1 /*
2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "compiler/disassembler.hpp"
28 #include "gc/shared/collectedHeap.hpp"
29 #include "gc/shared/gc_globals.hpp"
30 #include "gc/shared/tlab_globals.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "interpreter/interpreterRuntime.hpp"
33 #include "interpreter/interp_masm.hpp"
34 #include "interpreter/templateTable.hpp"
35 #include "memory/universe.hpp"
36 #include "oops/methodData.hpp"
37 #include "oops/objArrayKlass.hpp"
38 #include "oops/oop.inline.hpp"
39 #include "prims/jvmtiExport.hpp"
40 #include "prims/methodHandles.hpp"
41 #include "runtime/frame.inline.hpp"
42 #include "runtime/safepointMechanism.hpp"
43 #include "runtime/sharedRuntime.hpp"
44 #include "runtime/stubRoutines.hpp"
45 #include "runtime/synchronizer.hpp"
46 #include "utilities/macros.hpp"
47
48 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
49
50 // Global Register Names
51 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi);
52 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi);
53
54 // Address Computation: local variables
55 static inline Address iaddress(int n) {
56 return Address(rlocals, Interpreter::local_offset_in_bytes(n));
57 }
58
59 static inline Address laddress(int n) {
60 return iaddress(n + 1);
61 }
62
63 #ifndef _LP64
64 static inline Address haddress(int n) {
65 return iaddress(n + 0);
66 }
67 #endif
68
69 static inline Address faddress(int n) {
70 return iaddress(n);
71 }
72
73 static inline Address daddress(int n) {
74 return laddress(n);
75 }
76
77 static inline Address aaddress(int n) {
78 return iaddress(n);
79 }
80
81 static inline Address iaddress(Register r) {
82 return Address(rlocals, r, Address::times_ptr);
83 }
84
85 static inline Address laddress(Register r) {
86 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
87 }
88
89 #ifndef _LP64
90 static inline Address haddress(Register r) {
91 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
92 }
93 #endif
94
95 static inline Address faddress(Register r) {
96 return iaddress(r);
97 }
98
99 static inline Address daddress(Register r) {
100 return laddress(r);
101 }
102
103 static inline Address aaddress(Register r) {
104 return iaddress(r);
105 }
106
107
108 // expression stack
109 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
110 // data beyond the rsp which is potentially unsafe in an MT environment;
111 // an interrupt may overwrite that data.)
112 static inline Address at_rsp () {
113 return Address(rsp, 0);
114 }
115
116 // At top of Java expression stack which may be different than esp(). It
117 // isn't for category 1 objects.
118 static inline Address at_tos () {
119 return Address(rsp, Interpreter::expr_offset_in_bytes(0));
120 }
121
122 static inline Address at_tos_p1() {
123 return Address(rsp, Interpreter::expr_offset_in_bytes(1));
124 }
125
126 static inline Address at_tos_p2() {
127 return Address(rsp, Interpreter::expr_offset_in_bytes(2));
128 }
129
130 // Condition conversion
131 static Assembler::Condition j_not(TemplateTable::Condition cc) {
132 switch (cc) {
133 case TemplateTable::equal : return Assembler::notEqual;
134 case TemplateTable::not_equal : return Assembler::equal;
135 case TemplateTable::less : return Assembler::greaterEqual;
136 case TemplateTable::less_equal : return Assembler::greater;
137 case TemplateTable::greater : return Assembler::lessEqual;
138 case TemplateTable::greater_equal: return Assembler::less;
139 }
140 ShouldNotReachHere();
141 return Assembler::zero;
142 }
143
144
145
146 // Miscellaneous helper routines
147 // Store an oop (or null) at the address described by obj.
148 // If val == noreg this means store a null
149
150
151 static void do_oop_store(InterpreterMacroAssembler* _masm,
152 Address dst,
153 Register val,
154 DecoratorSet decorators = 0) {
155 assert(val == noreg || val == rax, "parameter is just for looks");
156 __ store_heap_oop(dst, val,
157 NOT_LP64(rdx) LP64_ONLY(rscratch2),
158 NOT_LP64(rbx) LP64_ONLY(r9),
159 NOT_LP64(rsi) LP64_ONLY(r8), decorators);
160 }
161
162 static void do_oop_load(InterpreterMacroAssembler* _masm,
163 Address src,
164 Register dst,
165 DecoratorSet decorators = 0) {
166 __ load_heap_oop(dst, src, rdx, rbx, decorators);
167 }
168
169 Address TemplateTable::at_bcp(int offset) {
170 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
171 return Address(rbcp, offset);
172 }
173
174
175 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
176 Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
177 int byte_no) {
178 if (!RewriteBytecodes) return;
179 Label L_patch_done;
180
181 switch (bc) {
182 case Bytecodes::_fast_aputfield:
183 case Bytecodes::_fast_bputfield:
184 case Bytecodes::_fast_zputfield:
185 case Bytecodes::_fast_cputfield:
186 case Bytecodes::_fast_dputfield:
187 case Bytecodes::_fast_fputfield:
188 case Bytecodes::_fast_iputfield:
189 case Bytecodes::_fast_lputfield:
190 case Bytecodes::_fast_sputfield:
191 {
192 // We skip bytecode quickening for putfield instructions when
193 // the put_code written to the constant pool cache is zero.
194 // This is required so that every execution of this instruction
195 // calls out to InterpreterRuntime::resolve_get_put to do
196 // additional, required work.
197 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
198 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
199 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
200 __ movl(bc_reg, bc);
201 __ cmpl(temp_reg, (int) 0);
202 __ jcc(Assembler::zero, L_patch_done); // don't patch
203 }
204 break;
205 default:
206 assert(byte_no == -1, "sanity");
207 // the pair bytecodes have already done the load.
208 if (load_bc_into_bc_reg) {
209 __ movl(bc_reg, bc);
210 }
211 }
212
213 if (JvmtiExport::can_post_breakpoint()) {
214 Label L_fast_patch;
215 // if a breakpoint is present we can't rewrite the stream directly
216 __ movzbl(temp_reg, at_bcp(0));
217 __ cmpl(temp_reg, Bytecodes::_breakpoint);
218 __ jcc(Assembler::notEqual, L_fast_patch);
219 __ get_method(temp_reg);
220 // Let breakpoint table handling rewrite to quicker bytecode
221 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
222 #ifndef ASSERT
223 __ jmpb(L_patch_done);
224 #else
225 __ jmp(L_patch_done);
226 #endif
227 __ bind(L_fast_patch);
228 }
229
230 #ifdef ASSERT
231 Label L_okay;
232 __ load_unsigned_byte(temp_reg, at_bcp(0));
233 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
234 __ jcc(Assembler::equal, L_okay);
235 __ cmpl(temp_reg, bc_reg);
236 __ jcc(Assembler::equal, L_okay);
237 __ stop("patching the wrong bytecode");
238 __ bind(L_okay);
239 #endif
240
241 // patch bytecode
242 __ movb(at_bcp(0), bc_reg);
243 __ bind(L_patch_done);
244 }
245 // Individual instructions
246
247
248 void TemplateTable::nop() {
249 transition(vtos, vtos);
250 // nothing to do
251 }
252
253 void TemplateTable::shouldnotreachhere() {
254 transition(vtos, vtos);
255 __ stop("shouldnotreachhere bytecode");
256 }
257
258 void TemplateTable::aconst_null() {
259 transition(vtos, atos);
260 __ xorl(rax, rax);
261 }
262
263 void TemplateTable::iconst(int value) {
264 transition(vtos, itos);
265 if (value == 0) {
266 __ xorl(rax, rax);
267 } else {
268 __ movl(rax, value);
269 }
270 }
271
272 void TemplateTable::lconst(int value) {
273 transition(vtos, ltos);
274 if (value == 0) {
275 __ xorl(rax, rax);
276 } else {
277 __ movl(rax, value);
278 }
279 #ifndef _LP64
280 assert(value >= 0, "check this code");
281 __ xorptr(rdx, rdx);
282 #endif
283 }
284
285
286
287 void TemplateTable::fconst(int value) {
288 transition(vtos, ftos);
289 if (UseSSE >= 1) {
290 static float one = 1.0f, two = 2.0f;
291 switch (value) {
292 case 0:
293 __ xorps(xmm0, xmm0);
294 break;
295 case 1:
296 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1);
297 break;
298 case 2:
299 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1);
300 break;
301 default:
302 ShouldNotReachHere();
303 break;
304 }
305 } else {
306 #ifdef _LP64
307 ShouldNotReachHere();
308 #else
309 if (value == 0) { __ fldz();
310 } else if (value == 1) { __ fld1();
311 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
312 } else { ShouldNotReachHere();
313 }
314 #endif // _LP64
315 }
316 }
317
318 void TemplateTable::dconst(int value) {
319 transition(vtos, dtos);
320 if (UseSSE >= 2) {
321 static double one = 1.0;
322 switch (value) {
323 case 0:
324 __ xorpd(xmm0, xmm0);
325 break;
326 case 1:
327 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1);
328 break;
329 default:
330 ShouldNotReachHere();
331 break;
332 }
333 } else {
334 #ifdef _LP64
335 ShouldNotReachHere();
336 #else
337 if (value == 0) { __ fldz();
338 } else if (value == 1) { __ fld1();
339 } else { ShouldNotReachHere();
340 }
341 #endif
342 }
343 }
344
345 void TemplateTable::bipush() {
346 transition(vtos, itos);
347 __ load_signed_byte(rax, at_bcp(1));
348 }
349
350 void TemplateTable::sipush() {
351 transition(vtos, itos);
352 __ load_unsigned_short(rax, at_bcp(1));
353 __ bswapl(rax);
354 __ sarl(rax, 16);
355 }
356
357 void TemplateTable::ldc(LdcType type) {
358 transition(vtos, vtos);
359 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
360 Label call_ldc, notFloat, notClass, notInt, Done;
361
362 if (is_ldc_wide(type)) {
363 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
364 } else {
365 __ load_unsigned_byte(rbx, at_bcp(1));
366 }
367
368 __ get_cpool_and_tags(rcx, rax);
369 const int base_offset = ConstantPool::header_size() * wordSize;
370 const int tags_offset = Array<u1>::base_offset_in_bytes();
371
372 // get type
373 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
374
375 // unresolved class - get the resolved class
376 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
377 __ jccb(Assembler::equal, call_ldc);
378
379 // unresolved class in error state - call into runtime to throw the error
380 // from the first resolution attempt
381 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
382 __ jccb(Assembler::equal, call_ldc);
383
384 // resolved class - need to call vm to get java mirror of the class
385 __ cmpl(rdx, JVM_CONSTANT_Class);
386 __ jcc(Assembler::notEqual, notClass);
387
388 __ bind(call_ldc);
389
390 __ movl(rarg, is_ldc_wide(type) ? 1 : 0);
391 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
392
393 __ push(atos);
394 __ jmp(Done);
395
396 __ bind(notClass);
397 __ cmpl(rdx, JVM_CONSTANT_Float);
398 __ jccb(Assembler::notEqual, notFloat);
399
400 // ftos
401 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
402 __ push(ftos);
403 __ jmp(Done);
404
405 __ bind(notFloat);
406 __ cmpl(rdx, JVM_CONSTANT_Integer);
407 __ jccb(Assembler::notEqual, notInt);
408
409 // itos
410 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
411 __ push(itos);
412 __ jmp(Done);
413
414 // assume the tag is for condy; if not, the VM runtime will tell us
415 __ bind(notInt);
416 condy_helper(Done);
417
418 __ bind(Done);
419 }
420
421 // Fast path for caching oop constants.
422 void TemplateTable::fast_aldc(LdcType type) {
423 transition(vtos, atos);
424
425 Register result = rax;
426 Register tmp = rdx;
427 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
428 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
429
430 Label resolved;
431
432 // We are resolved if the resolved reference cache entry contains a
433 // non-null object (String, MethodType, etc.)
434 assert_different_registers(result, tmp);
435 __ get_cache_index_at_bcp(tmp, 1, index_size);
436 __ load_resolved_reference_at_index(result, tmp);
437 __ testptr(result, result);
438 __ jcc(Assembler::notZero, resolved);
439
440 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
441
442 // first time invocation - must resolve first
443 __ movl(rarg, (int)bytecode());
444 __ call_VM(result, entry, rarg);
445 __ bind(resolved);
446
447 { // Check for the null sentinel.
448 // If we just called the VM, it already did the mapping for us,
449 // but it's harmless to retry.
450 Label notNull;
451 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr());
452 __ movptr(tmp, null_sentinel);
453 __ resolve_oop_handle(tmp, rscratch2);
454 __ cmpoop(tmp, result);
455 __ jccb(Assembler::notEqual, notNull);
456 __ xorptr(result, result); // null object reference
457 __ bind(notNull);
458 }
459
460 if (VerifyOops) {
461 __ verify_oop(result);
462 }
463 }
464
465 void TemplateTable::ldc2_w() {
466 transition(vtos, vtos);
467 Label notDouble, notLong, Done;
468 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
469
470 __ get_cpool_and_tags(rcx, rax);
471 const int base_offset = ConstantPool::header_size() * wordSize;
472 const int tags_offset = Array<u1>::base_offset_in_bytes();
473
474 // get type
475 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
476 __ cmpl(rdx, JVM_CONSTANT_Double);
477 __ jccb(Assembler::notEqual, notDouble);
478
479 // dtos
480 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
481 __ push(dtos);
482
483 __ jmp(Done);
484 __ bind(notDouble);
485 __ cmpl(rdx, JVM_CONSTANT_Long);
486 __ jccb(Assembler::notEqual, notLong);
487
488 // ltos
489 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
490 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
491 __ push(ltos);
492 __ jmp(Done);
493
494 __ bind(notLong);
495 condy_helper(Done);
496
497 __ bind(Done);
498 }
499
500 void TemplateTable::condy_helper(Label& Done) {
501 const Register obj = rax;
502 const Register off = rbx;
503 const Register flags = rcx;
504 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
505 __ movl(rarg, (int)bytecode());
506 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
507 #ifndef _LP64
508 // borrow rdi from locals
509 __ get_thread(rdi);
510 __ get_vm_result_2(flags, rdi);
511 __ restore_locals();
512 #else
513 __ get_vm_result_2(flags, r15_thread);
514 #endif
515 // VMr = obj = base address to find primitive value to push
516 // VMr2 = flags = (tos, off) using format of CPCE::_flags
517 __ movl(off, flags);
518 __ andl(off, ConstantPoolCacheEntry::field_index_mask);
519 const Address field(obj, off, Address::times_1, 0*wordSize);
520
521 // What sort of thing are we loading?
522 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
523 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
524
525 switch (bytecode()) {
526 case Bytecodes::_ldc:
527 case Bytecodes::_ldc_w:
528 {
529 // tos in (itos, ftos, stos, btos, ctos, ztos)
530 Label notInt, notFloat, notShort, notByte, notChar, notBool;
531 __ cmpl(flags, itos);
532 __ jccb(Assembler::notEqual, notInt);
533 // itos
534 __ movl(rax, field);
535 __ push(itos);
536 __ jmp(Done);
537
538 __ bind(notInt);
539 __ cmpl(flags, ftos);
540 __ jccb(Assembler::notEqual, notFloat);
541 // ftos
542 __ load_float(field);
543 __ push(ftos);
544 __ jmp(Done);
545
546 __ bind(notFloat);
547 __ cmpl(flags, stos);
548 __ jccb(Assembler::notEqual, notShort);
549 // stos
550 __ load_signed_short(rax, field);
551 __ push(stos);
552 __ jmp(Done);
553
554 __ bind(notShort);
555 __ cmpl(flags, btos);
556 __ jccb(Assembler::notEqual, notByte);
557 // btos
558 __ load_signed_byte(rax, field);
559 __ push(btos);
560 __ jmp(Done);
561
562 __ bind(notByte);
563 __ cmpl(flags, ctos);
564 __ jccb(Assembler::notEqual, notChar);
565 // ctos
566 __ load_unsigned_short(rax, field);
567 __ push(ctos);
568 __ jmp(Done);
569
570 __ bind(notChar);
571 __ cmpl(flags, ztos);
572 __ jccb(Assembler::notEqual, notBool);
573 // ztos
574 __ load_signed_byte(rax, field);
575 __ push(ztos);
576 __ jmp(Done);
577
578 __ bind(notBool);
579 break;
580 }
581
582 case Bytecodes::_ldc2_w:
583 {
584 Label notLong, notDouble;
585 __ cmpl(flags, ltos);
586 __ jccb(Assembler::notEqual, notLong);
587 // ltos
588 // Loading high word first because movptr clobbers rax
589 NOT_LP64(__ movptr(rdx, field.plus_disp(4)));
590 __ movptr(rax, field);
591 __ push(ltos);
592 __ jmp(Done);
593
594 __ bind(notLong);
595 __ cmpl(flags, dtos);
596 __ jccb(Assembler::notEqual, notDouble);
597 // dtos
598 __ load_double(field);
599 __ push(dtos);
600 __ jmp(Done);
601
602 __ bind(notDouble);
603 break;
604 }
605
606 default:
607 ShouldNotReachHere();
608 }
609
610 __ stop("bad ldc/condy");
611 }
612
613 void TemplateTable::locals_index(Register reg, int offset) {
614 __ load_unsigned_byte(reg, at_bcp(offset));
615 __ negptr(reg);
616 }
617
618 void TemplateTable::iload() {
619 iload_internal();
620 }
621
622 void TemplateTable::nofast_iload() {
623 iload_internal(may_not_rewrite);
624 }
625
626 void TemplateTable::iload_internal(RewriteControl rc) {
627 transition(vtos, itos);
628 if (RewriteFrequentPairs && rc == may_rewrite) {
629 Label rewrite, done;
630 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
631 LP64_ONLY(assert(rbx != bc, "register damaged"));
632
633 // get next byte
634 __ load_unsigned_byte(rbx,
635 at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
636 // if _iload, wait to rewrite to iload2. We only want to rewrite the
637 // last two iloads in a pair. Comparing against fast_iload means that
638 // the next bytecode is neither an iload or a caload, and therefore
639 // an iload pair.
640 __ cmpl(rbx, Bytecodes::_iload);
641 __ jcc(Assembler::equal, done);
642
643 __ cmpl(rbx, Bytecodes::_fast_iload);
644 __ movl(bc, Bytecodes::_fast_iload2);
645
646 __ jccb(Assembler::equal, rewrite);
647
648 // if _caload, rewrite to fast_icaload
649 __ cmpl(rbx, Bytecodes::_caload);
650 __ movl(bc, Bytecodes::_fast_icaload);
651 __ jccb(Assembler::equal, rewrite);
652
653 // rewrite so iload doesn't check again.
654 __ movl(bc, Bytecodes::_fast_iload);
655
656 // rewrite
657 // bc: fast bytecode
658 __ bind(rewrite);
659 patch_bytecode(Bytecodes::_iload, bc, rbx, false);
660 __ bind(done);
661 }
662
663 // Get the local value into tos
664 locals_index(rbx);
665 __ movl(rax, iaddress(rbx));
666 }
667
668 void TemplateTable::fast_iload2() {
669 transition(vtos, itos);
670 locals_index(rbx);
671 __ movl(rax, iaddress(rbx));
672 __ push(itos);
673 locals_index(rbx, 3);
674 __ movl(rax, iaddress(rbx));
675 }
676
677 void TemplateTable::fast_iload() {
678 transition(vtos, itos);
679 locals_index(rbx);
680 __ movl(rax, iaddress(rbx));
681 }
682
683 void TemplateTable::lload() {
684 transition(vtos, ltos);
685 locals_index(rbx);
686 __ movptr(rax, laddress(rbx));
687 NOT_LP64(__ movl(rdx, haddress(rbx)));
688 }
689
690 void TemplateTable::fload() {
691 transition(vtos, ftos);
692 locals_index(rbx);
693 __ load_float(faddress(rbx));
694 }
695
696 void TemplateTable::dload() {
697 transition(vtos, dtos);
698 locals_index(rbx);
699 __ load_double(daddress(rbx));
700 }
701
702 void TemplateTable::aload() {
703 transition(vtos, atos);
704 locals_index(rbx);
705 __ movptr(rax, aaddress(rbx));
706 }
707
708 void TemplateTable::locals_index_wide(Register reg) {
709 __ load_unsigned_short(reg, at_bcp(2));
710 __ bswapl(reg);
711 __ shrl(reg, 16);
712 __ negptr(reg);
713 }
714
715 void TemplateTable::wide_iload() {
716 transition(vtos, itos);
717 locals_index_wide(rbx);
718 __ movl(rax, iaddress(rbx));
719 }
720
721 void TemplateTable::wide_lload() {
722 transition(vtos, ltos);
723 locals_index_wide(rbx);
724 __ movptr(rax, laddress(rbx));
725 NOT_LP64(__ movl(rdx, haddress(rbx)));
726 }
727
728 void TemplateTable::wide_fload() {
729 transition(vtos, ftos);
730 locals_index_wide(rbx);
731 __ load_float(faddress(rbx));
732 }
733
734 void TemplateTable::wide_dload() {
735 transition(vtos, dtos);
736 locals_index_wide(rbx);
737 __ load_double(daddress(rbx));
738 }
739
740 void TemplateTable::wide_aload() {
741 transition(vtos, atos);
742 locals_index_wide(rbx);
743 __ movptr(rax, aaddress(rbx));
744 }
745
746 void TemplateTable::index_check(Register array, Register index) {
747 // Pop ptr into array
748 __ pop_ptr(array);
749 index_check_without_pop(array, index);
750 }
751
752 void TemplateTable::index_check_without_pop(Register array, Register index) {
753 // destroys rbx
754 // sign extend index for use by indexed load
755 __ movl2ptr(index, index);
756 // check index
757 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
758 if (index != rbx) {
759 // ??? convention: move aberrant index into rbx for exception message
760 assert(rbx != array, "different registers");
761 __ movl(rbx, index);
762 }
763 Label skip;
764 __ jccb(Assembler::below, skip);
765 // Pass array to create more detailed exceptions.
766 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array);
767 __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
768 __ bind(skip);
769 }
770
771 void TemplateTable::iaload() {
772 transition(itos, itos);
773 // rax: index
774 // rdx: array
775 index_check(rdx, rax); // kills rbx
776 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax,
777 Address(rdx, rax, Address::times_4,
778 arrayOopDesc::base_offset_in_bytes(T_INT)),
779 noreg, noreg);
780 }
781
782 void TemplateTable::laload() {
783 transition(itos, ltos);
784 // rax: index
785 // rdx: array
786 index_check(rdx, rax); // kills rbx
787 NOT_LP64(__ mov(rbx, rax));
788 // rbx,: index
789 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */,
790 Address(rdx, rbx, Address::times_8,
791 arrayOopDesc::base_offset_in_bytes(T_LONG)),
792 noreg, noreg);
793 }
794
795
796
797 void TemplateTable::faload() {
798 transition(itos, ftos);
799 // rax: index
800 // rdx: array
801 index_check(rdx, rax); // kills rbx
802 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */,
803 Address(rdx, rax,
804 Address::times_4,
805 arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
806 noreg, noreg);
807 }
808
809 void TemplateTable::daload() {
810 transition(itos, dtos);
811 // rax: index
812 // rdx: array
813 index_check(rdx, rax); // kills rbx
814 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */,
815 Address(rdx, rax,
816 Address::times_8,
817 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
818 noreg, noreg);
819 }
820
821 void TemplateTable::aaload() {
822 transition(itos, atos);
823 // rax: index
824 // rdx: array
825 index_check(rdx, rax); // kills rbx
826 do_oop_load(_masm,
827 Address(rdx, rax,
828 UseCompressedOops ? Address::times_4 : Address::times_ptr,
829 arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
830 rax,
831 IS_ARRAY);
832 }
833
834 void TemplateTable::baload() {
835 transition(itos, itos);
836 // rax: index
837 // rdx: array
838 index_check(rdx, rax); // kills rbx
839 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax,
840 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)),
841 noreg, noreg);
842 }
843
844 void TemplateTable::caload() {
845 transition(itos, itos);
846 // rax: index
847 // rdx: array
848 index_check(rdx, rax); // kills rbx
849 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
850 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
851 noreg, noreg);
852 }
853
854 // iload followed by caload frequent pair
855 void TemplateTable::fast_icaload() {
856 transition(vtos, itos);
857 // load index out of locals
858 locals_index(rbx);
859 __ movl(rax, iaddress(rbx));
860
861 // rax: index
862 // rdx: array
863 index_check(rdx, rax); // kills rbx
864 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
865 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
866 noreg, noreg);
867 }
868
869
870 void TemplateTable::saload() {
871 transition(itos, itos);
872 // rax: index
873 // rdx: array
874 index_check(rdx, rax); // kills rbx
875 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax,
876 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)),
877 noreg, noreg);
878 }
879
880 void TemplateTable::iload(int n) {
881 transition(vtos, itos);
882 __ movl(rax, iaddress(n));
883 }
884
885 void TemplateTable::lload(int n) {
886 transition(vtos, ltos);
887 __ movptr(rax, laddress(n));
888 NOT_LP64(__ movptr(rdx, haddress(n)));
889 }
890
891 void TemplateTable::fload(int n) {
892 transition(vtos, ftos);
893 __ load_float(faddress(n));
894 }
895
896 void TemplateTable::dload(int n) {
897 transition(vtos, dtos);
898 __ load_double(daddress(n));
899 }
900
901 void TemplateTable::aload(int n) {
902 transition(vtos, atos);
903 __ movptr(rax, aaddress(n));
904 }
905
906 void TemplateTable::aload_0() {
907 aload_0_internal();
908 }
909
910 void TemplateTable::nofast_aload_0() {
911 aload_0_internal(may_not_rewrite);
912 }
913
914 void TemplateTable::aload_0_internal(RewriteControl rc) {
915 transition(vtos, atos);
916 // According to bytecode histograms, the pairs:
917 //
918 // _aload_0, _fast_igetfield
919 // _aload_0, _fast_agetfield
920 // _aload_0, _fast_fgetfield
921 //
922 // occur frequently. If RewriteFrequentPairs is set, the (slow)
923 // _aload_0 bytecode checks if the next bytecode is either
924 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
925 // rewrites the current bytecode into a pair bytecode; otherwise it
926 // rewrites the current bytecode into _fast_aload_0 that doesn't do
927 // the pair check anymore.
928 //
929 // Note: If the next bytecode is _getfield, the rewrite must be
930 // delayed, otherwise we may miss an opportunity for a pair.
931 //
932 // Also rewrite frequent pairs
933 // aload_0, aload_1
934 // aload_0, iload_1
935 // These bytecodes with a small amount of code are most profitable
936 // to rewrite
937 if (RewriteFrequentPairs && rc == may_rewrite) {
938 Label rewrite, done;
939
940 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
941 LP64_ONLY(assert(rbx != bc, "register damaged"));
942
943 // get next byte
944 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
945
946 // if _getfield then wait with rewrite
947 __ cmpl(rbx, Bytecodes::_getfield);
948 __ jcc(Assembler::equal, done);
949
950 // if _igetfield then rewrite to _fast_iaccess_0
951 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
952 __ cmpl(rbx, Bytecodes::_fast_igetfield);
953 __ movl(bc, Bytecodes::_fast_iaccess_0);
954 __ jccb(Assembler::equal, rewrite);
955
956 // if _agetfield then rewrite to _fast_aaccess_0
957 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
958 __ cmpl(rbx, Bytecodes::_fast_agetfield);
959 __ movl(bc, Bytecodes::_fast_aaccess_0);
960 __ jccb(Assembler::equal, rewrite);
961
962 // if _fgetfield then rewrite to _fast_faccess_0
963 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
964 __ cmpl(rbx, Bytecodes::_fast_fgetfield);
965 __ movl(bc, Bytecodes::_fast_faccess_0);
966 __ jccb(Assembler::equal, rewrite);
967
968 // else rewrite to _fast_aload0
969 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
970 __ movl(bc, Bytecodes::_fast_aload_0);
971
972 // rewrite
973 // bc: fast bytecode
974 __ bind(rewrite);
975 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
976
977 __ bind(done);
978 }
979
980 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
981 aload(0);
982 }
983
984 void TemplateTable::istore() {
985 transition(itos, vtos);
986 locals_index(rbx);
987 __ movl(iaddress(rbx), rax);
988 }
989
990
991 void TemplateTable::lstore() {
992 transition(ltos, vtos);
993 locals_index(rbx);
994 __ movptr(laddress(rbx), rax);
995 NOT_LP64(__ movptr(haddress(rbx), rdx));
996 }
997
998 void TemplateTable::fstore() {
999 transition(ftos, vtos);
1000 locals_index(rbx);
1001 __ store_float(faddress(rbx));
1002 }
1003
1004 void TemplateTable::dstore() {
1005 transition(dtos, vtos);
1006 locals_index(rbx);
1007 __ store_double(daddress(rbx));
1008 }
1009
1010 void TemplateTable::astore() {
1011 transition(vtos, vtos);
1012 __ pop_ptr(rax);
1013 locals_index(rbx);
1014 __ movptr(aaddress(rbx), rax);
1015 }
1016
1017 void TemplateTable::wide_istore() {
1018 transition(vtos, vtos);
1019 __ pop_i();
1020 locals_index_wide(rbx);
1021 __ movl(iaddress(rbx), rax);
1022 }
1023
1024 void TemplateTable::wide_lstore() {
1025 transition(vtos, vtos);
1026 NOT_LP64(__ pop_l(rax, rdx));
1027 LP64_ONLY(__ pop_l());
1028 locals_index_wide(rbx);
1029 __ movptr(laddress(rbx), rax);
1030 NOT_LP64(__ movl(haddress(rbx), rdx));
1031 }
1032
1033 void TemplateTable::wide_fstore() {
1034 #ifdef _LP64
1035 transition(vtos, vtos);
1036 __ pop_f(xmm0);
1037 locals_index_wide(rbx);
1038 __ movflt(faddress(rbx), xmm0);
1039 #else
1040 wide_istore();
1041 #endif
1042 }
1043
1044 void TemplateTable::wide_dstore() {
1045 #ifdef _LP64
1046 transition(vtos, vtos);
1047 __ pop_d(xmm0);
1048 locals_index_wide(rbx);
1049 __ movdbl(daddress(rbx), xmm0);
1050 #else
1051 wide_lstore();
1052 #endif
1053 }
1054
1055 void TemplateTable::wide_astore() {
1056 transition(vtos, vtos);
1057 __ pop_ptr(rax);
1058 locals_index_wide(rbx);
1059 __ movptr(aaddress(rbx), rax);
1060 }
1061
1062 void TemplateTable::iastore() {
1063 transition(itos, vtos);
1064 __ pop_i(rbx);
1065 // rax: value
1066 // rbx: index
1067 // rdx: array
1068 index_check(rdx, rbx); // prefer index in rbx
1069 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY,
1070 Address(rdx, rbx, Address::times_4,
1071 arrayOopDesc::base_offset_in_bytes(T_INT)),
1072 rax, noreg, noreg, noreg);
1073 }
1074
1075 void TemplateTable::lastore() {
1076 transition(ltos, vtos);
1077 __ pop_i(rbx);
1078 // rax,: low(value)
1079 // rcx: array
1080 // rdx: high(value)
1081 index_check(rcx, rbx); // prefer index in rbx,
1082 // rbx,: index
1083 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY,
1084 Address(rcx, rbx, Address::times_8,
1085 arrayOopDesc::base_offset_in_bytes(T_LONG)),
1086 noreg /* ltos */, noreg, noreg, noreg);
1087 }
1088
1089
1090 void TemplateTable::fastore() {
1091 transition(ftos, vtos);
1092 __ pop_i(rbx);
1093 // value is in UseSSE >= 1 ? xmm0 : ST(0)
1094 // rbx: index
1095 // rdx: array
1096 index_check(rdx, rbx); // prefer index in rbx
1097 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY,
1098 Address(rdx, rbx, Address::times_4,
1099 arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1100 noreg /* ftos */, noreg, noreg, noreg);
1101 }
1102
1103 void TemplateTable::dastore() {
1104 transition(dtos, vtos);
1105 __ pop_i(rbx);
1106 // value is in UseSSE >= 2 ? xmm0 : ST(0)
1107 // rbx: index
1108 // rdx: array
1109 index_check(rdx, rbx); // prefer index in rbx
1110 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY,
1111 Address(rdx, rbx, Address::times_8,
1112 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
1113 noreg /* dtos */, noreg, noreg, noreg);
1114 }
1115
1116 void TemplateTable::aastore() {
1117 Label is_null, ok_is_subtype, done;
1118 transition(vtos, vtos);
1119 // stack: ..., array, index, value
1120 __ movptr(rax, at_tos()); // value
1121 __ movl(rcx, at_tos_p1()); // index
1122 __ movptr(rdx, at_tos_p2()); // array
1123
1124 Address element_address(rdx, rcx,
1125 UseCompressedOops? Address::times_4 : Address::times_ptr,
1126 arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1127
1128 index_check_without_pop(rdx, rcx); // kills rbx
1129 __ testptr(rax, rax);
1130 __ jcc(Assembler::zero, is_null);
1131
1132 // Move subklass into rbx
1133 __ load_klass(rbx, rax, rscratch1);
1134 // Move superklass into rax
1135 __ load_klass(rax, rdx, rscratch1);
1136 __ movptr(rax, Address(rax,
1137 ObjArrayKlass::element_klass_offset()));
1138
1139 // Generate subtype check. Blows rcx, rdi
1140 // Superklass in rax. Subklass in rbx.
1141 __ gen_subtype_check(rbx, ok_is_subtype);
1142
1143 // Come here on failure
1144 // object is at TOS
1145 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1146
1147 // Come here on success
1148 __ bind(ok_is_subtype);
1149
1150 // Get the value we will store
1151 __ movptr(rax, at_tos());
1152 __ movl(rcx, at_tos_p1()); // index
1153 // Now store using the appropriate barrier
1154 do_oop_store(_masm, element_address, rax, IS_ARRAY);
1155 __ jmp(done);
1156
1157 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx]
1158 __ bind(is_null);
1159 __ profile_null_seen(rbx);
1160
1161 // Store a null
1162 do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1163
1164 // Pop stack arguments
1165 __ bind(done);
1166 __ addptr(rsp, 3 * Interpreter::stackElementSize);
1167 }
1168
1169 void TemplateTable::bastore() {
1170 transition(itos, vtos);
1171 __ pop_i(rbx);
1172 // rax: value
1173 // rbx: index
1174 // rdx: array
1175 index_check(rdx, rbx); // prefer index in rbx
1176 // Need to check whether array is boolean or byte
1177 // since both types share the bastore bytecode.
1178 __ load_klass(rcx, rdx, rscratch1);
1179 __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1180 int diffbit = Klass::layout_helper_boolean_diffbit();
1181 __ testl(rcx, diffbit);
1182 Label L_skip;
1183 __ jccb(Assembler::zero, L_skip);
1184 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1185 __ bind(L_skip);
1186 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY,
1187 Address(rdx, rbx,Address::times_1,
1188 arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1189 rax, noreg, noreg, noreg);
1190 }
1191
1192 void TemplateTable::castore() {
1193 transition(itos, vtos);
1194 __ pop_i(rbx);
1195 // rax: value
1196 // rbx: index
1197 // rdx: array
1198 index_check(rdx, rbx); // prefer index in rbx
1199 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY,
1200 Address(rdx, rbx, Address::times_2,
1201 arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1202 rax, noreg, noreg, noreg);
1203 }
1204
1205
1206 void TemplateTable::sastore() {
1207 castore();
1208 }
1209
1210 void TemplateTable::istore(int n) {
1211 transition(itos, vtos);
1212 __ movl(iaddress(n), rax);
1213 }
1214
1215 void TemplateTable::lstore(int n) {
1216 transition(ltos, vtos);
1217 __ movptr(laddress(n), rax);
1218 NOT_LP64(__ movptr(haddress(n), rdx));
1219 }
1220
1221 void TemplateTable::fstore(int n) {
1222 transition(ftos, vtos);
1223 __ store_float(faddress(n));
1224 }
1225
1226 void TemplateTable::dstore(int n) {
1227 transition(dtos, vtos);
1228 __ store_double(daddress(n));
1229 }
1230
1231
1232 void TemplateTable::astore(int n) {
1233 transition(vtos, vtos);
1234 __ pop_ptr(rax);
1235 __ movptr(aaddress(n), rax);
1236 }
1237
1238 void TemplateTable::pop() {
1239 transition(vtos, vtos);
1240 __ addptr(rsp, Interpreter::stackElementSize);
1241 }
1242
1243 void TemplateTable::pop2() {
1244 transition(vtos, vtos);
1245 __ addptr(rsp, 2 * Interpreter::stackElementSize);
1246 }
1247
1248
1249 void TemplateTable::dup() {
1250 transition(vtos, vtos);
1251 __ load_ptr(0, rax);
1252 __ push_ptr(rax);
1253 // stack: ..., a, a
1254 }
1255
1256 void TemplateTable::dup_x1() {
1257 transition(vtos, vtos);
1258 // stack: ..., a, b
1259 __ load_ptr( 0, rax); // load b
1260 __ load_ptr( 1, rcx); // load a
1261 __ store_ptr(1, rax); // store b
1262 __ store_ptr(0, rcx); // store a
1263 __ push_ptr(rax); // push b
1264 // stack: ..., b, a, b
1265 }
1266
1267 void TemplateTable::dup_x2() {
1268 transition(vtos, vtos);
1269 // stack: ..., a, b, c
1270 __ load_ptr( 0, rax); // load c
1271 __ load_ptr( 2, rcx); // load a
1272 __ store_ptr(2, rax); // store c in a
1273 __ push_ptr(rax); // push c
1274 // stack: ..., c, b, c, c
1275 __ load_ptr( 2, rax); // load b
1276 __ store_ptr(2, rcx); // store a in b
1277 // stack: ..., c, a, c, c
1278 __ store_ptr(1, rax); // store b in c
1279 // stack: ..., c, a, b, c
1280 }
1281
1282 void TemplateTable::dup2() {
1283 transition(vtos, vtos);
1284 // stack: ..., a, b
1285 __ load_ptr(1, rax); // load a
1286 __ push_ptr(rax); // push a
1287 __ load_ptr(1, rax); // load b
1288 __ push_ptr(rax); // push b
1289 // stack: ..., a, b, a, b
1290 }
1291
1292
1293 void TemplateTable::dup2_x1() {
1294 transition(vtos, vtos);
1295 // stack: ..., a, b, c
1296 __ load_ptr( 0, rcx); // load c
1297 __ load_ptr( 1, rax); // load b
1298 __ push_ptr(rax); // push b
1299 __ push_ptr(rcx); // push c
1300 // stack: ..., a, b, c, b, c
1301 __ store_ptr(3, rcx); // store c in b
1302 // stack: ..., a, c, c, b, c
1303 __ load_ptr( 4, rcx); // load a
1304 __ store_ptr(2, rcx); // store a in 2nd c
1305 // stack: ..., a, c, a, b, c
1306 __ store_ptr(4, rax); // store b in a
1307 // stack: ..., b, c, a, b, c
1308 }
1309
1310 void TemplateTable::dup2_x2() {
1311 transition(vtos, vtos);
1312 // stack: ..., a, b, c, d
1313 __ load_ptr( 0, rcx); // load d
1314 __ load_ptr( 1, rax); // load c
1315 __ push_ptr(rax); // push c
1316 __ push_ptr(rcx); // push d
1317 // stack: ..., a, b, c, d, c, d
1318 __ load_ptr( 4, rax); // load b
1319 __ store_ptr(2, rax); // store b in d
1320 __ store_ptr(4, rcx); // store d in b
1321 // stack: ..., a, d, c, b, c, d
1322 __ load_ptr( 5, rcx); // load a
1323 __ load_ptr( 3, rax); // load c
1324 __ store_ptr(3, rcx); // store a in c
1325 __ store_ptr(5, rax); // store c in a
1326 // stack: ..., c, d, a, b, c, d
1327 }
1328
1329 void TemplateTable::swap() {
1330 transition(vtos, vtos);
1331 // stack: ..., a, b
1332 __ load_ptr( 1, rcx); // load a
1333 __ load_ptr( 0, rax); // load b
1334 __ store_ptr(0, rcx); // store a in b
1335 __ store_ptr(1, rax); // store b in a
1336 // stack: ..., b, a
1337 }
1338
1339 void TemplateTable::iop2(Operation op) {
1340 transition(itos, itos);
1341 switch (op) {
1342 case add : __ pop_i(rdx); __ addl (rax, rdx); break;
1343 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1344 case mul : __ pop_i(rdx); __ imull(rax, rdx); break;
1345 case _and : __ pop_i(rdx); __ andl (rax, rdx); break;
1346 case _or : __ pop_i(rdx); __ orl (rax, rdx); break;
1347 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break;
1348 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break;
1349 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break;
1350 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break;
1351 default : ShouldNotReachHere();
1352 }
1353 }
1354
1355 void TemplateTable::lop2(Operation op) {
1356 transition(ltos, ltos);
1357 #ifdef _LP64
1358 switch (op) {
1359 case add : __ pop_l(rdx); __ addptr(rax, rdx); break;
1360 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break;
1361 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break;
1362 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break;
1363 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break;
1364 default : ShouldNotReachHere();
1365 }
1366 #else
1367 __ pop_l(rbx, rcx);
1368 switch (op) {
1369 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1370 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1371 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1372 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1373 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1374 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1375 default : ShouldNotReachHere();
1376 }
1377 #endif
1378 }
1379
1380 void TemplateTable::idiv() {
1381 transition(itos, itos);
1382 __ movl(rcx, rax);
1383 __ pop_i(rax);
1384 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1385 // they are not equal, one could do a normal division (no correction
1386 // needed), which may speed up this implementation for the common case.
1387 // (see also JVM spec., p.243 & p.271)
1388 __ corrected_idivl(rcx);
1389 }
1390
1391 void TemplateTable::irem() {
1392 transition(itos, itos);
1393 __ movl(rcx, rax);
1394 __ pop_i(rax);
1395 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1396 // they are not equal, one could do a normal division (no correction
1397 // needed), which may speed up this implementation for the common case.
1398 // (see also JVM spec., p.243 & p.271)
1399 __ corrected_idivl(rcx);
1400 __ movl(rax, rdx);
1401 }
1402
1403 void TemplateTable::lmul() {
1404 transition(ltos, ltos);
1405 #ifdef _LP64
1406 __ pop_l(rdx);
1407 __ imulq(rax, rdx);
1408 #else
1409 __ pop_l(rbx, rcx);
1410 __ push(rcx); __ push(rbx);
1411 __ push(rdx); __ push(rax);
1412 __ lmul(2 * wordSize, 0);
1413 __ addptr(rsp, 4 * wordSize); // take off temporaries
1414 #endif
1415 }
1416
1417 void TemplateTable::ldiv() {
1418 transition(ltos, ltos);
1419 #ifdef _LP64
1420 __ mov(rcx, rax);
1421 __ pop_l(rax);
1422 // generate explicit div0 check
1423 __ testq(rcx, rcx);
1424 __ jump_cc(Assembler::zero,
1425 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1426 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1427 // they are not equal, one could do a normal division (no correction
1428 // needed), which may speed up this implementation for the common case.
1429 // (see also JVM spec., p.243 & p.271)
1430 __ corrected_idivq(rcx); // kills rbx
1431 #else
1432 __ pop_l(rbx, rcx);
1433 __ push(rcx); __ push(rbx);
1434 __ push(rdx); __ push(rax);
1435 // check if y = 0
1436 __ orl(rax, rdx);
1437 __ jump_cc(Assembler::zero,
1438 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1439 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1440 __ addptr(rsp, 4 * wordSize); // take off temporaries
1441 #endif
1442 }
1443
1444 void TemplateTable::lrem() {
1445 transition(ltos, ltos);
1446 #ifdef _LP64
1447 __ mov(rcx, rax);
1448 __ pop_l(rax);
1449 __ testq(rcx, rcx);
1450 __ jump_cc(Assembler::zero,
1451 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1452 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1453 // they are not equal, one could do a normal division (no correction
1454 // needed), which may speed up this implementation for the common case.
1455 // (see also JVM spec., p.243 & p.271)
1456 __ corrected_idivq(rcx); // kills rbx
1457 __ mov(rax, rdx);
1458 #else
1459 __ pop_l(rbx, rcx);
1460 __ push(rcx); __ push(rbx);
1461 __ push(rdx); __ push(rax);
1462 // check if y = 0
1463 __ orl(rax, rdx);
1464 __ jump_cc(Assembler::zero,
1465 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1466 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1467 __ addptr(rsp, 4 * wordSize);
1468 #endif
1469 }
1470
1471 void TemplateTable::lshl() {
1472 transition(itos, ltos);
1473 __ movl(rcx, rax); // get shift count
1474 #ifdef _LP64
1475 __ pop_l(rax); // get shift value
1476 __ shlq(rax);
1477 #else
1478 __ pop_l(rax, rdx); // get shift value
1479 __ lshl(rdx, rax);
1480 #endif
1481 }
1482
1483 void TemplateTable::lshr() {
1484 #ifdef _LP64
1485 transition(itos, ltos);
1486 __ movl(rcx, rax); // get shift count
1487 __ pop_l(rax); // get shift value
1488 __ sarq(rax);
1489 #else
1490 transition(itos, ltos);
1491 __ mov(rcx, rax); // get shift count
1492 __ pop_l(rax, rdx); // get shift value
1493 __ lshr(rdx, rax, true);
1494 #endif
1495 }
1496
1497 void TemplateTable::lushr() {
1498 transition(itos, ltos);
1499 #ifdef _LP64
1500 __ movl(rcx, rax); // get shift count
1501 __ pop_l(rax); // get shift value
1502 __ shrq(rax);
1503 #else
1504 __ mov(rcx, rax); // get shift count
1505 __ pop_l(rax, rdx); // get shift value
1506 __ lshr(rdx, rax);
1507 #endif
1508 }
1509
1510 void TemplateTable::fop2(Operation op) {
1511 transition(ftos, ftos);
1512
1513 if (UseSSE >= 1) {
1514 switch (op) {
1515 case add:
1516 __ addss(xmm0, at_rsp());
1517 __ addptr(rsp, Interpreter::stackElementSize);
1518 break;
1519 case sub:
1520 __ movflt(xmm1, xmm0);
1521 __ pop_f(xmm0);
1522 __ subss(xmm0, xmm1);
1523 break;
1524 case mul:
1525 __ mulss(xmm0, at_rsp());
1526 __ addptr(rsp, Interpreter::stackElementSize);
1527 break;
1528 case div:
1529 __ movflt(xmm1, xmm0);
1530 __ pop_f(xmm0);
1531 __ divss(xmm0, xmm1);
1532 break;
1533 case rem:
1534 // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1535 // modulo operation. The frem method calls the function
1536 // double fmod(double x, double y) in math.h. The documentation of fmod states:
1537 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1538 // (signalling or quiet) is returned.
1539 //
1540 // On x86_32 platforms the FPU is used to perform the modulo operation. The
1541 // reason is that on 32-bit Windows the sign of modulo operations diverges from
1542 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
1543 // The fprem instruction used on x86_32 is functionally equivalent to
1544 // SharedRuntime::frem in that it returns a NaN.
1545 #ifdef _LP64
1546 __ movflt(xmm1, xmm0);
1547 __ pop_f(xmm0);
1548 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1549 #else // !_LP64
1550 __ push_f(xmm0);
1551 __ pop_f();
1552 __ fld_s(at_rsp());
1553 __ fremr(rax);
1554 __ f2ieee();
1555 __ pop(rax); // pop second operand off the stack
1556 __ push_f();
1557 __ pop_f(xmm0);
1558 #endif // _LP64
1559 break;
1560 default:
1561 ShouldNotReachHere();
1562 break;
1563 }
1564 } else {
1565 #ifdef _LP64
1566 ShouldNotReachHere();
1567 #else // !_LP64
1568 switch (op) {
1569 case add: __ fadd_s (at_rsp()); break;
1570 case sub: __ fsubr_s(at_rsp()); break;
1571 case mul: __ fmul_s (at_rsp()); break;
1572 case div: __ fdivr_s(at_rsp()); break;
1573 case rem: __ fld_s (at_rsp()); __ fremr(rax); break;
1574 default : ShouldNotReachHere();
1575 }
1576 __ f2ieee();
1577 __ pop(rax); // pop second operand off the stack
1578 #endif // _LP64
1579 }
1580 }
1581
1582 void TemplateTable::dop2(Operation op) {
1583 transition(dtos, dtos);
1584 if (UseSSE >= 2) {
1585 switch (op) {
1586 case add:
1587 __ addsd(xmm0, at_rsp());
1588 __ addptr(rsp, 2 * Interpreter::stackElementSize);
1589 break;
1590 case sub:
1591 __ movdbl(xmm1, xmm0);
1592 __ pop_d(xmm0);
1593 __ subsd(xmm0, xmm1);
1594 break;
1595 case mul:
1596 __ mulsd(xmm0, at_rsp());
1597 __ addptr(rsp, 2 * Interpreter::stackElementSize);
1598 break;
1599 case div:
1600 __ movdbl(xmm1, xmm0);
1601 __ pop_d(xmm0);
1602 __ divsd(xmm0, xmm1);
1603 break;
1604 case rem:
1605 // Similar to fop2(), the modulo operation is performed using the
1606 // SharedRuntime::drem method (on x86_64 platforms) or using the
1607 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
1608 #ifdef _LP64
1609 __ movdbl(xmm1, xmm0);
1610 __ pop_d(xmm0);
1611 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1612 #else // !_LP64
1613 __ push_d(xmm0);
1614 __ pop_d();
1615 __ fld_d(at_rsp());
1616 __ fremr(rax);
1617 __ d2ieee();
1618 __ pop(rax);
1619 __ pop(rdx);
1620 __ push_d();
1621 __ pop_d(xmm0);
1622 #endif // _LP64
1623 break;
1624 default:
1625 ShouldNotReachHere();
1626 break;
1627 }
1628 } else {
1629 #ifdef _LP64
1630 ShouldNotReachHere();
1631 #else // !_LP64
1632 switch (op) {
1633 case add: __ fadd_d (at_rsp()); break;
1634 case sub: __ fsubr_d(at_rsp()); break;
1635 case mul: {
1636 // strict semantics
1637 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
1638 __ fmulp();
1639 __ fmul_d (at_rsp());
1640 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
1641 __ fmulp();
1642 break;
1643 }
1644 case div: {
1645 // strict semantics
1646 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
1647 __ fmul_d (at_rsp());
1648 __ fdivrp();
1649 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
1650 __ fmulp();
1651 break;
1652 }
1653 case rem: __ fld_d (at_rsp()); __ fremr(rax); break;
1654 default : ShouldNotReachHere();
1655 }
1656 __ d2ieee();
1657 // Pop double precision number from rsp.
1658 __ pop(rax);
1659 __ pop(rdx);
1660 #endif // _LP64
1661 }
1662 }
1663
1664 void TemplateTable::ineg() {
1665 transition(itos, itos);
1666 __ negl(rax);
1667 }
1668
1669 void TemplateTable::lneg() {
1670 transition(ltos, ltos);
1671 LP64_ONLY(__ negq(rax));
1672 NOT_LP64(__ lneg(rdx, rax));
1673 }
1674
1675 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1676 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1677 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1678 // of 128-bits operands for SSE instructions.
1679 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1680 // Store the value to a 128-bits operand.
1681 operand[0] = lo;
1682 operand[1] = hi;
1683 return operand;
1684 }
1685
1686 // Buffer for 128-bits masks used by SSE instructions.
1687 static jlong float_signflip_pool[2*2];
1688 static jlong double_signflip_pool[2*2];
1689
1690 void TemplateTable::fneg() {
1691 transition(ftos, ftos);
1692 if (UseSSE >= 1) {
1693 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
1694 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1);
1695 } else {
1696 LP64_ONLY(ShouldNotReachHere());
1697 NOT_LP64(__ fchs());
1698 }
1699 }
1700
1701 void TemplateTable::dneg() {
1702 transition(dtos, dtos);
1703 if (UseSSE >= 2) {
1704 static jlong *double_signflip =
1705 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1706 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1);
1707 } else {
1708 #ifdef _LP64
1709 ShouldNotReachHere();
1710 #else
1711 __ fchs();
1712 #endif
1713 }
1714 }
1715
1716 void TemplateTable::iinc() {
1717 transition(vtos, vtos);
1718 __ load_signed_byte(rdx, at_bcp(2)); // get constant
1719 locals_index(rbx);
1720 __ addl(iaddress(rbx), rdx);
1721 }
1722
1723 void TemplateTable::wide_iinc() {
1724 transition(vtos, vtos);
1725 __ movl(rdx, at_bcp(4)); // get constant
1726 locals_index_wide(rbx);
1727 __ bswapl(rdx); // swap bytes & sign-extend constant
1728 __ sarl(rdx, 16);
1729 __ addl(iaddress(rbx), rdx);
1730 // Note: should probably use only one movl to get both
1731 // the index and the constant -> fix this
1732 }
1733
1734 void TemplateTable::convert() {
1735 #ifdef _LP64
1736 // Checking
1737 #ifdef ASSERT
1738 {
1739 TosState tos_in = ilgl;
1740 TosState tos_out = ilgl;
1741 switch (bytecode()) {
1742 case Bytecodes::_i2l: // fall through
1743 case Bytecodes::_i2f: // fall through
1744 case Bytecodes::_i2d: // fall through
1745 case Bytecodes::_i2b: // fall through
1746 case Bytecodes::_i2c: // fall through
1747 case Bytecodes::_i2s: tos_in = itos; break;
1748 case Bytecodes::_l2i: // fall through
1749 case Bytecodes::_l2f: // fall through
1750 case Bytecodes::_l2d: tos_in = ltos; break;
1751 case Bytecodes::_f2i: // fall through
1752 case Bytecodes::_f2l: // fall through
1753 case Bytecodes::_f2d: tos_in = ftos; break;
1754 case Bytecodes::_d2i: // fall through
1755 case Bytecodes::_d2l: // fall through
1756 case Bytecodes::_d2f: tos_in = dtos; break;
1757 default : ShouldNotReachHere();
1758 }
1759 switch (bytecode()) {
1760 case Bytecodes::_l2i: // fall through
1761 case Bytecodes::_f2i: // fall through
1762 case Bytecodes::_d2i: // fall through
1763 case Bytecodes::_i2b: // fall through
1764 case Bytecodes::_i2c: // fall through
1765 case Bytecodes::_i2s: tos_out = itos; break;
1766 case Bytecodes::_i2l: // fall through
1767 case Bytecodes::_f2l: // fall through
1768 case Bytecodes::_d2l: tos_out = ltos; break;
1769 case Bytecodes::_i2f: // fall through
1770 case Bytecodes::_l2f: // fall through
1771 case Bytecodes::_d2f: tos_out = ftos; break;
1772 case Bytecodes::_i2d: // fall through
1773 case Bytecodes::_l2d: // fall through
1774 case Bytecodes::_f2d: tos_out = dtos; break;
1775 default : ShouldNotReachHere();
1776 }
1777 transition(tos_in, tos_out);
1778 }
1779 #endif // ASSERT
1780
1781 static const int64_t is_nan = 0x8000000000000000L;
1782
1783 // Conversion
1784 switch (bytecode()) {
1785 case Bytecodes::_i2l:
1786 __ movslq(rax, rax);
1787 break;
1788 case Bytecodes::_i2f:
1789 __ cvtsi2ssl(xmm0, rax);
1790 break;
1791 case Bytecodes::_i2d:
1792 __ cvtsi2sdl(xmm0, rax);
1793 break;
1794 case Bytecodes::_i2b:
1795 __ movsbl(rax, rax);
1796 break;
1797 case Bytecodes::_i2c:
1798 __ movzwl(rax, rax);
1799 break;
1800 case Bytecodes::_i2s:
1801 __ movswl(rax, rax);
1802 break;
1803 case Bytecodes::_l2i:
1804 __ movl(rax, rax);
1805 break;
1806 case Bytecodes::_l2f:
1807 __ cvtsi2ssq(xmm0, rax);
1808 break;
1809 case Bytecodes::_l2d:
1810 __ cvtsi2sdq(xmm0, rax);
1811 break;
1812 case Bytecodes::_f2i:
1813 {
1814 Label L;
1815 __ cvttss2sil(rax, xmm0);
1816 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1817 __ jcc(Assembler::notEqual, L);
1818 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1819 __ bind(L);
1820 }
1821 break;
1822 case Bytecodes::_f2l:
1823 {
1824 Label L;
1825 __ cvttss2siq(rax, xmm0);
1826 // NaN or overflow/underflow?
1827 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1);
1828 __ jcc(Assembler::notEqual, L);
1829 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1830 __ bind(L);
1831 }
1832 break;
1833 case Bytecodes::_f2d:
1834 __ cvtss2sd(xmm0, xmm0);
1835 break;
1836 case Bytecodes::_d2i:
1837 {
1838 Label L;
1839 __ cvttsd2sil(rax, xmm0);
1840 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1841 __ jcc(Assembler::notEqual, L);
1842 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1843 __ bind(L);
1844 }
1845 break;
1846 case Bytecodes::_d2l:
1847 {
1848 Label L;
1849 __ cvttsd2siq(rax, xmm0);
1850 // NaN or overflow/underflow?
1851 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1);
1852 __ jcc(Assembler::notEqual, L);
1853 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1854 __ bind(L);
1855 }
1856 break;
1857 case Bytecodes::_d2f:
1858 __ cvtsd2ss(xmm0, xmm0);
1859 break;
1860 default:
1861 ShouldNotReachHere();
1862 }
1863 #else // !_LP64
1864 // Checking
1865 #ifdef ASSERT
1866 { TosState tos_in = ilgl;
1867 TosState tos_out = ilgl;
1868 switch (bytecode()) {
1869 case Bytecodes::_i2l: // fall through
1870 case Bytecodes::_i2f: // fall through
1871 case Bytecodes::_i2d: // fall through
1872 case Bytecodes::_i2b: // fall through
1873 case Bytecodes::_i2c: // fall through
1874 case Bytecodes::_i2s: tos_in = itos; break;
1875 case Bytecodes::_l2i: // fall through
1876 case Bytecodes::_l2f: // fall through
1877 case Bytecodes::_l2d: tos_in = ltos; break;
1878 case Bytecodes::_f2i: // fall through
1879 case Bytecodes::_f2l: // fall through
1880 case Bytecodes::_f2d: tos_in = ftos; break;
1881 case Bytecodes::_d2i: // fall through
1882 case Bytecodes::_d2l: // fall through
1883 case Bytecodes::_d2f: tos_in = dtos; break;
1884 default : ShouldNotReachHere();
1885 }
1886 switch (bytecode()) {
1887 case Bytecodes::_l2i: // fall through
1888 case Bytecodes::_f2i: // fall through
1889 case Bytecodes::_d2i: // fall through
1890 case Bytecodes::_i2b: // fall through
1891 case Bytecodes::_i2c: // fall through
1892 case Bytecodes::_i2s: tos_out = itos; break;
1893 case Bytecodes::_i2l: // fall through
1894 case Bytecodes::_f2l: // fall through
1895 case Bytecodes::_d2l: tos_out = ltos; break;
1896 case Bytecodes::_i2f: // fall through
1897 case Bytecodes::_l2f: // fall through
1898 case Bytecodes::_d2f: tos_out = ftos; break;
1899 case Bytecodes::_i2d: // fall through
1900 case Bytecodes::_l2d: // fall through
1901 case Bytecodes::_f2d: tos_out = dtos; break;
1902 default : ShouldNotReachHere();
1903 }
1904 transition(tos_in, tos_out);
1905 }
1906 #endif // ASSERT
1907
1908 // Conversion
1909 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1910 switch (bytecode()) {
1911 case Bytecodes::_i2l:
1912 __ extend_sign(rdx, rax);
1913 break;
1914 case Bytecodes::_i2f:
1915 if (UseSSE >= 1) {
1916 __ cvtsi2ssl(xmm0, rax);
1917 } else {
1918 __ push(rax); // store int on tos
1919 __ fild_s(at_rsp()); // load int to ST0
1920 __ f2ieee(); // truncate to float size
1921 __ pop(rcx); // adjust rsp
1922 }
1923 break;
1924 case Bytecodes::_i2d:
1925 if (UseSSE >= 2) {
1926 __ cvtsi2sdl(xmm0, rax);
1927 } else {
1928 __ push(rax); // add one slot for d2ieee()
1929 __ push(rax); // store int on tos
1930 __ fild_s(at_rsp()); // load int to ST0
1931 __ d2ieee(); // truncate to double size
1932 __ pop(rcx); // adjust rsp
1933 __ pop(rcx);
1934 }
1935 break;
1936 case Bytecodes::_i2b:
1937 __ shll(rax, 24); // truncate upper 24 bits
1938 __ sarl(rax, 24); // and sign-extend byte
1939 LP64_ONLY(__ movsbl(rax, rax));
1940 break;
1941 case Bytecodes::_i2c:
1942 __ andl(rax, 0xFFFF); // truncate upper 16 bits
1943 LP64_ONLY(__ movzwl(rax, rax));
1944 break;
1945 case Bytecodes::_i2s:
1946 __ shll(rax, 16); // truncate upper 16 bits
1947 __ sarl(rax, 16); // and sign-extend short
1948 LP64_ONLY(__ movswl(rax, rax));
1949 break;
1950 case Bytecodes::_l2i:
1951 /* nothing to do */
1952 break;
1953 case Bytecodes::_l2f:
1954 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
1955 // 64-bit long values to floats. On 32-bit platforms it is not possible
1956 // to use that instruction with 64-bit operands, therefore the FPU is
1957 // used to perform the conversion.
1958 __ push(rdx); // store long on tos
1959 __ push(rax);
1960 __ fild_d(at_rsp()); // load long to ST0
1961 __ f2ieee(); // truncate to float size
1962 __ pop(rcx); // adjust rsp
1963 __ pop(rcx);
1964 if (UseSSE >= 1) {
1965 __ push_f();
1966 __ pop_f(xmm0);
1967 }
1968 break;
1969 case Bytecodes::_l2d:
1970 // On 32-bit platforms the FPU is used for conversion because on
1971 // 32-bit platforms it is not not possible to use the cvtsi2sdq
1972 // instruction with 64-bit operands.
1973 __ push(rdx); // store long on tos
1974 __ push(rax);
1975 __ fild_d(at_rsp()); // load long to ST0
1976 __ d2ieee(); // truncate to double size
1977 __ pop(rcx); // adjust rsp
1978 __ pop(rcx);
1979 if (UseSSE >= 2) {
1980 __ push_d();
1981 __ pop_d(xmm0);
1982 }
1983 break;
1984 case Bytecodes::_f2i:
1985 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
1986 // as it returns 0 for any NaN.
1987 if (UseSSE >= 1) {
1988 __ push_f(xmm0);
1989 } else {
1990 __ push(rcx); // reserve space for argument
1991 __ fstp_s(at_rsp()); // pass float argument on stack
1992 }
1993 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1994 break;
1995 case Bytecodes::_f2l:
1996 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
1997 // as it returns 0 for any NaN.
1998 if (UseSSE >= 1) {
1999 __ push_f(xmm0);
2000 } else {
2001 __ push(rcx); // reserve space for argument
2002 __ fstp_s(at_rsp()); // pass float argument on stack
2003 }
2004 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
2005 break;
2006 case Bytecodes::_f2d:
2007 if (UseSSE < 1) {
2008 /* nothing to do */
2009 } else if (UseSSE == 1) {
2010 __ push_f(xmm0);
2011 __ pop_f();
2012 } else { // UseSSE >= 2
2013 __ cvtss2sd(xmm0, xmm0);
2014 }
2015 break;
2016 case Bytecodes::_d2i:
2017 if (UseSSE >= 2) {
2018 __ push_d(xmm0);
2019 } else {
2020 __ push(rcx); // reserve space for argument
2021 __ push(rcx);
2022 __ fstp_d(at_rsp()); // pass double argument on stack
2023 }
2024 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
2025 break;
2026 case Bytecodes::_d2l:
2027 if (UseSSE >= 2) {
2028 __ push_d(xmm0);
2029 } else {
2030 __ push(rcx); // reserve space for argument
2031 __ push(rcx);
2032 __ fstp_d(at_rsp()); // pass double argument on stack
2033 }
2034 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
2035 break;
2036 case Bytecodes::_d2f:
2037 if (UseSSE <= 1) {
2038 __ push(rcx); // reserve space for f2ieee()
2039 __ f2ieee(); // truncate to float size
2040 __ pop(rcx); // adjust rsp
2041 if (UseSSE == 1) {
2042 // The cvtsd2ss instruction is not available if UseSSE==1, therefore
2043 // the conversion is performed using the FPU in this case.
2044 __ push_f();
2045 __ pop_f(xmm0);
2046 }
2047 } else { // UseSSE >= 2
2048 __ cvtsd2ss(xmm0, xmm0);
2049 }
2050 break;
2051 default :
2052 ShouldNotReachHere();
2053 }
2054 #endif // _LP64
2055 }
2056
2057 void TemplateTable::lcmp() {
2058 transition(ltos, itos);
2059 #ifdef _LP64
2060 Label done;
2061 __ pop_l(rdx);
2062 __ cmpq(rdx, rax);
2063 __ movl(rax, -1);
2064 __ jccb(Assembler::less, done);
2065 __ setb(Assembler::notEqual, rax);
2066 __ movzbl(rax, rax);
2067 __ bind(done);
2068 #else
2069
2070 // y = rdx:rax
2071 __ pop_l(rbx, rcx); // get x = rcx:rbx
2072 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
2073 __ mov(rax, rcx);
2074 #endif
2075 }
2076
2077 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2078 if ((is_float && UseSSE >= 1) ||
2079 (!is_float && UseSSE >= 2)) {
2080 Label done;
2081 if (is_float) {
2082 // XXX get rid of pop here, use ... reg, mem32
2083 __ pop_f(xmm1);
2084 __ ucomiss(xmm1, xmm0);
2085 } else {
2086 // XXX get rid of pop here, use ... reg, mem64
2087 __ pop_d(xmm1);
2088 __ ucomisd(xmm1, xmm0);
2089 }
2090 if (unordered_result < 0) {
2091 __ movl(rax, -1);
2092 __ jccb(Assembler::parity, done);
2093 __ jccb(Assembler::below, done);
2094 __ setb(Assembler::notEqual, rdx);
2095 __ movzbl(rax, rdx);
2096 } else {
2097 __ movl(rax, 1);
2098 __ jccb(Assembler::parity, done);
2099 __ jccb(Assembler::above, done);
2100 __ movl(rax, 0);
2101 __ jccb(Assembler::equal, done);
2102 __ decrementl(rax);
2103 }
2104 __ bind(done);
2105 } else {
2106 #ifdef _LP64
2107 ShouldNotReachHere();
2108 #else // !_LP64
2109 if (is_float) {
2110 __ fld_s(at_rsp());
2111 } else {
2112 __ fld_d(at_rsp());
2113 __ pop(rdx);
2114 }
2115 __ pop(rcx);
2116 __ fcmp2int(rax, unordered_result < 0);
2117 #endif // _LP64
2118 }
2119 }
2120
2121 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2122 __ get_method(rcx); // rcx holds method
2123 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
2124 // holds bumped taken count
2125
2126 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2127 InvocationCounter::counter_offset();
2128 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2129 InvocationCounter::counter_offset();
2130
2131 // Load up edx with the branch displacement
2132 if (is_wide) {
2133 __ movl(rdx, at_bcp(1));
2134 } else {
2135 __ load_signed_short(rdx, at_bcp(1));
2136 }
2137 __ bswapl(rdx);
2138
2139 if (!is_wide) {
2140 __ sarl(rdx, 16);
2141 }
2142 LP64_ONLY(__ movl2ptr(rdx, rdx));
2143
2144 // Handle all the JSR stuff here, then exit.
2145 // It's much shorter and cleaner than intermingling with the non-JSR
2146 // normal-branch stuff occurring below.
2147 if (is_jsr) {
2148 // Pre-load the next target bytecode into rbx
2149 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
2150
2151 // compute return address as bci in rax
2152 __ lea(rax, at_bcp((is_wide ? 5 : 3) -
2153 in_bytes(ConstMethod::codes_offset())));
2154 __ subptr(rax, Address(rcx, Method::const_offset()));
2155 // Adjust the bcp in r13 by the displacement in rdx
2156 __ addptr(rbcp, rdx);
2157 // jsr returns atos that is not an oop
2158 __ push_i(rax);
2159 __ dispatch_only(vtos, true);
2160 return;
2161 }
2162
2163 // Normal (non-jsr) branch handling
2164
2165 // Adjust the bcp in r13 by the displacement in rdx
2166 __ addptr(rbcp, rdx);
2167
2168 assert(UseLoopCounter || !UseOnStackReplacement,
2169 "on-stack-replacement requires loop counters");
2170 Label backedge_counter_overflow;
2171 Label dispatch;
2172 if (UseLoopCounter) {
2173 // increment backedge counter for backward branches
2174 // rax: MDO
2175 // rbx: MDO bumped taken-count
2176 // rcx: method
2177 // rdx: target offset
2178 // r13: target bcp
2179 // r14: locals pointer
2180 __ testl(rdx, rdx); // check if forward or backward branch
2181 __ jcc(Assembler::positive, dispatch); // count only if backward branch
2182
2183 // check if MethodCounters exists
2184 Label has_counters;
2185 __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2186 __ testptr(rax, rax);
2187 __ jcc(Assembler::notZero, has_counters);
2188 __ push(rdx);
2189 __ push(rcx);
2190 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
2191 rcx);
2192 __ pop(rcx);
2193 __ pop(rdx);
2194 __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2195 __ testptr(rax, rax);
2196 __ jcc(Assembler::zero, dispatch);
2197 __ bind(has_counters);
2198
2199 Label no_mdo;
2200 if (ProfileInterpreter) {
2201 // Are we profiling?
2202 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
2203 __ testptr(rbx, rbx);
2204 __ jccb(Assembler::zero, no_mdo);
2205 // Increment the MDO backedge counter
2206 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
2207 in_bytes(InvocationCounter::counter_offset()));
2208 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
2209 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax,
2210 UseOnStackReplacement ? &backedge_counter_overflow : nullptr);
2211 __ jmp(dispatch);
2212 }
2213 __ bind(no_mdo);
2214 // Increment backedge counter in MethodCounters*
2215 __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2216 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
2217 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax,
2218 UseOnStackReplacement ? &backedge_counter_overflow : nullptr);
2219 __ bind(dispatch);
2220 }
2221
2222 // Pre-load the next target bytecode into rbx
2223 __ load_unsigned_byte(rbx, Address(rbcp, 0));
2224
2225 // continue with the bytecode @ target
2226 // rax: return bci for jsr's, unused otherwise
2227 // rbx: target bytecode
2228 // r13: target bcp
2229 __ dispatch_only(vtos, true);
2230
2231 if (UseLoopCounter) {
2232 if (UseOnStackReplacement) {
2233 Label set_mdp;
2234 // invocation counter overflow
2235 __ bind(backedge_counter_overflow);
2236 __ negptr(rdx);
2237 __ addptr(rdx, rbcp); // branch bcp
2238 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
2239 __ call_VM(noreg,
2240 CAST_FROM_FN_PTR(address,
2241 InterpreterRuntime::frequency_counter_overflow),
2242 rdx);
2243
2244 // rax: osr nmethod (osr ok) or null (osr not possible)
2245 // rdx: scratch
2246 // r14: locals pointer
2247 // r13: bcp
2248 __ testptr(rax, rax); // test result
2249 __ jcc(Assembler::zero, dispatch); // no osr if null
2250 // nmethod may have been invalidated (VM may block upon call_VM return)
2251 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
2252 __ jcc(Assembler::notEqual, dispatch);
2253
2254 // We have the address of an on stack replacement routine in rax.
2255 // In preparation of invoking it, first we must migrate the locals
2256 // and monitors from off the interpreter frame on the stack.
2257 // Ensure to save the osr nmethod over the migration call,
2258 // it will be preserved in rbx.
2259 __ mov(rbx, rax);
2260
2261 NOT_LP64(__ get_thread(rcx));
2262
2263 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2264
2265 // rax is OSR buffer, move it to expected parameter location
2266 LP64_ONLY(__ mov(j_rarg0, rax));
2267 NOT_LP64(__ mov(rcx, rax));
2268 // We use j_rarg definitions here so that registers don't conflict as parameter
2269 // registers change across platforms as we are in the midst of a calling
2270 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
2271
2272 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
2273 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
2274
2275 // pop the interpreter frame
2276 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
2277 __ leave(); // remove frame anchor
2278 __ pop(retaddr); // get return address
2279 __ mov(rsp, sender_sp); // set sp to sender sp
2280 // Ensure compiled code always sees stack at proper alignment
2281 __ andptr(rsp, -(StackAlignmentInBytes));
2282
2283 // unlike x86 we need no specialized return from compiled code
2284 // to the interpreter or the call stub.
2285
2286 // push the return address
2287 __ push(retaddr);
2288
2289 // and begin the OSR nmethod
2290 __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
2291 }
2292 }
2293 }
2294
2295 void TemplateTable::if_0cmp(Condition cc) {
2296 transition(itos, vtos);
2297 // assume branch is more often taken than not (loops use backward branches)
2298 Label not_taken;
2299 __ testl(rax, rax);
2300 __ jcc(j_not(cc), not_taken);
2301 branch(false, false);
2302 __ bind(not_taken);
2303 __ profile_not_taken_branch(rax);
2304 }
2305
2306 void TemplateTable::if_icmp(Condition cc) {
2307 transition(itos, vtos);
2308 // assume branch is more often taken than not (loops use backward branches)
2309 Label not_taken;
2310 __ pop_i(rdx);
2311 __ cmpl(rdx, rax);
2312 __ jcc(j_not(cc), not_taken);
2313 branch(false, false);
2314 __ bind(not_taken);
2315 __ profile_not_taken_branch(rax);
2316 }
2317
2318 void TemplateTable::if_nullcmp(Condition cc) {
2319 transition(atos, vtos);
2320 // assume branch is more often taken than not (loops use backward branches)
2321 Label not_taken;
2322 __ testptr(rax, rax);
2323 __ jcc(j_not(cc), not_taken);
2324 branch(false, false);
2325 __ bind(not_taken);
2326 __ profile_not_taken_branch(rax);
2327 }
2328
2329 void TemplateTable::if_acmp(Condition cc) {
2330 transition(atos, vtos);
2331 // assume branch is more often taken than not (loops use backward branches)
2332 Label not_taken;
2333 __ pop_ptr(rdx);
2334 __ cmpoop(rdx, rax);
2335 __ jcc(j_not(cc), not_taken);
2336 branch(false, false);
2337 __ bind(not_taken);
2338 __ profile_not_taken_branch(rax);
2339 }
2340
2341 void TemplateTable::ret() {
2342 transition(vtos, vtos);
2343 locals_index(rbx);
2344 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
2345 NOT_LP64(__ movptr(rbx, iaddress(rbx)));
2346 __ profile_ret(rbx, rcx);
2347 __ get_method(rax);
2348 __ movptr(rbcp, Address(rax, Method::const_offset()));
2349 __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2350 ConstMethod::codes_offset()));
2351 __ dispatch_next(vtos, 0, true);
2352 }
2353
2354 void TemplateTable::wide_ret() {
2355 transition(vtos, vtos);
2356 locals_index_wide(rbx);
2357 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2358 __ profile_ret(rbx, rcx);
2359 __ get_method(rax);
2360 __ movptr(rbcp, Address(rax, Method::const_offset()));
2361 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2362 __ dispatch_next(vtos, 0, true);
2363 }
2364
2365 void TemplateTable::tableswitch() {
2366 Label default_case, continue_execution;
2367 transition(itos, vtos);
2368
2369 // align r13/rsi
2370 __ lea(rbx, at_bcp(BytesPerInt));
2371 __ andptr(rbx, -BytesPerInt);
2372 // load lo & hi
2373 __ movl(rcx, Address(rbx, BytesPerInt));
2374 __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2375 __ bswapl(rcx);
2376 __ bswapl(rdx);
2377 // check against lo & hi
2378 __ cmpl(rax, rcx);
2379 __ jcc(Assembler::less, default_case);
2380 __ cmpl(rax, rdx);
2381 __ jcc(Assembler::greater, default_case);
2382 // lookup dispatch offset
2383 __ subl(rax, rcx);
2384 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2385 __ profile_switch_case(rax, rbx, rcx);
2386 // continue execution
2387 __ bind(continue_execution);
2388 __ bswapl(rdx);
2389 LP64_ONLY(__ movl2ptr(rdx, rdx));
2390 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2391 __ addptr(rbcp, rdx);
2392 __ dispatch_only(vtos, true);
2393 // handle default
2394 __ bind(default_case);
2395 __ profile_switch_default(rax);
2396 __ movl(rdx, Address(rbx, 0));
2397 __ jmp(continue_execution);
2398 }
2399
2400 void TemplateTable::lookupswitch() {
2401 transition(itos, itos);
2402 __ stop("lookupswitch bytecode should have been rewritten");
2403 }
2404
2405 void TemplateTable::fast_linearswitch() {
2406 transition(itos, vtos);
2407 Label loop_entry, loop, found, continue_execution;
2408 // bswap rax so we can avoid bswapping the table entries
2409 __ bswapl(rax);
2410 // align r13
2411 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2412 // this instruction (change offsets
2413 // below)
2414 __ andptr(rbx, -BytesPerInt);
2415 // set counter
2416 __ movl(rcx, Address(rbx, BytesPerInt));
2417 __ bswapl(rcx);
2418 __ jmpb(loop_entry);
2419 // table search
2420 __ bind(loop);
2421 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2422 __ jcc(Assembler::equal, found);
2423 __ bind(loop_entry);
2424 __ decrementl(rcx);
2425 __ jcc(Assembler::greaterEqual, loop);
2426 // default case
2427 __ profile_switch_default(rax);
2428 __ movl(rdx, Address(rbx, 0));
2429 __ jmp(continue_execution);
2430 // entry found -> get offset
2431 __ bind(found);
2432 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2433 __ profile_switch_case(rcx, rax, rbx);
2434 // continue execution
2435 __ bind(continue_execution);
2436 __ bswapl(rdx);
2437 __ movl2ptr(rdx, rdx);
2438 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2439 __ addptr(rbcp, rdx);
2440 __ dispatch_only(vtos, true);
2441 }
2442
2443 void TemplateTable::fast_binaryswitch() {
2444 transition(itos, vtos);
2445 // Implementation using the following core algorithm:
2446 //
2447 // int binary_search(int key, LookupswitchPair* array, int n) {
2448 // // Binary search according to "Methodik des Programmierens" by
2449 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2450 // int i = 0;
2451 // int j = n;
2452 // while (i+1 < j) {
2453 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2454 // // with Q: for all i: 0 <= i < n: key < a[i]
2455 // // where a stands for the array and assuming that the (inexisting)
2456 // // element a[n] is infinitely big.
2457 // int h = (i + j) >> 1;
2458 // // i < h < j
2459 // if (key < array[h].fast_match()) {
2460 // j = h;
2461 // } else {
2462 // i = h;
2463 // }
2464 // }
2465 // // R: a[i] <= key < a[i+1] or Q
2466 // // (i.e., if key is within array, i is the correct index)
2467 // return i;
2468 // }
2469
2470 // Register allocation
2471 const Register key = rax; // already set (tosca)
2472 const Register array = rbx;
2473 const Register i = rcx;
2474 const Register j = rdx;
2475 const Register h = rdi;
2476 const Register temp = rsi;
2477
2478 // Find array start
2479 NOT_LP64(__ save_bcp());
2480
2481 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2482 // get rid of this
2483 // instruction (change
2484 // offsets below)
2485 __ andptr(array, -BytesPerInt);
2486
2487 // Initialize i & j
2488 __ xorl(i, i); // i = 0;
2489 __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2490
2491 // Convert j into native byteordering
2492 __ bswapl(j);
2493
2494 // And start
2495 Label entry;
2496 __ jmp(entry);
2497
2498 // binary search loop
2499 {
2500 Label loop;
2501 __ bind(loop);
2502 // int h = (i + j) >> 1;
2503 __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2504 __ sarl(h, 1); // h = (i + j) >> 1;
2505 // if (key < array[h].fast_match()) {
2506 // j = h;
2507 // } else {
2508 // i = h;
2509 // }
2510 // Convert array[h].match to native byte-ordering before compare
2511 __ movl(temp, Address(array, h, Address::times_8));
2512 __ bswapl(temp);
2513 __ cmpl(key, temp);
2514 // j = h if (key < array[h].fast_match())
2515 __ cmov32(Assembler::less, j, h);
2516 // i = h if (key >= array[h].fast_match())
2517 __ cmov32(Assembler::greaterEqual, i, h);
2518 // while (i+1 < j)
2519 __ bind(entry);
2520 __ leal(h, Address(i, 1)); // i+1
2521 __ cmpl(h, j); // i+1 < j
2522 __ jcc(Assembler::less, loop);
2523 }
2524
2525 // end of binary search, result index is i (must check again!)
2526 Label default_case;
2527 // Convert array[i].match to native byte-ordering before compare
2528 __ movl(temp, Address(array, i, Address::times_8));
2529 __ bswapl(temp);
2530 __ cmpl(key, temp);
2531 __ jcc(Assembler::notEqual, default_case);
2532
2533 // entry found -> j = offset
2534 __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2535 __ profile_switch_case(i, key, array);
2536 __ bswapl(j);
2537 LP64_ONLY(__ movslq(j, j));
2538
2539 NOT_LP64(__ restore_bcp());
2540 NOT_LP64(__ restore_locals()); // restore rdi
2541
2542 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2543 __ addptr(rbcp, j);
2544 __ dispatch_only(vtos, true);
2545
2546 // default case -> j = default offset
2547 __ bind(default_case);
2548 __ profile_switch_default(i);
2549 __ movl(j, Address(array, -2 * BytesPerInt));
2550 __ bswapl(j);
2551 LP64_ONLY(__ movslq(j, j));
2552
2553 NOT_LP64(__ restore_bcp());
2554 NOT_LP64(__ restore_locals());
2555
2556 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2557 __ addptr(rbcp, j);
2558 __ dispatch_only(vtos, true);
2559 }
2560
2561 void TemplateTable::_return(TosState state) {
2562 transition(state, state);
2563
2564 assert(_desc->calls_vm(),
2565 "inconsistent calls_vm information"); // call in remove_activation
2566
2567 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2568 assert(state == vtos, "only valid state");
2569 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
2570 __ movptr(robj, aaddress(0));
2571 __ load_klass(rdi, robj, rscratch1);
2572 __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2573 __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2574 Label skip_register_finalizer;
2575 __ jcc(Assembler::zero, skip_register_finalizer);
2576
2577 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2578
2579 __ bind(skip_register_finalizer);
2580 }
2581
2582 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2583 Label no_safepoint;
2584 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2585 #ifdef _LP64
2586 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2587 #else
2588 const Register thread = rdi;
2589 __ get_thread(thread);
2590 __ testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
2591 #endif
2592 __ jcc(Assembler::zero, no_safepoint);
2593 __ push(state);
2594 __ push_cont_fastpath();
2595 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2596 InterpreterRuntime::at_safepoint));
2597 __ pop_cont_fastpath();
2598 __ pop(state);
2599 __ bind(no_safepoint);
2600 }
2601
2602 // Narrow result if state is itos but result type is smaller.
2603 // Need to narrow in the return bytecode rather than in generate_return_entry
2604 // since compiled code callers expect the result to already be narrowed.
2605 if (state == itos) {
2606 __ narrow(rax);
2607 }
2608 __ remove_activation(state, rbcp);
2609
2610 __ jmp(rbcp);
2611 }
2612
2613 // ----------------------------------------------------------------------------
2614 // Volatile variables demand their effects be made known to all CPU's
2615 // in order. Store buffers on most chips allow reads & writes to
2616 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2617 // without some kind of memory barrier (i.e., it's not sufficient that
2618 // the interpreter does not reorder volatile references, the hardware
2619 // also must not reorder them).
2620 //
2621 // According to the new Java Memory Model (JMM):
2622 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2623 // writes act as acquire & release, so:
2624 // (2) A read cannot let unrelated NON-volatile memory refs that
2625 // happen after the read float up to before the read. It's OK for
2626 // non-volatile memory refs that happen before the volatile read to
2627 // float down below it.
2628 // (3) Similar a volatile write cannot let unrelated NON-volatile
2629 // memory refs that happen BEFORE the write float down to after the
2630 // write. It's OK for non-volatile memory refs that happen after the
2631 // volatile write to float up before it.
2632 //
2633 // We only put in barriers around volatile refs (they are expensive),
2634 // not _between_ memory refs (that would require us to track the
2635 // flavor of the previous memory refs). Requirements (2) and (3)
2636 // require some barriers before volatile stores and after volatile
2637 // loads. These nearly cover requirement (1) but miss the
2638 // volatile-store-volatile-load case. This final case is placed after
2639 // volatile-stores although it could just as well go before
2640 // volatile-loads.
2641
2642 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2643 // Helper function to insert a is-volatile test and memory barrier
2644 __ membar(order_constraint);
2645 }
2646
2647 void TemplateTable::resolve_cache_and_index(int byte_no,
2648 Register cache,
2649 Register index,
2650 size_t index_size) {
2651 const Register temp = rbx;
2652 assert_different_registers(cache, index, temp);
2653
2654 Label L_clinit_barrier_slow;
2655 Label resolved;
2656
2657 Bytecodes::Code code = bytecode();
2658 switch (code) {
2659 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2660 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2661 default: break;
2662 }
2663
2664 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2665 __ get_cache_and_index_and_bytecode_at_bcp(cache, index, temp, byte_no, 1, index_size);
2666 __ cmpl(temp, code); // have we resolved this bytecode?
2667 __ jcc(Assembler::equal, resolved);
2668
2669 // resolve first time through
2670 // Class initialization barrier slow path lands here as well.
2671 __ bind(L_clinit_barrier_slow);
2672 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2673 __ movl(temp, code);
2674 __ call_VM(noreg, entry, temp);
2675 // Update registers with resolved info
2676 __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
2677
2678 __ bind(resolved);
2679
2680 // Class initialization barrier for static methods
2681 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2682 const Register method = temp;
2683 const Register klass = temp;
2684 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2685 assert(thread != noreg, "x86_32 not supported");
2686
2687 __ load_resolved_method_at_index(byte_no, method, cache, index);
2688 __ load_method_holder(klass, method);
2689 __ clinit_barrier(klass, thread, nullptr /*L_fast_path*/, &L_clinit_barrier_slow);
2690 }
2691 }
2692
2693 // The cache and index registers must be set before call
2694 void TemplateTable::load_field_cp_cache_entry(Register obj,
2695 Register cache,
2696 Register index,
2697 Register off,
2698 Register flags,
2699 bool is_static = false) {
2700 assert_different_registers(cache, index, flags, off);
2701
2702 ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2703 // Field offset
2704 __ movptr(off, Address(cache, index, Address::times_ptr,
2705 in_bytes(cp_base_offset +
2706 ConstantPoolCacheEntry::f2_offset())));
2707 // Flags
2708 __ movl(flags, Address(cache, index, Address::times_ptr,
2709 in_bytes(cp_base_offset +
2710 ConstantPoolCacheEntry::flags_offset())));
2711
2712 // klass overwrite register
2713 if (is_static) {
2714 __ movptr(obj, Address(cache, index, Address::times_ptr,
2715 in_bytes(cp_base_offset +
2716 ConstantPoolCacheEntry::f1_offset())));
2717 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2718 __ movptr(obj, Address(obj, mirror_offset));
2719 __ resolve_oop_handle(obj, rscratch2);
2720 }
2721 }
2722
2723 void TemplateTable::load_invokedynamic_entry(Register method) {
2724 // setup registers
2725 const Register appendix = rax;
2726 const Register cache = rcx;
2727 const Register index = rdx;
2728 assert_different_registers(method, appendix, cache, index);
2729
2730 __ save_bcp();
2731
2732 Label resolved;
2733
2734 __ load_resolved_indy_entry(cache, index);
2735 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2736
2737 // Compare the method to zero
2738 __ testptr(method, method);
2739 __ jcc(Assembler::notZero, resolved);
2740
2741 Bytecodes::Code code = bytecode();
2742
2743 // Call to the interpreter runtime to resolve invokedynamic
2744 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2745 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic
2746 __ call_VM(noreg, entry, method);
2747 // Update registers with resolved info
2748 __ load_resolved_indy_entry(cache, index);
2749 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2750
2751 #ifdef ASSERT
2752 __ testptr(method, method);
2753 __ jcc(Assembler::notZero, resolved);
2754 __ stop("Should be resolved by now");
2755 #endif // ASSERT
2756 __ bind(resolved);
2757
2758 Label L_no_push;
2759 // Check if there is an appendix
2760 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2761 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift));
2762 __ jcc(Assembler::zero, L_no_push);
2763
2764 // Get appendix
2765 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2766 // Push the appendix as a trailing parameter
2767 // since the parameter_size includes it.
2768 __ load_resolved_reference_at_index(appendix, index);
2769 __ verify_oop(appendix);
2770 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2771 __ bind(L_no_push);
2772
2773 // compute return type
2774 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2775 // load return address
2776 {
2777 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2778 ExternalAddress table(table_addr);
2779 #ifdef _LP64
2780 __ lea(rscratch1, table);
2781 __ movptr(index, Address(rscratch1, index, Address::times_ptr));
2782 #else
2783 __ movptr(index, ArrayAddress(table, Address(noreg, index, Address::times_ptr)));
2784 #endif // _LP64
2785 }
2786
2787 // push return address
2788 __ push(index);
2789 }
2790
2791 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2792 Register method,
2793 Register itable_index,
2794 Register flags,
2795 bool is_invokevirtual,
2796 bool is_invokevfinal, /*unused*/
2797 bool is_invokedynamic /*unused*/) {
2798 // setup registers
2799 const Register cache = rcx;
2800 const Register index = rdx;
2801 assert_different_registers(method, flags);
2802 assert_different_registers(method, cache, index);
2803 assert_different_registers(itable_index, flags);
2804 assert_different_registers(itable_index, cache, index);
2805 // determine constant pool cache field offsets
2806 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2807 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2808 ConstantPoolCacheEntry::flags_offset());
2809 // access constant pool cache fields
2810 const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2811 ConstantPoolCacheEntry::f2_offset());
2812
2813 size_t index_size = sizeof(u2);
2814 resolve_cache_and_index(byte_no, cache, index, index_size);
2815 __ load_resolved_method_at_index(byte_no, method, cache, index);
2816
2817 if (itable_index != noreg) {
2818 // pick up itable or appendix index from f2 also:
2819 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2820 }
2821 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2822 }
2823
2824 // The registers cache and index expected to be set before call.
2825 // Correct values of the cache and index registers are preserved.
2826 void TemplateTable::jvmti_post_field_access(Register cache,
2827 Register index,
2828 bool is_static,
2829 bool has_tos) {
2830 if (JvmtiExport::can_post_field_access()) {
2831 // Check to see if a field access watch has been set before we take
2832 // the time to call into the VM.
2833 Label L1;
2834 assert_different_registers(cache, index, rax);
2835 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2836 __ testl(rax,rax);
2837 __ jcc(Assembler::zero, L1);
2838
2839 // cache entry pointer
2840 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2841 __ shll(index, LogBytesPerWord);
2842 __ addptr(cache, index);
2843 if (is_static) {
2844 __ xorptr(rax, rax); // null object reference
2845 } else {
2846 __ pop(atos); // Get the object
2847 __ verify_oop(rax);
2848 __ push(atos); // Restore stack state
2849 }
2850 // rax,: object pointer or null
2851 // cache: cache entry pointer
2852 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2853 rax, cache);
2854 __ get_cache_and_index_at_bcp(cache, index, 1);
2855 __ bind(L1);
2856 }
2857 }
2858
2859 void TemplateTable::pop_and_check_object(Register r) {
2860 __ pop_ptr(r);
2861 __ null_check(r); // for field access must check obj.
2862 __ verify_oop(r);
2863 }
2864
2865 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2866 transition(vtos, vtos);
2867
2868 const Register cache = rcx;
2869 const Register index = rdx;
2870 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
2871 const Register off = rbx;
2872 const Register flags = rax;
2873 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
2874
2875 resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2876 jvmti_post_field_access(cache, index, is_static, false);
2877 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2878
2879 if (!is_static) pop_and_check_object(obj);
2880
2881 const Address field(obj, off, Address::times_1, 0*wordSize);
2882
2883 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
2884
2885 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2886 // Make sure we don't need to mask edx after the above shift
2887 assert(btos == 0, "change code, btos != 0");
2888
2889 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2890
2891 __ jcc(Assembler::notZero, notByte);
2892 // btos
2893 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
2894 __ push(btos);
2895 // Rewrite bytecode to be faster
2896 if (!is_static && rc == may_rewrite) {
2897 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2898 }
2899 __ jmp(Done);
2900
2901 __ bind(notByte);
2902 __ cmpl(flags, ztos);
2903 __ jcc(Assembler::notEqual, notBool);
2904
2905 // ztos (same code as btos)
2906 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg);
2907 __ push(ztos);
2908 // Rewrite bytecode to be faster
2909 if (!is_static && rc == may_rewrite) {
2910 // use btos rewriting, no truncating to t/f bit is needed for getfield.
2911 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2912 }
2913 __ jmp(Done);
2914
2915 __ bind(notBool);
2916 __ cmpl(flags, atos);
2917 __ jcc(Assembler::notEqual, notObj);
2918 // atos
2919 do_oop_load(_masm, field, rax);
2920 __ push(atos);
2921 if (!is_static && rc == may_rewrite) {
2922 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2923 }
2924 __ jmp(Done);
2925
2926 __ bind(notObj);
2927 __ cmpl(flags, itos);
2928 __ jcc(Assembler::notEqual, notInt);
2929 // itos
2930 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
2931 __ push(itos);
2932 // Rewrite bytecode to be faster
2933 if (!is_static && rc == may_rewrite) {
2934 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2935 }
2936 __ jmp(Done);
2937
2938 __ bind(notInt);
2939 __ cmpl(flags, ctos);
2940 __ jcc(Assembler::notEqual, notChar);
2941 // ctos
2942 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
2943 __ push(ctos);
2944 // Rewrite bytecode to be faster
2945 if (!is_static && rc == may_rewrite) {
2946 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2947 }
2948 __ jmp(Done);
2949
2950 __ bind(notChar);
2951 __ cmpl(flags, stos);
2952 __ jcc(Assembler::notEqual, notShort);
2953 // stos
2954 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
2955 __ push(stos);
2956 // Rewrite bytecode to be faster
2957 if (!is_static && rc == may_rewrite) {
2958 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2959 }
2960 __ jmp(Done);
2961
2962 __ bind(notShort);
2963 __ cmpl(flags, ltos);
2964 __ jcc(Assembler::notEqual, notLong);
2965 // ltos
2966 // Generate code as if volatile (x86_32). There just aren't enough registers to
2967 // save that information and this code is faster than the test.
2968 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg);
2969 __ push(ltos);
2970 // Rewrite bytecode to be faster
2971 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
2972 __ jmp(Done);
2973
2974 __ bind(notLong);
2975 __ cmpl(flags, ftos);
2976 __ jcc(Assembler::notEqual, notFloat);
2977 // ftos
2978
2979 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2980 __ push(ftos);
2981 // Rewrite bytecode to be faster
2982 if (!is_static && rc == may_rewrite) {
2983 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2984 }
2985 __ jmp(Done);
2986
2987 __ bind(notFloat);
2988 #ifdef ASSERT
2989 Label notDouble;
2990 __ cmpl(flags, dtos);
2991 __ jcc(Assembler::notEqual, notDouble);
2992 #endif
2993 // dtos
2994 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
2995 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg);
2996 __ push(dtos);
2997 // Rewrite bytecode to be faster
2998 if (!is_static && rc == may_rewrite) {
2999 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
3000 }
3001 #ifdef ASSERT
3002 __ jmp(Done);
3003
3004 __ bind(notDouble);
3005 __ stop("Bad state");
3006 #endif
3007
3008 __ bind(Done);
3009 // [jk] not needed currently
3010 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
3011 // Assembler::LoadStore));
3012 }
3013
3014 void TemplateTable::getfield(int byte_no) {
3015 getfield_or_static(byte_no, false);
3016 }
3017
3018 void TemplateTable::nofast_getfield(int byte_no) {
3019 getfield_or_static(byte_no, false, may_not_rewrite);
3020 }
3021
3022 void TemplateTable::getstatic(int byte_no) {
3023 getfield_or_static(byte_no, true);
3024 }
3025
3026
3027 // The registers cache and index expected to be set before call.
3028 // The function may destroy various registers, just not the cache and index registers.
3029 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
3030
3031 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax);
3032 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
3033 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3034 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx);
3035
3036 ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3037
3038 if (JvmtiExport::can_post_field_modification()) {
3039 // Check to see if a field modification watch has been set before
3040 // we take the time to call into the VM.
3041 Label L1;
3042 assert_different_registers(cache, index, rax);
3043 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3044 __ testl(rax, rax);
3045 __ jcc(Assembler::zero, L1);
3046
3047 __ get_cache_and_index_at_bcp(robj, RDX, 1);
3048
3049
3050 if (is_static) {
3051 // Life is simple. Null out the object pointer.
3052 __ xorl(RBX, RBX);
3053
3054 } else {
3055 // Life is harder. The stack holds the value on top, followed by
3056 // the object. We don't know the size of the value, though; it
3057 // could be one or two words depending on its type. As a result,
3058 // we must find the type to determine where the object is.
3059 #ifndef _LP64
3060 Label two_word, valsize_known;
3061 #endif
3062 __ movl(RCX, Address(robj, RDX,
3063 Address::times_ptr,
3064 in_bytes(cp_base_offset +
3065 ConstantPoolCacheEntry::flags_offset())));
3066 NOT_LP64(__ mov(rbx, rsp));
3067 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
3068
3069 // Make sure we don't need to mask rcx after the above shift
3070 ConstantPoolCacheEntry::verify_tos_state_shift();
3071 #ifdef _LP64
3072 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
3073 __ cmpl(c_rarg3, ltos);
3074 __ cmovptr(Assembler::equal,
3075 c_rarg1, at_tos_p2()); // ltos (two word jvalue)
3076 __ cmpl(c_rarg3, dtos);
3077 __ cmovptr(Assembler::equal,
3078 c_rarg1, at_tos_p2()); // dtos (two word jvalue)
3079 #else
3080 __ cmpl(rcx, ltos);
3081 __ jccb(Assembler::equal, two_word);
3082 __ cmpl(rcx, dtos);
3083 __ jccb(Assembler::equal, two_word);
3084 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
3085 __ jmpb(valsize_known);
3086
3087 __ bind(two_word);
3088 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
3089
3090 __ bind(valsize_known);
3091 // setup object pointer
3092 __ movptr(rbx, Address(rbx, 0));
3093 #endif
3094 }
3095 // cache entry pointer
3096 __ addptr(robj, in_bytes(cp_base_offset));
3097 __ shll(RDX, LogBytesPerWord);
3098 __ addptr(robj, RDX);
3099 // object (tos)
3100 __ mov(RCX, rsp);
3101 // c_rarg1: object pointer set up above (null if static)
3102 // c_rarg2: cache entry pointer
3103 // c_rarg3: jvalue object on the stack
3104 __ call_VM(noreg,
3105 CAST_FROM_FN_PTR(address,
3106 InterpreterRuntime::post_field_modification),
3107 RBX, robj, RCX);
3108 __ get_cache_and_index_at_bcp(cache, index, 1);
3109 __ bind(L1);
3110 }
3111 }
3112
3113 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3114 transition(vtos, vtos);
3115
3116 const Register cache = rcx;
3117 const Register index = rdx;
3118 const Register obj = rcx;
3119 const Register off = rbx;
3120 const Register flags = rax;
3121
3122 resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
3123 jvmti_post_field_mod(cache, index, is_static);
3124 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
3125
3126 // [jk] not needed currently
3127 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3128 // Assembler::StoreStore));
3129
3130 Label notVolatile, Done;
3131 __ movl(rdx, flags);
3132 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3133 __ andl(rdx, 0x1);
3134
3135 // Check for volatile store
3136 __ testl(rdx, rdx);
3137 __ jcc(Assembler::zero, notVolatile);
3138
3139 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags);
3140 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3141 Assembler::StoreStore));
3142 __ jmp(Done);
3143 __ bind(notVolatile);
3144
3145 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags);
3146
3147 __ bind(Done);
3148 }
3149
3150 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc,
3151 Register obj, Register off, Register flags) {
3152
3153 // field addresses
3154 const Address field(obj, off, Address::times_1, 0*wordSize);
3155 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
3156
3157 Label notByte, notBool, notInt, notShort, notChar,
3158 notLong, notFloat, notObj;
3159 Label Done;
3160
3161 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3162
3163 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3164
3165 assert(btos == 0, "change code, btos != 0");
3166 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
3167 __ jcc(Assembler::notZero, notByte);
3168
3169 // btos
3170 {
3171 __ pop(btos);
3172 if (!is_static) pop_and_check_object(obj);
3173 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
3174 if (!is_static && rc == may_rewrite) {
3175 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
3176 }
3177 __ jmp(Done);
3178 }
3179
3180 __ bind(notByte);
3181 __ cmpl(flags, ztos);
3182 __ jcc(Assembler::notEqual, notBool);
3183
3184 // ztos
3185 {
3186 __ pop(ztos);
3187 if (!is_static) pop_and_check_object(obj);
3188 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
3189 if (!is_static && rc == may_rewrite) {
3190 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3191 }
3192 __ jmp(Done);
3193 }
3194
3195 __ bind(notBool);
3196 __ cmpl(flags, atos);
3197 __ jcc(Assembler::notEqual, notObj);
3198
3199 // atos
3200 {
3201 __ pop(atos);
3202 if (!is_static) pop_and_check_object(obj);
3203 // Store into the field
3204 do_oop_store(_masm, field, rax);
3205 if (!is_static && rc == may_rewrite) {
3206 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3207 }
3208 __ jmp(Done);
3209 }
3210
3211 __ bind(notObj);
3212 __ cmpl(flags, itos);
3213 __ jcc(Assembler::notEqual, notInt);
3214
3215 // itos
3216 {
3217 __ pop(itos);
3218 if (!is_static) pop_and_check_object(obj);
3219 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3220 if (!is_static && rc == may_rewrite) {
3221 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3222 }
3223 __ jmp(Done);
3224 }
3225
3226 __ bind(notInt);
3227 __ cmpl(flags, ctos);
3228 __ jcc(Assembler::notEqual, notChar);
3229
3230 // ctos
3231 {
3232 __ pop(ctos);
3233 if (!is_static) pop_and_check_object(obj);
3234 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3235 if (!is_static && rc == may_rewrite) {
3236 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3237 }
3238 __ jmp(Done);
3239 }
3240
3241 __ bind(notChar);
3242 __ cmpl(flags, stos);
3243 __ jcc(Assembler::notEqual, notShort);
3244
3245 // stos
3246 {
3247 __ pop(stos);
3248 if (!is_static) pop_and_check_object(obj);
3249 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3250 if (!is_static && rc == may_rewrite) {
3251 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3252 }
3253 __ jmp(Done);
3254 }
3255
3256 __ bind(notShort);
3257 __ cmpl(flags, ltos);
3258 __ jcc(Assembler::notEqual, notLong);
3259
3260 // ltos
3261 {
3262 __ pop(ltos);
3263 if (!is_static) pop_and_check_object(obj);
3264 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32)
3265 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg);
3266 #ifdef _LP64
3267 if (!is_static && rc == may_rewrite) {
3268 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3269 }
3270 #endif // _LP64
3271 __ jmp(Done);
3272 }
3273
3274 __ bind(notLong);
3275 __ cmpl(flags, ftos);
3276 __ jcc(Assembler::notEqual, notFloat);
3277
3278 // ftos
3279 {
3280 __ pop(ftos);
3281 if (!is_static) pop_and_check_object(obj);
3282 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3283 if (!is_static && rc == may_rewrite) {
3284 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3285 }
3286 __ jmp(Done);
3287 }
3288
3289 __ bind(notFloat);
3290 #ifdef ASSERT
3291 Label notDouble;
3292 __ cmpl(flags, dtos);
3293 __ jcc(Assembler::notEqual, notDouble);
3294 #endif
3295
3296 // dtos
3297 {
3298 __ pop(dtos);
3299 if (!is_static) pop_and_check_object(obj);
3300 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
3301 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg);
3302 if (!is_static && rc == may_rewrite) {
3303 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3304 }
3305 }
3306
3307 #ifdef ASSERT
3308 __ jmp(Done);
3309
3310 __ bind(notDouble);
3311 __ stop("Bad state");
3312 #endif
3313
3314 __ bind(Done);
3315 }
3316
3317 void TemplateTable::putfield(int byte_no) {
3318 putfield_or_static(byte_no, false);
3319 }
3320
3321 void TemplateTable::nofast_putfield(int byte_no) {
3322 putfield_or_static(byte_no, false, may_not_rewrite);
3323 }
3324
3325 void TemplateTable::putstatic(int byte_no) {
3326 putfield_or_static(byte_no, true);
3327 }
3328
3329 void TemplateTable::jvmti_post_fast_field_mod() {
3330
3331 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3332
3333 if (JvmtiExport::can_post_field_modification()) {
3334 // Check to see if a field modification watch has been set before
3335 // we take the time to call into the VM.
3336 Label L2;
3337 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3338 __ testl(scratch, scratch);
3339 __ jcc(Assembler::zero, L2);
3340 __ pop_ptr(rbx); // copy the object pointer from tos
3341 __ verify_oop(rbx);
3342 __ push_ptr(rbx); // put the object pointer back on tos
3343 // Save tos values before call_VM() clobbers them. Since we have
3344 // to do it for every data type, we use the saved values as the
3345 // jvalue object.
3346 switch (bytecode()) { // load values into the jvalue object
3347 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3348 case Bytecodes::_fast_bputfield: // fall through
3349 case Bytecodes::_fast_zputfield: // fall through
3350 case Bytecodes::_fast_sputfield: // fall through
3351 case Bytecodes::_fast_cputfield: // fall through
3352 case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3353 case Bytecodes::_fast_dputfield: __ push(dtos); break;
3354 case Bytecodes::_fast_fputfield: __ push(ftos); break;
3355 case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3356
3357 default:
3358 ShouldNotReachHere();
3359 }
3360 __ mov(scratch, rsp); // points to jvalue on the stack
3361 // access constant pool cache entry
3362 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
3363 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
3364 __ verify_oop(rbx);
3365 // rbx: object pointer copied above
3366 // c_rarg2: cache entry pointer
3367 // c_rarg3: jvalue object on the stack
3368 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
3369 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
3370
3371 switch (bytecode()) { // restore tos values
3372 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3373 case Bytecodes::_fast_bputfield: // fall through
3374 case Bytecodes::_fast_zputfield: // fall through
3375 case Bytecodes::_fast_sputfield: // fall through
3376 case Bytecodes::_fast_cputfield: // fall through
3377 case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3378 case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3379 case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3380 case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3381 default: break;
3382 }
3383 __ bind(L2);
3384 }
3385 }
3386
3387 void TemplateTable::fast_storefield(TosState state) {
3388 transition(state, vtos);
3389
3390 ByteSize base = ConstantPoolCache::base_offset();
3391
3392 jvmti_post_fast_field_mod();
3393
3394 // access constant pool cache
3395 __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3396
3397 // test for volatile with rdx but rdx is tos register for lputfield.
3398 __ movl(rdx, Address(rcx, rbx, Address::times_ptr,
3399 in_bytes(base +
3400 ConstantPoolCacheEntry::flags_offset())));
3401
3402 // replace index with field offset from cache entry
3403 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3404 in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
3405
3406 // [jk] not needed currently
3407 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3408 // Assembler::StoreStore));
3409
3410 Label notVolatile, Done;
3411 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3412 __ andl(rdx, 0x1);
3413
3414 // Get object from stack
3415 pop_and_check_object(rcx);
3416
3417 // field address
3418 const Address field(rcx, rbx, Address::times_1);
3419
3420 // Check for volatile store
3421 __ testl(rdx, rdx);
3422 __ jcc(Assembler::zero, notVolatile);
3423
3424 fast_storefield_helper(field, rax);
3425 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3426 Assembler::StoreStore));
3427 __ jmp(Done);
3428 __ bind(notVolatile);
3429
3430 fast_storefield_helper(field, rax);
3431
3432 __ bind(Done);
3433 }
3434
3435 void TemplateTable::fast_storefield_helper(Address field, Register rax) {
3436
3437 // access field
3438 switch (bytecode()) {
3439 case Bytecodes::_fast_aputfield:
3440 do_oop_store(_masm, field, rax);
3441 break;
3442 case Bytecodes::_fast_lputfield:
3443 #ifdef _LP64
3444 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg);
3445 #else
3446 __ stop("should not be rewritten");
3447 #endif
3448 break;
3449 case Bytecodes::_fast_iputfield:
3450 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg);
3451 break;
3452 case Bytecodes::_fast_zputfield:
3453 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg);
3454 break;
3455 case Bytecodes::_fast_bputfield:
3456 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg);
3457 break;
3458 case Bytecodes::_fast_sputfield:
3459 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg);
3460 break;
3461 case Bytecodes::_fast_cputfield:
3462 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg);
3463 break;
3464 case Bytecodes::_fast_fputfield:
3465 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg);
3466 break;
3467 case Bytecodes::_fast_dputfield:
3468 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg);
3469 break;
3470 default:
3471 ShouldNotReachHere();
3472 }
3473 }
3474
3475 void TemplateTable::fast_accessfield(TosState state) {
3476 transition(atos, state);
3477
3478 // Do the JVMTI work here to avoid disturbing the register state below
3479 if (JvmtiExport::can_post_field_access()) {
3480 // Check to see if a field access watch has been set before we
3481 // take the time to call into the VM.
3482 Label L1;
3483 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3484 __ testl(rcx, rcx);
3485 __ jcc(Assembler::zero, L1);
3486 // access constant pool cache entry
3487 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
3488 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
3489 __ verify_oop(rax);
3490 __ push_ptr(rax); // save object pointer before call_VM() clobbers it
3491 LP64_ONLY(__ mov(c_rarg1, rax));
3492 // c_rarg1: object pointer copied above
3493 // c_rarg2: cache entry pointer
3494 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
3495 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
3496 __ pop_ptr(rax); // restore object pointer
3497 __ bind(L1);
3498 }
3499
3500 // access constant pool cache
3501 __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3502 // replace index with field offset from cache entry
3503 // [jk] not needed currently
3504 // __ movl(rdx, Address(rcx, rbx, Address::times_8,
3505 // in_bytes(ConstantPoolCache::base_offset() +
3506 // ConstantPoolCacheEntry::flags_offset())));
3507 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3508 // __ andl(rdx, 0x1);
3509 //
3510 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3511 in_bytes(ConstantPoolCache::base_offset() +
3512 ConstantPoolCacheEntry::f2_offset())));
3513
3514 // rax: object
3515 __ verify_oop(rax);
3516 __ null_check(rax);
3517 Address field(rax, rbx, Address::times_1);
3518
3519 // access field
3520 switch (bytecode()) {
3521 case Bytecodes::_fast_agetfield:
3522 do_oop_load(_masm, field, rax);
3523 __ verify_oop(rax);
3524 break;
3525 case Bytecodes::_fast_lgetfield:
3526 #ifdef _LP64
3527 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg);
3528 #else
3529 __ stop("should not be rewritten");
3530 #endif
3531 break;
3532 case Bytecodes::_fast_igetfield:
3533 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3534 break;
3535 case Bytecodes::_fast_bgetfield:
3536 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
3537 break;
3538 case Bytecodes::_fast_sgetfield:
3539 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
3540 break;
3541 case Bytecodes::_fast_cgetfield:
3542 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
3543 break;
3544 case Bytecodes::_fast_fgetfield:
3545 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3546 break;
3547 case Bytecodes::_fast_dgetfield:
3548 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3549 break;
3550 default:
3551 ShouldNotReachHere();
3552 }
3553 // [jk] not needed currently
3554 // Label notVolatile;
3555 // __ testl(rdx, rdx);
3556 // __ jcc(Assembler::zero, notVolatile);
3557 // __ membar(Assembler::LoadLoad);
3558 // __ bind(notVolatile);
3559 }
3560
3561 void TemplateTable::fast_xaccess(TosState state) {
3562 transition(vtos, state);
3563
3564 // get receiver
3565 __ movptr(rax, aaddress(0));
3566 // access constant pool cache
3567 __ get_cache_and_index_at_bcp(rcx, rdx, 2);
3568 __ movptr(rbx,
3569 Address(rcx, rdx, Address::times_ptr,
3570 in_bytes(ConstantPoolCache::base_offset() +
3571 ConstantPoolCacheEntry::f2_offset())));
3572 // make sure exception is reported in correct bcp range (getfield is
3573 // next instruction)
3574 __ increment(rbcp);
3575 __ null_check(rax);
3576 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3577 switch (state) {
3578 case itos:
3579 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3580 break;
3581 case atos:
3582 do_oop_load(_masm, field, rax);
3583 __ verify_oop(rax);
3584 break;
3585 case ftos:
3586 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3587 break;
3588 default:
3589 ShouldNotReachHere();
3590 }
3591
3592 // [jk] not needed currently
3593 // Label notVolatile;
3594 // __ movl(rdx, Address(rcx, rdx, Address::times_8,
3595 // in_bytes(ConstantPoolCache::base_offset() +
3596 // ConstantPoolCacheEntry::flags_offset())));
3597 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3598 // __ testl(rdx, 0x1);
3599 // __ jcc(Assembler::zero, notVolatile);
3600 // __ membar(Assembler::LoadLoad);
3601 // __ bind(notVolatile);
3602
3603 __ decrement(rbcp);
3604 }
3605
3606 //-----------------------------------------------------------------------------
3607 // Calls
3608
3609 void TemplateTable::prepare_invoke(int byte_no,
3610 Register method, // linked method (or i-klass)
3611 Register index, // itable index, MethodType, etc.
3612 Register recv, // if caller wants to see it
3613 Register flags // if caller wants to test it
3614 ) {
3615 // determine flags
3616 const Bytecodes::Code code = bytecode();
3617 const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
3618 const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
3619 const bool is_invokehandle = code == Bytecodes::_invokehandle;
3620 const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
3621 const bool is_invokespecial = code == Bytecodes::_invokespecial;
3622 const bool load_receiver = (recv != noreg);
3623 const bool save_flags = (flags != noreg);
3624 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3625 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3626 assert(flags == noreg || flags == rdx, "");
3627 assert(recv == noreg || recv == rcx, "");
3628
3629 // setup registers & access constant pool cache
3630 if (recv == noreg) recv = rcx;
3631 if (flags == noreg) flags = rdx;
3632 assert_different_registers(method, index, recv, flags);
3633
3634 // save 'interpreter return address'
3635 __ save_bcp();
3636
3637 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3638
3639 // maybe push appendix to arguments (just before return address)
3640 if (is_invokehandle) {
3641 Label L_no_push;
3642 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3643 __ jcc(Assembler::zero, L_no_push);
3644 // Push the appendix as a trailing parameter.
3645 // This must be done before we get the receiver,
3646 // since the parameter_size includes it.
3647 __ push(rbx);
3648 __ mov(rbx, index);
3649 __ load_resolved_reference_at_index(index, rbx);
3650 __ pop(rbx);
3651 __ push(index); // push appendix (MethodType, CallSite, etc.)
3652 __ bind(L_no_push);
3653 }
3654
3655 // load receiver if needed (after appendix is pushed so parameter size is correct)
3656 // Note: no return address pushed yet
3657 if (load_receiver) {
3658 __ movl(recv, flags);
3659 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3660 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
3661 const int receiver_is_at_end = -1; // back off one slot to get receiver
3662 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3663 __ movptr(recv, recv_addr);
3664 __ verify_oop(recv);
3665 }
3666
3667 if (save_flags) {
3668 __ movl(rbcp, flags);
3669 }
3670
3671 // compute return type
3672 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3673 // Make sure we don't need to mask flags after the above shift
3674 ConstantPoolCacheEntry::verify_tos_state_shift();
3675 // load return address
3676 {
3677 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3678 ExternalAddress table(table_addr);
3679 #ifdef _LP64
3680 __ lea(rscratch1, table);
3681 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
3682 #else
3683 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
3684 #endif // _LP64
3685 }
3686
3687 // push return address
3688 __ push(flags);
3689
3690 // Restore flags value from the constant pool cache, and restore rsi
3691 // for later null checks. r13 is the bytecode pointer
3692 if (save_flags) {
3693 __ movl(flags, rbcp);
3694 __ restore_bcp();
3695 }
3696 }
3697
3698 void TemplateTable::invokevirtual_helper(Register index,
3699 Register recv,
3700 Register flags) {
3701 // Uses temporary registers rax, rdx
3702 assert_different_registers(index, recv, rax, rdx);
3703 assert(index == rbx, "");
3704 assert(recv == rcx, "");
3705
3706 // Test for an invoke of a final method
3707 Label notFinal;
3708 __ movl(rax, flags);
3709 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3710 __ jcc(Assembler::zero, notFinal);
3711
3712 const Register method = index; // method must be rbx
3713 assert(method == rbx,
3714 "Method* must be rbx for interpreter calling convention");
3715
3716 // do the call - the index is actually the method to call
3717 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3718
3719 // It's final, need a null check here!
3720 __ null_check(recv);
3721
3722 // profile this call
3723 __ profile_final_call(rax);
3724 __ profile_arguments_type(rax, method, rbcp, true);
3725
3726 __ jump_from_interpreted(method, rax);
3727
3728 __ bind(notFinal);
3729
3730 // get receiver klass
3731 __ load_klass(rax, recv, rscratch1);
3732
3733 // profile this call
3734 __ profile_virtual_call(rax, rlocals, rdx);
3735 // get target Method* & entry point
3736 __ lookup_virtual_method(rax, index, method);
3737
3738 __ profile_arguments_type(rdx, method, rbcp, true);
3739 __ jump_from_interpreted(method, rdx);
3740 }
3741
3742 void TemplateTable::invokevirtual(int byte_no) {
3743 transition(vtos, vtos);
3744 assert(byte_no == f2_byte, "use this argument");
3745 prepare_invoke(byte_no,
3746 rbx, // method or vtable index
3747 noreg, // unused itable index
3748 rcx, rdx); // recv, flags
3749
3750 // rbx: index
3751 // rcx: receiver
3752 // rdx: flags
3753
3754 invokevirtual_helper(rbx, rcx, rdx);
3755 }
3756
3757 void TemplateTable::invokespecial(int byte_no) {
3758 transition(vtos, vtos);
3759 assert(byte_no == f1_byte, "use this argument");
3760 prepare_invoke(byte_no, rbx, noreg, // get f1 Method*
3761 rcx); // get receiver also for null check
3762 __ verify_oop(rcx);
3763 __ null_check(rcx);
3764 // do the call
3765 __ profile_call(rax);
3766 __ profile_arguments_type(rax, rbx, rbcp, false);
3767 __ jump_from_interpreted(rbx, rax);
3768 }
3769
3770 void TemplateTable::invokestatic(int byte_no) {
3771 transition(vtos, vtos);
3772 assert(byte_no == f1_byte, "use this argument");
3773 prepare_invoke(byte_no, rbx); // get f1 Method*
3774 // do the call
3775 __ profile_call(rax);
3776 __ profile_arguments_type(rax, rbx, rbcp, false);
3777 __ jump_from_interpreted(rbx, rax);
3778 }
3779
3780
3781 void TemplateTable::fast_invokevfinal(int byte_no) {
3782 transition(vtos, vtos);
3783 assert(byte_no == f2_byte, "use this argument");
3784 __ stop("fast_invokevfinal not used on x86");
3785 }
3786
3787
3788 void TemplateTable::invokeinterface(int byte_no) {
3789 transition(vtos, vtos);
3790 assert(byte_no == f1_byte, "use this argument");
3791 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method*
3792 rcx, rdx); // recv, flags
3793
3794 // rax: reference klass (from f1) if interface method
3795 // rbx: method (from f2)
3796 // rcx: receiver
3797 // rdx: flags
3798
3799 // First check for Object case, then private interface method,
3800 // then regular interface method.
3801
3802 // Special case of invokeinterface called for virtual method of
3803 // java.lang.Object. See cpCache.cpp for details.
3804 Label notObjectMethod;
3805 __ movl(rlocals, rdx);
3806 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3807 __ jcc(Assembler::zero, notObjectMethod);
3808 invokevirtual_helper(rbx, rcx, rdx);
3809 // no return from above
3810 __ bind(notObjectMethod);
3811
3812 Label no_such_interface; // for receiver subtype check
3813 Register recvKlass; // used for exception processing
3814
3815 // Check for private method invocation - indicated by vfinal
3816 Label notVFinal;
3817 __ movl(rlocals, rdx);
3818 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3819 __ jcc(Assembler::zero, notVFinal);
3820
3821 // Get receiver klass into rlocals - also a null check
3822 __ load_klass(rlocals, rcx, rscratch1);
3823
3824 Label subtype;
3825 __ check_klass_subtype(rlocals, rax, rbcp, subtype);
3826 // If we get here the typecheck failed
3827 recvKlass = rdx;
3828 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use
3829 __ jmp(no_such_interface);
3830
3831 __ bind(subtype);
3832
3833 // do the call - rbx is actually the method to call
3834
3835 __ profile_final_call(rdx);
3836 __ profile_arguments_type(rdx, rbx, rbcp, true);
3837
3838 __ jump_from_interpreted(rbx, rdx);
3839 // no return from above
3840 __ bind(notVFinal);
3841
3842 // Get receiver klass into rdx - also a null check
3843 __ restore_locals(); // restore r14
3844 __ load_klass(rdx, rcx, rscratch1);
3845
3846 Label no_such_method;
3847
3848 // Preserve method for throw_AbstractMethodErrorVerbose.
3849 __ mov(rcx, rbx);
3850 // Receiver subtype check against REFC.
3851 // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3852 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3853 rdx, rax, noreg,
3854 // outputs: scan temp. reg, scan temp. reg
3855 rbcp, rlocals,
3856 no_such_interface,
3857 /*return_method=*/false);
3858
3859 // profile this call
3860 __ restore_bcp(); // rbcp was destroyed by receiver type check
3861 __ profile_virtual_call(rdx, rbcp, rlocals);
3862
3863 // Get declaring interface class from method, and itable index
3864 __ load_method_holder(rax, rbx);
3865 __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3866 __ subl(rbx, Method::itable_index_max);
3867 __ negl(rbx);
3868
3869 // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3870 __ mov(rlocals, rdx);
3871 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3872 rlocals, rax, rbx,
3873 // outputs: method, scan temp. reg
3874 rbx, rbcp,
3875 no_such_interface);
3876
3877 // rbx: Method* to call
3878 // rcx: receiver
3879 // Check for abstract method error
3880 // Note: This should be done more efficiently via a throw_abstract_method_error
3881 // interpreter entry point and a conditional jump to it in case of a null
3882 // method.
3883 __ testptr(rbx, rbx);
3884 __ jcc(Assembler::zero, no_such_method);
3885
3886 __ profile_arguments_type(rdx, rbx, rbcp, true);
3887
3888 // do the call
3889 // rcx: receiver
3890 // rbx,: Method*
3891 __ jump_from_interpreted(rbx, rdx);
3892 __ should_not_reach_here();
3893
3894 // exception handling code follows...
3895 // note: must restore interpreter registers to canonical
3896 // state for exception handling to work correctly!
3897
3898 __ bind(no_such_method);
3899 // throw exception
3900 __ pop(rbx); // pop return address (pushed by prepare_invoke)
3901 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed)
3902 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3903 // Pass arguments for generating a verbose error message.
3904 #ifdef _LP64
3905 recvKlass = c_rarg1;
3906 Register method = c_rarg2;
3907 if (recvKlass != rdx) { __ movq(recvKlass, rdx); }
3908 if (method != rcx) { __ movq(method, rcx); }
3909 #else
3910 recvKlass = rdx;
3911 Register method = rcx;
3912 #endif
3913 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3914 recvKlass, method);
3915 // The call_VM checks for exception, so we should never return here.
3916 __ should_not_reach_here();
3917
3918 __ bind(no_such_interface);
3919 // throw exception
3920 __ pop(rbx); // pop return address (pushed by prepare_invoke)
3921 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed)
3922 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3923 // Pass arguments for generating a verbose error message.
3924 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } )
3925 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3926 recvKlass, rax);
3927 // the call_VM checks for exception, so we should never return here.
3928 __ should_not_reach_here();
3929 }
3930
3931 void TemplateTable::invokehandle(int byte_no) {
3932 transition(vtos, vtos);
3933 assert(byte_no == f1_byte, "use this argument");
3934 const Register rbx_method = rbx;
3935 const Register rax_mtype = rax;
3936 const Register rcx_recv = rcx;
3937 const Register rdx_flags = rdx;
3938
3939 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3940 __ verify_method_ptr(rbx_method);
3941 __ verify_oop(rcx_recv);
3942 __ null_check(rcx_recv);
3943
3944 // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3945 // rbx: MH.invokeExact_MT method (from f2)
3946
3947 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke
3948
3949 // FIXME: profile the LambdaForm also
3950 __ profile_final_call(rax);
3951 __ profile_arguments_type(rdx, rbx_method, rbcp, true);
3952
3953 __ jump_from_interpreted(rbx_method, rdx);
3954 }
3955
3956 void TemplateTable::invokedynamic(int byte_no) {
3957 transition(vtos, vtos);
3958 assert(byte_no == f1_byte, "use this argument");
3959
3960 const Register rbx_method = rbx;
3961 const Register rax_callsite = rax;
3962
3963 load_invokedynamic_entry(rbx_method);
3964 // rax: CallSite object (from cpool->resolved_references[f1])
3965 // rbx: MH.linkToCallSite method (from f2)
3966
3967 // Note: rax_callsite is already pushed by prepare_invoke
3968
3969 // %%% should make a type profile for any invokedynamic that takes a ref argument
3970 // profile this call
3971 __ profile_call(rbcp);
3972 __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3973
3974 __ verify_oop(rax_callsite);
3975
3976 __ jump_from_interpreted(rbx_method, rdx);
3977 }
3978
3979 //-----------------------------------------------------------------------------
3980 // Allocation
3981
3982 void TemplateTable::_new() {
3983 transition(vtos, atos);
3984 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3985 Label slow_case;
3986 Label slow_case_no_pop;
3987 Label done;
3988 Label initialize_header;
3989
3990 __ get_cpool_and_tags(rcx, rax);
3991
3992 // Make sure the class we're about to instantiate has been resolved.
3993 // This is done before loading InstanceKlass to be consistent with the order
3994 // how Constant Pool is updated (see ConstantPool::klass_at_put)
3995 const int tags_offset = Array<u1>::base_offset_in_bytes();
3996 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3997 __ jcc(Assembler::notEqual, slow_case_no_pop);
3998
3999 // get InstanceKlass
4000 __ load_resolved_klass_at_index(rcx, rcx, rdx);
4001 __ push(rcx); // save the contexts of klass for initializing the header
4002
4003 // make sure klass is initialized & doesn't have finalizer
4004 // make sure klass is fully initialized
4005 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4006 __ jcc(Assembler::notEqual, slow_case);
4007
4008 // get instance_size in InstanceKlass (scaled to a count of bytes)
4009 __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
4010 // test to see if it has a finalizer or is malformed in some way
4011 __ testl(rdx, Klass::_lh_instance_slow_path_bit);
4012 __ jcc(Assembler::notZero, slow_case);
4013
4014 // Allocate the instance:
4015 // If TLAB is enabled:
4016 // Try to allocate in the TLAB.
4017 // If fails, go to the slow path.
4018 // Initialize the allocation.
4019 // Exit.
4020 //
4021 // Go to slow path.
4022
4023 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
4024
4025 if (UseTLAB) {
4026 NOT_LP64(__ get_thread(thread);)
4027 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case);
4028 if (ZeroTLAB) {
4029 // the fields have been already cleared
4030 __ jmp(initialize_header);
4031 }
4032
4033 // The object is initialized before the header. If the object size is
4034 // zero, go directly to the header initialization.
4035 __ decrement(rdx, sizeof(oopDesc));
4036 __ jcc(Assembler::zero, initialize_header);
4037
4038 // Initialize topmost object field, divide rdx by 8, check if odd and
4039 // test if zero.
4040 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
4041 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
4042
4043 // rdx must have been multiple of 8
4044 #ifdef ASSERT
4045 // make sure rdx was multiple of 8
4046 Label L;
4047 // Ignore partial flag stall after shrl() since it is debug VM
4048 __ jcc(Assembler::carryClear, L);
4049 __ stop("object size is not multiple of 2 - adjust this code");
4050 __ bind(L);
4051 // rdx must be > 0, no extra check needed here
4052 #endif
4053
4054 // initialize remaining object fields: rdx was a multiple of 8
4055 { Label loop;
4056 __ bind(loop);
4057 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
4058 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
4059 __ decrement(rdx);
4060 __ jcc(Assembler::notZero, loop);
4061 }
4062
4063 // initialize object header only.
4064 __ bind(initialize_header);
4065 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
4066 (intptr_t)markWord::prototype().value()); // header
4067 __ pop(rcx); // get saved klass back in the register.
4068 #ifdef _LP64
4069 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
4070 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops
4071 #endif
4072 __ store_klass(rax, rcx, rscratch1); // klass
4073
4074 {
4075 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0, rscratch1);
4076 // Trigger dtrace event for fastpath
4077 __ push(atos);
4078 __ call_VM_leaf(
4079 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax);
4080 __ pop(atos);
4081 }
4082
4083 __ jmp(done);
4084 }
4085
4086 // slow case
4087 __ bind(slow_case);
4088 __ pop(rcx); // restore stack pointer to what it was when we came in.
4089 __ bind(slow_case_no_pop);
4090
4091 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4092 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4093
4094 __ get_constant_pool(rarg1);
4095 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4096 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
4097 __ verify_oop(rax);
4098
4099 // continue
4100 __ bind(done);
4101 }
4102
4103 void TemplateTable::newarray() {
4104 transition(itos, atos);
4105 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4106 __ load_unsigned_byte(rarg1, at_bcp(1));
4107 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
4108 rarg1, rax);
4109 }
4110
4111 void TemplateTable::anewarray() {
4112 transition(itos, atos);
4113
4114 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4115 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4116
4117 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4118 __ get_constant_pool(rarg1);
4119 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
4120 rarg1, rarg2, rax);
4121 }
4122
4123 void TemplateTable::arraylength() {
4124 transition(atos, itos);
4125 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
4126 }
4127
4128 void TemplateTable::checkcast() {
4129 transition(atos, atos);
4130 Label done, is_null, ok_is_subtype, quicked, resolved;
4131 __ testptr(rax, rax); // object is in rax
4132 __ jcc(Assembler::zero, is_null);
4133
4134 // Get cpool & tags index
4135 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4136 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4137 // See if bytecode has already been quicked
4138 __ cmpb(Address(rdx, rbx,
4139 Address::times_1,
4140 Array<u1>::base_offset_in_bytes()),
4141 JVM_CONSTANT_Class);
4142 __ jcc(Assembler::equal, quicked);
4143 __ push(atos); // save receiver for result, and for GC
4144 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4145
4146 // vm_result_2 has metadata result
4147 #ifndef _LP64
4148 // borrow rdi from locals
4149 __ get_thread(rdi);
4150 __ get_vm_result_2(rax, rdi);
4151 __ restore_locals();
4152 #else
4153 __ get_vm_result_2(rax, r15_thread);
4154 #endif
4155
4156 __ pop_ptr(rdx); // restore receiver
4157 __ jmpb(resolved);
4158
4159 // Get superklass in rax and subklass in rbx
4160 __ bind(quicked);
4161 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
4162 __ load_resolved_klass_at_index(rax, rcx, rbx);
4163
4164 __ bind(resolved);
4165 __ load_klass(rbx, rdx, rscratch1);
4166
4167 // Generate subtype check. Blows rcx, rdi. Object in rdx.
4168 // Superklass in rax. Subklass in rbx.
4169 __ gen_subtype_check(rbx, ok_is_subtype);
4170
4171 // Come here on failure
4172 __ push_ptr(rdx);
4173 // object is at TOS
4174 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
4175
4176 // Come here on success
4177 __ bind(ok_is_subtype);
4178 __ mov(rax, rdx); // Restore object in rdx
4179
4180 // Collect counts on whether this check-cast sees nulls a lot or not.
4181 if (ProfileInterpreter) {
4182 __ jmp(done);
4183 __ bind(is_null);
4184 __ profile_null_seen(rcx);
4185 } else {
4186 __ bind(is_null); // same as 'done'
4187 }
4188 __ bind(done);
4189 }
4190
4191 void TemplateTable::instanceof() {
4192 transition(atos, itos);
4193 Label done, is_null, ok_is_subtype, quicked, resolved;
4194 __ testptr(rax, rax);
4195 __ jcc(Assembler::zero, is_null);
4196
4197 // Get cpool & tags index
4198 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4199 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4200 // See if bytecode has already been quicked
4201 __ cmpb(Address(rdx, rbx,
4202 Address::times_1,
4203 Array<u1>::base_offset_in_bytes()),
4204 JVM_CONSTANT_Class);
4205 __ jcc(Assembler::equal, quicked);
4206
4207 __ push(atos); // save receiver for result, and for GC
4208 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4209 // vm_result_2 has metadata result
4210
4211 #ifndef _LP64
4212 // borrow rdi from locals
4213 __ get_thread(rdi);
4214 __ get_vm_result_2(rax, rdi);
4215 __ restore_locals();
4216 #else
4217 __ get_vm_result_2(rax, r15_thread);
4218 #endif
4219
4220 __ pop_ptr(rdx); // restore receiver
4221 __ verify_oop(rdx);
4222 __ load_klass(rdx, rdx, rscratch1);
4223 __ jmpb(resolved);
4224
4225 // Get superklass in rax and subklass in rdx
4226 __ bind(quicked);
4227 __ load_klass(rdx, rax, rscratch1);
4228 __ load_resolved_klass_at_index(rax, rcx, rbx);
4229
4230 __ bind(resolved);
4231
4232 // Generate subtype check. Blows rcx, rdi
4233 // Superklass in rax. Subklass in rdx.
4234 __ gen_subtype_check(rdx, ok_is_subtype);
4235
4236 // Come here on failure
4237 __ xorl(rax, rax);
4238 __ jmpb(done);
4239 // Come here on success
4240 __ bind(ok_is_subtype);
4241 __ movl(rax, 1);
4242
4243 // Collect counts on whether this test sees nulls a lot or not.
4244 if (ProfileInterpreter) {
4245 __ jmp(done);
4246 __ bind(is_null);
4247 __ profile_null_seen(rcx);
4248 } else {
4249 __ bind(is_null); // same as 'done'
4250 }
4251 __ bind(done);
4252 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass
4253 // rax = 1: obj != nullptr and obj is an instanceof the specified klass
4254 }
4255
4256
4257 //----------------------------------------------------------------------------------------------------
4258 // Breakpoints
4259 void TemplateTable::_breakpoint() {
4260 // Note: We get here even if we are single stepping..
4261 // jbug insists on setting breakpoints at every bytecode
4262 // even if we are in single step mode.
4263
4264 transition(vtos, vtos);
4265
4266 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4267
4268 // get the unpatched byte code
4269 __ get_method(rarg);
4270 __ call_VM(noreg,
4271 CAST_FROM_FN_PTR(address,
4272 InterpreterRuntime::get_original_bytecode_at),
4273 rarg, rbcp);
4274 __ mov(rbx, rax); // why?
4275
4276 // post the breakpoint event
4277 __ get_method(rarg);
4278 __ call_VM(noreg,
4279 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4280 rarg, rbcp);
4281
4282 // complete the execution of original bytecode
4283 __ dispatch_only_normal(vtos);
4284 }
4285
4286 //-----------------------------------------------------------------------------
4287 // Exceptions
4288
4289 void TemplateTable::athrow() {
4290 transition(atos, vtos);
4291 __ null_check(rax);
4292 __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
4293 }
4294
4295 //-----------------------------------------------------------------------------
4296 // Synchronization
4297 //
4298 // Note: monitorenter & exit are symmetric routines; which is reflected
4299 // in the assembly code structure as well
4300 //
4301 // Stack layout:
4302 //
4303 // [expressions ] <--- rsp = expression stack top
4304 // ..
4305 // [expressions ]
4306 // [monitor entry] <--- monitor block top = expression stack bot
4307 // ..
4308 // [monitor entry]
4309 // [frame data ] <--- monitor block bot
4310 // ...
4311 // [saved rbp ] <--- rbp
4312 void TemplateTable::monitorenter() {
4313 transition(atos, vtos);
4314
4315 // check for null object
4316 __ null_check(rax);
4317
4318 const Address monitor_block_top(
4319 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4320 const Address monitor_block_bot(
4321 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4322 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4323
4324 Label allocated;
4325
4326 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
4327 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4328 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4329
4330 // initialize entry pointer
4331 __ xorl(rmon, rmon); // points to free slot or null
4332
4333 // find a free slot in the monitor block (result in rmon)
4334 {
4335 Label entry, loop, exit;
4336 __ movptr(rtop, monitor_block_top); // points to current entry,
4337 // starting with top-most entry
4338 __ lea(rbot, monitor_block_bot); // points to word before bottom
4339 // of monitor block
4340 __ jmpb(entry);
4341
4342 __ bind(loop);
4343 // check if current entry is used
4344 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD);
4345 // if not used then remember entry in rmon
4346 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr
4347 // check if current entry is for same object
4348 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset()));
4349 // if same object then stop searching
4350 __ jccb(Assembler::equal, exit);
4351 // otherwise advance to next entry
4352 __ addptr(rtop, entry_size);
4353 __ bind(entry);
4354 // check if bottom reached
4355 __ cmpptr(rtop, rbot);
4356 // if not at bottom then check this entry
4357 __ jcc(Assembler::notEqual, loop);
4358 __ bind(exit);
4359 }
4360
4361 __ testptr(rmon, rmon); // check if a slot has been found
4362 __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4363
4364 // allocate one if there's no free slot
4365 {
4366 Label entry, loop;
4367 // 1. compute new pointers // rsp: old expression stack top
4368 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4369 __ subptr(rsp, entry_size); // move expression stack top
4370 __ subptr(rmon, entry_size); // move expression stack bottom
4371 __ mov(rtop, rsp); // set start value for copy loop
4372 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom
4373 __ jmp(entry);
4374 // 2. move expression stack contents
4375 __ bind(loop);
4376 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4377 // word from old location
4378 __ movptr(Address(rtop, 0), rbot); // and store it at new location
4379 __ addptr(rtop, wordSize); // advance to next word
4380 __ bind(entry);
4381 __ cmpptr(rtop, rmon); // check if bottom reached
4382 __ jcc(Assembler::notEqual, loop); // if not at bottom then
4383 // copy next word
4384 }
4385
4386 // call run-time routine
4387 // rmon: points to monitor entry
4388 __ bind(allocated);
4389
4390 // Increment bcp to point to the next bytecode, so exception
4391 // handling for async. exceptions work correctly.
4392 // The object has already been popped from the stack, so the
4393 // expression stack looks correct.
4394 __ increment(rbcp);
4395
4396 // store object
4397 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax);
4398 __ lock_object(rmon);
4399
4400 // check to make sure this monitor doesn't cause stack overflow after locking
4401 __ save_bcp(); // in case of exception
4402 __ generate_stack_overflow_check(0);
4403
4404 // The bcp has already been incremented. Just need to dispatch to
4405 // next instruction.
4406 __ dispatch_next(vtos);
4407 }
4408
4409 void TemplateTable::monitorexit() {
4410 transition(atos, vtos);
4411
4412 // check for null object
4413 __ null_check(rax);
4414
4415 const Address monitor_block_top(
4416 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4417 const Address monitor_block_bot(
4418 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4419 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4420
4421 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4422 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4423
4424 Label found;
4425
4426 // find matching slot
4427 {
4428 Label entry, loop;
4429 __ movptr(rtop, monitor_block_top); // points to current entry,
4430 // starting with top-most entry
4431 __ lea(rbot, monitor_block_bot); // points to word before bottom
4432 // of monitor block
4433 __ jmpb(entry);
4434
4435 __ bind(loop);
4436 // check if current entry is for same object
4437 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset()));
4438 // if same object then stop searching
4439 __ jcc(Assembler::equal, found);
4440 // otherwise advance to next entry
4441 __ addptr(rtop, entry_size);
4442 __ bind(entry);
4443 // check if bottom reached
4444 __ cmpptr(rtop, rbot);
4445 // if not at bottom then check this entry
4446 __ jcc(Assembler::notEqual, loop);
4447 }
4448
4449 // error handling. Unlocking was not block-structured
4450 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4451 InterpreterRuntime::throw_illegal_monitor_state_exception));
4452 __ should_not_reach_here();
4453
4454 // call run-time routine
4455 __ bind(found);
4456 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4457 __ unlock_object(rtop);
4458 __ pop_ptr(rax); // discard object
4459 }
4460
4461 // Wide instructions
4462 void TemplateTable::wide() {
4463 transition(vtos, vtos);
4464 __ load_unsigned_byte(rbx, at_bcp(1));
4465 ExternalAddress wtable((address)Interpreter::_wentry_point);
4466 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1);
4467 // Note: the rbcp increment step is part of the individual wide bytecode implementations
4468 }
4469
4470 // Multi arrays
4471 void TemplateTable::multianewarray() {
4472 transition(vtos, atos);
4473
4474 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4475 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4476 // last dim is on top of stack; we want address of first one:
4477 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4478 // the latter wordSize to point to the beginning of the array.
4479 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4480 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
4481 __ load_unsigned_byte(rbx, at_bcp(3));
4482 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts
4483 }