1 /* 2 * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 33 class BlockBegin; 34 class BlockList; 35 class LIR_Assembler; 36 class CodeEmitInfo; 37 class CodeStub; 38 class CodeStubList; 39 class C1SafepointPollStub; 40 class ArrayCopyStub; 41 class LIR_Op; 42 class ciType; 43 class ValueType; 44 class LIR_OpVisitState; 45 class FpuStackSim; 46 47 //--------------------------------------------------------------------- 48 // LIR Operands 49 // LIR_OprPtr 50 // LIR_Const 51 // LIR_Address 52 //--------------------------------------------------------------------- 53 class LIR_OprPtr; 54 class LIR_Const; 55 class LIR_Address; 56 class LIR_OprVisitor; 57 class LIR_Opr; 58 59 typedef int RegNr; 60 61 typedef GrowableArray<LIR_Opr> LIR_OprList; 62 typedef GrowableArray<LIR_Op*> LIR_OpArray; 63 typedef GrowableArray<LIR_Op*> LIR_OpList; 64 65 // define LIR_OprPtr early so LIR_Opr can refer to it 66 class LIR_OprPtr: public CompilationResourceObj { 67 public: 68 bool is_oop_pointer() const { return (type() == T_OBJECT); } 69 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 70 71 virtual LIR_Const* as_constant() { return nullptr; } 72 virtual LIR_Address* as_address() { return nullptr; } 73 virtual BasicType type() const = 0; 74 virtual void print_value_on(outputStream* out) const = 0; 75 }; 76 77 78 79 // LIR constants 80 class LIR_Const: public LIR_OprPtr { 81 private: 82 JavaValue _value; 83 84 void type_check(BasicType t) const { assert(type() == t, "type check"); } 85 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 86 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 87 88 public: 89 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 90 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 91 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 92 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 93 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 94 LIR_Const(void* p) { 95 #ifdef _LP64 96 assert(sizeof(jlong) >= sizeof(p), "too small");; 97 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 98 #else 99 assert(sizeof(jint) >= sizeof(p), "too small");; 100 _value.set_type(T_INT); _value.set_jint((jint)p); 101 #endif 102 } 103 LIR_Const(Metadata* m) { 104 _value.set_type(T_METADATA); 105 #ifdef _LP64 106 _value.set_jlong((jlong)m); 107 #else 108 _value.set_jint((jint)m); 109 #endif // _LP64 110 } 111 112 virtual BasicType type() const { return _value.get_type(); } 113 virtual LIR_Const* as_constant() { return this; } 114 115 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 116 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 117 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 118 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 119 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 120 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 121 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 122 123 #ifdef _LP64 124 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 125 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 126 #else 127 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 129 #endif 130 131 132 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 133 jint as_jint_lo_bits() const { 134 if (type() == T_DOUBLE) { 135 return low(jlong_cast(_value.get_jdouble())); 136 } else { 137 return as_jint_lo(); 138 } 139 } 140 jint as_jint_hi_bits() const { 141 if (type() == T_DOUBLE) { 142 return high(jlong_cast(_value.get_jdouble())); 143 } else { 144 return as_jint_hi(); 145 } 146 } 147 jlong as_jlong_bits() const { 148 if (type() == T_DOUBLE) { 149 return jlong_cast(_value.get_jdouble()); 150 } else { 151 return as_jlong(); 152 } 153 } 154 155 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 156 157 158 bool is_zero_float() { 159 jfloat f = as_jfloat(); 160 jfloat ok = 0.0f; 161 return jint_cast(f) == jint_cast(ok); 162 } 163 164 bool is_one_float() { 165 jfloat f = as_jfloat(); 166 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 167 } 168 169 bool is_zero_double() { 170 jdouble d = as_jdouble(); 171 jdouble ok = 0.0; 172 return jlong_cast(d) == jlong_cast(ok); 173 } 174 175 bool is_one_double() { 176 jdouble d = as_jdouble(); 177 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 178 } 179 }; 180 181 182 //---------------------LIR Operand descriptor------------------------------------ 183 // 184 // The class LIR_Opr represents a LIR instruction operand; 185 // it can be a register (ALU/FPU), stack location or a constant; 186 // Constants and addresses are represented as resource area allocated 187 // structures (see above), and pointers are stored in the _value field (cast to 188 // an intptr_t). 189 // Registers and stack locations are represented inline as integers. 190 // (see value function). 191 192 // Previously, this class was derived from CompilationResourceObj. 193 // However, deriving from any of the "Obj" types in allocation.hpp seems 194 // detrimental, since in some build modes it would add a vtable to this class, 195 // which make it no longer be a 1-word trivially-copyable wrapper object, 196 // which is the entire point of it. 197 198 class LIR_Opr { 199 public: 200 // value structure: 201 // data other-non-data opr-type opr-kind 202 // +-------------------+--------------+-------+-----+ 203 // [max...............................|6 5 4 3|2 1 0] 204 // ^ 205 // is_pointer bit 206 // 207 // lowest bit cleared, means it is a structure pointer 208 // we need 4 bits to represent types 209 210 private: 211 friend class LIR_OprFact; 212 213 intptr_t _value; 214 // Conversion 215 intptr_t value() const { return _value; } 216 217 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 218 return (value() & mask) == masked_value; 219 } 220 221 enum OprKind { 222 pointer_value = 0 223 , stack_value = 1 224 , cpu_register = 3 225 , fpu_register = 5 226 , illegal_value = 7 227 }; 228 229 enum OprBits { 230 pointer_bits = 1 231 , kind_bits = 3 232 , type_bits = 4 233 , size_bits = 2 234 , destroys_bits = 1 235 , virtual_bits = 1 236 , is_xmm_bits = 1 237 , last_use_bits = 1 238 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation 239 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 240 + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits 241 , data_bits = BitsPerInt - non_data_bits 242 , reg_bits = data_bits / 2 // for two registers in one value encoding 243 }; 244 245 enum OprShift : uintptr_t { 246 kind_shift = 0 247 , type_shift = kind_shift + kind_bits 248 , size_shift = type_shift + type_bits 249 , destroys_shift = size_shift + size_bits 250 , last_use_shift = destroys_shift + destroys_bits 251 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits 252 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits 253 , is_xmm_shift = virtual_shift + virtual_bits 254 , data_shift = is_xmm_shift + is_xmm_bits 255 , reg1_shift = data_shift 256 , reg2_shift = data_shift + reg_bits 257 258 }; 259 260 enum OprSize { 261 single_size = 0 << size_shift 262 , double_size = 1 << size_shift 263 }; 264 265 enum OprMask { 266 kind_mask = right_n_bits(kind_bits) 267 , type_mask = right_n_bits(type_bits) << type_shift 268 , size_mask = right_n_bits(size_bits) << size_shift 269 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 270 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift 271 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 272 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 273 , pointer_mask = right_n_bits(pointer_bits) 274 , lower_reg_mask = right_n_bits(reg_bits) 275 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask)) 276 }; 277 278 uint32_t data() const { return (uint32_t)value() >> data_shift; } 279 int lo_reg_half() const { return data() & lower_reg_mask; } 280 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 281 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 282 OprSize size_field() const { return (OprSize)(value() & size_mask); } 283 284 static char type_char(BasicType t); 285 286 public: 287 LIR_Opr() : _value(0) {} 288 LIR_Opr(intptr_t val) : _value(val) {} 289 LIR_Opr(LIR_OprPtr *val) : _value(reinterpret_cast<intptr_t>(val)) {} 290 bool operator==(const LIR_Opr &other) const { return _value == other._value; } 291 bool operator!=(const LIR_Opr &other) const { return _value != other._value; } 292 explicit operator bool() const { return _value != 0; } 293 294 // UGLY HACK: make this value object look like a pointer (to itself). This 295 // operator overload should be removed, and all callers updated from 296 // `opr->fn()` to `opr.fn()`. 297 const LIR_Opr* operator->() const { return this; } 298 LIR_Opr* operator->() { return this; } 299 300 enum { 301 vreg_base = ConcreteRegisterImpl::number_of_registers, 302 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field 303 vreg_limit = 10000, // choose a reasonable limit, 304 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field 305 }; 306 307 static inline LIR_Opr illegalOpr(); 308 static inline LIR_Opr nullOpr(); 309 310 enum OprType { 311 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 312 , int_type = 1 << type_shift 313 , long_type = 2 << type_shift 314 , object_type = 3 << type_shift 315 , address_type = 4 << type_shift 316 , float_type = 5 << type_shift 317 , double_type = 6 << type_shift 318 , metadata_type = 7 << type_shift 319 }; 320 friend OprType as_OprType(BasicType t); 321 friend BasicType as_BasicType(OprType t); 322 323 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 324 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 325 326 static OprSize size_for(BasicType t) { 327 switch (t) { 328 case T_LONG: 329 case T_DOUBLE: 330 return double_size; 331 break; 332 333 case T_FLOAT: 334 case T_BOOLEAN: 335 case T_CHAR: 336 case T_BYTE: 337 case T_SHORT: 338 case T_INT: 339 case T_ADDRESS: 340 case T_OBJECT: 341 case T_ARRAY: 342 case T_METADATA: 343 return single_size; 344 break; 345 346 default: 347 ShouldNotReachHere(); 348 return single_size; 349 } 350 } 351 352 353 void validate_type() const PRODUCT_RETURN; 354 355 BasicType type() const { 356 if (is_pointer()) { 357 return pointer()->type(); 358 } 359 return as_BasicType(type_field()); 360 } 361 362 363 ValueType* value_type() const { return as_ValueType(type()); } 364 365 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 366 367 bool is_equal(LIR_Opr opr) const { return *this == opr; } 368 // checks whether types are same 369 bool is_same_type(LIR_Opr opr) const { 370 assert(type_field() != unknown_type && 371 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 372 return type_field() == opr->type_field(); 373 } 374 bool is_same_register(LIR_Opr opr) { 375 return (is_register() && opr->is_register() && 376 kind_field() == opr->kind_field() && 377 (value() & no_type_mask) == (opr->value() & no_type_mask)); 378 } 379 380 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 381 bool is_illegal() const { return kind_field() == illegal_value; } 382 bool is_valid() const { return kind_field() != illegal_value; } 383 384 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 385 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 386 387 bool is_constant() const { return is_pointer() && pointer()->as_constant() != nullptr; } 388 bool is_address() const { return is_pointer() && pointer()->as_address() != nullptr; } 389 390 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 391 bool is_oop() const; 392 393 // semantic for fpu- and xmm-registers: 394 // * is_float and is_double return true for xmm_registers 395 // (so is_single_fpu and is_single_xmm are true) 396 // * So you must always check for is_???_xmm prior to is_???_fpu to 397 // distinguish between fpu- and xmm-registers 398 399 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 400 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 401 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 402 403 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 404 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 405 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 406 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 407 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 408 409 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 410 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 411 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 412 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 413 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 414 415 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 416 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 417 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 418 419 // fast accessor functions for special bits that do not work for pointers 420 // (in this functions, the check for is_pointer() is omitted) 421 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 422 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 423 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 424 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 425 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 426 427 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 428 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; } 429 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 430 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); } 431 432 433 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 434 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 435 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 436 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 437 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 438 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 439 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 440 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 441 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 442 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 443 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 444 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 445 446 LIR_OprPtr* pointer() const { assert(_value != 0 && is_pointer(), "nullness and type check"); return (LIR_OprPtr*)_value; } 447 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 448 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 449 450 Register as_register() const; 451 Register as_register_lo() const; 452 Register as_register_hi() const; 453 454 Register as_pointer_register() { 455 #ifdef _LP64 456 if (is_double_cpu()) { 457 assert(as_register_lo() == as_register_hi(), "should be a single register"); 458 return as_register_lo(); 459 } 460 #endif 461 return as_register(); 462 } 463 464 FloatRegister as_float_reg () const; 465 FloatRegister as_double_reg () const; 466 #ifdef X86 467 XMMRegister as_xmm_float_reg () const; 468 XMMRegister as_xmm_double_reg() const; 469 // for compatibility with RInfo 470 int fpu() const { return lo_reg_half(); } 471 #endif 472 473 jint as_jint() const { return as_constant_ptr()->as_jint(); } 474 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 475 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 476 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 477 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 478 479 void print() const PRODUCT_RETURN; 480 void print(outputStream* out) const PRODUCT_RETURN; 481 }; 482 483 inline LIR_Opr::OprType as_OprType(BasicType type) { 484 switch (type) { 485 case T_INT: return LIR_Opr::int_type; 486 case T_LONG: return LIR_Opr::long_type; 487 case T_FLOAT: return LIR_Opr::float_type; 488 case T_DOUBLE: return LIR_Opr::double_type; 489 case T_OBJECT: 490 case T_ARRAY: return LIR_Opr::object_type; 491 case T_ADDRESS: return LIR_Opr::address_type; 492 case T_METADATA: return LIR_Opr::metadata_type; 493 case T_ILLEGAL: // fall through 494 default: ShouldNotReachHere(); return LIR_Opr::unknown_type; 495 } 496 } 497 498 inline BasicType as_BasicType(LIR_Opr::OprType t) { 499 switch (t) { 500 case LIR_Opr::int_type: return T_INT; 501 case LIR_Opr::long_type: return T_LONG; 502 case LIR_Opr::float_type: return T_FLOAT; 503 case LIR_Opr::double_type: return T_DOUBLE; 504 case LIR_Opr::object_type: return T_OBJECT; 505 case LIR_Opr::address_type: return T_ADDRESS; 506 case LIR_Opr::metadata_type:return T_METADATA; 507 case LIR_Opr::unknown_type: // fall through 508 default: ShouldNotReachHere(); return T_ILLEGAL; 509 } 510 } 511 512 513 // LIR_Address 514 class LIR_Address: public LIR_OprPtr { 515 friend class LIR_OpVisitState; 516 517 public: 518 // NOTE: currently these must be the log2 of the scale factor (and 519 // must also be equivalent to the ScaleFactor enum in 520 // assembler_i486.hpp) 521 enum Scale { 522 times_1 = 0, 523 times_2 = 1, 524 times_4 = 2, 525 times_8 = 3 526 }; 527 528 private: 529 LIR_Opr _base; 530 LIR_Opr _index; 531 Scale _scale; 532 intx _disp; 533 BasicType _type; 534 535 public: 536 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 537 _base(base) 538 , _index(index) 539 , _scale(times_1) 540 , _disp(0) 541 , _type(type) { verify(); } 542 543 LIR_Address(LIR_Opr base, intx disp, BasicType type): 544 _base(base) 545 , _index(LIR_Opr::illegalOpr()) 546 , _scale(times_1) 547 , _disp(disp) 548 , _type(type) { verify(); } 549 550 LIR_Address(LIR_Opr base, BasicType type): 551 _base(base) 552 , _index(LIR_Opr::illegalOpr()) 553 , _scale(times_1) 554 , _disp(0) 555 , _type(type) { verify(); } 556 557 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 558 _base(base) 559 , _index(index) 560 , _scale(times_1) 561 , _disp(disp) 562 , _type(type) { verify(); } 563 564 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 565 _base(base) 566 , _index(index) 567 , _scale(scale) 568 , _disp(disp) 569 , _type(type) { verify(); } 570 571 LIR_Opr base() const { return _base; } 572 LIR_Opr index() const { return _index; } 573 Scale scale() const { return _scale; } 574 intx disp() const { return _disp; } 575 576 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 577 578 virtual LIR_Address* as_address() { return this; } 579 virtual BasicType type() const { return _type; } 580 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 581 582 void verify() const PRODUCT_RETURN; 583 584 static Scale scale(BasicType type); 585 }; 586 587 588 // operand factory 589 class LIR_OprFact: public AllStatic { 590 public: 591 592 static LIR_Opr illegalOpr; 593 static LIR_Opr nullOpr; 594 595 static LIR_Opr single_cpu(int reg) { 596 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 597 LIR_Opr::int_type | 598 LIR_Opr::cpu_register | 599 LIR_Opr::single_size); 600 } 601 static LIR_Opr single_cpu_oop(int reg) { 602 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 603 LIR_Opr::object_type | 604 LIR_Opr::cpu_register | 605 LIR_Opr::single_size); 606 } 607 static LIR_Opr single_cpu_address(int reg) { 608 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 609 LIR_Opr::address_type | 610 LIR_Opr::cpu_register | 611 LIR_Opr::single_size); 612 } 613 static LIR_Opr single_cpu_metadata(int reg) { 614 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 615 LIR_Opr::metadata_type | 616 LIR_Opr::cpu_register | 617 LIR_Opr::single_size); 618 } 619 static LIR_Opr double_cpu(int reg1, int reg2) { 620 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 621 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 622 (reg2 << LIR_Opr::reg2_shift) | 623 LIR_Opr::long_type | 624 LIR_Opr::cpu_register | 625 LIR_Opr::double_size); 626 } 627 628 static LIR_Opr single_fpu(int reg) { 629 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 630 LIR_Opr::float_type | 631 LIR_Opr::fpu_register | 632 LIR_Opr::single_size); 633 } 634 635 // Platform dependent. 636 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 637 638 #ifdef ARM32 639 static LIR_Opr single_softfp(int reg) { 640 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 641 LIR_Opr::float_type | 642 LIR_Opr::cpu_register | 643 LIR_Opr::single_size); 644 } 645 static LIR_Opr double_softfp(int reg1, int reg2) { 646 return (LIR_Opr)(intptr_t)((reg1 << LIR_Opr::reg1_shift) | 647 (reg2 << LIR_Opr::reg2_shift) | 648 LIR_Opr::double_type | 649 LIR_Opr::cpu_register | 650 LIR_Opr::double_size); 651 } 652 #endif // ARM32 653 654 #if defined(X86) 655 static LIR_Opr single_xmm(int reg) { 656 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 657 LIR_Opr::float_type | 658 LIR_Opr::fpu_register | 659 LIR_Opr::single_size | 660 LIR_Opr::is_xmm_mask); 661 } 662 static LIR_Opr double_xmm(int reg) { 663 return (LIR_Opr)(intptr_t)((reg << LIR_Opr::reg1_shift) | 664 (reg << LIR_Opr::reg2_shift) | 665 LIR_Opr::double_type | 666 LIR_Opr::fpu_register | 667 LIR_Opr::double_size | 668 LIR_Opr::is_xmm_mask); 669 } 670 #endif // X86 671 672 static LIR_Opr virtual_register(int index, BasicType type) { 673 if (index > LIR_Opr::vreg_max) { 674 // Running out of virtual registers. Caller should bailout. 675 return illegalOpr; 676 } 677 678 LIR_Opr res; 679 switch (type) { 680 case T_OBJECT: // fall through 681 case T_ARRAY: 682 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 683 LIR_Opr::object_type | 684 LIR_Opr::cpu_register | 685 LIR_Opr::single_size | 686 LIR_Opr::virtual_mask); 687 break; 688 689 case T_METADATA: 690 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 691 LIR_Opr::metadata_type| 692 LIR_Opr::cpu_register | 693 LIR_Opr::single_size | 694 LIR_Opr::virtual_mask); 695 break; 696 697 case T_INT: 698 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 699 LIR_Opr::int_type | 700 LIR_Opr::cpu_register | 701 LIR_Opr::single_size | 702 LIR_Opr::virtual_mask); 703 break; 704 705 case T_ADDRESS: 706 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 707 LIR_Opr::address_type | 708 LIR_Opr::cpu_register | 709 LIR_Opr::single_size | 710 LIR_Opr::virtual_mask); 711 break; 712 713 case T_LONG: 714 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 715 LIR_Opr::long_type | 716 LIR_Opr::cpu_register | 717 LIR_Opr::double_size | 718 LIR_Opr::virtual_mask); 719 break; 720 721 #ifdef __SOFTFP__ 722 case T_FLOAT: 723 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 724 LIR_Opr::float_type | 725 LIR_Opr::cpu_register | 726 LIR_Opr::single_size | 727 LIR_Opr::virtual_mask); 728 break; 729 case T_DOUBLE: 730 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 731 LIR_Opr::double_type | 732 LIR_Opr::cpu_register | 733 LIR_Opr::double_size | 734 LIR_Opr::virtual_mask); 735 break; 736 #else // __SOFTFP__ 737 case T_FLOAT: 738 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 739 LIR_Opr::float_type | 740 LIR_Opr::fpu_register | 741 LIR_Opr::single_size | 742 LIR_Opr::virtual_mask); 743 break; 744 745 case 746 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 747 LIR_Opr::double_type | 748 LIR_Opr::fpu_register | 749 LIR_Opr::double_size | 750 LIR_Opr::virtual_mask); 751 break; 752 #endif // __SOFTFP__ 753 default: ShouldNotReachHere(); res = illegalOpr; 754 } 755 756 #ifdef ASSERT 757 res->validate_type(); 758 assert(res->vreg_number() == index, "conversion check"); 759 assert(index >= LIR_Opr::vreg_base, "must start at vreg_base"); 760 761 // old-style calculation; check if old and new method are equal 762 LIR_Opr::OprType t = as_OprType(type); 763 #ifdef __SOFTFP__ 764 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 765 t | 766 LIR_Opr::cpu_register | 767 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 768 #else // __SOFTFP__ 769 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | t | 770 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_Opr::fpu_register : LIR_Opr::cpu_register) | 771 LIR_Opr::size_for(type) | LIR_Opr::virtual_mask); 772 assert(res == old_res, "old and new method not equal"); 773 #endif // __SOFTFP__ 774 #endif // ASSERT 775 776 return res; 777 } 778 779 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 780 // the index is platform independent; a double stack using indices 2 and 3 has always 781 // index 2. 782 static LIR_Opr stack(int index, BasicType type) { 783 LIR_Opr res; 784 switch (type) { 785 case T_OBJECT: // fall through 786 case T_ARRAY: 787 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 788 LIR_Opr::object_type | 789 LIR_Opr::stack_value | 790 LIR_Opr::single_size); 791 break; 792 793 case T_METADATA: 794 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 795 LIR_Opr::metadata_type | 796 LIR_Opr::stack_value | 797 LIR_Opr::single_size); 798 break; 799 case T_INT: 800 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 801 LIR_Opr::int_type | 802 LIR_Opr::stack_value | 803 LIR_Opr::single_size); 804 break; 805 806 case T_ADDRESS: 807 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 808 LIR_Opr::address_type | 809 LIR_Opr::stack_value | 810 LIR_Opr::single_size); 811 break; 812 813 case T_LONG: 814 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 815 LIR_Opr::long_type | 816 LIR_Opr::stack_value | 817 LIR_Opr::double_size); 818 break; 819 820 case T_FLOAT: 821 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 822 LIR_Opr::float_type | 823 LIR_Opr::stack_value | 824 LIR_Opr::single_size); 825 break; 826 case T_DOUBLE: 827 res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 828 LIR_Opr::double_type | 829 LIR_Opr::stack_value | 830 LIR_Opr::double_size); 831 break; 832 833 default: ShouldNotReachHere(); res = illegalOpr; 834 } 835 836 #ifdef ASSERT 837 assert(index >= 0, "index must be positive"); 838 assert(index == (int)res->data(), "conversion check"); 839 840 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_Opr::data_shift) | 841 LIR_Opr::stack_value | 842 as_OprType(type) | 843 LIR_Opr::size_for(type)); 844 assert(res == old_res, "old and new method not equal"); 845 #endif 846 847 return res; 848 } 849 850 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 851 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 852 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 853 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 854 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 855 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 856 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 857 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 858 static LIR_Opr illegal() { return (LIR_Opr)-1; } 859 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 860 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 861 862 static LIR_Opr value_type(ValueType* type); 863 }; 864 865 866 //------------------------------------------------------------------------------- 867 // LIR Instructions 868 //------------------------------------------------------------------------------- 869 // 870 // Note: 871 // - every instruction has a result operand 872 // - every instruction has an CodeEmitInfo operand (can be revisited later) 873 // - every instruction has a LIR_OpCode operand 874 // - LIR_OpN, means an instruction that has N input operands 875 // 876 // class hierarchy: 877 // 878 class LIR_Op; 879 class LIR_Op0; 880 class LIR_OpLabel; 881 class LIR_Op1; 882 class LIR_OpBranch; 883 class LIR_OpConvert; 884 class LIR_OpAllocObj; 885 class LIR_OpReturn; 886 class LIR_OpRoundFP; 887 class LIR_Op2; 888 class LIR_OpDelay; 889 class LIR_Op3; 890 class LIR_OpAllocArray; 891 class LIR_Op4; 892 class LIR_OpCall; 893 class LIR_OpJavaCall; 894 class LIR_OpRTCall; 895 class LIR_OpArrayCopy; 896 class LIR_OpUpdateCRC32; 897 class LIR_OpLock; 898 class LIR_OpTypeCheck; 899 class LIR_OpCompareAndSwap; 900 class LIR_OpLoadKlass; 901 class LIR_OpProfileCall; 902 class LIR_OpProfileType; 903 #ifdef ASSERT 904 class LIR_OpAssert; 905 #endif 906 907 // LIR operation codes 908 enum LIR_Code { 909 lir_none 910 , begin_op0 911 , lir_label 912 , lir_nop 913 , lir_std_entry 914 , lir_osr_entry 915 , lir_fpop_raw 916 , lir_breakpoint 917 , lir_rtcall 918 , lir_membar 919 , lir_membar_acquire 920 , lir_membar_release 921 , lir_membar_loadload 922 , lir_membar_storestore 923 , lir_membar_loadstore 924 , lir_membar_storeload 925 , lir_get_thread 926 , lir_on_spin_wait 927 , end_op0 928 , begin_op1 929 , lir_fxch 930 , lir_fld 931 , lir_push 932 , lir_pop 933 , lir_null_check 934 , lir_return 935 , lir_leal 936 , lir_move 937 , lir_convert 938 , lir_alloc_object 939 , lir_monaddr 940 , lir_roundfp 941 , lir_safepoint 942 , lir_unwind 943 , lir_load_klass 944 , end_op1 945 , begin_op2 946 , lir_branch 947 , lir_cond_float_branch 948 , lir_cmp 949 , lir_cmp_l2i 950 , lir_ucmp_fd2i 951 , lir_cmp_fd2i 952 , lir_add 953 , lir_sub 954 , lir_mul 955 , lir_div 956 , lir_rem 957 , lir_sqrt 958 , lir_abs 959 , lir_neg 960 , lir_tan 961 , lir_f2hf 962 , lir_hf2f 963 , lir_log10 964 , lir_logic_and 965 , lir_logic_or 966 , lir_logic_xor 967 , lir_shl 968 , lir_shr 969 , lir_ushr 970 , lir_alloc_array 971 , lir_throw 972 , lir_xadd 973 , lir_xchg 974 , end_op2 975 , begin_op3 976 , lir_idiv 977 , lir_irem 978 , lir_fmad 979 , lir_fmaf 980 , end_op3 981 , begin_op4 982 , lir_cmove 983 , end_op4 984 , begin_opJavaCall 985 , lir_static_call 986 , lir_optvirtual_call 987 , lir_icvirtual_call 988 , lir_dynamic_call 989 , end_opJavaCall 990 , begin_opArrayCopy 991 , lir_arraycopy 992 , end_opArrayCopy 993 , begin_opUpdateCRC32 994 , lir_updatecrc32 995 , end_opUpdateCRC32 996 , begin_opLock 997 , lir_lock 998 , lir_unlock 999 , end_opLock 1000 , begin_delay_slot 1001 , lir_delay_slot 1002 , end_delay_slot 1003 , begin_opTypeCheck 1004 , lir_instanceof 1005 , lir_checkcast 1006 , lir_store_check 1007 , end_opTypeCheck 1008 , begin_opCompareAndSwap 1009 , lir_cas_long 1010 , lir_cas_obj 1011 , lir_cas_int 1012 , end_opCompareAndSwap 1013 , begin_opMDOProfile 1014 , lir_profile_call 1015 , lir_profile_type 1016 , end_opMDOProfile 1017 , begin_opAssert 1018 , lir_assert 1019 , end_opAssert 1020 #ifdef INCLUDE_ZGC 1021 , begin_opXLoadBarrierTest 1022 , lir_xloadbarrier_test 1023 , end_opXLoadBarrierTest 1024 #endif 1025 }; 1026 1027 1028 enum LIR_Condition { 1029 lir_cond_equal 1030 , lir_cond_notEqual 1031 , lir_cond_less 1032 , lir_cond_lessEqual 1033 , lir_cond_greaterEqual 1034 , lir_cond_greater 1035 , lir_cond_belowEqual 1036 , lir_cond_aboveEqual 1037 , lir_cond_always 1038 , lir_cond_unknown = -1 1039 }; 1040 1041 1042 enum LIR_PatchCode { 1043 lir_patch_none, 1044 lir_patch_low, 1045 lir_patch_high, 1046 lir_patch_normal 1047 }; 1048 1049 1050 enum LIR_MoveKind { 1051 lir_move_normal, 1052 lir_move_volatile, 1053 lir_move_wide, 1054 lir_move_max_flag 1055 }; 1056 1057 1058 // -------------------------------------------------- 1059 // LIR_Op 1060 // -------------------------------------------------- 1061 class LIR_Op: public CompilationResourceObj { 1062 friend class LIR_OpVisitState; 1063 1064 #ifdef ASSERT 1065 private: 1066 const char * _file; 1067 int _line; 1068 #endif 1069 1070 protected: 1071 LIR_Opr _result; 1072 unsigned short _code; 1073 unsigned short _flags; 1074 CodeEmitInfo* _info; 1075 int _id; // value id for register allocation 1076 int _fpu_pop_count; 1077 Instruction* _source; // for debugging 1078 1079 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1080 1081 protected: 1082 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1083 1084 public: 1085 LIR_Op() 1086 : 1087 #ifdef ASSERT 1088 _file(nullptr) 1089 , _line(0), 1090 #endif 1091 _result(LIR_OprFact::illegalOpr) 1092 , _code(lir_none) 1093 , _flags(0) 1094 , _info(nullptr) 1095 , _id(-1) 1096 , _fpu_pop_count(0) 1097 , _source(nullptr) {} 1098 1099 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1100 : 1101 #ifdef ASSERT 1102 _file(nullptr) 1103 , _line(0), 1104 #endif 1105 _result(result) 1106 , _code(code) 1107 , _flags(0) 1108 , _info(info) 1109 , _id(-1) 1110 , _fpu_pop_count(0) 1111 , _source(nullptr) {} 1112 1113 CodeEmitInfo* info() const { return _info; } 1114 LIR_Code code() const { return (LIR_Code)_code; } 1115 LIR_Opr result_opr() const { return _result; } 1116 void set_result_opr(LIR_Opr opr) { _result = opr; } 1117 1118 #ifdef ASSERT 1119 void set_file_and_line(const char * file, int line) { 1120 _file = file; 1121 _line = line; 1122 } 1123 #endif 1124 1125 virtual const char * name() const PRODUCT_RETURN0; 1126 virtual void visit(LIR_OpVisitState* state); 1127 1128 int id() const { return _id; } 1129 void set_id(int id) { _id = id; } 1130 1131 // FPU stack simulation helpers -- only used on Intel 1132 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; } 1133 int fpu_pop_count() const { return _fpu_pop_count; } 1134 bool pop_fpu_stack() { return _fpu_pop_count > 0; } 1135 1136 Instruction* source() const { return _source; } 1137 void set_source(Instruction* ins) { _source = ins; } 1138 1139 virtual void emit_code(LIR_Assembler* masm) = 0; 1140 virtual void print_instr(outputStream* out) const = 0; 1141 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1142 1143 virtual bool is_patching() { return false; } 1144 virtual LIR_OpCall* as_OpCall() { return nullptr; } 1145 virtual LIR_OpJavaCall* as_OpJavaCall() { return nullptr; } 1146 virtual LIR_OpLabel* as_OpLabel() { return nullptr; } 1147 virtual LIR_OpDelay* as_OpDelay() { return nullptr; } 1148 virtual LIR_OpLock* as_OpLock() { return nullptr; } 1149 virtual LIR_OpAllocArray* as_OpAllocArray() { return nullptr; } 1150 virtual LIR_OpAllocObj* as_OpAllocObj() { return nullptr; } 1151 virtual LIR_OpRoundFP* as_OpRoundFP() { return nullptr; } 1152 virtual LIR_OpBranch* as_OpBranch() { return nullptr; } 1153 virtual LIR_OpReturn* as_OpReturn() { return nullptr; } 1154 virtual LIR_OpRTCall* as_OpRTCall() { return nullptr; } 1155 virtual LIR_OpConvert* as_OpConvert() { return nullptr; } 1156 virtual LIR_Op0* as_Op0() { return nullptr; } 1157 virtual LIR_Op1* as_Op1() { return nullptr; } 1158 virtual LIR_Op2* as_Op2() { return nullptr; } 1159 virtual LIR_Op3* as_Op3() { return nullptr; } 1160 virtual LIR_Op4* as_Op4() { return nullptr; } 1161 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return nullptr; } 1162 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return nullptr; } 1163 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return nullptr; } 1164 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return nullptr; } 1165 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return nullptr; } 1166 virtual LIR_OpProfileCall* as_OpProfileCall() { return nullptr; } 1167 virtual LIR_OpProfileType* as_OpProfileType() { return nullptr; } 1168 #ifdef ASSERT 1169 virtual LIR_OpAssert* as_OpAssert() { return nullptr; } 1170 #endif 1171 1172 virtual void verify() const {} 1173 }; 1174 1175 // for calls 1176 class LIR_OpCall: public LIR_Op { 1177 friend class LIR_OpVisitState; 1178 1179 protected: 1180 address _addr; 1181 LIR_OprList* _arguments; 1182 protected: 1183 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1184 LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1185 : LIR_Op(code, result, info) 1186 , _addr(addr) 1187 , _arguments(arguments) {} 1188 1189 public: 1190 address addr() const { return _addr; } 1191 const LIR_OprList* arguments() const { return _arguments; } 1192 virtual LIR_OpCall* as_OpCall() { return this; } 1193 }; 1194 1195 1196 // -------------------------------------------------- 1197 // LIR_OpJavaCall 1198 // -------------------------------------------------- 1199 class LIR_OpJavaCall: public LIR_OpCall { 1200 friend class LIR_OpVisitState; 1201 1202 private: 1203 ciMethod* _method; 1204 LIR_Opr _receiver; 1205 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1206 1207 public: 1208 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1209 LIR_Opr receiver, LIR_Opr result, 1210 address addr, LIR_OprList* arguments, 1211 CodeEmitInfo* info) 1212 : LIR_OpCall(code, addr, result, arguments, info) 1213 , _method(method) 1214 , _receiver(receiver) 1215 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1216 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1217 1218 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1219 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1220 LIR_OprList* arguments, CodeEmitInfo* info) 1221 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1222 , _method(method) 1223 , _receiver(receiver) 1224 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1225 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1226 1227 LIR_Opr receiver() const { return _receiver; } 1228 ciMethod* method() const { return _method; } 1229 1230 // JSR 292 support. 1231 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1232 bool is_method_handle_invoke() const { 1233 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1234 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1235 } 1236 1237 virtual void emit_code(LIR_Assembler* masm); 1238 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1239 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1240 }; 1241 1242 // -------------------------------------------------- 1243 // LIR_OpLabel 1244 // -------------------------------------------------- 1245 // Location where a branch can continue 1246 class LIR_OpLabel: public LIR_Op { 1247 friend class LIR_OpVisitState; 1248 1249 private: 1250 Label* _label; 1251 public: 1252 LIR_OpLabel(Label* lbl) 1253 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, nullptr) 1254 , _label(lbl) {} 1255 Label* label() const { return _label; } 1256 1257 virtual void emit_code(LIR_Assembler* masm); 1258 virtual LIR_OpLabel* as_OpLabel() { return this; } 1259 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1260 }; 1261 1262 // LIR_OpArrayCopy 1263 class LIR_OpArrayCopy: public LIR_Op { 1264 friend class LIR_OpVisitState; 1265 1266 private: 1267 ArrayCopyStub* _stub; 1268 LIR_Opr _src; 1269 LIR_Opr _src_pos; 1270 LIR_Opr _dst; 1271 LIR_Opr _dst_pos; 1272 LIR_Opr _length; 1273 LIR_Opr _tmp; 1274 ciArrayKlass* _expected_type; 1275 int _flags; 1276 1277 public: 1278 enum Flags { 1279 src_null_check = 1 << 0, 1280 dst_null_check = 1 << 1, 1281 src_pos_positive_check = 1 << 2, 1282 dst_pos_positive_check = 1 << 3, 1283 length_positive_check = 1 << 4, 1284 src_range_check = 1 << 5, 1285 dst_range_check = 1 << 6, 1286 type_check = 1 << 7, 1287 overlapping = 1 << 8, 1288 unaligned = 1 << 9, 1289 src_objarray = 1 << 10, 1290 dst_objarray = 1 << 11, 1291 all_flags = (1 << 12) - 1 1292 }; 1293 1294 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1295 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1296 1297 LIR_Opr src() const { return _src; } 1298 LIR_Opr src_pos() const { return _src_pos; } 1299 LIR_Opr dst() const { return _dst; } 1300 LIR_Opr dst_pos() const { return _dst_pos; } 1301 LIR_Opr length() const { return _length; } 1302 LIR_Opr tmp() const { return _tmp; } 1303 int flags() const { return _flags; } 1304 ciArrayKlass* expected_type() const { return _expected_type; } 1305 ArrayCopyStub* stub() const { return _stub; } 1306 1307 virtual void emit_code(LIR_Assembler* masm); 1308 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1309 void print_instr(outputStream* out) const PRODUCT_RETURN; 1310 }; 1311 1312 // LIR_OpUpdateCRC32 1313 class LIR_OpUpdateCRC32: public LIR_Op { 1314 friend class LIR_OpVisitState; 1315 1316 private: 1317 LIR_Opr _crc; 1318 LIR_Opr _val; 1319 1320 public: 1321 1322 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1323 1324 LIR_Opr crc() const { return _crc; } 1325 LIR_Opr val() const { return _val; } 1326 1327 virtual void emit_code(LIR_Assembler* masm); 1328 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1329 void print_instr(outputStream* out) const PRODUCT_RETURN; 1330 }; 1331 1332 // -------------------------------------------------- 1333 // LIR_Op0 1334 // -------------------------------------------------- 1335 class LIR_Op0: public LIR_Op { 1336 friend class LIR_OpVisitState; 1337 1338 public: 1339 LIR_Op0(LIR_Code code) 1340 : LIR_Op(code, LIR_OprFact::illegalOpr, nullptr) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1341 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = nullptr) 1342 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1343 1344 virtual void emit_code(LIR_Assembler* masm); 1345 virtual LIR_Op0* as_Op0() { return this; } 1346 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1347 }; 1348 1349 1350 // -------------------------------------------------- 1351 // LIR_Op1 1352 // -------------------------------------------------- 1353 1354 class LIR_Op1: public LIR_Op { 1355 friend class LIR_OpVisitState; 1356 1357 protected: 1358 LIR_Opr _opr; // input operand 1359 BasicType _type; // Operand types 1360 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1361 1362 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1363 1364 void set_kind(LIR_MoveKind kind) { 1365 assert(code() == lir_move, "must be"); 1366 _flags = kind; 1367 } 1368 1369 public: 1370 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = nullptr) 1371 : LIR_Op(code, result, info) 1372 , _opr(opr) 1373 , _type(type) 1374 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1375 1376 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1377 : LIR_Op(code, result, info) 1378 , _opr(opr) 1379 , _type(type) 1380 , _patch(patch) { 1381 assert(code == lir_move, "must be"); 1382 set_kind(kind); 1383 } 1384 1385 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1386 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1387 , _opr(opr) 1388 , _type(T_ILLEGAL) 1389 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1390 1391 LIR_Opr in_opr() const { return _opr; } 1392 LIR_PatchCode patch_code() const { return _patch; } 1393 BasicType type() const { return _type; } 1394 1395 LIR_MoveKind move_kind() const { 1396 assert(code() == lir_move, "must be"); 1397 return (LIR_MoveKind)_flags; 1398 } 1399 1400 virtual bool is_patching() { return _patch != lir_patch_none; } 1401 virtual void emit_code(LIR_Assembler* masm); 1402 virtual LIR_Op1* as_Op1() { return this; } 1403 virtual const char * name() const PRODUCT_RETURN0; 1404 1405 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1406 1407 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1408 virtual void verify() const; 1409 }; 1410 1411 1412 // for runtime calls 1413 class LIR_OpRTCall: public LIR_OpCall { 1414 friend class LIR_OpVisitState; 1415 1416 private: 1417 LIR_Opr _tmp; 1418 public: 1419 LIR_OpRTCall(address addr, LIR_Opr tmp, 1420 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = nullptr) 1421 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1422 , _tmp(tmp) {} 1423 1424 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1425 virtual void emit_code(LIR_Assembler* masm); 1426 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1427 1428 LIR_Opr tmp() const { return _tmp; } 1429 1430 virtual void verify() const; 1431 }; 1432 1433 1434 1435 class LIR_OpReturn: public LIR_Op1 { 1436 friend class LIR_OpVisitState; 1437 1438 private: 1439 C1SafepointPollStub* _stub; 1440 1441 public: 1442 LIR_OpReturn(LIR_Opr opr); 1443 1444 C1SafepointPollStub* stub() const { return _stub; } 1445 virtual LIR_OpReturn* as_OpReturn() { return this; } 1446 }; 1447 1448 class ConversionStub; 1449 1450 class LIR_OpConvert: public LIR_Op1 { 1451 friend class LIR_OpVisitState; 1452 1453 private: 1454 Bytecodes::Code _bytecode; 1455 ConversionStub* _stub; 1456 1457 public: 1458 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1459 : LIR_Op1(lir_convert, opr, result) 1460 , _bytecode(code) 1461 , _stub(stub) {} 1462 1463 Bytecodes::Code bytecode() const { return _bytecode; } 1464 ConversionStub* stub() const { return _stub; } 1465 1466 virtual void emit_code(LIR_Assembler* masm); 1467 virtual LIR_OpConvert* as_OpConvert() { return this; } 1468 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1469 1470 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1471 }; 1472 1473 1474 // LIR_OpAllocObj 1475 class LIR_OpAllocObj : public LIR_Op1 { 1476 friend class LIR_OpVisitState; 1477 1478 private: 1479 LIR_Opr _tmp1; 1480 LIR_Opr _tmp2; 1481 LIR_Opr _tmp3; 1482 LIR_Opr _tmp4; 1483 int _hdr_size; 1484 int _obj_size; 1485 CodeStub* _stub; 1486 bool _init_check; 1487 1488 public: 1489 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1490 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1491 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1492 : LIR_Op1(lir_alloc_object, klass, result) 1493 , _tmp1(t1) 1494 , _tmp2(t2) 1495 , _tmp3(t3) 1496 , _tmp4(t4) 1497 , _hdr_size(hdr_size) 1498 , _obj_size(obj_size) 1499 , _stub(stub) 1500 , _init_check(init_check) { } 1501 1502 LIR_Opr klass() const { return in_opr(); } 1503 LIR_Opr obj() const { return result_opr(); } 1504 LIR_Opr tmp1() const { return _tmp1; } 1505 LIR_Opr tmp2() const { return _tmp2; } 1506 LIR_Opr tmp3() const { return _tmp3; } 1507 LIR_Opr tmp4() const { return _tmp4; } 1508 int header_size() const { return _hdr_size; } 1509 int object_size() const { return _obj_size; } 1510 bool init_check() const { return _init_check; } 1511 CodeStub* stub() const { return _stub; } 1512 1513 virtual void emit_code(LIR_Assembler* masm); 1514 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1515 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1516 }; 1517 1518 1519 // LIR_OpRoundFP 1520 class LIR_OpRoundFP : public LIR_Op1 { 1521 friend class LIR_OpVisitState; 1522 1523 private: 1524 LIR_Opr _tmp; 1525 1526 public: 1527 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) 1528 : LIR_Op1(lir_roundfp, reg, result) 1529 , _tmp(stack_loc_temp) {} 1530 1531 LIR_Opr tmp() const { return _tmp; } 1532 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; } 1533 void print_instr(outputStream* out) const PRODUCT_RETURN; 1534 }; 1535 1536 // LIR_OpTypeCheck 1537 class LIR_OpTypeCheck: public LIR_Op { 1538 friend class LIR_OpVisitState; 1539 1540 private: 1541 LIR_Opr _object; 1542 LIR_Opr _array; 1543 ciKlass* _klass; 1544 LIR_Opr _tmp1; 1545 LIR_Opr _tmp2; 1546 LIR_Opr _tmp3; 1547 bool _fast_check; 1548 CodeEmitInfo* _info_for_patch; 1549 CodeEmitInfo* _info_for_exception; 1550 CodeStub* _stub; 1551 ciMethod* _profiled_method; 1552 int _profiled_bci; 1553 bool _should_profile; 1554 1555 public: 1556 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1557 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1558 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub); 1559 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1560 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1561 1562 LIR_Opr object() const { return _object; } 1563 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1564 LIR_Opr tmp1() const { return _tmp1; } 1565 LIR_Opr tmp2() const { return _tmp2; } 1566 LIR_Opr tmp3() const { return _tmp3; } 1567 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1568 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1569 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1570 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1571 CodeStub* stub() const { return _stub; } 1572 1573 // MethodData* profiling 1574 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1575 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1576 void set_should_profile(bool b) { _should_profile = b; } 1577 ciMethod* profiled_method() const { return _profiled_method; } 1578 int profiled_bci() const { return _profiled_bci; } 1579 bool should_profile() const { return _should_profile; } 1580 1581 virtual bool is_patching() { return _info_for_patch != nullptr; } 1582 virtual void emit_code(LIR_Assembler* masm); 1583 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1584 void print_instr(outputStream* out) const PRODUCT_RETURN; 1585 }; 1586 1587 // LIR_Op2 1588 class LIR_Op2: public LIR_Op { 1589 friend class LIR_OpVisitState; 1590 1591 int _fpu_stack_size; // for sin/cos implementation on Intel 1592 1593 protected: 1594 LIR_Opr _opr1; 1595 LIR_Opr _opr2; 1596 BasicType _type; 1597 LIR_Opr _tmp1; 1598 LIR_Opr _tmp2; 1599 LIR_Opr _tmp3; 1600 LIR_Opr _tmp4; 1601 LIR_Opr _tmp5; 1602 LIR_Condition _condition; 1603 1604 void verify() const; 1605 1606 public: 1607 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1608 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1609 , _fpu_stack_size(0) 1610 , _opr1(opr1) 1611 , _opr2(opr2) 1612 , _type(type) 1613 , _tmp1(LIR_OprFact::illegalOpr) 1614 , _tmp2(LIR_OprFact::illegalOpr) 1615 , _tmp3(LIR_OprFact::illegalOpr) 1616 , _tmp4(LIR_OprFact::illegalOpr) 1617 , _tmp5(LIR_OprFact::illegalOpr) 1618 , _condition(condition) { 1619 assert(code == lir_cmp || code == lir_branch || code == lir_cond_float_branch || code == lir_assert, "code check"); 1620 } 1621 1622 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1623 : LIR_Op(code, result, nullptr) 1624 , _fpu_stack_size(0) 1625 , _opr1(opr1) 1626 , _opr2(opr2) 1627 , _type(type) 1628 , _tmp1(LIR_OprFact::illegalOpr) 1629 , _tmp2(LIR_OprFact::illegalOpr) 1630 , _tmp3(LIR_OprFact::illegalOpr) 1631 , _tmp4(LIR_OprFact::illegalOpr) 1632 , _tmp5(LIR_OprFact::illegalOpr) 1633 , _condition(condition) { 1634 assert(code == lir_cmove, "code check"); 1635 assert(type != T_ILLEGAL, "cmove should have type"); 1636 } 1637 1638 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1639 CodeEmitInfo* info = nullptr, BasicType type = T_ILLEGAL) 1640 : LIR_Op(code, result, info) 1641 , _fpu_stack_size(0) 1642 , _opr1(opr1) 1643 , _opr2(opr2) 1644 , _type(type) 1645 , _tmp1(LIR_OprFact::illegalOpr) 1646 , _tmp2(LIR_OprFact::illegalOpr) 1647 , _tmp3(LIR_OprFact::illegalOpr) 1648 , _tmp4(LIR_OprFact::illegalOpr) 1649 , _tmp5(LIR_OprFact::illegalOpr) 1650 , _condition(lir_cond_unknown) { 1651 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1652 } 1653 1654 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1655 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1656 : LIR_Op(code, result, nullptr) 1657 , _fpu_stack_size(0) 1658 , _opr1(opr1) 1659 , _opr2(opr2) 1660 , _type(T_ILLEGAL) 1661 , _tmp1(tmp1) 1662 , _tmp2(tmp2) 1663 , _tmp3(tmp3) 1664 , _tmp4(tmp4) 1665 , _tmp5(tmp5) 1666 , _condition(lir_cond_unknown) { 1667 assert(code != lir_cmp && code != lir_branch && code != lir_cond_float_branch && is_in_range(code, begin_op2, end_op2), "code check"); 1668 } 1669 1670 LIR_Opr in_opr1() const { return _opr1; } 1671 LIR_Opr in_opr2() const { return _opr2; } 1672 BasicType type() const { return _type; } 1673 LIR_Opr tmp1_opr() const { return _tmp1; } 1674 LIR_Opr tmp2_opr() const { return _tmp2; } 1675 LIR_Opr tmp3_opr() const { return _tmp3; } 1676 LIR_Opr tmp4_opr() const { return _tmp4; } 1677 LIR_Opr tmp5_opr() const { return _tmp5; } 1678 LIR_Condition condition() const { 1679 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition; 1680 } 1681 void set_condition(LIR_Condition condition) { 1682 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition; 1683 } 1684 1685 void set_fpu_stack_size(int size) { _fpu_stack_size = size; } 1686 int fpu_stack_size() const { return _fpu_stack_size; } 1687 1688 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1689 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1690 1691 virtual void emit_code(LIR_Assembler* masm); 1692 virtual LIR_Op2* as_Op2() { return this; } 1693 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1694 }; 1695 1696 class LIR_OpBranch: public LIR_Op2 { 1697 friend class LIR_OpVisitState; 1698 1699 private: 1700 Label* _label; 1701 BlockBegin* _block; // if this is a branch to a block, this is the block 1702 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block 1703 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1704 1705 public: 1706 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1707 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) nullptr) 1708 , _label(lbl) 1709 , _block(nullptr) 1710 , _ublock(nullptr) 1711 , _stub(nullptr) { } 1712 1713 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1714 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1715 1716 // for unordered comparisons 1717 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1718 1719 LIR_Condition cond() const { 1720 return condition(); 1721 } 1722 1723 void set_cond(LIR_Condition cond) { 1724 set_condition(cond); 1725 } 1726 1727 Label* label() const { return _label; } 1728 BlockBegin* block() const { return _block; } 1729 BlockBegin* ublock() const { return _ublock; } 1730 CodeStub* stub() const { return _stub; } 1731 1732 void change_block(BlockBegin* b); 1733 void change_ublock(BlockBegin* b); 1734 void negate_cond(); 1735 1736 virtual void emit_code(LIR_Assembler* masm); 1737 virtual LIR_OpBranch* as_OpBranch() { return this; } 1738 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1739 }; 1740 1741 class LIR_OpAllocArray : public LIR_Op { 1742 friend class LIR_OpVisitState; 1743 1744 private: 1745 LIR_Opr _klass; 1746 LIR_Opr _len; 1747 LIR_Opr _tmp1; 1748 LIR_Opr _tmp2; 1749 LIR_Opr _tmp3; 1750 LIR_Opr _tmp4; 1751 BasicType _type; 1752 CodeStub* _stub; 1753 1754 public: 1755 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub) 1756 : LIR_Op(lir_alloc_array, result, nullptr) 1757 , _klass(klass) 1758 , _len(len) 1759 , _tmp1(t1) 1760 , _tmp2(t2) 1761 , _tmp3(t3) 1762 , _tmp4(t4) 1763 , _type(type) 1764 , _stub(stub) {} 1765 1766 LIR_Opr klass() const { return _klass; } 1767 LIR_Opr len() const { return _len; } 1768 LIR_Opr obj() const { return result_opr(); } 1769 LIR_Opr tmp1() const { return _tmp1; } 1770 LIR_Opr tmp2() const { return _tmp2; } 1771 LIR_Opr tmp3() const { return _tmp3; } 1772 LIR_Opr tmp4() const { return _tmp4; } 1773 BasicType type() const { return _type; } 1774 CodeStub* stub() const { return _stub; } 1775 1776 virtual void emit_code(LIR_Assembler* masm); 1777 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1778 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1779 }; 1780 1781 1782 class LIR_Op3: public LIR_Op { 1783 friend class LIR_OpVisitState; 1784 1785 private: 1786 LIR_Opr _opr1; 1787 LIR_Opr _opr2; 1788 LIR_Opr _opr3; 1789 public: 1790 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = nullptr) 1791 : LIR_Op(code, result, info) 1792 , _opr1(opr1) 1793 , _opr2(opr2) 1794 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1795 LIR_Opr in_opr1() const { return _opr1; } 1796 LIR_Opr in_opr2() const { return _opr2; } 1797 LIR_Opr in_opr3() const { return _opr3; } 1798 1799 virtual void emit_code(LIR_Assembler* masm); 1800 virtual LIR_Op3* as_Op3() { return this; } 1801 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1802 }; 1803 1804 class LIR_Op4: public LIR_Op { 1805 friend class LIR_OpVisitState; 1806 protected: 1807 LIR_Opr _opr1; 1808 LIR_Opr _opr2; 1809 LIR_Opr _opr3; 1810 LIR_Opr _opr4; 1811 BasicType _type; 1812 LIR_Opr _tmp1; 1813 LIR_Opr _tmp2; 1814 LIR_Opr _tmp3; 1815 LIR_Opr _tmp4; 1816 LIR_Opr _tmp5; 1817 LIR_Condition _condition; 1818 1819 public: 1820 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4, 1821 LIR_Opr result, BasicType type) 1822 : LIR_Op(code, result, nullptr) 1823 , _opr1(opr1) 1824 , _opr2(opr2) 1825 , _opr3(opr3) 1826 , _opr4(opr4) 1827 , _type(type) 1828 , _tmp1(LIR_OprFact::illegalOpr) 1829 , _tmp2(LIR_OprFact::illegalOpr) 1830 , _tmp3(LIR_OprFact::illegalOpr) 1831 , _tmp4(LIR_OprFact::illegalOpr) 1832 , _tmp5(LIR_OprFact::illegalOpr) 1833 , _condition(condition) { 1834 assert(code == lir_cmove, "code check"); 1835 assert(type != T_ILLEGAL, "cmove should have type"); 1836 } 1837 1838 LIR_Opr in_opr1() const { return _opr1; } 1839 LIR_Opr in_opr2() const { return _opr2; } 1840 LIR_Opr in_opr3() const { return _opr3; } 1841 LIR_Opr in_opr4() const { return _opr4; } 1842 BasicType type() const { return _type; } 1843 LIR_Opr tmp1_opr() const { return _tmp1; } 1844 LIR_Opr tmp2_opr() const { return _tmp2; } 1845 LIR_Opr tmp3_opr() const { return _tmp3; } 1846 LIR_Opr tmp4_opr() const { return _tmp4; } 1847 LIR_Opr tmp5_opr() const { return _tmp5; } 1848 1849 LIR_Condition condition() const { return _condition; } 1850 void set_condition(LIR_Condition condition) { _condition = condition; } 1851 1852 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1853 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1854 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; } 1855 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; } 1856 virtual void emit_code(LIR_Assembler* masm); 1857 virtual LIR_Op4* as_Op4() { return this; } 1858 1859 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1860 }; 1861 1862 //-------------------------------- 1863 class LabelObj: public CompilationResourceObj { 1864 private: 1865 Label _label; 1866 public: 1867 LabelObj() {} 1868 Label* label() { return &_label; } 1869 }; 1870 1871 1872 class LIR_OpLock: public LIR_Op { 1873 friend class LIR_OpVisitState; 1874 1875 private: 1876 LIR_Opr _hdr; 1877 LIR_Opr _obj; 1878 LIR_Opr _lock; 1879 LIR_Opr _scratch; 1880 CodeStub* _stub; 1881 public: 1882 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) 1883 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1884 , _hdr(hdr) 1885 , _obj(obj) 1886 , _lock(lock) 1887 , _scratch(scratch) 1888 , _stub(stub) {} 1889 1890 LIR_Opr hdr_opr() const { return _hdr; } 1891 LIR_Opr obj_opr() const { return _obj; } 1892 LIR_Opr lock_opr() const { return _lock; } 1893 LIR_Opr scratch_opr() const { return _scratch; } 1894 CodeStub* stub() const { return _stub; } 1895 1896 virtual void emit_code(LIR_Assembler* masm); 1897 virtual LIR_OpLock* as_OpLock() { return this; } 1898 void print_instr(outputStream* out) const PRODUCT_RETURN; 1899 }; 1900 1901 class LIR_OpLoadKlass: public LIR_Op { 1902 friend class LIR_OpVisitState; 1903 1904 private: 1905 LIR_Opr _obj; 1906 CodeStub* _stub; 1907 public: 1908 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub) 1909 : LIR_Op(lir_load_klass, result, info) 1910 , _obj(obj) 1911 , _stub(stub) 1912 {} 1913 1914 LIR_Opr obj() const { return _obj; } 1915 CodeStub* stub() const { return _stub; } 1916 1917 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 1918 virtual void emit_code(LIR_Assembler* masm); 1919 void print_instr(outputStream* out) const PRODUCT_RETURN; 1920 }; 1921 1922 class LIR_OpDelay: public LIR_Op { 1923 friend class LIR_OpVisitState; 1924 1925 private: 1926 LIR_Op* _op; 1927 1928 public: 1929 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 1930 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 1931 _op(op) { 1932 assert(op->code() == lir_nop, "should be filling with nops"); 1933 } 1934 virtual void emit_code(LIR_Assembler* masm); 1935 virtual LIR_OpDelay* as_OpDelay() { return this; } 1936 void print_instr(outputStream* out) const PRODUCT_RETURN; 1937 LIR_Op* delay_op() const { return _op; } 1938 CodeEmitInfo* call_info() const { return info(); } 1939 }; 1940 1941 #ifdef ASSERT 1942 // LIR_OpAssert 1943 class LIR_OpAssert : public LIR_Op2 { 1944 friend class LIR_OpVisitState; 1945 1946 private: 1947 const char* _msg; 1948 bool _halt; 1949 1950 public: 1951 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 1952 : LIR_Op2(lir_assert, condition, opr1, opr2) 1953 , _msg(msg) 1954 , _halt(halt) { 1955 } 1956 1957 const char* msg() const { return _msg; } 1958 bool halt() const { return _halt; } 1959 1960 virtual void emit_code(LIR_Assembler* masm); 1961 virtual LIR_OpAssert* as_OpAssert() { return this; } 1962 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1963 }; 1964 #endif 1965 1966 // LIR_OpCompareAndSwap 1967 class LIR_OpCompareAndSwap : public LIR_Op { 1968 friend class LIR_OpVisitState; 1969 1970 private: 1971 LIR_Opr _addr; 1972 LIR_Opr _cmp_value; 1973 LIR_Opr _new_value; 1974 LIR_Opr _tmp1; 1975 LIR_Opr _tmp2; 1976 1977 public: 1978 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1979 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 1980 : LIR_Op(code, result, nullptr) // no result, no info 1981 , _addr(addr) 1982 , _cmp_value(cmp_value) 1983 , _new_value(new_value) 1984 , _tmp1(t1) 1985 , _tmp2(t2) { } 1986 1987 LIR_Opr addr() const { return _addr; } 1988 LIR_Opr cmp_value() const { return _cmp_value; } 1989 LIR_Opr new_value() const { return _new_value; } 1990 LIR_Opr tmp1() const { return _tmp1; } 1991 LIR_Opr tmp2() const { return _tmp2; } 1992 1993 virtual void emit_code(LIR_Assembler* masm); 1994 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 1995 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1996 }; 1997 1998 // LIR_OpProfileCall 1999 class LIR_OpProfileCall : public LIR_Op { 2000 friend class LIR_OpVisitState; 2001 2002 private: 2003 ciMethod* _profiled_method; 2004 int _profiled_bci; 2005 ciMethod* _profiled_callee; 2006 LIR_Opr _mdo; 2007 LIR_Opr _recv; 2008 LIR_Opr _tmp1; 2009 ciKlass* _known_holder; 2010 2011 public: 2012 // Destroys recv 2013 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 2014 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2015 , _profiled_method(profiled_method) 2016 , _profiled_bci(profiled_bci) 2017 , _profiled_callee(profiled_callee) 2018 , _mdo(mdo) 2019 , _recv(recv) 2020 , _tmp1(t1) 2021 , _known_holder(known_holder) { } 2022 2023 ciMethod* profiled_method() const { return _profiled_method; } 2024 int profiled_bci() const { return _profiled_bci; } 2025 ciMethod* profiled_callee() const { return _profiled_callee; } 2026 LIR_Opr mdo() const { return _mdo; } 2027 LIR_Opr recv() const { return _recv; } 2028 LIR_Opr tmp1() const { return _tmp1; } 2029 ciKlass* known_holder() const { return _known_holder; } 2030 2031 virtual void emit_code(LIR_Assembler* masm); 2032 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 2033 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2034 bool should_profile_receiver_type() const { 2035 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 2036 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 2037 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface; 2038 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 2039 } 2040 }; 2041 2042 // LIR_OpProfileType 2043 class LIR_OpProfileType : public LIR_Op { 2044 friend class LIR_OpVisitState; 2045 2046 private: 2047 LIR_Opr _mdp; 2048 LIR_Opr _obj; 2049 LIR_Opr _tmp; 2050 ciKlass* _exact_klass; // non null if we know the klass statically (no need to load it from _obj) 2051 intptr_t _current_klass; // what the profiling currently reports 2052 bool _not_null; // true if we know statically that _obj cannot be null 2053 bool _no_conflict; // true if we're profling parameters, _exact_klass is not null and we know 2054 // _exact_klass it the only possible type for this parameter in any context. 2055 2056 public: 2057 // Destroys recv 2058 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 2059 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, nullptr) // no result, no info 2060 , _mdp(mdp) 2061 , _obj(obj) 2062 , _tmp(tmp) 2063 , _exact_klass(exact_klass) 2064 , _current_klass(current_klass) 2065 , _not_null(not_null) 2066 , _no_conflict(no_conflict) { } 2067 2068 LIR_Opr mdp() const { return _mdp; } 2069 LIR_Opr obj() const { return _obj; } 2070 LIR_Opr tmp() const { return _tmp; } 2071 ciKlass* exact_klass() const { return _exact_klass; } 2072 intptr_t current_klass() const { return _current_klass; } 2073 bool not_null() const { return _not_null; } 2074 bool no_conflict() const { return _no_conflict; } 2075 2076 virtual void emit_code(LIR_Assembler* masm); 2077 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 2078 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2079 }; 2080 2081 class LIR_InsertionBuffer; 2082 2083 //--------------------------------LIR_List--------------------------------------------------- 2084 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 2085 // The LIR instructions are appended by the LIR_List class itself; 2086 // 2087 // Notes: 2088 // - all offsets are(should be) in bytes 2089 // - local positions are specified with an offset, with offset 0 being local 0 2090 2091 class LIR_List: public CompilationResourceObj { 2092 private: 2093 LIR_OpList _operations; 2094 2095 Compilation* _compilation; 2096 #ifndef PRODUCT 2097 BlockBegin* _block; 2098 #endif 2099 #ifdef ASSERT 2100 const char * _file; 2101 int _line; 2102 #endif 2103 #ifdef RISCV 2104 LIR_Opr _cmp_opr1; 2105 LIR_Opr _cmp_opr2; 2106 #endif 2107 2108 public: 2109 void append(LIR_Op* op) { 2110 if (op->source() == nullptr) 2111 op->set_source(_compilation->current_instruction()); 2112 #ifndef PRODUCT 2113 if (PrintIRWithLIR) { 2114 _compilation->maybe_print_current_instruction(); 2115 op->print(); tty->cr(); 2116 } 2117 #endif // PRODUCT 2118 2119 #ifdef RISCV 2120 set_cmp_oprs(op); 2121 // lir_cmp set cmp oprs only on riscv 2122 if (op->code() == lir_cmp) return; 2123 #endif 2124 2125 _operations.append(op); 2126 2127 #ifdef ASSERT 2128 op->verify(); 2129 op->set_file_and_line(_file, _line); 2130 _file = nullptr; 2131 _line = 0; 2132 #endif 2133 } 2134 2135 LIR_List(Compilation* compilation, BlockBegin* block = nullptr); 2136 2137 #ifdef ASSERT 2138 void set_file_and_line(const char * file, int line); 2139 #endif 2140 2141 #ifdef RISCV 2142 void set_cmp_oprs(LIR_Op* op); 2143 #endif 2144 2145 //---------- accessors --------------- 2146 LIR_OpList* instructions_list() { return &_operations; } 2147 int length() const { return _operations.length(); } 2148 LIR_Op* at(int i) const { return _operations.at(i); } 2149 2150 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2151 2152 // insert LIR_Ops in buffer to right places in LIR_List 2153 void append(LIR_InsertionBuffer* buffer); 2154 2155 //---------- mutators --------------- 2156 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2157 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2158 void remove_at(int i) { _operations.remove_at(i); } 2159 2160 //---------- printing ------------- 2161 void print_instructions() PRODUCT_RETURN; 2162 2163 2164 //---------- instructions ------------- 2165 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2166 address dest, LIR_OprList* arguments, 2167 CodeEmitInfo* info) { 2168 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2169 } 2170 void call_static(ciMethod* method, LIR_Opr result, 2171 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2172 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2173 } 2174 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2175 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2176 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2177 } 2178 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2179 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2180 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2181 } 2182 2183 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2184 void membar() { append(new LIR_Op0(lir_membar)); } 2185 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2186 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2187 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2188 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2189 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2190 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2191 2192 void nop() { append(new LIR_Op0(lir_nop)); } 2193 2194 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2195 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2196 2197 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2198 2199 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2200 2201 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2202 2203 // result is a stack location for old backend and vreg for UseLinearScan 2204 // stack_loc_temp is an illegal register for old backend 2205 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); } 2206 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2207 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2208 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2209 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { 2210 if (UseCompressedOops) { 2211 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2212 } else { 2213 move(src, dst, info); 2214 } 2215 } 2216 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = nullptr) { 2217 if (UseCompressedOops) { 2218 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2219 } else { 2220 move(src, dst, info); 2221 } 2222 } 2223 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2224 2225 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2226 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2227 2228 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2229 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2230 2231 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2232 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2233 2234 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = nullptr/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2235 2236 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2237 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2238 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2239 2240 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2241 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2242 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2243 } 2244 void unwind_exception(LIR_Opr exceptionOop) { 2245 append(new LIR_Op1(lir_unwind, exceptionOop)); 2246 } 2247 2248 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2249 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2250 2251 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = nullptr) { 2252 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2253 } 2254 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = nullptr) { 2255 cmp(condition, left, LIR_OprFact::intConst(right), info); 2256 } 2257 2258 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2259 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2260 2261 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type, 2262 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) { 2263 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type)); 2264 } 2265 2266 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2267 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2268 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2269 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2270 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2271 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2272 2273 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); } 2274 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op2(lir_neg, from, tmp, to)); } 2275 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); } 2276 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2277 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2278 void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); } 2279 void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); } 2280 void f2hf(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_f2hf, from, tmp, to)); } 2281 void hf2f(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_hf2f, from, tmp, to)); } 2282 2283 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2284 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2285 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2286 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2287 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2288 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2289 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = nullptr) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2290 2291 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2292 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2293 2294 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2295 2296 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2297 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2298 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = nullptr, LIR_PatchCode patch_code = lir_patch_none); 2299 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2300 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2301 2302 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2303 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2304 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2305 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2306 2307 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2308 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub); 2309 2310 // jump is an unconditional branch 2311 void jump(BlockBegin* block) { 2312 append(new LIR_OpBranch(lir_cond_always, block)); 2313 } 2314 void jump(CodeStub* stub) { 2315 append(new LIR_OpBranch(lir_cond_always, stub)); 2316 } 2317 void branch(LIR_Condition cond, Label* lbl) { 2318 append(new LIR_OpBranch(cond, lbl)); 2319 } 2320 // Should not be used for fp comparisons 2321 void branch(LIR_Condition cond, BlockBegin* block) { 2322 append(new LIR_OpBranch(cond, block)); 2323 } 2324 // Should not be used for fp comparisons 2325 void branch(LIR_Condition cond, CodeStub* stub) { 2326 append(new LIR_OpBranch(cond, stub)); 2327 } 2328 // Should only be used for fp comparisons 2329 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2330 append(new LIR_OpBranch(cond, block, unordered)); 2331 } 2332 2333 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2334 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2335 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2336 2337 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2338 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2339 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2340 2341 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2342 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2343 2344 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2345 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2346 } 2347 2348 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2349 LIR_OprList* arguments, CodeEmitInfo* info) { 2350 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2351 } 2352 2353 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2354 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2355 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info); 2356 2357 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2358 2359 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2360 2361 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2362 2363 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2364 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2365 2366 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2367 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2368 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2369 ciMethod* profiled_method, int profiled_bci); 2370 // MethodData* profiling 2371 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2372 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2373 } 2374 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2375 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2376 } 2377 2378 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2379 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2380 2381 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub) { append(new LIR_OpLoadKlass(obj, result, info, stub)); } 2382 2383 #ifdef ASSERT 2384 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2385 #endif 2386 }; 2387 2388 void print_LIR(BlockList* blocks); 2389 2390 class LIR_InsertionBuffer : public CompilationResourceObj { 2391 private: 2392 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (null when uninitialized) 2393 2394 // list of insertion points. index and count are stored alternately: 2395 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2396 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2397 intStack _index_and_count; 2398 2399 // the LIR_Ops to be inserted 2400 LIR_OpList _ops; 2401 2402 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2403 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2404 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2405 2406 #ifdef ASSERT 2407 void verify(); 2408 #endif 2409 public: 2410 LIR_InsertionBuffer() : _lir(nullptr), _index_and_count(8), _ops(8) { } 2411 2412 // must be called before using the insertion buffer 2413 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2414 bool initialized() const { return _lir != nullptr; } 2415 // called automatically when the buffer is appended to the LIR_List 2416 void finish() { _lir = nullptr; } 2417 2418 // accessors 2419 LIR_List* lir_list() const { return _lir; } 2420 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2421 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2422 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2423 2424 int number_of_ops() const { return _ops.length(); } 2425 LIR_Op* op_at(int i) const { return _ops.at(i); } 2426 2427 // append an instruction to the buffer 2428 void append(int index, LIR_Op* op); 2429 2430 // instruction 2431 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = nullptr) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2432 }; 2433 2434 2435 // 2436 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2437 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2438 // information about the input, output and temporaries used by the 2439 // op to be recorded. It also records whether the op has call semantics 2440 // and also records all the CodeEmitInfos used by this op. 2441 // 2442 2443 2444 class LIR_OpVisitState: public StackObj { 2445 public: 2446 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2447 2448 enum { 2449 maxNumberOfOperands = 21, 2450 maxNumberOfInfos = 4 2451 }; 2452 2453 private: 2454 LIR_Op* _op; 2455 2456 // optimization: the operands and infos are not stored in a variable-length 2457 // list, but in a fixed-size array to save time of size checks and resizing 2458 int _oprs_len[numModes]; 2459 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2460 int _info_len; 2461 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2462 2463 bool _has_call; 2464 bool _has_slow_case; 2465 2466 2467 // only include register operands 2468 // addresses are decomposed to the base and index registers 2469 // constants and stack operands are ignored 2470 void append(LIR_Opr& opr, OprMode mode) { 2471 assert(opr->is_valid(), "should not call this otherwise"); 2472 assert(mode >= 0 && mode < numModes, "bad mode"); 2473 2474 if (opr->is_register()) { 2475 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2476 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2477 2478 } else if (opr->is_pointer()) { 2479 LIR_Address* address = opr->as_address_ptr(); 2480 if (address != nullptr) { 2481 // special handling for addresses: add base and index register of the address 2482 // both are always input operands or temp if we want to extend 2483 // their liveness! 2484 if (mode == outputMode) { 2485 mode = inputMode; 2486 } 2487 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2488 if (address->_base->is_valid()) { 2489 assert(address->_base->is_register(), "must be"); 2490 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2491 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2492 } 2493 if (address->_index->is_valid()) { 2494 assert(address->_index->is_register(), "must be"); 2495 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2496 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2497 } 2498 2499 } else { 2500 assert(opr->is_constant(), "constant operands are not processed"); 2501 } 2502 } else { 2503 assert(opr->is_stack(), "stack operands are not processed"); 2504 } 2505 } 2506 2507 void append(CodeEmitInfo* info) { 2508 assert(info != nullptr, "should not call this otherwise"); 2509 assert(_info_len < maxNumberOfInfos, "array overflow"); 2510 _info_new[_info_len++] = info; 2511 } 2512 2513 public: 2514 LIR_OpVisitState() { reset(); } 2515 2516 LIR_Op* op() const { return _op; } 2517 void set_op(LIR_Op* op) { reset(); _op = op; } 2518 2519 bool has_call() const { return _has_call; } 2520 bool has_slow_case() const { return _has_slow_case; } 2521 2522 void reset() { 2523 _op = nullptr; 2524 _has_call = false; 2525 _has_slow_case = false; 2526 2527 _oprs_len[inputMode] = 0; 2528 _oprs_len[tempMode] = 0; 2529 _oprs_len[outputMode] = 0; 2530 _info_len = 0; 2531 } 2532 2533 2534 int opr_count(OprMode mode) const { 2535 assert(mode >= 0 && mode < numModes, "bad mode"); 2536 return _oprs_len[mode]; 2537 } 2538 2539 LIR_Opr opr_at(OprMode mode, int index) const { 2540 assert(mode >= 0 && mode < numModes, "bad mode"); 2541 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2542 return *_oprs_new[mode][index]; 2543 } 2544 2545 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2546 assert(mode >= 0 && mode < numModes, "bad mode"); 2547 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2548 *_oprs_new[mode][index] = opr; 2549 } 2550 2551 int info_count() const { 2552 return _info_len; 2553 } 2554 2555 CodeEmitInfo* info_at(int index) const { 2556 assert(index < _info_len, "index out of bounds"); 2557 return _info_new[index]; 2558 } 2559 2560 XHandlers* all_xhandler(); 2561 2562 // collects all register operands of the instruction 2563 void visit(LIR_Op* op); 2564 2565 #ifdef ASSERT 2566 // check that an operation has no operands 2567 bool no_operands(LIR_Op* op); 2568 #endif 2569 2570 // LIR_Op visitor functions use these to fill in the state 2571 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2572 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2573 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2574 void do_info(CodeEmitInfo* info) { append(info); } 2575 2576 void do_stub(CodeStub* stub); 2577 void do_call() { _has_call = true; } 2578 void do_slow_case() { _has_slow_case = true; } 2579 void do_slow_case(CodeEmitInfo* info) { 2580 _has_slow_case = true; 2581 append(info); 2582 } 2583 }; 2584 2585 2586 inline LIR_Opr LIR_Opr::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2587 2588 inline LIR_Opr LIR_Opr::nullOpr() { return LIR_OprFact::nullOpr; }; 2589 2590 #endif // SHARE_C1_C1_LIR_HPP