1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef CPU_X86_VM_VERSION_X86_HPP 26 #define CPU_X86_VM_VERSION_X86_HPP 27 28 #include "runtime/abstract_vm_version.hpp" 29 #include "utilities/macros.hpp" 30 #include "utilities/sizes.hpp" 31 32 class VM_Version : public Abstract_VM_Version { 33 friend class VMStructs; 34 friend class JVMCIVMStructs; 35 36 public: 37 // cpuid result register layouts. These are all unions of a uint32_t 38 // (in case anyone wants access to the register as a whole) and a bitfield. 39 40 union StdCpuid1Eax { 41 uint32_t value; 42 struct { 43 uint32_t stepping : 4, 44 model : 4, 45 family : 4, 46 proc_type : 2, 47 : 2, 48 ext_model : 4, 49 ext_family : 8, 50 : 4; 51 } bits; 52 }; 53 54 union StdCpuid1Ebx { // example, unused 55 uint32_t value; 56 struct { 57 uint32_t brand_id : 8, 58 clflush_size : 8, 59 threads_per_cpu : 8, 60 apic_id : 8; 61 } bits; 62 }; 63 64 union StdCpuid1Ecx { 65 uint32_t value; 66 struct { 67 uint32_t sse3 : 1, 68 clmul : 1, 69 : 1, 70 monitor : 1, 71 : 1, 72 vmx : 1, 73 : 1, 74 est : 1, 75 : 1, 76 ssse3 : 1, 77 cid : 1, 78 : 1, 79 fma : 1, 80 cmpxchg16: 1, 81 : 4, 82 dca : 1, 83 sse4_1 : 1, 84 sse4_2 : 1, 85 : 2, 86 popcnt : 1, 87 : 1, 88 aes : 1, 89 : 1, 90 osxsave : 1, 91 avx : 1, 92 f16c : 1, 93 : 1, 94 hv : 1; 95 } bits; 96 }; 97 98 union StdCpuid1Edx { 99 uint32_t value; 100 struct { 101 uint32_t : 4, 102 tsc : 1, 103 : 3, 104 cmpxchg8 : 1, 105 : 6, 106 cmov : 1, 107 : 3, 108 clflush : 1, 109 : 3, 110 mmx : 1, 111 fxsr : 1, 112 sse : 1, 113 sse2 : 1, 114 : 1, 115 ht : 1, 116 : 3; 117 } bits; 118 }; 119 120 union DcpCpuid4Eax { 121 uint32_t value; 122 struct { 123 uint32_t cache_type : 5, 124 : 21, 125 cores_per_cpu : 6; 126 } bits; 127 }; 128 129 union DcpCpuid4Ebx { 130 uint32_t value; 131 struct { 132 uint32_t L1_line_size : 12, 133 partitions : 10, 134 associativity : 10; 135 } bits; 136 }; 137 138 union TplCpuidBEbx { 139 uint32_t value; 140 struct { 141 uint32_t logical_cpus : 16, 142 : 16; 143 } bits; 144 }; 145 146 union ExtCpuid1Ecx { 147 uint32_t value; 148 struct { 149 uint32_t LahfSahf : 1, 150 CmpLegacy : 1, 151 : 3, 152 lzcnt : 1, 153 sse4a : 1, 154 misalignsse : 1, 155 prefetchw : 1, 156 : 23; 157 } bits; 158 }; 159 160 union ExtCpuid1Edx { 161 uint32_t value; 162 struct { 163 uint32_t : 22, 164 mmx_amd : 1, 165 mmx : 1, 166 fxsr : 1, 167 fxsr_opt : 1, 168 pdpe1gb : 1, 169 rdtscp : 1, 170 : 1, 171 long_mode : 1, 172 tdnow2 : 1, 173 tdnow : 1; 174 } bits; 175 }; 176 177 union ExtCpuid5Ex { 178 uint32_t value; 179 struct { 180 uint32_t L1_line_size : 8, 181 L1_tag_lines : 8, 182 L1_assoc : 8, 183 L1_size : 8; 184 } bits; 185 }; 186 187 union ExtCpuid7Edx { 188 uint32_t value; 189 struct { 190 uint32_t : 8, 191 tsc_invariance : 1, 192 : 23; 193 } bits; 194 }; 195 196 union ExtCpuid8Ecx { 197 uint32_t value; 198 struct { 199 uint32_t cores_per_cpu : 8, 200 : 24; 201 } bits; 202 }; 203 204 union SefCpuid7Eax { 205 uint32_t value; 206 }; 207 208 union SefCpuid7Ebx { 209 uint32_t value; 210 struct { 211 uint32_t fsgsbase : 1, 212 : 2, 213 bmi1 : 1, 214 : 1, 215 avx2 : 1, 216 : 2, 217 bmi2 : 1, 218 erms : 1, 219 : 1, 220 rtm : 1, 221 : 4, 222 avx512f : 1, 223 avx512dq : 1, 224 : 1, 225 adx : 1, 226 : 1, 227 avx512ifma : 1, 228 : 1, 229 clflushopt : 1, 230 clwb : 1, 231 : 1, 232 avx512pf : 1, 233 avx512er : 1, 234 avx512cd : 1, 235 sha : 1, 236 avx512bw : 1, 237 avx512vl : 1; 238 } bits; 239 }; 240 241 union SefCpuid7Ecx { 242 uint32_t value; 243 struct { 244 uint32_t prefetchwt1 : 1, 245 avx512_vbmi : 1, 246 umip : 1, 247 pku : 1, 248 ospke : 1, 249 : 1, 250 avx512_vbmi2 : 1, 251 cet_ss : 1, 252 gfni : 1, 253 vaes : 1, 254 avx512_vpclmulqdq : 1, 255 avx512_vnni : 1, 256 avx512_bitalg : 1, 257 : 1, 258 avx512_vpopcntdq : 1, 259 : 1, 260 : 1, 261 mawau : 5, 262 rdpid : 1, 263 : 9; 264 } bits; 265 }; 266 267 union SefCpuid7Edx { 268 uint32_t value; 269 struct { 270 uint32_t : 2, 271 avx512_4vnniw : 1, 272 avx512_4fmaps : 1, 273 fast_short_rep_mov : 1, 274 : 9, 275 serialize : 1, 276 : 5, 277 cet_ibt : 1, 278 : 11; 279 } bits; 280 }; 281 282 union ExtCpuid1EEbx { 283 uint32_t value; 284 struct { 285 uint32_t : 8, 286 threads_per_core : 8, 287 : 16; 288 } bits; 289 }; 290 291 union XemXcr0Eax { 292 uint32_t value; 293 struct { 294 uint32_t x87 : 1, 295 sse : 1, 296 ymm : 1, 297 bndregs : 1, 298 bndcsr : 1, 299 opmask : 1, 300 zmm512 : 1, 301 zmm32 : 1, 302 : 24; 303 } bits; 304 }; 305 306 protected: 307 static int _cpu; 308 static int _model; 309 static int _stepping; 310 311 static bool _has_intel_jcc_erratum; 312 313 static address _cpuinfo_segv_addr; // address of instruction which causes SEGV 314 static address _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV 315 316 /* 317 * Update following files when declaring new flags: 318 * test/lib-test/jdk/test/whitebox/CPUInfoTest.java 319 * src/jdk.internal.vm.ci/share/classes/jdk.vm.ci.amd64/src/jdk/vm/ci/amd64/AMD64.java 320 */ 321 enum Feature_Flag : uint64_t { 322 #define CPU_FEATURE_FLAGS(decl) \ 323 decl(CX8, "cx8", 0) /* next bits are from cpuid 1 (EDX) */ \ 324 decl(CMOV, "cmov", 1) \ 325 decl(FXSR, "fxsr", 2) \ 326 decl(HT, "ht", 3) \ 327 \ 328 decl(MMX, "mmx", 4) \ 329 decl(3DNOW_PREFETCH, "3dnowpref", 5) /* Processor supports 3dnow prefetch and prefetchw instructions */ \ 330 /* may not necessarily support other 3dnow instructions */ \ 331 decl(SSE, "sse", 6) \ 332 decl(SSE2, "sse2", 7) \ 333 \ 334 decl(SSE3, "sse3", 8 ) /* SSE3 comes from cpuid 1 (ECX) */ \ 335 decl(SSSE3, "ssse3", 9 ) \ 336 decl(SSE4A, "sse4a", 10) \ 337 decl(SSE4_1, "sse4.1", 11) \ 338 \ 339 decl(SSE4_2, "sse4.2", 12) \ 340 decl(POPCNT, "popcnt", 13) \ 341 decl(LZCNT, "lzcnt", 14) \ 342 decl(TSC, "tsc", 15) \ 343 \ 344 decl(TSCINV_BIT, "tscinvbit", 16) \ 345 decl(TSCINV, "tscinv", 17) \ 346 decl(AVX, "avx", 18) \ 347 decl(AVX2, "avx2", 19) \ 348 \ 349 decl(AES, "aes", 20) \ 350 decl(ERMS, "erms", 21) /* enhanced 'rep movsb/stosb' instructions */ \ 351 decl(CLMUL, "clmul", 22) /* carryless multiply for CRC */ \ 352 decl(BMI1, "bmi1", 23) \ 353 \ 354 decl(BMI2, "bmi2", 24) \ 355 decl(RTM, "rtm", 25) /* Restricted Transactional Memory instructions */ \ 356 decl(ADX, "adx", 26) \ 357 decl(AVX512F, "avx512f", 27) /* AVX 512bit foundation instructions */ \ 358 \ 359 decl(AVX512DQ, "avx512dq", 28) \ 360 decl(AVX512PF, "avx512pf", 29) \ 361 decl(AVX512ER, "avx512er", 30) \ 362 decl(AVX512CD, "avx512cd", 31) \ 363 \ 364 decl(AVX512BW, "avx512bw", 32) /* Byte and word vector instructions */ \ 365 decl(AVX512VL, "avx512vl", 33) /* EVEX instructions with smaller vector length */ \ 366 decl(SHA, "sha", 34) /* SHA instructions */ \ 367 decl(FMA, "fma", 35) /* FMA instructions */ \ 368 \ 369 decl(VZEROUPPER, "vzeroupper", 36) /* Vzeroupper instruction */ \ 370 decl(AVX512_VPOPCNTDQ, "avx512_vpopcntdq", 37) /* Vector popcount */ \ 371 decl(AVX512_VPCLMULQDQ, "avx512_vpclmulqdq", 38) /* Vector carryless multiplication */ \ 372 decl(AVX512_VAES, "avx512_vaes", 39) /* Vector AES instruction */ \ 373 \ 374 decl(AVX512_VNNI, "avx512_vnni", 40) /* Vector Neural Network Instructions */ \ 375 decl(FLUSH, "clflush", 41) /* flush instruction */ \ 376 decl(FLUSHOPT, "clflushopt", 42) /* flusopth instruction */ \ 377 decl(CLWB, "clwb", 43) /* clwb instruction */ \ 378 \ 379 decl(AVX512_VBMI2, "avx512_vbmi2", 44) /* VBMI2 shift left double instructions */ \ 380 decl(AVX512_VBMI, "avx512_vbmi", 45) /* Vector BMI instructions */ \ 381 decl(HV, "hv", 46) /* Hypervisor instructions */ \ 382 decl(SERIALIZE, "serialize", 47) /* CPU SERIALIZE */ \ 383 decl(RDTSCP, "rdtscp", 48) /* RDTSCP instruction */ \ 384 decl(RDPID, "rdpid", 49) /* RDPID instruction */ \ 385 decl(FSRM, "fsrm", 50) /* Fast Short REP MOV */ \ 386 decl(GFNI, "gfni", 51) /* Vector GFNI instructions */ \ 387 decl(AVX512_BITALG, "avx512_bitalg", 52) /* Vector sub-word popcount and bit gather instructions */\ 388 decl(F16C, "f16c", 53) /* Half-precision and single precision FP conversion instructions*/ \ 389 decl(PKU, "pku", 54) /* Protection keys for user-mode pages */ \ 390 decl(OSPKE, "ospke", 55) /* OS enables protection keys */ \ 391 decl(CET_IBT, "cet_ibt", 56) /* Control Flow Enforcement - Indirect Branch Tracking */ \ 392 decl(CET_SS, "cet_ss", 57) /* Control Flow Enforcement - Shadow Stack */ \ 393 decl(AVX512_IFMA, "avx512_ifma", 58) /* Integer Vector FMA instructions*/ 394 395 #define DECLARE_CPU_FEATURE_FLAG(id, name, bit) CPU_##id = (1ULL << bit), 396 CPU_FEATURE_FLAGS(DECLARE_CPU_FEATURE_FLAG) 397 #undef DECLARE_CPU_FEATURE_FLAG 398 }; 399 400 static const char* _features_names[]; 401 402 enum Extended_Family { 403 // AMD 404 CPU_FAMILY_AMD_11H = 0x11, 405 // ZX 406 CPU_FAMILY_ZX_CORE_F6 = 6, 407 CPU_FAMILY_ZX_CORE_F7 = 7, 408 // Intel 409 CPU_FAMILY_INTEL_CORE = 6, 410 CPU_MODEL_NEHALEM = 0x1e, 411 CPU_MODEL_NEHALEM_EP = 0x1a, 412 CPU_MODEL_NEHALEM_EX = 0x2e, 413 CPU_MODEL_WESTMERE = 0x25, 414 CPU_MODEL_WESTMERE_EP = 0x2c, 415 CPU_MODEL_WESTMERE_EX = 0x2f, 416 CPU_MODEL_SANDYBRIDGE = 0x2a, 417 CPU_MODEL_SANDYBRIDGE_EP = 0x2d, 418 CPU_MODEL_IVYBRIDGE_EP = 0x3a, 419 CPU_MODEL_HASWELL_E3 = 0x3c, 420 CPU_MODEL_HASWELL_E7 = 0x3f, 421 CPU_MODEL_BROADWELL = 0x3d, 422 CPU_MODEL_SKYLAKE = 0x55 423 }; 424 425 // cpuid information block. All info derived from executing cpuid with 426 // various function numbers is stored here. Intel and AMD info is 427 // merged in this block: accessor methods disentangle it. 428 // 429 // The info block is laid out in subblocks of 4 dwords corresponding to 430 // eax, ebx, ecx and edx, whether or not they contain anything useful. 431 struct CpuidInfo { 432 // cpuid function 0 433 uint32_t std_max_function; 434 uint32_t std_vendor_name_0; 435 uint32_t std_vendor_name_1; 436 uint32_t std_vendor_name_2; 437 438 // cpuid function 1 439 StdCpuid1Eax std_cpuid1_eax; 440 StdCpuid1Ebx std_cpuid1_ebx; 441 StdCpuid1Ecx std_cpuid1_ecx; 442 StdCpuid1Edx std_cpuid1_edx; 443 444 // cpuid function 4 (deterministic cache parameters) 445 DcpCpuid4Eax dcp_cpuid4_eax; 446 DcpCpuid4Ebx dcp_cpuid4_ebx; 447 uint32_t dcp_cpuid4_ecx; // unused currently 448 uint32_t dcp_cpuid4_edx; // unused currently 449 450 // cpuid function 7 (structured extended features) 451 SefCpuid7Eax sef_cpuid7_eax; 452 SefCpuid7Ebx sef_cpuid7_ebx; 453 SefCpuid7Ecx sef_cpuid7_ecx; 454 SefCpuid7Edx sef_cpuid7_edx; 455 456 // cpuid function 0xB (processor topology) 457 // ecx = 0 458 uint32_t tpl_cpuidB0_eax; 459 TplCpuidBEbx tpl_cpuidB0_ebx; 460 uint32_t tpl_cpuidB0_ecx; // unused currently 461 uint32_t tpl_cpuidB0_edx; // unused currently 462 463 // ecx = 1 464 uint32_t tpl_cpuidB1_eax; 465 TplCpuidBEbx tpl_cpuidB1_ebx; 466 uint32_t tpl_cpuidB1_ecx; // unused currently 467 uint32_t tpl_cpuidB1_edx; // unused currently 468 469 // ecx = 2 470 uint32_t tpl_cpuidB2_eax; 471 TplCpuidBEbx tpl_cpuidB2_ebx; 472 uint32_t tpl_cpuidB2_ecx; // unused currently 473 uint32_t tpl_cpuidB2_edx; // unused currently 474 475 // cpuid function 0x80000000 // example, unused 476 uint32_t ext_max_function; 477 uint32_t ext_vendor_name_0; 478 uint32_t ext_vendor_name_1; 479 uint32_t ext_vendor_name_2; 480 481 // cpuid function 0x80000001 482 uint32_t ext_cpuid1_eax; // reserved 483 uint32_t ext_cpuid1_ebx; // reserved 484 ExtCpuid1Ecx ext_cpuid1_ecx; 485 ExtCpuid1Edx ext_cpuid1_edx; 486 487 // cpuid functions 0x80000002 thru 0x80000004: example, unused 488 uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3; 489 uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7; 490 uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11; 491 492 // cpuid function 0x80000005 // AMD L1, Intel reserved 493 uint32_t ext_cpuid5_eax; // unused currently 494 uint32_t ext_cpuid5_ebx; // reserved 495 ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD) 496 ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD) 497 498 // cpuid function 0x80000007 499 uint32_t ext_cpuid7_eax; // reserved 500 uint32_t ext_cpuid7_ebx; // reserved 501 uint32_t ext_cpuid7_ecx; // reserved 502 ExtCpuid7Edx ext_cpuid7_edx; // tscinv 503 504 // cpuid function 0x80000008 505 uint32_t ext_cpuid8_eax; // unused currently 506 uint32_t ext_cpuid8_ebx; // reserved 507 ExtCpuid8Ecx ext_cpuid8_ecx; 508 uint32_t ext_cpuid8_edx; // reserved 509 510 // cpuid function 0x8000001E // AMD 17h 511 uint32_t ext_cpuid1E_eax; 512 ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h) 513 uint32_t ext_cpuid1E_ecx; 514 uint32_t ext_cpuid1E_edx; // unused currently 515 516 // extended control register XCR0 (the XFEATURE_ENABLED_MASK register) 517 XemXcr0Eax xem_xcr0_eax; 518 uint32_t xem_xcr0_edx; // reserved 519 520 // Space to save ymm registers after signal handle 521 int ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15 522 523 // Space to save zmm registers after signal handle 524 int zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31 525 }; 526 527 private: 528 // The actual cpuid info block 529 static CpuidInfo _cpuid_info; 530 531 // Extractors and predicates 532 static uint32_t extended_cpu_family() { 533 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family; 534 result += _cpuid_info.std_cpuid1_eax.bits.ext_family; 535 return result; 536 } 537 538 static uint32_t extended_cpu_model() { 539 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model; 540 result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4; 541 return result; 542 } 543 544 static uint32_t cpu_stepping() { 545 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping; 546 return result; 547 } 548 549 static uint logical_processor_count() { 550 uint result = threads_per_core(); 551 return result; 552 } 553 554 static bool compute_has_intel_jcc_erratum(); 555 556 static uint64_t feature_flags(); 557 static bool os_supports_avx_vectors(); 558 static void get_processor_features(); 559 560 public: 561 // Offsets for cpuid asm stub 562 static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); } 563 static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); } 564 static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); } 565 static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); } 566 static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); } 567 static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); } 568 static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); } 569 static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); } 570 static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); } 571 static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); } 572 static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); } 573 static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); } 574 static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); } 575 static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); } 576 static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); } 577 578 // The value used to check ymm register after signal handle 579 static int ymm_test_value() { return 0xCAFEBABE; } 580 581 static void get_cpu_info_wrapper(); 582 static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; } 583 static bool is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; } 584 static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; } 585 static address cpuinfo_cont_addr() { return _cpuinfo_cont_addr; } 586 587 static void clean_cpuFeatures() { _features = 0; } 588 static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); } 589 static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); } 590 591 // Initialization 592 static void initialize(); 593 594 // Override Abstract_VM_Version implementation 595 static void print_platform_virtualization_info(outputStream*); 596 597 // Asserts 598 static void assert_is_initialized() { 599 assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized"); 600 } 601 602 // 603 // Processor family: 604 // 3 - 386 605 // 4 - 486 606 // 5 - Pentium 607 // 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon, 608 // Pentium M, Core Solo, Core Duo, Core2 Duo 609 // family 6 model: 9, 13, 14, 15 610 // 0x0f - Pentium 4, Opteron 611 // 612 // Note: The cpu family should be used to select between 613 // instruction sequences which are valid on all Intel 614 // processors. Use the feature test functions below to 615 // determine whether a particular instruction is supported. 616 // 617 static int cpu_family() { return _cpu;} 618 static bool is_P6() { return cpu_family() >= 6; } 619 static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA' 620 static bool is_hygon() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH' 621 static bool is_amd_family() { return is_amd() || is_hygon(); } 622 static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG' 623 static bool is_zx() { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS ' 624 static bool is_atom_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton 625 static bool is_knights_family() { return UseKNLSetting || ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi 626 627 static bool supports_processor_topology() { 628 return (_cpuid_info.std_max_function >= 0xB) && 629 // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level. 630 // Some cpus have max cpuid >= 0xB but do not support processor topology. 631 (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0); 632 } 633 634 static uint cores_per_cpu(); 635 static uint threads_per_core(); 636 static uint L1_line_size(); 637 638 static uint prefetch_data_size() { 639 return L1_line_size(); 640 } 641 642 // 643 // Feature identification 644 // 645 static bool supports_cpuid() { return _features != 0; } 646 static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; } 647 static bool supports_cmov() { return (_features & CPU_CMOV) != 0; } 648 static bool supports_fxsr() { return (_features & CPU_FXSR) != 0; } 649 static bool supports_ht() { return (_features & CPU_HT) != 0; } 650 static bool supports_mmx() { return (_features & CPU_MMX) != 0; } 651 static bool supports_sse() { return (_features & CPU_SSE) != 0; } 652 static bool supports_sse2() { return (_features & CPU_SSE2) != 0; } 653 static bool supports_sse3() { return (_features & CPU_SSE3) != 0; } 654 static bool supports_ssse3() { return (_features & CPU_SSSE3)!= 0; } 655 static bool supports_sse4_1() { return (_features & CPU_SSE4_1) != 0; } 656 static bool supports_sse4_2() { return (_features & CPU_SSE4_2) != 0; } 657 static bool supports_popcnt() { return (_features & CPU_POPCNT) != 0; } 658 static bool supports_avx() { return (_features & CPU_AVX) != 0; } 659 static bool supports_avx2() { return (_features & CPU_AVX2) != 0; } 660 static bool supports_tsc() { return (_features & CPU_TSC) != 0; } 661 static bool supports_rdtscp() { return (_features & CPU_RDTSCP) != 0; } 662 static bool supports_rdpid() { return (_features & CPU_RDPID) != 0; } 663 static bool supports_aes() { return (_features & CPU_AES) != 0; } 664 static bool supports_erms() { return (_features & CPU_ERMS) != 0; } 665 static bool supports_fsrm() { return (_features & CPU_FSRM) != 0; } 666 static bool supports_clmul() { return (_features & CPU_CLMUL) != 0; } 667 static bool supports_rtm() { return (_features & CPU_RTM) != 0; } 668 static bool supports_bmi1() { return (_features & CPU_BMI1) != 0; } 669 static bool supports_bmi2() { return (_features & CPU_BMI2) != 0; } 670 static bool supports_adx() { return (_features & CPU_ADX) != 0; } 671 static bool supports_evex() { return (_features & CPU_AVX512F) != 0; } 672 static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; } 673 static bool supports_avx512ifma() { return (_features & CPU_AVX512_IFMA) != 0; } 674 static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; } 675 static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; } 676 static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; } 677 static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; } 678 static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; } 679 static bool supports_avx512vlbw() { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); } 680 static bool supports_avx512bwdq() { return (supports_evex() && supports_avx512bw() && supports_avx512dq()); } 681 static bool supports_avx512vldq() { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); } 682 static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() && 683 supports_avx512bw() && supports_avx512dq()); } 684 static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); } 685 static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); } 686 static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); } 687 static bool supports_avxonly() { return ((supports_avx2() || supports_avx()) && !supports_evex()); } 688 static bool supports_sha() { return (_features & CPU_SHA) != 0; } 689 static bool supports_fma() { return (_features & CPU_FMA) != 0 && supports_avx(); } 690 static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; } 691 static bool supports_avx512_vpopcntdq() { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; } 692 static bool supports_avx512_vpclmulqdq() { return (_features & CPU_AVX512_VPCLMULQDQ) != 0; } 693 static bool supports_avx512_vaes() { return (_features & CPU_AVX512_VAES) != 0; } 694 static bool supports_gfni() { return (_features & CPU_GFNI) != 0; } 695 static bool supports_avx512_vnni() { return (_features & CPU_AVX512_VNNI) != 0; } 696 static bool supports_avx512_bitalg() { return (_features & CPU_AVX512_BITALG) != 0; } 697 static bool supports_avx512_vbmi() { return (_features & CPU_AVX512_VBMI) != 0; } 698 static bool supports_avx512_vbmi2() { return (_features & CPU_AVX512_VBMI2) != 0; } 699 static bool supports_hv() { return (_features & CPU_HV) != 0; } 700 static bool supports_serialize() { return (_features & CPU_SERIALIZE) != 0; } 701 static bool supports_f16c() { return (_features & CPU_F16C) != 0; } 702 static bool supports_pku() { return (_features & CPU_PKU) != 0; } 703 static bool supports_ospke() { return (_features & CPU_OSPKE) != 0; } 704 static bool supports_cet_ss() { return (_features & CPU_CET_SS) != 0; } 705 static bool supports_cet_ibt() { return (_features & CPU_CET_IBT) != 0; } 706 707 // Intel features 708 static bool is_intel_family_core() { return is_intel() && 709 extended_cpu_family() == CPU_FAMILY_INTEL_CORE; } 710 711 static bool is_intel_skylake() { return is_intel_family_core() && 712 extended_cpu_model() == CPU_MODEL_SKYLAKE; } 713 714 #ifdef COMPILER2 715 // Determine if it's running on Cascade Lake using default options. 716 static bool is_default_intel_cascade_lake(); 717 #endif 718 719 static bool is_intel_cascade_lake(); 720 721 static int avx3_threshold(); 722 723 static bool is_intel_tsc_synched_at_init(); 724 725 // This checks if the JVM is potentially affected by an erratum on Intel CPUs (SKX102) 726 // that causes unpredictable behaviour when jcc crosses 64 byte boundaries. Its microcode 727 // mitigation causes regressions when jumps or fused conditional branches cross or end at 728 // 32 byte boundaries. 729 static bool has_intel_jcc_erratum() { return _has_intel_jcc_erratum; } 730 731 // AMD features 732 static bool supports_3dnow_prefetch() { return (_features & CPU_3DNOW_PREFETCH) != 0; } 733 static bool supports_lzcnt() { return (_features & CPU_LZCNT) != 0; } 734 static bool supports_sse4a() { return (_features & CPU_SSE4A) != 0; } 735 736 static bool is_amd_Barcelona() { return is_amd() && 737 extended_cpu_family() == CPU_FAMILY_AMD_11H; } 738 739 // Intel and AMD newer cores support fast timestamps well 740 static bool supports_tscinv_bit() { 741 return (_features & CPU_TSCINV_BIT) != 0; 742 } 743 static bool supports_tscinv() { 744 return (_features & CPU_TSCINV) != 0; 745 } 746 747 // Intel Core and newer cpus have fast IDIV instruction (excluding Atom). 748 static bool has_fast_idiv() { return is_intel() && cpu_family() == 6 && 749 supports_sse3() && _model != 0x1C; } 750 751 static bool supports_compare_and_exchange() { return true; } 752 753 static intx allocate_prefetch_distance(bool use_watermark_prefetch); 754 755 // SSE2 and later processors implement a 'pause' instruction 756 // that can be used for efficient implementation of 757 // the intrinsic for java.lang.Thread.onSpinWait() 758 static bool supports_on_spin_wait() { return supports_sse2(); } 759 760 // x86_64 supports fast class initialization checks for static methods. 761 static bool supports_fast_class_init_checks() { 762 return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32 763 } 764 765 constexpr static bool supports_stack_watermark_barrier() { 766 return true; 767 } 768 769 // For AVX CPUs only. f16c support is disabled if UseAVX == 0. 770 static bool supports_float16() { 771 return supports_f16c() || supports_avx512vl(); 772 } 773 774 // Check intrinsic support 775 static bool is_intrinsic_supported(vmIntrinsicID id); 776 777 // there are several insns to force cache line sync to memory which 778 // we can use to ensure mapped non-volatile memory is up to date with 779 // pending in-cache changes. 780 // 781 // 64 bit cpus always support clflush which writes back and evicts 782 // on 32 bit cpus support is recorded via a feature flag 783 // 784 // clflushopt is optional and acts like clflush except it does 785 // not synchronize with other memory ops. it needs a preceding 786 // and trailing StoreStore fence 787 // 788 // clwb is an optional intel-specific instruction which 789 // writes back without evicting the line. it also does not 790 // synchronize with other memory ops. so, it needs preceding 791 // and trailing StoreStore fences. 792 793 #ifdef _LP64 794 static bool supports_clflush(); // Can't inline due to header file conflict 795 #else 796 static bool supports_clflush() { return ((_features & CPU_FLUSH) != 0); } 797 #endif // _LP64 798 799 // Note: CPU_FLUSHOPT and CPU_CLWB bits should always be zero for 32-bit 800 static bool supports_clflushopt() { return ((_features & CPU_FLUSHOPT) != 0); } 801 static bool supports_clwb() { return ((_features & CPU_CLWB) != 0); } 802 803 // Old CPUs perform lea on AGU which causes additional latency transferring the 804 // value from/to ALU for other operations 805 static bool supports_fast_2op_lea() { 806 return (is_intel() && supports_avx()) || // Sandy Bridge and above 807 (is_amd() && supports_avx()); // Jaguar and Bulldozer and above 808 } 809 810 // Pre Icelake Intels suffer inefficiency regarding 3-operand lea, which contains 811 // all of base register, index register and displacement immediate, with 3 latency. 812 // Note that when the address contains no displacement but the base register is 813 // rbp or r13, the machine code must contain a zero displacement immediate, 814 // effectively transform a 2-operand lea into a 3-operand lea. This can be 815 // replaced by add-add or lea-add 816 static bool supports_fast_3op_lea() { 817 return supports_fast_2op_lea() && 818 ((is_intel() && supports_clwb() && !is_intel_skylake()) || // Icelake and above 819 is_amd()); 820 } 821 822 #ifdef __APPLE__ 823 // Is the CPU running emulated (for example macOS Rosetta running x86_64 code on M1 ARM (aarch64) 824 static bool is_cpu_emulated(); 825 #endif 826 827 // support functions for virtualization detection 828 private: 829 static void check_virtualizations(); 830 831 static const char* cpu_family_description(void); 832 static const char* cpu_model_description(void); 833 static const char* cpu_brand(void); 834 static const char* cpu_brand_string(void); 835 836 static int cpu_type_description(char* const buf, size_t buf_len); 837 static int cpu_detailed_description(char* const buf, size_t buf_len); 838 static int cpu_extended_brand_string(char* const buf, size_t buf_len); 839 840 static bool cpu_is_em64t(void); 841 static bool is_netburst(void); 842 843 // Returns bytes written excluding termninating null byte. 844 static size_t cpu_write_support_string(char* const buf, size_t buf_len); 845 static void resolve_cpu_information_details(void); 846 static int64_t max_qualified_cpu_freq_from_brand_string(void); 847 848 public: 849 // Offsets for cpuid asm stub brand string 850 static ByteSize proc_name_0_offset() { return byte_offset_of(CpuidInfo, proc_name_0); } 851 static ByteSize proc_name_1_offset() { return byte_offset_of(CpuidInfo, proc_name_1); } 852 static ByteSize proc_name_2_offset() { return byte_offset_of(CpuidInfo, proc_name_2); } 853 static ByteSize proc_name_3_offset() { return byte_offset_of(CpuidInfo, proc_name_3); } 854 static ByteSize proc_name_4_offset() { return byte_offset_of(CpuidInfo, proc_name_4); } 855 static ByteSize proc_name_5_offset() { return byte_offset_of(CpuidInfo, proc_name_5); } 856 static ByteSize proc_name_6_offset() { return byte_offset_of(CpuidInfo, proc_name_6); } 857 static ByteSize proc_name_7_offset() { return byte_offset_of(CpuidInfo, proc_name_7); } 858 static ByteSize proc_name_8_offset() { return byte_offset_of(CpuidInfo, proc_name_8); } 859 static ByteSize proc_name_9_offset() { return byte_offset_of(CpuidInfo, proc_name_9); } 860 static ByteSize proc_name_10_offset() { return byte_offset_of(CpuidInfo, proc_name_10); } 861 static ByteSize proc_name_11_offset() { return byte_offset_of(CpuidInfo, proc_name_11); } 862 863 static int64_t maximum_qualified_cpu_frequency(void); 864 865 static bool supports_tscinv_ext(void); 866 867 static void initialize_tsc(); 868 static void initialize_cpu_information(void); 869 }; 870 871 #endif // CPU_X86_VM_VERSION_X86_HPP