1 /*
   2  * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nativeInst.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/compiledICHolder.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "prims/methodHandles.hpp"
  42 #include "runtime/jniHandles.hpp"
  43 #include "runtime/safepointMechanism.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "runtime/vm_version.hpp"
  49 #include "utilities/align.hpp"
  50 #include "vmreg_x86.inline.hpp"
  51 #ifdef COMPILER1
  52 #include "c1/c1_Runtime1.hpp"
  53 #endif
  54 #ifdef COMPILER2
  55 #include "opto/runtime.hpp"
  56 #endif
  57 
  58 #define __ masm->
  59 
  60 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  61 
  62 class RegisterSaver {
  63   // Capture info about frame layout
  64 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  65   enum layout {
  66                 fpu_state_off = 0,
  67                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  68                 st0_off, st0H_off,
  69                 st1_off, st1H_off,
  70                 st2_off, st2H_off,
  71                 st3_off, st3H_off,
  72                 st4_off, st4H_off,
  73                 st5_off, st5H_off,
  74                 st6_off, st6H_off,
  75                 st7_off, st7H_off,
  76                 xmm_off,
  77                 DEF_XMM_OFFS(0),
  78                 DEF_XMM_OFFS(1),
  79                 DEF_XMM_OFFS(2),
  80                 DEF_XMM_OFFS(3),
  81                 DEF_XMM_OFFS(4),
  82                 DEF_XMM_OFFS(5),
  83                 DEF_XMM_OFFS(6),
  84                 DEF_XMM_OFFS(7),
  85                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  86                 rdi_off,
  87                 rsi_off,
  88                 ignore_off,  // extra copy of rbp,
  89                 rsp_off,
  90                 rbx_off,
  91                 rdx_off,
  92                 rcx_off,
  93                 rax_off,
  94                 // The frame sender code expects that rbp will be in the "natural" place and
  95                 // will override any oopMap setting for it. We must therefore force the layout
  96                 // so that it agrees with the frame sender code.
  97                 rbp_off,
  98                 return_off,      // slot for return address
  99                 reg_save_size };
 100   enum { FPU_regs_live = flags_off - fpu_state_end };
 101 
 102   public:
 103 
 104   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
 105                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
 106   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 107 
 108   static int rax_offset() { return rax_off; }
 109   static int rbx_offset() { return rbx_off; }
 110 
 111   // Offsets into the register save area
 112   // Used by deoptimization when it is managing result register
 113   // values on its own
 114 
 115   static int raxOffset(void) { return rax_off; }
 116   static int rdxOffset(void) { return rdx_off; }
 117   static int rbxOffset(void) { return rbx_off; }
 118   static int xmm0Offset(void) { return xmm0_off; }
 119   // This really returns a slot in the fp save area, which one is not important
 120   static int fpResultOffset(void) { return st0_off; }
 121 
 122   // During deoptimization only the result register need to be restored
 123   // all the other values have already been extracted.
 124 
 125   static void restore_result_registers(MacroAssembler* masm);
 126 
 127 };
 128 
 129 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 130                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 131   int num_xmm_regs = XMMRegister::number_of_registers;
 132   int ymm_bytes = num_xmm_regs * 16;
 133   int zmm_bytes = num_xmm_regs * 32;
 134 #ifdef COMPILER2
 135   int opmask_state_bytes = KRegister::number_of_registers * 8;
 136   if (save_vectors) {
 137     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 138     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 139     // Save upper half of YMM registers
 140     int vect_bytes = ymm_bytes;
 141     if (UseAVX > 2) {
 142       // Save upper half of ZMM registers as well
 143       vect_bytes += zmm_bytes;
 144       additional_frame_words += opmask_state_bytes / wordSize;
 145     }
 146     additional_frame_words += vect_bytes / wordSize;
 147   }
 148 #else
 149   assert(!save_vectors, "vectors are generated only by C2");
 150 #endif
 151   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 152   int frame_words = frame_size_in_bytes / wordSize;
 153   *total_frame_words = frame_words;
 154 
 155   assert(FPUStateSizeInWords == 27, "update stack layout");
 156 
 157   // save registers, fpu state, and flags
 158   // We assume caller has already has return address slot on the stack
 159   // We push epb twice in this sequence because we want the real rbp,
 160   // to be under the return like a normal enter and we want to use pusha
 161   // We push by hand instead of using push.
 162   __ enter();
 163   __ pusha();
 164   __ pushf();
 165   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 166   __ push_FPU_state();          // Save FPU state & init
 167 
 168   if (verify_fpu) {
 169     // Some stubs may have non standard FPU control word settings so
 170     // only check and reset the value when it required to be the
 171     // standard value.  The safepoint blob in particular can be used
 172     // in methods which are using the 24 bit control word for
 173     // optimized float math.
 174 
 175 #ifdef ASSERT
 176     // Make sure the control word has the expected value
 177     Label ok;
 178     __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 179     __ jccb(Assembler::equal, ok);
 180     __ stop("corrupted control word detected");
 181     __ bind(ok);
 182 #endif
 183 
 184     // Reset the control word to guard against exceptions being unmasked
 185     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 186     // into the on stack copy and then reload that to make sure that the
 187     // current and future values are correct.
 188     __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 189   }
 190 
 191   __ frstor(Address(rsp, 0));
 192   if (!verify_fpu) {
 193     // Set the control word so that exceptions are masked for the
 194     // following code.
 195     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
 196   }
 197 
 198   int off = st0_off;
 199   int delta = st1_off - off;
 200 
 201   // Save the FPU registers in de-opt-able form
 202   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 203     __ fstp_d(Address(rsp, off*wordSize));
 204     off += delta;
 205   }
 206 
 207   off = xmm0_off;
 208   delta = xmm1_off - off;
 209   if(UseSSE == 1) {
 210     // Save the XMM state
 211     for (int n = 0; n < num_xmm_regs; n++) {
 212       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 213       off += delta;
 214     }
 215   } else if(UseSSE >= 2) {
 216     // Save whole 128bit (16 bytes) XMM registers
 217     for (int n = 0; n < num_xmm_regs; n++) {
 218       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 219       off += delta;
 220     }
 221   }
 222 
 223 #ifdef COMPILER2
 224   if (save_vectors) {
 225     __ subptr(rsp, ymm_bytes);
 226     // Save upper half of YMM registers
 227     for (int n = 0; n < num_xmm_regs; n++) {
 228       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 229     }
 230     if (UseAVX > 2) {
 231       __ subptr(rsp, zmm_bytes);
 232       // Save upper half of ZMM registers
 233       for (int n = 0; n < num_xmm_regs; n++) {
 234         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 235       }
 236       __ subptr(rsp, opmask_state_bytes);
 237       // Save opmask registers
 238       for (int n = 0; n < KRegister::number_of_registers; n++) {
 239         __ kmov(Address(rsp, n*8), as_KRegister(n));
 240       }
 241     }
 242   }
 243 #else
 244   assert(!save_vectors, "vectors are generated only by C2");
 245 #endif
 246 
 247   __ vzeroupper();
 248 
 249   // Set an oopmap for the call site.  This oopmap will map all
 250   // oop-registers and debug-info registers as callee-saved.  This
 251   // will allow deoptimization at this safepoint to find all possible
 252   // debug-info recordings, as well as let GC find all oops.
 253 
 254   OopMapSet *oop_maps = new OopMapSet();
 255   OopMap* map =  new OopMap( frame_words, 0 );
 256 
 257 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 258 #define NEXTREG(x) (x)->as_VMReg()->next()
 259 
 260   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 261   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 262   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 263   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 264   // rbp, location is known implicitly, no oopMap
 265   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 266   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 267 
 268   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 269   off = st0_off;
 270   delta = st1_off - off;
 271   for (int n = 0; n < FloatRegister::number_of_registers; n++) {
 272     FloatRegister freg_name = as_FloatRegister(n);
 273     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 274     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 275     off += delta;
 276   }
 277   off = xmm0_off;
 278   delta = xmm1_off - off;
 279   for (int n = 0; n < num_xmm_regs; n++) {
 280     XMMRegister xmm_name = as_XMMRegister(n);
 281     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 282     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 283     off += delta;
 284   }
 285 #undef NEXTREG
 286 #undef STACK_OFFSET
 287 
 288   return map;
 289 }
 290 
 291 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 292   int opmask_state_bytes = 0;
 293   int additional_frame_bytes = 0;
 294   int num_xmm_regs = XMMRegister::number_of_registers;
 295   int ymm_bytes = num_xmm_regs * 16;
 296   int zmm_bytes = num_xmm_regs * 32;
 297   // Recover XMM & FPU state
 298 #ifdef COMPILER2
 299   if (restore_vectors) {
 300     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 301     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 302     // Save upper half of YMM registers
 303     additional_frame_bytes = ymm_bytes;
 304     if (UseAVX > 2) {
 305       // Save upper half of ZMM registers as well
 306       additional_frame_bytes += zmm_bytes;
 307       opmask_state_bytes = KRegister::number_of_registers * 8;
 308       additional_frame_bytes += opmask_state_bytes;
 309     }
 310   }
 311 #else
 312   assert(!restore_vectors, "vectors are generated only by C2");
 313 #endif
 314 
 315   int off = xmm0_off;
 316   int delta = xmm1_off - off;
 317 
 318   __ vzeroupper();
 319 
 320   if (UseSSE == 1) {
 321     // Restore XMM registers
 322     assert(additional_frame_bytes == 0, "");
 323     for (int n = 0; n < num_xmm_regs; n++) {
 324       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 325       off += delta;
 326     }
 327   } else if (UseSSE >= 2) {
 328     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 329     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 330     for (int n = 0; n < num_xmm_regs; n++) {
 331       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 332       off += delta;
 333     }
 334   }
 335 
 336   if (restore_vectors) {
 337     off = additional_frame_bytes - ymm_bytes;
 338     // Restore upper half of YMM registers.
 339     for (int n = 0; n < num_xmm_regs; n++) {
 340       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off));
 341     }
 342     if (UseAVX > 2) {
 343       // Restore upper half of ZMM registers.
 344       off = opmask_state_bytes;
 345       for (int n = 0; n < num_xmm_regs; n++) {
 346         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off));
 347       }
 348       for (int n = 0; n < KRegister::number_of_registers; n++) {
 349         __ kmov(as_KRegister(n), Address(rsp, n*8));
 350       }
 351     }
 352     __ addptr(rsp, additional_frame_bytes);
 353   }
 354 
 355   __ pop_FPU_state();
 356   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 357 
 358   __ popf();
 359   __ popa();
 360   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 361   __ pop(rbp);
 362 }
 363 
 364 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 365 
 366   // Just restore result register. Only used by deoptimization. By
 367   // now any callee save register that needs to be restore to a c2
 368   // caller of the deoptee has been extracted into the vframeArray
 369   // and will be stuffed into the c2i adapter we create for later
 370   // restoration so only result registers need to be restored here.
 371   //
 372 
 373   __ frstor(Address(rsp, 0));      // Restore fpu state
 374 
 375   // Recover XMM & FPU state
 376   if( UseSSE == 1 ) {
 377     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 378   } else if( UseSSE >= 2 ) {
 379     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 380   }
 381   __ movptr(rax, Address(rsp, rax_off*wordSize));
 382   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 383   // Pop all of the register save are off the stack except the return address
 384   __ addptr(rsp, return_off * wordSize);
 385 }
 386 
 387 // Is vector's size (in bytes) bigger than a size saved by default?
 388 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 389 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 390 bool SharedRuntime::is_wide_vector(int size) {
 391   return size > 16;
 392 }
 393 
 394 // The java_calling_convention describes stack locations as ideal slots on
 395 // a frame with no abi restrictions. Since we must observe abi restrictions
 396 // (like the placement of the register window) the slots must be biased by
 397 // the following value.
 398 static int reg2offset_in(VMReg r) {
 399   // Account for saved rbp, and return address
 400   // This should really be in_preserve_stack_slots
 401   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 402 }
 403 
 404 static int reg2offset_out(VMReg r) {
 405   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 406 }
 407 
 408 // ---------------------------------------------------------------------------
 409 // Read the array of BasicTypes from a signature, and compute where the
 410 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 411 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 412 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 413 // as framesizes are fixed.
 414 // VMRegImpl::stack0 refers to the first slot 0(sp).
 415 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 416 // Register up to Register::number_of_registers are the 32-bit
 417 // integer registers.
 418 
 419 // Pass first two oop/int args in registers ECX and EDX.
 420 // Pass first two float/double args in registers XMM0 and XMM1.
 421 // Doubles have precedence, so if you pass a mix of floats and doubles
 422 // the doubles will grab the registers before the floats will.
 423 
 424 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 425 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 426 // units regardless of build. Of course for i486 there is no 64 bit build
 427 
 428 
 429 // ---------------------------------------------------------------------------
 430 // The compiled Java calling convention.
 431 // Pass first two oop/int args in registers ECX and EDX.
 432 // Pass first two float/double args in registers XMM0 and XMM1.
 433 // Doubles have precedence, so if you pass a mix of floats and doubles
 434 // the doubles will grab the registers before the floats will.
 435 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 436                                            VMRegPair *regs,
 437                                            int total_args_passed) {
 438   uint    stack = 0;          // Starting stack position for args on stack
 439 
 440 
 441   // Pass first two oop/int args in registers ECX and EDX.
 442   uint reg_arg0 = 9999;
 443   uint reg_arg1 = 9999;
 444 
 445   // Pass first two float/double args in registers XMM0 and XMM1.
 446   // Doubles have precedence, so if you pass a mix of floats and doubles
 447   // the doubles will grab the registers before the floats will.
 448   // CNC - TURNED OFF FOR non-SSE.
 449   //       On Intel we have to round all doubles (and most floats) at
 450   //       call sites by storing to the stack in any case.
 451   // UseSSE=0 ==> Don't Use ==> 9999+0
 452   // UseSSE=1 ==> Floats only ==> 9999+1
 453   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 454   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 455   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 456   uint freg_arg0 = 9999+fargs;
 457   uint freg_arg1 = 9999+fargs;
 458 
 459   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 460   int i;
 461   for( i = 0; i < total_args_passed; i++) {
 462     if( sig_bt[i] == T_DOUBLE ) {
 463       // first 2 doubles go in registers
 464       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 465       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 466       else // Else double is passed low on the stack to be aligned.
 467         stack += 2;
 468     } else if( sig_bt[i] == T_LONG ) {
 469       stack += 2;
 470     }
 471   }
 472   int dstack = 0;             // Separate counter for placing doubles
 473 
 474   // Now pick where all else goes.
 475   for( i = 0; i < total_args_passed; i++) {
 476     // From the type and the argument number (count) compute the location
 477     switch( sig_bt[i] ) {
 478     case T_SHORT:
 479     case T_CHAR:
 480     case T_BYTE:
 481     case T_BOOLEAN:
 482     case T_INT:
 483     case T_ARRAY:
 484     case T_OBJECT:
 485     case T_ADDRESS:
 486       if( reg_arg0 == 9999 )  {
 487         reg_arg0 = i;
 488         regs[i].set1(rcx->as_VMReg());
 489       } else if( reg_arg1 == 9999 )  {
 490         reg_arg1 = i;
 491         regs[i].set1(rdx->as_VMReg());
 492       } else {
 493         regs[i].set1(VMRegImpl::stack2reg(stack++));
 494       }
 495       break;
 496     case T_FLOAT:
 497       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 498         freg_arg0 = i;
 499         regs[i].set1(xmm0->as_VMReg());
 500       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 501         freg_arg1 = i;
 502         regs[i].set1(xmm1->as_VMReg());
 503       } else {
 504         regs[i].set1(VMRegImpl::stack2reg(stack++));
 505       }
 506       break;
 507     case T_LONG:
 508       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 509       regs[i].set2(VMRegImpl::stack2reg(dstack));
 510       dstack += 2;
 511       break;
 512     case T_DOUBLE:
 513       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 514       if( freg_arg0 == (uint)i ) {
 515         regs[i].set2(xmm0->as_VMReg());
 516       } else if( freg_arg1 == (uint)i ) {
 517         regs[i].set2(xmm1->as_VMReg());
 518       } else {
 519         regs[i].set2(VMRegImpl::stack2reg(dstack));
 520         dstack += 2;
 521       }
 522       break;
 523     case T_VOID: regs[i].set_bad(); break;
 524       break;
 525     default:
 526       ShouldNotReachHere();
 527       break;
 528     }
 529   }
 530 
 531   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 532   return align_up(stack, 2);
 533 }
 534 
 535 // Patch the callers callsite with entry to compiled code if it exists.
 536 static void patch_callers_callsite(MacroAssembler *masm) {
 537   Label L;
 538   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 539   __ jcc(Assembler::equal, L);
 540   // Schedule the branch target address early.
 541   // Call into the VM to patch the caller, then jump to compiled callee
 542   // rax, isn't live so capture return address while we easily can
 543   __ movptr(rax, Address(rsp, 0));
 544   __ pusha();
 545   __ pushf();
 546 
 547   if (UseSSE == 1) {
 548     __ subptr(rsp, 2*wordSize);
 549     __ movflt(Address(rsp, 0), xmm0);
 550     __ movflt(Address(rsp, wordSize), xmm1);
 551   }
 552   if (UseSSE >= 2) {
 553     __ subptr(rsp, 4*wordSize);
 554     __ movdbl(Address(rsp, 0), xmm0);
 555     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 556   }
 557 #ifdef COMPILER2
 558   // C2 may leave the stack dirty if not in SSE2+ mode
 559   if (UseSSE >= 2) {
 560     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 561   } else {
 562     __ empty_FPU_stack();
 563   }
 564 #endif /* COMPILER2 */
 565 
 566   // VM needs caller's callsite
 567   __ push(rax);
 568   // VM needs target method
 569   __ push(rbx);
 570   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 571   __ addptr(rsp, 2*wordSize);
 572 
 573   if (UseSSE == 1) {
 574     __ movflt(xmm0, Address(rsp, 0));
 575     __ movflt(xmm1, Address(rsp, wordSize));
 576     __ addptr(rsp, 2*wordSize);
 577   }
 578   if (UseSSE >= 2) {
 579     __ movdbl(xmm0, Address(rsp, 0));
 580     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 581     __ addptr(rsp, 4*wordSize);
 582   }
 583 
 584   __ popf();
 585   __ popa();
 586   __ bind(L);
 587 }
 588 
 589 
 590 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 591   int next_off = st_off - Interpreter::stackElementSize;
 592   __ movdbl(Address(rsp, next_off), r);
 593 }
 594 
 595 static void gen_c2i_adapter(MacroAssembler *masm,
 596                             int total_args_passed,
 597                             int comp_args_on_stack,
 598                             const BasicType *sig_bt,
 599                             const VMRegPair *regs,
 600                             Label& skip_fixup) {
 601   // Before we get into the guts of the C2I adapter, see if we should be here
 602   // at all.  We've come from compiled code and are attempting to jump to the
 603   // interpreter, which means the caller made a static call to get here
 604   // (vcalls always get a compiled target if there is one).  Check for a
 605   // compiled target.  If there is one, we need to patch the caller's call.
 606   patch_callers_callsite(masm);
 607 
 608   __ bind(skip_fixup);
 609 
 610 #ifdef COMPILER2
 611   // C2 may leave the stack dirty if not in SSE2+ mode
 612   if (UseSSE >= 2) {
 613     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 614   } else {
 615     __ empty_FPU_stack();
 616   }
 617 #endif /* COMPILER2 */
 618 
 619   // Since all args are passed on the stack, total_args_passed * interpreter_
 620   // stack_element_size  is the
 621   // space we need.
 622   int extraspace = total_args_passed * Interpreter::stackElementSize;
 623 
 624   // Get return address
 625   __ pop(rax);
 626 
 627   // set senderSP value
 628   __ movptr(rsi, rsp);
 629 
 630   __ subptr(rsp, extraspace);
 631 
 632   // Now write the args into the outgoing interpreter space
 633   for (int i = 0; i < total_args_passed; i++) {
 634     if (sig_bt[i] == T_VOID) {
 635       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 636       continue;
 637     }
 638 
 639     // st_off points to lowest address on stack.
 640     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 641     int next_off = st_off - Interpreter::stackElementSize;
 642 
 643     // Say 4 args:
 644     // i   st_off
 645     // 0   12 T_LONG
 646     // 1    8 T_VOID
 647     // 2    4 T_OBJECT
 648     // 3    0 T_BOOL
 649     VMReg r_1 = regs[i].first();
 650     VMReg r_2 = regs[i].second();
 651     if (!r_1->is_valid()) {
 652       assert(!r_2->is_valid(), "");
 653       continue;
 654     }
 655 
 656     if (r_1->is_stack()) {
 657       // memory to memory use fpu stack top
 658       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 659 
 660       if (!r_2->is_valid()) {
 661         __ movl(rdi, Address(rsp, ld_off));
 662         __ movptr(Address(rsp, st_off), rdi);
 663       } else {
 664 
 665         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 666         // st_off == MSW, st_off-wordSize == LSW
 667 
 668         __ movptr(rdi, Address(rsp, ld_off));
 669         __ movptr(Address(rsp, next_off), rdi);
 670         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 671         __ movptr(Address(rsp, st_off), rdi);
 672       }
 673     } else if (r_1->is_Register()) {
 674       Register r = r_1->as_Register();
 675       if (!r_2->is_valid()) {
 676         __ movl(Address(rsp, st_off), r);
 677       } else {
 678         // long/double in gpr
 679         ShouldNotReachHere();
 680       }
 681     } else {
 682       assert(r_1->is_XMMRegister(), "");
 683       if (!r_2->is_valid()) {
 684         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 685       } else {
 686         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 687         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 688       }
 689     }
 690   }
 691 
 692   // Schedule the branch target address early.
 693   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 694   // And repush original return address
 695   __ push(rax);
 696   __ jmp(rcx);
 697 }
 698 
 699 
 700 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 701   int next_val_off = ld_off - Interpreter::stackElementSize;
 702   __ movdbl(r, Address(saved_sp, next_val_off));
 703 }
 704 
 705 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 706                         address code_start, address code_end,
 707                         Label& L_ok) {
 708   Label L_fail;
 709   __ lea(temp_reg, ExternalAddress(code_start));
 710   __ cmpptr(pc_reg, temp_reg);
 711   __ jcc(Assembler::belowEqual, L_fail);
 712   __ lea(temp_reg, ExternalAddress(code_end));
 713   __ cmpptr(pc_reg, temp_reg);
 714   __ jcc(Assembler::below, L_ok);
 715   __ bind(L_fail);
 716 }
 717 
 718 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 719                                     int total_args_passed,
 720                                     int comp_args_on_stack,
 721                                     const BasicType *sig_bt,
 722                                     const VMRegPair *regs) {
 723   // Note: rsi contains the senderSP on entry. We must preserve it since
 724   // we may do a i2c -> c2i transition if we lose a race where compiled
 725   // code goes non-entrant while we get args ready.
 726 
 727   // Adapters can be frameless because they do not require the caller
 728   // to perform additional cleanup work, such as correcting the stack pointer.
 729   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 730   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 731   // even if a callee has modified the stack pointer.
 732   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 733   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 734   // up via the senderSP register).
 735   // In other words, if *either* the caller or callee is interpreted, we can
 736   // get the stack pointer repaired after a call.
 737   // This is why c2i and i2c adapters cannot be indefinitely composed.
 738   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 739   // both caller and callee would be compiled methods, and neither would
 740   // clean up the stack pointer changes performed by the two adapters.
 741   // If this happens, control eventually transfers back to the compiled
 742   // caller, but with an uncorrected stack, causing delayed havoc.
 743 
 744   // Pick up the return address
 745   __ movptr(rax, Address(rsp, 0));
 746 
 747   if (VerifyAdapterCalls &&
 748       (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) {
 749     // So, let's test for cascading c2i/i2c adapters right now.
 750     //  assert(Interpreter::contains($return_addr) ||
 751     //         StubRoutines::contains($return_addr),
 752     //         "i2c adapter must return to an interpreter frame");
 753     __ block_comment("verify_i2c { ");
 754     Label L_ok;
 755     if (Interpreter::code() != nullptr) {
 756       range_check(masm, rax, rdi,
 757                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 758                   L_ok);
 759     }
 760     if (StubRoutines::initial_stubs_code() != nullptr) {
 761       range_check(masm, rax, rdi,
 762                   StubRoutines::initial_stubs_code()->code_begin(),
 763                   StubRoutines::initial_stubs_code()->code_end(),
 764                   L_ok);
 765     }
 766     if (StubRoutines::final_stubs_code() != nullptr) {
 767       range_check(masm, rax, rdi,
 768                   StubRoutines::final_stubs_code()->code_begin(),
 769                   StubRoutines::final_stubs_code()->code_end(),
 770                   L_ok);
 771     }
 772     const char* msg = "i2c adapter must return to an interpreter frame";
 773     __ block_comment(msg);
 774     __ stop(msg);
 775     __ bind(L_ok);
 776     __ block_comment("} verify_i2ce ");
 777   }
 778 
 779   // Must preserve original SP for loading incoming arguments because
 780   // we need to align the outgoing SP for compiled code.
 781   __ movptr(rdi, rsp);
 782 
 783   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 784   // in registers, we will occasionally have no stack args.
 785   int comp_words_on_stack = 0;
 786   if (comp_args_on_stack) {
 787     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 788     // registers are below.  By subtracting stack0, we either get a negative
 789     // number (all values in registers) or the maximum stack slot accessed.
 790     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 791     // Convert 4-byte stack slots to words.
 792     comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 793     // Round up to miminum stack alignment, in wordSize
 794     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 795     __ subptr(rsp, comp_words_on_stack * wordSize);
 796   }
 797 
 798   // Align the outgoing SP
 799   __ andptr(rsp, -(StackAlignmentInBytes));
 800 
 801   // push the return address on the stack (note that pushing, rather
 802   // than storing it, yields the correct frame alignment for the callee)
 803   __ push(rax);
 804 
 805   // Put saved SP in another register
 806   const Register saved_sp = rax;
 807   __ movptr(saved_sp, rdi);
 808 
 809 
 810   // Will jump to the compiled code just as if compiled code was doing it.
 811   // Pre-load the register-jump target early, to schedule it better.
 812   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 813 
 814   // Now generate the shuffle code.  Pick up all register args and move the
 815   // rest through the floating point stack top.
 816   for (int i = 0; i < total_args_passed; i++) {
 817     if (sig_bt[i] == T_VOID) {
 818       // Longs and doubles are passed in native word order, but misaligned
 819       // in the 32-bit build.
 820       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 821       continue;
 822     }
 823 
 824     // Pick up 0, 1 or 2 words from SP+offset.
 825 
 826     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 827             "scrambled load targets?");
 828     // Load in argument order going down.
 829     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 830     // Point to interpreter value (vs. tag)
 831     int next_off = ld_off - Interpreter::stackElementSize;
 832     //
 833     //
 834     //
 835     VMReg r_1 = regs[i].first();
 836     VMReg r_2 = regs[i].second();
 837     if (!r_1->is_valid()) {
 838       assert(!r_2->is_valid(), "");
 839       continue;
 840     }
 841     if (r_1->is_stack()) {
 842       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 843       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 844 
 845       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 846       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 847       // we be generated.
 848       if (!r_2->is_valid()) {
 849         // __ fld_s(Address(saved_sp, ld_off));
 850         // __ fstp_s(Address(rsp, st_off));
 851         __ movl(rsi, Address(saved_sp, ld_off));
 852         __ movptr(Address(rsp, st_off), rsi);
 853       } else {
 854         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 855         // are accessed as negative so LSW is at LOW address
 856 
 857         // ld_off is MSW so get LSW
 858         // st_off is LSW (i.e. reg.first())
 859         // __ fld_d(Address(saved_sp, next_off));
 860         // __ fstp_d(Address(rsp, st_off));
 861         //
 862         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 863         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 864         // So we must adjust where to pick up the data to match the interpreter.
 865         //
 866         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 867         // are accessed as negative so LSW is at LOW address
 868 
 869         // ld_off is MSW so get LSW
 870         __ movptr(rsi, Address(saved_sp, next_off));
 871         __ movptr(Address(rsp, st_off), rsi);
 872         __ movptr(rsi, Address(saved_sp, ld_off));
 873         __ movptr(Address(rsp, st_off + wordSize), rsi);
 874       }
 875     } else if (r_1->is_Register()) {  // Register argument
 876       Register r = r_1->as_Register();
 877       assert(r != rax, "must be different");
 878       if (r_2->is_valid()) {
 879         //
 880         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 881         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 882         // So we must adjust where to pick up the data to match the interpreter.
 883 
 884         // this can be a misaligned move
 885         __ movptr(r, Address(saved_sp, next_off));
 886         assert(r_2->as_Register() != rax, "need another temporary register");
 887         // Remember r_1 is low address (and LSB on x86)
 888         // So r_2 gets loaded from high address regardless of the platform
 889         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 890       } else {
 891         __ movl(r, Address(saved_sp, ld_off));
 892       }
 893     } else {
 894       assert(r_1->is_XMMRegister(), "");
 895       if (!r_2->is_valid()) {
 896         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 897       } else {
 898         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 899       }
 900     }
 901   }
 902 
 903   // 6243940 We might end up in handle_wrong_method if
 904   // the callee is deoptimized as we race thru here. If that
 905   // happens we don't want to take a safepoint because the
 906   // caller frame will look interpreted and arguments are now
 907   // "compiled" so it is much better to make this transition
 908   // invisible to the stack walking code. Unfortunately if
 909   // we try and find the callee by normal means a safepoint
 910   // is possible. So we stash the desired callee in the thread
 911   // and the vm will find there should this case occur.
 912 
 913   __ get_thread(rax);
 914   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 915 
 916   // move Method* to rax, in case we end up in an c2i adapter.
 917   // the c2i adapters expect Method* in rax, (c2) because c2's
 918   // resolve stubs return the result (the method) in rax,.
 919   // I'd love to fix this.
 920   __ mov(rax, rbx);
 921 
 922   __ jmp(rdi);
 923 }
 924 
 925 // ---------------------------------------------------------------
 926 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 927                                                             int total_args_passed,
 928                                                             int comp_args_on_stack,
 929                                                             const BasicType *sig_bt,
 930                                                             const VMRegPair *regs,
 931                                                             AdapterFingerPrint* fingerprint) {
 932   address i2c_entry = __ pc();
 933 
 934   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 935 
 936   // -------------------------------------------------------------------------
 937   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 938   // to the interpreter.  The args start out packed in the compiled layout.  They
 939   // need to be unpacked into the interpreter layout.  This will almost always
 940   // require some stack space.  We grow the current (compiled) stack, then repack
 941   // the args.  We  finally end in a jump to the generic interpreter entry point.
 942   // On exit from the interpreter, the interpreter will restore our SP (lest the
 943   // compiled code, which relies solely on SP and not EBP, get sick).
 944 
 945   address c2i_unverified_entry = __ pc();
 946   Label skip_fixup;
 947 
 948   Register holder = rax;
 949   Register receiver = rcx;
 950   Register temp = rbx;
 951 
 952   {
 953 
 954     Label missed;
 955     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 956     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 957     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 958     __ jcc(Assembler::notEqual, missed);
 959     // Method might have been compiled since the call site was patched to
 960     // interpreted if that is the case treat it as a miss so we can get
 961     // the call site corrected.
 962     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), NULL_WORD);
 963     __ jcc(Assembler::equal, skip_fixup);
 964 
 965     __ bind(missed);
 966     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 967   }
 968 
 969   address c2i_entry = __ pc();
 970 
 971   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 972   bs->c2i_entry_barrier(masm);
 973 
 974   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 975 
 976   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 977 }
 978 
 979 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 980                                          VMRegPair *regs,
 981                                          VMRegPair *regs2,
 982                                          int total_args_passed) {
 983   assert(regs2 == nullptr, "not needed on x86");
 984 // We return the amount of VMRegImpl stack slots we need to reserve for all
 985 // the arguments NOT counting out_preserve_stack_slots.
 986 
 987   uint    stack = 0;        // All arguments on stack
 988 
 989   for( int i = 0; i < total_args_passed; i++) {
 990     // From the type and the argument number (count) compute the location
 991     switch( sig_bt[i] ) {
 992     case T_BOOLEAN:
 993     case T_CHAR:
 994     case T_FLOAT:
 995     case T_BYTE:
 996     case T_SHORT:
 997     case T_INT:
 998     case T_OBJECT:
 999     case T_ARRAY:
1000     case T_ADDRESS:
1001     case T_METADATA:
1002       regs[i].set1(VMRegImpl::stack2reg(stack++));
1003       break;
1004     case T_LONG:
1005     case T_DOUBLE: // The stack numbering is reversed from Java
1006       // Since C arguments do not get reversed, the ordering for
1007       // doubles on the stack must be opposite the Java convention
1008       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1009       regs[i].set2(VMRegImpl::stack2reg(stack));
1010       stack += 2;
1011       break;
1012     case T_VOID: regs[i].set_bad(); break;
1013     default:
1014       ShouldNotReachHere();
1015       break;
1016     }
1017   }
1018   return stack;
1019 }
1020 
1021 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
1022                                              uint num_bits,
1023                                              uint total_args_passed) {
1024   Unimplemented();
1025   return 0;
1026 }
1027 
1028 // A simple move of integer like type
1029 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1030   if (src.first()->is_stack()) {
1031     if (dst.first()->is_stack()) {
1032       // stack to stack
1033       // __ ld(FP, reg2offset(src.first()), L5);
1034       // __ st(L5, SP, reg2offset(dst.first()));
1035       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1036       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1037     } else {
1038       // stack to reg
1039       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1040     }
1041   } else if (dst.first()->is_stack()) {
1042     // reg to stack
1043     // no need to sign extend on 64bit
1044     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1045   } else {
1046     if (dst.first() != src.first()) {
1047       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1048     }
1049   }
1050 }
1051 
1052 // An oop arg. Must pass a handle not the oop itself
1053 static void object_move(MacroAssembler* masm,
1054                         OopMap* map,
1055                         int oop_handle_offset,
1056                         int framesize_in_slots,
1057                         VMRegPair src,
1058                         VMRegPair dst,
1059                         bool is_receiver,
1060                         int* receiver_offset) {
1061 
1062   // Because of the calling conventions we know that src can be a
1063   // register or a stack location. dst can only be a stack location.
1064 
1065   assert(dst.first()->is_stack(), "must be stack");
1066   // must pass a handle. First figure out the location we use as a handle
1067 
1068   if (src.first()->is_stack()) {
1069     // Oop is already on the stack as an argument
1070     Register rHandle = rax;
1071     Label nil;
1072     __ xorptr(rHandle, rHandle);
1073     __ cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
1074     __ jcc(Assembler::equal, nil);
1075     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1076     __ bind(nil);
1077     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1078 
1079     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1080     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1081     if (is_receiver) {
1082       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1083     }
1084   } else {
1085     // Oop is in a register we must store it to the space we reserve
1086     // on the stack for oop_handles
1087     const Register rOop = src.first()->as_Register();
1088     const Register rHandle = rax;
1089     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1090     int offset = oop_slot*VMRegImpl::stack_slot_size;
1091     Label skip;
1092     __ movptr(Address(rsp, offset), rOop);
1093     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1094     __ xorptr(rHandle, rHandle);
1095     __ cmpptr(rOop, NULL_WORD);
1096     __ jcc(Assembler::equal, skip);
1097     __ lea(rHandle, Address(rsp, offset));
1098     __ bind(skip);
1099     // Store the handle parameter
1100     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1101     if (is_receiver) {
1102       *receiver_offset = offset;
1103     }
1104   }
1105 }
1106 
1107 // A float arg may have to do float reg int reg conversion
1108 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1109   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1110 
1111   // Because of the calling convention we know that src is either a stack location
1112   // or an xmm register. dst can only be a stack location.
1113 
1114   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1115 
1116   if (src.first()->is_stack()) {
1117     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1118     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1119   } else {
1120     // reg to stack
1121     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1122   }
1123 }
1124 
1125 // A long move
1126 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1127 
1128   // The only legal possibility for a long_move VMRegPair is:
1129   // 1: two stack slots (possibly unaligned)
1130   // as neither the java  or C calling convention will use registers
1131   // for longs.
1132 
1133   if (src.first()->is_stack() && dst.first()->is_stack()) {
1134     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1135     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1136     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1137     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1138     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1139   } else {
1140     ShouldNotReachHere();
1141   }
1142 }
1143 
1144 // A double move
1145 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1146 
1147   // The only legal possibilities for a double_move VMRegPair are:
1148   // The painful thing here is that like long_move a VMRegPair might be
1149 
1150   // Because of the calling convention we know that src is either
1151   //   1: a single physical register (xmm registers only)
1152   //   2: two stack slots (possibly unaligned)
1153   // dst can only be a pair of stack slots.
1154 
1155   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1156 
1157   if (src.first()->is_stack()) {
1158     // source is all stack
1159     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1160     __ movptr(rbx, Address(rbp, reg2offset_in(src.second())));
1161     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1162     __ movptr(Address(rsp, reg2offset_out(dst.second())), rbx);
1163   } else {
1164     // reg to stack
1165     // No worries about stack alignment
1166     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1167   }
1168 }
1169 
1170 
1171 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1172   // We always ignore the frame_slots arg and just use the space just below frame pointer
1173   // which by this time is free to use
1174   switch (ret_type) {
1175   case T_FLOAT:
1176     __ fstp_s(Address(rbp, -wordSize));
1177     break;
1178   case T_DOUBLE:
1179     __ fstp_d(Address(rbp, -2*wordSize));
1180     break;
1181   case T_VOID:  break;
1182   case T_LONG:
1183     __ movptr(Address(rbp, -wordSize), rax);
1184     __ movptr(Address(rbp, -2*wordSize), rdx);
1185     break;
1186   default: {
1187     __ movptr(Address(rbp, -wordSize), rax);
1188     }
1189   }
1190 }
1191 
1192 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1193   // We always ignore the frame_slots arg and just use the space just below frame pointer
1194   // which by this time is free to use
1195   switch (ret_type) {
1196   case T_FLOAT:
1197     __ fld_s(Address(rbp, -wordSize));
1198     break;
1199   case T_DOUBLE:
1200     __ fld_d(Address(rbp, -2*wordSize));
1201     break;
1202   case T_LONG:
1203     __ movptr(rax, Address(rbp, -wordSize));
1204     __ movptr(rdx, Address(rbp, -2*wordSize));
1205     break;
1206   case T_VOID:  break;
1207   default: {
1208     __ movptr(rax, Address(rbp, -wordSize));
1209     }
1210   }
1211 }
1212 
1213 static void verify_oop_args(MacroAssembler* masm,
1214                             const methodHandle& method,
1215                             const BasicType* sig_bt,
1216                             const VMRegPair* regs) {
1217   Register temp_reg = rbx;  // not part of any compiled calling seq
1218   if (VerifyOops) {
1219     for (int i = 0; i < method->size_of_parameters(); i++) {
1220       if (is_reference_type(sig_bt[i])) {
1221         VMReg r = regs[i].first();
1222         assert(r->is_valid(), "bad oop arg");
1223         if (r->is_stack()) {
1224           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1225           __ verify_oop(temp_reg);
1226         } else {
1227           __ verify_oop(r->as_Register());
1228         }
1229       }
1230     }
1231   }
1232 }
1233 
1234 static void gen_special_dispatch(MacroAssembler* masm,
1235                                  const methodHandle& method,
1236                                  const BasicType* sig_bt,
1237                                  const VMRegPair* regs) {
1238   verify_oop_args(masm, method, sig_bt, regs);
1239   vmIntrinsics::ID iid = method->intrinsic_id();
1240 
1241   // Now write the args into the outgoing interpreter space
1242   bool     has_receiver   = false;
1243   Register receiver_reg   = noreg;
1244   int      member_arg_pos = -1;
1245   Register member_reg     = noreg;
1246   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1247   if (ref_kind != 0) {
1248     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1249     member_reg = rbx;  // known to be free at this point
1250     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1251   } else if (iid == vmIntrinsics::_invokeBasic) {
1252     has_receiver = true;
1253   } else {
1254     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1255   }
1256 
1257   if (member_reg != noreg) {
1258     // Load the member_arg into register, if necessary.
1259     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1260     VMReg r = regs[member_arg_pos].first();
1261     if (r->is_stack()) {
1262       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1263     } else {
1264       // no data motion is needed
1265       member_reg = r->as_Register();
1266     }
1267   }
1268 
1269   if (has_receiver) {
1270     // Make sure the receiver is loaded into a register.
1271     assert(method->size_of_parameters() > 0, "oob");
1272     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1273     VMReg r = regs[0].first();
1274     assert(r->is_valid(), "bad receiver arg");
1275     if (r->is_stack()) {
1276       // Porting note:  This assumes that compiled calling conventions always
1277       // pass the receiver oop in a register.  If this is not true on some
1278       // platform, pick a temp and load the receiver from stack.
1279       fatal("receiver always in a register");
1280       receiver_reg = rcx;  // known to be free at this point
1281       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1282     } else {
1283       // no data motion is needed
1284       receiver_reg = r->as_Register();
1285     }
1286   }
1287 
1288   // Figure out which address we are really jumping to:
1289   MethodHandles::generate_method_handle_dispatch(masm, iid,
1290                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1291 }
1292 
1293 // ---------------------------------------------------------------------------
1294 // Generate a native wrapper for a given method.  The method takes arguments
1295 // in the Java compiled code convention, marshals them to the native
1296 // convention (handlizes oops, etc), transitions to native, makes the call,
1297 // returns to java state (possibly blocking), unhandlizes any result and
1298 // returns.
1299 //
1300 // Critical native functions are a shorthand for the use of
1301 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1302 // functions.  The wrapper is expected to unpack the arguments before
1303 // passing them to the callee. Critical native functions leave the state _in_Java,
1304 // since they cannot stop for GC.
1305 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1306 // block and the check for pending exceptions it's impossible for them
1307 // to be thrown.
1308 //
1309 //
1310 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1311                                                 const methodHandle& method,
1312                                                 int compile_id,
1313                                                 BasicType* in_sig_bt,
1314                                                 VMRegPair* in_regs,
1315                                                 BasicType ret_type) {
1316   if (method->is_method_handle_intrinsic()) {
1317     vmIntrinsics::ID iid = method->intrinsic_id();
1318     intptr_t start = (intptr_t)__ pc();
1319     int vep_offset = ((intptr_t)__ pc()) - start;
1320     gen_special_dispatch(masm,
1321                          method,
1322                          in_sig_bt,
1323                          in_regs);
1324     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1325     __ flush();
1326     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1327     return nmethod::new_native_nmethod(method,
1328                                        compile_id,
1329                                        masm->code(),
1330                                        vep_offset,
1331                                        frame_complete,
1332                                        stack_slots / VMRegImpl::slots_per_word,
1333                                        in_ByteSize(-1),
1334                                        in_ByteSize(-1),
1335                                        (OopMapSet*)nullptr);
1336   }
1337   address native_func = method->native_function();
1338   assert(native_func != nullptr, "must have function");
1339 
1340   // An OopMap for lock (and class if static)
1341   OopMapSet *oop_maps = new OopMapSet();
1342 
1343   // We have received a description of where all the java arg are located
1344   // on entry to the wrapper. We need to convert these args to where
1345   // the jni function will expect them. To figure out where they go
1346   // we convert the java signature to a C signature by inserting
1347   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1348 
1349   const int total_in_args = method->size_of_parameters();
1350   int  total_c_args       = total_in_args + (method->is_static() ? 2 : 1);
1351 
1352   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1353   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1354   BasicType* in_elem_bt = nullptr;
1355 
1356   int argc = 0;
1357   out_sig_bt[argc++] = T_ADDRESS;
1358   if (method->is_static()) {
1359     out_sig_bt[argc++] = T_OBJECT;
1360   }
1361 
1362   for (int i = 0; i < total_in_args ; i++ ) {
1363     out_sig_bt[argc++] = in_sig_bt[i];
1364   }
1365 
1366   // Now figure out where the args must be stored and how much stack space
1367   // they require.
1368   int out_arg_slots;
1369   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, nullptr, total_c_args);
1370 
1371   // Compute framesize for the wrapper.  We need to handlize all oops in
1372   // registers a max of 2 on x86.
1373 
1374   // Calculate the total number of stack slots we will need.
1375 
1376   // First count the abi requirement plus all of the outgoing args
1377   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1378 
1379   // Now the space for the inbound oop handle area
1380   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1381 
1382   int oop_handle_offset = stack_slots;
1383   stack_slots += total_save_slots;
1384 
1385   // Now any space we need for handlizing a klass if static method
1386 
1387   int klass_slot_offset = 0;
1388   int klass_offset = -1;
1389   int lock_slot_offset = 0;
1390   bool is_static = false;
1391 
1392   if (method->is_static()) {
1393     klass_slot_offset = stack_slots;
1394     stack_slots += VMRegImpl::slots_per_word;
1395     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1396     is_static = true;
1397   }
1398 
1399   // Plus a lock if needed
1400 
1401   if (method->is_synchronized()) {
1402     lock_slot_offset = stack_slots;
1403     stack_slots += VMRegImpl::slots_per_word;
1404   }
1405 
1406   // Now a place (+2) to save return values or temp during shuffling
1407   // + 2 for return address (which we own) and saved rbp,
1408   stack_slots += 4;
1409 
1410   // Ok The space we have allocated will look like:
1411   //
1412   //
1413   // FP-> |                     |
1414   //      |---------------------|
1415   //      | 2 slots for moves   |
1416   //      |---------------------|
1417   //      | lock box (if sync)  |
1418   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1419   //      | klass (if static)   |
1420   //      |---------------------| <- klass_slot_offset
1421   //      | oopHandle area      |
1422   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1423   //      | outbound memory     |
1424   //      | based arguments     |
1425   //      |                     |
1426   //      |---------------------|
1427   //      |                     |
1428   // SP-> | out_preserved_slots |
1429   //
1430   //
1431   // ****************************************************************************
1432   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1433   // arguments off of the stack after the jni call. Before the call we can use
1434   // instructions that are SP relative. After the jni call we switch to FP
1435   // relative instructions instead of re-adjusting the stack on windows.
1436   // ****************************************************************************
1437 
1438 
1439   // Now compute actual number of stack words we need rounding to make
1440   // stack properly aligned.
1441   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1442 
1443   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1444 
1445   intptr_t start = (intptr_t)__ pc();
1446 
1447   // First thing make an ic check to see if we should even be here
1448 
1449   // We are free to use all registers as temps without saving them and
1450   // restoring them except rbp. rbp is the only callee save register
1451   // as far as the interpreter and the compiler(s) are concerned.
1452 
1453 
1454   const Register ic_reg = rax;
1455   const Register receiver = rcx;
1456   Label hit;
1457   Label exception_pending;
1458 
1459   __ verify_oop(receiver);
1460   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1461   __ jcc(Assembler::equal, hit);
1462 
1463   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1464 
1465   // verified entry must be aligned for code patching.
1466   // and the first 5 bytes must be in the same cache line
1467   // if we align at 8 then we will be sure 5 bytes are in the same line
1468   __ align(8);
1469 
1470   __ bind(hit);
1471 
1472   int vep_offset = ((intptr_t)__ pc()) - start;
1473 
1474 #ifdef COMPILER1
1475   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1476   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1477     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1478    }
1479 #endif // COMPILER1
1480 
1481   // The instruction at the verified entry point must be 5 bytes or longer
1482   // because it can be patched on the fly by make_non_entrant. The stack bang
1483   // instruction fits that requirement.
1484 
1485   // Generate stack overflow check
1486   __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
1487 
1488   // Generate a new frame for the wrapper.
1489   __ enter();
1490   // -2 because return address is already present and so is saved rbp
1491   __ subptr(rsp, stack_size - 2*wordSize);
1492 
1493 
1494   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1495   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */);
1496 
1497   // Frame is now completed as far as size and linkage.
1498   int frame_complete = ((intptr_t)__ pc()) - start;
1499 
1500   if (UseRTMLocking) {
1501     // Abort RTM transaction before calling JNI
1502     // because critical section will be large and will be
1503     // aborted anyway. Also nmethod could be deoptimized.
1504     __ xabort(0);
1505   }
1506 
1507   // Calculate the difference between rsp and rbp,. We need to know it
1508   // after the native call because on windows Java Natives will pop
1509   // the arguments and it is painful to do rsp relative addressing
1510   // in a platform independent way. So after the call we switch to
1511   // rbp, relative addressing.
1512 
1513   int fp_adjustment = stack_size - 2*wordSize;
1514 
1515 #ifdef COMPILER2
1516   // C2 may leave the stack dirty if not in SSE2+ mode
1517   if (UseSSE >= 2) {
1518     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1519   } else {
1520     __ empty_FPU_stack();
1521   }
1522 #endif /* COMPILER2 */
1523 
1524   // Compute the rbp, offset for any slots used after the jni call
1525 
1526   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1527 
1528   // We use rdi as a thread pointer because it is callee save and
1529   // if we load it once it is usable thru the entire wrapper
1530   const Register thread = rdi;
1531 
1532    // We use rsi as the oop handle for the receiver/klass
1533    // It is callee save so it survives the call to native
1534 
1535    const Register oop_handle_reg = rsi;
1536 
1537    __ get_thread(thread);
1538 
1539   //
1540   // We immediately shuffle the arguments so that any vm call we have to
1541   // make from here on out (sync slow path, jvmti, etc.) we will have
1542   // captured the oops from our caller and have a valid oopMap for
1543   // them.
1544 
1545   // -----------------
1546   // The Grand Shuffle
1547   //
1548   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1549   // and, if static, the class mirror instead of a receiver.  This pretty much
1550   // guarantees that register layout will not match (and x86 doesn't use reg
1551   // parms though amd does).  Since the native abi doesn't use register args
1552   // and the java conventions does we don't have to worry about collisions.
1553   // All of our moved are reg->stack or stack->stack.
1554   // We ignore the extra arguments during the shuffle and handle them at the
1555   // last moment. The shuffle is described by the two calling convention
1556   // vectors we have in our possession. We simply walk the java vector to
1557   // get the source locations and the c vector to get the destinations.
1558 
1559   int c_arg = method->is_static() ? 2 : 1;
1560 
1561   // Record rsp-based slot for receiver on stack for non-static methods
1562   int receiver_offset = -1;
1563 
1564   // This is a trick. We double the stack slots so we can claim
1565   // the oops in the caller's frame. Since we are sure to have
1566   // more args than the caller doubling is enough to make
1567   // sure we can capture all the incoming oop args from the
1568   // caller.
1569   //
1570   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1571 
1572   // Mark location of rbp,
1573   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1574 
1575   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1576   // Are free to temporaries if we have to do  stack to steck moves.
1577   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1578 
1579   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1580     switch (in_sig_bt[i]) {
1581       case T_ARRAY:
1582       case T_OBJECT:
1583         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1584                     ((i == 0) && (!is_static)),
1585                     &receiver_offset);
1586         break;
1587       case T_VOID:
1588         break;
1589 
1590       case T_FLOAT:
1591         float_move(masm, in_regs[i], out_regs[c_arg]);
1592           break;
1593 
1594       case T_DOUBLE:
1595         assert( i + 1 < total_in_args &&
1596                 in_sig_bt[i + 1] == T_VOID &&
1597                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1598         double_move(masm, in_regs[i], out_regs[c_arg]);
1599         break;
1600 
1601       case T_LONG :
1602         long_move(masm, in_regs[i], out_regs[c_arg]);
1603         break;
1604 
1605       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1606 
1607       default:
1608         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1609     }
1610   }
1611 
1612   // Pre-load a static method's oop into rsi.  Used both by locking code and
1613   // the normal JNI call code.
1614   if (method->is_static()) {
1615 
1616     //  load opp into a register
1617     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1618 
1619     // Now handlize the static class mirror it's known not-null.
1620     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1621     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1622 
1623     // Now get the handle
1624     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1625     // store the klass handle as second argument
1626     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1627   }
1628 
1629   // Change state to native (we save the return address in the thread, since it might not
1630   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1631   // points into the right code segment. It does not have to be the correct return pc.
1632   // We use the same pc/oopMap repeatedly when we call out
1633 
1634   intptr_t the_pc = (intptr_t) __ pc();
1635   oop_maps->add_gc_map(the_pc - start, map);
1636 
1637   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc, noreg);
1638 
1639 
1640   // We have all of the arguments setup at this point. We must not touch any register
1641   // argument registers at this point (what if we save/restore them there are no oop?
1642 
1643   {
1644     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0, noreg);
1645     __ mov_metadata(rax, method());
1646     __ call_VM_leaf(
1647          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1648          thread, rax);
1649   }
1650 
1651   // RedefineClasses() tracing support for obsolete method entry
1652   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1653     __ mov_metadata(rax, method());
1654     __ call_VM_leaf(
1655          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1656          thread, rax);
1657   }
1658 
1659   // These are register definitions we need for locking/unlocking
1660   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1661   const Register obj_reg  = rcx;  // Will contain the oop
1662   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1663 
1664   Label slow_path_lock;
1665   Label lock_done;
1666 
1667   // Lock a synchronized method
1668   if (method->is_synchronized()) {
1669     Label count_mon;
1670 
1671     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1672 
1673     // Get the handle (the 2nd argument)
1674     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1675 
1676     // Get address of the box
1677 
1678     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1679 
1680     // Load the oop from the handle
1681     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1682 
1683     if (LockingMode == LM_MONITOR) {
1684       __ jmp(slow_path_lock);
1685     } else if (LockingMode == LM_LEGACY) {
1686       // Load immediate 1 into swap_reg %rax,
1687       __ movptr(swap_reg, 1);
1688 
1689       // Load (object->mark() | 1) into swap_reg %rax,
1690       __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1691 
1692       // Save (object->mark() | 1) into BasicLock's displaced header
1693       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1694 
1695       // src -> dest iff dest == rax, else rax, <- dest
1696       // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1697       __ lock();
1698       __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1699       __ jcc(Assembler::equal, count_mon);
1700 
1701       // Test if the oopMark is an obvious stack pointer, i.e.,
1702       //  1) (mark & 3) == 0, and
1703       //  2) rsp <= mark < mark + os::pagesize()
1704       // These 3 tests can be done by evaluating the following
1705       // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1706       // assuming both stack pointer and pagesize have their
1707       // least significant 2 bits clear.
1708       // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1709 
1710       __ subptr(swap_reg, rsp);
1711       __ andptr(swap_reg, 3 - (int)os::vm_page_size());
1712 
1713       // Save the test result, for recursive case, the result is zero
1714       __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1715       __ jcc(Assembler::notEqual, slow_path_lock);
1716     } else {
1717       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1718       // Load object header
1719       __ movptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1720       __ lightweight_lock(obj_reg, swap_reg, thread, lock_reg, slow_path_lock);
1721     }
1722     __ bind(count_mon);
1723     __ inc_held_monitor_count();
1724 
1725     // Slow path will re-enter here
1726     __ bind(lock_done);
1727   }
1728 
1729 
1730   // Finally just about ready to make the JNI call
1731 
1732   // get JNIEnv* which is first argument to native
1733   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1734   __ movptr(Address(rsp, 0), rdx);
1735 
1736   // Now set thread in native
1737   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1738 
1739   __ call(RuntimeAddress(native_func));
1740 
1741   // Verify or restore cpu control state after JNI call
1742   __ restore_cpu_control_state_after_jni(noreg);
1743 
1744   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1745   // arguments off of the stack. We could just re-adjust the stack pointer here
1746   // and continue to do SP relative addressing but we instead switch to FP
1747   // relative addressing.
1748 
1749   // Unpack native results.
1750   switch (ret_type) {
1751   case T_BOOLEAN: __ c2bool(rax);            break;
1752   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1753   case T_BYTE   : __ sign_extend_byte (rax); break;
1754   case T_SHORT  : __ sign_extend_short(rax); break;
1755   case T_INT    : /* nothing to do */        break;
1756   case T_DOUBLE :
1757   case T_FLOAT  :
1758     // Result is in st0 we'll save as needed
1759     break;
1760   case T_ARRAY:                 // Really a handle
1761   case T_OBJECT:                // Really a handle
1762       break; // can't de-handlize until after safepoint check
1763   case T_VOID: break;
1764   case T_LONG: break;
1765   default       : ShouldNotReachHere();
1766   }
1767 
1768   Label after_transition;
1769 
1770   // Switch thread to "native transition" state before reading the synchronization state.
1771   // This additional state is necessary because reading and testing the synchronization
1772   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1773   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1774   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1775   //     Thread A is resumed to finish this native method, but doesn't block here since it
1776   //     didn't see any synchronization is progress, and escapes.
1777   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1778 
1779   // Force this write out before the read below
1780   if (!UseSystemMemoryBarrier) {
1781     __ membar(Assembler::Membar_mask_bits(
1782               Assembler::LoadLoad | Assembler::LoadStore |
1783               Assembler::StoreLoad | Assembler::StoreStore));
1784   }
1785 
1786   if (AlwaysRestoreFPU) {
1787     // Make sure the control word is correct.
1788     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1789   }
1790 
1791   // check for safepoint operation in progress and/or pending suspend requests
1792   { Label Continue, slow_path;
1793 
1794     __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */);
1795 
1796     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1797     __ jcc(Assembler::equal, Continue);
1798     __ bind(slow_path);
1799 
1800     // Don't use call_VM as it will see a possible pending exception and forward it
1801     // and never return here preventing us from clearing _last_native_pc down below.
1802     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1803     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1804     // by hand.
1805     //
1806     __ vzeroupper();
1807 
1808     save_native_result(masm, ret_type, stack_slots);
1809     __ push(thread);
1810     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1811                                               JavaThread::check_special_condition_for_native_trans)));
1812     __ increment(rsp, wordSize);
1813     // Restore any method result value
1814     restore_native_result(masm, ret_type, stack_slots);
1815     __ bind(Continue);
1816   }
1817 
1818   // change thread state
1819   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1820   __ bind(after_transition);
1821 
1822   Label reguard;
1823   Label reguard_done;
1824   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
1825   __ jcc(Assembler::equal, reguard);
1826 
1827   // slow path reguard  re-enters here
1828   __ bind(reguard_done);
1829 
1830   // Handle possible exception (will unlock if necessary)
1831 
1832   // native result if any is live
1833 
1834   // Unlock
1835   Label slow_path_unlock;
1836   Label unlock_done;
1837   if (method->is_synchronized()) {
1838 
1839     Label fast_done;
1840 
1841     // Get locked oop from the handle we passed to jni
1842     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1843 
1844     if (LockingMode == LM_LEGACY) {
1845       Label not_recur;
1846       // Simple recursive lock?
1847       __ cmpptr(Address(rbp, lock_slot_rbp_offset), NULL_WORD);
1848       __ jcc(Assembler::notEqual, not_recur);
1849       __ dec_held_monitor_count();
1850       __ jmpb(fast_done);
1851       __ bind(not_recur);
1852     }
1853 
1854     // Must save rax, if it is live now because cmpxchg must use it
1855     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1856       save_native_result(masm, ret_type, stack_slots);
1857     }
1858 
1859     if (LockingMode == LM_MONITOR) {
1860       __ jmp(slow_path_unlock);
1861     } else if (LockingMode == LM_LEGACY) {
1862       //  get old displaced header
1863       __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1864 
1865       // get address of the stack lock
1866       __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1867 
1868       // Atomic swap old header if oop still contains the stack lock
1869       // src -> dest iff dest == rax, else rax, <- dest
1870       // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1871       __ lock();
1872       __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1873       __ jcc(Assembler::notEqual, slow_path_unlock);
1874       __ dec_held_monitor_count();
1875     } else {
1876       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1877       __ movptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1878       __ andptr(swap_reg, ~(int32_t)markWord::lock_mask_in_place);
1879       __ lightweight_unlock(obj_reg, swap_reg, lock_reg, slow_path_unlock);
1880       __ dec_held_monitor_count();
1881     }
1882 
1883     // slow path re-enters here
1884     __ bind(unlock_done);
1885     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1886       restore_native_result(masm, ret_type, stack_slots);
1887     }
1888 
1889     __ bind(fast_done);
1890   }
1891 
1892   {
1893     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0, noreg);
1894     // Tell dtrace about this method exit
1895     save_native_result(masm, ret_type, stack_slots);
1896     __ mov_metadata(rax, method());
1897     __ call_VM_leaf(
1898          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1899          thread, rax);
1900     restore_native_result(masm, ret_type, stack_slots);
1901   }
1902 
1903   // We can finally stop using that last_Java_frame we setup ages ago
1904 
1905   __ reset_last_Java_frame(thread, false);
1906 
1907   // Unbox oop result, e.g. JNIHandles::resolve value.
1908   if (is_reference_type(ret_type)) {
1909     __ resolve_jobject(rax /* value */,
1910                        thread /* thread */,
1911                        rcx /* tmp */);
1912   }
1913 
1914   if (CheckJNICalls) {
1915     // clear_pending_jni_exception_check
1916     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
1917   }
1918 
1919   // reset handle block
1920   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1921   __ movl(Address(rcx, JNIHandleBlock::top_offset()), NULL_WORD);
1922 
1923   // Any exception pending?
1924   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1925   __ jcc(Assembler::notEqual, exception_pending);
1926 
1927   // no exception, we're almost done
1928 
1929   // check that only result value is on FPU stack
1930   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1931 
1932   // Fixup floating pointer results so that result looks like a return from a compiled method
1933   if (ret_type == T_FLOAT) {
1934     if (UseSSE >= 1) {
1935       // Pop st0 and store as float and reload into xmm register
1936       __ fstp_s(Address(rbp, -4));
1937       __ movflt(xmm0, Address(rbp, -4));
1938     }
1939   } else if (ret_type == T_DOUBLE) {
1940     if (UseSSE >= 2) {
1941       // Pop st0 and store as double and reload into xmm register
1942       __ fstp_d(Address(rbp, -8));
1943       __ movdbl(xmm0, Address(rbp, -8));
1944     }
1945   }
1946 
1947   // Return
1948 
1949   __ leave();
1950   __ ret(0);
1951 
1952   // Unexpected paths are out of line and go here
1953 
1954   // Slow path locking & unlocking
1955   if (method->is_synchronized()) {
1956 
1957     // BEGIN Slow path lock
1958 
1959     __ bind(slow_path_lock);
1960 
1961     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1962     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1963     __ push(thread);
1964     __ push(lock_reg);
1965     __ push(obj_reg);
1966     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1967     __ addptr(rsp, 3*wordSize);
1968 
1969 #ifdef ASSERT
1970     { Label L;
1971     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1972     __ jcc(Assembler::equal, L);
1973     __ stop("no pending exception allowed on exit from monitorenter");
1974     __ bind(L);
1975     }
1976 #endif
1977     __ jmp(lock_done);
1978 
1979     // END Slow path lock
1980 
1981     // BEGIN Slow path unlock
1982     __ bind(slow_path_unlock);
1983     __ vzeroupper();
1984     // Slow path unlock
1985 
1986     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1987       save_native_result(masm, ret_type, stack_slots);
1988     }
1989     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1990 
1991     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1992     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1993 
1994 
1995     // should be a peal
1996     // +wordSize because of the push above
1997     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1998     __ push(thread);
1999     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2000     __ push(rax);
2001 
2002     __ push(obj_reg);
2003     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2004     __ addptr(rsp, 3*wordSize);
2005 #ifdef ASSERT
2006     {
2007       Label L;
2008       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2009       __ jcc(Assembler::equal, L);
2010       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2011       __ bind(L);
2012     }
2013 #endif /* ASSERT */
2014 
2015     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2016 
2017     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2018       restore_native_result(masm, ret_type, stack_slots);
2019     }
2020     __ jmp(unlock_done);
2021     // END Slow path unlock
2022 
2023   }
2024 
2025   // SLOW PATH Reguard the stack if needed
2026 
2027   __ bind(reguard);
2028   __ vzeroupper();
2029   save_native_result(masm, ret_type, stack_slots);
2030   {
2031     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2032   }
2033   restore_native_result(masm, ret_type, stack_slots);
2034   __ jmp(reguard_done);
2035 
2036 
2037   // BEGIN EXCEPTION PROCESSING
2038 
2039   // Forward  the exception
2040   __ bind(exception_pending);
2041 
2042   // remove possible return value from FPU register stack
2043   __ empty_FPU_stack();
2044 
2045   // pop our frame
2046   __ leave();
2047   // and forward the exception
2048   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2049 
2050   __ flush();
2051 
2052   nmethod *nm = nmethod::new_native_nmethod(method,
2053                                             compile_id,
2054                                             masm->code(),
2055                                             vep_offset,
2056                                             frame_complete,
2057                                             stack_slots / VMRegImpl::slots_per_word,
2058                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2059                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2060                                             oop_maps);
2061 
2062   return nm;
2063 
2064 }
2065 
2066 // this function returns the adjust size (in number of words) to a c2i adapter
2067 // activation for use during deoptimization
2068 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2069   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2070 }
2071 
2072 
2073 // Number of stack slots between incoming argument block and the start of
2074 // a new frame.  The PROLOG must add this many slots to the stack.  The
2075 // EPILOG must remove this many slots.  Intel needs one slot for
2076 // return address and one for rbp, (must save rbp)
2077 uint SharedRuntime::in_preserve_stack_slots() {
2078   return 2+VerifyStackAtCalls;
2079 }
2080 
2081 uint SharedRuntime::out_preserve_stack_slots() {
2082   return 0;
2083 }
2084 
2085 //------------------------------generate_deopt_blob----------------------------
2086 void SharedRuntime::generate_deopt_blob() {
2087   // allocate space for the code
2088   ResourceMark rm;
2089   // setup code generation tools
2090   // note: the buffer code size must account for StackShadowPages=50
2091   CodeBuffer   buffer("deopt_blob", 1536, 1024);
2092   MacroAssembler* masm = new MacroAssembler(&buffer);
2093   int frame_size_in_words;
2094   OopMap* map = nullptr;
2095   // Account for the extra args we place on the stack
2096   // by the time we call fetch_unroll_info
2097   const int additional_words = 2; // deopt kind, thread
2098 
2099   OopMapSet *oop_maps = new OopMapSet();
2100 
2101   // -------------
2102   // This code enters when returning to a de-optimized nmethod.  A return
2103   // address has been pushed on the stack, and return values are in
2104   // registers.
2105   // If we are doing a normal deopt then we were called from the patched
2106   // nmethod from the point we returned to the nmethod. So the return
2107   // address on the stack is wrong by NativeCall::instruction_size
2108   // We will adjust the value to it looks like we have the original return
2109   // address on the stack (like when we eagerly deoptimized).
2110   // In the case of an exception pending with deoptimized then we enter
2111   // with a return address on the stack that points after the call we patched
2112   // into the exception handler. We have the following register state:
2113   //    rax,: exception
2114   //    rbx,: exception handler
2115   //    rdx: throwing pc
2116   // So in this case we simply jam rdx into the useless return address and
2117   // the stack looks just like we want.
2118   //
2119   // At this point we need to de-opt.  We save the argument return
2120   // registers.  We call the first C routine, fetch_unroll_info().  This
2121   // routine captures the return values and returns a structure which
2122   // describes the current frame size and the sizes of all replacement frames.
2123   // The current frame is compiled code and may contain many inlined
2124   // functions, each with their own JVM state.  We pop the current frame, then
2125   // push all the new frames.  Then we call the C routine unpack_frames() to
2126   // populate these frames.  Finally unpack_frames() returns us the new target
2127   // address.  Notice that callee-save registers are BLOWN here; they have
2128   // already been captured in the vframeArray at the time the return PC was
2129   // patched.
2130   address start = __ pc();
2131   Label cont;
2132 
2133   // Prolog for non exception case!
2134 
2135   // Save everything in sight.
2136 
2137   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2138   // Normal deoptimization
2139   __ push(Deoptimization::Unpack_deopt);
2140   __ jmp(cont);
2141 
2142   int reexecute_offset = __ pc() - start;
2143 
2144   // Reexecute case
2145   // return address is the pc describes what bci to do re-execute at
2146 
2147   // No need to update map as each call to save_live_registers will produce identical oopmap
2148   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2149 
2150   __ push(Deoptimization::Unpack_reexecute);
2151   __ jmp(cont);
2152 
2153   int exception_offset = __ pc() - start;
2154 
2155   // Prolog for exception case
2156 
2157   // all registers are dead at this entry point, except for rax, and
2158   // rdx which contain the exception oop and exception pc
2159   // respectively.  Set them in TLS and fall thru to the
2160   // unpack_with_exception_in_tls entry point.
2161 
2162   __ get_thread(rdi);
2163   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2164   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2165 
2166   int exception_in_tls_offset = __ pc() - start;
2167 
2168   // new implementation because exception oop is now passed in JavaThread
2169 
2170   // Prolog for exception case
2171   // All registers must be preserved because they might be used by LinearScan
2172   // Exceptiop oop and throwing PC are passed in JavaThread
2173   // tos: stack at point of call to method that threw the exception (i.e. only
2174   // args are on the stack, no return address)
2175 
2176   // make room on stack for the return address
2177   // It will be patched later with the throwing pc. The correct value is not
2178   // available now because loading it from memory would destroy registers.
2179   __ push(0);
2180 
2181   // Save everything in sight.
2182 
2183   // No need to update map as each call to save_live_registers will produce identical oopmap
2184   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2185 
2186   // Now it is safe to overwrite any register
2187 
2188   // store the correct deoptimization type
2189   __ push(Deoptimization::Unpack_exception);
2190 
2191   // load throwing pc from JavaThread and patch it as the return address
2192   // of the current frame. Then clear the field in JavaThread
2193   __ get_thread(rdi);
2194   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2195   __ movptr(Address(rbp, wordSize), rdx);
2196   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2197 
2198 #ifdef ASSERT
2199   // verify that there is really an exception oop in JavaThread
2200   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2201   __ verify_oop(rax);
2202 
2203   // verify that there is no pending exception
2204   Label no_pending_exception;
2205   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2206   __ testptr(rax, rax);
2207   __ jcc(Assembler::zero, no_pending_exception);
2208   __ stop("must not have pending exception here");
2209   __ bind(no_pending_exception);
2210 #endif
2211 
2212   __ bind(cont);
2213 
2214   // Compiled code leaves the floating point stack dirty, empty it.
2215   __ empty_FPU_stack();
2216 
2217 
2218   // Call C code.  Need thread and this frame, but NOT official VM entry
2219   // crud.  We cannot block on this call, no GC can happen.
2220   __ get_thread(rcx);
2221   __ push(rcx);
2222   // fetch_unroll_info needs to call last_java_frame()
2223   __ set_last_Java_frame(rcx, noreg, noreg, nullptr, noreg);
2224 
2225   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2226 
2227   // Need to have an oopmap that tells fetch_unroll_info where to
2228   // find any register it might need.
2229 
2230   oop_maps->add_gc_map( __ pc()-start, map);
2231 
2232   // Discard args to fetch_unroll_info
2233   __ pop(rcx);
2234   __ pop(rcx);
2235 
2236   __ get_thread(rcx);
2237   __ reset_last_Java_frame(rcx, false);
2238 
2239   // Load UnrollBlock into EDI
2240   __ mov(rdi, rax);
2241 
2242   // Move the unpack kind to a safe place in the UnrollBlock because
2243   // we are very short of registers
2244 
2245   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset());
2246   // retrieve the deopt kind from the UnrollBlock.
2247   __ movl(rax, unpack_kind);
2248 
2249    Label noException;
2250   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2251   __ jcc(Assembler::notEqual, noException);
2252   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2253   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2254   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2255   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2256 
2257   __ verify_oop(rax);
2258 
2259   // Overwrite the result registers with the exception results.
2260   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2261   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2262 
2263   __ bind(noException);
2264 
2265   // Stack is back to only having register save data on the stack.
2266   // Now restore the result registers. Everything else is either dead or captured
2267   // in the vframeArray.
2268 
2269   RegisterSaver::restore_result_registers(masm);
2270 
2271   // Non standard control word may be leaked out through a safepoint blob, and we can
2272   // deopt at a poll point with the non standard control word. However, we should make
2273   // sure the control word is correct after restore_result_registers.
2274   __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
2275 
2276   // All of the register save area has been popped of the stack. Only the
2277   // return address remains.
2278 
2279   // Pop all the frames we must move/replace.
2280   //
2281   // Frame picture (youngest to oldest)
2282   // 1: self-frame (no frame link)
2283   // 2: deopting frame  (no frame link)
2284   // 3: caller of deopting frame (could be compiled/interpreted).
2285   //
2286   // Note: by leaving the return address of self-frame on the stack
2287   // and using the size of frame 2 to adjust the stack
2288   // when we are done the return to frame 3 will still be on the stack.
2289 
2290   // Pop deoptimized frame
2291   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2292 
2293   // sp should be pointing at the return address to the caller (3)
2294 
2295   // Pick up the initial fp we should save
2296   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2297   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2298 
2299 #ifdef ASSERT
2300   // Compilers generate code that bang the stack by as much as the
2301   // interpreter would need. So this stack banging should never
2302   // trigger a fault. Verify that it does not on non product builds.
2303   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2304   __ bang_stack_size(rbx, rcx);
2305 #endif
2306 
2307   // Load array of frame pcs into ECX
2308   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset()));
2309 
2310   __ pop(rsi); // trash the old pc
2311 
2312   // Load array of frame sizes into ESI
2313   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset()));
2314 
2315   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset());
2316 
2317   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2318   __ movl(counter, rbx);
2319 
2320   // Now adjust the caller's stack to make up for the extra locals
2321   // but record the original sp so that we can save it in the skeletal interpreter
2322   // frame and the stack walking of interpreter_sender will get the unextended sp
2323   // value and not the "real" sp value.
2324 
2325   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset());
2326   __ movptr(sp_temp, rsp);
2327   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset()));
2328   __ subptr(rsp, rbx);
2329 
2330   // Push interpreter frames in a loop
2331   Label loop;
2332   __ bind(loop);
2333   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2334   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2335   __ pushptr(Address(rcx, 0));          // save return address
2336   __ enter();                           // save old & set new rbp,
2337   __ subptr(rsp, rbx);                  // Prolog!
2338   __ movptr(rbx, sp_temp);              // sender's sp
2339   // This value is corrected by layout_activation_impl
2340   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2341   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2342   __ movptr(sp_temp, rsp);              // pass to next frame
2343   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2344   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2345   __ decrementl(counter);             // decrement counter
2346   __ jcc(Assembler::notZero, loop);
2347   __ pushptr(Address(rcx, 0));          // save final return address
2348 
2349   // Re-push self-frame
2350   __ enter();                           // save old & set new rbp,
2351 
2352   //  Return address and rbp, are in place
2353   // We'll push additional args later. Just allocate a full sized
2354   // register save area
2355   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2356 
2357   // Restore frame locals after moving the frame
2358   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2359   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2360   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2361   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2362   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2363 
2364   // Set up the args to unpack_frame
2365 
2366   __ pushl(unpack_kind);                     // get the unpack_kind value
2367   __ get_thread(rcx);
2368   __ push(rcx);
2369 
2370   // set last_Java_sp, last_Java_fp
2371   __ set_last_Java_frame(rcx, noreg, rbp, nullptr, noreg);
2372 
2373   // Call C code.  Need thread but NOT official VM entry
2374   // crud.  We cannot block on this call, no GC can happen.  Call should
2375   // restore return values to their stack-slots with the new SP.
2376   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2377   // Set an oopmap for the call site
2378   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2379 
2380   // rax, contains the return result type
2381   __ push(rax);
2382 
2383   __ get_thread(rcx);
2384   __ reset_last_Java_frame(rcx, false);
2385 
2386   // Collect return values
2387   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2388   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2389 
2390   // Clear floating point stack before returning to interpreter
2391   __ empty_FPU_stack();
2392 
2393   // Check if we should push the float or double return value.
2394   Label results_done, yes_double_value;
2395   __ cmpl(Address(rsp, 0), T_DOUBLE);
2396   __ jcc (Assembler::zero, yes_double_value);
2397   __ cmpl(Address(rsp, 0), T_FLOAT);
2398   __ jcc (Assembler::notZero, results_done);
2399 
2400   // return float value as expected by interpreter
2401   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2402   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2403   __ jmp(results_done);
2404 
2405   // return double value as expected by interpreter
2406   __ bind(yes_double_value);
2407   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2408   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2409 
2410   __ bind(results_done);
2411 
2412   // Pop self-frame.
2413   __ leave();                              // Epilog!
2414 
2415   // Jump to interpreter
2416   __ ret(0);
2417 
2418   // -------------
2419   // make sure all code is generated
2420   masm->flush();
2421 
2422   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2423   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2424 }
2425 
2426 
2427 #ifdef COMPILER2
2428 //------------------------------generate_uncommon_trap_blob--------------------
2429 void SharedRuntime::generate_uncommon_trap_blob() {
2430   // allocate space for the code
2431   ResourceMark rm;
2432   // setup code generation tools
2433   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2434   MacroAssembler* masm = new MacroAssembler(&buffer);
2435 
2436   enum frame_layout {
2437     arg0_off,      // thread                     sp + 0 // Arg location for
2438     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2439     arg2_off,      // exec_mode                  sp + 2
2440     // The frame sender code expects that rbp will be in the "natural" place and
2441     // will override any oopMap setting for it. We must therefore force the layout
2442     // so that it agrees with the frame sender code.
2443     rbp_off,       // callee saved register      sp + 3
2444     return_off,    // slot for return address    sp + 4
2445     framesize
2446   };
2447 
2448   address start = __ pc();
2449 
2450   if (UseRTMLocking) {
2451     // Abort RTM transaction before possible nmethod deoptimization.
2452     __ xabort(0);
2453   }
2454 
2455   // Push self-frame.
2456   __ subptr(rsp, return_off*wordSize);     // Epilog!
2457 
2458   // rbp, is an implicitly saved callee saved register (i.e. the calling
2459   // convention will save restore it in prolog/epilog) Other than that
2460   // there are no callee save registers no that adapter frames are gone.
2461   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2462 
2463   // Clear the floating point exception stack
2464   __ empty_FPU_stack();
2465 
2466   // set last_Java_sp
2467   __ get_thread(rdx);
2468   __ set_last_Java_frame(rdx, noreg, noreg, nullptr, noreg);
2469 
2470   // Call C code.  Need thread but NOT official VM entry
2471   // crud.  We cannot block on this call, no GC can happen.  Call should
2472   // capture callee-saved registers as well as return values.
2473   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2474   // argument already in ECX
2475   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2476   __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2477   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2478 
2479   // Set an oopmap for the call site
2480   OopMapSet *oop_maps = new OopMapSet();
2481   OopMap* map =  new OopMap( framesize, 0 );
2482   // No oopMap for rbp, it is known implicitly
2483 
2484   oop_maps->add_gc_map( __ pc()-start, map);
2485 
2486   __ get_thread(rcx);
2487 
2488   __ reset_last_Java_frame(rcx, false);
2489 
2490   // Load UnrollBlock into EDI
2491   __ movptr(rdi, rax);
2492 
2493 #ifdef ASSERT
2494   { Label L;
2495     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset()),
2496             (int32_t)Deoptimization::Unpack_uncommon_trap);
2497     __ jcc(Assembler::equal, L);
2498     __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
2499     __ bind(L);
2500   }
2501 #endif
2502 
2503   // Pop all the frames we must move/replace.
2504   //
2505   // Frame picture (youngest to oldest)
2506   // 1: self-frame (no frame link)
2507   // 2: deopting frame  (no frame link)
2508   // 3: caller of deopting frame (could be compiled/interpreted).
2509 
2510   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2511   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2512 
2513   // Pop deoptimized frame
2514   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2515   __ addptr(rsp, rcx);
2516 
2517   // sp should be pointing at the return address to the caller (3)
2518 
2519   // Pick up the initial fp we should save
2520   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2521   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset()));
2522 
2523 #ifdef ASSERT
2524   // Compilers generate code that bang the stack by as much as the
2525   // interpreter would need. So this stack banging should never
2526   // trigger a fault. Verify that it does not on non product builds.
2527   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2528   __ bang_stack_size(rbx, rcx);
2529 #endif
2530 
2531   // Load array of frame pcs into ECX
2532   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset()));
2533 
2534   __ pop(rsi); // trash the pc
2535 
2536   // Load array of frame sizes into ESI
2537   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset()));
2538 
2539   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset());
2540 
2541   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset()));
2542   __ movl(counter, rbx);
2543 
2544   // Now adjust the caller's stack to make up for the extra locals
2545   // but record the original sp so that we can save it in the skeletal interpreter
2546   // frame and the stack walking of interpreter_sender will get the unextended sp
2547   // value and not the "real" sp value.
2548 
2549   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset());
2550   __ movptr(sp_temp, rsp);
2551   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset()));
2552   __ subptr(rsp, rbx);
2553 
2554   // Push interpreter frames in a loop
2555   Label loop;
2556   __ bind(loop);
2557   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2558   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2559   __ pushptr(Address(rcx, 0));          // save return address
2560   __ enter();                           // save old & set new rbp,
2561   __ subptr(rsp, rbx);                  // Prolog!
2562   __ movptr(rbx, sp_temp);              // sender's sp
2563   // This value is corrected by layout_activation_impl
2564   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2565   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2566   __ movptr(sp_temp, rsp);              // pass to next frame
2567   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2568   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2569   __ decrementl(counter);             // decrement counter
2570   __ jcc(Assembler::notZero, loop);
2571   __ pushptr(Address(rcx, 0));            // save final return address
2572 
2573   // Re-push self-frame
2574   __ enter();                           // save old & set new rbp,
2575   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2576 
2577 
2578   // set last_Java_sp, last_Java_fp
2579   __ get_thread(rdi);
2580   __ set_last_Java_frame(rdi, noreg, rbp, nullptr, noreg);
2581 
2582   // Call C code.  Need thread but NOT official VM entry
2583   // crud.  We cannot block on this call, no GC can happen.  Call should
2584   // restore return values to their stack-slots with the new SP.
2585   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2586   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2587   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2588   // Set an oopmap for the call site
2589   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2590 
2591   __ get_thread(rdi);
2592   __ reset_last_Java_frame(rdi, true);
2593 
2594   // Pop self-frame.
2595   __ leave();     // Epilog!
2596 
2597   // Jump to interpreter
2598   __ ret(0);
2599 
2600   // -------------
2601   // make sure all code is generated
2602   masm->flush();
2603 
2604    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2605 }
2606 #endif // COMPILER2
2607 
2608 //------------------------------generate_handler_blob------
2609 //
2610 // Generate a special Compile2Runtime blob that saves all registers,
2611 // setup oopmap, and calls safepoint code to stop the compiled code for
2612 // a safepoint.
2613 //
2614 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2615 
2616   // Account for thread arg in our frame
2617   const int additional_words = 1;
2618   int frame_size_in_words;
2619 
2620   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2621 
2622   ResourceMark rm;
2623   OopMapSet *oop_maps = new OopMapSet();
2624   OopMap* map;
2625 
2626   // allocate space for the code
2627   // setup code generation tools
2628   CodeBuffer   buffer("handler_blob", 2048, 1024);
2629   MacroAssembler* masm = new MacroAssembler(&buffer);
2630 
2631   const Register java_thread = rdi; // callee-saved for VC++
2632   address start   = __ pc();
2633   address call_pc = nullptr;
2634   bool cause_return = (poll_type == POLL_AT_RETURN);
2635   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2636 
2637   if (UseRTMLocking) {
2638     // Abort RTM transaction before calling runtime
2639     // because critical section will be large and will be
2640     // aborted anyway. Also nmethod could be deoptimized.
2641     __ xabort(0);
2642   }
2643 
2644   // If cause_return is true we are at a poll_return and there is
2645   // the return address on the stack to the caller on the nmethod
2646   // that is safepoint. We can leave this return on the stack and
2647   // effectively complete the return and safepoint in the caller.
2648   // Otherwise we push space for a return address that the safepoint
2649   // handler will install later to make the stack walking sensible.
2650   if (!cause_return)
2651     __ push(rbx);  // Make room for return address (or push it again)
2652 
2653   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2654 
2655   // The following is basically a call_VM. However, we need the precise
2656   // address of the call in order to generate an oopmap. Hence, we do all the
2657   // work ourselves.
2658 
2659   // Push thread argument and setup last_Java_sp
2660   __ get_thread(java_thread);
2661   __ push(java_thread);
2662   __ set_last_Java_frame(java_thread, noreg, noreg, nullptr, noreg);
2663 
2664   // if this was not a poll_return then we need to correct the return address now.
2665   if (!cause_return) {
2666     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
2667     // Additionally, rbx is a callee saved register and we can look at it later to determine
2668     // if someone changed the return address for us!
2669     __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2670     __ movptr(Address(rbp, wordSize), rbx);
2671   }
2672 
2673   // do the call
2674   __ call(RuntimeAddress(call_ptr));
2675 
2676   // Set an oopmap for the call site.  This oopmap will map all
2677   // oop-registers and debug-info registers as callee-saved.  This
2678   // will allow deoptimization at this safepoint to find all possible
2679   // debug-info recordings, as well as let GC find all oops.
2680 
2681   oop_maps->add_gc_map( __ pc() - start, map);
2682 
2683   // Discard arg
2684   __ pop(rcx);
2685 
2686   Label noException;
2687 
2688   // Clear last_Java_sp again
2689   __ get_thread(java_thread);
2690   __ reset_last_Java_frame(java_thread, false);
2691 
2692   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
2693   __ jcc(Assembler::equal, noException);
2694 
2695   // Exception pending
2696   RegisterSaver::restore_live_registers(masm, save_vectors);
2697 
2698   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2699 
2700   __ bind(noException);
2701 
2702   Label no_adjust, bail, not_special;
2703   if (!cause_return) {
2704     // If our stashed return pc was modified by the runtime we avoid touching it
2705     __ cmpptr(rbx, Address(rbp, wordSize));
2706     __ jccb(Assembler::notEqual, no_adjust);
2707 
2708     // Skip over the poll instruction.
2709     // See NativeInstruction::is_safepoint_poll()
2710     // Possible encodings:
2711     //      85 00       test   %eax,(%rax)
2712     //      85 01       test   %eax,(%rcx)
2713     //      85 02       test   %eax,(%rdx)
2714     //      85 03       test   %eax,(%rbx)
2715     //      85 06       test   %eax,(%rsi)
2716     //      85 07       test   %eax,(%rdi)
2717     //
2718     //      85 04 24    test   %eax,(%rsp)
2719     //      85 45 00    test   %eax,0x0(%rbp)
2720 
2721 #ifdef ASSERT
2722     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
2723 #endif
2724     // rsp/rbp base encoding takes 3 bytes with the following register values:
2725     // rsp 0x04
2726     // rbp 0x05
2727     __ movzbl(rcx, Address(rbx, 1));
2728     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
2729     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
2730     __ cmpptr(rcx, 1);
2731     __ jcc(Assembler::above, not_special);
2732     __ addptr(rbx, 1);
2733     __ bind(not_special);
2734 #ifdef ASSERT
2735     // Verify the correct encoding of the poll we're about to skip.
2736     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
2737     __ jcc(Assembler::notEqual, bail);
2738     // Mask out the modrm bits
2739     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
2740     // rax encodes to 0, so if the bits are nonzero it's incorrect
2741     __ jcc(Assembler::notZero, bail);
2742 #endif
2743     // Adjust return pc forward to step over the safepoint poll instruction
2744     __ addptr(rbx, 2);
2745     __ movptr(Address(rbp, wordSize), rbx);
2746   }
2747 
2748   __ bind(no_adjust);
2749   // Normal exit, register restoring and exit
2750   RegisterSaver::restore_live_registers(masm, save_vectors);
2751 
2752   __ ret(0);
2753 
2754 #ifdef ASSERT
2755   __ bind(bail);
2756   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2757 #endif
2758 
2759   // make sure all code is generated
2760   masm->flush();
2761 
2762   // Fill-out other meta info
2763   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2764 }
2765 
2766 //
2767 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2768 //
2769 // Generate a stub that calls into vm to find out the proper destination
2770 // of a java call. All the argument registers are live at this point
2771 // but since this is generic code we don't know what they are and the caller
2772 // must do any gc of the args.
2773 //
2774 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
2775   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2776 
2777   // allocate space for the code
2778   ResourceMark rm;
2779 
2780   CodeBuffer buffer(name, 1000, 512);
2781   MacroAssembler* masm                = new MacroAssembler(&buffer);
2782 
2783   int frame_size_words;
2784   enum frame_layout {
2785                 thread_off,
2786                 extra_words };
2787 
2788   OopMapSet *oop_maps = new OopMapSet();
2789   OopMap* map = nullptr;
2790 
2791   int start = __ offset();
2792 
2793   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2794 
2795   int frame_complete = __ offset();
2796 
2797   const Register thread = rdi;
2798   __ get_thread(rdi);
2799 
2800   __ push(thread);
2801   __ set_last_Java_frame(thread, noreg, rbp, nullptr, noreg);
2802 
2803   __ call(RuntimeAddress(destination));
2804 
2805 
2806   // Set an oopmap for the call site.
2807   // We need this not only for callee-saved registers, but also for volatile
2808   // registers that the compiler might be keeping live across a safepoint.
2809 
2810   oop_maps->add_gc_map( __ offset() - start, map);
2811 
2812   // rax, contains the address we are going to jump to assuming no exception got installed
2813 
2814   __ addptr(rsp, wordSize);
2815 
2816   // clear last_Java_sp
2817   __ reset_last_Java_frame(thread, true);
2818   // check for pending exceptions
2819   Label pending;
2820   __ cmpptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
2821   __ jcc(Assembler::notEqual, pending);
2822 
2823   // get the returned Method*
2824   __ get_vm_result_2(rbx, thread);
2825   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2826 
2827   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2828 
2829   RegisterSaver::restore_live_registers(masm);
2830 
2831   // We are back to the original state on entry and ready to go.
2832 
2833   __ jmp(rax);
2834 
2835   // Pending exception after the safepoint
2836 
2837   __ bind(pending);
2838 
2839   RegisterSaver::restore_live_registers(masm);
2840 
2841   // exception pending => remove activation and forward to exception handler
2842 
2843   __ get_thread(thread);
2844   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2845   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2846   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2847 
2848   // -------------
2849   // make sure all code is generated
2850   masm->flush();
2851 
2852   // return the  blob
2853   // frame_size_words or bytes??
2854   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
2855 }