1 /* 2 * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "compiler/compilerDefinitions.inline.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/c1/barrierSetC1.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/stubRoutines.hpp" 43 #include "runtime/vm_version.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #include "utilities/macros.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 #ifdef ASSERT 49 #define __ gen()->lir(__FILE__, __LINE__)-> 50 #else 51 #define __ gen()->lir()-> 52 #endif 53 54 #ifndef PATCHED_ADDR 55 #define PATCHED_ADDR (max_jint) 56 #endif 57 58 void PhiResolverState::reset() { 59 _virtual_operands.clear(); 60 _other_operands.clear(); 61 _vreg_table.clear(); 62 } 63 64 65 //-------------------------------------------------------------- 66 // PhiResolver 67 68 // Resolves cycles: 69 // 70 // r1 := r2 becomes temp := r1 71 // r2 := r1 r1 := r2 72 // r2 := temp 73 // and orders moves: 74 // 75 // r2 := r3 becomes r1 := r2 76 // r1 := r2 r2 := r3 77 78 PhiResolver::PhiResolver(LIRGenerator* gen) 79 : _gen(gen) 80 , _state(gen->resolver_state()) 81 , _loop(nullptr) 82 , _temp(LIR_OprFact::illegalOpr) 83 { 84 // reinitialize the shared state arrays 85 _state.reset(); 86 } 87 88 89 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 90 assert(src->is_valid(), ""); 91 assert(dest->is_valid(), ""); 92 __ move(src, dest); 93 } 94 95 96 void PhiResolver::move_temp_to(LIR_Opr dest) { 97 assert(_temp->is_valid(), ""); 98 emit_move(_temp, dest); 99 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 100 } 101 102 103 void PhiResolver::move_to_temp(LIR_Opr src) { 104 assert(_temp->is_illegal(), ""); 105 _temp = _gen->new_register(src->type()); 106 emit_move(src, _temp); 107 } 108 109 110 // Traverse assignment graph in depth first order and generate moves in post order 111 // ie. two assignments: b := c, a := b start with node c: 112 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 113 // Generates moves in this order: move b to a and move c to b 114 // ie. cycle a := b, b := a start with node a 115 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 116 // Generates moves in this order: move b to temp, move a to b, move temp to a 117 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 118 if (!dest->visited()) { 119 dest->set_visited(); 120 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 121 move(dest, dest->destination_at(i)); 122 } 123 } else if (!dest->start_node()) { 124 // cylce in graph detected 125 assert(_loop == nullptr, "only one loop valid!"); 126 _loop = dest; 127 move_to_temp(src->operand()); 128 return; 129 } // else dest is a start node 130 131 if (!dest->assigned()) { 132 if (_loop == dest) { 133 move_temp_to(dest->operand()); 134 dest->set_assigned(); 135 } else if (src != nullptr) { 136 emit_move(src->operand(), dest->operand()); 137 dest->set_assigned(); 138 } 139 } 140 } 141 142 143 PhiResolver::~PhiResolver() { 144 int i; 145 // resolve any cycles in moves from and to virtual registers 146 for (i = virtual_operands().length() - 1; i >= 0; i --) { 147 ResolveNode* node = virtual_operands().at(i); 148 if (!node->visited()) { 149 _loop = nullptr; 150 move(nullptr, node); 151 node->set_start_node(); 152 assert(_temp->is_illegal(), "move_temp_to() call missing"); 153 } 154 } 155 156 // generate move for move from non virtual register to abitrary destination 157 for (i = other_operands().length() - 1; i >= 0; i --) { 158 ResolveNode* node = other_operands().at(i); 159 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 160 emit_move(node->operand(), node->destination_at(j)->operand()); 161 } 162 } 163 } 164 165 166 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 167 ResolveNode* node; 168 if (opr->is_virtual()) { 169 int vreg_num = opr->vreg_number(); 170 node = vreg_table().at_grow(vreg_num, nullptr); 171 assert(node == nullptr || node->operand() == opr, ""); 172 if (node == nullptr) { 173 node = new ResolveNode(opr); 174 vreg_table().at_put(vreg_num, node); 175 } 176 // Make sure that all virtual operands show up in the list when 177 // they are used as the source of a move. 178 if (source && !virtual_operands().contains(node)) { 179 virtual_operands().append(node); 180 } 181 } else { 182 assert(source, ""); 183 node = new ResolveNode(opr); 184 other_operands().append(node); 185 } 186 return node; 187 } 188 189 190 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 191 assert(dest->is_virtual(), ""); 192 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 193 assert(src->is_valid(), ""); 194 assert(dest->is_valid(), ""); 195 ResolveNode* source = source_node(src); 196 source->append(destination_node(dest)); 197 } 198 199 200 //-------------------------------------------------------------- 201 // LIRItem 202 203 void LIRItem::set_result(LIR_Opr opr) { 204 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 205 value()->set_operand(opr); 206 207 if (opr->is_virtual()) { 208 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 209 } 210 211 _result = opr; 212 } 213 214 void LIRItem::load_item() { 215 if (result()->is_illegal()) { 216 // update the items result 217 _result = value()->operand(); 218 } 219 if (!result()->is_register()) { 220 LIR_Opr reg = _gen->new_register(value()->type()); 221 __ move(result(), reg); 222 if (result()->is_constant()) { 223 _result = reg; 224 } else { 225 set_result(reg); 226 } 227 } 228 } 229 230 231 void LIRItem::load_for_store(BasicType type) { 232 if (_gen->can_store_as_constant(value(), type)) { 233 _result = value()->operand(); 234 if (!_result->is_constant()) { 235 _result = LIR_OprFact::value_type(value()->type()); 236 } 237 } else if (type == T_BYTE || type == T_BOOLEAN) { 238 load_byte_item(); 239 } else { 240 load_item(); 241 } 242 } 243 244 void LIRItem::load_item_force(LIR_Opr reg) { 245 LIR_Opr r = result(); 246 if (r != reg) { 247 #if !defined(ARM) && !defined(E500V2) 248 if (r->type() != reg->type()) { 249 // moves between different types need an intervening spill slot 250 r = _gen->force_to_spill(r, reg->type()); 251 } 252 #endif 253 __ move(r, reg); 254 _result = reg; 255 } 256 } 257 258 ciObject* LIRItem::get_jobject_constant() const { 259 ObjectType* oc = type()->as_ObjectType(); 260 if (oc) { 261 return oc->constant_value(); 262 } 263 return nullptr; 264 } 265 266 267 jint LIRItem::get_jint_constant() const { 268 assert(is_constant() && value() != nullptr, ""); 269 assert(type()->as_IntConstant() != nullptr, "type check"); 270 return type()->as_IntConstant()->value(); 271 } 272 273 274 jint LIRItem::get_address_constant() const { 275 assert(is_constant() && value() != nullptr, ""); 276 assert(type()->as_AddressConstant() != nullptr, "type check"); 277 return type()->as_AddressConstant()->value(); 278 } 279 280 281 jfloat LIRItem::get_jfloat_constant() const { 282 assert(is_constant() && value() != nullptr, ""); 283 assert(type()->as_FloatConstant() != nullptr, "type check"); 284 return type()->as_FloatConstant()->value(); 285 } 286 287 288 jdouble LIRItem::get_jdouble_constant() const { 289 assert(is_constant() && value() != nullptr, ""); 290 assert(type()->as_DoubleConstant() != nullptr, "type check"); 291 return type()->as_DoubleConstant()->value(); 292 } 293 294 295 jlong LIRItem::get_jlong_constant() const { 296 assert(is_constant() && value() != nullptr, ""); 297 assert(type()->as_LongConstant() != nullptr, "type check"); 298 return type()->as_LongConstant()->value(); 299 } 300 301 302 303 //-------------------------------------------------------------- 304 305 306 void LIRGenerator::block_do_prolog(BlockBegin* block) { 307 #ifndef PRODUCT 308 if (PrintIRWithLIR) { 309 block->print(); 310 } 311 #endif 312 313 // set up the list of LIR instructions 314 assert(block->lir() == nullptr, "LIR list already computed for this block"); 315 _lir = new LIR_List(compilation(), block); 316 block->set_lir(_lir); 317 318 __ branch_destination(block->label()); 319 320 if (LIRTraceExecution && 321 Compilation::current()->hir()->start()->block_id() != block->block_id() && 322 !block->is_set(BlockBegin::exception_entry_flag)) { 323 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 324 trace_block_entry(block); 325 } 326 } 327 328 329 void LIRGenerator::block_do_epilog(BlockBegin* block) { 330 #ifndef PRODUCT 331 if (PrintIRWithLIR) { 332 tty->cr(); 333 } 334 #endif 335 336 // LIR_Opr for unpinned constants shouldn't be referenced by other 337 // blocks so clear them out after processing the block. 338 for (int i = 0; i < _unpinned_constants.length(); i++) { 339 _unpinned_constants.at(i)->clear_operand(); 340 } 341 _unpinned_constants.trunc_to(0); 342 343 // clear our any registers for other local constants 344 _constants.trunc_to(0); 345 _reg_for_constants.trunc_to(0); 346 } 347 348 349 void LIRGenerator::block_do(BlockBegin* block) { 350 CHECK_BAILOUT(); 351 352 block_do_prolog(block); 353 set_block(block); 354 355 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 356 if (instr->is_pinned()) do_root(instr); 357 } 358 359 set_block(nullptr); 360 block_do_epilog(block); 361 } 362 363 364 //-------------------------LIRGenerator----------------------------- 365 366 // This is where the tree-walk starts; instr must be root; 367 void LIRGenerator::do_root(Value instr) { 368 CHECK_BAILOUT(); 369 370 InstructionMark im(compilation(), instr); 371 372 assert(instr->is_pinned(), "use only with roots"); 373 assert(instr->subst() == instr, "shouldn't have missed substitution"); 374 375 instr->visit(this); 376 377 assert(!instr->has_uses() || instr->operand()->is_valid() || 378 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 379 } 380 381 382 // This is called for each node in tree; the walk stops if a root is reached 383 void LIRGenerator::walk(Value instr) { 384 InstructionMark im(compilation(), instr); 385 //stop walk when encounter a root 386 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 387 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 388 } else { 389 assert(instr->subst() == instr, "shouldn't have missed substitution"); 390 instr->visit(this); 391 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 392 } 393 } 394 395 396 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 397 assert(state != nullptr, "state must be defined"); 398 399 #ifndef PRODUCT 400 state->verify(); 401 #endif 402 403 ValueStack* s = state; 404 for_each_state(s) { 405 if (s->kind() == ValueStack::EmptyExceptionState) { 406 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 407 continue; 408 } 409 410 int index; 411 Value value; 412 for_each_stack_value(s, index, value) { 413 assert(value->subst() == value, "missed substitution"); 414 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 415 walk(value); 416 assert(value->operand()->is_valid(), "must be evaluated now"); 417 } 418 } 419 420 int bci = s->bci(); 421 IRScope* scope = s->scope(); 422 ciMethod* method = scope->method(); 423 424 MethodLivenessResult liveness = method->liveness_at_bci(bci); 425 if (bci == SynchronizationEntryBCI) { 426 if (x->as_ExceptionObject() || x->as_Throw()) { 427 // all locals are dead on exit from the synthetic unlocker 428 liveness.clear(); 429 } else { 430 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 431 } 432 } 433 if (!liveness.is_valid()) { 434 // Degenerate or breakpointed method. 435 bailout("Degenerate or breakpointed method"); 436 } else { 437 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 438 for_each_local_value(s, index, value) { 439 assert(value->subst() == value, "missed substitution"); 440 if (liveness.at(index) && !value->type()->is_illegal()) { 441 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 442 walk(value); 443 assert(value->operand()->is_valid(), "must be evaluated now"); 444 } 445 } else { 446 // null out this local so that linear scan can assume that all non-null values are live. 447 s->invalidate_local(index); 448 } 449 } 450 } 451 } 452 453 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 454 } 455 456 457 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 458 return state_for(x, x->exception_state()); 459 } 460 461 462 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 463 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 464 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 465 * the class. */ 466 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 467 assert(info != nullptr, "info must be set if class is not loaded"); 468 __ klass2reg_patch(nullptr, r, info); 469 } else { 470 // no patching needed 471 __ metadata2reg(obj->constant_encoding(), r); 472 } 473 } 474 475 476 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 477 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 478 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 479 if (index->is_constant()) { 480 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 481 index->as_jint(), null_check_info); 482 __ branch(lir_cond_belowEqual, stub); // forward branch 483 } else { 484 cmp_reg_mem(lir_cond_aboveEqual, index, array, 485 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 486 __ branch(lir_cond_aboveEqual, stub); // forward branch 487 } 488 } 489 490 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 491 LIR_Opr result_op = result; 492 LIR_Opr left_op = left; 493 LIR_Opr right_op = right; 494 495 if (two_operand_lir_form && left_op != result_op) { 496 assert(right_op != result_op, "malformed"); 497 __ move(left_op, result_op); 498 left_op = result_op; 499 } 500 501 switch(code) { 502 case Bytecodes::_dadd: 503 case Bytecodes::_fadd: 504 case Bytecodes::_ladd: 505 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 506 case Bytecodes::_fmul: 507 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 508 509 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 510 511 case Bytecodes::_imul: 512 { 513 bool did_strength_reduce = false; 514 515 if (right->is_constant()) { 516 jint c = right->as_jint(); 517 if (c > 0 && is_power_of_2(c)) { 518 // do not need tmp here 519 __ shift_left(left_op, exact_log2(c), result_op); 520 did_strength_reduce = true; 521 } else { 522 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 523 } 524 } 525 // we couldn't strength reduce so just emit the multiply 526 if (!did_strength_reduce) { 527 __ mul(left_op, right_op, result_op); 528 } 529 } 530 break; 531 532 case Bytecodes::_dsub: 533 case Bytecodes::_fsub: 534 case Bytecodes::_lsub: 535 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 536 537 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 538 // ldiv and lrem are implemented with a direct runtime call 539 540 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 541 542 case Bytecodes::_drem: 543 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 544 545 default: ShouldNotReachHere(); 546 } 547 } 548 549 550 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 551 arithmetic_op(code, result, left, right, tmp); 552 } 553 554 555 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 556 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 557 } 558 559 560 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 561 arithmetic_op(code, result, left, right, tmp); 562 } 563 564 565 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 566 567 if (two_operand_lir_form && value != result_op 568 // Only 32bit right shifts require two operand form on S390. 569 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 570 assert(count != result_op, "malformed"); 571 __ move(value, result_op); 572 value = result_op; 573 } 574 575 assert(count->is_constant() || count->is_register(), "must be"); 576 switch(code) { 577 case Bytecodes::_ishl: 578 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 579 case Bytecodes::_ishr: 580 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 581 case Bytecodes::_iushr: 582 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 583 default: ShouldNotReachHere(); 584 } 585 } 586 587 588 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 589 if (two_operand_lir_form && left_op != result_op) { 590 assert(right_op != result_op, "malformed"); 591 __ move(left_op, result_op); 592 left_op = result_op; 593 } 594 595 switch(code) { 596 case Bytecodes::_iand: 597 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 598 599 case Bytecodes::_ior: 600 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 601 602 case Bytecodes::_ixor: 603 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 604 605 default: ShouldNotReachHere(); 606 } 607 } 608 609 610 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 611 if (!GenerateSynchronizationCode) return; 612 // for slow path, use debug info for state after successful locking 613 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 614 __ load_stack_address_monitor(monitor_no, lock); 615 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 616 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 617 } 618 619 620 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 621 if (!GenerateSynchronizationCode) return; 622 // setup registers 623 LIR_Opr hdr = lock; 624 lock = new_hdr; 625 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 626 __ load_stack_address_monitor(monitor_no, lock); 627 __ unlock_object(hdr, object, lock, scratch, slow_path); 628 } 629 630 #ifndef PRODUCT 631 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 632 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 633 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 634 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 635 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 636 } 637 } 638 #endif 639 640 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 641 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 642 // If klass is not loaded we do not know if the klass has finalizers: 643 if (UseFastNewInstance && klass->is_loaded() 644 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 645 646 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 647 648 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 649 650 assert(klass->is_loaded(), "must be loaded"); 651 // allocate space for instance 652 assert(klass->size_helper() > 0, "illegal instance size"); 653 const int instance_size = align_object_size(klass->size_helper()); 654 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 655 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 656 } else { 657 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 658 __ branch(lir_cond_always, slow_path); 659 __ branch_destination(slow_path->continuation()); 660 } 661 } 662 663 664 static bool is_constant_zero(Instruction* inst) { 665 IntConstant* c = inst->type()->as_IntConstant(); 666 if (c) { 667 return (c->value() == 0); 668 } 669 return false; 670 } 671 672 673 static bool positive_constant(Instruction* inst) { 674 IntConstant* c = inst->type()->as_IntConstant(); 675 if (c) { 676 return (c->value() >= 0); 677 } 678 return false; 679 } 680 681 682 static ciArrayKlass* as_array_klass(ciType* type) { 683 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 684 return (ciArrayKlass*)type; 685 } else { 686 return nullptr; 687 } 688 } 689 690 static ciType* phi_declared_type(Phi* phi) { 691 ciType* t = phi->operand_at(0)->declared_type(); 692 if (t == nullptr) { 693 return nullptr; 694 } 695 for(int i = 1; i < phi->operand_count(); i++) { 696 if (t != phi->operand_at(i)->declared_type()) { 697 return nullptr; 698 } 699 } 700 return t; 701 } 702 703 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 704 Instruction* src = x->argument_at(0); 705 Instruction* src_pos = x->argument_at(1); 706 Instruction* dst = x->argument_at(2); 707 Instruction* dst_pos = x->argument_at(3); 708 Instruction* length = x->argument_at(4); 709 710 // first try to identify the likely type of the arrays involved 711 ciArrayKlass* expected_type = nullptr; 712 bool is_exact = false, src_objarray = false, dst_objarray = false; 713 { 714 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 715 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 716 Phi* phi; 717 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 718 src_declared_type = as_array_klass(phi_declared_type(phi)); 719 } 720 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 721 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 722 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 723 dst_declared_type = as_array_klass(phi_declared_type(phi)); 724 } 725 726 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 727 // the types exactly match so the type is fully known 728 is_exact = true; 729 expected_type = src_exact_type; 730 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 731 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 732 ciArrayKlass* src_type = nullptr; 733 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 734 src_type = (ciArrayKlass*) src_exact_type; 735 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 736 src_type = (ciArrayKlass*) src_declared_type; 737 } 738 if (src_type != nullptr) { 739 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 740 is_exact = true; 741 expected_type = dst_type; 742 } 743 } 744 } 745 // at least pass along a good guess 746 if (expected_type == nullptr) expected_type = dst_exact_type; 747 if (expected_type == nullptr) expected_type = src_declared_type; 748 if (expected_type == nullptr) expected_type = dst_declared_type; 749 750 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 751 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 752 } 753 754 // if a probable array type has been identified, figure out if any 755 // of the required checks for a fast case can be elided. 756 int flags = LIR_OpArrayCopy::all_flags; 757 758 if (!src_objarray) 759 flags &= ~LIR_OpArrayCopy::src_objarray; 760 if (!dst_objarray) 761 flags &= ~LIR_OpArrayCopy::dst_objarray; 762 763 if (!x->arg_needs_null_check(0)) 764 flags &= ~LIR_OpArrayCopy::src_null_check; 765 if (!x->arg_needs_null_check(2)) 766 flags &= ~LIR_OpArrayCopy::dst_null_check; 767 768 769 if (expected_type != nullptr) { 770 Value length_limit = nullptr; 771 772 IfOp* ifop = length->as_IfOp(); 773 if (ifop != nullptr) { 774 // look for expressions like min(v, a.length) which ends up as 775 // x > y ? y : x or x >= y ? y : x 776 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 777 ifop->x() == ifop->fval() && 778 ifop->y() == ifop->tval()) { 779 length_limit = ifop->y(); 780 } 781 } 782 783 // try to skip null checks and range checks 784 NewArray* src_array = src->as_NewArray(); 785 if (src_array != nullptr) { 786 flags &= ~LIR_OpArrayCopy::src_null_check; 787 if (length_limit != nullptr && 788 src_array->length() == length_limit && 789 is_constant_zero(src_pos)) { 790 flags &= ~LIR_OpArrayCopy::src_range_check; 791 } 792 } 793 794 NewArray* dst_array = dst->as_NewArray(); 795 if (dst_array != nullptr) { 796 flags &= ~LIR_OpArrayCopy::dst_null_check; 797 if (length_limit != nullptr && 798 dst_array->length() == length_limit && 799 is_constant_zero(dst_pos)) { 800 flags &= ~LIR_OpArrayCopy::dst_range_check; 801 } 802 } 803 804 // check from incoming constant values 805 if (positive_constant(src_pos)) 806 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 807 if (positive_constant(dst_pos)) 808 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 809 if (positive_constant(length)) 810 flags &= ~LIR_OpArrayCopy::length_positive_check; 811 812 // see if the range check can be elided, which might also imply 813 // that src or dst is non-null. 814 ArrayLength* al = length->as_ArrayLength(); 815 if (al != nullptr) { 816 if (al->array() == src) { 817 // it's the length of the source array 818 flags &= ~LIR_OpArrayCopy::length_positive_check; 819 flags &= ~LIR_OpArrayCopy::src_null_check; 820 if (is_constant_zero(src_pos)) 821 flags &= ~LIR_OpArrayCopy::src_range_check; 822 } 823 if (al->array() == dst) { 824 // it's the length of the destination array 825 flags &= ~LIR_OpArrayCopy::length_positive_check; 826 flags &= ~LIR_OpArrayCopy::dst_null_check; 827 if (is_constant_zero(dst_pos)) 828 flags &= ~LIR_OpArrayCopy::dst_range_check; 829 } 830 } 831 if (is_exact) { 832 flags &= ~LIR_OpArrayCopy::type_check; 833 } 834 } 835 836 IntConstant* src_int = src_pos->type()->as_IntConstant(); 837 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 838 if (src_int && dst_int) { 839 int s_offs = src_int->value(); 840 int d_offs = dst_int->value(); 841 if (src_int->value() >= dst_int->value()) { 842 flags &= ~LIR_OpArrayCopy::overlapping; 843 } 844 if (expected_type != nullptr) { 845 BasicType t = expected_type->element_type()->basic_type(); 846 int element_size = type2aelembytes(t); 847 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 848 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 849 flags &= ~LIR_OpArrayCopy::unaligned; 850 } 851 } 852 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 853 // src and dest positions are the same, or dst is zero so assume 854 // nonoverlapping copy. 855 flags &= ~LIR_OpArrayCopy::overlapping; 856 } 857 858 if (src == dst) { 859 // moving within a single array so no type checks are needed 860 if (flags & LIR_OpArrayCopy::type_check) { 861 flags &= ~LIR_OpArrayCopy::type_check; 862 } 863 } 864 *flagsp = flags; 865 *expected_typep = (ciArrayKlass*)expected_type; 866 } 867 868 869 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 870 assert(opr->is_register(), "why spill if item is not register?"); 871 872 if (strict_fp_requires_explicit_rounding) { 873 #ifdef IA32 874 if (UseSSE < 1 && opr->is_single_fpu()) { 875 LIR_Opr result = new_register(T_FLOAT); 876 set_vreg_flag(result, must_start_in_memory); 877 assert(opr->is_register(), "only a register can be spilled"); 878 assert(opr->value_type()->is_float(), "rounding only for floats available"); 879 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 880 return result; 881 } 882 #else 883 Unimplemented(); 884 #endif // IA32 885 } 886 return opr; 887 } 888 889 890 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 891 assert(type2size[t] == type2size[value->type()], 892 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 893 if (!value->is_register()) { 894 // force into a register 895 LIR_Opr r = new_register(value->type()); 896 __ move(value, r); 897 value = r; 898 } 899 900 // create a spill location 901 LIR_Opr tmp = new_register(t); 902 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 903 904 // move from register to spill 905 __ move(value, tmp); 906 return tmp; 907 } 908 909 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 910 if (if_instr->should_profile()) { 911 ciMethod* method = if_instr->profiled_method(); 912 assert(method != nullptr, "method should be set if branch is profiled"); 913 ciMethodData* md = method->method_data_or_null(); 914 assert(md != nullptr, "Sanity"); 915 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 916 assert(data != nullptr, "must have profiling data"); 917 assert(data->is_BranchData(), "need BranchData for two-way branches"); 918 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 919 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 920 if (if_instr->is_swapped()) { 921 int t = taken_count_offset; 922 taken_count_offset = not_taken_count_offset; 923 not_taken_count_offset = t; 924 } 925 926 LIR_Opr md_reg = new_register(T_METADATA); 927 __ metadata2reg(md->constant_encoding(), md_reg); 928 929 LIR_Opr data_offset_reg = new_pointer_register(); 930 __ cmove(lir_cond(cond), 931 LIR_OprFact::intptrConst(taken_count_offset), 932 LIR_OprFact::intptrConst(not_taken_count_offset), 933 data_offset_reg, as_BasicType(if_instr->x()->type())); 934 935 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 936 LIR_Opr data_reg = new_pointer_register(); 937 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 938 __ move(data_addr, data_reg); 939 // Use leal instead of add to avoid destroying condition codes on x86 940 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 941 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 942 __ move(data_reg, data_addr); 943 } 944 } 945 946 // Phi technique: 947 // This is about passing live values from one basic block to the other. 948 // In code generated with Java it is rather rare that more than one 949 // value is on the stack from one basic block to the other. 950 // We optimize our technique for efficient passing of one value 951 // (of type long, int, double..) but it can be extended. 952 // When entering or leaving a basic block, all registers and all spill 953 // slots are release and empty. We use the released registers 954 // and spill slots to pass the live values from one block 955 // to the other. The topmost value, i.e., the value on TOS of expression 956 // stack is passed in registers. All other values are stored in spilling 957 // area. Every Phi has an index which designates its spill slot 958 // At exit of a basic block, we fill the register(s) and spill slots. 959 // At entry of a basic block, the block_prolog sets up the content of phi nodes 960 // and locks necessary registers and spilling slots. 961 962 963 // move current value to referenced phi function 964 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 965 Phi* phi = sux_val->as_Phi(); 966 // cur_val can be null without phi being null in conjunction with inlining 967 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 968 if (phi->is_local()) { 969 for (int i = 0; i < phi->operand_count(); i++) { 970 Value op = phi->operand_at(i); 971 if (op != nullptr && op->type()->is_illegal()) { 972 bailout("illegal phi operand"); 973 } 974 } 975 } 976 Phi* cur_phi = cur_val->as_Phi(); 977 if (cur_phi != nullptr && cur_phi->is_illegal()) { 978 // Phi and local would need to get invalidated 979 // (which is unexpected for Linear Scan). 980 // But this case is very rare so we simply bail out. 981 bailout("propagation of illegal phi"); 982 return; 983 } 984 LIR_Opr operand = cur_val->operand(); 985 if (operand->is_illegal()) { 986 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 987 "these can be produced lazily"); 988 operand = operand_for_instruction(cur_val); 989 } 990 resolver->move(operand, operand_for_instruction(phi)); 991 } 992 } 993 994 995 // Moves all stack values into their PHI position 996 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 997 BlockBegin* bb = block(); 998 if (bb->number_of_sux() == 1) { 999 BlockBegin* sux = bb->sux_at(0); 1000 assert(sux->number_of_preds() > 0, "invalid CFG"); 1001 1002 // a block with only one predecessor never has phi functions 1003 if (sux->number_of_preds() > 1) { 1004 PhiResolver resolver(this); 1005 1006 ValueStack* sux_state = sux->state(); 1007 Value sux_value; 1008 int index; 1009 1010 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1011 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1012 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1013 1014 for_each_stack_value(sux_state, index, sux_value) { 1015 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1016 } 1017 1018 for_each_local_value(sux_state, index, sux_value) { 1019 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1020 } 1021 1022 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1023 } 1024 } 1025 } 1026 1027 1028 LIR_Opr LIRGenerator::new_register(BasicType type) { 1029 int vreg_num = _virtual_register_number; 1030 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1031 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1032 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1033 bailout("out of virtual registers in LIR generator"); 1034 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1035 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1036 _virtual_register_number = LIR_Opr::vreg_base; 1037 vreg_num = LIR_Opr::vreg_base; 1038 } 1039 } 1040 _virtual_register_number += 1; 1041 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1042 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1043 return vreg; 1044 } 1045 1046 1047 // Try to lock using register in hint 1048 LIR_Opr LIRGenerator::rlock(Value instr) { 1049 return new_register(instr->type()); 1050 } 1051 1052 1053 // does an rlock and sets result 1054 LIR_Opr LIRGenerator::rlock_result(Value x) { 1055 LIR_Opr reg = rlock(x); 1056 set_result(x, reg); 1057 return reg; 1058 } 1059 1060 1061 // does an rlock and sets result 1062 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1063 LIR_Opr reg; 1064 switch (type) { 1065 case T_BYTE: 1066 case T_BOOLEAN: 1067 reg = rlock_byte(type); 1068 break; 1069 default: 1070 reg = rlock(x); 1071 break; 1072 } 1073 1074 set_result(x, reg); 1075 return reg; 1076 } 1077 1078 1079 //--------------------------------------------------------------------- 1080 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1081 ObjectType* oc = value->type()->as_ObjectType(); 1082 if (oc) { 1083 return oc->constant_value(); 1084 } 1085 return nullptr; 1086 } 1087 1088 1089 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1090 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1091 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1092 1093 // no moves are created for phi functions at the begin of exception 1094 // handlers, so assign operands manually here 1095 for_each_phi_fun(block(), phi, 1096 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1097 1098 LIR_Opr thread_reg = getThreadPointer(); 1099 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1100 exceptionOopOpr()); 1101 __ move_wide(LIR_OprFact::oopConst(nullptr), 1102 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1103 __ move_wide(LIR_OprFact::oopConst(nullptr), 1104 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1105 1106 LIR_Opr result = new_register(T_OBJECT); 1107 __ move(exceptionOopOpr(), result); 1108 set_result(x, result); 1109 } 1110 1111 1112 //---------------------------------------------------------------------- 1113 //---------------------------------------------------------------------- 1114 //---------------------------------------------------------------------- 1115 //---------------------------------------------------------------------- 1116 // visitor functions 1117 //---------------------------------------------------------------------- 1118 //---------------------------------------------------------------------- 1119 //---------------------------------------------------------------------- 1120 //---------------------------------------------------------------------- 1121 1122 void LIRGenerator::do_Phi(Phi* x) { 1123 // phi functions are never visited directly 1124 ShouldNotReachHere(); 1125 } 1126 1127 1128 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1129 void LIRGenerator::do_Constant(Constant* x) { 1130 if (x->state_before() != nullptr) { 1131 // Any constant with a ValueStack requires patching so emit the patch here 1132 LIR_Opr reg = rlock_result(x); 1133 CodeEmitInfo* info = state_for(x, x->state_before()); 1134 __ oop2reg_patch(nullptr, reg, info); 1135 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1136 if (!x->is_pinned()) { 1137 // unpinned constants are handled specially so that they can be 1138 // put into registers when they are used multiple times within a 1139 // block. After the block completes their operand will be 1140 // cleared so that other blocks can't refer to that register. 1141 set_result(x, load_constant(x)); 1142 } else { 1143 LIR_Opr res = x->operand(); 1144 if (!res->is_valid()) { 1145 res = LIR_OprFact::value_type(x->type()); 1146 } 1147 if (res->is_constant()) { 1148 LIR_Opr reg = rlock_result(x); 1149 __ move(res, reg); 1150 } else { 1151 set_result(x, res); 1152 } 1153 } 1154 } else { 1155 set_result(x, LIR_OprFact::value_type(x->type())); 1156 } 1157 } 1158 1159 1160 void LIRGenerator::do_Local(Local* x) { 1161 // operand_for_instruction has the side effect of setting the result 1162 // so there's no need to do it here. 1163 operand_for_instruction(x); 1164 } 1165 1166 1167 void LIRGenerator::do_Return(Return* x) { 1168 if (compilation()->env()->dtrace_method_probes()) { 1169 BasicTypeList signature; 1170 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1171 signature.append(T_METADATA); // Method* 1172 LIR_OprList* args = new LIR_OprList(); 1173 args->append(getThreadPointer()); 1174 LIR_Opr meth = new_register(T_METADATA); 1175 __ metadata2reg(method()->constant_encoding(), meth); 1176 args->append(meth); 1177 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1178 } 1179 1180 if (x->type()->is_void()) { 1181 __ return_op(LIR_OprFact::illegalOpr); 1182 } else { 1183 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1184 LIRItem result(x->result(), this); 1185 1186 result.load_item_force(reg); 1187 __ return_op(result.result()); 1188 } 1189 set_no_result(x); 1190 } 1191 1192 // Example: ref.get() 1193 // Combination of LoadField and g1 pre-write barrier 1194 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1195 1196 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1197 1198 assert(x->number_of_arguments() == 1, "wrong type"); 1199 1200 LIRItem reference(x->argument_at(0), this); 1201 reference.load_item(); 1202 1203 // need to perform the null check on the reference object 1204 CodeEmitInfo* info = nullptr; 1205 if (x->needs_null_check()) { 1206 info = state_for(x); 1207 } 1208 1209 LIR_Opr result = rlock_result(x, T_OBJECT); 1210 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1211 reference, LIR_OprFact::intConst(referent_offset), result, 1212 nullptr, info); 1213 } 1214 1215 // Example: clazz.isInstance(object) 1216 void LIRGenerator::do_isInstance(Intrinsic* x) { 1217 assert(x->number_of_arguments() == 2, "wrong type"); 1218 1219 // TODO could try to substitute this node with an equivalent InstanceOf 1220 // if clazz is known to be a constant Class. This will pick up newly found 1221 // constants after HIR construction. I'll leave this to a future change. 1222 1223 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1224 // could follow the aastore example in a future change. 1225 1226 LIRItem clazz(x->argument_at(0), this); 1227 LIRItem object(x->argument_at(1), this); 1228 clazz.load_item(); 1229 object.load_item(); 1230 LIR_Opr result = rlock_result(x); 1231 1232 // need to perform null check on clazz 1233 if (x->needs_null_check()) { 1234 CodeEmitInfo* info = state_for(x); 1235 __ null_check(clazz.result(), info); 1236 } 1237 1238 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1239 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1240 x->type(), 1241 nullptr); // null CodeEmitInfo results in a leaf call 1242 __ move(call_result, result); 1243 } 1244 1245 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1246 __ load_klass(obj, klass, null_check_info); 1247 } 1248 1249 // Example: object.getClass () 1250 void LIRGenerator::do_getClass(Intrinsic* x) { 1251 assert(x->number_of_arguments() == 1, "wrong type"); 1252 1253 LIRItem rcvr(x->argument_at(0), this); 1254 rcvr.load_item(); 1255 LIR_Opr temp = new_register(T_ADDRESS); 1256 LIR_Opr result = rlock_result(x); 1257 1258 // need to perform the null check on the rcvr 1259 CodeEmitInfo* info = nullptr; 1260 if (x->needs_null_check()) { 1261 info = state_for(x); 1262 } 1263 1264 LIR_Opr klass = new_register(T_METADATA); 1265 load_klass(rcvr.result(), klass, info); 1266 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1267 // mirror = ((OopHandle)mirror)->resolve(); 1268 access_load(IN_NATIVE, T_OBJECT, 1269 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1270 } 1271 1272 // java.lang.Class::isPrimitive() 1273 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1274 assert(x->number_of_arguments() == 1, "wrong type"); 1275 1276 LIRItem rcvr(x->argument_at(0), this); 1277 rcvr.load_item(); 1278 LIR_Opr temp = new_register(T_METADATA); 1279 LIR_Opr result = rlock_result(x); 1280 1281 CodeEmitInfo* info = nullptr; 1282 if (x->needs_null_check()) { 1283 info = state_for(x); 1284 } 1285 1286 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1287 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1288 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1289 } 1290 1291 // Example: Foo.class.getModifiers() 1292 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1293 assert(x->number_of_arguments() == 1, "wrong type"); 1294 1295 LIRItem receiver(x->argument_at(0), this); 1296 receiver.load_item(); 1297 LIR_Opr result = rlock_result(x); 1298 1299 CodeEmitInfo* info = nullptr; 1300 if (x->needs_null_check()) { 1301 info = state_for(x); 1302 } 1303 1304 // While reading off the universal constant mirror is less efficient than doing 1305 // another branch and returning the constant answer, this branchless code runs into 1306 // much less risk of confusion for C1 register allocator. The choice of the universe 1307 // object here is correct as long as it returns the same modifiers we would expect 1308 // from the primitive class itself. See spec for Class.getModifiers that provides 1309 // the typed array klasses with similar modifiers as their component types. 1310 1311 Klass* univ_klass_obj = Universe::byteArrayKlassObj(); 1312 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1313 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj); 1314 1315 LIR_Opr recv_klass = new_register(T_METADATA); 1316 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1317 1318 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1319 LIR_Opr klass = new_register(T_METADATA); 1320 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0)); 1321 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1322 1323 // Get the answer. 1324 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1325 } 1326 1327 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1328 assert(x->number_of_arguments() == 3, "wrong type"); 1329 LIR_Opr result_reg = rlock_result(x); 1330 1331 LIRItem value(x->argument_at(2), this); 1332 value.load_item(); 1333 1334 LIR_Opr klass = new_register(T_METADATA); 1335 load_klass(value.result(), klass, nullptr); 1336 LIR_Opr layout = new_register(T_INT); 1337 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1338 1339 LabelObj* L_done = new LabelObj(); 1340 LabelObj* L_array = new LabelObj(); 1341 1342 __ cmp(lir_cond_lessEqual, layout, 0); 1343 __ branch(lir_cond_lessEqual, L_array->label()); 1344 1345 // Instance case: the layout helper gives us instance size almost directly, 1346 // but we need to mask out the _lh_instance_slow_path_bit. 1347 1348 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1349 1350 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1351 __ logical_and(layout, mask, layout); 1352 __ convert(Bytecodes::_i2l, layout, result_reg); 1353 1354 __ branch(lir_cond_always, L_done->label()); 1355 1356 // Array case: size is round(header + element_size*arraylength). 1357 // Since arraylength is different for every array instance, we have to 1358 // compute the whole thing at runtime. 1359 1360 __ branch_destination(L_array->label()); 1361 1362 int round_mask = MinObjAlignmentInBytes - 1; 1363 1364 // Figure out header sizes first. 1365 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1366 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1367 1368 LIR_Opr header_size = new_register(T_INT); 1369 __ move(layout, header_size); 1370 LIR_Opr tmp = new_register(T_INT); 1371 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1372 __ logical_and(header_size, hsm, header_size); 1373 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1374 1375 // Figure out the array length in bytes 1376 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1377 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1378 __ logical_and(layout, l2esm, layout); 1379 1380 LIR_Opr length_int = new_register(T_INT); 1381 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1382 1383 #ifdef _LP64 1384 LIR_Opr length = new_register(T_LONG); 1385 __ convert(Bytecodes::_i2l, length_int, length); 1386 #endif 1387 1388 // Shift-left awkwardness. Normally it is just: 1389 // __ shift_left(length, layout, length); 1390 // But C1 cannot perform shift_left with non-constant count, so we end up 1391 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1392 // longs, so we have to act on ints. 1393 LabelObj* L_shift_loop = new LabelObj(); 1394 LabelObj* L_shift_exit = new LabelObj(); 1395 1396 __ branch_destination(L_shift_loop->label()); 1397 __ cmp(lir_cond_equal, layout, 0); 1398 __ branch(lir_cond_equal, L_shift_exit->label()); 1399 1400 #ifdef _LP64 1401 __ shift_left(length, 1, length); 1402 #else 1403 __ shift_left(length_int, 1, length_int); 1404 #endif 1405 1406 __ sub(layout, LIR_OprFact::intConst(1), layout); 1407 1408 __ branch(lir_cond_always, L_shift_loop->label()); 1409 __ branch_destination(L_shift_exit->label()); 1410 1411 // Mix all up, round, and push to the result. 1412 #ifdef _LP64 1413 LIR_Opr header_size_long = new_register(T_LONG); 1414 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1415 __ add(length, header_size_long, length); 1416 if (round_mask != 0) { 1417 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1418 __ logical_and(length, round_mask_opr, length); 1419 } 1420 __ move(length, result_reg); 1421 #else 1422 __ add(length_int, header_size, length_int); 1423 if (round_mask != 0) { 1424 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1425 __ logical_and(length_int, round_mask_opr, length_int); 1426 } 1427 __ convert(Bytecodes::_i2l, length_int, result_reg); 1428 #endif 1429 1430 __ branch_destination(L_done->label()); 1431 } 1432 1433 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1434 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1435 } 1436 1437 // Example: Thread.currentCarrierThread() 1438 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1439 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1440 } 1441 1442 void LIRGenerator::do_vthread(Intrinsic* x) { 1443 do_JavaThreadField(x, JavaThread::vthread_offset()); 1444 } 1445 1446 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1447 assert(x->number_of_arguments() == 0, "wrong type"); 1448 LIR_Opr temp = new_register(T_ADDRESS); 1449 LIR_Opr reg = rlock_result(x); 1450 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1451 access_load(IN_NATIVE, T_OBJECT, 1452 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1453 } 1454 1455 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1456 assert(x->number_of_arguments() == 1, "wrong type"); 1457 LIRItem receiver(x->argument_at(0), this); 1458 1459 receiver.load_item(); 1460 BasicTypeList signature; 1461 signature.append(T_OBJECT); // receiver 1462 LIR_OprList* args = new LIR_OprList(); 1463 args->append(receiver.result()); 1464 CodeEmitInfo* info = state_for(x, x->state()); 1465 call_runtime(&signature, args, 1466 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1467 voidType, info); 1468 1469 set_no_result(x); 1470 } 1471 1472 1473 //------------------------local access-------------------------------------- 1474 1475 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1476 if (x->operand()->is_illegal()) { 1477 Constant* c = x->as_Constant(); 1478 if (c != nullptr) { 1479 x->set_operand(LIR_OprFact::value_type(c->type())); 1480 } else { 1481 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1482 // allocate a virtual register for this local or phi 1483 x->set_operand(rlock(x)); 1484 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1485 } 1486 } 1487 return x->operand(); 1488 } 1489 1490 1491 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1492 if (opr->is_virtual()) { 1493 return instruction_for_vreg(opr->vreg_number()); 1494 } 1495 return nullptr; 1496 } 1497 1498 1499 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1500 if (reg_num < _instruction_for_operand.length()) { 1501 return _instruction_for_operand.at(reg_num); 1502 } 1503 return nullptr; 1504 } 1505 1506 1507 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1508 if (_vreg_flags.size_in_bits() == 0) { 1509 BitMap2D temp(100, num_vreg_flags); 1510 _vreg_flags = temp; 1511 } 1512 _vreg_flags.at_put_grow(vreg_num, f, true); 1513 } 1514 1515 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1516 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1517 return false; 1518 } 1519 return _vreg_flags.at(vreg_num, f); 1520 } 1521 1522 1523 // Block local constant handling. This code is useful for keeping 1524 // unpinned constants and constants which aren't exposed in the IR in 1525 // registers. Unpinned Constant instructions have their operands 1526 // cleared when the block is finished so that other blocks can't end 1527 // up referring to their registers. 1528 1529 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1530 assert(!x->is_pinned(), "only for unpinned constants"); 1531 _unpinned_constants.append(x); 1532 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1533 } 1534 1535 1536 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1537 BasicType t = c->type(); 1538 for (int i = 0; i < _constants.length(); i++) { 1539 LIR_Const* other = _constants.at(i); 1540 if (t == other->type()) { 1541 switch (t) { 1542 case T_INT: 1543 case T_FLOAT: 1544 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1545 break; 1546 case T_LONG: 1547 case T_DOUBLE: 1548 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1549 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1550 break; 1551 case T_OBJECT: 1552 if (c->as_jobject() != other->as_jobject()) continue; 1553 break; 1554 default: 1555 break; 1556 } 1557 return _reg_for_constants.at(i); 1558 } 1559 } 1560 1561 LIR_Opr result = new_register(t); 1562 __ move((LIR_Opr)c, result); 1563 _constants.append(c); 1564 _reg_for_constants.append(result); 1565 return result; 1566 } 1567 1568 //------------------------field access-------------------------------------- 1569 1570 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1571 assert(x->number_of_arguments() == 4, "wrong type"); 1572 LIRItem obj (x->argument_at(0), this); // object 1573 LIRItem offset(x->argument_at(1), this); // offset of field 1574 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1575 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1576 assert(obj.type()->tag() == objectTag, "invalid type"); 1577 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1578 assert(val.type()->tag() == type->tag(), "invalid type"); 1579 1580 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1581 obj, offset, cmp, val); 1582 set_result(x, result); 1583 } 1584 1585 // Comment copied form templateTable_i486.cpp 1586 // ---------------------------------------------------------------------------- 1587 // Volatile variables demand their effects be made known to all CPU's in 1588 // order. Store buffers on most chips allow reads & writes to reorder; the 1589 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1590 // memory barrier (i.e., it's not sufficient that the interpreter does not 1591 // reorder volatile references, the hardware also must not reorder them). 1592 // 1593 // According to the new Java Memory Model (JMM): 1594 // (1) All volatiles are serialized wrt to each other. 1595 // ALSO reads & writes act as acquire & release, so: 1596 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1597 // the read float up to before the read. It's OK for non-volatile memory refs 1598 // that happen before the volatile read to float down below it. 1599 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1600 // that happen BEFORE the write float down to after the write. It's OK for 1601 // non-volatile memory refs that happen after the volatile write to float up 1602 // before it. 1603 // 1604 // We only put in barriers around volatile refs (they are expensive), not 1605 // _between_ memory refs (that would require us to track the flavor of the 1606 // previous memory refs). Requirements (2) and (3) require some barriers 1607 // before volatile stores and after volatile loads. These nearly cover 1608 // requirement (1) but miss the volatile-store-volatile-load case. This final 1609 // case is placed after volatile-stores although it could just as well go 1610 // before volatile-loads. 1611 1612 1613 void LIRGenerator::do_StoreField(StoreField* x) { 1614 bool needs_patching = x->needs_patching(); 1615 bool is_volatile = x->field()->is_volatile(); 1616 BasicType field_type = x->field_type(); 1617 1618 CodeEmitInfo* info = nullptr; 1619 if (needs_patching) { 1620 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1621 info = state_for(x, x->state_before()); 1622 } else if (x->needs_null_check()) { 1623 NullCheck* nc = x->explicit_null_check(); 1624 if (nc == nullptr) { 1625 info = state_for(x); 1626 } else { 1627 info = state_for(nc); 1628 } 1629 } 1630 1631 LIRItem object(x->obj(), this); 1632 LIRItem value(x->value(), this); 1633 1634 object.load_item(); 1635 1636 if (is_volatile || needs_patching) { 1637 // load item if field is volatile (fewer special cases for volatiles) 1638 // load item if field not initialized 1639 // load item if field not constant 1640 // because of code patching we cannot inline constants 1641 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1642 value.load_byte_item(); 1643 } else { 1644 value.load_item(); 1645 } 1646 } else { 1647 value.load_for_store(field_type); 1648 } 1649 1650 set_no_result(x); 1651 1652 #ifndef PRODUCT 1653 if (PrintNotLoaded && needs_patching) { 1654 tty->print_cr(" ###class not loaded at store_%s bci %d", 1655 x->is_static() ? "static" : "field", x->printable_bci()); 1656 } 1657 #endif 1658 1659 if (x->needs_null_check() && 1660 (needs_patching || 1661 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1662 // Emit an explicit null check because the offset is too large. 1663 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1664 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1665 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1666 } 1667 1668 DecoratorSet decorators = IN_HEAP; 1669 if (is_volatile) { 1670 decorators |= MO_SEQ_CST; 1671 } 1672 if (needs_patching) { 1673 decorators |= C1_NEEDS_PATCHING; 1674 } 1675 1676 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1677 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1678 } 1679 1680 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1681 assert(x->is_pinned(),""); 1682 bool needs_range_check = x->compute_needs_range_check(); 1683 bool use_length = x->length() != nullptr; 1684 bool obj_store = is_reference_type(x->elt_type()); 1685 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1686 !get_jobject_constant(x->value())->is_null_object() || 1687 x->should_profile()); 1688 1689 LIRItem array(x->array(), this); 1690 LIRItem index(x->index(), this); 1691 LIRItem value(x->value(), this); 1692 LIRItem length(this); 1693 1694 array.load_item(); 1695 index.load_nonconstant(); 1696 1697 if (use_length && needs_range_check) { 1698 length.set_instruction(x->length()); 1699 length.load_item(); 1700 1701 } 1702 if (needs_store_check || x->check_boolean()) { 1703 value.load_item(); 1704 } else { 1705 value.load_for_store(x->elt_type()); 1706 } 1707 1708 set_no_result(x); 1709 1710 // the CodeEmitInfo must be duplicated for each different 1711 // LIR-instruction because spilling can occur anywhere between two 1712 // instructions and so the debug information must be different 1713 CodeEmitInfo* range_check_info = state_for(x); 1714 CodeEmitInfo* null_check_info = nullptr; 1715 if (x->needs_null_check()) { 1716 null_check_info = new CodeEmitInfo(range_check_info); 1717 } 1718 1719 if (needs_range_check) { 1720 if (use_length) { 1721 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1722 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1723 } else { 1724 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1725 // range_check also does the null check 1726 null_check_info = nullptr; 1727 } 1728 } 1729 1730 if (GenerateArrayStoreCheck && needs_store_check) { 1731 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1732 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1733 } 1734 1735 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1736 if (x->check_boolean()) { 1737 decorators |= C1_MASK_BOOLEAN; 1738 } 1739 1740 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1741 nullptr, null_check_info); 1742 } 1743 1744 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1745 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1746 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1747 decorators |= ACCESS_READ; 1748 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1749 if (access.is_raw()) { 1750 _barrier_set->BarrierSetC1::load_at(access, result); 1751 } else { 1752 _barrier_set->load_at(access, result); 1753 } 1754 } 1755 1756 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1757 LIR_Opr addr, LIR_Opr result) { 1758 decorators |= ACCESS_READ; 1759 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1760 access.set_resolved_addr(addr); 1761 if (access.is_raw()) { 1762 _barrier_set->BarrierSetC1::load(access, result); 1763 } else { 1764 _barrier_set->load(access, result); 1765 } 1766 } 1767 1768 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1769 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1770 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1771 decorators |= ACCESS_WRITE; 1772 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1773 if (access.is_raw()) { 1774 _barrier_set->BarrierSetC1::store_at(access, value); 1775 } else { 1776 _barrier_set->store_at(access, value); 1777 } 1778 } 1779 1780 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1781 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1782 decorators |= ACCESS_READ; 1783 decorators |= ACCESS_WRITE; 1784 // Atomic operations are SEQ_CST by default 1785 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1786 LIRAccess access(this, decorators, base, offset, type); 1787 if (access.is_raw()) { 1788 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1789 } else { 1790 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1791 } 1792 } 1793 1794 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1795 LIRItem& base, LIRItem& offset, LIRItem& value) { 1796 decorators |= ACCESS_READ; 1797 decorators |= ACCESS_WRITE; 1798 // Atomic operations are SEQ_CST by default 1799 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1800 LIRAccess access(this, decorators, base, offset, type); 1801 if (access.is_raw()) { 1802 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1803 } else { 1804 return _barrier_set->atomic_xchg_at(access, value); 1805 } 1806 } 1807 1808 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1809 LIRItem& base, LIRItem& offset, LIRItem& value) { 1810 decorators |= ACCESS_READ; 1811 decorators |= ACCESS_WRITE; 1812 // Atomic operations are SEQ_CST by default 1813 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1814 LIRAccess access(this, decorators, base, offset, type); 1815 if (access.is_raw()) { 1816 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1817 } else { 1818 return _barrier_set->atomic_add_at(access, value); 1819 } 1820 } 1821 1822 void LIRGenerator::do_LoadField(LoadField* x) { 1823 bool needs_patching = x->needs_patching(); 1824 bool is_volatile = x->field()->is_volatile(); 1825 BasicType field_type = x->field_type(); 1826 1827 CodeEmitInfo* info = nullptr; 1828 if (needs_patching) { 1829 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1830 info = state_for(x, x->state_before()); 1831 } else if (x->needs_null_check()) { 1832 NullCheck* nc = x->explicit_null_check(); 1833 if (nc == nullptr) { 1834 info = state_for(x); 1835 } else { 1836 info = state_for(nc); 1837 } 1838 } 1839 1840 LIRItem object(x->obj(), this); 1841 1842 object.load_item(); 1843 1844 #ifndef PRODUCT 1845 if (PrintNotLoaded && needs_patching) { 1846 tty->print_cr(" ###class not loaded at load_%s bci %d", 1847 x->is_static() ? "static" : "field", x->printable_bci()); 1848 } 1849 #endif 1850 1851 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1852 if (x->needs_null_check() && 1853 (needs_patching || 1854 MacroAssembler::needs_explicit_null_check(x->offset()) || 1855 stress_deopt)) { 1856 LIR_Opr obj = object.result(); 1857 if (stress_deopt) { 1858 obj = new_register(T_OBJECT); 1859 __ move(LIR_OprFact::oopConst(nullptr), obj); 1860 } 1861 // Emit an explicit null check because the offset is too large. 1862 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1863 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1864 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1865 } 1866 1867 DecoratorSet decorators = IN_HEAP; 1868 if (is_volatile) { 1869 decorators |= MO_SEQ_CST; 1870 } 1871 if (needs_patching) { 1872 decorators |= C1_NEEDS_PATCHING; 1873 } 1874 1875 LIR_Opr result = rlock_result(x, field_type); 1876 access_load_at(decorators, field_type, 1877 object, LIR_OprFact::intConst(x->offset()), result, 1878 info ? new CodeEmitInfo(info) : nullptr, info); 1879 } 1880 1881 // int/long jdk.internal.util.Preconditions.checkIndex 1882 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1883 assert(x->number_of_arguments() == 3, "wrong type"); 1884 LIRItem index(x->argument_at(0), this); 1885 LIRItem length(x->argument_at(1), this); 1886 LIRItem oobef(x->argument_at(2), this); 1887 1888 index.load_item(); 1889 length.load_item(); 1890 oobef.load_item(); 1891 1892 LIR_Opr result = rlock_result(x); 1893 // x->state() is created from copy_state_for_exception, it does not contains arguments 1894 // we should prepare them before entering into interpreter mode due to deoptimization. 1895 ValueStack* state = x->state(); 1896 for (int i = 0; i < x->number_of_arguments(); i++) { 1897 Value arg = x->argument_at(i); 1898 state->push(arg->type(), arg); 1899 } 1900 CodeEmitInfo* info = state_for(x, state); 1901 1902 LIR_Opr len = length.result(); 1903 LIR_Opr zero; 1904 if (type == T_INT) { 1905 zero = LIR_OprFact::intConst(0); 1906 if (length.result()->is_constant()){ 1907 len = LIR_OprFact::intConst(length.result()->as_jint()); 1908 } 1909 } else { 1910 assert(type == T_LONG, "sanity check"); 1911 zero = LIR_OprFact::longConst(0); 1912 if (length.result()->is_constant()){ 1913 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1914 } 1915 } 1916 // C1 can not handle the case that comparing index with constant value while condition 1917 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1918 LIR_Opr zero_reg = new_register(type); 1919 __ move(zero, zero_reg); 1920 #if defined(X86) && !defined(_LP64) 1921 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1922 LIR_Opr index_copy = new_register(index.type()); 1923 // index >= 0 1924 __ move(index.result(), index_copy); 1925 __ cmp(lir_cond_less, index_copy, zero_reg); 1926 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1927 Deoptimization::Action_make_not_entrant)); 1928 // index < length 1929 __ move(index.result(), index_copy); 1930 __ cmp(lir_cond_greaterEqual, index_copy, len); 1931 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1932 Deoptimization::Action_make_not_entrant)); 1933 #else 1934 // index >= 0 1935 __ cmp(lir_cond_less, index.result(), zero_reg); 1936 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1937 Deoptimization::Action_make_not_entrant)); 1938 // index < length 1939 __ cmp(lir_cond_greaterEqual, index.result(), len); 1940 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1941 Deoptimization::Action_make_not_entrant)); 1942 #endif 1943 __ move(index.result(), result); 1944 } 1945 1946 //------------------------array access-------------------------------------- 1947 1948 1949 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1950 LIRItem array(x->array(), this); 1951 array.load_item(); 1952 LIR_Opr reg = rlock_result(x); 1953 1954 CodeEmitInfo* info = nullptr; 1955 if (x->needs_null_check()) { 1956 NullCheck* nc = x->explicit_null_check(); 1957 if (nc == nullptr) { 1958 info = state_for(x); 1959 } else { 1960 info = state_for(nc); 1961 } 1962 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1963 LIR_Opr obj = new_register(T_OBJECT); 1964 __ move(LIR_OprFact::oopConst(nullptr), obj); 1965 __ null_check(obj, new CodeEmitInfo(info)); 1966 } 1967 } 1968 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1969 } 1970 1971 1972 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1973 bool use_length = x->length() != nullptr; 1974 LIRItem array(x->array(), this); 1975 LIRItem index(x->index(), this); 1976 LIRItem length(this); 1977 bool needs_range_check = x->compute_needs_range_check(); 1978 1979 if (use_length && needs_range_check) { 1980 length.set_instruction(x->length()); 1981 length.load_item(); 1982 } 1983 1984 array.load_item(); 1985 if (index.is_constant() && can_inline_as_constant(x->index())) { 1986 // let it be a constant 1987 index.dont_load_item(); 1988 } else { 1989 index.load_item(); 1990 } 1991 1992 CodeEmitInfo* range_check_info = state_for(x); 1993 CodeEmitInfo* null_check_info = nullptr; 1994 if (x->needs_null_check()) { 1995 NullCheck* nc = x->explicit_null_check(); 1996 if (nc != nullptr) { 1997 null_check_info = state_for(nc); 1998 } else { 1999 null_check_info = range_check_info; 2000 } 2001 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2002 LIR_Opr obj = new_register(T_OBJECT); 2003 __ move(LIR_OprFact::oopConst(nullptr), obj); 2004 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2005 } 2006 } 2007 2008 if (needs_range_check) { 2009 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2010 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2011 } else if (use_length) { 2012 // TODO: use a (modified) version of array_range_check that does not require a 2013 // constant length to be loaded to a register 2014 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2015 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2016 } else { 2017 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2018 // The range check performs the null check, so clear it out for the load 2019 null_check_info = nullptr; 2020 } 2021 } 2022 2023 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2024 2025 LIR_Opr result = rlock_result(x, x->elt_type()); 2026 access_load_at(decorators, x->elt_type(), 2027 array, index.result(), result, 2028 nullptr, null_check_info); 2029 } 2030 2031 2032 void LIRGenerator::do_NullCheck(NullCheck* x) { 2033 if (x->can_trap()) { 2034 LIRItem value(x->obj(), this); 2035 value.load_item(); 2036 CodeEmitInfo* info = state_for(x); 2037 __ null_check(value.result(), info); 2038 } 2039 } 2040 2041 2042 void LIRGenerator::do_TypeCast(TypeCast* x) { 2043 LIRItem value(x->obj(), this); 2044 value.load_item(); 2045 // the result is the same as from the node we are casting 2046 set_result(x, value.result()); 2047 } 2048 2049 2050 void LIRGenerator::do_Throw(Throw* x) { 2051 LIRItem exception(x->exception(), this); 2052 exception.load_item(); 2053 set_no_result(x); 2054 LIR_Opr exception_opr = exception.result(); 2055 CodeEmitInfo* info = state_for(x, x->state()); 2056 2057 #ifndef PRODUCT 2058 if (PrintC1Statistics) { 2059 increment_counter(Runtime1::throw_count_address(), T_INT); 2060 } 2061 #endif 2062 2063 // check if the instruction has an xhandler in any of the nested scopes 2064 bool unwind = false; 2065 if (info->exception_handlers()->length() == 0) { 2066 // this throw is not inside an xhandler 2067 unwind = true; 2068 } else { 2069 // get some idea of the throw type 2070 bool type_is_exact = true; 2071 ciType* throw_type = x->exception()->exact_type(); 2072 if (throw_type == nullptr) { 2073 type_is_exact = false; 2074 throw_type = x->exception()->declared_type(); 2075 } 2076 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2077 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2078 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2079 } 2080 } 2081 2082 // do null check before moving exception oop into fixed register 2083 // to avoid a fixed interval with an oop during the null check. 2084 // Use a copy of the CodeEmitInfo because debug information is 2085 // different for null_check and throw. 2086 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2087 // if the exception object wasn't created using new then it might be null. 2088 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2089 } 2090 2091 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2092 // we need to go through the exception lookup path to get JVMTI 2093 // notification done 2094 unwind = false; 2095 } 2096 2097 // move exception oop into fixed register 2098 __ move(exception_opr, exceptionOopOpr()); 2099 2100 if (unwind) { 2101 __ unwind_exception(exceptionOopOpr()); 2102 } else { 2103 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2104 } 2105 } 2106 2107 2108 void LIRGenerator::do_RoundFP(RoundFP* x) { 2109 assert(strict_fp_requires_explicit_rounding, "not required"); 2110 2111 LIRItem input(x->input(), this); 2112 input.load_item(); 2113 LIR_Opr input_opr = input.result(); 2114 assert(input_opr->is_register(), "why round if value is not in a register?"); 2115 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2116 if (input_opr->is_single_fpu()) { 2117 set_result(x, round_item(input_opr)); // This code path not currently taken 2118 } else { 2119 LIR_Opr result = new_register(T_DOUBLE); 2120 set_vreg_flag(result, must_start_in_memory); 2121 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2122 set_result(x, result); 2123 } 2124 } 2125 2126 2127 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2128 BasicType type = x->basic_type(); 2129 LIRItem src(x->object(), this); 2130 LIRItem off(x->offset(), this); 2131 2132 off.load_item(); 2133 src.load_item(); 2134 2135 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2136 2137 if (x->is_volatile()) { 2138 decorators |= MO_SEQ_CST; 2139 } 2140 if (type == T_BOOLEAN) { 2141 decorators |= C1_MASK_BOOLEAN; 2142 } 2143 if (is_reference_type(type)) { 2144 decorators |= ON_UNKNOWN_OOP_REF; 2145 } 2146 2147 LIR_Opr result = rlock_result(x, type); 2148 if (!x->is_raw()) { 2149 access_load_at(decorators, type, src, off.result(), result); 2150 } else { 2151 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2152 // It reads the value from [src + offset] directly. 2153 #ifdef _LP64 2154 LIR_Opr offset = new_register(T_LONG); 2155 __ convert(Bytecodes::_i2l, off.result(), offset); 2156 #else 2157 LIR_Opr offset = off.result(); 2158 #endif 2159 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2160 if (is_reference_type(type)) { 2161 __ move_wide(addr, result); 2162 } else { 2163 __ move(addr, result); 2164 } 2165 } 2166 } 2167 2168 2169 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2170 BasicType type = x->basic_type(); 2171 LIRItem src(x->object(), this); 2172 LIRItem off(x->offset(), this); 2173 LIRItem data(x->value(), this); 2174 2175 src.load_item(); 2176 if (type == T_BOOLEAN || type == T_BYTE) { 2177 data.load_byte_item(); 2178 } else { 2179 data.load_item(); 2180 } 2181 off.load_item(); 2182 2183 set_no_result(x); 2184 2185 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2186 if (is_reference_type(type)) { 2187 decorators |= ON_UNKNOWN_OOP_REF; 2188 } 2189 if (x->is_volatile()) { 2190 decorators |= MO_SEQ_CST; 2191 } 2192 access_store_at(decorators, type, src, off.result(), data.result()); 2193 } 2194 2195 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2196 BasicType type = x->basic_type(); 2197 LIRItem src(x->object(), this); 2198 LIRItem off(x->offset(), this); 2199 LIRItem value(x->value(), this); 2200 2201 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2202 2203 if (is_reference_type(type)) { 2204 decorators |= ON_UNKNOWN_OOP_REF; 2205 } 2206 2207 LIR_Opr result; 2208 if (x->is_add()) { 2209 result = access_atomic_add_at(decorators, type, src, off, value); 2210 } else { 2211 result = access_atomic_xchg_at(decorators, type, src, off, value); 2212 } 2213 set_result(x, result); 2214 } 2215 2216 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2217 int lng = x->length(); 2218 2219 for (int i = 0; i < lng; i++) { 2220 C1SwitchRange* one_range = x->at(i); 2221 int low_key = one_range->low_key(); 2222 int high_key = one_range->high_key(); 2223 BlockBegin* dest = one_range->sux(); 2224 if (low_key == high_key) { 2225 __ cmp(lir_cond_equal, value, low_key); 2226 __ branch(lir_cond_equal, dest); 2227 } else if (high_key - low_key == 1) { 2228 __ cmp(lir_cond_equal, value, low_key); 2229 __ branch(lir_cond_equal, dest); 2230 __ cmp(lir_cond_equal, value, high_key); 2231 __ branch(lir_cond_equal, dest); 2232 } else { 2233 LabelObj* L = new LabelObj(); 2234 __ cmp(lir_cond_less, value, low_key); 2235 __ branch(lir_cond_less, L->label()); 2236 __ cmp(lir_cond_lessEqual, value, high_key); 2237 __ branch(lir_cond_lessEqual, dest); 2238 __ branch_destination(L->label()); 2239 } 2240 } 2241 __ jump(default_sux); 2242 } 2243 2244 2245 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2246 SwitchRangeList* res = new SwitchRangeList(); 2247 int len = x->length(); 2248 if (len > 0) { 2249 BlockBegin* sux = x->sux_at(0); 2250 int low = x->lo_key(); 2251 BlockBegin* default_sux = x->default_sux(); 2252 C1SwitchRange* range = new C1SwitchRange(low, sux); 2253 for (int i = 0; i < len; i++) { 2254 int key = low + i; 2255 BlockBegin* new_sux = x->sux_at(i); 2256 if (sux == new_sux) { 2257 // still in same range 2258 range->set_high_key(key); 2259 } else { 2260 // skip tests which explicitly dispatch to the default 2261 if (sux != default_sux) { 2262 res->append(range); 2263 } 2264 range = new C1SwitchRange(key, new_sux); 2265 } 2266 sux = new_sux; 2267 } 2268 if (res->length() == 0 || res->last() != range) res->append(range); 2269 } 2270 return res; 2271 } 2272 2273 2274 // we expect the keys to be sorted by increasing value 2275 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2276 SwitchRangeList* res = new SwitchRangeList(); 2277 int len = x->length(); 2278 if (len > 0) { 2279 BlockBegin* default_sux = x->default_sux(); 2280 int key = x->key_at(0); 2281 BlockBegin* sux = x->sux_at(0); 2282 C1SwitchRange* range = new C1SwitchRange(key, sux); 2283 for (int i = 1; i < len; i++) { 2284 int new_key = x->key_at(i); 2285 BlockBegin* new_sux = x->sux_at(i); 2286 if (key+1 == new_key && sux == new_sux) { 2287 // still in same range 2288 range->set_high_key(new_key); 2289 } else { 2290 // skip tests which explicitly dispatch to the default 2291 if (range->sux() != default_sux) { 2292 res->append(range); 2293 } 2294 range = new C1SwitchRange(new_key, new_sux); 2295 } 2296 key = new_key; 2297 sux = new_sux; 2298 } 2299 if (res->length() == 0 || res->last() != range) res->append(range); 2300 } 2301 return res; 2302 } 2303 2304 2305 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2306 LIRItem tag(x->tag(), this); 2307 tag.load_item(); 2308 set_no_result(x); 2309 2310 if (x->is_safepoint()) { 2311 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2312 } 2313 2314 // move values into phi locations 2315 move_to_phi(x->state()); 2316 2317 int lo_key = x->lo_key(); 2318 int len = x->length(); 2319 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2320 LIR_Opr value = tag.result(); 2321 2322 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2323 ciMethod* method = x->state()->scope()->method(); 2324 ciMethodData* md = method->method_data_or_null(); 2325 assert(md != nullptr, "Sanity"); 2326 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2327 assert(data != nullptr, "must have profiling data"); 2328 assert(data->is_MultiBranchData(), "bad profile data?"); 2329 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2330 LIR_Opr md_reg = new_register(T_METADATA); 2331 __ metadata2reg(md->constant_encoding(), md_reg); 2332 LIR_Opr data_offset_reg = new_pointer_register(); 2333 LIR_Opr tmp_reg = new_pointer_register(); 2334 2335 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2336 for (int i = 0; i < len; i++) { 2337 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2338 __ cmp(lir_cond_equal, value, i + lo_key); 2339 __ move(data_offset_reg, tmp_reg); 2340 __ cmove(lir_cond_equal, 2341 LIR_OprFact::intptrConst(count_offset), 2342 tmp_reg, 2343 data_offset_reg, T_INT); 2344 } 2345 2346 LIR_Opr data_reg = new_pointer_register(); 2347 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2348 __ move(data_addr, data_reg); 2349 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2350 __ move(data_reg, data_addr); 2351 } 2352 2353 if (UseTableRanges) { 2354 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2355 } else { 2356 for (int i = 0; i < len; i++) { 2357 __ cmp(lir_cond_equal, value, i + lo_key); 2358 __ branch(lir_cond_equal, x->sux_at(i)); 2359 } 2360 __ jump(x->default_sux()); 2361 } 2362 } 2363 2364 2365 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2366 LIRItem tag(x->tag(), this); 2367 tag.load_item(); 2368 set_no_result(x); 2369 2370 if (x->is_safepoint()) { 2371 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2372 } 2373 2374 // move values into phi locations 2375 move_to_phi(x->state()); 2376 2377 LIR_Opr value = tag.result(); 2378 int len = x->length(); 2379 2380 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2381 ciMethod* method = x->state()->scope()->method(); 2382 ciMethodData* md = method->method_data_or_null(); 2383 assert(md != nullptr, "Sanity"); 2384 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2385 assert(data != nullptr, "must have profiling data"); 2386 assert(data->is_MultiBranchData(), "bad profile data?"); 2387 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2388 LIR_Opr md_reg = new_register(T_METADATA); 2389 __ metadata2reg(md->constant_encoding(), md_reg); 2390 LIR_Opr data_offset_reg = new_pointer_register(); 2391 LIR_Opr tmp_reg = new_pointer_register(); 2392 2393 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2394 for (int i = 0; i < len; i++) { 2395 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2396 __ cmp(lir_cond_equal, value, x->key_at(i)); 2397 __ move(data_offset_reg, tmp_reg); 2398 __ cmove(lir_cond_equal, 2399 LIR_OprFact::intptrConst(count_offset), 2400 tmp_reg, 2401 data_offset_reg, T_INT); 2402 } 2403 2404 LIR_Opr data_reg = new_pointer_register(); 2405 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2406 __ move(data_addr, data_reg); 2407 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2408 __ move(data_reg, data_addr); 2409 } 2410 2411 if (UseTableRanges) { 2412 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2413 } else { 2414 int len = x->length(); 2415 for (int i = 0; i < len; i++) { 2416 __ cmp(lir_cond_equal, value, x->key_at(i)); 2417 __ branch(lir_cond_equal, x->sux_at(i)); 2418 } 2419 __ jump(x->default_sux()); 2420 } 2421 } 2422 2423 2424 void LIRGenerator::do_Goto(Goto* x) { 2425 set_no_result(x); 2426 2427 if (block()->next()->as_OsrEntry()) { 2428 // need to free up storage used for OSR entry point 2429 LIR_Opr osrBuffer = block()->next()->operand(); 2430 BasicTypeList signature; 2431 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2432 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2433 __ move(osrBuffer, cc->args()->at(0)); 2434 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2435 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2436 } 2437 2438 if (x->is_safepoint()) { 2439 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2440 2441 // increment backedge counter if needed 2442 CodeEmitInfo* info = state_for(x, state); 2443 increment_backedge_counter(info, x->profiled_bci()); 2444 CodeEmitInfo* safepoint_info = state_for(x, state); 2445 __ safepoint(safepoint_poll_register(), safepoint_info); 2446 } 2447 2448 // Gotos can be folded Ifs, handle this case. 2449 if (x->should_profile()) { 2450 ciMethod* method = x->profiled_method(); 2451 assert(method != nullptr, "method should be set if branch is profiled"); 2452 ciMethodData* md = method->method_data_or_null(); 2453 assert(md != nullptr, "Sanity"); 2454 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2455 assert(data != nullptr, "must have profiling data"); 2456 int offset; 2457 if (x->direction() == Goto::taken) { 2458 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2459 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2460 } else if (x->direction() == Goto::not_taken) { 2461 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2462 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2463 } else { 2464 assert(data->is_JumpData(), "need JumpData for branches"); 2465 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2466 } 2467 LIR_Opr md_reg = new_register(T_METADATA); 2468 __ metadata2reg(md->constant_encoding(), md_reg); 2469 2470 increment_counter(new LIR_Address(md_reg, offset, 2471 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2472 } 2473 2474 // emit phi-instruction move after safepoint since this simplifies 2475 // describing the state as the safepoint. 2476 move_to_phi(x->state()); 2477 2478 __ jump(x->default_sux()); 2479 } 2480 2481 /** 2482 * Emit profiling code if needed for arguments, parameters, return value types 2483 * 2484 * @param md MDO the code will update at runtime 2485 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2486 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2487 * @param profiled_k current profile 2488 * @param obj IR node for the object to be profiled 2489 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2490 * Set once we find an update to make and use for next ones. 2491 * @param not_null true if we know obj cannot be null 2492 * @param signature_at_call_k signature at call for obj 2493 * @param callee_signature_k signature of callee for obj 2494 * at call and callee signatures differ at method handle call 2495 * @return the only klass we know will ever be seen at this profile point 2496 */ 2497 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2498 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2499 ciKlass* callee_signature_k) { 2500 ciKlass* result = nullptr; 2501 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2502 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2503 // known not to be null or null bit already set and already set to 2504 // unknown: nothing we can do to improve profiling 2505 if (!do_null && !do_update) { 2506 return result; 2507 } 2508 2509 ciKlass* exact_klass = nullptr; 2510 Compilation* comp = Compilation::current(); 2511 if (do_update) { 2512 // try to find exact type, using CHA if possible, so that loading 2513 // the klass from the object can be avoided 2514 ciType* type = obj->exact_type(); 2515 if (type == nullptr) { 2516 type = obj->declared_type(); 2517 type = comp->cha_exact_type(type); 2518 } 2519 assert(type == nullptr || type->is_klass(), "type should be class"); 2520 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2521 2522 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2523 } 2524 2525 if (!do_null && !do_update) { 2526 return result; 2527 } 2528 2529 ciKlass* exact_signature_k = nullptr; 2530 if (do_update) { 2531 // Is the type from the signature exact (the only one possible)? 2532 exact_signature_k = signature_at_call_k->exact_klass(); 2533 if (exact_signature_k == nullptr) { 2534 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2535 } else { 2536 result = exact_signature_k; 2537 // Known statically. No need to emit any code: prevent 2538 // LIR_Assembler::emit_profile_type() from emitting useless code 2539 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2540 } 2541 // exact_klass and exact_signature_k can be both non null but 2542 // different if exact_klass is loaded after the ciObject for 2543 // exact_signature_k is created. 2544 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2545 // sometimes the type of the signature is better than the best type 2546 // the compiler has 2547 exact_klass = exact_signature_k; 2548 } 2549 if (callee_signature_k != nullptr && 2550 callee_signature_k != signature_at_call_k) { 2551 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2552 if (improved_klass == nullptr) { 2553 improved_klass = comp->cha_exact_type(callee_signature_k); 2554 } 2555 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2556 exact_klass = exact_signature_k; 2557 } 2558 } 2559 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2560 } 2561 2562 if (!do_null && !do_update) { 2563 return result; 2564 } 2565 2566 if (mdp == LIR_OprFact::illegalOpr) { 2567 mdp = new_register(T_METADATA); 2568 __ metadata2reg(md->constant_encoding(), mdp); 2569 if (md_base_offset != 0) { 2570 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2571 mdp = new_pointer_register(); 2572 __ leal(LIR_OprFact::address(base_type_address), mdp); 2573 } 2574 } 2575 LIRItem value(obj, this); 2576 value.load_item(); 2577 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2578 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2579 return result; 2580 } 2581 2582 // profile parameters on entry to the root of the compilation 2583 void LIRGenerator::profile_parameters(Base* x) { 2584 if (compilation()->profile_parameters()) { 2585 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2586 ciMethodData* md = scope()->method()->method_data_or_null(); 2587 assert(md != nullptr, "Sanity"); 2588 2589 if (md->parameters_type_data() != nullptr) { 2590 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2591 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2592 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2593 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2594 LIR_Opr src = args->at(i); 2595 assert(!src->is_illegal(), "check"); 2596 BasicType t = src->type(); 2597 if (is_reference_type(t)) { 2598 intptr_t profiled_k = parameters->type(j); 2599 Local* local = x->state()->local_at(java_index)->as_Local(); 2600 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2601 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2602 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2603 // If the profile is known statically set it once for all and do not emit any code 2604 if (exact != nullptr) { 2605 md->set_parameter_type(j, exact); 2606 } 2607 j++; 2608 } 2609 java_index += type2size[t]; 2610 } 2611 } 2612 } 2613 } 2614 2615 void LIRGenerator::do_Base(Base* x) { 2616 __ std_entry(LIR_OprFact::illegalOpr); 2617 // Emit moves from physical registers / stack slots to virtual registers 2618 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2619 IRScope* irScope = compilation()->hir()->top_scope(); 2620 int java_index = 0; 2621 for (int i = 0; i < args->length(); i++) { 2622 LIR_Opr src = args->at(i); 2623 assert(!src->is_illegal(), "check"); 2624 BasicType t = src->type(); 2625 2626 // Types which are smaller than int are passed as int, so 2627 // correct the type which passed. 2628 switch (t) { 2629 case T_BYTE: 2630 case T_BOOLEAN: 2631 case T_SHORT: 2632 case T_CHAR: 2633 t = T_INT; 2634 break; 2635 default: 2636 break; 2637 } 2638 2639 LIR_Opr dest = new_register(t); 2640 __ move(src, dest); 2641 2642 // Assign new location to Local instruction for this local 2643 Local* local = x->state()->local_at(java_index)->as_Local(); 2644 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2645 #ifndef __SOFTFP__ 2646 // The java calling convention passes double as long and float as int. 2647 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2648 #endif // __SOFTFP__ 2649 local->set_operand(dest); 2650 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2651 java_index += type2size[t]; 2652 } 2653 2654 if (compilation()->env()->dtrace_method_probes()) { 2655 BasicTypeList signature; 2656 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2657 signature.append(T_METADATA); // Method* 2658 LIR_OprList* args = new LIR_OprList(); 2659 args->append(getThreadPointer()); 2660 LIR_Opr meth = new_register(T_METADATA); 2661 __ metadata2reg(method()->constant_encoding(), meth); 2662 args->append(meth); 2663 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2664 } 2665 2666 if (method()->is_synchronized()) { 2667 LIR_Opr obj; 2668 if (method()->is_static()) { 2669 obj = new_register(T_OBJECT); 2670 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2671 } else { 2672 Local* receiver = x->state()->local_at(0)->as_Local(); 2673 assert(receiver != nullptr, "must already exist"); 2674 obj = receiver->operand(); 2675 } 2676 assert(obj->is_valid(), "must be valid"); 2677 2678 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2679 LIR_Opr lock = syncLockOpr(); 2680 __ load_stack_address_monitor(0, lock); 2681 2682 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2683 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2684 2685 // receiver is guaranteed non-null so don't need CodeEmitInfo 2686 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2687 } 2688 } 2689 // increment invocation counters if needed 2690 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2691 profile_parameters(x); 2692 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2693 increment_invocation_counter(info); 2694 } 2695 2696 // all blocks with a successor must end with an unconditional jump 2697 // to the successor even if they are consecutive 2698 __ jump(x->default_sux()); 2699 } 2700 2701 2702 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2703 // construct our frame and model the production of incoming pointer 2704 // to the OSR buffer. 2705 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2706 LIR_Opr result = rlock_result(x); 2707 __ move(LIR_Assembler::osrBufferPointer(), result); 2708 } 2709 2710 2711 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2712 assert(args->length() == arg_list->length(), 2713 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2714 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2715 LIRItem* param = args->at(i); 2716 LIR_Opr loc = arg_list->at(i); 2717 if (loc->is_register()) { 2718 param->load_item_force(loc); 2719 } else { 2720 LIR_Address* addr = loc->as_address_ptr(); 2721 param->load_for_store(addr->type()); 2722 if (addr->type() == T_OBJECT) { 2723 __ move_wide(param->result(), addr); 2724 } else 2725 __ move(param->result(), addr); 2726 } 2727 } 2728 2729 if (x->has_receiver()) { 2730 LIRItem* receiver = args->at(0); 2731 LIR_Opr loc = arg_list->at(0); 2732 if (loc->is_register()) { 2733 receiver->load_item_force(loc); 2734 } else { 2735 assert(loc->is_address(), "just checking"); 2736 receiver->load_for_store(T_OBJECT); 2737 __ move_wide(receiver->result(), loc->as_address_ptr()); 2738 } 2739 } 2740 } 2741 2742 2743 // Visits all arguments, returns appropriate items without loading them 2744 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2745 LIRItemList* argument_items = new LIRItemList(); 2746 if (x->has_receiver()) { 2747 LIRItem* receiver = new LIRItem(x->receiver(), this); 2748 argument_items->append(receiver); 2749 } 2750 for (int i = 0; i < x->number_of_arguments(); i++) { 2751 LIRItem* param = new LIRItem(x->argument_at(i), this); 2752 argument_items->append(param); 2753 } 2754 return argument_items; 2755 } 2756 2757 2758 // The invoke with receiver has following phases: 2759 // a) traverse and load/lock receiver; 2760 // b) traverse all arguments -> item-array (invoke_visit_argument) 2761 // c) push receiver on stack 2762 // d) load each of the items and push on stack 2763 // e) unlock receiver 2764 // f) move receiver into receiver-register %o0 2765 // g) lock result registers and emit call operation 2766 // 2767 // Before issuing a call, we must spill-save all values on stack 2768 // that are in caller-save register. "spill-save" moves those registers 2769 // either in a free callee-save register or spills them if no free 2770 // callee save register is available. 2771 // 2772 // The problem is where to invoke spill-save. 2773 // - if invoked between e) and f), we may lock callee save 2774 // register in "spill-save" that destroys the receiver register 2775 // before f) is executed 2776 // - if we rearrange f) to be earlier (by loading %o0) it 2777 // may destroy a value on the stack that is currently in %o0 2778 // and is waiting to be spilled 2779 // - if we keep the receiver locked while doing spill-save, 2780 // we cannot spill it as it is spill-locked 2781 // 2782 void LIRGenerator::do_Invoke(Invoke* x) { 2783 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2784 2785 LIR_OprList* arg_list = cc->args(); 2786 LIRItemList* args = invoke_visit_arguments(x); 2787 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2788 2789 // setup result register 2790 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2791 if (x->type() != voidType) { 2792 result_register = result_register_for(x->type()); 2793 } 2794 2795 CodeEmitInfo* info = state_for(x, x->state()); 2796 2797 invoke_load_arguments(x, args, arg_list); 2798 2799 if (x->has_receiver()) { 2800 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2801 receiver = args->at(0)->result(); 2802 } 2803 2804 // emit invoke code 2805 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2806 2807 // JSR 292 2808 // Preserve the SP over MethodHandle call sites, if needed. 2809 ciMethod* target = x->target(); 2810 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2811 target->is_method_handle_intrinsic() || 2812 target->is_compiled_lambda_form()); 2813 if (is_method_handle_invoke) { 2814 info->set_is_method_handle_invoke(true); 2815 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2816 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2817 } 2818 } 2819 2820 switch (x->code()) { 2821 case Bytecodes::_invokestatic: 2822 __ call_static(target, result_register, 2823 SharedRuntime::get_resolve_static_call_stub(), 2824 arg_list, info); 2825 break; 2826 case Bytecodes::_invokespecial: 2827 case Bytecodes::_invokevirtual: 2828 case Bytecodes::_invokeinterface: 2829 // for loaded and final (method or class) target we still produce an inline cache, 2830 // in order to be able to call mixed mode 2831 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2832 __ call_opt_virtual(target, receiver, result_register, 2833 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2834 arg_list, info); 2835 } else { 2836 __ call_icvirtual(target, receiver, result_register, 2837 SharedRuntime::get_resolve_virtual_call_stub(), 2838 arg_list, info); 2839 } 2840 break; 2841 case Bytecodes::_invokedynamic: { 2842 __ call_dynamic(target, receiver, result_register, 2843 SharedRuntime::get_resolve_static_call_stub(), 2844 arg_list, info); 2845 break; 2846 } 2847 default: 2848 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2849 break; 2850 } 2851 2852 // JSR 292 2853 // Restore the SP after MethodHandle call sites, if needed. 2854 if (is_method_handle_invoke 2855 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2856 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2857 } 2858 2859 if (result_register->is_valid()) { 2860 LIR_Opr result = rlock_result(x); 2861 __ move(result_register, result); 2862 } 2863 } 2864 2865 2866 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2867 assert(x->number_of_arguments() == 1, "wrong type"); 2868 LIRItem value (x->argument_at(0), this); 2869 LIR_Opr reg = rlock_result(x); 2870 value.load_item(); 2871 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2872 __ move(tmp, reg); 2873 } 2874 2875 2876 2877 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2878 void LIRGenerator::do_IfOp(IfOp* x) { 2879 #ifdef ASSERT 2880 { 2881 ValueTag xtag = x->x()->type()->tag(); 2882 ValueTag ttag = x->tval()->type()->tag(); 2883 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2884 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2885 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2886 } 2887 #endif 2888 2889 LIRItem left(x->x(), this); 2890 LIRItem right(x->y(), this); 2891 left.load_item(); 2892 if (can_inline_as_constant(right.value())) { 2893 right.dont_load_item(); 2894 } else { 2895 right.load_item(); 2896 } 2897 2898 LIRItem t_val(x->tval(), this); 2899 LIRItem f_val(x->fval(), this); 2900 t_val.dont_load_item(); 2901 f_val.dont_load_item(); 2902 LIR_Opr reg = rlock_result(x); 2903 2904 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2905 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2906 } 2907 2908 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2909 assert(x->number_of_arguments() == 0, "wrong type"); 2910 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2911 BasicTypeList signature; 2912 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2913 LIR_Opr reg = result_register_for(x->type()); 2914 __ call_runtime_leaf(routine, getThreadTemp(), 2915 reg, new LIR_OprList()); 2916 LIR_Opr result = rlock_result(x); 2917 __ move(reg, result); 2918 } 2919 2920 2921 2922 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2923 switch (x->id()) { 2924 case vmIntrinsics::_intBitsToFloat : 2925 case vmIntrinsics::_doubleToRawLongBits : 2926 case vmIntrinsics::_longBitsToDouble : 2927 case vmIntrinsics::_floatToRawIntBits : { 2928 do_FPIntrinsics(x); 2929 break; 2930 } 2931 2932 #ifdef JFR_HAVE_INTRINSICS 2933 case vmIntrinsics::_counterTime: 2934 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2935 break; 2936 #endif 2937 2938 case vmIntrinsics::_currentTimeMillis: 2939 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2940 break; 2941 2942 case vmIntrinsics::_nanoTime: 2943 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2944 break; 2945 2946 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2947 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2948 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 2949 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 2950 case vmIntrinsics::_getClass: do_getClass(x); break; 2951 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2952 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2953 case vmIntrinsics::_currentThread: do_vthread(x); break; 2954 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2955 2956 case vmIntrinsics::_dlog: // fall through 2957 case vmIntrinsics::_dlog10: // fall through 2958 case vmIntrinsics::_dabs: // fall through 2959 case vmIntrinsics::_dsqrt: // fall through 2960 case vmIntrinsics::_dsqrt_strict: // fall through 2961 case vmIntrinsics::_dtan: // fall through 2962 case vmIntrinsics::_dsin : // fall through 2963 case vmIntrinsics::_dcos : // fall through 2964 case vmIntrinsics::_dexp : // fall through 2965 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2966 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2967 2968 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2969 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2970 2971 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2972 case vmIntrinsics::_floatToFloat16: // fall through 2973 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 2974 2975 case vmIntrinsics::_Preconditions_checkIndex: 2976 do_PreconditionsCheckIndex(x, T_INT); 2977 break; 2978 case vmIntrinsics::_Preconditions_checkLongIndex: 2979 do_PreconditionsCheckIndex(x, T_LONG); 2980 break; 2981 2982 case vmIntrinsics::_compareAndSetReference: 2983 do_CompareAndSwap(x, objectType); 2984 break; 2985 case vmIntrinsics::_compareAndSetInt: 2986 do_CompareAndSwap(x, intType); 2987 break; 2988 case vmIntrinsics::_compareAndSetLong: 2989 do_CompareAndSwap(x, longType); 2990 break; 2991 2992 case vmIntrinsics::_loadFence : 2993 __ membar_acquire(); 2994 break; 2995 case vmIntrinsics::_storeFence: 2996 __ membar_release(); 2997 break; 2998 case vmIntrinsics::_storeStoreFence: 2999 __ membar_storestore(); 3000 break; 3001 case vmIntrinsics::_fullFence : 3002 __ membar(); 3003 break; 3004 case vmIntrinsics::_onSpinWait: 3005 __ on_spin_wait(); 3006 break; 3007 case vmIntrinsics::_Reference_get: 3008 do_Reference_get(x); 3009 break; 3010 3011 case vmIntrinsics::_updateCRC32: 3012 case vmIntrinsics::_updateBytesCRC32: 3013 case vmIntrinsics::_updateByteBufferCRC32: 3014 do_update_CRC32(x); 3015 break; 3016 3017 case vmIntrinsics::_updateBytesCRC32C: 3018 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3019 do_update_CRC32C(x); 3020 break; 3021 3022 case vmIntrinsics::_vectorizedMismatch: 3023 do_vectorizedMismatch(x); 3024 break; 3025 3026 case vmIntrinsics::_blackhole: 3027 do_blackhole(x); 3028 break; 3029 3030 default: ShouldNotReachHere(); break; 3031 } 3032 } 3033 3034 void LIRGenerator::profile_arguments(ProfileCall* x) { 3035 if (compilation()->profile_arguments()) { 3036 int bci = x->bci_of_invoke(); 3037 ciMethodData* md = x->method()->method_data_or_null(); 3038 assert(md != nullptr, "Sanity"); 3039 ciProfileData* data = md->bci_to_data(bci); 3040 if (data != nullptr) { 3041 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3042 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3043 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3044 int base_offset = md->byte_offset_of_slot(data, extra); 3045 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3046 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3047 3048 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3049 int start = 0; 3050 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3051 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3052 // first argument is not profiled at call (method handle invoke) 3053 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3054 start = 1; 3055 } 3056 ciSignature* callee_signature = x->callee()->signature(); 3057 // method handle call to virtual method 3058 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3059 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3060 3061 bool ignored_will_link; 3062 ciSignature* signature_at_call = nullptr; 3063 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3064 ciSignatureStream signature_at_call_stream(signature_at_call); 3065 3066 // if called through method handle invoke, some arguments may have been popped 3067 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3068 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3069 ciKlass* exact = profile_type(md, base_offset, off, 3070 args->type(i), x->profiled_arg_at(i+start), mdp, 3071 !x->arg_needs_null_check(i+start), 3072 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3073 if (exact != nullptr) { 3074 md->set_argument_type(bci, i, exact); 3075 } 3076 } 3077 } else { 3078 #ifdef ASSERT 3079 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3080 int n = x->nb_profiled_args(); 3081 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3082 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3083 "only at JSR292 bytecodes"); 3084 #endif 3085 } 3086 } 3087 } 3088 } 3089 3090 // profile parameters on entry to an inlined method 3091 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3092 if (compilation()->profile_parameters() && x->inlined()) { 3093 ciMethodData* md = x->callee()->method_data_or_null(); 3094 if (md != nullptr) { 3095 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3096 if (parameters_type_data != nullptr) { 3097 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3098 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3099 bool has_receiver = !x->callee()->is_static(); 3100 ciSignature* sig = x->callee()->signature(); 3101 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3102 int i = 0; // to iterate on the Instructions 3103 Value arg = x->recv(); 3104 bool not_null = false; 3105 int bci = x->bci_of_invoke(); 3106 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3107 // The first parameter is the receiver so that's what we start 3108 // with if it exists. One exception is method handle call to 3109 // virtual method: the receiver is in the args list 3110 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3111 i = 1; 3112 arg = x->profiled_arg_at(0); 3113 not_null = !x->arg_needs_null_check(0); 3114 } 3115 int k = 0; // to iterate on the profile data 3116 for (;;) { 3117 intptr_t profiled_k = parameters->type(k); 3118 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3119 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3120 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3121 // If the profile is known statically set it once for all and do not emit any code 3122 if (exact != nullptr) { 3123 md->set_parameter_type(k, exact); 3124 } 3125 k++; 3126 if (k >= parameters_type_data->number_of_parameters()) { 3127 #ifdef ASSERT 3128 int extra = 0; 3129 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3130 x->nb_profiled_args() >= TypeProfileParmsLimit && 3131 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3132 extra += 1; 3133 } 3134 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3135 #endif 3136 break; 3137 } 3138 arg = x->profiled_arg_at(i); 3139 not_null = !x->arg_needs_null_check(i); 3140 i++; 3141 } 3142 } 3143 } 3144 } 3145 } 3146 3147 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3148 // Need recv in a temporary register so it interferes with the other temporaries 3149 LIR_Opr recv = LIR_OprFact::illegalOpr; 3150 LIR_Opr mdo = new_register(T_METADATA); 3151 // tmp is used to hold the counters on SPARC 3152 LIR_Opr tmp = new_pointer_register(); 3153 3154 if (x->nb_profiled_args() > 0) { 3155 profile_arguments(x); 3156 } 3157 3158 // profile parameters on inlined method entry including receiver 3159 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3160 profile_parameters_at_call(x); 3161 } 3162 3163 if (x->recv() != nullptr) { 3164 LIRItem value(x->recv(), this); 3165 value.load_item(); 3166 recv = new_register(T_OBJECT); 3167 __ move(value.result(), recv); 3168 } 3169 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3170 } 3171 3172 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3173 int bci = x->bci_of_invoke(); 3174 ciMethodData* md = x->method()->method_data_or_null(); 3175 assert(md != nullptr, "Sanity"); 3176 ciProfileData* data = md->bci_to_data(bci); 3177 if (data != nullptr) { 3178 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3179 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3180 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3181 3182 bool ignored_will_link; 3183 ciSignature* signature_at_call = nullptr; 3184 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3185 3186 // The offset within the MDO of the entry to update may be too large 3187 // to be used in load/store instructions on some platforms. So have 3188 // profile_type() compute the address of the profile in a register. 3189 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3190 ret->type(), x->ret(), mdp, 3191 !x->needs_null_check(), 3192 signature_at_call->return_type()->as_klass(), 3193 x->callee()->signature()->return_type()->as_klass()); 3194 if (exact != nullptr) { 3195 md->set_return_type(bci, exact); 3196 } 3197 } 3198 } 3199 3200 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3201 // We can safely ignore accessors here, since c2 will inline them anyway, 3202 // accessors are also always mature. 3203 if (!x->inlinee()->is_accessor()) { 3204 CodeEmitInfo* info = state_for(x, x->state(), true); 3205 // Notify the runtime very infrequently only to take care of counter overflows 3206 int freq_log = Tier23InlineeNotifyFreqLog; 3207 double scale; 3208 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3209 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3210 } 3211 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3212 } 3213 } 3214 3215 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3216 if (compilation()->is_profiling()) { 3217 #if defined(X86) && !defined(_LP64) 3218 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3219 LIR_Opr left_copy = new_register(left->type()); 3220 __ move(left, left_copy); 3221 __ cmp(cond, left_copy, right); 3222 #else 3223 __ cmp(cond, left, right); 3224 #endif 3225 LIR_Opr step = new_register(T_INT); 3226 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3227 LIR_Opr zero = LIR_OprFact::intConst(0); 3228 __ cmove(cond, 3229 (left_bci < bci) ? plus_one : zero, 3230 (right_bci < bci) ? plus_one : zero, 3231 step, left->type()); 3232 increment_backedge_counter(info, step, bci); 3233 } 3234 } 3235 3236 3237 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3238 int freq_log = 0; 3239 int level = compilation()->env()->comp_level(); 3240 if (level == CompLevel_limited_profile) { 3241 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3242 } else if (level == CompLevel_full_profile) { 3243 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3244 } else { 3245 ShouldNotReachHere(); 3246 } 3247 // Increment the appropriate invocation/backedge counter and notify the runtime. 3248 double scale; 3249 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3250 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3251 } 3252 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3253 } 3254 3255 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3256 ciMethod *method, LIR_Opr step, int frequency, 3257 int bci, bool backedge, bool notify) { 3258 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3259 int level = _compilation->env()->comp_level(); 3260 assert(level > CompLevel_simple, "Shouldn't be here"); 3261 3262 int offset = -1; 3263 LIR_Opr counter_holder; 3264 if (level == CompLevel_limited_profile) { 3265 MethodCounters* counters_adr = method->ensure_method_counters(); 3266 if (counters_adr == nullptr) { 3267 bailout("method counters allocation failed"); 3268 return; 3269 } 3270 counter_holder = new_pointer_register(); 3271 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3272 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3273 MethodCounters::invocation_counter_offset()); 3274 } else if (level == CompLevel_full_profile) { 3275 counter_holder = new_register(T_METADATA); 3276 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3277 MethodData::invocation_counter_offset()); 3278 ciMethodData* md = method->method_data_or_null(); 3279 assert(md != nullptr, "Sanity"); 3280 __ metadata2reg(md->constant_encoding(), counter_holder); 3281 } else { 3282 ShouldNotReachHere(); 3283 } 3284 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3285 LIR_Opr result = new_register(T_INT); 3286 __ load(counter, result); 3287 __ add(result, step, result); 3288 __ store(result, counter); 3289 if (notify && (!backedge || UseOnStackReplacement)) { 3290 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3291 // The bci for info can point to cmp for if's we want the if bci 3292 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3293 int freq = frequency << InvocationCounter::count_shift; 3294 if (freq == 0) { 3295 if (!step->is_constant()) { 3296 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3297 __ branch(lir_cond_notEqual, overflow); 3298 } else { 3299 __ branch(lir_cond_always, overflow); 3300 } 3301 } else { 3302 LIR_Opr mask = load_immediate(freq, T_INT); 3303 if (!step->is_constant()) { 3304 // If step is 0, make sure the overflow check below always fails 3305 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3306 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3307 } 3308 __ logical_and(result, mask, result); 3309 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3310 __ branch(lir_cond_equal, overflow); 3311 } 3312 __ branch_destination(overflow->continuation()); 3313 } 3314 } 3315 3316 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3317 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3318 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3319 3320 if (x->pass_thread()) { 3321 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3322 args->append(getThreadPointer()); 3323 } 3324 3325 for (int i = 0; i < x->number_of_arguments(); i++) { 3326 Value a = x->argument_at(i); 3327 LIRItem* item = new LIRItem(a, this); 3328 item->load_item(); 3329 args->append(item->result()); 3330 signature->append(as_BasicType(a->type())); 3331 } 3332 3333 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3334 if (x->type() == voidType) { 3335 set_no_result(x); 3336 } else { 3337 __ move(result, rlock_result(x)); 3338 } 3339 } 3340 3341 #ifdef ASSERT 3342 void LIRGenerator::do_Assert(Assert *x) { 3343 ValueTag tag = x->x()->type()->tag(); 3344 If::Condition cond = x->cond(); 3345 3346 LIRItem xitem(x->x(), this); 3347 LIRItem yitem(x->y(), this); 3348 LIRItem* xin = &xitem; 3349 LIRItem* yin = &yitem; 3350 3351 assert(tag == intTag, "Only integer assertions are valid!"); 3352 3353 xin->load_item(); 3354 yin->dont_load_item(); 3355 3356 set_no_result(x); 3357 3358 LIR_Opr left = xin->result(); 3359 LIR_Opr right = yin->result(); 3360 3361 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3362 } 3363 #endif 3364 3365 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3366 3367 3368 Instruction *a = x->x(); 3369 Instruction *b = x->y(); 3370 if (!a || StressRangeCheckElimination) { 3371 assert(!b || StressRangeCheckElimination, "B must also be null"); 3372 3373 CodeEmitInfo *info = state_for(x, x->state()); 3374 CodeStub* stub = new PredicateFailedStub(info); 3375 3376 __ jump(stub); 3377 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3378 int a_int = a->type()->as_IntConstant()->value(); 3379 int b_int = b->type()->as_IntConstant()->value(); 3380 3381 bool ok = false; 3382 3383 switch(x->cond()) { 3384 case Instruction::eql: ok = (a_int == b_int); break; 3385 case Instruction::neq: ok = (a_int != b_int); break; 3386 case Instruction::lss: ok = (a_int < b_int); break; 3387 case Instruction::leq: ok = (a_int <= b_int); break; 3388 case Instruction::gtr: ok = (a_int > b_int); break; 3389 case Instruction::geq: ok = (a_int >= b_int); break; 3390 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3391 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3392 default: ShouldNotReachHere(); 3393 } 3394 3395 if (ok) { 3396 3397 CodeEmitInfo *info = state_for(x, x->state()); 3398 CodeStub* stub = new PredicateFailedStub(info); 3399 3400 __ jump(stub); 3401 } 3402 } else { 3403 3404 ValueTag tag = x->x()->type()->tag(); 3405 If::Condition cond = x->cond(); 3406 LIRItem xitem(x->x(), this); 3407 LIRItem yitem(x->y(), this); 3408 LIRItem* xin = &xitem; 3409 LIRItem* yin = &yitem; 3410 3411 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3412 3413 xin->load_item(); 3414 yin->dont_load_item(); 3415 set_no_result(x); 3416 3417 LIR_Opr left = xin->result(); 3418 LIR_Opr right = yin->result(); 3419 3420 CodeEmitInfo *info = state_for(x, x->state()); 3421 CodeStub* stub = new PredicateFailedStub(info); 3422 3423 __ cmp(lir_cond(cond), left, right); 3424 __ branch(lir_cond(cond), stub); 3425 } 3426 } 3427 3428 void LIRGenerator::do_blackhole(Intrinsic *x) { 3429 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3430 for (int c = 0; c < x->number_of_arguments(); c++) { 3431 // Load the argument 3432 LIRItem vitem(x->argument_at(c), this); 3433 vitem.load_item(); 3434 // ...and leave it unused. 3435 } 3436 } 3437 3438 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3439 LIRItemList args(1); 3440 LIRItem value(arg1, this); 3441 args.append(&value); 3442 BasicTypeList signature; 3443 signature.append(as_BasicType(arg1->type())); 3444 3445 return call_runtime(&signature, &args, entry, result_type, info); 3446 } 3447 3448 3449 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3450 LIRItemList args(2); 3451 LIRItem value1(arg1, this); 3452 LIRItem value2(arg2, this); 3453 args.append(&value1); 3454 args.append(&value2); 3455 BasicTypeList signature; 3456 signature.append(as_BasicType(arg1->type())); 3457 signature.append(as_BasicType(arg2->type())); 3458 3459 return call_runtime(&signature, &args, entry, result_type, info); 3460 } 3461 3462 3463 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3464 address entry, ValueType* result_type, CodeEmitInfo* info) { 3465 // get a result register 3466 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3467 LIR_Opr result = LIR_OprFact::illegalOpr; 3468 if (result_type->tag() != voidTag) { 3469 result = new_register(result_type); 3470 phys_reg = result_register_for(result_type); 3471 } 3472 3473 // move the arguments into the correct location 3474 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3475 assert(cc->length() == args->length(), "argument mismatch"); 3476 for (int i = 0; i < args->length(); i++) { 3477 LIR_Opr arg = args->at(i); 3478 LIR_Opr loc = cc->at(i); 3479 if (loc->is_register()) { 3480 __ move(arg, loc); 3481 } else { 3482 LIR_Address* addr = loc->as_address_ptr(); 3483 // if (!can_store_as_constant(arg)) { 3484 // LIR_Opr tmp = new_register(arg->type()); 3485 // __ move(arg, tmp); 3486 // arg = tmp; 3487 // } 3488 __ move(arg, addr); 3489 } 3490 } 3491 3492 if (info) { 3493 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3494 } else { 3495 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3496 } 3497 if (result->is_valid()) { 3498 __ move(phys_reg, result); 3499 } 3500 return result; 3501 } 3502 3503 3504 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3505 address entry, ValueType* result_type, CodeEmitInfo* info) { 3506 // get a result register 3507 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3508 LIR_Opr result = LIR_OprFact::illegalOpr; 3509 if (result_type->tag() != voidTag) { 3510 result = new_register(result_type); 3511 phys_reg = result_register_for(result_type); 3512 } 3513 3514 // move the arguments into the correct location 3515 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3516 3517 assert(cc->length() == args->length(), "argument mismatch"); 3518 for (int i = 0; i < args->length(); i++) { 3519 LIRItem* arg = args->at(i); 3520 LIR_Opr loc = cc->at(i); 3521 if (loc->is_register()) { 3522 arg->load_item_force(loc); 3523 } else { 3524 LIR_Address* addr = loc->as_address_ptr(); 3525 arg->load_for_store(addr->type()); 3526 __ move(arg->result(), addr); 3527 } 3528 } 3529 3530 if (info) { 3531 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3532 } else { 3533 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3534 } 3535 if (result->is_valid()) { 3536 __ move(phys_reg, result); 3537 } 3538 return result; 3539 } 3540 3541 void LIRGenerator::do_MemBar(MemBar* x) { 3542 LIR_Code code = x->code(); 3543 switch(code) { 3544 case lir_membar_acquire : __ membar_acquire(); break; 3545 case lir_membar_release : __ membar_release(); break; 3546 case lir_membar : __ membar(); break; 3547 case lir_membar_loadload : __ membar_loadload(); break; 3548 case lir_membar_storestore: __ membar_storestore(); break; 3549 case lir_membar_loadstore : __ membar_loadstore(); break; 3550 case lir_membar_storeload : __ membar_storeload(); break; 3551 default : ShouldNotReachHere(); break; 3552 } 3553 } 3554 3555 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3556 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3557 if (two_operand_lir_form) { 3558 __ move(value, value_fixed); 3559 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3560 } else { 3561 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3562 } 3563 LIR_Opr klass = new_register(T_METADATA); 3564 load_klass(array, klass, null_check_info); 3565 null_check_info = nullptr; 3566 LIR_Opr layout = new_register(T_INT); 3567 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3568 int diffbit = Klass::layout_helper_boolean_diffbit(); 3569 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3570 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3571 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3572 value = value_fixed; 3573 return value; 3574 }