627   __ movptr(rsi, rsp);
 628 
 629   __ subptr(rsp, extraspace);
 630 
 631   // Now write the args into the outgoing interpreter space
 632   for (int i = 0; i < total_args_passed; i++) {
 633     if (sig_bt[i] == T_VOID) {
 634       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 635       continue;
 636     }
 637 
 638     // st_off points to lowest address on stack.
 639     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 640     int next_off = st_off - Interpreter::stackElementSize;
 641 
 642     // Say 4 args:
 643     // i   st_off
 644     // 0   12 T_LONG
 645     // 1    8 T_VOID
 646     // 2    4 T_OBJECT
 647     // 3    0 T_BOOL
 648     VMReg r_1 = regs[i].first();
 649     VMReg r_2 = regs[i].second();
 650     if (!r_1->is_valid()) {
 651       assert(!r_2->is_valid(), "");
 652       continue;
 653     }
 654 
 655     if (r_1->is_stack()) {
 656       // memory to memory use fpu stack top
 657       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 658 
 659       if (!r_2->is_valid()) {
 660         __ movl(rdi, Address(rsp, ld_off));
 661         __ movptr(Address(rsp, st_off), rdi);
 662       } else {
 663 
 664         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 665         // st_off == MSW, st_off-wordSize == LSW
 666 
 667         __ movptr(rdi, Address(rsp, ld_off));
 668         __ movptr(Address(rsp, next_off), rdi);
 669         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 670         __ movptr(Address(rsp, st_off), rdi);
 671       }
 672     } else if (r_1->is_Register()) {
 673       Register r = r_1->as_Register();
 674       if (!r_2->is_valid()) {
 675         __ movl(Address(rsp, st_off), r);
 676       } else {
 677         // long/double in gpr
 678         ShouldNotReachHere();
 679       }
 680     } else {
 681       assert(r_1->is_XMMRegister(), "");
 682       if (!r_2->is_valid()) {
 683         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 684       } else {
 685         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 686         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 687       }
 688     }
 689   }
 690 
 691   // Schedule the branch target address early.
 692   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 693   // And repush original return address
 694   __ push(rax);
 695   __ jmp(rcx);
 696 }
 697 
 698 
 699 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 700   int next_val_off = ld_off - Interpreter::stackElementSize;
 701   __ movdbl(r, Address(saved_sp, next_val_off));
 702 }
 703 
 704 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 705                         address code_start, address code_end,
 706                         Label& L_ok) {
 707   Label L_fail;
 708   __ lea(temp_reg, ExternalAddress(code_start));
 709   __ cmpptr(pc_reg, temp_reg);
 710   __ jcc(Assembler::belowEqual, L_fail);
 711   __ lea(temp_reg, ExternalAddress(code_end));
 712   __ cmpptr(pc_reg, temp_reg);
 713   __ jcc(Assembler::below, L_ok);
 714   __ bind(L_fail);
 715 }
 716 
 717 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 718                                     int total_args_passed,
 719                                     int comp_args_on_stack,
 720                                     const BasicType *sig_bt,
 721                                     const VMRegPair *regs) {
 722   // Note: rsi contains the senderSP on entry. We must preserve it since
 723   // we may do a i2c -> c2i transition if we lose a race where compiled
 724   // code goes non-entrant while we get args ready.
 725 
 726   // Adapters can be frameless because they do not require the caller
 727   // to perform additional cleanup work, such as correcting the stack pointer.
 728   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 729   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 730   // even if a callee has modified the stack pointer.
 731   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 732   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 733   // up via the senderSP register).
 734   // In other words, if *either* the caller or callee is interpreted, we can
 735   // get the stack pointer repaired after a call.
 736   // This is why c2i and i2c adapters cannot be indefinitely composed.
 737   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 738   // both caller and callee would be compiled methods, and neither would
 739   // clean up the stack pointer changes performed by the two adapters.
 740   // If this happens, control eventually transfers back to the compiled
 741   // caller, but with an uncorrected stack, causing delayed havoc.
 742 
 743   // Pick up the return address
 744   __ movptr(rax, Address(rsp, 0));
 745 
 746   if (VerifyAdapterCalls &&
 747       (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) {
 748     // So, let's test for cascading c2i/i2c adapters right now.
 749     //  assert(Interpreter::contains($return_addr) ||
 750     //         StubRoutines::contains($return_addr),
 751     //         "i2c adapter must return to an interpreter frame");
 752     __ block_comment("verify_i2c { ");
 753     Label L_ok;
 754     if (Interpreter::code() != nullptr) {
 755       range_check(masm, rax, rdi,
 756                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 757                   L_ok);
 758     }
 759     if (StubRoutines::initial_stubs_code() != nullptr) {
 760       range_check(masm, rax, rdi,
 761                   StubRoutines::initial_stubs_code()->code_begin(),
 762                   StubRoutines::initial_stubs_code()->code_end(),
 763                   L_ok);
 764     }
 765     if (StubRoutines::final_stubs_code() != nullptr) {
 766       range_check(masm, rax, rdi,
 767                   StubRoutines::final_stubs_code()->code_begin(),
 768                   StubRoutines::final_stubs_code()->code_end(),
 769                   L_ok);
 770     }
 771     const char* msg = "i2c adapter must return to an interpreter frame";
 772     __ block_comment(msg);
 773     __ stop(msg);
 774     __ bind(L_ok);
 775     __ block_comment("} verify_i2ce ");
 776   }
 777 
 778   // Must preserve original SP for loading incoming arguments because
 779   // we need to align the outgoing SP for compiled code.
 780   __ movptr(rdi, rsp);
 781 
 782   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 783   // in registers, we will occasionally have no stack args.
 784   int comp_words_on_stack = 0;
 785   if (comp_args_on_stack) {
 786     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 787     // registers are below.  By subtracting stack0, we either get a negative
 788     // number (all values in registers) or the maximum stack slot accessed.
 789     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 790     // Convert 4-byte stack slots to words.
 791     comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 792     // Round up to miminum stack alignment, in wordSize
 793     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 794     __ subptr(rsp, comp_words_on_stack * wordSize);
 795   }
 796 
 797   // Align the outgoing SP
 798   __ andptr(rsp, -(StackAlignmentInBytes));
 799 
 800   // push the return address on the stack (note that pushing, rather
 801   // than storing it, yields the correct frame alignment for the callee)
 802   __ push(rax);
 803 
 804   // Put saved SP in another register
 805   const Register saved_sp = rax;
 806   __ movptr(saved_sp, rdi);
 807 
 808 
 809   // Will jump to the compiled code just as if compiled code was doing it.
 810   // Pre-load the register-jump target early, to schedule it better.
 811   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 812 
 813   // Now generate the shuffle code.  Pick up all register args and move the
 814   // rest through the floating point stack top.
 815   for (int i = 0; i < total_args_passed; i++) {
 816     if (sig_bt[i] == T_VOID) {
 817       // Longs and doubles are passed in native word order, but misaligned
 818       // in the 32-bit build.
 819       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 820       continue;
 821     }
 822 
 823     // Pick up 0, 1 or 2 words from SP+offset.
 824 
 825     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 826             "scrambled load targets?");
 827     // Load in argument order going down.
 828     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 829     // Point to interpreter value (vs. tag)
 830     int next_off = ld_off - Interpreter::stackElementSize;
 831     //
 832     //
 833     //
 834     VMReg r_1 = regs[i].first();
 835     VMReg r_2 = regs[i].second();
 836     if (!r_1->is_valid()) {
 837       assert(!r_2->is_valid(), "");
 838       continue;
 839     }
 840     if (r_1->is_stack()) {
 841       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 842       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 843 
 844       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 845       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 846       // we be generated.
 847       if (!r_2->is_valid()) {
 848         // __ fld_s(Address(saved_sp, ld_off));
 849         // __ fstp_s(Address(rsp, st_off));
 850         __ movl(rsi, Address(saved_sp, ld_off));
 851         __ movptr(Address(rsp, st_off), rsi);
 852       } else {
 853         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 854         // are accessed as negative so LSW is at LOW address
 855 
 856         // ld_off is MSW so get LSW
 857         // st_off is LSW (i.e. reg.first())
 858         // __ fld_d(Address(saved_sp, next_off));
 859         // __ fstp_d(Address(rsp, st_off));
 860         //
 861         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 862         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 863         // So we must adjust where to pick up the data to match the interpreter.
 864         //
 865         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 866         // are accessed as negative so LSW is at LOW address
 867 
 868         // ld_off is MSW so get LSW
 869         __ movptr(rsi, Address(saved_sp, next_off));
 870         __ movptr(Address(rsp, st_off), rsi);
 871         __ movptr(rsi, Address(saved_sp, ld_off));
 872         __ movptr(Address(rsp, st_off + wordSize), rsi);
 873       }
 874     } else if (r_1->is_Register()) {  // Register argument
 875       Register r = r_1->as_Register();
 876       assert(r != rax, "must be different");
 877       if (r_2->is_valid()) {
 878         //
 879         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 880         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 881         // So we must adjust where to pick up the data to match the interpreter.
 882 
 883         // this can be a misaligned move
 884         __ movptr(r, Address(saved_sp, next_off));
 885         assert(r_2->as_Register() != rax, "need another temporary register");
 886         // Remember r_1 is low address (and LSB on x86)
 887         // So r_2 gets loaded from high address regardless of the platform
 888         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 889       } else {
 890         __ movl(r, Address(saved_sp, ld_off));
 891       }
 892     } else {
 893       assert(r_1->is_XMMRegister(), "");
 894       if (!r_2->is_valid()) {
 895         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 896       } else {
 897         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 898       }
 899     }
 900   }
 901 
 902   // 6243940 We might end up in handle_wrong_method if
 903   // the callee is deoptimized as we race thru here. If that
 904   // happens we don't want to take a safepoint because the
 905   // caller frame will look interpreted and arguments are now
 906   // "compiled" so it is much better to make this transition
 907   // invisible to the stack walking code. Unfortunately if
 908   // we try and find the callee by normal means a safepoint
 909   // is possible. So we stash the desired callee in the thread
 910   // and the vm will find there should this case occur.
 911 
 912   __ get_thread(rax);
 913   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 914 
 915   // move Method* to rax, in case we end up in an c2i adapter.
 916   // the c2i adapters expect Method* in rax, (c2) because c2's
 917   // resolve stubs return the result (the method) in rax,.
 918   // I'd love to fix this.
 919   __ mov(rax, rbx);
 920 
 921   __ jmp(rdi);
 922 }
 923 
 924 // ---------------------------------------------------------------
 925 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 926                                                             int total_args_passed,
 927                                                             int comp_args_on_stack,
 928                                                             const BasicType *sig_bt,
 929                                                             const VMRegPair *regs,
 930                                                             AdapterFingerPrint* fingerprint) {
 931   address i2c_entry = __ pc();
 932 
 933   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 934 
 935   // -------------------------------------------------------------------------
 936   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 937   // to the interpreter.  The args start out packed in the compiled layout.  They
 938   // need to be unpacked into the interpreter layout.  This will almost always
 939   // require some stack space.  We grow the current (compiled) stack, then repack
 940   // the args.  We  finally end in a jump to the generic interpreter entry point.
 941   // On exit from the interpreter, the interpreter will restore our SP (lest the
 942   // compiled code, which relies solely on SP and not EBP, get sick).
 943 
 944   address c2i_unverified_entry = __ pc();
 945   Label skip_fixup;
 946 
 947   Register holder = rax;
 948   Register receiver = rcx;
 949   Register temp = rbx;
 950 
 951   {
 952 
 953     Label missed;
 954     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 955     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 956     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 957     __ jcc(Assembler::notEqual, missed);
 958     // Method might have been compiled since the call site was patched to
 959     // interpreted if that is the case treat it as a miss so we can get
 960     // the call site corrected.
 961     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 962     __ jcc(Assembler::equal, skip_fixup);
 963 
 964     __ bind(missed);
 965     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 966   }
 967 
 968   address c2i_entry = __ pc();
 969 
 970   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 971   bs->c2i_entry_barrier(masm);
 972 
 973   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 974 
 975   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 976 }
 977 
 978 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 979                                          VMRegPair *regs,
 980                                          VMRegPair *regs2,
 981                                          int total_args_passed) {
 982   assert(regs2 == nullptr, "not needed on x86");
 983 // We return the amount of VMRegImpl stack slots we need to reserve for all
 984 // the arguments NOT counting out_preserve_stack_slots.
 985 
 986   uint    stack = 0;        // All arguments on stack
 987 
 988   for( int i = 0; i < total_args_passed; i++) {
 989     // From the type and the argument number (count) compute the location
 990     switch( sig_bt[i] ) {
 991     case T_BOOLEAN:
 992     case T_CHAR:
 993     case T_FLOAT:
 994     case T_BYTE:
 995     case T_SHORT:
 996     case T_INT:
 997     case T_OBJECT:
 998     case T_ARRAY:
 999     case T_ADDRESS:
1000     case T_METADATA:
1001       regs[i].set1(VMRegImpl::stack2reg(stack++));
1002       break;
1003     case T_LONG:
1004     case T_DOUBLE: // The stack numbering is reversed from Java
1005       // Since C arguments do not get reversed, the ordering for
1006       // doubles on the stack must be opposite the Java convention
1007       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1008       regs[i].set2(VMRegImpl::stack2reg(stack));
1009       stack += 2;
1010       break;
1011     case T_VOID: regs[i].set_bad(); break;
1012     default:
1013       ShouldNotReachHere();
1014       break;
1015     }
1016   }
1017   return stack;
1018 }
1019 
1020 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
1021                                              uint num_bits,
1022                                              uint total_args_passed) {
1023   Unimplemented();
1024   return 0;
1025 }
1026 
1027 // A simple move of integer like type
1028 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1029   if (src.first()->is_stack()) {
1030     if (dst.first()->is_stack()) {
1031       // stack to stack
1032       // __ ld(FP, reg2offset(src.first()), L5);
1033       // __ st(L5, SP, reg2offset(dst.first()));
1034       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1035       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1036     } else {
1037       // stack to reg
1038       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1039     }
1040   } else if (dst.first()->is_stack()) {
1041     // reg to stack
1042     // no need to sign extend on 64bit
1043     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1044   } else {
1045     if (dst.first() != src.first()) {
1046       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1047     }
1048   }
1049 }
1050 
1051 // An oop arg. Must pass a handle not the oop itself
1052 static void object_move(MacroAssembler* masm,
1053                         OopMap* map,
1054                         int oop_handle_offset,
1055                         int framesize_in_slots,
1056                         VMRegPair src,
1057                         VMRegPair dst,
1058                         bool is_receiver,
1059                         int* receiver_offset) {
1060 
1061   // Because of the calling conventions we know that src can be a
1062   // register or a stack location. dst can only be a stack location.
1063 
1064   assert(dst.first()->is_stack(), "must be stack");
1065   // must pass a handle. First figure out the location we use as a handle
1066 
1067   if (src.first()->is_stack()) {
1068     // Oop is already on the stack as an argument
1069     Register rHandle = rax;
1070     Label nil;
1071     __ xorptr(rHandle, rHandle);
1072     __ cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
1073     __ jcc(Assembler::equal, nil);
1074     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1075     __ bind(nil);
1076     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1077 
1078     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1079     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1080     if (is_receiver) {
1081       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1082     }
1083   } else {
1084     // Oop is in a register we must store it to the space we reserve
1085     // on the stack for oop_handles
1086     const Register rOop = src.first()->as_Register();
1087     const Register rHandle = rax;
1088     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1089     int offset = oop_slot*VMRegImpl::stack_slot_size;
1090     Label skip;
1091     __ movptr(Address(rsp, offset), rOop);
1092     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1093     __ xorptr(rHandle, rHandle);
1094     __ cmpptr(rOop, NULL_WORD);
1095     __ jcc(Assembler::equal, skip);
1096     __ lea(rHandle, Address(rsp, offset));
1097     __ bind(skip);
1098     // Store the handle parameter
1099     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1100     if (is_receiver) {
1101       *receiver_offset = offset;
1102     }
1103   }
1104 }
1105 
1106 // A float arg may have to do float reg int reg conversion
1107 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1108   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1109 
1110   // Because of the calling convention we know that src is either a stack location
1111   // or an xmm register. dst can only be a stack location.
1112 
1113   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1114 
1115   if (src.first()->is_stack()) {
1116     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1117     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1118   } else {
1119     // reg to stack
1120     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1121   }
1122 }
1123 
1124 // A long move
1125 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1126 
1127   // The only legal possibility for a long_move VMRegPair is:
1128   // 1: two stack slots (possibly unaligned)
1129   // as neither the java  or C calling convention will use registers
1130   // for longs.
1131 
1132   if (src.first()->is_stack() && dst.first()->is_stack()) {
1133     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1134     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1135     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1136     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1137     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1138   } else {
1139     ShouldNotReachHere();
1140   }
1141 }
1142 
1143 // A double move
1144 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1145 
1146   // The only legal possibilities for a double_move VMRegPair are:
1147   // The painful thing here is that like long_move a VMRegPair might be
1148 
1149   // Because of the calling convention we know that src is either
1150   //   1: a single physical register (xmm registers only)
1151   //   2: two stack slots (possibly unaligned)
1152   // dst can only be a pair of stack slots.
1153 
1154   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1155 
1156   if (src.first()->is_stack()) {
1157     // source is all stack
1158     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1159     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1160     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1161     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1162   } else {
1163     // reg to stack
1164     // No worries about stack alignment
1165     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1166   }
1167 }
1168 
1169 
1170 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1171   // We always ignore the frame_slots arg and just use the space just below frame pointer
1172   // which by this time is free to use
1173   switch (ret_type) {
1174   case T_FLOAT:
1175     __ fstp_s(Address(rbp, -wordSize));
1176     break;
1177   case T_DOUBLE:
1178     __ fstp_d(Address(rbp, -2*wordSize));
1179     break;
1180   case T_VOID:  break;
1181   case T_LONG:
1182     __ movptr(Address(rbp, -wordSize), rax);
1183     __ movptr(Address(rbp, -2*wordSize), rdx);
1184     break;
1185   default: {
1186     __ movptr(Address(rbp, -wordSize), rax);
1187     }
1188   }
1189 }
1190 
1191 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1192   // We always ignore the frame_slots arg and just use the space just below frame pointer
1193   // which by this time is free to use
1194   switch (ret_type) {
1195   case T_FLOAT:
1196     __ fld_s(Address(rbp, -wordSize));
1197     break;
1198   case T_DOUBLE:
1199     __ fld_d(Address(rbp, -2*wordSize));
1200     break;
1201   case T_LONG:
1202     __ movptr(rax, Address(rbp, -wordSize));
1203     __ movptr(rdx, Address(rbp, -2*wordSize));
1204     break;
1205   case T_VOID:  break;
1206   default: {
1207     __ movptr(rax, Address(rbp, -wordSize));
1208     }
1209   }
1210 }
1211 
1212 static void verify_oop_args(MacroAssembler* masm,
1213                             const methodHandle& method,
1214                             const BasicType* sig_bt,
1215                             const VMRegPair* regs) {
1216   Register temp_reg = rbx;  // not part of any compiled calling seq
1217   if (VerifyOops) {
1218     for (int i = 0; i < method->size_of_parameters(); i++) {
1219       if (is_reference_type(sig_bt[i])) {
1220         VMReg r = regs[i].first();
1221         assert(r->is_valid(), "bad oop arg");
1222         if (r->is_stack()) {
1223           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1224           __ verify_oop(temp_reg);
1225         } else {
1226           __ verify_oop(r->as_Register());
1227         }
1228       }
1229     }
1230   }
1231 }
1232 
1233 static void gen_special_dispatch(MacroAssembler* masm,
1234                                  const methodHandle& method,
1235                                  const BasicType* sig_bt,
1236                                  const VMRegPair* regs) {
1237   verify_oop_args(masm, method, sig_bt, regs);
1238   vmIntrinsics::ID iid = method->intrinsic_id();
1239 
1240   // Now write the args into the outgoing interpreter space
1241   bool     has_receiver   = false;
1242   Register receiver_reg   = noreg;
1243   int      member_arg_pos = -1;
1244   Register member_reg     = noreg;
1245   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1246   if (ref_kind != 0) {
1247     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1248     member_reg = rbx;  // known to be free at this point
1249     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1250   } else if (iid == vmIntrinsics::_invokeBasic) {
1251     has_receiver = true;
1252   } else {
1253     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1254   }
1255 
1256   if (member_reg != noreg) {
1257     // Load the member_arg into register, if necessary.
1258     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1259     VMReg r = regs[member_arg_pos].first();
1260     if (r->is_stack()) {
1261       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1262     } else {
1263       // no data motion is needed
1264       member_reg = r->as_Register();
1265     }
1266   }
1267 
1268   if (has_receiver) {
1269     // Make sure the receiver is loaded into a register.
1270     assert(method->size_of_parameters() > 0, "oob");
1271     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1272     VMReg r = regs[0].first();
1273     assert(r->is_valid(), "bad receiver arg");
1274     if (r->is_stack()) {
1275       // Porting note:  This assumes that compiled calling conventions always
1276       // pass the receiver oop in a register.  If this is not true on some
1277       // platform, pick a temp and load the receiver from stack.
1278       fatal("receiver always in a register");
1279       receiver_reg = rcx;  // known to be free at this point
1280       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1281     } else {
1282       // no data motion is needed
1283       receiver_reg = r->as_Register();
1284     }
1285   }
1286 
1287   // Figure out which address we are really jumping to:
1288   MethodHandles::generate_method_handle_dispatch(masm, iid,
1289                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1290 }
1291 
1292 // ---------------------------------------------------------------------------
1293 // Generate a native wrapper for a given method.  The method takes arguments
1294 // in the Java compiled code convention, marshals them to the native
1295 // convention (handlizes oops, etc), transitions to native, makes the call,
1296 // returns to java state (possibly blocking), unhandlizes any result and
1297 // returns.
1298 //
1299 // Critical native functions are a shorthand for the use of
1300 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1301 // functions.  The wrapper is expected to unpack the arguments before
1302 // passing them to the callee. Critical native functions leave the state _in_Java,
1303 // since they cannot stop for GC.
1304 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1305 // block and the check for pending exceptions it's impossible for them
1306 // to be thrown.
1307 //
1308 //
1309 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1310                                                 const methodHandle& method,
1311                                                 int compile_id,
1312                                                 BasicType* in_sig_bt,
1313                                                 VMRegPair* in_regs,
1314                                                 BasicType ret_type) {
1315   if (method->is_method_handle_intrinsic()) {
1316     vmIntrinsics::ID iid = method->intrinsic_id();
1317     intptr_t start = (intptr_t)__ pc();
1318     int vep_offset = ((intptr_t)__ pc()) - start;
1319     gen_special_dispatch(masm,
1320                          method,
1321                          in_sig_bt,
1322                          in_regs);
1323     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1324     __ flush();
1325     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1326     return nmethod::new_native_nmethod(method,
1327                                        compile_id,
1328                                        masm->code(),
1329                                        vep_offset,
1330                                        frame_complete,
1331                                        stack_slots / VMRegImpl::slots_per_word,
1332                                        in_ByteSize(-1),
1333                                        in_ByteSize(-1),
1334                                        (OopMapSet*)nullptr);
1335   }
1336   address native_func = method->native_function();
1337   assert(native_func != nullptr, "must have function");
1338 
1339   // An OopMap for lock (and class if static)
1340   OopMapSet *oop_maps = new OopMapSet();
1341 
1342   // We have received a description of where all the java arg are located
1343   // on entry to the wrapper. We need to convert these args to where
1344   // the jni function will expect them. To figure out where they go
1345   // we convert the java signature to a C signature by inserting
1346   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1347 
1348   const int total_in_args = method->size_of_parameters();
1349   int  total_c_args       = total_in_args + (method->is_static() ? 2 : 1);
1350 
1351   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1352   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1353   BasicType* in_elem_bt = nullptr;
1354 
1355   int argc = 0;
1356   out_sig_bt[argc++] = T_ADDRESS;
1357   if (method->is_static()) {
1358     out_sig_bt[argc++] = T_OBJECT;
1359   }
1360 
1361   for (int i = 0; i < total_in_args ; i++ ) {
1362     out_sig_bt[argc++] = in_sig_bt[i];
1363   }
1364 
1365   // Now figure out where the args must be stored and how much stack space
1366   // they require.
1367   int out_arg_slots;
1368   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, nullptr, total_c_args);
1369 
1370   // Compute framesize for the wrapper.  We need to handlize all oops in
1371   // registers a max of 2 on x86.
1372 
1373   // Calculate the total number of stack slots we will need.
1374 
1375   // First count the abi requirement plus all of the outgoing args
1376   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1377 
1378   // Now the space for the inbound oop handle area
1379   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1380 
1381   int oop_handle_offset = stack_slots;
1382   stack_slots += total_save_slots;
1383 
1384   // Now any space we need for handlizing a klass if static method
1385 
1386   int klass_slot_offset = 0;
1387   int klass_offset = -1;
1388   int lock_slot_offset = 0;
1389   bool is_static = false;
1390 
1391   if (method->is_static()) {
1392     klass_slot_offset = stack_slots;
1393     stack_slots += VMRegImpl::slots_per_word;
1394     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1395     is_static = true;
1396   }
1397 
1398   // Plus a lock if needed
1399 
1400   if (method->is_synchronized()) {
1401     lock_slot_offset = stack_slots;
1402     stack_slots += VMRegImpl::slots_per_word;
1403   }
1404 
1405   // Now a place (+2) to save return values or temp during shuffling
1406   // + 2 for return address (which we own) and saved rbp,
1407   stack_slots += 4;
1408 
1409   // Ok The space we have allocated will look like:
1410   //
1411   //
1412   // FP-> |                     |
1413   //      |---------------------|
1414   //      | 2 slots for moves   |
1415   //      |---------------------|
1416   //      | lock box (if sync)  |
1417   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1418   //      | klass (if static)   |
1419   //      |---------------------| <- klass_slot_offset
1420   //      | oopHandle area      |
1421   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1422   //      | outbound memory     |
1423   //      | based arguments     |
1424   //      |                     |
1425   //      |---------------------|
1426   //      |                     |
1427   // SP-> | out_preserved_slots |
1428   //
1429   //
1430   // ****************************************************************************
1431   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1432   // arguments off of the stack after the jni call. Before the call we can use
1433   // instructions that are SP relative. After the jni call we switch to FP
1434   // relative instructions instead of re-adjusting the stack on windows.
1435   // ****************************************************************************
1436 
1437 
1438   // Now compute actual number of stack words we need rounding to make
1439   // stack properly aligned.
1440   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1441 
1442   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1443 
1444   intptr_t start = (intptr_t)__ pc();
1445 
1446   // First thing make an ic check to see if we should even be here
1447 
1448   // We are free to use all registers as temps without saving them and
1449   // restoring them except rbp. rbp is the only callee save register
1450   // as far as the interpreter and the compiler(s) are concerned.
1451 
1452 
1453   const Register ic_reg = rax;
1454   const Register receiver = rcx;
1455   Label hit;
1456   Label exception_pending;
1457 
1458   __ verify_oop(receiver);
1459   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1460   __ jcc(Assembler::equal, hit);
1461 
1462   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1463 
1464   // verified entry must be aligned for code patching.
1465   // and the first 5 bytes must be in the same cache line
1466   // if we align at 8 then we will be sure 5 bytes are in the same line
1467   __ align(8);
1468 
1469   __ bind(hit);
1470 
1471   int vep_offset = ((intptr_t)__ pc()) - start;
1472 
1473 #ifdef COMPILER1
1474   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1475   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1476     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1477    }
1478 #endif // COMPILER1
1479 
1480   // The instruction at the verified entry point must be 5 bytes or longer
1481   // because it can be patched on the fly by make_non_entrant. The stack bang
1482   // instruction fits that requirement.
1483 
1484   // Generate stack overflow check
1485   __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
1486 
1487   // Generate a new frame for the wrapper.
1488   __ enter();
1489   // -2 because return address is already present and so is saved rbp
1490   __ subptr(rsp, stack_size - 2*wordSize);
1491 
1492 
1493   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1494   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */);
1495 
1496   // Frame is now completed as far as size and linkage.
1497   int frame_complete = ((intptr_t)__ pc()) - start;
1498 
1499   if (UseRTMLocking) {
1500     // Abort RTM transaction before calling JNI
1501     // because critical section will be large and will be
1502     // aborted anyway. Also nmethod could be deoptimized.
1503     __ xabort(0);
1504   }
1505 
1506   // Calculate the difference between rsp and rbp,. We need to know it
1507   // after the native call because on windows Java Natives will pop
1508   // the arguments and it is painful to do rsp relative addressing
1509   // in a platform independent way. So after the call we switch to
1510   // rbp, relative addressing.
1511 
1512   int fp_adjustment = stack_size - 2*wordSize;
1513 
1514 #ifdef COMPILER2
1515   // C2 may leave the stack dirty if not in SSE2+ mode
1516   if (UseSSE >= 2) {
1517     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1518   } else {
1519     __ empty_FPU_stack();
1520   }
1521 #endif /* COMPILER2 */
1522 
1523   // Compute the rbp, offset for any slots used after the jni call
1524 
1525   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1526 
1527   // We use rdi as a thread pointer because it is callee save and
1528   // if we load it once it is usable thru the entire wrapper
1529   const Register thread = rdi;
1530 
1531    // We use rsi as the oop handle for the receiver/klass
1532    // It is callee save so it survives the call to native
1533 
1534    const Register oop_handle_reg = rsi;
1535 
1536    __ get_thread(thread);
1537 
1538   //
1539   // We immediately shuffle the arguments so that any vm call we have to
1540   // make from here on out (sync slow path, jvmti, etc.) we will have
1541   // captured the oops from our caller and have a valid oopMap for
1542   // them.
1543 
1544   // -----------------
1545   // The Grand Shuffle
1546   //
1547   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1548   // and, if static, the class mirror instead of a receiver.  This pretty much
1549   // guarantees that register layout will not match (and x86 doesn't use reg
1550   // parms though amd does).  Since the native abi doesn't use register args
1551   // and the java conventions does we don't have to worry about collisions.
1552   // All of our moved are reg->stack or stack->stack.
1553   // We ignore the extra arguments during the shuffle and handle them at the
1554   // last moment. The shuffle is described by the two calling convention
1555   // vectors we have in our possession. We simply walk the java vector to
1556   // get the source locations and the c vector to get the destinations.
1557 
1558   int c_arg = method->is_static() ? 2 : 1;
1559 
1560   // Record rsp-based slot for receiver on stack for non-static methods
1561   int receiver_offset = -1;
1562 
1563   // This is a trick. We double the stack slots so we can claim
1564   // the oops in the caller's frame. Since we are sure to have
1565   // more args than the caller doubling is enough to make
1566   // sure we can capture all the incoming oop args from the
1567   // caller.
1568   //
1569   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1570 
1571   // Mark location of rbp,
1572   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1573 
1574   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1575   // Are free to temporaries if we have to do  stack to steck moves.
1576   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1577 
1578   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1579     switch (in_sig_bt[i]) {
1580       case T_ARRAY:
1581       case T_OBJECT:
1582         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1583                     ((i == 0) && (!is_static)),
1584                     &receiver_offset);
1585         break;
1586       case T_VOID:
1587         break;
1588 
1589       case T_FLOAT:
1590         float_move(masm, in_regs[i], out_regs[c_arg]);
1591           break;
1592 
1593       case T_DOUBLE:
1594         assert( i + 1 < total_in_args &&
1595                 in_sig_bt[i + 1] == T_VOID &&
1596                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1597         double_move(masm, in_regs[i], out_regs[c_arg]);
1598         break;
1599 
1600       case T_LONG :
1601         long_move(masm, in_regs[i], out_regs[c_arg]);
1602         break;
1603 
1604       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1605 
1606       default:
1607         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1608     }
1609   }
1610 
1611   // Pre-load a static method's oop into rsi.  Used both by locking code and
1612   // the normal JNI call code.
1613   if (method->is_static()) {
1614 
1615     //  load opp into a register
1616     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1617 
1618     // Now handlize the static class mirror it's known not-null.
1619     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1620     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1621 
1622     // Now get the handle
1623     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1624     // store the klass handle as second argument
1625     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1626   }
1627 
1628   // Change state to native (we save the return address in the thread, since it might not
1629   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1630   // points into the right code segment. It does not have to be the correct return pc.
1631   // We use the same pc/oopMap repeatedly when we call out
1632 
1633   intptr_t the_pc = (intptr_t) __ pc();
1634   oop_maps->add_gc_map(the_pc - start, map);
1635 
1636   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc, noreg);
1637 
1638 
1639   // We have all of the arguments setup at this point. We must not touch any register
1640   // argument registers at this point (what if we save/restore them there are no oop?
1641 
1642   {
1643     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0, noreg);
1644     __ mov_metadata(rax, method());
1645     __ call_VM_leaf(
1646          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1647          thread, rax);
1648   }
1649 
1650   // RedefineClasses() tracing support for obsolete method entry
1651   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1652     __ mov_metadata(rax, method());
1653     __ call_VM_leaf(
1654          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1655          thread, rax);
1656   }
1657 
1658   // These are register definitions we need for locking/unlocking
1659   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1660   const Register obj_reg  = rcx;  // Will contain the oop
1661   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1662 
1663   Label slow_path_lock;
1664   Label lock_done;
1665 
1666   // Lock a synchronized method
1667   if (method->is_synchronized()) {
1668     Label count_mon;
1669 
1670     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1671 
1672     // Get the handle (the 2nd argument)
1673     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1674 
1675     // Get address of the box
1676 
1677     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1678 
1679     // Load the oop from the handle
1680     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1681 
1682     if (LockingMode == LM_MONITOR) {
1683       __ jmp(slow_path_lock);
1684     } else if (LockingMode == LM_LEGACY) {
1685       // Load immediate 1 into swap_reg %rax,
1686       __ movptr(swap_reg, 1);
1687 
1688       // Load (object->mark() | 1) into swap_reg %rax,
1689       __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1690 
1691       // Save (object->mark() | 1) into BasicLock's displaced header
1692       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1693 
1694       // src -> dest iff dest == rax, else rax, <- dest
1695       // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1696       __ lock();
1697       __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1698       __ jcc(Assembler::equal, count_mon);
1699 
1700       // Test if the oopMark is an obvious stack pointer, i.e.,
1701       //  1) (mark & 3) == 0, and
1702       //  2) rsp <= mark < mark + os::pagesize()
1703       // These 3 tests can be done by evaluating the following
1704       // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1705       // assuming both stack pointer and pagesize have their
1706       // least significant 2 bits clear.
1707       // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1708 
1709       __ subptr(swap_reg, rsp);
1710       __ andptr(swap_reg, 3 - (int)os::vm_page_size());
1711 
1712       // Save the test result, for recursive case, the result is zero
1713       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1714       __ jcc(Assembler::notEqual, slow_path_lock);
1715     } else {
1716       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1717       // Load object header
1718       __ movptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1719       __ lightweight_lock(obj_reg, swap_reg, thread, lock_reg, slow_path_lock);
1720     }
1721     __ bind(count_mon);
1722     __ inc_held_monitor_count();
1723 
1724     // Slow path will re-enter here
1725     __ bind(lock_done);
1726   }
1727 
1728 
1729   // Finally just about ready to make the JNI call
1730 
1731   // get JNIEnv* which is first argument to native
1732   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1733   __ movptr(Address(rsp, 0), rdx);
1734 
1735   // Now set thread in native
1736   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1737 
1738   __ call(RuntimeAddress(native_func));
1739 
1740   // Verify or restore cpu control state after JNI call
1741   __ restore_cpu_control_state_after_jni(noreg);
1742 
1743   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1744   // arguments off of the stack. We could just re-adjust the stack pointer here
1745   // and continue to do SP relative addressing but we instead switch to FP
1746   // relative addressing.
1747 
1748   // Unpack native results.
1749   switch (ret_type) {
1750   case T_BOOLEAN: __ c2bool(rax);            break;
1751   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1752   case T_BYTE   : __ sign_extend_byte (rax); break;
1753   case T_SHORT  : __ sign_extend_short(rax); break;
1754   case T_INT    : /* nothing to do */        break;
1755   case T_DOUBLE :
1756   case T_FLOAT  :
1757     // Result is in st0 we'll save as needed
1758     break;
1759   case T_ARRAY:                 // Really a handle
1760   case T_OBJECT:                // Really a handle
1761       break; // can't de-handlize until after safepoint check
1762   case T_VOID: break;
1763   case T_LONG: break;
1764   default       : ShouldNotReachHere();
1765   }
1766 
1767   Label after_transition;
1768 
1769   // Switch thread to "native transition" state before reading the synchronization state.
1770   // This additional state is necessary because reading and testing the synchronization
1771   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1772   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1773   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1774   //     Thread A is resumed to finish this native method, but doesn't block here since it
1775   //     didn't see any synchronization is progress, and escapes.
1776   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1777 
1778   // Force this write out before the read below
1779   if (!UseSystemMemoryBarrier) {
1780     __ membar(Assembler::Membar_mask_bits(
1781               Assembler::LoadLoad | Assembler::LoadStore |
1782               Assembler::StoreLoad | Assembler::StoreStore));
1783   }
1784 
1785   if (AlwaysRestoreFPU) {
1786     // Make sure the control word is correct.
1787     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1788   }
1789 
1790   // check for safepoint operation in progress and/or pending suspend requests
1791   { Label Continue, slow_path;
1792 
1793     __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */);
1794 
1795     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1796     __ jcc(Assembler::equal, Continue);
1797     __ bind(slow_path);
1798 
1799     // Don't use call_VM as it will see a possible pending exception and forward it
1800     // and never return here preventing us from clearing _last_native_pc down below.
1801     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1802     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1803     // by hand.
1804     //
1805     __ vzeroupper();
1806 
1807     save_native_result(masm, ret_type, stack_slots);
1808     __ push(thread);
1809     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1810                                               JavaThread::check_special_condition_for_native_trans)));
1811     __ increment(rsp, wordSize);
1812     // Restore any method result value
1813     restore_native_result(masm, ret_type, stack_slots);
1814     __ bind(Continue);
1815   }
1816 
1817   // change thread state
1818   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1819   __ bind(after_transition);
1820 
1821   Label reguard;
1822   Label reguard_done;
1823   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
1824   __ jcc(Assembler::equal, reguard);
1825 
1826   // slow path reguard  re-enters here
1827   __ bind(reguard_done);
1828 
1829   // Handle possible exception (will unlock if necessary)
1830 
1831   // native result if any is live
1832 
1833   // Unlock
1834   Label slow_path_unlock;
1835   Label unlock_done;
1836   if (method->is_synchronized()) {
1837 
1838     Label fast_done;
1839 
1840     // Get locked oop from the handle we passed to jni
1841     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1842 
1843     if (LockingMode == LM_LEGACY) {
1844       Label not_recur;
1845       // Simple recursive lock?
1846       __ cmpptr(Address(rbp, lock_slot_rbp_offset), NULL_WORD);
1847       __ jcc(Assembler::notEqual, not_recur);
1848       __ dec_held_monitor_count();
1849       __ jmpb(fast_done);
1850       __ bind(not_recur);
1851     }
1852 
1853     // Must save rax, if it is live now because cmpxchg must use it
1854     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1855       save_native_result(masm, ret_type, stack_slots);
1856     }
1857 
1858     if (LockingMode == LM_MONITOR) {
1859       __ jmp(slow_path_unlock);
1860     } else if (LockingMode == LM_LEGACY) {
1861       //  get old displaced header
1862       __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1863 
1864       // get address of the stack lock
1865       __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1866 
1867       // Atomic swap old header if oop still contains the stack lock
1868       // src -> dest iff dest == rax, else rax, <- dest
1869       // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1870       __ lock();
1871       __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1872       __ jcc(Assembler::notEqual, slow_path_unlock);
1873       __ dec_held_monitor_count();
1874     } else {
1875       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1876       __ movptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1877       __ andptr(swap_reg, ~(int32_t)markWord::lock_mask_in_place);
1878       __ lightweight_unlock(obj_reg, swap_reg, lock_reg, slow_path_unlock);
1879       __ dec_held_monitor_count();
1880     }
1881 
1882     // slow path re-enters here
1883     __ bind(unlock_done);
1884     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1885       restore_native_result(masm, ret_type, stack_slots);
1886     }
1887 
1888     __ bind(fast_done);
1889   }
1890 
1891   {
1892     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0, noreg);
1893     // Tell dtrace about this method exit
1894     save_native_result(masm, ret_type, stack_slots);
1895     __ mov_metadata(rax, method());
1896     __ call_VM_leaf(
1897          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1898          thread, rax);
1899     restore_native_result(masm, ret_type, stack_slots);
1900   }
1901 
1902   // We can finally stop using that last_Java_frame we setup ages ago
1903 
1904   __ reset_last_Java_frame(thread, false);
1905 
1906   // Unbox oop result, e.g. JNIHandles::resolve value.
1907   if (is_reference_type(ret_type)) {
1908     __ resolve_jobject(rax /* value */,
1909                        thread /* thread */,
1910                        rcx /* tmp */);
1911   }
1912 
1913   if (CheckJNICalls) {
1914     // clear_pending_jni_exception_check
1915     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
1916   }
1917 
1918   // reset handle block
1919   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1920   __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD);
1921 
1922   // Any exception pending?
1923   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1924   __ jcc(Assembler::notEqual, exception_pending);
1925 
1926   // no exception, we're almost done
1927 
1928   // check that only result value is on FPU stack
1929   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1930 
1931   // Fixup floating pointer results so that result looks like a return from a compiled method
1932   if (ret_type == T_FLOAT) {
1933     if (UseSSE >= 1) {
1934       // Pop st0 and store as float and reload into xmm register
1935       __ fstp_s(Address(rbp, -4));
1936       __ movflt(xmm0, Address(rbp, -4));
1937     }
1938   } else if (ret_type == T_DOUBLE) {
1939     if (UseSSE >= 2) {
1940       // Pop st0 and store as double and reload into xmm register
1941       __ fstp_d(Address(rbp, -8));
1942       __ movdbl(xmm0, Address(rbp, -8));
1943     }
1944   }
1945 
1946   // Return
1947 
1948   __ leave();
1949   __ ret(0);
1950 
1951   // Unexpected paths are out of line and go here
1952 
1953   // Slow path locking & unlocking
1954   if (method->is_synchronized()) {
1955 
1956     // BEGIN Slow path lock
1957 
1958     __ bind(slow_path_lock);
1959 
1960     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1961     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1962     __ push(thread);
1963     __ push(lock_reg);
1964     __ push(obj_reg);
1965     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1966     __ addptr(rsp, 3*wordSize);
1967 
1968 #ifdef ASSERT
1969     { Label L;
1970     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1971     __ jcc(Assembler::equal, L);
1972     __ stop("no pending exception allowed on exit from monitorenter");
1973     __ bind(L);
1974     }
1975 #endif
1976     __ jmp(lock_done);
1977 
1978     // END Slow path lock
1979 
1980     // BEGIN Slow path unlock
1981     __ bind(slow_path_unlock);
1982     __ vzeroupper();
1983     // Slow path unlock
1984 
1985     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1986       save_native_result(masm, ret_type, stack_slots);
1987     }
1988     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1989 
1990     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1991     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1992 
1993 
1994     // should be a peal
1995     // +wordSize because of the push above
1996     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1997     __ push(thread);
1998     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1999     __ push(rax);
2000 
2001     __ push(obj_reg);
2002     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2003     __ addptr(rsp, 3*wordSize);
2004 #ifdef ASSERT
2005     {
2006       Label L;
2007       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2008       __ jcc(Assembler::equal, L);
2009       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2010       __ bind(L);
2011     }
2012 #endif /* ASSERT */
2013 
2014     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2015 
2016     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2017       restore_native_result(masm, ret_type, stack_slots);
2018     }
2019     __ jmp(unlock_done);
2020     // END Slow path unlock
2021 
2022   }
2023 
2024   // SLOW PATH Reguard the stack if needed
2025 
2026   __ bind(reguard);
2027   __ vzeroupper();
2028   save_native_result(masm, ret_type, stack_slots);
2029   {
2030     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2031   }
2032   restore_native_result(masm, ret_type, stack_slots);
2033   __ jmp(reguard_done);
2034 
2035 
2036   // BEGIN EXCEPTION PROCESSING
2037 
2038   // Forward  the exception
2039   __ bind(exception_pending);
2040 
2041   // remove possible return value from FPU register stack
2042   __ empty_FPU_stack();
2043 
2044   // pop our frame
2045   __ leave();
2046   // and forward the exception
2047   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2048 
2049   __ flush();
2050 
2051   nmethod *nm = nmethod::new_native_nmethod(method,
2052                                             compile_id,
2053                                             masm->code(),
2054                                             vep_offset,
2055                                             frame_complete,
2056                                             stack_slots / VMRegImpl::slots_per_word,
2057                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2058                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2059                                             oop_maps);
2060 
2061   return nm;
2062 
2063 }
2064 
2065 // this function returns the adjust size (in number of words) to a c2i adapter
2066 // activation for use during deoptimization
2067 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2068   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2069 }
2070 
2071 
2072 // Number of stack slots between incoming argument block and the start of
2073 // a new frame.  The PROLOG must add this many slots to the stack.  The
2074 // EPILOG must remove this many slots.  Intel needs one slot for
2075 // return address and one for rbp, (must save rbp)
2076 uint SharedRuntime::in_preserve_stack_slots() {
2077   return 2+VerifyStackAtCalls;
2078 }
2079 
2080 uint SharedRuntime::out_preserve_stack_slots() {
2081   return 0;
2082 }
2083 
2084 //------------------------------generate_deopt_blob----------------------------
2085 void SharedRuntime::generate_deopt_blob() {
2086   // allocate space for the code
2087   ResourceMark rm;
2088   // setup code generation tools
2089   // note: the buffer code size must account for StackShadowPages=50
2090   CodeBuffer   buffer("deopt_blob", 1536, 1024);
2091   MacroAssembler* masm = new MacroAssembler(&buffer);
2092   int frame_size_in_words;
2093   OopMap* map = nullptr;
2094   // Account for the extra args we place on the stack
2095   // by the time we call fetch_unroll_info
2096   const int additional_words = 2; // deopt kind, thread
2097 
2098   OopMapSet *oop_maps = new OopMapSet();
2099 
2100   // -------------
2101   // This code enters when returning to a de-optimized nmethod.  A return
2102   // address has been pushed on the stack, and return values are in
2103   // registers.
2104   // If we are doing a normal deopt then we were called from the patched
2105   // nmethod from the point we returned to the nmethod. So the return
2106   // address on the stack is wrong by NativeCall::instruction_size
2107   // We will adjust the value to it looks like we have the original return
2108   // address on the stack (like when we eagerly deoptimized).
2109   // In the case of an exception pending with deoptimized then we enter
2110   // with a return address on the stack that points after the call we patched
2111   // into the exception handler. We have the following register state:
2112   //    rax,: exception
2113   //    rbx,: exception handler
2114   //    rdx: throwing pc
2115   // So in this case we simply jam rdx into the useless return address and
2116   // the stack looks just like we want.
2117   //
2118   // At this point we need to de-opt.  We save the argument return
2119   // registers.  We call the first C routine, fetch_unroll_info().  This
2120   // routine captures the return values and returns a structure which
2121   // describes the current frame size and the sizes of all replacement frames.
2122   // The current frame is compiled code and may contain many inlined
2123   // functions, each with their own JVM state.  We pop the current frame, then
2124   // push all the new frames.  Then we call the C routine unpack_frames() to
2125   // populate these frames.  Finally unpack_frames() returns us the new target
2126   // address.  Notice that callee-save registers are BLOWN here; they have
2127   // already been captured in the vframeArray at the time the return PC was
2128   // patched.
2129   address start = __ pc();
2130   Label cont;
2131 
2132   // Prolog for non exception case!
2133 
2134   // Save everything in sight.
2135 
2136   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2137   // Normal deoptimization
2138   __ push(Deoptimization::Unpack_deopt);
2139   __ jmp(cont);
2140 
2141   int reexecute_offset = __ pc() - start;
2142 
2143   // Reexecute case
2144   // return address is the pc describes what bci to do re-execute at
2145 
2146   // No need to update map as each call to save_live_registers will produce identical oopmap
2147   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2148 
2149   __ push(Deoptimization::Unpack_reexecute);
2150   __ jmp(cont);
2151 
2152   int exception_offset = __ pc() - start;
2153 
2154   // Prolog for exception case
2155 
2156   // all registers are dead at this entry point, except for rax, and
2157   // rdx which contain the exception oop and exception pc
2158   // respectively.  Set them in TLS and fall thru to the
2159   // unpack_with_exception_in_tls entry point.
2160 
2161   __ get_thread(rdi);
2162   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2163   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2164 
2165   int exception_in_tls_offset = __ pc() - start;
2166 
2167   // new implementation because exception oop is now passed in JavaThread
2168 
2169   // Prolog for exception case
2170   // All registers must be preserved because they might be used by LinearScan
2171   // Exceptiop oop and throwing PC are passed in JavaThread
2172   // tos: stack at point of call to method that threw the exception (i.e. only
2173   // args are on the stack, no return address)
2174 
2175   // make room on stack for the return address
2176   // It will be patched later with the throwing pc. The correct value is not
2177   // available now because loading it from memory would destroy registers.
2178   __ push(0);
2179 
2180   // Save everything in sight.
2181 
2182   // No need to update map as each call to save_live_registers will produce identical oopmap
2183   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2184 
2185   // Now it is safe to overwrite any register
2186 
2187   // store the correct deoptimization type
2188   __ push(Deoptimization::Unpack_exception);
2189 
2190   // load throwing pc from JavaThread and patch it as the return address
2191   // of the current frame. Then clear the field in JavaThread
2192   __ get_thread(rdi);
2193   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2194   __ movptr(Address(rbp, wordSize), rdx);
2195   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2196 
2197 #ifdef ASSERT
2198   // verify that there is really an exception oop in JavaThread
2199   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2200   __ verify_oop(rax);
2201 
2202   // verify that there is no pending exception
2203   Label no_pending_exception;
2204   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2205   __ testptr(rax, rax);
2206   __ jcc(Assembler::zero, no_pending_exception);
2207   __ stop("must not have pending exception here");
2208   __ bind(no_pending_exception);
2209 #endif
2210 
2211   __ bind(cont);
2212 
2213   // Compiled code leaves the floating point stack dirty, empty it.
2214   __ empty_FPU_stack();
2215 
2216 
2217   // Call C code.  Need thread and this frame, but NOT official VM entry
2218   // crud.  We cannot block on this call, no GC can happen.
2219   __ get_thread(rcx);
2220   __ push(rcx);
2221   // fetch_unroll_info needs to call last_java_frame()
2222   __ set_last_Java_frame(rcx, noreg, noreg, nullptr, noreg);
2223 
2224   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2225 
2226   // Need to have an oopmap that tells fetch_unroll_info where to
2227   // find any register it might need.
2228 
2229   oop_maps->add_gc_map( __ pc()-start, map);
2230 
2231   // Discard args to fetch_unroll_info
2232   __ pop(rcx);
2233   __ pop(rcx);
2234 
2235   __ get_thread(rcx);
2236   __ reset_last_Java_frame(rcx, false);
2237 
2238   // Load UnrollBlock into EDI
2239   __ mov(rdi, rax);
2240 
2241   // Move the unpack kind to a safe place in the UnrollBlock because
2242   // we are very short of registers
2243 
2244   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset());
2245   // retrieve the deopt kind from the UnrollBlock.
2246   __ movl(rax, unpack_kind);
2247 
2248    Label noException;
2249   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2250   __ jcc(Assembler::notEqual, noException);
2251   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2252   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2253   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2254   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2255 
2256   __ verify_oop(rax);
2257 
2258   // Overwrite the result registers with the exception results.
2259   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2260   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2261 
2262   __ bind(noException);
2263 
2264   // Stack is back to only having register save data on the stack.
2265   // Now restore the result registers. Everything else is either dead or captured
2266   // in the vframeArray.
2267 
2268   RegisterSaver::restore_result_registers(masm);
2269 
2270   // Non standard control word may be leaked out through a safepoint blob, and we can
2271   // deopt at a poll point with the non standard control word. However, we should make
2272   // sure the control word is correct after restore_result_registers.
2273   __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
2274 
2275   // All of the register save area has been popped of the stack. Only the
2276   // return address remains.
2277 
2278   // Pop all the frames we must move/replace.
2279   //
2280   // Frame picture (youngest to oldest)
2281   // 1: self-frame (no frame link)
2282   // 2: deopting frame  (no frame link)
2283   // 3: caller of deopting frame (could be compiled/interpreted).
2284   //
2285   // Note: by leaving the return address of self-frame on the stack
2286   // and using the size of frame 2 to adjust the stack
2287   // when we are done the return to frame 3 will still be on the stack.
2288 
2289   // Pop deoptimized frame
2290   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2291 
2292   // sp should be pointing at the return address to the caller (3)
2293 
2294   // Pick up the initial fp we should save
2295   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2296   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2297 
2298 #ifdef ASSERT
2299   // Compilers generate code that bang the stack by as much as the
2300   // interpreter would need. So this stack banging should never
2301   // trigger a fault. Verify that it does not on non product builds.
2302   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2303   __ bang_stack_size(rbx, rcx);
2304 #endif
2305 
2306   // Load array of frame pcs into ECX
2307   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset()));
2308 
2309   __ pop(rsi); // trash the old pc
2310 
2311   // Load array of frame sizes into ESI
2312   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset()));
2313 
2314   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset());
2315 
2316   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2317   __ movl(counter, rbx);
2318 
2319   // Now adjust the caller's stack to make up for the extra locals
2320   // but record the original sp so that we can save it in the skeletal interpreter
2321   // frame and the stack walking of interpreter_sender will get the unextended sp
2322   // value and not the "real" sp value.
2323 
2324   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset());
2325   __ movptr(sp_temp, rsp);
2326   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset()));
2327   __ subptr(rsp, rbx);
2328 
2329   // Push interpreter frames in a loop
2330   Label loop;
2331   __ bind(loop);
2332   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2333   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2334   __ pushptr(Address(rcx, 0));          // save return address
2335   __ enter();                           // save old & set new rbp,
2336   __ subptr(rsp, rbx);                  // Prolog!
2337   __ movptr(rbx, sp_temp);              // sender's sp
2338   // This value is corrected by layout_activation_impl
2339   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2340   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2341   __ movptr(sp_temp, rsp);              // pass to next frame
2342   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2343   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2344   __ decrementl(counter);             // decrement counter
2345   __ jcc(Assembler::notZero, loop);
2346   __ pushptr(Address(rcx, 0));          // save final return address
2347 
2348   // Re-push self-frame
2349   __ enter();                           // save old & set new rbp,
2350 
2351   //  Return address and rbp, are in place
2352   // We'll push additional args later. Just allocate a full sized
2353   // register save area
2354   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2355 
2356   // Restore frame locals after moving the frame
2357   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2358   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2359   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2360   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2361   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2362 
2363   // Set up the args to unpack_frame
2364 
2365   __ pushl(unpack_kind);                     // get the unpack_kind value
2366   __ get_thread(rcx);
2367   __ push(rcx);
2368 
2369   // set last_Java_sp, last_Java_fp
2370   __ set_last_Java_frame(rcx, noreg, rbp, nullptr, noreg);
2371 
2372   // Call C code.  Need thread but NOT official VM entry
2373   // crud.  We cannot block on this call, no GC can happen.  Call should
2374   // restore return values to their stack-slots with the new SP.
2375   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2376   // Set an oopmap for the call site
2377   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2378 
2379   // rax, contains the return result type
2380   __ push(rax);
2381 
2382   __ get_thread(rcx);
2383   __ reset_last_Java_frame(rcx, false);
2384 
2385   // Collect return values
2386   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2387   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2388 
2389   // Clear floating point stack before returning to interpreter
2390   __ empty_FPU_stack();
2391 
2392   // Check if we should push the float or double return value.
2393   Label results_done, yes_double_value;
2394   __ cmpl(Address(rsp, 0), T_DOUBLE);
2395   __ jcc (Assembler::zero, yes_double_value);
2396   __ cmpl(Address(rsp, 0), T_FLOAT);
2397   __ jcc (Assembler::notZero, results_done);
2398 
2399   // return float value as expected by interpreter
2400   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2401   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2402   __ jmp(results_done);
2403 
2404   // return double value as expected by interpreter
2405   __ bind(yes_double_value);
2406   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2407   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2408 
2409   __ bind(results_done);
2410 
2411   // Pop self-frame.
2412   __ leave();                              // Epilog!
2413 
2414   // Jump to interpreter
2415   __ ret(0);
2416 
2417   // -------------
2418   // make sure all code is generated
2419   masm->flush();
2420 
2421   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2422   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2423 }
2424 
2425 
2426 #ifdef COMPILER2
2427 //------------------------------generate_uncommon_trap_blob--------------------
2428 void SharedRuntime::generate_uncommon_trap_blob() {
2429   // allocate space for the code
2430   ResourceMark rm;
2431   // setup code generation tools
2432   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2433   MacroAssembler* masm = new MacroAssembler(&buffer);
2434 
2435   enum frame_layout {
2436     arg0_off,      // thread                     sp + 0 // Arg location for
2437     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2438     arg2_off,      // exec_mode                  sp + 2
2439     // The frame sender code expects that rbp will be in the "natural" place and
2440     // will override any oopMap setting for it. We must therefore force the layout
2441     // so that it agrees with the frame sender code.
2442     rbp_off,       // callee saved register      sp + 3
2443     return_off,    // slot for return address    sp + 4
2444     framesize
2445   };
2446 
2447   address start = __ pc();
2448 
2449   if (UseRTMLocking) {
2450     // Abort RTM transaction before possible nmethod deoptimization.
2451     __ xabort(0);
2452   }
2453 
2454   // Push self-frame.
2455   __ subptr(rsp, return_off*wordSize);     // Epilog!
2456 
2457   // rbp, is an implicitly saved callee saved register (i.e. the calling
2458   // convention will save restore it in prolog/epilog) Other than that
2459   // there are no callee save registers no that adapter frames are gone.
2460   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2461 
2462   // Clear the floating point exception stack
2463   __ empty_FPU_stack();
2464 
2465   // set last_Java_sp
2466   __ get_thread(rdx);
2467   __ set_last_Java_frame(rdx, noreg, noreg, nullptr, noreg);
2468 
2469   // Call C code.  Need thread but NOT official VM entry
2470   // crud.  We cannot block on this call, no GC can happen.  Call should
2471   // capture callee-saved registers as well as return values.
2472   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2473   // argument already in ECX
2474   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2475   __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2476   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2477 
2478   // Set an oopmap for the call site
2479   OopMapSet *oop_maps = new OopMapSet();
2480   OopMap* map =  new OopMap( framesize, 0 );
2481   // No oopMap for rbp, it is known implicitly
2482 
2483   oop_maps->add_gc_map( __ pc()-start, map);
2484 
2485   __ get_thread(rcx);
2486 
2487   __ reset_last_Java_frame(rcx, false);
2488 
2489   // Load UnrollBlock into EDI
2490   __ movptr(rdi, rax);
2491 
2492 #ifdef ASSERT
2493   { Label L;
2494     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset()),
2495             (int32_t)Deoptimization::Unpack_uncommon_trap);
2496     __ jcc(Assembler::equal, L);
2497     __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
2498     __ bind(L);
2499   }
2500 #endif
2501 
2502   // Pop all the frames we must move/replace.
2503   //
2504   // Frame picture (youngest to oldest)
2505   // 1: self-frame (no frame link)
2506   // 2: deopting frame  (no frame link)
2507   // 3: caller of deopting frame (could be compiled/interpreted).
2508 
2509   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2510   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2511 
2512   // Pop deoptimized frame
2513   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2514   __ addptr(rsp, rcx);
2515 
2516   // sp should be pointing at the return address to the caller (3)
2517 
2518   // Pick up the initial fp we should save
2519   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2520   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2521 
2522 #ifdef ASSERT
2523   // Compilers generate code that bang the stack by as much as the
2524   // interpreter would need. So this stack banging should never
2525   // trigger a fault. Verify that it does not on non product builds.
2526   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2527   __ bang_stack_size(rbx, rcx);
2528 #endif
2529 
2530   // Load array of frame pcs into ECX
2531   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset()));
2532 
2533   __ pop(rsi); // trash the pc
2534 
2535   // Load array of frame sizes into ESI
2536   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset()));
2537 
2538   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset());
2539 
2540   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2541   __ movl(counter, rbx);
2542 
2543   // Now adjust the caller's stack to make up for the extra locals
2544   // but record the original sp so that we can save it in the skeletal interpreter
2545   // frame and the stack walking of interpreter_sender will get the unextended sp
2546   // value and not the "real" sp value.
2547 
2548   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset());
2549   __ movptr(sp_temp, rsp);
2550   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset()));
2551   __ subptr(rsp, rbx);
2552 
2553   // Push interpreter frames in a loop
2554   Label loop;
2555   __ bind(loop);
2556   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2557   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2558   __ pushptr(Address(rcx, 0));          // save return address
2559   __ enter();                           // save old & set new rbp,
2560   __ subptr(rsp, rbx);                  // Prolog!
2561   __ movptr(rbx, sp_temp);              // sender's sp
2562   // This value is corrected by layout_activation_impl
2563   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2564   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2565   __ movptr(sp_temp, rsp);              // pass to next frame
2566   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2567   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2568   __ decrementl(counter);             // decrement counter
2569   __ jcc(Assembler::notZero, loop);
2570   __ pushptr(Address(rcx, 0));            // save final return address
2571 
2572   // Re-push self-frame
2573   __ enter();                           // save old & set new rbp,
2574   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2575 
2576 
2577   // set last_Java_sp, last_Java_fp
2578   __ get_thread(rdi);
2579   __ set_last_Java_frame(rdi, noreg, rbp, nullptr, noreg);
2580 
2581   // Call C code.  Need thread but NOT official VM entry
2582   // crud.  We cannot block on this call, no GC can happen.  Call should
2583   // restore return values to their stack-slots with the new SP.
2584   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2585   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2586   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2587   // Set an oopmap for the call site
2588   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2589 
2590   __ get_thread(rdi);
2591   __ reset_last_Java_frame(rdi, true);
2592 
2593   // Pop self-frame.
2594   __ leave();     // Epilog!
2595 
2596   // Jump to interpreter
2597   __ ret(0);
2598 
2599   // -------------
2600   // make sure all code is generated
2601   masm->flush();
2602 
2603    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2604 }
2605 #endif // COMPILER2
2606 
2607 //------------------------------generate_handler_blob------
2608 //
2609 // Generate a special Compile2Runtime blob that saves all registers,
2610 // setup oopmap, and calls safepoint code to stop the compiled code for
2611 // a safepoint.
2612 //
2613 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2614 
2615   // Account for thread arg in our frame
2616   const int additional_words = 1;
2617   int frame_size_in_words;
2618 
2619   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2620 
2621   ResourceMark rm;
2622   OopMapSet *oop_maps = new OopMapSet();
2623   OopMap* map;
2624 
2625   // allocate space for the code
2626   // setup code generation tools
2627   CodeBuffer   buffer("handler_blob", 2048, 1024);
2628   MacroAssembler* masm = new MacroAssembler(&buffer);
2629 
2630   const Register java_thread = rdi; // callee-saved for VC++
2631   address start   = __ pc();
2632   address call_pc = nullptr;
2633   bool cause_return = (poll_type == POLL_AT_RETURN);
2634   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2635 
2636   if (UseRTMLocking) {
2637     // Abort RTM transaction before calling runtime
2638     // because critical section will be large and will be
2639     // aborted anyway. Also nmethod could be deoptimized.
2640     __ xabort(0);
2641   }
2642 
2643   // If cause_return is true we are at a poll_return and there is
2644   // the return address on the stack to the caller on the nmethod
2645   // that is safepoint. We can leave this return on the stack and
2646   // effectively complete the return and safepoint in the caller.
2647   // Otherwise we push space for a return address that the safepoint
2648   // handler will install later to make the stack walking sensible.
2649   if (!cause_return)
2650     __ push(rbx);  // Make room for return address (or push it again)
2651 
2652   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2653 
2654   // The following is basically a call_VM. However, we need the precise
2655   // address of the call in order to generate an oopmap. Hence, we do all the
2656   // work ourselves.
2657 
2658   // Push thread argument and setup last_Java_sp
2659   __ get_thread(java_thread);
2660   __ push(java_thread);
2661   __ set_last_Java_frame(java_thread, noreg, noreg, nullptr, noreg);
2662 
2663   // if this was not a poll_return then we need to correct the return address now.
2664   if (!cause_return) {
2665     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
2666     // Additionally, rbx is a callee saved register and we can look at it later to determine
2667     // if someone changed the return address for us!
2668     __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2669     __ movptr(Address(rbp, wordSize), rbx);
2670   }
2671 
2672   // do the call
2673   __ call(RuntimeAddress(call_ptr));
2674 
2675   // Set an oopmap for the call site.  This oopmap will map all
2676   // oop-registers and debug-info registers as callee-saved.  This
2677   // will allow deoptimization at this safepoint to find all possible
2678   // debug-info recordings, as well as let GC find all oops.
2679 
2680   oop_maps->add_gc_map( __ pc() - start, map);
2681 
2682   // Discard arg
2683   __ pop(rcx);
2684 
2685   Label noException;
2686 
2687   // Clear last_Java_sp again
2688   __ get_thread(java_thread);
2689   __ reset_last_Java_frame(java_thread, false);
2690 
2691   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
2692   __ jcc(Assembler::equal, noException);
2693 
2694   // Exception pending
2695   RegisterSaver::restore_live_registers(masm, save_vectors);
2696 
2697   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2698 
2699   __ bind(noException);
2700 
2701   Label no_adjust, bail, not_special;
2702   if (!cause_return) {
2703     // If our stashed return pc was modified by the runtime we avoid touching it
2704     __ cmpptr(rbx, Address(rbp, wordSize));
2705     __ jccb(Assembler::notEqual, no_adjust);
2706 
2707     // Skip over the poll instruction.
2708     // See NativeInstruction::is_safepoint_poll()
2709     // Possible encodings:
2710     //      85 00       test   %eax,(%rax)
2711     //      85 01       test   %eax,(%rcx)
2712     //      85 02       test   %eax,(%rdx)
2713     //      85 03       test   %eax,(%rbx)
2714     //      85 06       test   %eax,(%rsi)
2715     //      85 07       test   %eax,(%rdi)
2716     //
2717     //      85 04 24    test   %eax,(%rsp)
2718     //      85 45 00    test   %eax,0x0(%rbp)
2719 
2720 #ifdef ASSERT
2721     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
2722 #endif
2723     // rsp/rbp base encoding takes 3 bytes with the following register values:
2724     // rsp 0x04
2725     // rbp 0x05
2726     __ movzbl(rcx, Address(rbx, 1));
2727     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
2728     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
2729     __ cmpptr(rcx, 1);
2730     __ jcc(Assembler::above, not_special);
2731     __ addptr(rbx, 1);
2732     __ bind(not_special);
2733 #ifdef ASSERT
2734     // Verify the correct encoding of the poll we're about to skip.
2735     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
2736     __ jcc(Assembler::notEqual, bail);
2737     // Mask out the modrm bits
2738     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
2739     // rax encodes to 0, so if the bits are nonzero it's incorrect
2740     __ jcc(Assembler::notZero, bail);
2741 #endif
2742     // Adjust return pc forward to step over the safepoint poll instruction
2743     __ addptr(rbx, 2);
2744     __ movptr(Address(rbp, wordSize), rbx);
2745   }
2746 
2747   __ bind(no_adjust);
2748   // Normal exit, register restoring and exit
2749   RegisterSaver::restore_live_registers(masm, save_vectors);
2750 
2751   __ ret(0);
2752 
2753 #ifdef ASSERT
2754   __ bind(bail);
2755   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2756 #endif
2757 
2758   // make sure all code is generated
2759   masm->flush();
2760 
2761   // Fill-out other meta info
2762   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2763 }
2764 
2765 //
2766 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2767 //
2768 // Generate a stub that calls into vm to find out the proper destination
2769 // of a java call. All the argument registers are live at this point
2770 // but since this is generic code we don't know what they are and the caller
2771 // must do any gc of the args.
2772 //
2773 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
2774   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2775 
2776   // allocate space for the code
2777   ResourceMark rm;
2778 
2779   CodeBuffer buffer(name, 1000, 512);
2780   MacroAssembler* masm                = new MacroAssembler(&buffer);
2781 
2782   int frame_size_words;
2783   enum frame_layout {
2784                 thread_off,
2785                 extra_words };
2786 
2787   OopMapSet *oop_maps = new OopMapSet();
2788   OopMap* map = nullptr;
2789 
2790   int start = __ offset();
2791 
2792   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2793 
2794   int frame_complete = __ offset();
2795 
2796   const Register thread = rdi;
2797   __ get_thread(rdi);
2798 
2799   __ push(thread);
2800   __ set_last_Java_frame(thread, noreg, rbp, nullptr, noreg);
2801 
2802   __ call(RuntimeAddress(destination));
2803 
2804 
2805   // Set an oopmap for the call site.
2806   // We need this not only for callee-saved registers, but also for volatile
2807   // registers that the compiler might be keeping live across a safepoint.
2808 
2809   oop_maps->add_gc_map( __ offset() - start, map);
2810 
2811   // rax, contains the address we are going to jump to assuming no exception got installed
2812 
2813   __ addptr(rsp, wordSize);
2814 
2815   // clear last_Java_sp
2816   __ reset_last_Java_frame(thread, true);
2817   // check for pending exceptions
2818   Label pending;
2819   __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
2820   __ jcc(Assembler::notEqual, pending);
2821 
2822   // get the returned Method*
2823   __ get_vm_result_2(rbx, thread);
2824   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2825 
2826   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2827 
2828   RegisterSaver::restore_live_registers(masm);
2829 
2830   // We are back to the original state on entry and ready to go.
2831 
2832   __ jmp(rax);
2833 
2834   // Pending exception after the safepoint
2835 
2836   __ bind(pending);
2837 
2838   RegisterSaver::restore_live_registers(masm);
2839 
2840   // exception pending => remove activation and forward to exception handler
2841 
2842   __ get_thread(thread);
2843   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2844   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2845   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2846 
2847   // -------------
2848   // make sure all code is generated
2849   masm->flush();
2850 
2851   // return the  blob
2852   // frame_size_words or bytes??
2853   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
2854 }