1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "gc/shared/collectedHeap.hpp" 29 #include "gc/shared/gc_globals.hpp" 30 #include "gc/shared/tlab_globals.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "interpreter/interp_masm.hpp" 34 #include "interpreter/templateTable.hpp" 35 #include "memory/universe.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/objArrayKlass.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/methodHandles.hpp" 41 #include "runtime/frame.inline.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "runtime/synchronizer.hpp" 46 #include "utilities/macros.hpp" 47 48 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 49 50 // Global Register Names 51 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 52 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 53 54 // Address Computation: local variables 55 static inline Address iaddress(int n) { 56 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 57 } 58 59 static inline Address laddress(int n) { 60 return iaddress(n + 1); 61 } 62 63 #ifndef _LP64 64 static inline Address haddress(int n) { 65 return iaddress(n + 0); 66 } 67 #endif 68 69 static inline Address faddress(int n) { 70 return iaddress(n); 71 } 72 73 static inline Address daddress(int n) { 74 return laddress(n); 75 } 76 77 static inline Address aaddress(int n) { 78 return iaddress(n); 79 } 80 81 static inline Address iaddress(Register r) { 82 return Address(rlocals, r, Address::times_ptr); 83 } 84 85 static inline Address laddress(Register r) { 86 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 87 } 88 89 #ifndef _LP64 90 static inline Address haddress(Register r) { 91 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 92 } 93 #endif 94 95 static inline Address faddress(Register r) { 96 return iaddress(r); 97 } 98 99 static inline Address daddress(Register r) { 100 return laddress(r); 101 } 102 103 static inline Address aaddress(Register r) { 104 return iaddress(r); 105 } 106 107 108 // expression stack 109 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 110 // data beyond the rsp which is potentially unsafe in an MT environment; 111 // an interrupt may overwrite that data.) 112 static inline Address at_rsp () { 113 return Address(rsp, 0); 114 } 115 116 // At top of Java expression stack which may be different than esp(). It 117 // isn't for category 1 objects. 118 static inline Address at_tos () { 119 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 120 } 121 122 static inline Address at_tos_p1() { 123 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 124 } 125 126 static inline Address at_tos_p2() { 127 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 128 } 129 130 // Condition conversion 131 static Assembler::Condition j_not(TemplateTable::Condition cc) { 132 switch (cc) { 133 case TemplateTable::equal : return Assembler::notEqual; 134 case TemplateTable::not_equal : return Assembler::equal; 135 case TemplateTable::less : return Assembler::greaterEqual; 136 case TemplateTable::less_equal : return Assembler::greater; 137 case TemplateTable::greater : return Assembler::lessEqual; 138 case TemplateTable::greater_equal: return Assembler::less; 139 } 140 ShouldNotReachHere(); 141 return Assembler::zero; 142 } 143 144 145 146 // Miscellaneous helper routines 147 // Store an oop (or null) at the address described by obj. 148 // If val == noreg this means store a null 149 150 151 static void do_oop_store(InterpreterMacroAssembler* _masm, 152 Address dst, 153 Register val, 154 DecoratorSet decorators = 0) { 155 assert(val == noreg || val == rax, "parameter is just for looks"); 156 __ store_heap_oop(dst, val, 157 NOT_LP64(rdx) LP64_ONLY(rscratch2), 158 NOT_LP64(rbx) LP64_ONLY(r9), 159 NOT_LP64(rsi) LP64_ONLY(r8), decorators); 160 } 161 162 static void do_oop_load(InterpreterMacroAssembler* _masm, 163 Address src, 164 Register dst, 165 DecoratorSet decorators = 0) { 166 __ load_heap_oop(dst, src, rdx, rbx, decorators); 167 } 168 169 Address TemplateTable::at_bcp(int offset) { 170 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 171 return Address(rbcp, offset); 172 } 173 174 175 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 176 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 177 int byte_no) { 178 if (!RewriteBytecodes) return; 179 Label L_patch_done; 180 181 switch (bc) { 182 case Bytecodes::_fast_aputfield: 183 case Bytecodes::_fast_bputfield: 184 case Bytecodes::_fast_zputfield: 185 case Bytecodes::_fast_cputfield: 186 case Bytecodes::_fast_dputfield: 187 case Bytecodes::_fast_fputfield: 188 case Bytecodes::_fast_iputfield: 189 case Bytecodes::_fast_lputfield: 190 case Bytecodes::_fast_sputfield: 191 { 192 // We skip bytecode quickening for putfield instructions when 193 // the put_code written to the constant pool cache is zero. 194 // This is required so that every execution of this instruction 195 // calls out to InterpreterRuntime::resolve_get_put to do 196 // additional, required work. 197 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 198 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 199 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 200 __ movl(bc_reg, bc); 201 __ cmpl(temp_reg, (int) 0); 202 __ jcc(Assembler::zero, L_patch_done); // don't patch 203 } 204 break; 205 default: 206 assert(byte_no == -1, "sanity"); 207 // the pair bytecodes have already done the load. 208 if (load_bc_into_bc_reg) { 209 __ movl(bc_reg, bc); 210 } 211 } 212 213 if (JvmtiExport::can_post_breakpoint()) { 214 Label L_fast_patch; 215 // if a breakpoint is present we can't rewrite the stream directly 216 __ movzbl(temp_reg, at_bcp(0)); 217 __ cmpl(temp_reg, Bytecodes::_breakpoint); 218 __ jcc(Assembler::notEqual, L_fast_patch); 219 __ get_method(temp_reg); 220 // Let breakpoint table handling rewrite to quicker bytecode 221 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 222 #ifndef ASSERT 223 __ jmpb(L_patch_done); 224 #else 225 __ jmp(L_patch_done); 226 #endif 227 __ bind(L_fast_patch); 228 } 229 230 #ifdef ASSERT 231 Label L_okay; 232 __ load_unsigned_byte(temp_reg, at_bcp(0)); 233 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 234 __ jcc(Assembler::equal, L_okay); 235 __ cmpl(temp_reg, bc_reg); 236 __ jcc(Assembler::equal, L_okay); 237 __ stop("patching the wrong bytecode"); 238 __ bind(L_okay); 239 #endif 240 241 // patch bytecode 242 __ movb(at_bcp(0), bc_reg); 243 __ bind(L_patch_done); 244 } 245 // Individual instructions 246 247 248 void TemplateTable::nop() { 249 transition(vtos, vtos); 250 // nothing to do 251 } 252 253 void TemplateTable::shouldnotreachhere() { 254 transition(vtos, vtos); 255 __ stop("shouldnotreachhere bytecode"); 256 } 257 258 void TemplateTable::aconst_null() { 259 transition(vtos, atos); 260 __ xorl(rax, rax); 261 } 262 263 void TemplateTable::iconst(int value) { 264 transition(vtos, itos); 265 if (value == 0) { 266 __ xorl(rax, rax); 267 } else { 268 __ movl(rax, value); 269 } 270 } 271 272 void TemplateTable::lconst(int value) { 273 transition(vtos, ltos); 274 if (value == 0) { 275 __ xorl(rax, rax); 276 } else { 277 __ movl(rax, value); 278 } 279 #ifndef _LP64 280 assert(value >= 0, "check this code"); 281 __ xorptr(rdx, rdx); 282 #endif 283 } 284 285 286 287 void TemplateTable::fconst(int value) { 288 transition(vtos, ftos); 289 if (UseSSE >= 1) { 290 static float one = 1.0f, two = 2.0f; 291 switch (value) { 292 case 0: 293 __ xorps(xmm0, xmm0); 294 break; 295 case 1: 296 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1); 297 break; 298 case 2: 299 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1); 300 break; 301 default: 302 ShouldNotReachHere(); 303 break; 304 } 305 } else { 306 #ifdef _LP64 307 ShouldNotReachHere(); 308 #else 309 if (value == 0) { __ fldz(); 310 } else if (value == 1) { __ fld1(); 311 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 312 } else { ShouldNotReachHere(); 313 } 314 #endif // _LP64 315 } 316 } 317 318 void TemplateTable::dconst(int value) { 319 transition(vtos, dtos); 320 if (UseSSE >= 2) { 321 static double one = 1.0; 322 switch (value) { 323 case 0: 324 __ xorpd(xmm0, xmm0); 325 break; 326 case 1: 327 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1); 328 break; 329 default: 330 ShouldNotReachHere(); 331 break; 332 } 333 } else { 334 #ifdef _LP64 335 ShouldNotReachHere(); 336 #else 337 if (value == 0) { __ fldz(); 338 } else if (value == 1) { __ fld1(); 339 } else { ShouldNotReachHere(); 340 } 341 #endif 342 } 343 } 344 345 void TemplateTable::bipush() { 346 transition(vtos, itos); 347 __ load_signed_byte(rax, at_bcp(1)); 348 } 349 350 void TemplateTable::sipush() { 351 transition(vtos, itos); 352 __ load_unsigned_short(rax, at_bcp(1)); 353 __ bswapl(rax); 354 __ sarl(rax, 16); 355 } 356 357 void TemplateTable::ldc(LdcType type) { 358 transition(vtos, vtos); 359 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 360 Label call_ldc, notFloat, notClass, notInt, Done; 361 362 if (is_ldc_wide(type)) { 363 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 364 } else { 365 __ load_unsigned_byte(rbx, at_bcp(1)); 366 } 367 368 __ get_cpool_and_tags(rcx, rax); 369 const int base_offset = ConstantPool::header_size() * wordSize; 370 const int tags_offset = Array<u1>::base_offset_in_bytes(); 371 372 // get type 373 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 374 375 // unresolved class - get the resolved class 376 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 377 __ jccb(Assembler::equal, call_ldc); 378 379 // unresolved class in error state - call into runtime to throw the error 380 // from the first resolution attempt 381 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 382 __ jccb(Assembler::equal, call_ldc); 383 384 // resolved class - need to call vm to get java mirror of the class 385 __ cmpl(rdx, JVM_CONSTANT_Class); 386 __ jcc(Assembler::notEqual, notClass); 387 388 __ bind(call_ldc); 389 390 __ movl(rarg, is_ldc_wide(type) ? 1 : 0); 391 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 392 393 __ push(atos); 394 __ jmp(Done); 395 396 __ bind(notClass); 397 __ cmpl(rdx, JVM_CONSTANT_Float); 398 __ jccb(Assembler::notEqual, notFloat); 399 400 // ftos 401 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 402 __ push(ftos); 403 __ jmp(Done); 404 405 __ bind(notFloat); 406 __ cmpl(rdx, JVM_CONSTANT_Integer); 407 __ jccb(Assembler::notEqual, notInt); 408 409 // itos 410 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 411 __ push(itos); 412 __ jmp(Done); 413 414 // assume the tag is for condy; if not, the VM runtime will tell us 415 __ bind(notInt); 416 condy_helper(Done); 417 418 __ bind(Done); 419 } 420 421 // Fast path for caching oop constants. 422 void TemplateTable::fast_aldc(LdcType type) { 423 transition(vtos, atos); 424 425 Register result = rax; 426 Register tmp = rdx; 427 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 428 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 429 430 Label resolved; 431 432 // We are resolved if the resolved reference cache entry contains a 433 // non-null object (String, MethodType, etc.) 434 assert_different_registers(result, tmp); 435 __ get_cache_index_at_bcp(tmp, 1, index_size); 436 __ load_resolved_reference_at_index(result, tmp); 437 __ testptr(result, result); 438 __ jcc(Assembler::notZero, resolved); 439 440 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 441 442 // first time invocation - must resolve first 443 __ movl(rarg, (int)bytecode()); 444 __ call_VM(result, entry, rarg); 445 __ bind(resolved); 446 447 { // Check for the null sentinel. 448 // If we just called the VM, it already did the mapping for us, 449 // but it's harmless to retry. 450 Label notNull; 451 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 452 __ movptr(tmp, null_sentinel); 453 __ resolve_oop_handle(tmp, rscratch2); 454 __ cmpoop(tmp, result); 455 __ jccb(Assembler::notEqual, notNull); 456 __ xorptr(result, result); // null object reference 457 __ bind(notNull); 458 } 459 460 if (VerifyOops) { 461 __ verify_oop(result); 462 } 463 } 464 465 void TemplateTable::ldc2_w() { 466 transition(vtos, vtos); 467 Label notDouble, notLong, Done; 468 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 469 470 __ get_cpool_and_tags(rcx, rax); 471 const int base_offset = ConstantPool::header_size() * wordSize; 472 const int tags_offset = Array<u1>::base_offset_in_bytes(); 473 474 // get type 475 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 476 __ cmpl(rdx, JVM_CONSTANT_Double); 477 __ jccb(Assembler::notEqual, notDouble); 478 479 // dtos 480 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 481 __ push(dtos); 482 483 __ jmp(Done); 484 __ bind(notDouble); 485 __ cmpl(rdx, JVM_CONSTANT_Long); 486 __ jccb(Assembler::notEqual, notLong); 487 488 // ltos 489 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 490 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 491 __ push(ltos); 492 __ jmp(Done); 493 494 __ bind(notLong); 495 condy_helper(Done); 496 497 __ bind(Done); 498 } 499 500 void TemplateTable::condy_helper(Label& Done) { 501 const Register obj = rax; 502 const Register off = rbx; 503 const Register flags = rcx; 504 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 505 __ movl(rarg, (int)bytecode()); 506 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 507 #ifndef _LP64 508 // borrow rdi from locals 509 __ get_thread(rdi); 510 __ get_vm_result_2(flags, rdi); 511 __ restore_locals(); 512 #else 513 __ get_vm_result_2(flags, r15_thread); 514 #endif 515 // VMr = obj = base address to find primitive value to push 516 // VMr2 = flags = (tos, off) using format of CPCE::_flags 517 __ movl(off, flags); 518 __ andl(off, ConstantPoolCacheEntry::field_index_mask); 519 const Address field(obj, off, Address::times_1, 0*wordSize); 520 521 // What sort of thing are we loading? 522 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 523 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 524 525 switch (bytecode()) { 526 case Bytecodes::_ldc: 527 case Bytecodes::_ldc_w: 528 { 529 // tos in (itos, ftos, stos, btos, ctos, ztos) 530 Label notInt, notFloat, notShort, notByte, notChar, notBool; 531 __ cmpl(flags, itos); 532 __ jccb(Assembler::notEqual, notInt); 533 // itos 534 __ movl(rax, field); 535 __ push(itos); 536 __ jmp(Done); 537 538 __ bind(notInt); 539 __ cmpl(flags, ftos); 540 __ jccb(Assembler::notEqual, notFloat); 541 // ftos 542 __ load_float(field); 543 __ push(ftos); 544 __ jmp(Done); 545 546 __ bind(notFloat); 547 __ cmpl(flags, stos); 548 __ jccb(Assembler::notEqual, notShort); 549 // stos 550 __ load_signed_short(rax, field); 551 __ push(stos); 552 __ jmp(Done); 553 554 __ bind(notShort); 555 __ cmpl(flags, btos); 556 __ jccb(Assembler::notEqual, notByte); 557 // btos 558 __ load_signed_byte(rax, field); 559 __ push(btos); 560 __ jmp(Done); 561 562 __ bind(notByte); 563 __ cmpl(flags, ctos); 564 __ jccb(Assembler::notEqual, notChar); 565 // ctos 566 __ load_unsigned_short(rax, field); 567 __ push(ctos); 568 __ jmp(Done); 569 570 __ bind(notChar); 571 __ cmpl(flags, ztos); 572 __ jccb(Assembler::notEqual, notBool); 573 // ztos 574 __ load_signed_byte(rax, field); 575 __ push(ztos); 576 __ jmp(Done); 577 578 __ bind(notBool); 579 break; 580 } 581 582 case Bytecodes::_ldc2_w: 583 { 584 Label notLong, notDouble; 585 __ cmpl(flags, ltos); 586 __ jccb(Assembler::notEqual, notLong); 587 // ltos 588 // Loading high word first because movptr clobbers rax 589 NOT_LP64(__ movptr(rdx, field.plus_disp(4))); 590 __ movptr(rax, field); 591 __ push(ltos); 592 __ jmp(Done); 593 594 __ bind(notLong); 595 __ cmpl(flags, dtos); 596 __ jccb(Assembler::notEqual, notDouble); 597 // dtos 598 __ load_double(field); 599 __ push(dtos); 600 __ jmp(Done); 601 602 __ bind(notDouble); 603 break; 604 } 605 606 default: 607 ShouldNotReachHere(); 608 } 609 610 __ stop("bad ldc/condy"); 611 } 612 613 void TemplateTable::locals_index(Register reg, int offset) { 614 __ load_unsigned_byte(reg, at_bcp(offset)); 615 __ negptr(reg); 616 } 617 618 void TemplateTable::iload() { 619 iload_internal(); 620 } 621 622 void TemplateTable::nofast_iload() { 623 iload_internal(may_not_rewrite); 624 } 625 626 void TemplateTable::iload_internal(RewriteControl rc) { 627 transition(vtos, itos); 628 if (RewriteFrequentPairs && rc == may_rewrite) { 629 Label rewrite, done; 630 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 631 LP64_ONLY(assert(rbx != bc, "register damaged")); 632 633 // get next byte 634 __ load_unsigned_byte(rbx, 635 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 636 // if _iload, wait to rewrite to iload2. We only want to rewrite the 637 // last two iloads in a pair. Comparing against fast_iload means that 638 // the next bytecode is neither an iload or a caload, and therefore 639 // an iload pair. 640 __ cmpl(rbx, Bytecodes::_iload); 641 __ jcc(Assembler::equal, done); 642 643 __ cmpl(rbx, Bytecodes::_fast_iload); 644 __ movl(bc, Bytecodes::_fast_iload2); 645 646 __ jccb(Assembler::equal, rewrite); 647 648 // if _caload, rewrite to fast_icaload 649 __ cmpl(rbx, Bytecodes::_caload); 650 __ movl(bc, Bytecodes::_fast_icaload); 651 __ jccb(Assembler::equal, rewrite); 652 653 // rewrite so iload doesn't check again. 654 __ movl(bc, Bytecodes::_fast_iload); 655 656 // rewrite 657 // bc: fast bytecode 658 __ bind(rewrite); 659 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 660 __ bind(done); 661 } 662 663 // Get the local value into tos 664 locals_index(rbx); 665 __ movl(rax, iaddress(rbx)); 666 } 667 668 void TemplateTable::fast_iload2() { 669 transition(vtos, itos); 670 locals_index(rbx); 671 __ movl(rax, iaddress(rbx)); 672 __ push(itos); 673 locals_index(rbx, 3); 674 __ movl(rax, iaddress(rbx)); 675 } 676 677 void TemplateTable::fast_iload() { 678 transition(vtos, itos); 679 locals_index(rbx); 680 __ movl(rax, iaddress(rbx)); 681 } 682 683 void TemplateTable::lload() { 684 transition(vtos, ltos); 685 locals_index(rbx); 686 __ movptr(rax, laddress(rbx)); 687 NOT_LP64(__ movl(rdx, haddress(rbx))); 688 } 689 690 void TemplateTable::fload() { 691 transition(vtos, ftos); 692 locals_index(rbx); 693 __ load_float(faddress(rbx)); 694 } 695 696 void TemplateTable::dload() { 697 transition(vtos, dtos); 698 locals_index(rbx); 699 __ load_double(daddress(rbx)); 700 } 701 702 void TemplateTable::aload() { 703 transition(vtos, atos); 704 locals_index(rbx); 705 __ movptr(rax, aaddress(rbx)); 706 } 707 708 void TemplateTable::locals_index_wide(Register reg) { 709 __ load_unsigned_short(reg, at_bcp(2)); 710 __ bswapl(reg); 711 __ shrl(reg, 16); 712 __ negptr(reg); 713 } 714 715 void TemplateTable::wide_iload() { 716 transition(vtos, itos); 717 locals_index_wide(rbx); 718 __ movl(rax, iaddress(rbx)); 719 } 720 721 void TemplateTable::wide_lload() { 722 transition(vtos, ltos); 723 locals_index_wide(rbx); 724 __ movptr(rax, laddress(rbx)); 725 NOT_LP64(__ movl(rdx, haddress(rbx))); 726 } 727 728 void TemplateTable::wide_fload() { 729 transition(vtos, ftos); 730 locals_index_wide(rbx); 731 __ load_float(faddress(rbx)); 732 } 733 734 void TemplateTable::wide_dload() { 735 transition(vtos, dtos); 736 locals_index_wide(rbx); 737 __ load_double(daddress(rbx)); 738 } 739 740 void TemplateTable::wide_aload() { 741 transition(vtos, atos); 742 locals_index_wide(rbx); 743 __ movptr(rax, aaddress(rbx)); 744 } 745 746 void TemplateTable::index_check(Register array, Register index) { 747 // Pop ptr into array 748 __ pop_ptr(array); 749 index_check_without_pop(array, index); 750 } 751 752 void TemplateTable::index_check_without_pop(Register array, Register index) { 753 // destroys rbx 754 // sign extend index for use by indexed load 755 __ movl2ptr(index, index); 756 // check index 757 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 758 if (index != rbx) { 759 // ??? convention: move aberrant index into rbx for exception message 760 assert(rbx != array, "different registers"); 761 __ movl(rbx, index); 762 } 763 Label skip; 764 __ jccb(Assembler::below, skip); 765 // Pass array to create more detailed exceptions. 766 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array); 767 __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 768 __ bind(skip); 769 } 770 771 void TemplateTable::iaload() { 772 transition(itos, itos); 773 // rax: index 774 // rdx: array 775 index_check(rdx, rax); // kills rbx 776 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 777 Address(rdx, rax, Address::times_4, 778 arrayOopDesc::base_offset_in_bytes(T_INT)), 779 noreg, noreg); 780 } 781 782 void TemplateTable::laload() { 783 transition(itos, ltos); 784 // rax: index 785 // rdx: array 786 index_check(rdx, rax); // kills rbx 787 NOT_LP64(__ mov(rbx, rax)); 788 // rbx,: index 789 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 790 Address(rdx, rbx, Address::times_8, 791 arrayOopDesc::base_offset_in_bytes(T_LONG)), 792 noreg, noreg); 793 } 794 795 796 797 void TemplateTable::faload() { 798 transition(itos, ftos); 799 // rax: index 800 // rdx: array 801 index_check(rdx, rax); // kills rbx 802 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 803 Address(rdx, rax, 804 Address::times_4, 805 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 806 noreg, noreg); 807 } 808 809 void TemplateTable::daload() { 810 transition(itos, dtos); 811 // rax: index 812 // rdx: array 813 index_check(rdx, rax); // kills rbx 814 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 815 Address(rdx, rax, 816 Address::times_8, 817 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 818 noreg, noreg); 819 } 820 821 void TemplateTable::aaload() { 822 transition(itos, atos); 823 // rax: index 824 // rdx: array 825 index_check(rdx, rax); // kills rbx 826 do_oop_load(_masm, 827 Address(rdx, rax, 828 UseCompressedOops ? Address::times_4 : Address::times_ptr, 829 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 830 rax, 831 IS_ARRAY); 832 } 833 834 void TemplateTable::baload() { 835 transition(itos, itos); 836 // rax: index 837 // rdx: array 838 index_check(rdx, rax); // kills rbx 839 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 840 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 841 noreg, noreg); 842 } 843 844 void TemplateTable::caload() { 845 transition(itos, itos); 846 // rax: index 847 // rdx: array 848 index_check(rdx, rax); // kills rbx 849 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 850 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 851 noreg, noreg); 852 } 853 854 // iload followed by caload frequent pair 855 void TemplateTable::fast_icaload() { 856 transition(vtos, itos); 857 // load index out of locals 858 locals_index(rbx); 859 __ movl(rax, iaddress(rbx)); 860 861 // rax: index 862 // rdx: array 863 index_check(rdx, rax); // kills rbx 864 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 865 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 866 noreg, noreg); 867 } 868 869 870 void TemplateTable::saload() { 871 transition(itos, itos); 872 // rax: index 873 // rdx: array 874 index_check(rdx, rax); // kills rbx 875 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 876 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 877 noreg, noreg); 878 } 879 880 void TemplateTable::iload(int n) { 881 transition(vtos, itos); 882 __ movl(rax, iaddress(n)); 883 } 884 885 void TemplateTable::lload(int n) { 886 transition(vtos, ltos); 887 __ movptr(rax, laddress(n)); 888 NOT_LP64(__ movptr(rdx, haddress(n))); 889 } 890 891 void TemplateTable::fload(int n) { 892 transition(vtos, ftos); 893 __ load_float(faddress(n)); 894 } 895 896 void TemplateTable::dload(int n) { 897 transition(vtos, dtos); 898 __ load_double(daddress(n)); 899 } 900 901 void TemplateTable::aload(int n) { 902 transition(vtos, atos); 903 __ movptr(rax, aaddress(n)); 904 } 905 906 void TemplateTable::aload_0() { 907 aload_0_internal(); 908 } 909 910 void TemplateTable::nofast_aload_0() { 911 aload_0_internal(may_not_rewrite); 912 } 913 914 void TemplateTable::aload_0_internal(RewriteControl rc) { 915 transition(vtos, atos); 916 // According to bytecode histograms, the pairs: 917 // 918 // _aload_0, _fast_igetfield 919 // _aload_0, _fast_agetfield 920 // _aload_0, _fast_fgetfield 921 // 922 // occur frequently. If RewriteFrequentPairs is set, the (slow) 923 // _aload_0 bytecode checks if the next bytecode is either 924 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 925 // rewrites the current bytecode into a pair bytecode; otherwise it 926 // rewrites the current bytecode into _fast_aload_0 that doesn't do 927 // the pair check anymore. 928 // 929 // Note: If the next bytecode is _getfield, the rewrite must be 930 // delayed, otherwise we may miss an opportunity for a pair. 931 // 932 // Also rewrite frequent pairs 933 // aload_0, aload_1 934 // aload_0, iload_1 935 // These bytecodes with a small amount of code are most profitable 936 // to rewrite 937 if (RewriteFrequentPairs && rc == may_rewrite) { 938 Label rewrite, done; 939 940 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 941 LP64_ONLY(assert(rbx != bc, "register damaged")); 942 943 // get next byte 944 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 945 946 // if _getfield then wait with rewrite 947 __ cmpl(rbx, Bytecodes::_getfield); 948 __ jcc(Assembler::equal, done); 949 950 // if _igetfield then rewrite to _fast_iaccess_0 951 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 952 __ cmpl(rbx, Bytecodes::_fast_igetfield); 953 __ movl(bc, Bytecodes::_fast_iaccess_0); 954 __ jccb(Assembler::equal, rewrite); 955 956 // if _agetfield then rewrite to _fast_aaccess_0 957 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 958 __ cmpl(rbx, Bytecodes::_fast_agetfield); 959 __ movl(bc, Bytecodes::_fast_aaccess_0); 960 __ jccb(Assembler::equal, rewrite); 961 962 // if _fgetfield then rewrite to _fast_faccess_0 963 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 964 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 965 __ movl(bc, Bytecodes::_fast_faccess_0); 966 __ jccb(Assembler::equal, rewrite); 967 968 // else rewrite to _fast_aload0 969 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 970 __ movl(bc, Bytecodes::_fast_aload_0); 971 972 // rewrite 973 // bc: fast bytecode 974 __ bind(rewrite); 975 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 976 977 __ bind(done); 978 } 979 980 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 981 aload(0); 982 } 983 984 void TemplateTable::istore() { 985 transition(itos, vtos); 986 locals_index(rbx); 987 __ movl(iaddress(rbx), rax); 988 } 989 990 991 void TemplateTable::lstore() { 992 transition(ltos, vtos); 993 locals_index(rbx); 994 __ movptr(laddress(rbx), rax); 995 NOT_LP64(__ movptr(haddress(rbx), rdx)); 996 } 997 998 void TemplateTable::fstore() { 999 transition(ftos, vtos); 1000 locals_index(rbx); 1001 __ store_float(faddress(rbx)); 1002 } 1003 1004 void TemplateTable::dstore() { 1005 transition(dtos, vtos); 1006 locals_index(rbx); 1007 __ store_double(daddress(rbx)); 1008 } 1009 1010 void TemplateTable::astore() { 1011 transition(vtos, vtos); 1012 __ pop_ptr(rax); 1013 locals_index(rbx); 1014 __ movptr(aaddress(rbx), rax); 1015 } 1016 1017 void TemplateTable::wide_istore() { 1018 transition(vtos, vtos); 1019 __ pop_i(); 1020 locals_index_wide(rbx); 1021 __ movl(iaddress(rbx), rax); 1022 } 1023 1024 void TemplateTable::wide_lstore() { 1025 transition(vtos, vtos); 1026 NOT_LP64(__ pop_l(rax, rdx)); 1027 LP64_ONLY(__ pop_l()); 1028 locals_index_wide(rbx); 1029 __ movptr(laddress(rbx), rax); 1030 NOT_LP64(__ movl(haddress(rbx), rdx)); 1031 } 1032 1033 void TemplateTable::wide_fstore() { 1034 #ifdef _LP64 1035 transition(vtos, vtos); 1036 __ pop_f(xmm0); 1037 locals_index_wide(rbx); 1038 __ movflt(faddress(rbx), xmm0); 1039 #else 1040 wide_istore(); 1041 #endif 1042 } 1043 1044 void TemplateTable::wide_dstore() { 1045 #ifdef _LP64 1046 transition(vtos, vtos); 1047 __ pop_d(xmm0); 1048 locals_index_wide(rbx); 1049 __ movdbl(daddress(rbx), xmm0); 1050 #else 1051 wide_lstore(); 1052 #endif 1053 } 1054 1055 void TemplateTable::wide_astore() { 1056 transition(vtos, vtos); 1057 __ pop_ptr(rax); 1058 locals_index_wide(rbx); 1059 __ movptr(aaddress(rbx), rax); 1060 } 1061 1062 void TemplateTable::iastore() { 1063 transition(itos, vtos); 1064 __ pop_i(rbx); 1065 // rax: value 1066 // rbx: index 1067 // rdx: array 1068 index_check(rdx, rbx); // prefer index in rbx 1069 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1070 Address(rdx, rbx, Address::times_4, 1071 arrayOopDesc::base_offset_in_bytes(T_INT)), 1072 rax, noreg, noreg, noreg); 1073 } 1074 1075 void TemplateTable::lastore() { 1076 transition(ltos, vtos); 1077 __ pop_i(rbx); 1078 // rax,: low(value) 1079 // rcx: array 1080 // rdx: high(value) 1081 index_check(rcx, rbx); // prefer index in rbx, 1082 // rbx,: index 1083 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1084 Address(rcx, rbx, Address::times_8, 1085 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1086 noreg /* ltos */, noreg, noreg, noreg); 1087 } 1088 1089 1090 void TemplateTable::fastore() { 1091 transition(ftos, vtos); 1092 __ pop_i(rbx); 1093 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1094 // rbx: index 1095 // rdx: array 1096 index_check(rdx, rbx); // prefer index in rbx 1097 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1098 Address(rdx, rbx, Address::times_4, 1099 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1100 noreg /* ftos */, noreg, noreg, noreg); 1101 } 1102 1103 void TemplateTable::dastore() { 1104 transition(dtos, vtos); 1105 __ pop_i(rbx); 1106 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1107 // rbx: index 1108 // rdx: array 1109 index_check(rdx, rbx); // prefer index in rbx 1110 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1111 Address(rdx, rbx, Address::times_8, 1112 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1113 noreg /* dtos */, noreg, noreg, noreg); 1114 } 1115 1116 void TemplateTable::aastore() { 1117 Label is_null, ok_is_subtype, done; 1118 transition(vtos, vtos); 1119 // stack: ..., array, index, value 1120 __ movptr(rax, at_tos()); // value 1121 __ movl(rcx, at_tos_p1()); // index 1122 __ movptr(rdx, at_tos_p2()); // array 1123 1124 Address element_address(rdx, rcx, 1125 UseCompressedOops? Address::times_4 : Address::times_ptr, 1126 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1127 1128 index_check_without_pop(rdx, rcx); // kills rbx 1129 __ testptr(rax, rax); 1130 __ jcc(Assembler::zero, is_null); 1131 1132 // Move subklass into rbx 1133 __ load_klass(rbx, rax, rscratch1); 1134 // Move superklass into rax 1135 __ load_klass(rax, rdx, rscratch1); 1136 __ movptr(rax, Address(rax, 1137 ObjArrayKlass::element_klass_offset())); 1138 1139 // Generate subtype check. Blows rcx, rdi 1140 // Superklass in rax. Subklass in rbx. 1141 __ gen_subtype_check(rbx, ok_is_subtype); 1142 1143 // Come here on failure 1144 // object is at TOS 1145 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1146 1147 // Come here on success 1148 __ bind(ok_is_subtype); 1149 1150 // Get the value we will store 1151 __ movptr(rax, at_tos()); 1152 __ movl(rcx, at_tos_p1()); // index 1153 // Now store using the appropriate barrier 1154 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1155 __ jmp(done); 1156 1157 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx] 1158 __ bind(is_null); 1159 __ profile_null_seen(rbx); 1160 1161 // Store a null 1162 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1163 1164 // Pop stack arguments 1165 __ bind(done); 1166 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1167 } 1168 1169 void TemplateTable::bastore() { 1170 transition(itos, vtos); 1171 __ pop_i(rbx); 1172 // rax: value 1173 // rbx: index 1174 // rdx: array 1175 index_check(rdx, rbx); // prefer index in rbx 1176 // Need to check whether array is boolean or byte 1177 // since both types share the bastore bytecode. 1178 __ load_klass(rcx, rdx, rscratch1); 1179 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1180 int diffbit = Klass::layout_helper_boolean_diffbit(); 1181 __ testl(rcx, diffbit); 1182 Label L_skip; 1183 __ jccb(Assembler::zero, L_skip); 1184 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1185 __ bind(L_skip); 1186 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1187 Address(rdx, rbx,Address::times_1, 1188 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1189 rax, noreg, noreg, noreg); 1190 } 1191 1192 void TemplateTable::castore() { 1193 transition(itos, vtos); 1194 __ pop_i(rbx); 1195 // rax: value 1196 // rbx: index 1197 // rdx: array 1198 index_check(rdx, rbx); // prefer index in rbx 1199 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1200 Address(rdx, rbx, Address::times_2, 1201 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1202 rax, noreg, noreg, noreg); 1203 } 1204 1205 1206 void TemplateTable::sastore() { 1207 castore(); 1208 } 1209 1210 void TemplateTable::istore(int n) { 1211 transition(itos, vtos); 1212 __ movl(iaddress(n), rax); 1213 } 1214 1215 void TemplateTable::lstore(int n) { 1216 transition(ltos, vtos); 1217 __ movptr(laddress(n), rax); 1218 NOT_LP64(__ movptr(haddress(n), rdx)); 1219 } 1220 1221 void TemplateTable::fstore(int n) { 1222 transition(ftos, vtos); 1223 __ store_float(faddress(n)); 1224 } 1225 1226 void TemplateTable::dstore(int n) { 1227 transition(dtos, vtos); 1228 __ store_double(daddress(n)); 1229 } 1230 1231 1232 void TemplateTable::astore(int n) { 1233 transition(vtos, vtos); 1234 __ pop_ptr(rax); 1235 __ movptr(aaddress(n), rax); 1236 } 1237 1238 void TemplateTable::pop() { 1239 transition(vtos, vtos); 1240 __ addptr(rsp, Interpreter::stackElementSize); 1241 } 1242 1243 void TemplateTable::pop2() { 1244 transition(vtos, vtos); 1245 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1246 } 1247 1248 1249 void TemplateTable::dup() { 1250 transition(vtos, vtos); 1251 __ load_ptr(0, rax); 1252 __ push_ptr(rax); 1253 // stack: ..., a, a 1254 } 1255 1256 void TemplateTable::dup_x1() { 1257 transition(vtos, vtos); 1258 // stack: ..., a, b 1259 __ load_ptr( 0, rax); // load b 1260 __ load_ptr( 1, rcx); // load a 1261 __ store_ptr(1, rax); // store b 1262 __ store_ptr(0, rcx); // store a 1263 __ push_ptr(rax); // push b 1264 // stack: ..., b, a, b 1265 } 1266 1267 void TemplateTable::dup_x2() { 1268 transition(vtos, vtos); 1269 // stack: ..., a, b, c 1270 __ load_ptr( 0, rax); // load c 1271 __ load_ptr( 2, rcx); // load a 1272 __ store_ptr(2, rax); // store c in a 1273 __ push_ptr(rax); // push c 1274 // stack: ..., c, b, c, c 1275 __ load_ptr( 2, rax); // load b 1276 __ store_ptr(2, rcx); // store a in b 1277 // stack: ..., c, a, c, c 1278 __ store_ptr(1, rax); // store b in c 1279 // stack: ..., c, a, b, c 1280 } 1281 1282 void TemplateTable::dup2() { 1283 transition(vtos, vtos); 1284 // stack: ..., a, b 1285 __ load_ptr(1, rax); // load a 1286 __ push_ptr(rax); // push a 1287 __ load_ptr(1, rax); // load b 1288 __ push_ptr(rax); // push b 1289 // stack: ..., a, b, a, b 1290 } 1291 1292 1293 void TemplateTable::dup2_x1() { 1294 transition(vtos, vtos); 1295 // stack: ..., a, b, c 1296 __ load_ptr( 0, rcx); // load c 1297 __ load_ptr( 1, rax); // load b 1298 __ push_ptr(rax); // push b 1299 __ push_ptr(rcx); // push c 1300 // stack: ..., a, b, c, b, c 1301 __ store_ptr(3, rcx); // store c in b 1302 // stack: ..., a, c, c, b, c 1303 __ load_ptr( 4, rcx); // load a 1304 __ store_ptr(2, rcx); // store a in 2nd c 1305 // stack: ..., a, c, a, b, c 1306 __ store_ptr(4, rax); // store b in a 1307 // stack: ..., b, c, a, b, c 1308 } 1309 1310 void TemplateTable::dup2_x2() { 1311 transition(vtos, vtos); 1312 // stack: ..., a, b, c, d 1313 __ load_ptr( 0, rcx); // load d 1314 __ load_ptr( 1, rax); // load c 1315 __ push_ptr(rax); // push c 1316 __ push_ptr(rcx); // push d 1317 // stack: ..., a, b, c, d, c, d 1318 __ load_ptr( 4, rax); // load b 1319 __ store_ptr(2, rax); // store b in d 1320 __ store_ptr(4, rcx); // store d in b 1321 // stack: ..., a, d, c, b, c, d 1322 __ load_ptr( 5, rcx); // load a 1323 __ load_ptr( 3, rax); // load c 1324 __ store_ptr(3, rcx); // store a in c 1325 __ store_ptr(5, rax); // store c in a 1326 // stack: ..., c, d, a, b, c, d 1327 } 1328 1329 void TemplateTable::swap() { 1330 transition(vtos, vtos); 1331 // stack: ..., a, b 1332 __ load_ptr( 1, rcx); // load a 1333 __ load_ptr( 0, rax); // load b 1334 __ store_ptr(0, rcx); // store a in b 1335 __ store_ptr(1, rax); // store b in a 1336 // stack: ..., b, a 1337 } 1338 1339 void TemplateTable::iop2(Operation op) { 1340 transition(itos, itos); 1341 switch (op) { 1342 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1343 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1344 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1345 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1346 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1347 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1348 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1349 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1350 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1351 default : ShouldNotReachHere(); 1352 } 1353 } 1354 1355 void TemplateTable::lop2(Operation op) { 1356 transition(ltos, ltos); 1357 #ifdef _LP64 1358 switch (op) { 1359 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1360 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1361 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1362 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1363 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1364 default : ShouldNotReachHere(); 1365 } 1366 #else 1367 __ pop_l(rbx, rcx); 1368 switch (op) { 1369 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1370 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1371 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1372 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1373 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1374 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1375 default : ShouldNotReachHere(); 1376 } 1377 #endif 1378 } 1379 1380 void TemplateTable::idiv() { 1381 transition(itos, itos); 1382 __ movl(rcx, rax); 1383 __ pop_i(rax); 1384 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1385 // they are not equal, one could do a normal division (no correction 1386 // needed), which may speed up this implementation for the common case. 1387 // (see also JVM spec., p.243 & p.271) 1388 __ corrected_idivl(rcx); 1389 } 1390 1391 void TemplateTable::irem() { 1392 transition(itos, itos); 1393 __ movl(rcx, rax); 1394 __ pop_i(rax); 1395 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1396 // they are not equal, one could do a normal division (no correction 1397 // needed), which may speed up this implementation for the common case. 1398 // (see also JVM spec., p.243 & p.271) 1399 __ corrected_idivl(rcx); 1400 __ movl(rax, rdx); 1401 } 1402 1403 void TemplateTable::lmul() { 1404 transition(ltos, ltos); 1405 #ifdef _LP64 1406 __ pop_l(rdx); 1407 __ imulq(rax, rdx); 1408 #else 1409 __ pop_l(rbx, rcx); 1410 __ push(rcx); __ push(rbx); 1411 __ push(rdx); __ push(rax); 1412 __ lmul(2 * wordSize, 0); 1413 __ addptr(rsp, 4 * wordSize); // take off temporaries 1414 #endif 1415 } 1416 1417 void TemplateTable::ldiv() { 1418 transition(ltos, ltos); 1419 #ifdef _LP64 1420 __ mov(rcx, rax); 1421 __ pop_l(rax); 1422 // generate explicit div0 check 1423 __ testq(rcx, rcx); 1424 __ jump_cc(Assembler::zero, 1425 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1426 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1427 // they are not equal, one could do a normal division (no correction 1428 // needed), which may speed up this implementation for the common case. 1429 // (see also JVM spec., p.243 & p.271) 1430 __ corrected_idivq(rcx); // kills rbx 1431 #else 1432 __ pop_l(rbx, rcx); 1433 __ push(rcx); __ push(rbx); 1434 __ push(rdx); __ push(rax); 1435 // check if y = 0 1436 __ orl(rax, rdx); 1437 __ jump_cc(Assembler::zero, 1438 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1439 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1440 __ addptr(rsp, 4 * wordSize); // take off temporaries 1441 #endif 1442 } 1443 1444 void TemplateTable::lrem() { 1445 transition(ltos, ltos); 1446 #ifdef _LP64 1447 __ mov(rcx, rax); 1448 __ pop_l(rax); 1449 __ testq(rcx, rcx); 1450 __ jump_cc(Assembler::zero, 1451 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1452 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1453 // they are not equal, one could do a normal division (no correction 1454 // needed), which may speed up this implementation for the common case. 1455 // (see also JVM spec., p.243 & p.271) 1456 __ corrected_idivq(rcx); // kills rbx 1457 __ mov(rax, rdx); 1458 #else 1459 __ pop_l(rbx, rcx); 1460 __ push(rcx); __ push(rbx); 1461 __ push(rdx); __ push(rax); 1462 // check if y = 0 1463 __ orl(rax, rdx); 1464 __ jump_cc(Assembler::zero, 1465 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1466 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1467 __ addptr(rsp, 4 * wordSize); 1468 #endif 1469 } 1470 1471 void TemplateTable::lshl() { 1472 transition(itos, ltos); 1473 __ movl(rcx, rax); // get shift count 1474 #ifdef _LP64 1475 __ pop_l(rax); // get shift value 1476 __ shlq(rax); 1477 #else 1478 __ pop_l(rax, rdx); // get shift value 1479 __ lshl(rdx, rax); 1480 #endif 1481 } 1482 1483 void TemplateTable::lshr() { 1484 #ifdef _LP64 1485 transition(itos, ltos); 1486 __ movl(rcx, rax); // get shift count 1487 __ pop_l(rax); // get shift value 1488 __ sarq(rax); 1489 #else 1490 transition(itos, ltos); 1491 __ mov(rcx, rax); // get shift count 1492 __ pop_l(rax, rdx); // get shift value 1493 __ lshr(rdx, rax, true); 1494 #endif 1495 } 1496 1497 void TemplateTable::lushr() { 1498 transition(itos, ltos); 1499 #ifdef _LP64 1500 __ movl(rcx, rax); // get shift count 1501 __ pop_l(rax); // get shift value 1502 __ shrq(rax); 1503 #else 1504 __ mov(rcx, rax); // get shift count 1505 __ pop_l(rax, rdx); // get shift value 1506 __ lshr(rdx, rax); 1507 #endif 1508 } 1509 1510 void TemplateTable::fop2(Operation op) { 1511 transition(ftos, ftos); 1512 1513 if (UseSSE >= 1) { 1514 switch (op) { 1515 case add: 1516 __ addss(xmm0, at_rsp()); 1517 __ addptr(rsp, Interpreter::stackElementSize); 1518 break; 1519 case sub: 1520 __ movflt(xmm1, xmm0); 1521 __ pop_f(xmm0); 1522 __ subss(xmm0, xmm1); 1523 break; 1524 case mul: 1525 __ mulss(xmm0, at_rsp()); 1526 __ addptr(rsp, Interpreter::stackElementSize); 1527 break; 1528 case div: 1529 __ movflt(xmm1, xmm0); 1530 __ pop_f(xmm0); 1531 __ divss(xmm0, xmm1); 1532 break; 1533 case rem: 1534 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1535 // modulo operation. The frem method calls the function 1536 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1537 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1538 // (signalling or quiet) is returned. 1539 // 1540 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1541 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1542 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1543 // The fprem instruction used on x86_32 is functionally equivalent to 1544 // SharedRuntime::frem in that it returns a NaN. 1545 #ifdef _LP64 1546 __ movflt(xmm1, xmm0); 1547 __ pop_f(xmm0); 1548 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1549 #else // !_LP64 1550 __ push_f(xmm0); 1551 __ pop_f(); 1552 __ fld_s(at_rsp()); 1553 __ fremr(rax); 1554 __ f2ieee(); 1555 __ pop(rax); // pop second operand off the stack 1556 __ push_f(); 1557 __ pop_f(xmm0); 1558 #endif // _LP64 1559 break; 1560 default: 1561 ShouldNotReachHere(); 1562 break; 1563 } 1564 } else { 1565 #ifdef _LP64 1566 ShouldNotReachHere(); 1567 #else // !_LP64 1568 switch (op) { 1569 case add: __ fadd_s (at_rsp()); break; 1570 case sub: __ fsubr_s(at_rsp()); break; 1571 case mul: __ fmul_s (at_rsp()); break; 1572 case div: __ fdivr_s(at_rsp()); break; 1573 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1574 default : ShouldNotReachHere(); 1575 } 1576 __ f2ieee(); 1577 __ pop(rax); // pop second operand off the stack 1578 #endif // _LP64 1579 } 1580 } 1581 1582 void TemplateTable::dop2(Operation op) { 1583 transition(dtos, dtos); 1584 if (UseSSE >= 2) { 1585 switch (op) { 1586 case add: 1587 __ addsd(xmm0, at_rsp()); 1588 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1589 break; 1590 case sub: 1591 __ movdbl(xmm1, xmm0); 1592 __ pop_d(xmm0); 1593 __ subsd(xmm0, xmm1); 1594 break; 1595 case mul: 1596 __ mulsd(xmm0, at_rsp()); 1597 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1598 break; 1599 case div: 1600 __ movdbl(xmm1, xmm0); 1601 __ pop_d(xmm0); 1602 __ divsd(xmm0, xmm1); 1603 break; 1604 case rem: 1605 // Similar to fop2(), the modulo operation is performed using the 1606 // SharedRuntime::drem method (on x86_64 platforms) or using the 1607 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1608 #ifdef _LP64 1609 __ movdbl(xmm1, xmm0); 1610 __ pop_d(xmm0); 1611 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1612 #else // !_LP64 1613 __ push_d(xmm0); 1614 __ pop_d(); 1615 __ fld_d(at_rsp()); 1616 __ fremr(rax); 1617 __ d2ieee(); 1618 __ pop(rax); 1619 __ pop(rdx); 1620 __ push_d(); 1621 __ pop_d(xmm0); 1622 #endif // _LP64 1623 break; 1624 default: 1625 ShouldNotReachHere(); 1626 break; 1627 } 1628 } else { 1629 #ifdef _LP64 1630 ShouldNotReachHere(); 1631 #else // !_LP64 1632 switch (op) { 1633 case add: __ fadd_d (at_rsp()); break; 1634 case sub: __ fsubr_d(at_rsp()); break; 1635 case mul: { 1636 // strict semantics 1637 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1638 __ fmulp(); 1639 __ fmul_d (at_rsp()); 1640 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1641 __ fmulp(); 1642 break; 1643 } 1644 case div: { 1645 // strict semantics 1646 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1647 __ fmul_d (at_rsp()); 1648 __ fdivrp(); 1649 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1650 __ fmulp(); 1651 break; 1652 } 1653 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1654 default : ShouldNotReachHere(); 1655 } 1656 __ d2ieee(); 1657 // Pop double precision number from rsp. 1658 __ pop(rax); 1659 __ pop(rdx); 1660 #endif // _LP64 1661 } 1662 } 1663 1664 void TemplateTable::ineg() { 1665 transition(itos, itos); 1666 __ negl(rax); 1667 } 1668 1669 void TemplateTable::lneg() { 1670 transition(ltos, ltos); 1671 LP64_ONLY(__ negq(rax)); 1672 NOT_LP64(__ lneg(rdx, rax)); 1673 } 1674 1675 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1676 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1677 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1678 // of 128-bits operands for SSE instructions. 1679 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1680 // Store the value to a 128-bits operand. 1681 operand[0] = lo; 1682 operand[1] = hi; 1683 return operand; 1684 } 1685 1686 // Buffer for 128-bits masks used by SSE instructions. 1687 static jlong float_signflip_pool[2*2]; 1688 static jlong double_signflip_pool[2*2]; 1689 1690 void TemplateTable::fneg() { 1691 transition(ftos, ftos); 1692 if (UseSSE >= 1) { 1693 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1694 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1); 1695 } else { 1696 LP64_ONLY(ShouldNotReachHere()); 1697 NOT_LP64(__ fchs()); 1698 } 1699 } 1700 1701 void TemplateTable::dneg() { 1702 transition(dtos, dtos); 1703 if (UseSSE >= 2) { 1704 static jlong *double_signflip = 1705 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1706 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1); 1707 } else { 1708 #ifdef _LP64 1709 ShouldNotReachHere(); 1710 #else 1711 __ fchs(); 1712 #endif 1713 } 1714 } 1715 1716 void TemplateTable::iinc() { 1717 transition(vtos, vtos); 1718 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1719 locals_index(rbx); 1720 __ addl(iaddress(rbx), rdx); 1721 } 1722 1723 void TemplateTable::wide_iinc() { 1724 transition(vtos, vtos); 1725 __ movl(rdx, at_bcp(4)); // get constant 1726 locals_index_wide(rbx); 1727 __ bswapl(rdx); // swap bytes & sign-extend constant 1728 __ sarl(rdx, 16); 1729 __ addl(iaddress(rbx), rdx); 1730 // Note: should probably use only one movl to get both 1731 // the index and the constant -> fix this 1732 } 1733 1734 void TemplateTable::convert() { 1735 #ifdef _LP64 1736 // Checking 1737 #ifdef ASSERT 1738 { 1739 TosState tos_in = ilgl; 1740 TosState tos_out = ilgl; 1741 switch (bytecode()) { 1742 case Bytecodes::_i2l: // fall through 1743 case Bytecodes::_i2f: // fall through 1744 case Bytecodes::_i2d: // fall through 1745 case Bytecodes::_i2b: // fall through 1746 case Bytecodes::_i2c: // fall through 1747 case Bytecodes::_i2s: tos_in = itos; break; 1748 case Bytecodes::_l2i: // fall through 1749 case Bytecodes::_l2f: // fall through 1750 case Bytecodes::_l2d: tos_in = ltos; break; 1751 case Bytecodes::_f2i: // fall through 1752 case Bytecodes::_f2l: // fall through 1753 case Bytecodes::_f2d: tos_in = ftos; break; 1754 case Bytecodes::_d2i: // fall through 1755 case Bytecodes::_d2l: // fall through 1756 case Bytecodes::_d2f: tos_in = dtos; break; 1757 default : ShouldNotReachHere(); 1758 } 1759 switch (bytecode()) { 1760 case Bytecodes::_l2i: // fall through 1761 case Bytecodes::_f2i: // fall through 1762 case Bytecodes::_d2i: // fall through 1763 case Bytecodes::_i2b: // fall through 1764 case Bytecodes::_i2c: // fall through 1765 case Bytecodes::_i2s: tos_out = itos; break; 1766 case Bytecodes::_i2l: // fall through 1767 case Bytecodes::_f2l: // fall through 1768 case Bytecodes::_d2l: tos_out = ltos; break; 1769 case Bytecodes::_i2f: // fall through 1770 case Bytecodes::_l2f: // fall through 1771 case Bytecodes::_d2f: tos_out = ftos; break; 1772 case Bytecodes::_i2d: // fall through 1773 case Bytecodes::_l2d: // fall through 1774 case Bytecodes::_f2d: tos_out = dtos; break; 1775 default : ShouldNotReachHere(); 1776 } 1777 transition(tos_in, tos_out); 1778 } 1779 #endif // ASSERT 1780 1781 static const int64_t is_nan = 0x8000000000000000L; 1782 1783 // Conversion 1784 switch (bytecode()) { 1785 case Bytecodes::_i2l: 1786 __ movslq(rax, rax); 1787 break; 1788 case Bytecodes::_i2f: 1789 __ cvtsi2ssl(xmm0, rax); 1790 break; 1791 case Bytecodes::_i2d: 1792 __ cvtsi2sdl(xmm0, rax); 1793 break; 1794 case Bytecodes::_i2b: 1795 __ movsbl(rax, rax); 1796 break; 1797 case Bytecodes::_i2c: 1798 __ movzwl(rax, rax); 1799 break; 1800 case Bytecodes::_i2s: 1801 __ movswl(rax, rax); 1802 break; 1803 case Bytecodes::_l2i: 1804 __ movl(rax, rax); 1805 break; 1806 case Bytecodes::_l2f: 1807 __ cvtsi2ssq(xmm0, rax); 1808 break; 1809 case Bytecodes::_l2d: 1810 __ cvtsi2sdq(xmm0, rax); 1811 break; 1812 case Bytecodes::_f2i: 1813 { 1814 Label L; 1815 __ cvttss2sil(rax, xmm0); 1816 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1817 __ jcc(Assembler::notEqual, L); 1818 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1819 __ bind(L); 1820 } 1821 break; 1822 case Bytecodes::_f2l: 1823 { 1824 Label L; 1825 __ cvttss2siq(rax, xmm0); 1826 // NaN or overflow/underflow? 1827 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1828 __ jcc(Assembler::notEqual, L); 1829 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1830 __ bind(L); 1831 } 1832 break; 1833 case Bytecodes::_f2d: 1834 __ cvtss2sd(xmm0, xmm0); 1835 break; 1836 case Bytecodes::_d2i: 1837 { 1838 Label L; 1839 __ cvttsd2sil(rax, xmm0); 1840 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1841 __ jcc(Assembler::notEqual, L); 1842 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1843 __ bind(L); 1844 } 1845 break; 1846 case Bytecodes::_d2l: 1847 { 1848 Label L; 1849 __ cvttsd2siq(rax, xmm0); 1850 // NaN or overflow/underflow? 1851 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1852 __ jcc(Assembler::notEqual, L); 1853 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1854 __ bind(L); 1855 } 1856 break; 1857 case Bytecodes::_d2f: 1858 __ cvtsd2ss(xmm0, xmm0); 1859 break; 1860 default: 1861 ShouldNotReachHere(); 1862 } 1863 #else // !_LP64 1864 // Checking 1865 #ifdef ASSERT 1866 { TosState tos_in = ilgl; 1867 TosState tos_out = ilgl; 1868 switch (bytecode()) { 1869 case Bytecodes::_i2l: // fall through 1870 case Bytecodes::_i2f: // fall through 1871 case Bytecodes::_i2d: // fall through 1872 case Bytecodes::_i2b: // fall through 1873 case Bytecodes::_i2c: // fall through 1874 case Bytecodes::_i2s: tos_in = itos; break; 1875 case Bytecodes::_l2i: // fall through 1876 case Bytecodes::_l2f: // fall through 1877 case Bytecodes::_l2d: tos_in = ltos; break; 1878 case Bytecodes::_f2i: // fall through 1879 case Bytecodes::_f2l: // fall through 1880 case Bytecodes::_f2d: tos_in = ftos; break; 1881 case Bytecodes::_d2i: // fall through 1882 case Bytecodes::_d2l: // fall through 1883 case Bytecodes::_d2f: tos_in = dtos; break; 1884 default : ShouldNotReachHere(); 1885 } 1886 switch (bytecode()) { 1887 case Bytecodes::_l2i: // fall through 1888 case Bytecodes::_f2i: // fall through 1889 case Bytecodes::_d2i: // fall through 1890 case Bytecodes::_i2b: // fall through 1891 case Bytecodes::_i2c: // fall through 1892 case Bytecodes::_i2s: tos_out = itos; break; 1893 case Bytecodes::_i2l: // fall through 1894 case Bytecodes::_f2l: // fall through 1895 case Bytecodes::_d2l: tos_out = ltos; break; 1896 case Bytecodes::_i2f: // fall through 1897 case Bytecodes::_l2f: // fall through 1898 case Bytecodes::_d2f: tos_out = ftos; break; 1899 case Bytecodes::_i2d: // fall through 1900 case Bytecodes::_l2d: // fall through 1901 case Bytecodes::_f2d: tos_out = dtos; break; 1902 default : ShouldNotReachHere(); 1903 } 1904 transition(tos_in, tos_out); 1905 } 1906 #endif // ASSERT 1907 1908 // Conversion 1909 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1910 switch (bytecode()) { 1911 case Bytecodes::_i2l: 1912 __ extend_sign(rdx, rax); 1913 break; 1914 case Bytecodes::_i2f: 1915 if (UseSSE >= 1) { 1916 __ cvtsi2ssl(xmm0, rax); 1917 } else { 1918 __ push(rax); // store int on tos 1919 __ fild_s(at_rsp()); // load int to ST0 1920 __ f2ieee(); // truncate to float size 1921 __ pop(rcx); // adjust rsp 1922 } 1923 break; 1924 case Bytecodes::_i2d: 1925 if (UseSSE >= 2) { 1926 __ cvtsi2sdl(xmm0, rax); 1927 } else { 1928 __ push(rax); // add one slot for d2ieee() 1929 __ push(rax); // store int on tos 1930 __ fild_s(at_rsp()); // load int to ST0 1931 __ d2ieee(); // truncate to double size 1932 __ pop(rcx); // adjust rsp 1933 __ pop(rcx); 1934 } 1935 break; 1936 case Bytecodes::_i2b: 1937 __ shll(rax, 24); // truncate upper 24 bits 1938 __ sarl(rax, 24); // and sign-extend byte 1939 LP64_ONLY(__ movsbl(rax, rax)); 1940 break; 1941 case Bytecodes::_i2c: 1942 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1943 LP64_ONLY(__ movzwl(rax, rax)); 1944 break; 1945 case Bytecodes::_i2s: 1946 __ shll(rax, 16); // truncate upper 16 bits 1947 __ sarl(rax, 16); // and sign-extend short 1948 LP64_ONLY(__ movswl(rax, rax)); 1949 break; 1950 case Bytecodes::_l2i: 1951 /* nothing to do */ 1952 break; 1953 case Bytecodes::_l2f: 1954 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1955 // 64-bit long values to floats. On 32-bit platforms it is not possible 1956 // to use that instruction with 64-bit operands, therefore the FPU is 1957 // used to perform the conversion. 1958 __ push(rdx); // store long on tos 1959 __ push(rax); 1960 __ fild_d(at_rsp()); // load long to ST0 1961 __ f2ieee(); // truncate to float size 1962 __ pop(rcx); // adjust rsp 1963 __ pop(rcx); 1964 if (UseSSE >= 1) { 1965 __ push_f(); 1966 __ pop_f(xmm0); 1967 } 1968 break; 1969 case Bytecodes::_l2d: 1970 // On 32-bit platforms the FPU is used for conversion because on 1971 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1972 // instruction with 64-bit operands. 1973 __ push(rdx); // store long on tos 1974 __ push(rax); 1975 __ fild_d(at_rsp()); // load long to ST0 1976 __ d2ieee(); // truncate to double size 1977 __ pop(rcx); // adjust rsp 1978 __ pop(rcx); 1979 if (UseSSE >= 2) { 1980 __ push_d(); 1981 __ pop_d(xmm0); 1982 } 1983 break; 1984 case Bytecodes::_f2i: 1985 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1986 // as it returns 0 for any NaN. 1987 if (UseSSE >= 1) { 1988 __ push_f(xmm0); 1989 } else { 1990 __ push(rcx); // reserve space for argument 1991 __ fstp_s(at_rsp()); // pass float argument on stack 1992 } 1993 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1994 break; 1995 case Bytecodes::_f2l: 1996 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 1997 // as it returns 0 for any NaN. 1998 if (UseSSE >= 1) { 1999 __ push_f(xmm0); 2000 } else { 2001 __ push(rcx); // reserve space for argument 2002 __ fstp_s(at_rsp()); // pass float argument on stack 2003 } 2004 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2005 break; 2006 case Bytecodes::_f2d: 2007 if (UseSSE < 1) { 2008 /* nothing to do */ 2009 } else if (UseSSE == 1) { 2010 __ push_f(xmm0); 2011 __ pop_f(); 2012 } else { // UseSSE >= 2 2013 __ cvtss2sd(xmm0, xmm0); 2014 } 2015 break; 2016 case Bytecodes::_d2i: 2017 if (UseSSE >= 2) { 2018 __ push_d(xmm0); 2019 } else { 2020 __ push(rcx); // reserve space for argument 2021 __ push(rcx); 2022 __ fstp_d(at_rsp()); // pass double argument on stack 2023 } 2024 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2025 break; 2026 case Bytecodes::_d2l: 2027 if (UseSSE >= 2) { 2028 __ push_d(xmm0); 2029 } else { 2030 __ push(rcx); // reserve space for argument 2031 __ push(rcx); 2032 __ fstp_d(at_rsp()); // pass double argument on stack 2033 } 2034 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2035 break; 2036 case Bytecodes::_d2f: 2037 if (UseSSE <= 1) { 2038 __ push(rcx); // reserve space for f2ieee() 2039 __ f2ieee(); // truncate to float size 2040 __ pop(rcx); // adjust rsp 2041 if (UseSSE == 1) { 2042 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2043 // the conversion is performed using the FPU in this case. 2044 __ push_f(); 2045 __ pop_f(xmm0); 2046 } 2047 } else { // UseSSE >= 2 2048 __ cvtsd2ss(xmm0, xmm0); 2049 } 2050 break; 2051 default : 2052 ShouldNotReachHere(); 2053 } 2054 #endif // _LP64 2055 } 2056 2057 void TemplateTable::lcmp() { 2058 transition(ltos, itos); 2059 #ifdef _LP64 2060 Label done; 2061 __ pop_l(rdx); 2062 __ cmpq(rdx, rax); 2063 __ movl(rax, -1); 2064 __ jccb(Assembler::less, done); 2065 __ setb(Assembler::notEqual, rax); 2066 __ movzbl(rax, rax); 2067 __ bind(done); 2068 #else 2069 2070 // y = rdx:rax 2071 __ pop_l(rbx, rcx); // get x = rcx:rbx 2072 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2073 __ mov(rax, rcx); 2074 #endif 2075 } 2076 2077 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2078 if ((is_float && UseSSE >= 1) || 2079 (!is_float && UseSSE >= 2)) { 2080 Label done; 2081 if (is_float) { 2082 // XXX get rid of pop here, use ... reg, mem32 2083 __ pop_f(xmm1); 2084 __ ucomiss(xmm1, xmm0); 2085 } else { 2086 // XXX get rid of pop here, use ... reg, mem64 2087 __ pop_d(xmm1); 2088 __ ucomisd(xmm1, xmm0); 2089 } 2090 if (unordered_result < 0) { 2091 __ movl(rax, -1); 2092 __ jccb(Assembler::parity, done); 2093 __ jccb(Assembler::below, done); 2094 __ setb(Assembler::notEqual, rdx); 2095 __ movzbl(rax, rdx); 2096 } else { 2097 __ movl(rax, 1); 2098 __ jccb(Assembler::parity, done); 2099 __ jccb(Assembler::above, done); 2100 __ movl(rax, 0); 2101 __ jccb(Assembler::equal, done); 2102 __ decrementl(rax); 2103 } 2104 __ bind(done); 2105 } else { 2106 #ifdef _LP64 2107 ShouldNotReachHere(); 2108 #else // !_LP64 2109 if (is_float) { 2110 __ fld_s(at_rsp()); 2111 } else { 2112 __ fld_d(at_rsp()); 2113 __ pop(rdx); 2114 } 2115 __ pop(rcx); 2116 __ fcmp2int(rax, unordered_result < 0); 2117 #endif // _LP64 2118 } 2119 } 2120 2121 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2122 __ get_method(rcx); // rcx holds method 2123 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2124 // holds bumped taken count 2125 2126 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2127 InvocationCounter::counter_offset(); 2128 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2129 InvocationCounter::counter_offset(); 2130 2131 // Load up edx with the branch displacement 2132 if (is_wide) { 2133 __ movl(rdx, at_bcp(1)); 2134 } else { 2135 __ load_signed_short(rdx, at_bcp(1)); 2136 } 2137 __ bswapl(rdx); 2138 2139 if (!is_wide) { 2140 __ sarl(rdx, 16); 2141 } 2142 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2143 2144 // Handle all the JSR stuff here, then exit. 2145 // It's much shorter and cleaner than intermingling with the non-JSR 2146 // normal-branch stuff occurring below. 2147 if (is_jsr) { 2148 // Pre-load the next target bytecode into rbx 2149 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2150 2151 // compute return address as bci in rax 2152 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2153 in_bytes(ConstMethod::codes_offset()))); 2154 __ subptr(rax, Address(rcx, Method::const_offset())); 2155 // Adjust the bcp in r13 by the displacement in rdx 2156 __ addptr(rbcp, rdx); 2157 // jsr returns atos that is not an oop 2158 __ push_i(rax); 2159 __ dispatch_only(vtos, true); 2160 return; 2161 } 2162 2163 // Normal (non-jsr) branch handling 2164 2165 // Adjust the bcp in r13 by the displacement in rdx 2166 __ addptr(rbcp, rdx); 2167 2168 assert(UseLoopCounter || !UseOnStackReplacement, 2169 "on-stack-replacement requires loop counters"); 2170 Label backedge_counter_overflow; 2171 Label dispatch; 2172 if (UseLoopCounter) { 2173 // increment backedge counter for backward branches 2174 // rax: MDO 2175 // rbx: MDO bumped taken-count 2176 // rcx: method 2177 // rdx: target offset 2178 // r13: target bcp 2179 // r14: locals pointer 2180 __ testl(rdx, rdx); // check if forward or backward branch 2181 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2182 2183 // check if MethodCounters exists 2184 Label has_counters; 2185 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2186 __ testptr(rax, rax); 2187 __ jcc(Assembler::notZero, has_counters); 2188 __ push(rdx); 2189 __ push(rcx); 2190 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2191 rcx); 2192 __ pop(rcx); 2193 __ pop(rdx); 2194 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2195 __ testptr(rax, rax); 2196 __ jcc(Assembler::zero, dispatch); 2197 __ bind(has_counters); 2198 2199 Label no_mdo; 2200 if (ProfileInterpreter) { 2201 // Are we profiling? 2202 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2203 __ testptr(rbx, rbx); 2204 __ jccb(Assembler::zero, no_mdo); 2205 // Increment the MDO backedge counter 2206 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2207 in_bytes(InvocationCounter::counter_offset())); 2208 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2209 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 2210 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 2211 __ jmp(dispatch); 2212 } 2213 __ bind(no_mdo); 2214 // Increment backedge counter in MethodCounters* 2215 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2216 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2217 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 2218 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 2219 __ bind(dispatch); 2220 } 2221 2222 // Pre-load the next target bytecode into rbx 2223 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2224 2225 // continue with the bytecode @ target 2226 // rax: return bci for jsr's, unused otherwise 2227 // rbx: target bytecode 2228 // r13: target bcp 2229 __ dispatch_only(vtos, true); 2230 2231 if (UseLoopCounter) { 2232 if (UseOnStackReplacement) { 2233 Label set_mdp; 2234 // invocation counter overflow 2235 __ bind(backedge_counter_overflow); 2236 __ negptr(rdx); 2237 __ addptr(rdx, rbcp); // branch bcp 2238 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2239 __ call_VM(noreg, 2240 CAST_FROM_FN_PTR(address, 2241 InterpreterRuntime::frequency_counter_overflow), 2242 rdx); 2243 2244 // rax: osr nmethod (osr ok) or null (osr not possible) 2245 // rdx: scratch 2246 // r14: locals pointer 2247 // r13: bcp 2248 __ testptr(rax, rax); // test result 2249 __ jcc(Assembler::zero, dispatch); // no osr if null 2250 // nmethod may have been invalidated (VM may block upon call_VM return) 2251 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2252 __ jcc(Assembler::notEqual, dispatch); 2253 2254 // We have the address of an on stack replacement routine in rax. 2255 // In preparation of invoking it, first we must migrate the locals 2256 // and monitors from off the interpreter frame on the stack. 2257 // Ensure to save the osr nmethod over the migration call, 2258 // it will be preserved in rbx. 2259 __ mov(rbx, rax); 2260 2261 NOT_LP64(__ get_thread(rcx)); 2262 2263 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2264 2265 // rax is OSR buffer, move it to expected parameter location 2266 LP64_ONLY(__ mov(j_rarg0, rax)); 2267 NOT_LP64(__ mov(rcx, rax)); 2268 // We use j_rarg definitions here so that registers don't conflict as parameter 2269 // registers change across platforms as we are in the midst of a calling 2270 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2271 2272 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2273 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2274 2275 // pop the interpreter frame 2276 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2277 __ leave(); // remove frame anchor 2278 __ pop(retaddr); // get return address 2279 __ mov(rsp, sender_sp); // set sp to sender sp 2280 // Ensure compiled code always sees stack at proper alignment 2281 __ andptr(rsp, -(StackAlignmentInBytes)); 2282 2283 // unlike x86 we need no specialized return from compiled code 2284 // to the interpreter or the call stub. 2285 2286 // push the return address 2287 __ push(retaddr); 2288 2289 // and begin the OSR nmethod 2290 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2291 } 2292 } 2293 } 2294 2295 void TemplateTable::if_0cmp(Condition cc) { 2296 transition(itos, vtos); 2297 // assume branch is more often taken than not (loops use backward branches) 2298 Label not_taken; 2299 __ testl(rax, rax); 2300 __ jcc(j_not(cc), not_taken); 2301 branch(false, false); 2302 __ bind(not_taken); 2303 __ profile_not_taken_branch(rax); 2304 } 2305 2306 void TemplateTable::if_icmp(Condition cc) { 2307 transition(itos, vtos); 2308 // assume branch is more often taken than not (loops use backward branches) 2309 Label not_taken; 2310 __ pop_i(rdx); 2311 __ cmpl(rdx, rax); 2312 __ jcc(j_not(cc), not_taken); 2313 branch(false, false); 2314 __ bind(not_taken); 2315 __ profile_not_taken_branch(rax); 2316 } 2317 2318 void TemplateTable::if_nullcmp(Condition cc) { 2319 transition(atos, vtos); 2320 // assume branch is more often taken than not (loops use backward branches) 2321 Label not_taken; 2322 __ testptr(rax, rax); 2323 __ jcc(j_not(cc), not_taken); 2324 branch(false, false); 2325 __ bind(not_taken); 2326 __ profile_not_taken_branch(rax); 2327 } 2328 2329 void TemplateTable::if_acmp(Condition cc) { 2330 transition(atos, vtos); 2331 // assume branch is more often taken than not (loops use backward branches) 2332 Label not_taken; 2333 __ pop_ptr(rdx); 2334 __ cmpoop(rdx, rax); 2335 __ jcc(j_not(cc), not_taken); 2336 branch(false, false); 2337 __ bind(not_taken); 2338 __ profile_not_taken_branch(rax); 2339 } 2340 2341 void TemplateTable::ret() { 2342 transition(vtos, vtos); 2343 locals_index(rbx); 2344 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2345 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2346 __ profile_ret(rbx, rcx); 2347 __ get_method(rax); 2348 __ movptr(rbcp, Address(rax, Method::const_offset())); 2349 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2350 ConstMethod::codes_offset())); 2351 __ dispatch_next(vtos, 0, true); 2352 } 2353 2354 void TemplateTable::wide_ret() { 2355 transition(vtos, vtos); 2356 locals_index_wide(rbx); 2357 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2358 __ profile_ret(rbx, rcx); 2359 __ get_method(rax); 2360 __ movptr(rbcp, Address(rax, Method::const_offset())); 2361 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2362 __ dispatch_next(vtos, 0, true); 2363 } 2364 2365 void TemplateTable::tableswitch() { 2366 Label default_case, continue_execution; 2367 transition(itos, vtos); 2368 2369 // align r13/rsi 2370 __ lea(rbx, at_bcp(BytesPerInt)); 2371 __ andptr(rbx, -BytesPerInt); 2372 // load lo & hi 2373 __ movl(rcx, Address(rbx, BytesPerInt)); 2374 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2375 __ bswapl(rcx); 2376 __ bswapl(rdx); 2377 // check against lo & hi 2378 __ cmpl(rax, rcx); 2379 __ jcc(Assembler::less, default_case); 2380 __ cmpl(rax, rdx); 2381 __ jcc(Assembler::greater, default_case); 2382 // lookup dispatch offset 2383 __ subl(rax, rcx); 2384 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2385 __ profile_switch_case(rax, rbx, rcx); 2386 // continue execution 2387 __ bind(continue_execution); 2388 __ bswapl(rdx); 2389 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2390 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2391 __ addptr(rbcp, rdx); 2392 __ dispatch_only(vtos, true); 2393 // handle default 2394 __ bind(default_case); 2395 __ profile_switch_default(rax); 2396 __ movl(rdx, Address(rbx, 0)); 2397 __ jmp(continue_execution); 2398 } 2399 2400 void TemplateTable::lookupswitch() { 2401 transition(itos, itos); 2402 __ stop("lookupswitch bytecode should have been rewritten"); 2403 } 2404 2405 void TemplateTable::fast_linearswitch() { 2406 transition(itos, vtos); 2407 Label loop_entry, loop, found, continue_execution; 2408 // bswap rax so we can avoid bswapping the table entries 2409 __ bswapl(rax); 2410 // align r13 2411 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2412 // this instruction (change offsets 2413 // below) 2414 __ andptr(rbx, -BytesPerInt); 2415 // set counter 2416 __ movl(rcx, Address(rbx, BytesPerInt)); 2417 __ bswapl(rcx); 2418 __ jmpb(loop_entry); 2419 // table search 2420 __ bind(loop); 2421 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2422 __ jcc(Assembler::equal, found); 2423 __ bind(loop_entry); 2424 __ decrementl(rcx); 2425 __ jcc(Assembler::greaterEqual, loop); 2426 // default case 2427 __ profile_switch_default(rax); 2428 __ movl(rdx, Address(rbx, 0)); 2429 __ jmp(continue_execution); 2430 // entry found -> get offset 2431 __ bind(found); 2432 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2433 __ profile_switch_case(rcx, rax, rbx); 2434 // continue execution 2435 __ bind(continue_execution); 2436 __ bswapl(rdx); 2437 __ movl2ptr(rdx, rdx); 2438 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2439 __ addptr(rbcp, rdx); 2440 __ dispatch_only(vtos, true); 2441 } 2442 2443 void TemplateTable::fast_binaryswitch() { 2444 transition(itos, vtos); 2445 // Implementation using the following core algorithm: 2446 // 2447 // int binary_search(int key, LookupswitchPair* array, int n) { 2448 // // Binary search according to "Methodik des Programmierens" by 2449 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2450 // int i = 0; 2451 // int j = n; 2452 // while (i+1 < j) { 2453 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2454 // // with Q: for all i: 0 <= i < n: key < a[i] 2455 // // where a stands for the array and assuming that the (inexisting) 2456 // // element a[n] is infinitely big. 2457 // int h = (i + j) >> 1; 2458 // // i < h < j 2459 // if (key < array[h].fast_match()) { 2460 // j = h; 2461 // } else { 2462 // i = h; 2463 // } 2464 // } 2465 // // R: a[i] <= key < a[i+1] or Q 2466 // // (i.e., if key is within array, i is the correct index) 2467 // return i; 2468 // } 2469 2470 // Register allocation 2471 const Register key = rax; // already set (tosca) 2472 const Register array = rbx; 2473 const Register i = rcx; 2474 const Register j = rdx; 2475 const Register h = rdi; 2476 const Register temp = rsi; 2477 2478 // Find array start 2479 NOT_LP64(__ save_bcp()); 2480 2481 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2482 // get rid of this 2483 // instruction (change 2484 // offsets below) 2485 __ andptr(array, -BytesPerInt); 2486 2487 // Initialize i & j 2488 __ xorl(i, i); // i = 0; 2489 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2490 2491 // Convert j into native byteordering 2492 __ bswapl(j); 2493 2494 // And start 2495 Label entry; 2496 __ jmp(entry); 2497 2498 // binary search loop 2499 { 2500 Label loop; 2501 __ bind(loop); 2502 // int h = (i + j) >> 1; 2503 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2504 __ sarl(h, 1); // h = (i + j) >> 1; 2505 // if (key < array[h].fast_match()) { 2506 // j = h; 2507 // } else { 2508 // i = h; 2509 // } 2510 // Convert array[h].match to native byte-ordering before compare 2511 __ movl(temp, Address(array, h, Address::times_8)); 2512 __ bswapl(temp); 2513 __ cmpl(key, temp); 2514 // j = h if (key < array[h].fast_match()) 2515 __ cmov32(Assembler::less, j, h); 2516 // i = h if (key >= array[h].fast_match()) 2517 __ cmov32(Assembler::greaterEqual, i, h); 2518 // while (i+1 < j) 2519 __ bind(entry); 2520 __ leal(h, Address(i, 1)); // i+1 2521 __ cmpl(h, j); // i+1 < j 2522 __ jcc(Assembler::less, loop); 2523 } 2524 2525 // end of binary search, result index is i (must check again!) 2526 Label default_case; 2527 // Convert array[i].match to native byte-ordering before compare 2528 __ movl(temp, Address(array, i, Address::times_8)); 2529 __ bswapl(temp); 2530 __ cmpl(key, temp); 2531 __ jcc(Assembler::notEqual, default_case); 2532 2533 // entry found -> j = offset 2534 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2535 __ profile_switch_case(i, key, array); 2536 __ bswapl(j); 2537 LP64_ONLY(__ movslq(j, j)); 2538 2539 NOT_LP64(__ restore_bcp()); 2540 NOT_LP64(__ restore_locals()); // restore rdi 2541 2542 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2543 __ addptr(rbcp, j); 2544 __ dispatch_only(vtos, true); 2545 2546 // default case -> j = default offset 2547 __ bind(default_case); 2548 __ profile_switch_default(i); 2549 __ movl(j, Address(array, -2 * BytesPerInt)); 2550 __ bswapl(j); 2551 LP64_ONLY(__ movslq(j, j)); 2552 2553 NOT_LP64(__ restore_bcp()); 2554 NOT_LP64(__ restore_locals()); 2555 2556 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2557 __ addptr(rbcp, j); 2558 __ dispatch_only(vtos, true); 2559 } 2560 2561 void TemplateTable::_return(TosState state) { 2562 transition(state, state); 2563 2564 assert(_desc->calls_vm(), 2565 "inconsistent calls_vm information"); // call in remove_activation 2566 2567 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2568 assert(state == vtos, "only valid state"); 2569 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2570 __ movptr(robj, aaddress(0)); 2571 __ load_klass(rdi, robj, rscratch1); 2572 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2573 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2574 Label skip_register_finalizer; 2575 __ jcc(Assembler::zero, skip_register_finalizer); 2576 2577 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2578 2579 __ bind(skip_register_finalizer); 2580 } 2581 2582 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2583 Label no_safepoint; 2584 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2585 #ifdef _LP64 2586 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2587 #else 2588 const Register thread = rdi; 2589 __ get_thread(thread); 2590 __ testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2591 #endif 2592 __ jcc(Assembler::zero, no_safepoint); 2593 __ push(state); 2594 __ push_cont_fastpath(); 2595 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2596 InterpreterRuntime::at_safepoint)); 2597 __ pop_cont_fastpath(); 2598 __ pop(state); 2599 __ bind(no_safepoint); 2600 } 2601 2602 // Narrow result if state is itos but result type is smaller. 2603 // Need to narrow in the return bytecode rather than in generate_return_entry 2604 // since compiled code callers expect the result to already be narrowed. 2605 if (state == itos) { 2606 __ narrow(rax); 2607 } 2608 __ remove_activation(state, rbcp); 2609 2610 __ jmp(rbcp); 2611 } 2612 2613 // ---------------------------------------------------------------------------- 2614 // Volatile variables demand their effects be made known to all CPU's 2615 // in order. Store buffers on most chips allow reads & writes to 2616 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2617 // without some kind of memory barrier (i.e., it's not sufficient that 2618 // the interpreter does not reorder volatile references, the hardware 2619 // also must not reorder them). 2620 // 2621 // According to the new Java Memory Model (JMM): 2622 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2623 // writes act as acquire & release, so: 2624 // (2) A read cannot let unrelated NON-volatile memory refs that 2625 // happen after the read float up to before the read. It's OK for 2626 // non-volatile memory refs that happen before the volatile read to 2627 // float down below it. 2628 // (3) Similar a volatile write cannot let unrelated NON-volatile 2629 // memory refs that happen BEFORE the write float down to after the 2630 // write. It's OK for non-volatile memory refs that happen after the 2631 // volatile write to float up before it. 2632 // 2633 // We only put in barriers around volatile refs (they are expensive), 2634 // not _between_ memory refs (that would require us to track the 2635 // flavor of the previous memory refs). Requirements (2) and (3) 2636 // require some barriers before volatile stores and after volatile 2637 // loads. These nearly cover requirement (1) but miss the 2638 // volatile-store-volatile-load case. This final case is placed after 2639 // volatile-stores although it could just as well go before 2640 // volatile-loads. 2641 2642 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2643 // Helper function to insert a is-volatile test and memory barrier 2644 __ membar(order_constraint); 2645 } 2646 2647 void TemplateTable::resolve_cache_and_index(int byte_no, 2648 Register cache, 2649 Register index, 2650 size_t index_size) { 2651 const Register temp = rbx; 2652 assert_different_registers(cache, index, temp); 2653 2654 Label L_clinit_barrier_slow; 2655 Label resolved; 2656 2657 Bytecodes::Code code = bytecode(); 2658 switch (code) { 2659 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2660 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2661 default: break; 2662 } 2663 2664 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2665 __ get_cache_and_index_and_bytecode_at_bcp(cache, index, temp, byte_no, 1, index_size); 2666 __ cmpl(temp, code); // have we resolved this bytecode? 2667 __ jcc(Assembler::equal, resolved); 2668 2669 // resolve first time through 2670 // Class initialization barrier slow path lands here as well. 2671 __ bind(L_clinit_barrier_slow); 2672 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2673 __ movl(temp, code); 2674 __ call_VM(noreg, entry, temp); 2675 // Update registers with resolved info 2676 __ get_cache_and_index_at_bcp(cache, index, 1, index_size); 2677 2678 __ bind(resolved); 2679 2680 // Class initialization barrier for static methods 2681 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2682 const Register method = temp; 2683 const Register klass = temp; 2684 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2685 assert(thread != noreg, "x86_32 not supported"); 2686 2687 __ load_resolved_method_at_index(byte_no, method, cache, index); 2688 __ load_method_holder(klass, method); 2689 __ clinit_barrier(klass, thread, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2690 } 2691 } 2692 2693 // The cache and index registers must be set before call 2694 void TemplateTable::load_field_cp_cache_entry(Register obj, 2695 Register cache, 2696 Register index, 2697 Register off, 2698 Register flags, 2699 bool is_static = false) { 2700 assert_different_registers(cache, index, flags, off); 2701 2702 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2703 // Field offset 2704 __ movptr(off, Address(cache, index, Address::times_ptr, 2705 in_bytes(cp_base_offset + 2706 ConstantPoolCacheEntry::f2_offset()))); 2707 // Flags 2708 __ movl(flags, Address(cache, index, Address::times_ptr, 2709 in_bytes(cp_base_offset + 2710 ConstantPoolCacheEntry::flags_offset()))); 2711 2712 // klass overwrite register 2713 if (is_static) { 2714 __ movptr(obj, Address(cache, index, Address::times_ptr, 2715 in_bytes(cp_base_offset + 2716 ConstantPoolCacheEntry::f1_offset()))); 2717 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2718 __ movptr(obj, Address(obj, mirror_offset)); 2719 __ resolve_oop_handle(obj, rscratch2); 2720 } 2721 } 2722 2723 void TemplateTable::load_invokedynamic_entry(Register method) { 2724 // setup registers 2725 const Register appendix = rax; 2726 const Register cache = rcx; 2727 const Register index = rdx; 2728 assert_different_registers(method, appendix, cache, index); 2729 2730 __ save_bcp(); 2731 2732 Label resolved; 2733 2734 __ load_resolved_indy_entry(cache, index); 2735 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2736 2737 // Compare the method to zero 2738 __ testptr(method, method); 2739 __ jcc(Assembler::notZero, resolved); 2740 2741 Bytecodes::Code code = bytecode(); 2742 2743 // Call to the interpreter runtime to resolve invokedynamic 2744 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2745 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic 2746 __ call_VM(noreg, entry, method); 2747 // Update registers with resolved info 2748 __ load_resolved_indy_entry(cache, index); 2749 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2750 2751 #ifdef ASSERT 2752 __ testptr(method, method); 2753 __ jcc(Assembler::notZero, resolved); 2754 __ stop("Should be resolved by now"); 2755 #endif // ASSERT 2756 __ bind(resolved); 2757 2758 Label L_no_push; 2759 // Check if there is an appendix 2760 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2761 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift)); 2762 __ jcc(Assembler::zero, L_no_push); 2763 2764 // Get appendix 2765 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2766 // Push the appendix as a trailing parameter 2767 // since the parameter_size includes it. 2768 __ load_resolved_reference_at_index(appendix, index); 2769 __ verify_oop(appendix); 2770 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2771 __ bind(L_no_push); 2772 2773 // compute return type 2774 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2775 // load return address 2776 { 2777 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2778 ExternalAddress table(table_addr); 2779 #ifdef _LP64 2780 __ lea(rscratch1, table); 2781 __ movptr(index, Address(rscratch1, index, Address::times_ptr)); 2782 #else 2783 __ movptr(index, ArrayAddress(table, Address(noreg, index, Address::times_ptr))); 2784 #endif // _LP64 2785 } 2786 2787 // push return address 2788 __ push(index); 2789 } 2790 2791 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2792 Register method, 2793 Register itable_index, 2794 Register flags, 2795 bool is_invokevirtual, 2796 bool is_invokevfinal, /*unused*/ 2797 bool is_invokedynamic /*unused*/) { 2798 // setup registers 2799 const Register cache = rcx; 2800 const Register index = rdx; 2801 assert_different_registers(method, flags); 2802 assert_different_registers(method, cache, index); 2803 assert_different_registers(itable_index, flags); 2804 assert_different_registers(itable_index, cache, index); 2805 // determine constant pool cache field offsets 2806 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2807 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2808 ConstantPoolCacheEntry::flags_offset()); 2809 // access constant pool cache fields 2810 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2811 ConstantPoolCacheEntry::f2_offset()); 2812 2813 size_t index_size = sizeof(u2); 2814 resolve_cache_and_index(byte_no, cache, index, index_size); 2815 __ load_resolved_method_at_index(byte_no, method, cache, index); 2816 2817 if (itable_index != noreg) { 2818 // pick up itable or appendix index from f2 also: 2819 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2820 } 2821 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2822 } 2823 2824 // The registers cache and index expected to be set before call. 2825 // Correct values of the cache and index registers are preserved. 2826 void TemplateTable::jvmti_post_field_access(Register cache, 2827 Register index, 2828 bool is_static, 2829 bool has_tos) { 2830 if (JvmtiExport::can_post_field_access()) { 2831 // Check to see if a field access watch has been set before we take 2832 // the time to call into the VM. 2833 Label L1; 2834 assert_different_registers(cache, index, rax); 2835 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2836 __ testl(rax,rax); 2837 __ jcc(Assembler::zero, L1); 2838 2839 // cache entry pointer 2840 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2841 __ shll(index, LogBytesPerWord); 2842 __ addptr(cache, index); 2843 if (is_static) { 2844 __ xorptr(rax, rax); // null object reference 2845 } else { 2846 __ pop(atos); // Get the object 2847 __ verify_oop(rax); 2848 __ push(atos); // Restore stack state 2849 } 2850 // rax,: object pointer or null 2851 // cache: cache entry pointer 2852 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2853 rax, cache); 2854 __ get_cache_and_index_at_bcp(cache, index, 1); 2855 __ bind(L1); 2856 } 2857 } 2858 2859 void TemplateTable::pop_and_check_object(Register r) { 2860 __ pop_ptr(r); 2861 __ null_check(r); // for field access must check obj. 2862 __ verify_oop(r); 2863 } 2864 2865 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2866 transition(vtos, vtos); 2867 2868 const Register cache = rcx; 2869 const Register index = rdx; 2870 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2871 const Register off = rbx; 2872 const Register flags = rax; 2873 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2874 2875 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2876 jvmti_post_field_access(cache, index, is_static, false); 2877 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2878 2879 if (!is_static) pop_and_check_object(obj); 2880 2881 const Address field(obj, off, Address::times_1, 0*wordSize); 2882 2883 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 2884 2885 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2886 // Make sure we don't need to mask edx after the above shift 2887 assert(btos == 0, "change code, btos != 0"); 2888 2889 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2890 2891 __ jcc(Assembler::notZero, notByte); 2892 // btos 2893 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 2894 __ push(btos); 2895 // Rewrite bytecode to be faster 2896 if (!is_static && rc == may_rewrite) { 2897 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2898 } 2899 __ jmp(Done); 2900 2901 __ bind(notByte); 2902 __ cmpl(flags, ztos); 2903 __ jcc(Assembler::notEqual, notBool); 2904 2905 // ztos (same code as btos) 2906 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 2907 __ push(ztos); 2908 // Rewrite bytecode to be faster 2909 if (!is_static && rc == may_rewrite) { 2910 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2911 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2912 } 2913 __ jmp(Done); 2914 2915 __ bind(notBool); 2916 __ cmpl(flags, atos); 2917 __ jcc(Assembler::notEqual, notObj); 2918 // atos 2919 do_oop_load(_masm, field, rax); 2920 __ push(atos); 2921 if (!is_static && rc == may_rewrite) { 2922 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2923 } 2924 __ jmp(Done); 2925 2926 __ bind(notObj); 2927 __ cmpl(flags, itos); 2928 __ jcc(Assembler::notEqual, notInt); 2929 // itos 2930 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 2931 __ push(itos); 2932 // Rewrite bytecode to be faster 2933 if (!is_static && rc == may_rewrite) { 2934 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2935 } 2936 __ jmp(Done); 2937 2938 __ bind(notInt); 2939 __ cmpl(flags, ctos); 2940 __ jcc(Assembler::notEqual, notChar); 2941 // ctos 2942 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 2943 __ push(ctos); 2944 // Rewrite bytecode to be faster 2945 if (!is_static && rc == may_rewrite) { 2946 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2947 } 2948 __ jmp(Done); 2949 2950 __ bind(notChar); 2951 __ cmpl(flags, stos); 2952 __ jcc(Assembler::notEqual, notShort); 2953 // stos 2954 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 2955 __ push(stos); 2956 // Rewrite bytecode to be faster 2957 if (!is_static && rc == may_rewrite) { 2958 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2959 } 2960 __ jmp(Done); 2961 2962 __ bind(notShort); 2963 __ cmpl(flags, ltos); 2964 __ jcc(Assembler::notEqual, notLong); 2965 // ltos 2966 // Generate code as if volatile (x86_32). There just aren't enough registers to 2967 // save that information and this code is faster than the test. 2968 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 2969 __ push(ltos); 2970 // Rewrite bytecode to be faster 2971 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 2972 __ jmp(Done); 2973 2974 __ bind(notLong); 2975 __ cmpl(flags, ftos); 2976 __ jcc(Assembler::notEqual, notFloat); 2977 // ftos 2978 2979 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2980 __ push(ftos); 2981 // Rewrite bytecode to be faster 2982 if (!is_static && rc == may_rewrite) { 2983 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2984 } 2985 __ jmp(Done); 2986 2987 __ bind(notFloat); 2988 #ifdef ASSERT 2989 Label notDouble; 2990 __ cmpl(flags, dtos); 2991 __ jcc(Assembler::notEqual, notDouble); 2992 #endif 2993 // dtos 2994 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2995 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg); 2996 __ push(dtos); 2997 // Rewrite bytecode to be faster 2998 if (!is_static && rc == may_rewrite) { 2999 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 3000 } 3001 #ifdef ASSERT 3002 __ jmp(Done); 3003 3004 __ bind(notDouble); 3005 __ stop("Bad state"); 3006 #endif 3007 3008 __ bind(Done); 3009 // [jk] not needed currently 3010 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 3011 // Assembler::LoadStore)); 3012 } 3013 3014 void TemplateTable::getfield(int byte_no) { 3015 getfield_or_static(byte_no, false); 3016 } 3017 3018 void TemplateTable::nofast_getfield(int byte_no) { 3019 getfield_or_static(byte_no, false, may_not_rewrite); 3020 } 3021 3022 void TemplateTable::getstatic(int byte_no) { 3023 getfield_or_static(byte_no, true); 3024 } 3025 3026 3027 // The registers cache and index expected to be set before call. 3028 // The function may destroy various registers, just not the cache and index registers. 3029 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 3030 3031 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); 3032 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 3033 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3034 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); 3035 3036 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 3037 3038 if (JvmtiExport::can_post_field_modification()) { 3039 // Check to see if a field modification watch has been set before 3040 // we take the time to call into the VM. 3041 Label L1; 3042 assert_different_registers(cache, index, rax); 3043 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3044 __ testl(rax, rax); 3045 __ jcc(Assembler::zero, L1); 3046 3047 __ get_cache_and_index_at_bcp(robj, RDX, 1); 3048 3049 3050 if (is_static) { 3051 // Life is simple. Null out the object pointer. 3052 __ xorl(RBX, RBX); 3053 3054 } else { 3055 // Life is harder. The stack holds the value on top, followed by 3056 // the object. We don't know the size of the value, though; it 3057 // could be one or two words depending on its type. As a result, 3058 // we must find the type to determine where the object is. 3059 #ifndef _LP64 3060 Label two_word, valsize_known; 3061 #endif 3062 __ movl(RCX, Address(robj, RDX, 3063 Address::times_ptr, 3064 in_bytes(cp_base_offset + 3065 ConstantPoolCacheEntry::flags_offset()))); 3066 NOT_LP64(__ mov(rbx, rsp)); 3067 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); 3068 3069 // Make sure we don't need to mask rcx after the above shift 3070 ConstantPoolCacheEntry::verify_tos_state_shift(); 3071 #ifdef _LP64 3072 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 3073 __ cmpl(c_rarg3, ltos); 3074 __ cmovptr(Assembler::equal, 3075 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 3076 __ cmpl(c_rarg3, dtos); 3077 __ cmovptr(Assembler::equal, 3078 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 3079 #else 3080 __ cmpl(rcx, ltos); 3081 __ jccb(Assembler::equal, two_word); 3082 __ cmpl(rcx, dtos); 3083 __ jccb(Assembler::equal, two_word); 3084 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3085 __ jmpb(valsize_known); 3086 3087 __ bind(two_word); 3088 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3089 3090 __ bind(valsize_known); 3091 // setup object pointer 3092 __ movptr(rbx, Address(rbx, 0)); 3093 #endif 3094 } 3095 // cache entry pointer 3096 __ addptr(robj, in_bytes(cp_base_offset)); 3097 __ shll(RDX, LogBytesPerWord); 3098 __ addptr(robj, RDX); 3099 // object (tos) 3100 __ mov(RCX, rsp); 3101 // c_rarg1: object pointer set up above (null if static) 3102 // c_rarg2: cache entry pointer 3103 // c_rarg3: jvalue object on the stack 3104 __ call_VM(noreg, 3105 CAST_FROM_FN_PTR(address, 3106 InterpreterRuntime::post_field_modification), 3107 RBX, robj, RCX); 3108 __ get_cache_and_index_at_bcp(cache, index, 1); 3109 __ bind(L1); 3110 } 3111 } 3112 3113 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3114 transition(vtos, vtos); 3115 3116 const Register cache = rcx; 3117 const Register index = rdx; 3118 const Register obj = rcx; 3119 const Register off = rbx; 3120 const Register flags = rax; 3121 3122 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 3123 jvmti_post_field_mod(cache, index, is_static); 3124 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 3125 3126 // [jk] not needed currently 3127 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3128 // Assembler::StoreStore)); 3129 3130 Label notVolatile, Done; 3131 __ movl(rdx, flags); 3132 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3133 __ andl(rdx, 0x1); 3134 3135 // Check for volatile store 3136 __ testl(rdx, rdx); 3137 __ jcc(Assembler::zero, notVolatile); 3138 3139 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3140 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3141 Assembler::StoreStore)); 3142 __ jmp(Done); 3143 __ bind(notVolatile); 3144 3145 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3146 3147 __ bind(Done); 3148 } 3149 3150 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 3151 Register obj, Register off, Register flags) { 3152 3153 // field addresses 3154 const Address field(obj, off, Address::times_1, 0*wordSize); 3155 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3156 3157 Label notByte, notBool, notInt, notShort, notChar, 3158 notLong, notFloat, notObj; 3159 Label Done; 3160 3161 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3162 3163 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3164 3165 assert(btos == 0, "change code, btos != 0"); 3166 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 3167 __ jcc(Assembler::notZero, notByte); 3168 3169 // btos 3170 { 3171 __ pop(btos); 3172 if (!is_static) pop_and_check_object(obj); 3173 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3174 if (!is_static && rc == may_rewrite) { 3175 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3176 } 3177 __ jmp(Done); 3178 } 3179 3180 __ bind(notByte); 3181 __ cmpl(flags, ztos); 3182 __ jcc(Assembler::notEqual, notBool); 3183 3184 // ztos 3185 { 3186 __ pop(ztos); 3187 if (!is_static) pop_and_check_object(obj); 3188 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3189 if (!is_static && rc == may_rewrite) { 3190 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3191 } 3192 __ jmp(Done); 3193 } 3194 3195 __ bind(notBool); 3196 __ cmpl(flags, atos); 3197 __ jcc(Assembler::notEqual, notObj); 3198 3199 // atos 3200 { 3201 __ pop(atos); 3202 if (!is_static) pop_and_check_object(obj); 3203 // Store into the field 3204 do_oop_store(_masm, field, rax); 3205 if (!is_static && rc == may_rewrite) { 3206 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3207 } 3208 __ jmp(Done); 3209 } 3210 3211 __ bind(notObj); 3212 __ cmpl(flags, itos); 3213 __ jcc(Assembler::notEqual, notInt); 3214 3215 // itos 3216 { 3217 __ pop(itos); 3218 if (!is_static) pop_and_check_object(obj); 3219 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3220 if (!is_static && rc == may_rewrite) { 3221 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3222 } 3223 __ jmp(Done); 3224 } 3225 3226 __ bind(notInt); 3227 __ cmpl(flags, ctos); 3228 __ jcc(Assembler::notEqual, notChar); 3229 3230 // ctos 3231 { 3232 __ pop(ctos); 3233 if (!is_static) pop_and_check_object(obj); 3234 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3235 if (!is_static && rc == may_rewrite) { 3236 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3237 } 3238 __ jmp(Done); 3239 } 3240 3241 __ bind(notChar); 3242 __ cmpl(flags, stos); 3243 __ jcc(Assembler::notEqual, notShort); 3244 3245 // stos 3246 { 3247 __ pop(stos); 3248 if (!is_static) pop_and_check_object(obj); 3249 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3250 if (!is_static && rc == may_rewrite) { 3251 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3252 } 3253 __ jmp(Done); 3254 } 3255 3256 __ bind(notShort); 3257 __ cmpl(flags, ltos); 3258 __ jcc(Assembler::notEqual, notLong); 3259 3260 // ltos 3261 { 3262 __ pop(ltos); 3263 if (!is_static) pop_and_check_object(obj); 3264 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3265 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 3266 #ifdef _LP64 3267 if (!is_static && rc == may_rewrite) { 3268 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3269 } 3270 #endif // _LP64 3271 __ jmp(Done); 3272 } 3273 3274 __ bind(notLong); 3275 __ cmpl(flags, ftos); 3276 __ jcc(Assembler::notEqual, notFloat); 3277 3278 // ftos 3279 { 3280 __ pop(ftos); 3281 if (!is_static) pop_and_check_object(obj); 3282 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3283 if (!is_static && rc == may_rewrite) { 3284 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3285 } 3286 __ jmp(Done); 3287 } 3288 3289 __ bind(notFloat); 3290 #ifdef ASSERT 3291 Label notDouble; 3292 __ cmpl(flags, dtos); 3293 __ jcc(Assembler::notEqual, notDouble); 3294 #endif 3295 3296 // dtos 3297 { 3298 __ pop(dtos); 3299 if (!is_static) pop_and_check_object(obj); 3300 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3301 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 3302 if (!is_static && rc == may_rewrite) { 3303 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3304 } 3305 } 3306 3307 #ifdef ASSERT 3308 __ jmp(Done); 3309 3310 __ bind(notDouble); 3311 __ stop("Bad state"); 3312 #endif 3313 3314 __ bind(Done); 3315 } 3316 3317 void TemplateTable::putfield(int byte_no) { 3318 putfield_or_static(byte_no, false); 3319 } 3320 3321 void TemplateTable::nofast_putfield(int byte_no) { 3322 putfield_or_static(byte_no, false, may_not_rewrite); 3323 } 3324 3325 void TemplateTable::putstatic(int byte_no) { 3326 putfield_or_static(byte_no, true); 3327 } 3328 3329 void TemplateTable::jvmti_post_fast_field_mod() { 3330 3331 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3332 3333 if (JvmtiExport::can_post_field_modification()) { 3334 // Check to see if a field modification watch has been set before 3335 // we take the time to call into the VM. 3336 Label L2; 3337 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3338 __ testl(scratch, scratch); 3339 __ jcc(Assembler::zero, L2); 3340 __ pop_ptr(rbx); // copy the object pointer from tos 3341 __ verify_oop(rbx); 3342 __ push_ptr(rbx); // put the object pointer back on tos 3343 // Save tos values before call_VM() clobbers them. Since we have 3344 // to do it for every data type, we use the saved values as the 3345 // jvalue object. 3346 switch (bytecode()) { // load values into the jvalue object 3347 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3348 case Bytecodes::_fast_bputfield: // fall through 3349 case Bytecodes::_fast_zputfield: // fall through 3350 case Bytecodes::_fast_sputfield: // fall through 3351 case Bytecodes::_fast_cputfield: // fall through 3352 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3353 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3354 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3355 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3356 3357 default: 3358 ShouldNotReachHere(); 3359 } 3360 __ mov(scratch, rsp); // points to jvalue on the stack 3361 // access constant pool cache entry 3362 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); 3363 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1)); 3364 __ verify_oop(rbx); 3365 // rbx: object pointer copied above 3366 // c_rarg2: cache entry pointer 3367 // c_rarg3: jvalue object on the stack 3368 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3369 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3370 3371 switch (bytecode()) { // restore tos values 3372 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3373 case Bytecodes::_fast_bputfield: // fall through 3374 case Bytecodes::_fast_zputfield: // fall through 3375 case Bytecodes::_fast_sputfield: // fall through 3376 case Bytecodes::_fast_cputfield: // fall through 3377 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3378 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3379 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3380 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3381 default: break; 3382 } 3383 __ bind(L2); 3384 } 3385 } 3386 3387 void TemplateTable::fast_storefield(TosState state) { 3388 transition(state, vtos); 3389 3390 ByteSize base = ConstantPoolCache::base_offset(); 3391 3392 jvmti_post_fast_field_mod(); 3393 3394 // access constant pool cache 3395 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3396 3397 // test for volatile with rdx but rdx is tos register for lputfield. 3398 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3399 in_bytes(base + 3400 ConstantPoolCacheEntry::flags_offset()))); 3401 3402 // replace index with field offset from cache entry 3403 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3404 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3405 3406 // [jk] not needed currently 3407 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3408 // Assembler::StoreStore)); 3409 3410 Label notVolatile, Done; 3411 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3412 __ andl(rdx, 0x1); 3413 3414 // Get object from stack 3415 pop_and_check_object(rcx); 3416 3417 // field address 3418 const Address field(rcx, rbx, Address::times_1); 3419 3420 // Check for volatile store 3421 __ testl(rdx, rdx); 3422 __ jcc(Assembler::zero, notVolatile); 3423 3424 fast_storefield_helper(field, rax); 3425 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3426 Assembler::StoreStore)); 3427 __ jmp(Done); 3428 __ bind(notVolatile); 3429 3430 fast_storefield_helper(field, rax); 3431 3432 __ bind(Done); 3433 } 3434 3435 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3436 3437 // access field 3438 switch (bytecode()) { 3439 case Bytecodes::_fast_aputfield: 3440 do_oop_store(_masm, field, rax); 3441 break; 3442 case Bytecodes::_fast_lputfield: 3443 #ifdef _LP64 3444 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3445 #else 3446 __ stop("should not be rewritten"); 3447 #endif 3448 break; 3449 case Bytecodes::_fast_iputfield: 3450 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3451 break; 3452 case Bytecodes::_fast_zputfield: 3453 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3454 break; 3455 case Bytecodes::_fast_bputfield: 3456 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3457 break; 3458 case Bytecodes::_fast_sputfield: 3459 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3460 break; 3461 case Bytecodes::_fast_cputfield: 3462 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3463 break; 3464 case Bytecodes::_fast_fputfield: 3465 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3466 break; 3467 case Bytecodes::_fast_dputfield: 3468 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3469 break; 3470 default: 3471 ShouldNotReachHere(); 3472 } 3473 } 3474 3475 void TemplateTable::fast_accessfield(TosState state) { 3476 transition(atos, state); 3477 3478 // Do the JVMTI work here to avoid disturbing the register state below 3479 if (JvmtiExport::can_post_field_access()) { 3480 // Check to see if a field access watch has been set before we 3481 // take the time to call into the VM. 3482 Label L1; 3483 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3484 __ testl(rcx, rcx); 3485 __ jcc(Assembler::zero, L1); 3486 // access constant pool cache entry 3487 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); 3488 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); 3489 __ verify_oop(rax); 3490 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3491 LP64_ONLY(__ mov(c_rarg1, rax)); 3492 // c_rarg1: object pointer copied above 3493 // c_rarg2: cache entry pointer 3494 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3495 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3496 __ pop_ptr(rax); // restore object pointer 3497 __ bind(L1); 3498 } 3499 3500 // access constant pool cache 3501 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3502 // replace index with field offset from cache entry 3503 // [jk] not needed currently 3504 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 3505 // in_bytes(ConstantPoolCache::base_offset() + 3506 // ConstantPoolCacheEntry::flags_offset()))); 3507 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3508 // __ andl(rdx, 0x1); 3509 // 3510 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3511 in_bytes(ConstantPoolCache::base_offset() + 3512 ConstantPoolCacheEntry::f2_offset()))); 3513 3514 // rax: object 3515 __ verify_oop(rax); 3516 __ null_check(rax); 3517 Address field(rax, rbx, Address::times_1); 3518 3519 // access field 3520 switch (bytecode()) { 3521 case Bytecodes::_fast_agetfield: 3522 do_oop_load(_masm, field, rax); 3523 __ verify_oop(rax); 3524 break; 3525 case Bytecodes::_fast_lgetfield: 3526 #ifdef _LP64 3527 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3528 #else 3529 __ stop("should not be rewritten"); 3530 #endif 3531 break; 3532 case Bytecodes::_fast_igetfield: 3533 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3534 break; 3535 case Bytecodes::_fast_bgetfield: 3536 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3537 break; 3538 case Bytecodes::_fast_sgetfield: 3539 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3540 break; 3541 case Bytecodes::_fast_cgetfield: 3542 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3543 break; 3544 case Bytecodes::_fast_fgetfield: 3545 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3546 break; 3547 case Bytecodes::_fast_dgetfield: 3548 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3549 break; 3550 default: 3551 ShouldNotReachHere(); 3552 } 3553 // [jk] not needed currently 3554 // Label notVolatile; 3555 // __ testl(rdx, rdx); 3556 // __ jcc(Assembler::zero, notVolatile); 3557 // __ membar(Assembler::LoadLoad); 3558 // __ bind(notVolatile); 3559 } 3560 3561 void TemplateTable::fast_xaccess(TosState state) { 3562 transition(vtos, state); 3563 3564 // get receiver 3565 __ movptr(rax, aaddress(0)); 3566 // access constant pool cache 3567 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 3568 __ movptr(rbx, 3569 Address(rcx, rdx, Address::times_ptr, 3570 in_bytes(ConstantPoolCache::base_offset() + 3571 ConstantPoolCacheEntry::f2_offset()))); 3572 // make sure exception is reported in correct bcp range (getfield is 3573 // next instruction) 3574 __ increment(rbcp); 3575 __ null_check(rax); 3576 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3577 switch (state) { 3578 case itos: 3579 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3580 break; 3581 case atos: 3582 do_oop_load(_masm, field, rax); 3583 __ verify_oop(rax); 3584 break; 3585 case ftos: 3586 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3587 break; 3588 default: 3589 ShouldNotReachHere(); 3590 } 3591 3592 // [jk] not needed currently 3593 // Label notVolatile; 3594 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3595 // in_bytes(ConstantPoolCache::base_offset() + 3596 // ConstantPoolCacheEntry::flags_offset()))); 3597 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3598 // __ testl(rdx, 0x1); 3599 // __ jcc(Assembler::zero, notVolatile); 3600 // __ membar(Assembler::LoadLoad); 3601 // __ bind(notVolatile); 3602 3603 __ decrement(rbcp); 3604 } 3605 3606 //----------------------------------------------------------------------------- 3607 // Calls 3608 3609 void TemplateTable::prepare_invoke(int byte_no, 3610 Register method, // linked method (or i-klass) 3611 Register index, // itable index, MethodType, etc. 3612 Register recv, // if caller wants to see it 3613 Register flags // if caller wants to test it 3614 ) { 3615 // determine flags 3616 const Bytecodes::Code code = bytecode(); 3617 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3618 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3619 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3620 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3621 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3622 const bool load_receiver = (recv != noreg); 3623 const bool save_flags = (flags != noreg); 3624 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3625 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3626 assert(flags == noreg || flags == rdx, ""); 3627 assert(recv == noreg || recv == rcx, ""); 3628 3629 // setup registers & access constant pool cache 3630 if (recv == noreg) recv = rcx; 3631 if (flags == noreg) flags = rdx; 3632 assert_different_registers(method, index, recv, flags); 3633 3634 // save 'interpreter return address' 3635 __ save_bcp(); 3636 3637 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3638 3639 // maybe push appendix to arguments (just before return address) 3640 if (is_invokehandle) { 3641 Label L_no_push; 3642 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3643 __ jcc(Assembler::zero, L_no_push); 3644 // Push the appendix as a trailing parameter. 3645 // This must be done before we get the receiver, 3646 // since the parameter_size includes it. 3647 __ push(rbx); 3648 __ mov(rbx, index); 3649 __ load_resolved_reference_at_index(index, rbx); 3650 __ pop(rbx); 3651 __ push(index); // push appendix (MethodType, CallSite, etc.) 3652 __ bind(L_no_push); 3653 } 3654 3655 // load receiver if needed (after appendix is pushed so parameter size is correct) 3656 // Note: no return address pushed yet 3657 if (load_receiver) { 3658 __ movl(recv, flags); 3659 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3660 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3661 const int receiver_is_at_end = -1; // back off one slot to get receiver 3662 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3663 __ movptr(recv, recv_addr); 3664 __ verify_oop(recv); 3665 } 3666 3667 if (save_flags) { 3668 __ movl(rbcp, flags); 3669 } 3670 3671 // compute return type 3672 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3673 // Make sure we don't need to mask flags after the above shift 3674 ConstantPoolCacheEntry::verify_tos_state_shift(); 3675 // load return address 3676 { 3677 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3678 ExternalAddress table(table_addr); 3679 #ifdef _LP64 3680 __ lea(rscratch1, table); 3681 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3682 #else 3683 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))); 3684 #endif // _LP64 3685 } 3686 3687 // push return address 3688 __ push(flags); 3689 3690 // Restore flags value from the constant pool cache, and restore rsi 3691 // for later null checks. r13 is the bytecode pointer 3692 if (save_flags) { 3693 __ movl(flags, rbcp); 3694 __ restore_bcp(); 3695 } 3696 } 3697 3698 void TemplateTable::invokevirtual_helper(Register index, 3699 Register recv, 3700 Register flags) { 3701 // Uses temporary registers rax, rdx 3702 assert_different_registers(index, recv, rax, rdx); 3703 assert(index == rbx, ""); 3704 assert(recv == rcx, ""); 3705 3706 // Test for an invoke of a final method 3707 Label notFinal; 3708 __ movl(rax, flags); 3709 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3710 __ jcc(Assembler::zero, notFinal); 3711 3712 const Register method = index; // method must be rbx 3713 assert(method == rbx, 3714 "Method* must be rbx for interpreter calling convention"); 3715 3716 // do the call - the index is actually the method to call 3717 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3718 3719 // It's final, need a null check here! 3720 __ null_check(recv); 3721 3722 // profile this call 3723 __ profile_final_call(rax); 3724 __ profile_arguments_type(rax, method, rbcp, true); 3725 3726 __ jump_from_interpreted(method, rax); 3727 3728 __ bind(notFinal); 3729 3730 // get receiver klass 3731 __ load_klass(rax, recv, rscratch1); 3732 3733 // profile this call 3734 __ profile_virtual_call(rax, rlocals, rdx); 3735 // get target Method* & entry point 3736 __ lookup_virtual_method(rax, index, method); 3737 3738 __ profile_arguments_type(rdx, method, rbcp, true); 3739 __ jump_from_interpreted(method, rdx); 3740 } 3741 3742 void TemplateTable::invokevirtual(int byte_no) { 3743 transition(vtos, vtos); 3744 assert(byte_no == f2_byte, "use this argument"); 3745 prepare_invoke(byte_no, 3746 rbx, // method or vtable index 3747 noreg, // unused itable index 3748 rcx, rdx); // recv, flags 3749 3750 // rbx: index 3751 // rcx: receiver 3752 // rdx: flags 3753 3754 invokevirtual_helper(rbx, rcx, rdx); 3755 } 3756 3757 void TemplateTable::invokespecial(int byte_no) { 3758 transition(vtos, vtos); 3759 assert(byte_no == f1_byte, "use this argument"); 3760 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3761 rcx); // get receiver also for null check 3762 __ verify_oop(rcx); 3763 __ null_check(rcx); 3764 // do the call 3765 __ profile_call(rax); 3766 __ profile_arguments_type(rax, rbx, rbcp, false); 3767 __ jump_from_interpreted(rbx, rax); 3768 } 3769 3770 void TemplateTable::invokestatic(int byte_no) { 3771 transition(vtos, vtos); 3772 assert(byte_no == f1_byte, "use this argument"); 3773 prepare_invoke(byte_no, rbx); // get f1 Method* 3774 // do the call 3775 __ profile_call(rax); 3776 __ profile_arguments_type(rax, rbx, rbcp, false); 3777 __ jump_from_interpreted(rbx, rax); 3778 } 3779 3780 3781 void TemplateTable::fast_invokevfinal(int byte_no) { 3782 transition(vtos, vtos); 3783 assert(byte_no == f2_byte, "use this argument"); 3784 __ stop("fast_invokevfinal not used on x86"); 3785 } 3786 3787 3788 void TemplateTable::invokeinterface(int byte_no) { 3789 transition(vtos, vtos); 3790 assert(byte_no == f1_byte, "use this argument"); 3791 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* 3792 rcx, rdx); // recv, flags 3793 3794 // rax: reference klass (from f1) if interface method 3795 // rbx: method (from f2) 3796 // rcx: receiver 3797 // rdx: flags 3798 3799 // First check for Object case, then private interface method, 3800 // then regular interface method. 3801 3802 // Special case of invokeinterface called for virtual method of 3803 // java.lang.Object. See cpCache.cpp for details. 3804 Label notObjectMethod; 3805 __ movl(rlocals, rdx); 3806 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3807 __ jcc(Assembler::zero, notObjectMethod); 3808 invokevirtual_helper(rbx, rcx, rdx); 3809 // no return from above 3810 __ bind(notObjectMethod); 3811 3812 Label no_such_interface; // for receiver subtype check 3813 Register recvKlass; // used for exception processing 3814 3815 // Check for private method invocation - indicated by vfinal 3816 Label notVFinal; 3817 __ movl(rlocals, rdx); 3818 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3819 __ jcc(Assembler::zero, notVFinal); 3820 3821 // Get receiver klass into rlocals - also a null check 3822 __ load_klass(rlocals, rcx, rscratch1); 3823 3824 Label subtype; 3825 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3826 // If we get here the typecheck failed 3827 recvKlass = rdx; 3828 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3829 __ jmp(no_such_interface); 3830 3831 __ bind(subtype); 3832 3833 // do the call - rbx is actually the method to call 3834 3835 __ profile_final_call(rdx); 3836 __ profile_arguments_type(rdx, rbx, rbcp, true); 3837 3838 __ jump_from_interpreted(rbx, rdx); 3839 // no return from above 3840 __ bind(notVFinal); 3841 3842 // Get receiver klass into rdx - also a null check 3843 __ restore_locals(); // restore r14 3844 __ load_klass(rdx, rcx, rscratch1); 3845 3846 Label no_such_method; 3847 3848 // Preserve method for throw_AbstractMethodErrorVerbose. 3849 __ mov(rcx, rbx); 3850 // Receiver subtype check against REFC. 3851 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3852 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3853 rdx, rax, noreg, 3854 // outputs: scan temp. reg, scan temp. reg 3855 rbcp, rlocals, 3856 no_such_interface, 3857 /*return_method=*/false); 3858 3859 // profile this call 3860 __ restore_bcp(); // rbcp was destroyed by receiver type check 3861 __ profile_virtual_call(rdx, rbcp, rlocals); 3862 3863 // Get declaring interface class from method, and itable index 3864 __ load_method_holder(rax, rbx); 3865 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3866 __ subl(rbx, Method::itable_index_max); 3867 __ negl(rbx); 3868 3869 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3870 __ mov(rlocals, rdx); 3871 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3872 rlocals, rax, rbx, 3873 // outputs: method, scan temp. reg 3874 rbx, rbcp, 3875 no_such_interface); 3876 3877 // rbx: Method* to call 3878 // rcx: receiver 3879 // Check for abstract method error 3880 // Note: This should be done more efficiently via a throw_abstract_method_error 3881 // interpreter entry point and a conditional jump to it in case of a null 3882 // method. 3883 __ testptr(rbx, rbx); 3884 __ jcc(Assembler::zero, no_such_method); 3885 3886 __ profile_arguments_type(rdx, rbx, rbcp, true); 3887 3888 // do the call 3889 // rcx: receiver 3890 // rbx,: Method* 3891 __ jump_from_interpreted(rbx, rdx); 3892 __ should_not_reach_here(); 3893 3894 // exception handling code follows... 3895 // note: must restore interpreter registers to canonical 3896 // state for exception handling to work correctly! 3897 3898 __ bind(no_such_method); 3899 // throw exception 3900 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3901 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3902 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3903 // Pass arguments for generating a verbose error message. 3904 #ifdef _LP64 3905 recvKlass = c_rarg1; 3906 Register method = c_rarg2; 3907 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3908 if (method != rcx) { __ movq(method, rcx); } 3909 #else 3910 recvKlass = rdx; 3911 Register method = rcx; 3912 #endif 3913 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3914 recvKlass, method); 3915 // The call_VM checks for exception, so we should never return here. 3916 __ should_not_reach_here(); 3917 3918 __ bind(no_such_interface); 3919 // throw exception 3920 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3921 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3922 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3923 // Pass arguments for generating a verbose error message. 3924 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) 3925 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3926 recvKlass, rax); 3927 // the call_VM checks for exception, so we should never return here. 3928 __ should_not_reach_here(); 3929 } 3930 3931 void TemplateTable::invokehandle(int byte_no) { 3932 transition(vtos, vtos); 3933 assert(byte_no == f1_byte, "use this argument"); 3934 const Register rbx_method = rbx; 3935 const Register rax_mtype = rax; 3936 const Register rcx_recv = rcx; 3937 const Register rdx_flags = rdx; 3938 3939 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3940 __ verify_method_ptr(rbx_method); 3941 __ verify_oop(rcx_recv); 3942 __ null_check(rcx_recv); 3943 3944 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3945 // rbx: MH.invokeExact_MT method (from f2) 3946 3947 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3948 3949 // FIXME: profile the LambdaForm also 3950 __ profile_final_call(rax); 3951 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3952 3953 __ jump_from_interpreted(rbx_method, rdx); 3954 } 3955 3956 void TemplateTable::invokedynamic(int byte_no) { 3957 transition(vtos, vtos); 3958 assert(byte_no == f1_byte, "use this argument"); 3959 3960 const Register rbx_method = rbx; 3961 const Register rax_callsite = rax; 3962 3963 load_invokedynamic_entry(rbx_method); 3964 // rax: CallSite object (from cpool->resolved_references[f1]) 3965 // rbx: MH.linkToCallSite method (from f2) 3966 3967 // Note: rax_callsite is already pushed by prepare_invoke 3968 3969 // %%% should make a type profile for any invokedynamic that takes a ref argument 3970 // profile this call 3971 __ profile_call(rbcp); 3972 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3973 3974 __ verify_oop(rax_callsite); 3975 3976 __ jump_from_interpreted(rbx_method, rdx); 3977 } 3978 3979 //----------------------------------------------------------------------------- 3980 // Allocation 3981 3982 void TemplateTable::_new() { 3983 transition(vtos, atos); 3984 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3985 Label slow_case; 3986 Label slow_case_no_pop; 3987 Label done; 3988 Label initialize_header; 3989 3990 __ get_cpool_and_tags(rcx, rax); 3991 3992 // Make sure the class we're about to instantiate has been resolved. 3993 // This is done before loading InstanceKlass to be consistent with the order 3994 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3995 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3996 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3997 __ jcc(Assembler::notEqual, slow_case_no_pop); 3998 3999 // get InstanceKlass 4000 __ load_resolved_klass_at_index(rcx, rcx, rdx); 4001 __ push(rcx); // save the contexts of klass for initializing the header 4002 4003 // make sure klass is initialized & doesn't have finalizer 4004 // make sure klass is fully initialized 4005 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4006 __ jcc(Assembler::notEqual, slow_case); 4007 4008 // get instance_size in InstanceKlass (scaled to a count of bytes) 4009 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 4010 // test to see if it has a finalizer or is malformed in some way 4011 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 4012 __ jcc(Assembler::notZero, slow_case); 4013 4014 // Allocate the instance: 4015 // If TLAB is enabled: 4016 // Try to allocate in the TLAB. 4017 // If fails, go to the slow path. 4018 // Initialize the allocation. 4019 // Exit. 4020 // 4021 // Go to slow path. 4022 4023 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 4024 4025 if (UseTLAB) { 4026 NOT_LP64(__ get_thread(thread);) 4027 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case); 4028 if (ZeroTLAB) { 4029 // the fields have been already cleared 4030 __ jmp(initialize_header); 4031 } 4032 4033 // The object is initialized before the header. If the object size is 4034 // zero, go directly to the header initialization. 4035 if (UseCompactObjectHeaders) { 4036 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 4037 __ decrement(rdx, oopDesc::base_offset_in_bytes()); 4038 } else { 4039 __ decrement(rdx, sizeof(oopDesc)); 4040 } 4041 __ jcc(Assembler::zero, initialize_header); 4042 4043 // Initialize topmost object field, divide rdx by 8, check if odd and 4044 // test if zero. 4045 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 4046 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4047 4048 // rdx must have been multiple of 8 4049 #ifdef ASSERT 4050 // make sure rdx was multiple of 8 4051 Label L; 4052 // Ignore partial flag stall after shrl() since it is debug VM 4053 __ jcc(Assembler::carryClear, L); 4054 __ stop("object size is not multiple of 2 - adjust this code"); 4055 __ bind(L); 4056 // rdx must be > 0, no extra check needed here 4057 #endif 4058 4059 // initialize remaining object fields: rdx was a multiple of 8 4060 { Label loop; 4061 __ bind(loop); 4062 if (UseCompactObjectHeaders) { 4063 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 4064 int header_size = oopDesc::base_offset_in_bytes(); 4065 __ movptr(Address(rax, rdx, Address::times_8, header_size - 1*oopSize), rcx); 4066 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, header_size - 2*oopSize), rcx)); 4067 } else { 4068 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 4069 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 4070 } 4071 __ decrement(rdx); 4072 __ jcc(Assembler::notZero, loop); 4073 } 4074 4075 // initialize object header only. 4076 __ bind(initialize_header); 4077 if (UseCompactObjectHeaders) { 4078 __ pop(rcx); // get saved klass back in the register. 4079 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4080 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rbx); 4081 } else { 4082 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 4083 (intptr_t)markWord::prototype().value()); // header 4084 __ pop(rcx); // get saved klass back in the register. 4085 #ifdef _LP64 4086 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4087 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4088 #endif 4089 __ store_klass(rax, rcx, rscratch1); // klass 4090 } 4091 4092 { 4093 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0, rscratch1); 4094 // Trigger dtrace event for fastpath 4095 __ push(atos); 4096 __ call_VM_leaf( 4097 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax); 4098 __ pop(atos); 4099 } 4100 4101 __ jmp(done); 4102 } 4103 4104 // slow case 4105 __ bind(slow_case); 4106 __ pop(rcx); // restore stack pointer to what it was when we came in. 4107 __ bind(slow_case_no_pop); 4108 4109 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4110 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4111 4112 __ get_constant_pool(rarg1); 4113 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4114 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4115 __ verify_oop(rax); 4116 4117 // continue 4118 __ bind(done); 4119 } 4120 4121 void TemplateTable::newarray() { 4122 transition(itos, atos); 4123 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4124 __ load_unsigned_byte(rarg1, at_bcp(1)); 4125 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4126 rarg1, rax); 4127 } 4128 4129 void TemplateTable::anewarray() { 4130 transition(itos, atos); 4131 4132 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4133 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4134 4135 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4136 __ get_constant_pool(rarg1); 4137 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4138 rarg1, rarg2, rax); 4139 } 4140 4141 void TemplateTable::arraylength() { 4142 transition(atos, itos); 4143 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4144 } 4145 4146 void TemplateTable::checkcast() { 4147 transition(atos, atos); 4148 Label done, is_null, ok_is_subtype, quicked, resolved; 4149 __ testptr(rax, rax); // object is in rax 4150 __ jcc(Assembler::zero, is_null); 4151 4152 // Get cpool & tags index 4153 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4154 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4155 // See if bytecode has already been quicked 4156 __ cmpb(Address(rdx, rbx, 4157 Address::times_1, 4158 Array<u1>::base_offset_in_bytes()), 4159 JVM_CONSTANT_Class); 4160 __ jcc(Assembler::equal, quicked); 4161 __ push(atos); // save receiver for result, and for GC 4162 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4163 4164 // vm_result_2 has metadata result 4165 #ifndef _LP64 4166 // borrow rdi from locals 4167 __ get_thread(rdi); 4168 __ get_vm_result_2(rax, rdi); 4169 __ restore_locals(); 4170 #else 4171 __ get_vm_result_2(rax, r15_thread); 4172 #endif 4173 4174 __ pop_ptr(rdx); // restore receiver 4175 __ jmpb(resolved); 4176 4177 // Get superklass in rax and subklass in rbx 4178 __ bind(quicked); 4179 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4180 __ load_resolved_klass_at_index(rax, rcx, rbx); 4181 4182 __ bind(resolved); 4183 __ load_klass(rbx, rdx, rscratch1); 4184 4185 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4186 // Superklass in rax. Subklass in rbx. 4187 __ gen_subtype_check(rbx, ok_is_subtype); 4188 4189 // Come here on failure 4190 __ push_ptr(rdx); 4191 // object is at TOS 4192 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4193 4194 // Come here on success 4195 __ bind(ok_is_subtype); 4196 __ mov(rax, rdx); // Restore object in rdx 4197 4198 // Collect counts on whether this check-cast sees nulls a lot or not. 4199 if (ProfileInterpreter) { 4200 __ jmp(done); 4201 __ bind(is_null); 4202 __ profile_null_seen(rcx); 4203 } else { 4204 __ bind(is_null); // same as 'done' 4205 } 4206 __ bind(done); 4207 } 4208 4209 void TemplateTable::instanceof() { 4210 transition(atos, itos); 4211 Label done, is_null, ok_is_subtype, quicked, resolved; 4212 __ testptr(rax, rax); 4213 __ jcc(Assembler::zero, is_null); 4214 4215 // Get cpool & tags index 4216 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4217 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4218 // See if bytecode has already been quicked 4219 __ cmpb(Address(rdx, rbx, 4220 Address::times_1, 4221 Array<u1>::base_offset_in_bytes()), 4222 JVM_CONSTANT_Class); 4223 __ jcc(Assembler::equal, quicked); 4224 4225 __ push(atos); // save receiver for result, and for GC 4226 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4227 // vm_result_2 has metadata result 4228 4229 #ifndef _LP64 4230 // borrow rdi from locals 4231 __ get_thread(rdi); 4232 __ get_vm_result_2(rax, rdi); 4233 __ restore_locals(); 4234 #else 4235 __ get_vm_result_2(rax, r15_thread); 4236 #endif 4237 4238 __ pop_ptr(rdx); // restore receiver 4239 __ verify_oop(rdx); 4240 __ load_klass(rdx, rdx, rscratch1); 4241 __ jmpb(resolved); 4242 4243 // Get superklass in rax and subklass in rdx 4244 __ bind(quicked); 4245 __ load_klass(rdx, rax, rscratch1); 4246 __ load_resolved_klass_at_index(rax, rcx, rbx); 4247 4248 __ bind(resolved); 4249 4250 // Generate subtype check. Blows rcx, rdi 4251 // Superklass in rax. Subklass in rdx. 4252 __ gen_subtype_check(rdx, ok_is_subtype); 4253 4254 // Come here on failure 4255 __ xorl(rax, rax); 4256 __ jmpb(done); 4257 // Come here on success 4258 __ bind(ok_is_subtype); 4259 __ movl(rax, 1); 4260 4261 // Collect counts on whether this test sees nulls a lot or not. 4262 if (ProfileInterpreter) { 4263 __ jmp(done); 4264 __ bind(is_null); 4265 __ profile_null_seen(rcx); 4266 } else { 4267 __ bind(is_null); // same as 'done' 4268 } 4269 __ bind(done); 4270 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass 4271 // rax = 1: obj != nullptr and obj is an instanceof the specified klass 4272 } 4273 4274 4275 //---------------------------------------------------------------------------------------------------- 4276 // Breakpoints 4277 void TemplateTable::_breakpoint() { 4278 // Note: We get here even if we are single stepping.. 4279 // jbug insists on setting breakpoints at every bytecode 4280 // even if we are in single step mode. 4281 4282 transition(vtos, vtos); 4283 4284 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4285 4286 // get the unpatched byte code 4287 __ get_method(rarg); 4288 __ call_VM(noreg, 4289 CAST_FROM_FN_PTR(address, 4290 InterpreterRuntime::get_original_bytecode_at), 4291 rarg, rbcp); 4292 __ mov(rbx, rax); // why? 4293 4294 // post the breakpoint event 4295 __ get_method(rarg); 4296 __ call_VM(noreg, 4297 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4298 rarg, rbcp); 4299 4300 // complete the execution of original bytecode 4301 __ dispatch_only_normal(vtos); 4302 } 4303 4304 //----------------------------------------------------------------------------- 4305 // Exceptions 4306 4307 void TemplateTable::athrow() { 4308 transition(atos, vtos); 4309 __ null_check(rax); 4310 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4311 } 4312 4313 //----------------------------------------------------------------------------- 4314 // Synchronization 4315 // 4316 // Note: monitorenter & exit are symmetric routines; which is reflected 4317 // in the assembly code structure as well 4318 // 4319 // Stack layout: 4320 // 4321 // [expressions ] <--- rsp = expression stack top 4322 // .. 4323 // [expressions ] 4324 // [monitor entry] <--- monitor block top = expression stack bot 4325 // .. 4326 // [monitor entry] 4327 // [frame data ] <--- monitor block bot 4328 // ... 4329 // [saved rbp ] <--- rbp 4330 void TemplateTable::monitorenter() { 4331 transition(atos, vtos); 4332 4333 // check for null object 4334 __ null_check(rax); 4335 4336 const Address monitor_block_top( 4337 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4338 const Address monitor_block_bot( 4339 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4340 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4341 4342 Label allocated; 4343 4344 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4345 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4346 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4347 4348 // initialize entry pointer 4349 __ xorl(rmon, rmon); // points to free slot or null 4350 4351 // find a free slot in the monitor block (result in rmon) 4352 { 4353 Label entry, loop, exit; 4354 __ movptr(rtop, monitor_block_top); // points to current entry, 4355 // starting with top-most entry 4356 __ lea(rbot, monitor_block_bot); // points to word before bottom 4357 // of monitor block 4358 __ jmpb(entry); 4359 4360 __ bind(loop); 4361 // check if current entry is used 4362 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD); 4363 // if not used then remember entry in rmon 4364 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4365 // check if current entry is for same object 4366 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4367 // if same object then stop searching 4368 __ jccb(Assembler::equal, exit); 4369 // otherwise advance to next entry 4370 __ addptr(rtop, entry_size); 4371 __ bind(entry); 4372 // check if bottom reached 4373 __ cmpptr(rtop, rbot); 4374 // if not at bottom then check this entry 4375 __ jcc(Assembler::notEqual, loop); 4376 __ bind(exit); 4377 } 4378 4379 __ testptr(rmon, rmon); // check if a slot has been found 4380 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4381 4382 // allocate one if there's no free slot 4383 { 4384 Label entry, loop; 4385 // 1. compute new pointers // rsp: old expression stack top 4386 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4387 __ subptr(rsp, entry_size); // move expression stack top 4388 __ subptr(rmon, entry_size); // move expression stack bottom 4389 __ mov(rtop, rsp); // set start value for copy loop 4390 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4391 __ jmp(entry); 4392 // 2. move expression stack contents 4393 __ bind(loop); 4394 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4395 // word from old location 4396 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4397 __ addptr(rtop, wordSize); // advance to next word 4398 __ bind(entry); 4399 __ cmpptr(rtop, rmon); // check if bottom reached 4400 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4401 // copy next word 4402 } 4403 4404 // call run-time routine 4405 // rmon: points to monitor entry 4406 __ bind(allocated); 4407 4408 // Increment bcp to point to the next bytecode, so exception 4409 // handling for async. exceptions work correctly. 4410 // The object has already been popped from the stack, so the 4411 // expression stack looks correct. 4412 __ increment(rbcp); 4413 4414 // store object 4415 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax); 4416 __ lock_object(rmon); 4417 4418 // check to make sure this monitor doesn't cause stack overflow after locking 4419 __ save_bcp(); // in case of exception 4420 __ generate_stack_overflow_check(0); 4421 4422 // The bcp has already been incremented. Just need to dispatch to 4423 // next instruction. 4424 __ dispatch_next(vtos); 4425 } 4426 4427 void TemplateTable::monitorexit() { 4428 transition(atos, vtos); 4429 4430 // check for null object 4431 __ null_check(rax); 4432 4433 const Address monitor_block_top( 4434 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4435 const Address monitor_block_bot( 4436 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4437 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4438 4439 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4440 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4441 4442 Label found; 4443 4444 // find matching slot 4445 { 4446 Label entry, loop; 4447 __ movptr(rtop, monitor_block_top); // points to current entry, 4448 // starting with top-most entry 4449 __ lea(rbot, monitor_block_bot); // points to word before bottom 4450 // of monitor block 4451 __ jmpb(entry); 4452 4453 __ bind(loop); 4454 // check if current entry is for same object 4455 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4456 // if same object then stop searching 4457 __ jcc(Assembler::equal, found); 4458 // otherwise advance to next entry 4459 __ addptr(rtop, entry_size); 4460 __ bind(entry); 4461 // check if bottom reached 4462 __ cmpptr(rtop, rbot); 4463 // if not at bottom then check this entry 4464 __ jcc(Assembler::notEqual, loop); 4465 } 4466 4467 // error handling. Unlocking was not block-structured 4468 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4469 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4470 __ should_not_reach_here(); 4471 4472 // call run-time routine 4473 __ bind(found); 4474 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4475 __ unlock_object(rtop); 4476 __ pop_ptr(rax); // discard object 4477 } 4478 4479 // Wide instructions 4480 void TemplateTable::wide() { 4481 transition(vtos, vtos); 4482 __ load_unsigned_byte(rbx, at_bcp(1)); 4483 ExternalAddress wtable((address)Interpreter::_wentry_point); 4484 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1); 4485 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4486 } 4487 4488 // Multi arrays 4489 void TemplateTable::multianewarray() { 4490 transition(vtos, atos); 4491 4492 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4493 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4494 // last dim is on top of stack; we want address of first one: 4495 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4496 // the latter wordSize to point to the beginning of the array. 4497 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4498 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4499 __ load_unsigned_byte(rbx, at_bcp(3)); 4500 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4501 }