1 /*
2 * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "c1/c1_Compilation.hpp"
27 #include "c1/c1_Defs.hpp"
28 #include "c1/c1_FrameMap.hpp"
29 #include "c1/c1_Instruction.hpp"
30 #include "c1/c1_LIRAssembler.hpp"
31 #include "c1/c1_LIRGenerator.hpp"
32 #include "c1/c1_ValueStack.hpp"
33 #include "ci/ciArrayKlass.hpp"
34 #include "ci/ciInstance.hpp"
35 #include "ci/ciObjArray.hpp"
36 #include "ci/ciUtilities.hpp"
37 #include "compiler/compilerDefinitions.inline.hpp"
38 #include "gc/shared/barrierSet.hpp"
39 #include "gc/shared/c1/barrierSetC1.hpp"
40 #include "oops/klass.inline.hpp"
41 #include "runtime/sharedRuntime.hpp"
42 #include "runtime/stubRoutines.hpp"
43 #include "runtime/vm_version.hpp"
44 #include "utilities/bitMap.inline.hpp"
45 #include "utilities/macros.hpp"
46 #include "utilities/powerOfTwo.hpp"
47
48 #ifdef ASSERT
49 #define __ gen()->lir(__FILE__, __LINE__)->
50 #else
51 #define __ gen()->lir()->
52 #endif
53
54 #ifndef PATCHED_ADDR
55 #define PATCHED_ADDR (max_jint)
56 #endif
57
58 void PhiResolverState::reset() {
59 _virtual_operands.clear();
60 _other_operands.clear();
61 _vreg_table.clear();
62 }
63
64
65 //--------------------------------------------------------------
66 // PhiResolver
67
68 // Resolves cycles:
69 //
70 // r1 := r2 becomes temp := r1
71 // r2 := r1 r1 := r2
72 // r2 := temp
73 // and orders moves:
74 //
75 // r2 := r3 becomes r1 := r2
76 // r1 := r2 r2 := r3
77
78 PhiResolver::PhiResolver(LIRGenerator* gen)
79 : _gen(gen)
80 , _state(gen->resolver_state())
81 , _loop(nullptr)
82 , _temp(LIR_OprFact::illegalOpr)
83 {
84 // reinitialize the shared state arrays
85 _state.reset();
86 }
87
88
89 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
90 assert(src->is_valid(), "");
91 assert(dest->is_valid(), "");
92 __ move(src, dest);
93 }
94
95
96 void PhiResolver::move_temp_to(LIR_Opr dest) {
97 assert(_temp->is_valid(), "");
98 emit_move(_temp, dest);
99 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
100 }
101
102
103 void PhiResolver::move_to_temp(LIR_Opr src) {
104 assert(_temp->is_illegal(), "");
105 _temp = _gen->new_register(src->type());
106 emit_move(src, _temp);
107 }
108
109
110 // Traverse assignment graph in depth first order and generate moves in post order
111 // ie. two assignments: b := c, a := b start with node c:
112 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
113 // Generates moves in this order: move b to a and move c to b
114 // ie. cycle a := b, b := a start with node a
115 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
116 // Generates moves in this order: move b to temp, move a to b, move temp to a
117 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
118 if (!dest->visited()) {
119 dest->set_visited();
120 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
121 move(dest, dest->destination_at(i));
122 }
123 } else if (!dest->start_node()) {
124 // cylce in graph detected
125 assert(_loop == nullptr, "only one loop valid!");
126 _loop = dest;
127 move_to_temp(src->operand());
128 return;
129 } // else dest is a start node
130
131 if (!dest->assigned()) {
132 if (_loop == dest) {
133 move_temp_to(dest->operand());
134 dest->set_assigned();
135 } else if (src != nullptr) {
136 emit_move(src->operand(), dest->operand());
137 dest->set_assigned();
138 }
139 }
140 }
141
142
143 PhiResolver::~PhiResolver() {
144 int i;
145 // resolve any cycles in moves from and to virtual registers
146 for (i = virtual_operands().length() - 1; i >= 0; i --) {
147 ResolveNode* node = virtual_operands().at(i);
148 if (!node->visited()) {
149 _loop = nullptr;
150 move(nullptr, node);
151 node->set_start_node();
152 assert(_temp->is_illegal(), "move_temp_to() call missing");
153 }
154 }
155
156 // generate move for move from non virtual register to abitrary destination
157 for (i = other_operands().length() - 1; i >= 0; i --) {
158 ResolveNode* node = other_operands().at(i);
159 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
160 emit_move(node->operand(), node->destination_at(j)->operand());
161 }
162 }
163 }
164
165
166 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
167 ResolveNode* node;
168 if (opr->is_virtual()) {
169 int vreg_num = opr->vreg_number();
170 node = vreg_table().at_grow(vreg_num, nullptr);
171 assert(node == nullptr || node->operand() == opr, "");
172 if (node == nullptr) {
173 node = new ResolveNode(opr);
174 vreg_table().at_put(vreg_num, node);
175 }
176 // Make sure that all virtual operands show up in the list when
177 // they are used as the source of a move.
178 if (source && !virtual_operands().contains(node)) {
179 virtual_operands().append(node);
180 }
181 } else {
182 assert(source, "");
183 node = new ResolveNode(opr);
184 other_operands().append(node);
185 }
186 return node;
187 }
188
189
190 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
191 assert(dest->is_virtual(), "");
192 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
193 assert(src->is_valid(), "");
194 assert(dest->is_valid(), "");
195 ResolveNode* source = source_node(src);
196 source->append(destination_node(dest));
197 }
198
199
200 //--------------------------------------------------------------
201 // LIRItem
202
203 void LIRItem::set_result(LIR_Opr opr) {
204 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
205 value()->set_operand(opr);
206
207 if (opr->is_virtual()) {
208 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
209 }
210
211 _result = opr;
212 }
213
214 void LIRItem::load_item() {
215 if (result()->is_illegal()) {
216 // update the items result
217 _result = value()->operand();
218 }
219 if (!result()->is_register()) {
220 LIR_Opr reg = _gen->new_register(value()->type());
221 __ move(result(), reg);
222 if (result()->is_constant()) {
223 _result = reg;
224 } else {
225 set_result(reg);
226 }
227 }
228 }
229
230
231 void LIRItem::load_for_store(BasicType type) {
232 if (_gen->can_store_as_constant(value(), type)) {
233 _result = value()->operand();
234 if (!_result->is_constant()) {
235 _result = LIR_OprFact::value_type(value()->type());
236 }
237 } else if (type == T_BYTE || type == T_BOOLEAN) {
238 load_byte_item();
239 } else {
240 load_item();
241 }
242 }
243
244 void LIRItem::load_item_force(LIR_Opr reg) {
245 LIR_Opr r = result();
246 if (r != reg) {
247 #if !defined(ARM) && !defined(E500V2)
248 if (r->type() != reg->type()) {
249 // moves between different types need an intervening spill slot
250 r = _gen->force_to_spill(r, reg->type());
251 }
252 #endif
253 __ move(r, reg);
254 _result = reg;
255 }
256 }
257
258 ciObject* LIRItem::get_jobject_constant() const {
259 ObjectType* oc = type()->as_ObjectType();
260 if (oc) {
261 return oc->constant_value();
262 }
263 return nullptr;
264 }
265
266
267 jint LIRItem::get_jint_constant() const {
268 assert(is_constant() && value() != nullptr, "");
269 assert(type()->as_IntConstant() != nullptr, "type check");
270 return type()->as_IntConstant()->value();
271 }
272
273
274 jint LIRItem::get_address_constant() const {
275 assert(is_constant() && value() != nullptr, "");
276 assert(type()->as_AddressConstant() != nullptr, "type check");
277 return type()->as_AddressConstant()->value();
278 }
279
280
281 jfloat LIRItem::get_jfloat_constant() const {
282 assert(is_constant() && value() != nullptr, "");
283 assert(type()->as_FloatConstant() != nullptr, "type check");
284 return type()->as_FloatConstant()->value();
285 }
286
287
288 jdouble LIRItem::get_jdouble_constant() const {
289 assert(is_constant() && value() != nullptr, "");
290 assert(type()->as_DoubleConstant() != nullptr, "type check");
291 return type()->as_DoubleConstant()->value();
292 }
293
294
295 jlong LIRItem::get_jlong_constant() const {
296 assert(is_constant() && value() != nullptr, "");
297 assert(type()->as_LongConstant() != nullptr, "type check");
298 return type()->as_LongConstant()->value();
299 }
300
301
302
303 //--------------------------------------------------------------
304
305
306 void LIRGenerator::block_do_prolog(BlockBegin* block) {
307 #ifndef PRODUCT
308 if (PrintIRWithLIR) {
309 block->print();
310 }
311 #endif
312
313 // set up the list of LIR instructions
314 assert(block->lir() == nullptr, "LIR list already computed for this block");
315 _lir = new LIR_List(compilation(), block);
316 block->set_lir(_lir);
317
318 __ branch_destination(block->label());
319
320 if (LIRTraceExecution &&
321 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
322 !block->is_set(BlockBegin::exception_entry_flag)) {
323 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
324 trace_block_entry(block);
325 }
326 }
327
328
329 void LIRGenerator::block_do_epilog(BlockBegin* block) {
330 #ifndef PRODUCT
331 if (PrintIRWithLIR) {
332 tty->cr();
333 }
334 #endif
335
336 // LIR_Opr for unpinned constants shouldn't be referenced by other
337 // blocks so clear them out after processing the block.
338 for (int i = 0; i < _unpinned_constants.length(); i++) {
339 _unpinned_constants.at(i)->clear_operand();
340 }
341 _unpinned_constants.trunc_to(0);
342
343 // clear our any registers for other local constants
344 _constants.trunc_to(0);
345 _reg_for_constants.trunc_to(0);
346 }
347
348
349 void LIRGenerator::block_do(BlockBegin* block) {
350 CHECK_BAILOUT();
351
352 block_do_prolog(block);
353 set_block(block);
354
355 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
356 if (instr->is_pinned()) do_root(instr);
357 }
358
359 set_block(nullptr);
360 block_do_epilog(block);
361 }
362
363
364 //-------------------------LIRGenerator-----------------------------
365
366 // This is where the tree-walk starts; instr must be root;
367 void LIRGenerator::do_root(Value instr) {
368 CHECK_BAILOUT();
369
370 InstructionMark im(compilation(), instr);
371
372 assert(instr->is_pinned(), "use only with roots");
373 assert(instr->subst() == instr, "shouldn't have missed substitution");
374
375 instr->visit(this);
376
377 assert(!instr->has_uses() || instr->operand()->is_valid() ||
378 instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
379 }
380
381
382 // This is called for each node in tree; the walk stops if a root is reached
383 void LIRGenerator::walk(Value instr) {
384 InstructionMark im(compilation(), instr);
385 //stop walk when encounter a root
386 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
387 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
388 } else {
389 assert(instr->subst() == instr, "shouldn't have missed substitution");
390 instr->visit(this);
391 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
392 }
393 }
394
395
396 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
397 assert(state != nullptr, "state must be defined");
398
399 #ifndef PRODUCT
400 state->verify();
401 #endif
402
403 ValueStack* s = state;
404 for_each_state(s) {
405 if (s->kind() == ValueStack::EmptyExceptionState) {
406 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
407 continue;
408 }
409
410 int index;
411 Value value;
412 for_each_stack_value(s, index, value) {
413 assert(value->subst() == value, "missed substitution");
414 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
415 walk(value);
416 assert(value->operand()->is_valid(), "must be evaluated now");
417 }
418 }
419
420 int bci = s->bci();
421 IRScope* scope = s->scope();
422 ciMethod* method = scope->method();
423
424 MethodLivenessResult liveness = method->liveness_at_bci(bci);
425 if (bci == SynchronizationEntryBCI) {
426 if (x->as_ExceptionObject() || x->as_Throw()) {
427 // all locals are dead on exit from the synthetic unlocker
428 liveness.clear();
429 } else {
430 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
431 }
432 }
433 if (!liveness.is_valid()) {
434 // Degenerate or breakpointed method.
435 bailout("Degenerate or breakpointed method");
436 } else {
437 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
438 for_each_local_value(s, index, value) {
439 assert(value->subst() == value, "missed substitution");
440 if (liveness.at(index) && !value->type()->is_illegal()) {
441 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
442 walk(value);
443 assert(value->operand()->is_valid(), "must be evaluated now");
444 }
445 } else {
446 // null out this local so that linear scan can assume that all non-null values are live.
447 s->invalidate_local(index);
448 }
449 }
450 }
451 }
452
453 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
454 }
455
456
457 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
458 return state_for(x, x->exception_state());
459 }
460
461
462 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
463 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
464 * is active and the class hasn't yet been resolved we need to emit a patch that resolves
465 * the class. */
466 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
467 assert(info != nullptr, "info must be set if class is not loaded");
468 __ klass2reg_patch(nullptr, r, info);
469 } else {
470 // no patching needed
471 __ metadata2reg(obj->constant_encoding(), r);
472 }
473 }
474
475
476 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
477 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
478 CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
479 if (index->is_constant()) {
480 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
481 index->as_jint(), null_check_info);
482 __ branch(lir_cond_belowEqual, stub); // forward branch
483 } else {
484 cmp_reg_mem(lir_cond_aboveEqual, index, array,
485 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
486 __ branch(lir_cond_aboveEqual, stub); // forward branch
487 }
488 }
489
490 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
491 LIR_Opr result_op = result;
492 LIR_Opr left_op = left;
493 LIR_Opr right_op = right;
494
495 if (two_operand_lir_form && left_op != result_op) {
496 assert(right_op != result_op, "malformed");
497 __ move(left_op, result_op);
498 left_op = result_op;
499 }
500
501 switch(code) {
502 case Bytecodes::_dadd:
503 case Bytecodes::_fadd:
504 case Bytecodes::_ladd:
505 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
506 case Bytecodes::_fmul:
507 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
508
509 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break;
510
511 case Bytecodes::_imul:
512 {
513 bool did_strength_reduce = false;
514
515 if (right->is_constant()) {
516 jint c = right->as_jint();
517 if (c > 0 && is_power_of_2(c)) {
518 // do not need tmp here
519 __ shift_left(left_op, exact_log2(c), result_op);
520 did_strength_reduce = true;
521 } else {
522 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
523 }
524 }
525 // we couldn't strength reduce so just emit the multiply
526 if (!did_strength_reduce) {
527 __ mul(left_op, right_op, result_op);
528 }
529 }
530 break;
531
532 case Bytecodes::_dsub:
533 case Bytecodes::_fsub:
534 case Bytecodes::_lsub:
535 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
536
537 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
538 // ldiv and lrem are implemented with a direct runtime call
539
540 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
541
542 case Bytecodes::_drem:
543 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
544
545 default: ShouldNotReachHere();
546 }
547 }
548
549
550 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
551 arithmetic_op(code, result, left, right, tmp);
552 }
553
554
555 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
556 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
557 }
558
559
560 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
561 arithmetic_op(code, result, left, right, tmp);
562 }
563
564
565 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
566
567 if (two_operand_lir_form && value != result_op
568 // Only 32bit right shifts require two operand form on S390.
569 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
570 assert(count != result_op, "malformed");
571 __ move(value, result_op);
572 value = result_op;
573 }
574
575 assert(count->is_constant() || count->is_register(), "must be");
576 switch(code) {
577 case Bytecodes::_ishl:
578 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
579 case Bytecodes::_ishr:
580 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
581 case Bytecodes::_iushr:
582 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
583 default: ShouldNotReachHere();
584 }
585 }
586
587
588 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
589 if (two_operand_lir_form && left_op != result_op) {
590 assert(right_op != result_op, "malformed");
591 __ move(left_op, result_op);
592 left_op = result_op;
593 }
594
595 switch(code) {
596 case Bytecodes::_iand:
597 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
598
599 case Bytecodes::_ior:
600 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
601
602 case Bytecodes::_ixor:
603 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
604
605 default: ShouldNotReachHere();
606 }
607 }
608
609
610 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
611 if (!GenerateSynchronizationCode) return;
612 // for slow path, use debug info for state after successful locking
613 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
614 __ load_stack_address_monitor(monitor_no, lock);
615 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
616 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
617 }
618
619
620 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
621 if (!GenerateSynchronizationCode) return;
622 // setup registers
623 LIR_Opr hdr = lock;
624 lock = new_hdr;
625 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
626 __ load_stack_address_monitor(monitor_no, lock);
627 __ unlock_object(hdr, object, lock, scratch, slow_path);
628 }
629
630 #ifndef PRODUCT
631 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
632 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
633 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
634 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
635 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
636 }
637 }
638 #endif
639
640 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
641 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
642 // If klass is not loaded we do not know if the klass has finalizers:
643 if (UseFastNewInstance && klass->is_loaded()
644 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
645
646 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
647
648 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
649
650 assert(klass->is_loaded(), "must be loaded");
651 // allocate space for instance
652 assert(klass->size_helper() > 0, "illegal instance size");
653 const int instance_size = align_object_size(klass->size_helper());
654 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
655 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
656 } else {
657 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
658 __ branch(lir_cond_always, slow_path);
659 __ branch_destination(slow_path->continuation());
660 }
661 }
662
663
664 static bool is_constant_zero(Instruction* inst) {
665 IntConstant* c = inst->type()->as_IntConstant();
666 if (c) {
667 return (c->value() == 0);
668 }
669 return false;
670 }
671
672
673 static bool positive_constant(Instruction* inst) {
674 IntConstant* c = inst->type()->as_IntConstant();
675 if (c) {
676 return (c->value() >= 0);
677 }
678 return false;
679 }
680
681
682 static ciArrayKlass* as_array_klass(ciType* type) {
683 if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
684 return (ciArrayKlass*)type;
685 } else {
686 return nullptr;
687 }
688 }
689
690 static ciType* phi_declared_type(Phi* phi) {
691 ciType* t = phi->operand_at(0)->declared_type();
692 if (t == nullptr) {
693 return nullptr;
694 }
695 for(int i = 1; i < phi->operand_count(); i++) {
696 if (t != phi->operand_at(i)->declared_type()) {
697 return nullptr;
698 }
699 }
700 return t;
701 }
702
703 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
704 Instruction* src = x->argument_at(0);
705 Instruction* src_pos = x->argument_at(1);
706 Instruction* dst = x->argument_at(2);
707 Instruction* dst_pos = x->argument_at(3);
708 Instruction* length = x->argument_at(4);
709
710 // first try to identify the likely type of the arrays involved
711 ciArrayKlass* expected_type = nullptr;
712 bool is_exact = false, src_objarray = false, dst_objarray = false;
713 {
714 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
715 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
716 Phi* phi;
717 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
718 src_declared_type = as_array_klass(phi_declared_type(phi));
719 }
720 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
721 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
722 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
723 dst_declared_type = as_array_klass(phi_declared_type(phi));
724 }
725
726 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
727 // the types exactly match so the type is fully known
728 is_exact = true;
729 expected_type = src_exact_type;
730 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
731 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
732 ciArrayKlass* src_type = nullptr;
733 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
734 src_type = (ciArrayKlass*) src_exact_type;
735 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
736 src_type = (ciArrayKlass*) src_declared_type;
737 }
738 if (src_type != nullptr) {
739 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
740 is_exact = true;
741 expected_type = dst_type;
742 }
743 }
744 }
745 // at least pass along a good guess
746 if (expected_type == nullptr) expected_type = dst_exact_type;
747 if (expected_type == nullptr) expected_type = src_declared_type;
748 if (expected_type == nullptr) expected_type = dst_declared_type;
749
750 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
751 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
752 }
753
754 // if a probable array type has been identified, figure out if any
755 // of the required checks for a fast case can be elided.
756 int flags = LIR_OpArrayCopy::all_flags;
757
758 if (!src_objarray)
759 flags &= ~LIR_OpArrayCopy::src_objarray;
760 if (!dst_objarray)
761 flags &= ~LIR_OpArrayCopy::dst_objarray;
762
763 if (!x->arg_needs_null_check(0))
764 flags &= ~LIR_OpArrayCopy::src_null_check;
765 if (!x->arg_needs_null_check(2))
766 flags &= ~LIR_OpArrayCopy::dst_null_check;
767
768
769 if (expected_type != nullptr) {
770 Value length_limit = nullptr;
771
772 IfOp* ifop = length->as_IfOp();
773 if (ifop != nullptr) {
774 // look for expressions like min(v, a.length) which ends up as
775 // x > y ? y : x or x >= y ? y : x
776 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
777 ifop->x() == ifop->fval() &&
778 ifop->y() == ifop->tval()) {
779 length_limit = ifop->y();
780 }
781 }
782
783 // try to skip null checks and range checks
784 NewArray* src_array = src->as_NewArray();
785 if (src_array != nullptr) {
786 flags &= ~LIR_OpArrayCopy::src_null_check;
787 if (length_limit != nullptr &&
788 src_array->length() == length_limit &&
789 is_constant_zero(src_pos)) {
790 flags &= ~LIR_OpArrayCopy::src_range_check;
791 }
792 }
793
794 NewArray* dst_array = dst->as_NewArray();
795 if (dst_array != nullptr) {
796 flags &= ~LIR_OpArrayCopy::dst_null_check;
797 if (length_limit != nullptr &&
798 dst_array->length() == length_limit &&
799 is_constant_zero(dst_pos)) {
800 flags &= ~LIR_OpArrayCopy::dst_range_check;
801 }
802 }
803
804 // check from incoming constant values
805 if (positive_constant(src_pos))
806 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
807 if (positive_constant(dst_pos))
808 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
809 if (positive_constant(length))
810 flags &= ~LIR_OpArrayCopy::length_positive_check;
811
812 // see if the range check can be elided, which might also imply
813 // that src or dst is non-null.
814 ArrayLength* al = length->as_ArrayLength();
815 if (al != nullptr) {
816 if (al->array() == src) {
817 // it's the length of the source array
818 flags &= ~LIR_OpArrayCopy::length_positive_check;
819 flags &= ~LIR_OpArrayCopy::src_null_check;
820 if (is_constant_zero(src_pos))
821 flags &= ~LIR_OpArrayCopy::src_range_check;
822 }
823 if (al->array() == dst) {
824 // it's the length of the destination array
825 flags &= ~LIR_OpArrayCopy::length_positive_check;
826 flags &= ~LIR_OpArrayCopy::dst_null_check;
827 if (is_constant_zero(dst_pos))
828 flags &= ~LIR_OpArrayCopy::dst_range_check;
829 }
830 }
831 if (is_exact) {
832 flags &= ~LIR_OpArrayCopy::type_check;
833 }
834 }
835
836 IntConstant* src_int = src_pos->type()->as_IntConstant();
837 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
838 if (src_int && dst_int) {
839 int s_offs = src_int->value();
840 int d_offs = dst_int->value();
841 if (src_int->value() >= dst_int->value()) {
842 flags &= ~LIR_OpArrayCopy::overlapping;
843 }
844 if (expected_type != nullptr) {
845 BasicType t = expected_type->element_type()->basic_type();
846 int element_size = type2aelembytes(t);
847 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
848 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
849 flags &= ~LIR_OpArrayCopy::unaligned;
850 }
851 }
852 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
853 // src and dest positions are the same, or dst is zero so assume
854 // nonoverlapping copy.
855 flags &= ~LIR_OpArrayCopy::overlapping;
856 }
857
858 if (src == dst) {
859 // moving within a single array so no type checks are needed
860 if (flags & LIR_OpArrayCopy::type_check) {
861 flags &= ~LIR_OpArrayCopy::type_check;
862 }
863 }
864 *flagsp = flags;
865 *expected_typep = (ciArrayKlass*)expected_type;
866 }
867
868
869 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
870 assert(opr->is_register(), "why spill if item is not register?");
871
872 if (strict_fp_requires_explicit_rounding) {
873 #ifdef IA32
874 if (UseSSE < 1 && opr->is_single_fpu()) {
875 LIR_Opr result = new_register(T_FLOAT);
876 set_vreg_flag(result, must_start_in_memory);
877 assert(opr->is_register(), "only a register can be spilled");
878 assert(opr->value_type()->is_float(), "rounding only for floats available");
879 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
880 return result;
881 }
882 #else
883 Unimplemented();
884 #endif // IA32
885 }
886 return opr;
887 }
888
889
890 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
891 assert(type2size[t] == type2size[value->type()],
892 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
893 if (!value->is_register()) {
894 // force into a register
895 LIR_Opr r = new_register(value->type());
896 __ move(value, r);
897 value = r;
898 }
899
900 // create a spill location
901 LIR_Opr tmp = new_register(t);
902 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
903
904 // move from register to spill
905 __ move(value, tmp);
906 return tmp;
907 }
908
909 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
910 if (if_instr->should_profile()) {
911 ciMethod* method = if_instr->profiled_method();
912 assert(method != nullptr, "method should be set if branch is profiled");
913 ciMethodData* md = method->method_data_or_null();
914 assert(md != nullptr, "Sanity");
915 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
916 assert(data != nullptr, "must have profiling data");
917 assert(data->is_BranchData(), "need BranchData for two-way branches");
918 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
919 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
920 if (if_instr->is_swapped()) {
921 int t = taken_count_offset;
922 taken_count_offset = not_taken_count_offset;
923 not_taken_count_offset = t;
924 }
925
926 LIR_Opr md_reg = new_register(T_METADATA);
927 __ metadata2reg(md->constant_encoding(), md_reg);
928
929 LIR_Opr data_offset_reg = new_pointer_register();
930 __ cmove(lir_cond(cond),
931 LIR_OprFact::intptrConst(taken_count_offset),
932 LIR_OprFact::intptrConst(not_taken_count_offset),
933 data_offset_reg, as_BasicType(if_instr->x()->type()));
934
935 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
936 LIR_Opr data_reg = new_pointer_register();
937 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
938 __ move(data_addr, data_reg);
939 // Use leal instead of add to avoid destroying condition codes on x86
940 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
941 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
942 __ move(data_reg, data_addr);
943 }
944 }
945
946 // Phi technique:
947 // This is about passing live values from one basic block to the other.
948 // In code generated with Java it is rather rare that more than one
949 // value is on the stack from one basic block to the other.
950 // We optimize our technique for efficient passing of one value
951 // (of type long, int, double..) but it can be extended.
952 // When entering or leaving a basic block, all registers and all spill
953 // slots are release and empty. We use the released registers
954 // and spill slots to pass the live values from one block
955 // to the other. The topmost value, i.e., the value on TOS of expression
956 // stack is passed in registers. All other values are stored in spilling
957 // area. Every Phi has an index which designates its spill slot
958 // At exit of a basic block, we fill the register(s) and spill slots.
959 // At entry of a basic block, the block_prolog sets up the content of phi nodes
960 // and locks necessary registers and spilling slots.
961
962
963 // move current value to referenced phi function
964 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
965 Phi* phi = sux_val->as_Phi();
966 // cur_val can be null without phi being null in conjunction with inlining
967 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
968 if (phi->is_local()) {
969 for (int i = 0; i < phi->operand_count(); i++) {
970 Value op = phi->operand_at(i);
971 if (op != nullptr && op->type()->is_illegal()) {
972 bailout("illegal phi operand");
973 }
974 }
975 }
976 Phi* cur_phi = cur_val->as_Phi();
977 if (cur_phi != nullptr && cur_phi->is_illegal()) {
978 // Phi and local would need to get invalidated
979 // (which is unexpected for Linear Scan).
980 // But this case is very rare so we simply bail out.
981 bailout("propagation of illegal phi");
982 return;
983 }
984 LIR_Opr operand = cur_val->operand();
985 if (operand->is_illegal()) {
986 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
987 "these can be produced lazily");
988 operand = operand_for_instruction(cur_val);
989 }
990 resolver->move(operand, operand_for_instruction(phi));
991 }
992 }
993
994
995 // Moves all stack values into their PHI position
996 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
997 BlockBegin* bb = block();
998 if (bb->number_of_sux() == 1) {
999 BlockBegin* sux = bb->sux_at(0);
1000 assert(sux->number_of_preds() > 0, "invalid CFG");
1001
1002 // a block with only one predecessor never has phi functions
1003 if (sux->number_of_preds() > 1) {
1004 PhiResolver resolver(this);
1005
1006 ValueStack* sux_state = sux->state();
1007 Value sux_value;
1008 int index;
1009
1010 assert(cur_state->scope() == sux_state->scope(), "not matching");
1011 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1012 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1013
1014 for_each_stack_value(sux_state, index, sux_value) {
1015 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1016 }
1017
1018 for_each_local_value(sux_state, index, sux_value) {
1019 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1020 }
1021
1022 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1023 }
1024 }
1025 }
1026
1027
1028 LIR_Opr LIRGenerator::new_register(BasicType type) {
1029 int vreg_num = _virtual_register_number;
1030 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1031 // a few extra registers before we really run out which helps to avoid to trip over assertions.
1032 if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1033 bailout("out of virtual registers in LIR generator");
1034 if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1035 // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1036 _virtual_register_number = LIR_Opr::vreg_base;
1037 vreg_num = LIR_Opr::vreg_base;
1038 }
1039 }
1040 _virtual_register_number += 1;
1041 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1042 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1043 return vreg;
1044 }
1045
1046
1047 // Try to lock using register in hint
1048 LIR_Opr LIRGenerator::rlock(Value instr) {
1049 return new_register(instr->type());
1050 }
1051
1052
1053 // does an rlock and sets result
1054 LIR_Opr LIRGenerator::rlock_result(Value x) {
1055 LIR_Opr reg = rlock(x);
1056 set_result(x, reg);
1057 return reg;
1058 }
1059
1060
1061 // does an rlock and sets result
1062 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1063 LIR_Opr reg;
1064 switch (type) {
1065 case T_BYTE:
1066 case T_BOOLEAN:
1067 reg = rlock_byte(type);
1068 break;
1069 default:
1070 reg = rlock(x);
1071 break;
1072 }
1073
1074 set_result(x, reg);
1075 return reg;
1076 }
1077
1078
1079 //---------------------------------------------------------------------
1080 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1081 ObjectType* oc = value->type()->as_ObjectType();
1082 if (oc) {
1083 return oc->constant_value();
1084 }
1085 return nullptr;
1086 }
1087
1088
1089 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1090 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1091 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1092
1093 // no moves are created for phi functions at the begin of exception
1094 // handlers, so assign operands manually here
1095 for_each_phi_fun(block(), phi,
1096 if (!phi->is_illegal()) { operand_for_instruction(phi); });
1097
1098 LIR_Opr thread_reg = getThreadPointer();
1099 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1100 exceptionOopOpr());
1101 __ move_wide(LIR_OprFact::oopConst(nullptr),
1102 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1103 __ move_wide(LIR_OprFact::oopConst(nullptr),
1104 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1105
1106 LIR_Opr result = new_register(T_OBJECT);
1107 __ move(exceptionOopOpr(), result);
1108 set_result(x, result);
1109 }
1110
1111
1112 //----------------------------------------------------------------------
1113 //----------------------------------------------------------------------
1114 //----------------------------------------------------------------------
1115 //----------------------------------------------------------------------
1116 // visitor functions
1117 //----------------------------------------------------------------------
1118 //----------------------------------------------------------------------
1119 //----------------------------------------------------------------------
1120 //----------------------------------------------------------------------
1121
1122 void LIRGenerator::do_Phi(Phi* x) {
1123 // phi functions are never visited directly
1124 ShouldNotReachHere();
1125 }
1126
1127
1128 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1129 void LIRGenerator::do_Constant(Constant* x) {
1130 if (x->state_before() != nullptr) {
1131 // Any constant with a ValueStack requires patching so emit the patch here
1132 LIR_Opr reg = rlock_result(x);
1133 CodeEmitInfo* info = state_for(x, x->state_before());
1134 __ oop2reg_patch(nullptr, reg, info);
1135 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1136 if (!x->is_pinned()) {
1137 // unpinned constants are handled specially so that they can be
1138 // put into registers when they are used multiple times within a
1139 // block. After the block completes their operand will be
1140 // cleared so that other blocks can't refer to that register.
1141 set_result(x, load_constant(x));
1142 } else {
1143 LIR_Opr res = x->operand();
1144 if (!res->is_valid()) {
1145 res = LIR_OprFact::value_type(x->type());
1146 }
1147 if (res->is_constant()) {
1148 LIR_Opr reg = rlock_result(x);
1149 __ move(res, reg);
1150 } else {
1151 set_result(x, res);
1152 }
1153 }
1154 } else {
1155 set_result(x, LIR_OprFact::value_type(x->type()));
1156 }
1157 }
1158
1159
1160 void LIRGenerator::do_Local(Local* x) {
1161 // operand_for_instruction has the side effect of setting the result
1162 // so there's no need to do it here.
1163 operand_for_instruction(x);
1164 }
1165
1166
1167 void LIRGenerator::do_Return(Return* x) {
1168 if (compilation()->env()->dtrace_method_probes()) {
1169 BasicTypeList signature;
1170 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1171 signature.append(T_METADATA); // Method*
1172 LIR_OprList* args = new LIR_OprList();
1173 args->append(getThreadPointer());
1174 LIR_Opr meth = new_register(T_METADATA);
1175 __ metadata2reg(method()->constant_encoding(), meth);
1176 args->append(meth);
1177 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1178 }
1179
1180 if (x->type()->is_void()) {
1181 __ return_op(LIR_OprFact::illegalOpr);
1182 } else {
1183 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1184 LIRItem result(x->result(), this);
1185
1186 result.load_item_force(reg);
1187 __ return_op(result.result());
1188 }
1189 set_no_result(x);
1190 }
1191
1192 // Example: ref.get()
1193 // Combination of LoadField and g1 pre-write barrier
1194 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1195
1196 const int referent_offset = java_lang_ref_Reference::referent_offset();
1197
1198 assert(x->number_of_arguments() == 1, "wrong type");
1199
1200 LIRItem reference(x->argument_at(0), this);
1201 reference.load_item();
1202
1203 // need to perform the null check on the reference object
1204 CodeEmitInfo* info = nullptr;
1205 if (x->needs_null_check()) {
1206 info = state_for(x);
1207 }
1208
1209 LIR_Opr result = rlock_result(x, T_OBJECT);
1210 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1211 reference, LIR_OprFact::intConst(referent_offset), result,
1212 nullptr, info);
1213 }
1214
1215 // Example: clazz.isInstance(object)
1216 void LIRGenerator::do_isInstance(Intrinsic* x) {
1217 assert(x->number_of_arguments() == 2, "wrong type");
1218
1219 // TODO could try to substitute this node with an equivalent InstanceOf
1220 // if clazz is known to be a constant Class. This will pick up newly found
1221 // constants after HIR construction. I'll leave this to a future change.
1222
1223 // as a first cut, make a simple leaf call to runtime to stay platform independent.
1224 // could follow the aastore example in a future change.
1225
1226 LIRItem clazz(x->argument_at(0), this);
1227 LIRItem object(x->argument_at(1), this);
1228 clazz.load_item();
1229 object.load_item();
1230 LIR_Opr result = rlock_result(x);
1231
1232 // need to perform null check on clazz
1233 if (x->needs_null_check()) {
1234 CodeEmitInfo* info = state_for(x);
1235 __ null_check(clazz.result(), info);
1236 }
1237
1238 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1239 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1240 x->type(),
1241 nullptr); // null CodeEmitInfo results in a leaf call
1242 __ move(call_result, result);
1243 }
1244
1245 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1246 __ load_klass(obj, klass, null_check_info);
1247 }
1248
1249 // Example: object.getClass ()
1250 void LIRGenerator::do_getClass(Intrinsic* x) {
1251 assert(x->number_of_arguments() == 1, "wrong type");
1252
1253 LIRItem rcvr(x->argument_at(0), this);
1254 rcvr.load_item();
1255 LIR_Opr temp = new_register(T_ADDRESS);
1256 LIR_Opr result = rlock_result(x);
1257
1258 // need to perform the null check on the rcvr
1259 CodeEmitInfo* info = nullptr;
1260 if (x->needs_null_check()) {
1261 info = state_for(x);
1262 }
1263
1264 LIR_Opr klass = new_register(T_METADATA);
1265 load_klass(rcvr.result(), klass, info);
1266 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1267 // mirror = ((OopHandle)mirror)->resolve();
1268 access_load(IN_NATIVE, T_OBJECT,
1269 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1270 }
1271
1272 // java.lang.Class::isPrimitive()
1273 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1274 assert(x->number_of_arguments() == 1, "wrong type");
1275
1276 LIRItem rcvr(x->argument_at(0), this);
1277 rcvr.load_item();
1278 LIR_Opr temp = new_register(T_METADATA);
1279 LIR_Opr result = rlock_result(x);
1280
1281 CodeEmitInfo* info = nullptr;
1282 if (x->needs_null_check()) {
1283 info = state_for(x);
1284 }
1285
1286 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1287 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1288 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1289 }
1290
1291 // Example: Foo.class.getModifiers()
1292 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1293 assert(x->number_of_arguments() == 1, "wrong type");
1294
1295 LIRItem receiver(x->argument_at(0), this);
1296 receiver.load_item();
1297 LIR_Opr result = rlock_result(x);
1298
1299 CodeEmitInfo* info = nullptr;
1300 if (x->needs_null_check()) {
1301 info = state_for(x);
1302 }
1303
1304 // While reading off the universal constant mirror is less efficient than doing
1305 // another branch and returning the constant answer, this branchless code runs into
1306 // much less risk of confusion for C1 register allocator. The choice of the universe
1307 // object here is correct as long as it returns the same modifiers we would expect
1308 // from the primitive class itself. See spec for Class.getModifiers that provides
1309 // the typed array klasses with similar modifiers as their component types.
1310
1311 Klass* univ_klass_obj = Universe::byteArrayKlassObj();
1312 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1313 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
1314
1315 LIR_Opr recv_klass = new_register(T_METADATA);
1316 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1317
1318 // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1319 LIR_Opr klass = new_register(T_METADATA);
1320 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1321 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1322
1323 // Get the answer.
1324 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1325 }
1326
1327 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1328 assert(x->number_of_arguments() == 3, "wrong type");
1329 LIR_Opr result_reg = rlock_result(x);
1330
1331 LIRItem value(x->argument_at(2), this);
1332 value.load_item();
1333
1334 LIR_Opr klass = new_register(T_METADATA);
1335 load_klass(value.result(), klass, nullptr);
1336 LIR_Opr layout = new_register(T_INT);
1337 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1338
1339 LabelObj* L_done = new LabelObj();
1340 LabelObj* L_array = new LabelObj();
1341
1342 __ cmp(lir_cond_lessEqual, layout, 0);
1343 __ branch(lir_cond_lessEqual, L_array->label());
1344
1345 // Instance case: the layout helper gives us instance size almost directly,
1346 // but we need to mask out the _lh_instance_slow_path_bit.
1347
1348 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1349
1350 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1351 __ logical_and(layout, mask, layout);
1352 __ convert(Bytecodes::_i2l, layout, result_reg);
1353
1354 __ branch(lir_cond_always, L_done->label());
1355
1356 // Array case: size is round(header + element_size*arraylength).
1357 // Since arraylength is different for every array instance, we have to
1358 // compute the whole thing at runtime.
1359
1360 __ branch_destination(L_array->label());
1361
1362 int round_mask = MinObjAlignmentInBytes - 1;
1363
1364 // Figure out header sizes first.
1365 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1366 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1367
1368 LIR_Opr header_size = new_register(T_INT);
1369 __ move(layout, header_size);
1370 LIR_Opr tmp = new_register(T_INT);
1371 __ unsigned_shift_right(header_size, hss, header_size, tmp);
1372 __ logical_and(header_size, hsm, header_size);
1373 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1374
1375 // Figure out the array length in bytes
1376 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1377 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1378 __ logical_and(layout, l2esm, layout);
1379
1380 LIR_Opr length_int = new_register(T_INT);
1381 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1382
1383 #ifdef _LP64
1384 LIR_Opr length = new_register(T_LONG);
1385 __ convert(Bytecodes::_i2l, length_int, length);
1386 #endif
1387
1388 // Shift-left awkwardness. Normally it is just:
1389 // __ shift_left(length, layout, length);
1390 // But C1 cannot perform shift_left with non-constant count, so we end up
1391 // doing the per-bit loop dance here. x86_32 also does not know how to shift
1392 // longs, so we have to act on ints.
1393 LabelObj* L_shift_loop = new LabelObj();
1394 LabelObj* L_shift_exit = new LabelObj();
1395
1396 __ branch_destination(L_shift_loop->label());
1397 __ cmp(lir_cond_equal, layout, 0);
1398 __ branch(lir_cond_equal, L_shift_exit->label());
1399
1400 #ifdef _LP64
1401 __ shift_left(length, 1, length);
1402 #else
1403 __ shift_left(length_int, 1, length_int);
1404 #endif
1405
1406 __ sub(layout, LIR_OprFact::intConst(1), layout);
1407
1408 __ branch(lir_cond_always, L_shift_loop->label());
1409 __ branch_destination(L_shift_exit->label());
1410
1411 // Mix all up, round, and push to the result.
1412 #ifdef _LP64
1413 LIR_Opr header_size_long = new_register(T_LONG);
1414 __ convert(Bytecodes::_i2l, header_size, header_size_long);
1415 __ add(length, header_size_long, length);
1416 if (round_mask != 0) {
1417 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1418 __ logical_and(length, round_mask_opr, length);
1419 }
1420 __ move(length, result_reg);
1421 #else
1422 __ add(length_int, header_size, length_int);
1423 if (round_mask != 0) {
1424 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1425 __ logical_and(length_int, round_mask_opr, length_int);
1426 }
1427 __ convert(Bytecodes::_i2l, length_int, result_reg);
1428 #endif
1429
1430 __ branch_destination(L_done->label());
1431 }
1432
1433 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1434 do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1435 }
1436
1437 // Example: Thread.currentCarrierThread()
1438 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1439 do_JavaThreadField(x, JavaThread::threadObj_offset());
1440 }
1441
1442 void LIRGenerator::do_vthread(Intrinsic* x) {
1443 do_JavaThreadField(x, JavaThread::vthread_offset());
1444 }
1445
1446 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1447 assert(x->number_of_arguments() == 0, "wrong type");
1448 LIR_Opr temp = new_register(T_ADDRESS);
1449 LIR_Opr reg = rlock_result(x);
1450 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1451 access_load(IN_NATIVE, T_OBJECT,
1452 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1453 }
1454
1455 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1456 assert(x->number_of_arguments() == 1, "wrong type");
1457 LIRItem receiver(x->argument_at(0), this);
1458
1459 receiver.load_item();
1460 BasicTypeList signature;
1461 signature.append(T_OBJECT); // receiver
1462 LIR_OprList* args = new LIR_OprList();
1463 args->append(receiver.result());
1464 CodeEmitInfo* info = state_for(x, x->state());
1465 call_runtime(&signature, args,
1466 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1467 voidType, info);
1468
1469 set_no_result(x);
1470 }
1471
1472
1473 //------------------------local access--------------------------------------
1474
1475 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1476 if (x->operand()->is_illegal()) {
1477 Constant* c = x->as_Constant();
1478 if (c != nullptr) {
1479 x->set_operand(LIR_OprFact::value_type(c->type()));
1480 } else {
1481 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1482 // allocate a virtual register for this local or phi
1483 x->set_operand(rlock(x));
1484 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1485 }
1486 }
1487 return x->operand();
1488 }
1489
1490
1491 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1492 if (opr->is_virtual()) {
1493 return instruction_for_vreg(opr->vreg_number());
1494 }
1495 return nullptr;
1496 }
1497
1498
1499 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1500 if (reg_num < _instruction_for_operand.length()) {
1501 return _instruction_for_operand.at(reg_num);
1502 }
1503 return nullptr;
1504 }
1505
1506
1507 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1508 if (_vreg_flags.size_in_bits() == 0) {
1509 BitMap2D temp(100, num_vreg_flags);
1510 _vreg_flags = temp;
1511 }
1512 _vreg_flags.at_put_grow(vreg_num, f, true);
1513 }
1514
1515 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1516 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1517 return false;
1518 }
1519 return _vreg_flags.at(vreg_num, f);
1520 }
1521
1522
1523 // Block local constant handling. This code is useful for keeping
1524 // unpinned constants and constants which aren't exposed in the IR in
1525 // registers. Unpinned Constant instructions have their operands
1526 // cleared when the block is finished so that other blocks can't end
1527 // up referring to their registers.
1528
1529 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1530 assert(!x->is_pinned(), "only for unpinned constants");
1531 _unpinned_constants.append(x);
1532 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1533 }
1534
1535
1536 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1537 BasicType t = c->type();
1538 for (int i = 0; i < _constants.length(); i++) {
1539 LIR_Const* other = _constants.at(i);
1540 if (t == other->type()) {
1541 switch (t) {
1542 case T_INT:
1543 case T_FLOAT:
1544 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1545 break;
1546 case T_LONG:
1547 case T_DOUBLE:
1548 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1549 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1550 break;
1551 case T_OBJECT:
1552 if (c->as_jobject() != other->as_jobject()) continue;
1553 break;
1554 default:
1555 break;
1556 }
1557 return _reg_for_constants.at(i);
1558 }
1559 }
1560
1561 LIR_Opr result = new_register(t);
1562 __ move((LIR_Opr)c, result);
1563 _constants.append(c);
1564 _reg_for_constants.append(result);
1565 return result;
1566 }
1567
1568 //------------------------field access--------------------------------------
1569
1570 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1571 assert(x->number_of_arguments() == 4, "wrong type");
1572 LIRItem obj (x->argument_at(0), this); // object
1573 LIRItem offset(x->argument_at(1), this); // offset of field
1574 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1575 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1576 assert(obj.type()->tag() == objectTag, "invalid type");
1577 assert(cmp.type()->tag() == type->tag(), "invalid type");
1578 assert(val.type()->tag() == type->tag(), "invalid type");
1579
1580 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1581 obj, offset, cmp, val);
1582 set_result(x, result);
1583 }
1584
1585 // Comment copied form templateTable_i486.cpp
1586 // ----------------------------------------------------------------------------
1587 // Volatile variables demand their effects be made known to all CPU's in
1588 // order. Store buffers on most chips allow reads & writes to reorder; the
1589 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1590 // memory barrier (i.e., it's not sufficient that the interpreter does not
1591 // reorder volatile references, the hardware also must not reorder them).
1592 //
1593 // According to the new Java Memory Model (JMM):
1594 // (1) All volatiles are serialized wrt to each other.
1595 // ALSO reads & writes act as acquire & release, so:
1596 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1597 // the read float up to before the read. It's OK for non-volatile memory refs
1598 // that happen before the volatile read to float down below it.
1599 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1600 // that happen BEFORE the write float down to after the write. It's OK for
1601 // non-volatile memory refs that happen after the volatile write to float up
1602 // before it.
1603 //
1604 // We only put in barriers around volatile refs (they are expensive), not
1605 // _between_ memory refs (that would require us to track the flavor of the
1606 // previous memory refs). Requirements (2) and (3) require some barriers
1607 // before volatile stores and after volatile loads. These nearly cover
1608 // requirement (1) but miss the volatile-store-volatile-load case. This final
1609 // case is placed after volatile-stores although it could just as well go
1610 // before volatile-loads.
1611
1612
1613 void LIRGenerator::do_StoreField(StoreField* x) {
1614 bool needs_patching = x->needs_patching();
1615 bool is_volatile = x->field()->is_volatile();
1616 BasicType field_type = x->field_type();
1617
1618 CodeEmitInfo* info = nullptr;
1619 if (needs_patching) {
1620 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1621 info = state_for(x, x->state_before());
1622 } else if (x->needs_null_check()) {
1623 NullCheck* nc = x->explicit_null_check();
1624 if (nc == nullptr) {
1625 info = state_for(x);
1626 } else {
1627 info = state_for(nc);
1628 }
1629 }
1630
1631 LIRItem object(x->obj(), this);
1632 LIRItem value(x->value(), this);
1633
1634 object.load_item();
1635
1636 if (is_volatile || needs_patching) {
1637 // load item if field is volatile (fewer special cases for volatiles)
1638 // load item if field not initialized
1639 // load item if field not constant
1640 // because of code patching we cannot inline constants
1641 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1642 value.load_byte_item();
1643 } else {
1644 value.load_item();
1645 }
1646 } else {
1647 value.load_for_store(field_type);
1648 }
1649
1650 set_no_result(x);
1651
1652 #ifndef PRODUCT
1653 if (PrintNotLoaded && needs_patching) {
1654 tty->print_cr(" ###class not loaded at store_%s bci %d",
1655 x->is_static() ? "static" : "field", x->printable_bci());
1656 }
1657 #endif
1658
1659 if (x->needs_null_check() &&
1660 (needs_patching ||
1661 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1662 // Emit an explicit null check because the offset is too large.
1663 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1664 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1665 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1666 }
1667
1668 DecoratorSet decorators = IN_HEAP;
1669 if (is_volatile) {
1670 decorators |= MO_SEQ_CST;
1671 }
1672 if (needs_patching) {
1673 decorators |= C1_NEEDS_PATCHING;
1674 }
1675
1676 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1677 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1678 }
1679
1680 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1681 assert(x->is_pinned(),"");
1682 bool needs_range_check = x->compute_needs_range_check();
1683 bool use_length = x->length() != nullptr;
1684 bool obj_store = is_reference_type(x->elt_type());
1685 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1686 !get_jobject_constant(x->value())->is_null_object() ||
1687 x->should_profile());
1688
1689 LIRItem array(x->array(), this);
1690 LIRItem index(x->index(), this);
1691 LIRItem value(x->value(), this);
1692 LIRItem length(this);
1693
1694 array.load_item();
1695 index.load_nonconstant();
1696
1697 if (use_length && needs_range_check) {
1698 length.set_instruction(x->length());
1699 length.load_item();
1700
1701 }
1702 if (needs_store_check || x->check_boolean()) {
1703 value.load_item();
1704 } else {
1705 value.load_for_store(x->elt_type());
1706 }
1707
1708 set_no_result(x);
1709
1710 // the CodeEmitInfo must be duplicated for each different
1711 // LIR-instruction because spilling can occur anywhere between two
1712 // instructions and so the debug information must be different
1713 CodeEmitInfo* range_check_info = state_for(x);
1714 CodeEmitInfo* null_check_info = nullptr;
1715 if (x->needs_null_check()) {
1716 null_check_info = new CodeEmitInfo(range_check_info);
1717 }
1718
1719 if (needs_range_check) {
1720 if (use_length) {
1721 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1722 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1723 } else {
1724 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1725 // range_check also does the null check
1726 null_check_info = nullptr;
1727 }
1728 }
1729
1730 if (GenerateArrayStoreCheck && needs_store_check) {
1731 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1732 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1733 }
1734
1735 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1736 if (x->check_boolean()) {
1737 decorators |= C1_MASK_BOOLEAN;
1738 }
1739
1740 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1741 nullptr, null_check_info);
1742 }
1743
1744 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1745 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1746 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1747 decorators |= ACCESS_READ;
1748 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1749 if (access.is_raw()) {
1750 _barrier_set->BarrierSetC1::load_at(access, result);
1751 } else {
1752 _barrier_set->load_at(access, result);
1753 }
1754 }
1755
1756 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1757 LIR_Opr addr, LIR_Opr result) {
1758 decorators |= ACCESS_READ;
1759 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1760 access.set_resolved_addr(addr);
1761 if (access.is_raw()) {
1762 _barrier_set->BarrierSetC1::load(access, result);
1763 } else {
1764 _barrier_set->load(access, result);
1765 }
1766 }
1767
1768 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1769 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1770 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1771 decorators |= ACCESS_WRITE;
1772 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1773 if (access.is_raw()) {
1774 _barrier_set->BarrierSetC1::store_at(access, value);
1775 } else {
1776 _barrier_set->store_at(access, value);
1777 }
1778 }
1779
1780 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1781 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1782 decorators |= ACCESS_READ;
1783 decorators |= ACCESS_WRITE;
1784 // Atomic operations are SEQ_CST by default
1785 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1786 LIRAccess access(this, decorators, base, offset, type);
1787 if (access.is_raw()) {
1788 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1789 } else {
1790 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1791 }
1792 }
1793
1794 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1795 LIRItem& base, LIRItem& offset, LIRItem& value) {
1796 decorators |= ACCESS_READ;
1797 decorators |= ACCESS_WRITE;
1798 // Atomic operations are SEQ_CST by default
1799 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1800 LIRAccess access(this, decorators, base, offset, type);
1801 if (access.is_raw()) {
1802 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1803 } else {
1804 return _barrier_set->atomic_xchg_at(access, value);
1805 }
1806 }
1807
1808 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1809 LIRItem& base, LIRItem& offset, LIRItem& value) {
1810 decorators |= ACCESS_READ;
1811 decorators |= ACCESS_WRITE;
1812 // Atomic operations are SEQ_CST by default
1813 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1814 LIRAccess access(this, decorators, base, offset, type);
1815 if (access.is_raw()) {
1816 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1817 } else {
1818 return _barrier_set->atomic_add_at(access, value);
1819 }
1820 }
1821
1822 void LIRGenerator::do_LoadField(LoadField* x) {
1823 bool needs_patching = x->needs_patching();
1824 bool is_volatile = x->field()->is_volatile();
1825 BasicType field_type = x->field_type();
1826
1827 CodeEmitInfo* info = nullptr;
1828 if (needs_patching) {
1829 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1830 info = state_for(x, x->state_before());
1831 } else if (x->needs_null_check()) {
1832 NullCheck* nc = x->explicit_null_check();
1833 if (nc == nullptr) {
1834 info = state_for(x);
1835 } else {
1836 info = state_for(nc);
1837 }
1838 }
1839
1840 LIRItem object(x->obj(), this);
1841
1842 object.load_item();
1843
1844 #ifndef PRODUCT
1845 if (PrintNotLoaded && needs_patching) {
1846 tty->print_cr(" ###class not loaded at load_%s bci %d",
1847 x->is_static() ? "static" : "field", x->printable_bci());
1848 }
1849 #endif
1850
1851 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1852 if (x->needs_null_check() &&
1853 (needs_patching ||
1854 MacroAssembler::needs_explicit_null_check(x->offset()) ||
1855 stress_deopt)) {
1856 LIR_Opr obj = object.result();
1857 if (stress_deopt) {
1858 obj = new_register(T_OBJECT);
1859 __ move(LIR_OprFact::oopConst(nullptr), obj);
1860 }
1861 // Emit an explicit null check because the offset is too large.
1862 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1863 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1864 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1865 }
1866
1867 DecoratorSet decorators = IN_HEAP;
1868 if (is_volatile) {
1869 decorators |= MO_SEQ_CST;
1870 }
1871 if (needs_patching) {
1872 decorators |= C1_NEEDS_PATCHING;
1873 }
1874
1875 LIR_Opr result = rlock_result(x, field_type);
1876 access_load_at(decorators, field_type,
1877 object, LIR_OprFact::intConst(x->offset()), result,
1878 info ? new CodeEmitInfo(info) : nullptr, info);
1879 }
1880
1881 // int/long jdk.internal.util.Preconditions.checkIndex
1882 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1883 assert(x->number_of_arguments() == 3, "wrong type");
1884 LIRItem index(x->argument_at(0), this);
1885 LIRItem length(x->argument_at(1), this);
1886 LIRItem oobef(x->argument_at(2), this);
1887
1888 index.load_item();
1889 length.load_item();
1890 oobef.load_item();
1891
1892 LIR_Opr result = rlock_result(x);
1893 // x->state() is created from copy_state_for_exception, it does not contains arguments
1894 // we should prepare them before entering into interpreter mode due to deoptimization.
1895 ValueStack* state = x->state();
1896 for (int i = 0; i < x->number_of_arguments(); i++) {
1897 Value arg = x->argument_at(i);
1898 state->push(arg->type(), arg);
1899 }
1900 CodeEmitInfo* info = state_for(x, state);
1901
1902 LIR_Opr len = length.result();
1903 LIR_Opr zero;
1904 if (type == T_INT) {
1905 zero = LIR_OprFact::intConst(0);
1906 if (length.result()->is_constant()){
1907 len = LIR_OprFact::intConst(length.result()->as_jint());
1908 }
1909 } else {
1910 assert(type == T_LONG, "sanity check");
1911 zero = LIR_OprFact::longConst(0);
1912 if (length.result()->is_constant()){
1913 len = LIR_OprFact::longConst(length.result()->as_jlong());
1914 }
1915 }
1916 // C1 can not handle the case that comparing index with constant value while condition
1917 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1918 LIR_Opr zero_reg = new_register(type);
1919 __ move(zero, zero_reg);
1920 #if defined(X86) && !defined(_LP64)
1921 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1922 LIR_Opr index_copy = new_register(index.type());
1923 // index >= 0
1924 __ move(index.result(), index_copy);
1925 __ cmp(lir_cond_less, index_copy, zero_reg);
1926 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1927 Deoptimization::Action_make_not_entrant));
1928 // index < length
1929 __ move(index.result(), index_copy);
1930 __ cmp(lir_cond_greaterEqual, index_copy, len);
1931 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1932 Deoptimization::Action_make_not_entrant));
1933 #else
1934 // index >= 0
1935 __ cmp(lir_cond_less, index.result(), zero_reg);
1936 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1937 Deoptimization::Action_make_not_entrant));
1938 // index < length
1939 __ cmp(lir_cond_greaterEqual, index.result(), len);
1940 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1941 Deoptimization::Action_make_not_entrant));
1942 #endif
1943 __ move(index.result(), result);
1944 }
1945
1946 //------------------------array access--------------------------------------
1947
1948
1949 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1950 LIRItem array(x->array(), this);
1951 array.load_item();
1952 LIR_Opr reg = rlock_result(x);
1953
1954 CodeEmitInfo* info = nullptr;
1955 if (x->needs_null_check()) {
1956 NullCheck* nc = x->explicit_null_check();
1957 if (nc == nullptr) {
1958 info = state_for(x);
1959 } else {
1960 info = state_for(nc);
1961 }
1962 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1963 LIR_Opr obj = new_register(T_OBJECT);
1964 __ move(LIR_OprFact::oopConst(nullptr), obj);
1965 __ null_check(obj, new CodeEmitInfo(info));
1966 }
1967 }
1968 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1969 }
1970
1971
1972 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1973 bool use_length = x->length() != nullptr;
1974 LIRItem array(x->array(), this);
1975 LIRItem index(x->index(), this);
1976 LIRItem length(this);
1977 bool needs_range_check = x->compute_needs_range_check();
1978
1979 if (use_length && needs_range_check) {
1980 length.set_instruction(x->length());
1981 length.load_item();
1982 }
1983
1984 array.load_item();
1985 if (index.is_constant() && can_inline_as_constant(x->index())) {
1986 // let it be a constant
1987 index.dont_load_item();
1988 } else {
1989 index.load_item();
1990 }
1991
1992 CodeEmitInfo* range_check_info = state_for(x);
1993 CodeEmitInfo* null_check_info = nullptr;
1994 if (x->needs_null_check()) {
1995 NullCheck* nc = x->explicit_null_check();
1996 if (nc != nullptr) {
1997 null_check_info = state_for(nc);
1998 } else {
1999 null_check_info = range_check_info;
2000 }
2001 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2002 LIR_Opr obj = new_register(T_OBJECT);
2003 __ move(LIR_OprFact::oopConst(nullptr), obj);
2004 __ null_check(obj, new CodeEmitInfo(null_check_info));
2005 }
2006 }
2007
2008 if (needs_range_check) {
2009 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2010 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2011 } else if (use_length) {
2012 // TODO: use a (modified) version of array_range_check that does not require a
2013 // constant length to be loaded to a register
2014 __ cmp(lir_cond_belowEqual, length.result(), index.result());
2015 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2016 } else {
2017 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2018 // The range check performs the null check, so clear it out for the load
2019 null_check_info = nullptr;
2020 }
2021 }
2022
2023 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2024
2025 LIR_Opr result = rlock_result(x, x->elt_type());
2026 access_load_at(decorators, x->elt_type(),
2027 array, index.result(), result,
2028 nullptr, null_check_info);
2029 }
2030
2031
2032 void LIRGenerator::do_NullCheck(NullCheck* x) {
2033 if (x->can_trap()) {
2034 LIRItem value(x->obj(), this);
2035 value.load_item();
2036 CodeEmitInfo* info = state_for(x);
2037 __ null_check(value.result(), info);
2038 }
2039 }
2040
2041
2042 void LIRGenerator::do_TypeCast(TypeCast* x) {
2043 LIRItem value(x->obj(), this);
2044 value.load_item();
2045 // the result is the same as from the node we are casting
2046 set_result(x, value.result());
2047 }
2048
2049
2050 void LIRGenerator::do_Throw(Throw* x) {
2051 LIRItem exception(x->exception(), this);
2052 exception.load_item();
2053 set_no_result(x);
2054 LIR_Opr exception_opr = exception.result();
2055 CodeEmitInfo* info = state_for(x, x->state());
2056
2057 #ifndef PRODUCT
2058 if (PrintC1Statistics) {
2059 increment_counter(Runtime1::throw_count_address(), T_INT);
2060 }
2061 #endif
2062
2063 // check if the instruction has an xhandler in any of the nested scopes
2064 bool unwind = false;
2065 if (info->exception_handlers()->length() == 0) {
2066 // this throw is not inside an xhandler
2067 unwind = true;
2068 } else {
2069 // get some idea of the throw type
2070 bool type_is_exact = true;
2071 ciType* throw_type = x->exception()->exact_type();
2072 if (throw_type == nullptr) {
2073 type_is_exact = false;
2074 throw_type = x->exception()->declared_type();
2075 }
2076 if (throw_type != nullptr && throw_type->is_instance_klass()) {
2077 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2078 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2079 }
2080 }
2081
2082 // do null check before moving exception oop into fixed register
2083 // to avoid a fixed interval with an oop during the null check.
2084 // Use a copy of the CodeEmitInfo because debug information is
2085 // different for null_check and throw.
2086 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2087 // if the exception object wasn't created using new then it might be null.
2088 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2089 }
2090
2091 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2092 // we need to go through the exception lookup path to get JVMTI
2093 // notification done
2094 unwind = false;
2095 }
2096
2097 // move exception oop into fixed register
2098 __ move(exception_opr, exceptionOopOpr());
2099
2100 if (unwind) {
2101 __ unwind_exception(exceptionOopOpr());
2102 } else {
2103 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2104 }
2105 }
2106
2107
2108 void LIRGenerator::do_RoundFP(RoundFP* x) {
2109 assert(strict_fp_requires_explicit_rounding, "not required");
2110
2111 LIRItem input(x->input(), this);
2112 input.load_item();
2113 LIR_Opr input_opr = input.result();
2114 assert(input_opr->is_register(), "why round if value is not in a register?");
2115 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2116 if (input_opr->is_single_fpu()) {
2117 set_result(x, round_item(input_opr)); // This code path not currently taken
2118 } else {
2119 LIR_Opr result = new_register(T_DOUBLE);
2120 set_vreg_flag(result, must_start_in_memory);
2121 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2122 set_result(x, result);
2123 }
2124 }
2125
2126
2127 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2128 BasicType type = x->basic_type();
2129 LIRItem src(x->object(), this);
2130 LIRItem off(x->offset(), this);
2131
2132 off.load_item();
2133 src.load_item();
2134
2135 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2136
2137 if (x->is_volatile()) {
2138 decorators |= MO_SEQ_CST;
2139 }
2140 if (type == T_BOOLEAN) {
2141 decorators |= C1_MASK_BOOLEAN;
2142 }
2143 if (is_reference_type(type)) {
2144 decorators |= ON_UNKNOWN_OOP_REF;
2145 }
2146
2147 LIR_Opr result = rlock_result(x, type);
2148 if (!x->is_raw()) {
2149 access_load_at(decorators, type, src, off.result(), result);
2150 } else {
2151 // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2152 // It reads the value from [src + offset] directly.
2153 #ifdef _LP64
2154 LIR_Opr offset = new_register(T_LONG);
2155 __ convert(Bytecodes::_i2l, off.result(), offset);
2156 #else
2157 LIR_Opr offset = off.result();
2158 #endif
2159 LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2160 if (is_reference_type(type)) {
2161 __ move_wide(addr, result);
2162 } else {
2163 __ move(addr, result);
2164 }
2165 }
2166 }
2167
2168
2169 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2170 BasicType type = x->basic_type();
2171 LIRItem src(x->object(), this);
2172 LIRItem off(x->offset(), this);
2173 LIRItem data(x->value(), this);
2174
2175 src.load_item();
2176 if (type == T_BOOLEAN || type == T_BYTE) {
2177 data.load_byte_item();
2178 } else {
2179 data.load_item();
2180 }
2181 off.load_item();
2182
2183 set_no_result(x);
2184
2185 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2186 if (is_reference_type(type)) {
2187 decorators |= ON_UNKNOWN_OOP_REF;
2188 }
2189 if (x->is_volatile()) {
2190 decorators |= MO_SEQ_CST;
2191 }
2192 access_store_at(decorators, type, src, off.result(), data.result());
2193 }
2194
2195 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2196 BasicType type = x->basic_type();
2197 LIRItem src(x->object(), this);
2198 LIRItem off(x->offset(), this);
2199 LIRItem value(x->value(), this);
2200
2201 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2202
2203 if (is_reference_type(type)) {
2204 decorators |= ON_UNKNOWN_OOP_REF;
2205 }
2206
2207 LIR_Opr result;
2208 if (x->is_add()) {
2209 result = access_atomic_add_at(decorators, type, src, off, value);
2210 } else {
2211 result = access_atomic_xchg_at(decorators, type, src, off, value);
2212 }
2213 set_result(x, result);
2214 }
2215
2216 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2217 int lng = x->length();
2218
2219 for (int i = 0; i < lng; i++) {
2220 C1SwitchRange* one_range = x->at(i);
2221 int low_key = one_range->low_key();
2222 int high_key = one_range->high_key();
2223 BlockBegin* dest = one_range->sux();
2224 if (low_key == high_key) {
2225 __ cmp(lir_cond_equal, value, low_key);
2226 __ branch(lir_cond_equal, dest);
2227 } else if (high_key - low_key == 1) {
2228 __ cmp(lir_cond_equal, value, low_key);
2229 __ branch(lir_cond_equal, dest);
2230 __ cmp(lir_cond_equal, value, high_key);
2231 __ branch(lir_cond_equal, dest);
2232 } else {
2233 LabelObj* L = new LabelObj();
2234 __ cmp(lir_cond_less, value, low_key);
2235 __ branch(lir_cond_less, L->label());
2236 __ cmp(lir_cond_lessEqual, value, high_key);
2237 __ branch(lir_cond_lessEqual, dest);
2238 __ branch_destination(L->label());
2239 }
2240 }
2241 __ jump(default_sux);
2242 }
2243
2244
2245 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2246 SwitchRangeList* res = new SwitchRangeList();
2247 int len = x->length();
2248 if (len > 0) {
2249 BlockBegin* sux = x->sux_at(0);
2250 int low = x->lo_key();
2251 BlockBegin* default_sux = x->default_sux();
2252 C1SwitchRange* range = new C1SwitchRange(low, sux);
2253 for (int i = 0; i < len; i++) {
2254 int key = low + i;
2255 BlockBegin* new_sux = x->sux_at(i);
2256 if (sux == new_sux) {
2257 // still in same range
2258 range->set_high_key(key);
2259 } else {
2260 // skip tests which explicitly dispatch to the default
2261 if (sux != default_sux) {
2262 res->append(range);
2263 }
2264 range = new C1SwitchRange(key, new_sux);
2265 }
2266 sux = new_sux;
2267 }
2268 if (res->length() == 0 || res->last() != range) res->append(range);
2269 }
2270 return res;
2271 }
2272
2273
2274 // we expect the keys to be sorted by increasing value
2275 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2276 SwitchRangeList* res = new SwitchRangeList();
2277 int len = x->length();
2278 if (len > 0) {
2279 BlockBegin* default_sux = x->default_sux();
2280 int key = x->key_at(0);
2281 BlockBegin* sux = x->sux_at(0);
2282 C1SwitchRange* range = new C1SwitchRange(key, sux);
2283 for (int i = 1; i < len; i++) {
2284 int new_key = x->key_at(i);
2285 BlockBegin* new_sux = x->sux_at(i);
2286 if (key+1 == new_key && sux == new_sux) {
2287 // still in same range
2288 range->set_high_key(new_key);
2289 } else {
2290 // skip tests which explicitly dispatch to the default
2291 if (range->sux() != default_sux) {
2292 res->append(range);
2293 }
2294 range = new C1SwitchRange(new_key, new_sux);
2295 }
2296 key = new_key;
2297 sux = new_sux;
2298 }
2299 if (res->length() == 0 || res->last() != range) res->append(range);
2300 }
2301 return res;
2302 }
2303
2304
2305 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2306 LIRItem tag(x->tag(), this);
2307 tag.load_item();
2308 set_no_result(x);
2309
2310 if (x->is_safepoint()) {
2311 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2312 }
2313
2314 // move values into phi locations
2315 move_to_phi(x->state());
2316
2317 int lo_key = x->lo_key();
2318 int len = x->length();
2319 assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2320 LIR_Opr value = tag.result();
2321
2322 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2323 ciMethod* method = x->state()->scope()->method();
2324 ciMethodData* md = method->method_data_or_null();
2325 assert(md != nullptr, "Sanity");
2326 ciProfileData* data = md->bci_to_data(x->state()->bci());
2327 assert(data != nullptr, "must have profiling data");
2328 assert(data->is_MultiBranchData(), "bad profile data?");
2329 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2330 LIR_Opr md_reg = new_register(T_METADATA);
2331 __ metadata2reg(md->constant_encoding(), md_reg);
2332 LIR_Opr data_offset_reg = new_pointer_register();
2333 LIR_Opr tmp_reg = new_pointer_register();
2334
2335 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2336 for (int i = 0; i < len; i++) {
2337 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2338 __ cmp(lir_cond_equal, value, i + lo_key);
2339 __ move(data_offset_reg, tmp_reg);
2340 __ cmove(lir_cond_equal,
2341 LIR_OprFact::intptrConst(count_offset),
2342 tmp_reg,
2343 data_offset_reg, T_INT);
2344 }
2345
2346 LIR_Opr data_reg = new_pointer_register();
2347 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2348 __ move(data_addr, data_reg);
2349 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2350 __ move(data_reg, data_addr);
2351 }
2352
2353 if (UseTableRanges) {
2354 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2355 } else {
2356 for (int i = 0; i < len; i++) {
2357 __ cmp(lir_cond_equal, value, i + lo_key);
2358 __ branch(lir_cond_equal, x->sux_at(i));
2359 }
2360 __ jump(x->default_sux());
2361 }
2362 }
2363
2364
2365 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2366 LIRItem tag(x->tag(), this);
2367 tag.load_item();
2368 set_no_result(x);
2369
2370 if (x->is_safepoint()) {
2371 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2372 }
2373
2374 // move values into phi locations
2375 move_to_phi(x->state());
2376
2377 LIR_Opr value = tag.result();
2378 int len = x->length();
2379
2380 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2381 ciMethod* method = x->state()->scope()->method();
2382 ciMethodData* md = method->method_data_or_null();
2383 assert(md != nullptr, "Sanity");
2384 ciProfileData* data = md->bci_to_data(x->state()->bci());
2385 assert(data != nullptr, "must have profiling data");
2386 assert(data->is_MultiBranchData(), "bad profile data?");
2387 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2388 LIR_Opr md_reg = new_register(T_METADATA);
2389 __ metadata2reg(md->constant_encoding(), md_reg);
2390 LIR_Opr data_offset_reg = new_pointer_register();
2391 LIR_Opr tmp_reg = new_pointer_register();
2392
2393 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2394 for (int i = 0; i < len; i++) {
2395 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2396 __ cmp(lir_cond_equal, value, x->key_at(i));
2397 __ move(data_offset_reg, tmp_reg);
2398 __ cmove(lir_cond_equal,
2399 LIR_OprFact::intptrConst(count_offset),
2400 tmp_reg,
2401 data_offset_reg, T_INT);
2402 }
2403
2404 LIR_Opr data_reg = new_pointer_register();
2405 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2406 __ move(data_addr, data_reg);
2407 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2408 __ move(data_reg, data_addr);
2409 }
2410
2411 if (UseTableRanges) {
2412 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2413 } else {
2414 int len = x->length();
2415 for (int i = 0; i < len; i++) {
2416 __ cmp(lir_cond_equal, value, x->key_at(i));
2417 __ branch(lir_cond_equal, x->sux_at(i));
2418 }
2419 __ jump(x->default_sux());
2420 }
2421 }
2422
2423
2424 void LIRGenerator::do_Goto(Goto* x) {
2425 set_no_result(x);
2426
2427 if (block()->next()->as_OsrEntry()) {
2428 // need to free up storage used for OSR entry point
2429 LIR_Opr osrBuffer = block()->next()->operand();
2430 BasicTypeList signature;
2431 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2432 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2433 __ move(osrBuffer, cc->args()->at(0));
2434 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2435 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2436 }
2437
2438 if (x->is_safepoint()) {
2439 ValueStack* state = x->state_before() ? x->state_before() : x->state();
2440
2441 // increment backedge counter if needed
2442 CodeEmitInfo* info = state_for(x, state);
2443 increment_backedge_counter(info, x->profiled_bci());
2444 CodeEmitInfo* safepoint_info = state_for(x, state);
2445 __ safepoint(safepoint_poll_register(), safepoint_info);
2446 }
2447
2448 // Gotos can be folded Ifs, handle this case.
2449 if (x->should_profile()) {
2450 ciMethod* method = x->profiled_method();
2451 assert(method != nullptr, "method should be set if branch is profiled");
2452 ciMethodData* md = method->method_data_or_null();
2453 assert(md != nullptr, "Sanity");
2454 ciProfileData* data = md->bci_to_data(x->profiled_bci());
2455 assert(data != nullptr, "must have profiling data");
2456 int offset;
2457 if (x->direction() == Goto::taken) {
2458 assert(data->is_BranchData(), "need BranchData for two-way branches");
2459 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2460 } else if (x->direction() == Goto::not_taken) {
2461 assert(data->is_BranchData(), "need BranchData for two-way branches");
2462 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2463 } else {
2464 assert(data->is_JumpData(), "need JumpData for branches");
2465 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2466 }
2467 LIR_Opr md_reg = new_register(T_METADATA);
2468 __ metadata2reg(md->constant_encoding(), md_reg);
2469
2470 increment_counter(new LIR_Address(md_reg, offset,
2471 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2472 }
2473
2474 // emit phi-instruction move after safepoint since this simplifies
2475 // describing the state as the safepoint.
2476 move_to_phi(x->state());
2477
2478 __ jump(x->default_sux());
2479 }
2480
2481 /**
2482 * Emit profiling code if needed for arguments, parameters, return value types
2483 *
2484 * @param md MDO the code will update at runtime
2485 * @param md_base_offset common offset in the MDO for this profile and subsequent ones
2486 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2487 * @param profiled_k current profile
2488 * @param obj IR node for the object to be profiled
2489 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2490 * Set once we find an update to make and use for next ones.
2491 * @param not_null true if we know obj cannot be null
2492 * @param signature_at_call_k signature at call for obj
2493 * @param callee_signature_k signature of callee for obj
2494 * at call and callee signatures differ at method handle call
2495 * @return the only klass we know will ever be seen at this profile point
2496 */
2497 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2498 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2499 ciKlass* callee_signature_k) {
2500 ciKlass* result = nullptr;
2501 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2502 bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2503 // known not to be null or null bit already set and already set to
2504 // unknown: nothing we can do to improve profiling
2505 if (!do_null && !do_update) {
2506 return result;
2507 }
2508
2509 ciKlass* exact_klass = nullptr;
2510 Compilation* comp = Compilation::current();
2511 if (do_update) {
2512 // try to find exact type, using CHA if possible, so that loading
2513 // the klass from the object can be avoided
2514 ciType* type = obj->exact_type();
2515 if (type == nullptr) {
2516 type = obj->declared_type();
2517 type = comp->cha_exact_type(type);
2518 }
2519 assert(type == nullptr || type->is_klass(), "type should be class");
2520 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2521
2522 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2523 }
2524
2525 if (!do_null && !do_update) {
2526 return result;
2527 }
2528
2529 ciKlass* exact_signature_k = nullptr;
2530 if (do_update) {
2531 // Is the type from the signature exact (the only one possible)?
2532 exact_signature_k = signature_at_call_k->exact_klass();
2533 if (exact_signature_k == nullptr) {
2534 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2535 } else {
2536 result = exact_signature_k;
2537 // Known statically. No need to emit any code: prevent
2538 // LIR_Assembler::emit_profile_type() from emitting useless code
2539 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2540 }
2541 // exact_klass and exact_signature_k can be both non null but
2542 // different if exact_klass is loaded after the ciObject for
2543 // exact_signature_k is created.
2544 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2545 // sometimes the type of the signature is better than the best type
2546 // the compiler has
2547 exact_klass = exact_signature_k;
2548 }
2549 if (callee_signature_k != nullptr &&
2550 callee_signature_k != signature_at_call_k) {
2551 ciKlass* improved_klass = callee_signature_k->exact_klass();
2552 if (improved_klass == nullptr) {
2553 improved_klass = comp->cha_exact_type(callee_signature_k);
2554 }
2555 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2556 exact_klass = exact_signature_k;
2557 }
2558 }
2559 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2560 }
2561
2562 if (!do_null && !do_update) {
2563 return result;
2564 }
2565
2566 if (mdp == LIR_OprFact::illegalOpr) {
2567 mdp = new_register(T_METADATA);
2568 __ metadata2reg(md->constant_encoding(), mdp);
2569 if (md_base_offset != 0) {
2570 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2571 mdp = new_pointer_register();
2572 __ leal(LIR_OprFact::address(base_type_address), mdp);
2573 }
2574 }
2575 LIRItem value(obj, this);
2576 value.load_item();
2577 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2578 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2579 return result;
2580 }
2581
2582 // profile parameters on entry to the root of the compilation
2583 void LIRGenerator::profile_parameters(Base* x) {
2584 if (compilation()->profile_parameters()) {
2585 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2586 ciMethodData* md = scope()->method()->method_data_or_null();
2587 assert(md != nullptr, "Sanity");
2588
2589 if (md->parameters_type_data() != nullptr) {
2590 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2591 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2592 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2593 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2594 LIR_Opr src = args->at(i);
2595 assert(!src->is_illegal(), "check");
2596 BasicType t = src->type();
2597 if (is_reference_type(t)) {
2598 intptr_t profiled_k = parameters->type(j);
2599 Local* local = x->state()->local_at(java_index)->as_Local();
2600 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2601 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2602 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2603 // If the profile is known statically set it once for all and do not emit any code
2604 if (exact != nullptr) {
2605 md->set_parameter_type(j, exact);
2606 }
2607 j++;
2608 }
2609 java_index += type2size[t];
2610 }
2611 }
2612 }
2613 }
2614
2615 void LIRGenerator::do_Base(Base* x) {
2616 __ std_entry(LIR_OprFact::illegalOpr);
2617 // Emit moves from physical registers / stack slots to virtual registers
2618 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2619 IRScope* irScope = compilation()->hir()->top_scope();
2620 int java_index = 0;
2621 for (int i = 0; i < args->length(); i++) {
2622 LIR_Opr src = args->at(i);
2623 assert(!src->is_illegal(), "check");
2624 BasicType t = src->type();
2625
2626 // Types which are smaller than int are passed as int, so
2627 // correct the type which passed.
2628 switch (t) {
2629 case T_BYTE:
2630 case T_BOOLEAN:
2631 case T_SHORT:
2632 case T_CHAR:
2633 t = T_INT;
2634 break;
2635 default:
2636 break;
2637 }
2638
2639 LIR_Opr dest = new_register(t);
2640 __ move(src, dest);
2641
2642 // Assign new location to Local instruction for this local
2643 Local* local = x->state()->local_at(java_index)->as_Local();
2644 assert(local != nullptr, "Locals for incoming arguments must have been created");
2645 #ifndef __SOFTFP__
2646 // The java calling convention passes double as long and float as int.
2647 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2648 #endif // __SOFTFP__
2649 local->set_operand(dest);
2650 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2651 java_index += type2size[t];
2652 }
2653
2654 if (compilation()->env()->dtrace_method_probes()) {
2655 BasicTypeList signature;
2656 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2657 signature.append(T_METADATA); // Method*
2658 LIR_OprList* args = new LIR_OprList();
2659 args->append(getThreadPointer());
2660 LIR_Opr meth = new_register(T_METADATA);
2661 __ metadata2reg(method()->constant_encoding(), meth);
2662 args->append(meth);
2663 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2664 }
2665
2666 if (method()->is_synchronized()) {
2667 LIR_Opr obj;
2668 if (method()->is_static()) {
2669 obj = new_register(T_OBJECT);
2670 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2671 } else {
2672 Local* receiver = x->state()->local_at(0)->as_Local();
2673 assert(receiver != nullptr, "must already exist");
2674 obj = receiver->operand();
2675 }
2676 assert(obj->is_valid(), "must be valid");
2677
2678 if (method()->is_synchronized() && GenerateSynchronizationCode) {
2679 LIR_Opr lock = syncLockOpr();
2680 __ load_stack_address_monitor(0, lock);
2681
2682 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2683 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2684
2685 // receiver is guaranteed non-null so don't need CodeEmitInfo
2686 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2687 }
2688 }
2689 // increment invocation counters if needed
2690 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2691 profile_parameters(x);
2692 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2693 increment_invocation_counter(info);
2694 }
2695
2696 // all blocks with a successor must end with an unconditional jump
2697 // to the successor even if they are consecutive
2698 __ jump(x->default_sux());
2699 }
2700
2701
2702 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2703 // construct our frame and model the production of incoming pointer
2704 // to the OSR buffer.
2705 __ osr_entry(LIR_Assembler::osrBufferPointer());
2706 LIR_Opr result = rlock_result(x);
2707 __ move(LIR_Assembler::osrBufferPointer(), result);
2708 }
2709
2710
2711 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2712 assert(args->length() == arg_list->length(),
2713 "args=%d, arg_list=%d", args->length(), arg_list->length());
2714 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2715 LIRItem* param = args->at(i);
2716 LIR_Opr loc = arg_list->at(i);
2717 if (loc->is_register()) {
2718 param->load_item_force(loc);
2719 } else {
2720 LIR_Address* addr = loc->as_address_ptr();
2721 param->load_for_store(addr->type());
2722 if (addr->type() == T_OBJECT) {
2723 __ move_wide(param->result(), addr);
2724 } else
2725 __ move(param->result(), addr);
2726 }
2727 }
2728
2729 if (x->has_receiver()) {
2730 LIRItem* receiver = args->at(0);
2731 LIR_Opr loc = arg_list->at(0);
2732 if (loc->is_register()) {
2733 receiver->load_item_force(loc);
2734 } else {
2735 assert(loc->is_address(), "just checking");
2736 receiver->load_for_store(T_OBJECT);
2737 __ move_wide(receiver->result(), loc->as_address_ptr());
2738 }
2739 }
2740 }
2741
2742
2743 // Visits all arguments, returns appropriate items without loading them
2744 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2745 LIRItemList* argument_items = new LIRItemList();
2746 if (x->has_receiver()) {
2747 LIRItem* receiver = new LIRItem(x->receiver(), this);
2748 argument_items->append(receiver);
2749 }
2750 for (int i = 0; i < x->number_of_arguments(); i++) {
2751 LIRItem* param = new LIRItem(x->argument_at(i), this);
2752 argument_items->append(param);
2753 }
2754 return argument_items;
2755 }
2756
2757
2758 // The invoke with receiver has following phases:
2759 // a) traverse and load/lock receiver;
2760 // b) traverse all arguments -> item-array (invoke_visit_argument)
2761 // c) push receiver on stack
2762 // d) load each of the items and push on stack
2763 // e) unlock receiver
2764 // f) move receiver into receiver-register %o0
2765 // g) lock result registers and emit call operation
2766 //
2767 // Before issuing a call, we must spill-save all values on stack
2768 // that are in caller-save register. "spill-save" moves those registers
2769 // either in a free callee-save register or spills them if no free
2770 // callee save register is available.
2771 //
2772 // The problem is where to invoke spill-save.
2773 // - if invoked between e) and f), we may lock callee save
2774 // register in "spill-save" that destroys the receiver register
2775 // before f) is executed
2776 // - if we rearrange f) to be earlier (by loading %o0) it
2777 // may destroy a value on the stack that is currently in %o0
2778 // and is waiting to be spilled
2779 // - if we keep the receiver locked while doing spill-save,
2780 // we cannot spill it as it is spill-locked
2781 //
2782 void LIRGenerator::do_Invoke(Invoke* x) {
2783 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2784
2785 LIR_OprList* arg_list = cc->args();
2786 LIRItemList* args = invoke_visit_arguments(x);
2787 LIR_Opr receiver = LIR_OprFact::illegalOpr;
2788
2789 // setup result register
2790 LIR_Opr result_register = LIR_OprFact::illegalOpr;
2791 if (x->type() != voidType) {
2792 result_register = result_register_for(x->type());
2793 }
2794
2795 CodeEmitInfo* info = state_for(x, x->state());
2796
2797 invoke_load_arguments(x, args, arg_list);
2798
2799 if (x->has_receiver()) {
2800 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2801 receiver = args->at(0)->result();
2802 }
2803
2804 // emit invoke code
2805 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2806
2807 // JSR 292
2808 // Preserve the SP over MethodHandle call sites, if needed.
2809 ciMethod* target = x->target();
2810 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2811 target->is_method_handle_intrinsic() ||
2812 target->is_compiled_lambda_form());
2813 if (is_method_handle_invoke) {
2814 info->set_is_method_handle_invoke(true);
2815 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2816 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2817 }
2818 }
2819
2820 switch (x->code()) {
2821 case Bytecodes::_invokestatic:
2822 __ call_static(target, result_register,
2823 SharedRuntime::get_resolve_static_call_stub(),
2824 arg_list, info);
2825 break;
2826 case Bytecodes::_invokespecial:
2827 case Bytecodes::_invokevirtual:
2828 case Bytecodes::_invokeinterface:
2829 // for loaded and final (method or class) target we still produce an inline cache,
2830 // in order to be able to call mixed mode
2831 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2832 __ call_opt_virtual(target, receiver, result_register,
2833 SharedRuntime::get_resolve_opt_virtual_call_stub(),
2834 arg_list, info);
2835 } else {
2836 __ call_icvirtual(target, receiver, result_register,
2837 SharedRuntime::get_resolve_virtual_call_stub(),
2838 arg_list, info);
2839 }
2840 break;
2841 case Bytecodes::_invokedynamic: {
2842 __ call_dynamic(target, receiver, result_register,
2843 SharedRuntime::get_resolve_static_call_stub(),
2844 arg_list, info);
2845 break;
2846 }
2847 default:
2848 fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2849 break;
2850 }
2851
2852 // JSR 292
2853 // Restore the SP after MethodHandle call sites, if needed.
2854 if (is_method_handle_invoke
2855 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2856 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2857 }
2858
2859 if (result_register->is_valid()) {
2860 LIR_Opr result = rlock_result(x);
2861 __ move(result_register, result);
2862 }
2863 }
2864
2865
2866 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2867 assert(x->number_of_arguments() == 1, "wrong type");
2868 LIRItem value (x->argument_at(0), this);
2869 LIR_Opr reg = rlock_result(x);
2870 value.load_item();
2871 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2872 __ move(tmp, reg);
2873 }
2874
2875
2876
2877 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2878 void LIRGenerator::do_IfOp(IfOp* x) {
2879 #ifdef ASSERT
2880 {
2881 ValueTag xtag = x->x()->type()->tag();
2882 ValueTag ttag = x->tval()->type()->tag();
2883 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2884 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2885 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2886 }
2887 #endif
2888
2889 LIRItem left(x->x(), this);
2890 LIRItem right(x->y(), this);
2891 left.load_item();
2892 if (can_inline_as_constant(right.value())) {
2893 right.dont_load_item();
2894 } else {
2895 right.load_item();
2896 }
2897
2898 LIRItem t_val(x->tval(), this);
2899 LIRItem f_val(x->fval(), this);
2900 t_val.dont_load_item();
2901 f_val.dont_load_item();
2902 LIR_Opr reg = rlock_result(x);
2903
2904 __ cmp(lir_cond(x->cond()), left.result(), right.result());
2905 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2906 }
2907
2908 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2909 assert(x->number_of_arguments() == 0, "wrong type");
2910 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2911 BasicTypeList signature;
2912 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2913 LIR_Opr reg = result_register_for(x->type());
2914 __ call_runtime_leaf(routine, getThreadTemp(),
2915 reg, new LIR_OprList());
2916 LIR_Opr result = rlock_result(x);
2917 __ move(reg, result);
2918 }
2919
2920
2921
2922 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2923 switch (x->id()) {
2924 case vmIntrinsics::_intBitsToFloat :
2925 case vmIntrinsics::_doubleToRawLongBits :
2926 case vmIntrinsics::_longBitsToDouble :
2927 case vmIntrinsics::_floatToRawIntBits : {
2928 do_FPIntrinsics(x);
2929 break;
2930 }
2931
2932 #ifdef JFR_HAVE_INTRINSICS
2933 case vmIntrinsics::_counterTime:
2934 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2935 break;
2936 #endif
2937
2938 case vmIntrinsics::_currentTimeMillis:
2939 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2940 break;
2941
2942 case vmIntrinsics::_nanoTime:
2943 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2944 break;
2945
2946 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
2947 case vmIntrinsics::_isInstance: do_isInstance(x); break;
2948 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break;
2949 case vmIntrinsics::_getModifiers: do_getModifiers(x); break;
2950 case vmIntrinsics::_getClass: do_getClass(x); break;
2951 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break;
2952 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2953 case vmIntrinsics::_currentThread: do_vthread(x); break;
2954 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2955
2956 case vmIntrinsics::_dlog: // fall through
2957 case vmIntrinsics::_dlog10: // fall through
2958 case vmIntrinsics::_dabs: // fall through
2959 case vmIntrinsics::_dsqrt: // fall through
2960 case vmIntrinsics::_dsqrt_strict: // fall through
2961 case vmIntrinsics::_dtan: // fall through
2962 case vmIntrinsics::_dsin : // fall through
2963 case vmIntrinsics::_dcos : // fall through
2964 case vmIntrinsics::_dexp : // fall through
2965 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
2966 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
2967
2968 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break;
2969 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break;
2970
2971 // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2972 case vmIntrinsics::_floatToFloat16: // fall through
2973 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2974
2975 case vmIntrinsics::_Preconditions_checkIndex:
2976 do_PreconditionsCheckIndex(x, T_INT);
2977 break;
2978 case vmIntrinsics::_Preconditions_checkLongIndex:
2979 do_PreconditionsCheckIndex(x, T_LONG);
2980 break;
2981
2982 case vmIntrinsics::_compareAndSetReference:
2983 do_CompareAndSwap(x, objectType);
2984 break;
2985 case vmIntrinsics::_compareAndSetInt:
2986 do_CompareAndSwap(x, intType);
2987 break;
2988 case vmIntrinsics::_compareAndSetLong:
2989 do_CompareAndSwap(x, longType);
2990 break;
2991
2992 case vmIntrinsics::_loadFence :
2993 __ membar_acquire();
2994 break;
2995 case vmIntrinsics::_storeFence:
2996 __ membar_release();
2997 break;
2998 case vmIntrinsics::_storeStoreFence:
2999 __ membar_storestore();
3000 break;
3001 case vmIntrinsics::_fullFence :
3002 __ membar();
3003 break;
3004 case vmIntrinsics::_onSpinWait:
3005 __ on_spin_wait();
3006 break;
3007 case vmIntrinsics::_Reference_get:
3008 do_Reference_get(x);
3009 break;
3010
3011 case vmIntrinsics::_updateCRC32:
3012 case vmIntrinsics::_updateBytesCRC32:
3013 case vmIntrinsics::_updateByteBufferCRC32:
3014 do_update_CRC32(x);
3015 break;
3016
3017 case vmIntrinsics::_updateBytesCRC32C:
3018 case vmIntrinsics::_updateDirectByteBufferCRC32C:
3019 do_update_CRC32C(x);
3020 break;
3021
3022 case vmIntrinsics::_vectorizedMismatch:
3023 do_vectorizedMismatch(x);
3024 break;
3025
3026 case vmIntrinsics::_blackhole:
3027 do_blackhole(x);
3028 break;
3029
3030 default: ShouldNotReachHere(); break;
3031 }
3032 }
3033
3034 void LIRGenerator::profile_arguments(ProfileCall* x) {
3035 if (compilation()->profile_arguments()) {
3036 int bci = x->bci_of_invoke();
3037 ciMethodData* md = x->method()->method_data_or_null();
3038 assert(md != nullptr, "Sanity");
3039 ciProfileData* data = md->bci_to_data(bci);
3040 if (data != nullptr) {
3041 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3042 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3043 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3044 int base_offset = md->byte_offset_of_slot(data, extra);
3045 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3046 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3047
3048 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3049 int start = 0;
3050 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3051 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3052 // first argument is not profiled at call (method handle invoke)
3053 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3054 start = 1;
3055 }
3056 ciSignature* callee_signature = x->callee()->signature();
3057 // method handle call to virtual method
3058 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3059 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
3060
3061 bool ignored_will_link;
3062 ciSignature* signature_at_call = nullptr;
3063 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3064 ciSignatureStream signature_at_call_stream(signature_at_call);
3065
3066 // if called through method handle invoke, some arguments may have been popped
3067 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3068 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3069 ciKlass* exact = profile_type(md, base_offset, off,
3070 args->type(i), x->profiled_arg_at(i+start), mdp,
3071 !x->arg_needs_null_check(i+start),
3072 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3073 if (exact != nullptr) {
3074 md->set_argument_type(bci, i, exact);
3075 }
3076 }
3077 } else {
3078 #ifdef ASSERT
3079 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3080 int n = x->nb_profiled_args();
3081 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3082 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3083 "only at JSR292 bytecodes");
3084 #endif
3085 }
3086 }
3087 }
3088 }
3089
3090 // profile parameters on entry to an inlined method
3091 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3092 if (compilation()->profile_parameters() && x->inlined()) {
3093 ciMethodData* md = x->callee()->method_data_or_null();
3094 if (md != nullptr) {
3095 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3096 if (parameters_type_data != nullptr) {
3097 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3098 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3099 bool has_receiver = !x->callee()->is_static();
3100 ciSignature* sig = x->callee()->signature();
3101 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3102 int i = 0; // to iterate on the Instructions
3103 Value arg = x->recv();
3104 bool not_null = false;
3105 int bci = x->bci_of_invoke();
3106 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3107 // The first parameter is the receiver so that's what we start
3108 // with if it exists. One exception is method handle call to
3109 // virtual method: the receiver is in the args list
3110 if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3111 i = 1;
3112 arg = x->profiled_arg_at(0);
3113 not_null = !x->arg_needs_null_check(0);
3114 }
3115 int k = 0; // to iterate on the profile data
3116 for (;;) {
3117 intptr_t profiled_k = parameters->type(k);
3118 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3119 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3120 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3121 // If the profile is known statically set it once for all and do not emit any code
3122 if (exact != nullptr) {
3123 md->set_parameter_type(k, exact);
3124 }
3125 k++;
3126 if (k >= parameters_type_data->number_of_parameters()) {
3127 #ifdef ASSERT
3128 int extra = 0;
3129 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3130 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3131 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3132 extra += 1;
3133 }
3134 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3135 #endif
3136 break;
3137 }
3138 arg = x->profiled_arg_at(i);
3139 not_null = !x->arg_needs_null_check(i);
3140 i++;
3141 }
3142 }
3143 }
3144 }
3145 }
3146
3147 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3148 // Need recv in a temporary register so it interferes with the other temporaries
3149 LIR_Opr recv = LIR_OprFact::illegalOpr;
3150 LIR_Opr mdo = new_register(T_METADATA);
3151 // tmp is used to hold the counters on SPARC
3152 LIR_Opr tmp = new_pointer_register();
3153
3154 if (x->nb_profiled_args() > 0) {
3155 profile_arguments(x);
3156 }
3157
3158 // profile parameters on inlined method entry including receiver
3159 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3160 profile_parameters_at_call(x);
3161 }
3162
3163 if (x->recv() != nullptr) {
3164 LIRItem value(x->recv(), this);
3165 value.load_item();
3166 recv = new_register(T_OBJECT);
3167 __ move(value.result(), recv);
3168 }
3169 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3170 }
3171
3172 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3173 int bci = x->bci_of_invoke();
3174 ciMethodData* md = x->method()->method_data_or_null();
3175 assert(md != nullptr, "Sanity");
3176 ciProfileData* data = md->bci_to_data(bci);
3177 if (data != nullptr) {
3178 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3179 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3180 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3181
3182 bool ignored_will_link;
3183 ciSignature* signature_at_call = nullptr;
3184 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3185
3186 // The offset within the MDO of the entry to update may be too large
3187 // to be used in load/store instructions on some platforms. So have
3188 // profile_type() compute the address of the profile in a register.
3189 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3190 ret->type(), x->ret(), mdp,
3191 !x->needs_null_check(),
3192 signature_at_call->return_type()->as_klass(),
3193 x->callee()->signature()->return_type()->as_klass());
3194 if (exact != nullptr) {
3195 md->set_return_type(bci, exact);
3196 }
3197 }
3198 }
3199
3200 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3201 // We can safely ignore accessors here, since c2 will inline them anyway,
3202 // accessors are also always mature.
3203 if (!x->inlinee()->is_accessor()) {
3204 CodeEmitInfo* info = state_for(x, x->state(), true);
3205 // Notify the runtime very infrequently only to take care of counter overflows
3206 int freq_log = Tier23InlineeNotifyFreqLog;
3207 double scale;
3208 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3209 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3210 }
3211 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3212 }
3213 }
3214
3215 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3216 if (compilation()->is_profiling()) {
3217 #if defined(X86) && !defined(_LP64)
3218 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3219 LIR_Opr left_copy = new_register(left->type());
3220 __ move(left, left_copy);
3221 __ cmp(cond, left_copy, right);
3222 #else
3223 __ cmp(cond, left, right);
3224 #endif
3225 LIR_Opr step = new_register(T_INT);
3226 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3227 LIR_Opr zero = LIR_OprFact::intConst(0);
3228 __ cmove(cond,
3229 (left_bci < bci) ? plus_one : zero,
3230 (right_bci < bci) ? plus_one : zero,
3231 step, left->type());
3232 increment_backedge_counter(info, step, bci);
3233 }
3234 }
3235
3236
3237 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3238 int freq_log = 0;
3239 int level = compilation()->env()->comp_level();
3240 if (level == CompLevel_limited_profile) {
3241 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3242 } else if (level == CompLevel_full_profile) {
3243 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3244 } else {
3245 ShouldNotReachHere();
3246 }
3247 // Increment the appropriate invocation/backedge counter and notify the runtime.
3248 double scale;
3249 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3250 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3251 }
3252 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3253 }
3254
3255 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3256 ciMethod *method, LIR_Opr step, int frequency,
3257 int bci, bool backedge, bool notify) {
3258 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3259 int level = _compilation->env()->comp_level();
3260 assert(level > CompLevel_simple, "Shouldn't be here");
3261
3262 int offset = -1;
3263 LIR_Opr counter_holder;
3264 if (level == CompLevel_limited_profile) {
3265 MethodCounters* counters_adr = method->ensure_method_counters();
3266 if (counters_adr == nullptr) {
3267 bailout("method counters allocation failed");
3268 return;
3269 }
3270 counter_holder = new_pointer_register();
3271 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3272 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3273 MethodCounters::invocation_counter_offset());
3274 } else if (level == CompLevel_full_profile) {
3275 counter_holder = new_register(T_METADATA);
3276 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3277 MethodData::invocation_counter_offset());
3278 ciMethodData* md = method->method_data_or_null();
3279 assert(md != nullptr, "Sanity");
3280 __ metadata2reg(md->constant_encoding(), counter_holder);
3281 } else {
3282 ShouldNotReachHere();
3283 }
3284 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3285 LIR_Opr result = new_register(T_INT);
3286 __ load(counter, result);
3287 __ add(result, step, result);
3288 __ store(result, counter);
3289 if (notify && (!backedge || UseOnStackReplacement)) {
3290 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3291 // The bci for info can point to cmp for if's we want the if bci
3292 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3293 int freq = frequency << InvocationCounter::count_shift;
3294 if (freq == 0) {
3295 if (!step->is_constant()) {
3296 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3297 __ branch(lir_cond_notEqual, overflow);
3298 } else {
3299 __ branch(lir_cond_always, overflow);
3300 }
3301 } else {
3302 LIR_Opr mask = load_immediate(freq, T_INT);
3303 if (!step->is_constant()) {
3304 // If step is 0, make sure the overflow check below always fails
3305 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3306 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3307 }
3308 __ logical_and(result, mask, result);
3309 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3310 __ branch(lir_cond_equal, overflow);
3311 }
3312 __ branch_destination(overflow->continuation());
3313 }
3314 }
3315
3316 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3317 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3318 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3319
3320 if (x->pass_thread()) {
3321 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3322 args->append(getThreadPointer());
3323 }
3324
3325 for (int i = 0; i < x->number_of_arguments(); i++) {
3326 Value a = x->argument_at(i);
3327 LIRItem* item = new LIRItem(a, this);
3328 item->load_item();
3329 args->append(item->result());
3330 signature->append(as_BasicType(a->type()));
3331 }
3332
3333 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3334 if (x->type() == voidType) {
3335 set_no_result(x);
3336 } else {
3337 __ move(result, rlock_result(x));
3338 }
3339 }
3340
3341 #ifdef ASSERT
3342 void LIRGenerator::do_Assert(Assert *x) {
3343 ValueTag tag = x->x()->type()->tag();
3344 If::Condition cond = x->cond();
3345
3346 LIRItem xitem(x->x(), this);
3347 LIRItem yitem(x->y(), this);
3348 LIRItem* xin = &xitem;
3349 LIRItem* yin = &yitem;
3350
3351 assert(tag == intTag, "Only integer assertions are valid!");
3352
3353 xin->load_item();
3354 yin->dont_load_item();
3355
3356 set_no_result(x);
3357
3358 LIR_Opr left = xin->result();
3359 LIR_Opr right = yin->result();
3360
3361 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3362 }
3363 #endif
3364
3365 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3366
3367
3368 Instruction *a = x->x();
3369 Instruction *b = x->y();
3370 if (!a || StressRangeCheckElimination) {
3371 assert(!b || StressRangeCheckElimination, "B must also be null");
3372
3373 CodeEmitInfo *info = state_for(x, x->state());
3374 CodeStub* stub = new PredicateFailedStub(info);
3375
3376 __ jump(stub);
3377 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3378 int a_int = a->type()->as_IntConstant()->value();
3379 int b_int = b->type()->as_IntConstant()->value();
3380
3381 bool ok = false;
3382
3383 switch(x->cond()) {
3384 case Instruction::eql: ok = (a_int == b_int); break;
3385 case Instruction::neq: ok = (a_int != b_int); break;
3386 case Instruction::lss: ok = (a_int < b_int); break;
3387 case Instruction::leq: ok = (a_int <= b_int); break;
3388 case Instruction::gtr: ok = (a_int > b_int); break;
3389 case Instruction::geq: ok = (a_int >= b_int); break;
3390 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3391 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3392 default: ShouldNotReachHere();
3393 }
3394
3395 if (ok) {
3396
3397 CodeEmitInfo *info = state_for(x, x->state());
3398 CodeStub* stub = new PredicateFailedStub(info);
3399
3400 __ jump(stub);
3401 }
3402 } else {
3403
3404 ValueTag tag = x->x()->type()->tag();
3405 If::Condition cond = x->cond();
3406 LIRItem xitem(x->x(), this);
3407 LIRItem yitem(x->y(), this);
3408 LIRItem* xin = &xitem;
3409 LIRItem* yin = &yitem;
3410
3411 assert(tag == intTag, "Only integer deoptimizations are valid!");
3412
3413 xin->load_item();
3414 yin->dont_load_item();
3415 set_no_result(x);
3416
3417 LIR_Opr left = xin->result();
3418 LIR_Opr right = yin->result();
3419
3420 CodeEmitInfo *info = state_for(x, x->state());
3421 CodeStub* stub = new PredicateFailedStub(info);
3422
3423 __ cmp(lir_cond(cond), left, right);
3424 __ branch(lir_cond(cond), stub);
3425 }
3426 }
3427
3428 void LIRGenerator::do_blackhole(Intrinsic *x) {
3429 assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3430 for (int c = 0; c < x->number_of_arguments(); c++) {
3431 // Load the argument
3432 LIRItem vitem(x->argument_at(c), this);
3433 vitem.load_item();
3434 // ...and leave it unused.
3435 }
3436 }
3437
3438 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3439 LIRItemList args(1);
3440 LIRItem value(arg1, this);
3441 args.append(&value);
3442 BasicTypeList signature;
3443 signature.append(as_BasicType(arg1->type()));
3444
3445 return call_runtime(&signature, &args, entry, result_type, info);
3446 }
3447
3448
3449 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3450 LIRItemList args(2);
3451 LIRItem value1(arg1, this);
3452 LIRItem value2(arg2, this);
3453 args.append(&value1);
3454 args.append(&value2);
3455 BasicTypeList signature;
3456 signature.append(as_BasicType(arg1->type()));
3457 signature.append(as_BasicType(arg2->type()));
3458
3459 return call_runtime(&signature, &args, entry, result_type, info);
3460 }
3461
3462
3463 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3464 address entry, ValueType* result_type, CodeEmitInfo* info) {
3465 // get a result register
3466 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3467 LIR_Opr result = LIR_OprFact::illegalOpr;
3468 if (result_type->tag() != voidTag) {
3469 result = new_register(result_type);
3470 phys_reg = result_register_for(result_type);
3471 }
3472
3473 // move the arguments into the correct location
3474 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3475 assert(cc->length() == args->length(), "argument mismatch");
3476 for (int i = 0; i < args->length(); i++) {
3477 LIR_Opr arg = args->at(i);
3478 LIR_Opr loc = cc->at(i);
3479 if (loc->is_register()) {
3480 __ move(arg, loc);
3481 } else {
3482 LIR_Address* addr = loc->as_address_ptr();
3483 // if (!can_store_as_constant(arg)) {
3484 // LIR_Opr tmp = new_register(arg->type());
3485 // __ move(arg, tmp);
3486 // arg = tmp;
3487 // }
3488 __ move(arg, addr);
3489 }
3490 }
3491
3492 if (info) {
3493 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3494 } else {
3495 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3496 }
3497 if (result->is_valid()) {
3498 __ move(phys_reg, result);
3499 }
3500 return result;
3501 }
3502
3503
3504 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3505 address entry, ValueType* result_type, CodeEmitInfo* info) {
3506 // get a result register
3507 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3508 LIR_Opr result = LIR_OprFact::illegalOpr;
3509 if (result_type->tag() != voidTag) {
3510 result = new_register(result_type);
3511 phys_reg = result_register_for(result_type);
3512 }
3513
3514 // move the arguments into the correct location
3515 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3516
3517 assert(cc->length() == args->length(), "argument mismatch");
3518 for (int i = 0; i < args->length(); i++) {
3519 LIRItem* arg = args->at(i);
3520 LIR_Opr loc = cc->at(i);
3521 if (loc->is_register()) {
3522 arg->load_item_force(loc);
3523 } else {
3524 LIR_Address* addr = loc->as_address_ptr();
3525 arg->load_for_store(addr->type());
3526 __ move(arg->result(), addr);
3527 }
3528 }
3529
3530 if (info) {
3531 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3532 } else {
3533 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3534 }
3535 if (result->is_valid()) {
3536 __ move(phys_reg, result);
3537 }
3538 return result;
3539 }
3540
3541 void LIRGenerator::do_MemBar(MemBar* x) {
3542 LIR_Code code = x->code();
3543 switch(code) {
3544 case lir_membar_acquire : __ membar_acquire(); break;
3545 case lir_membar_release : __ membar_release(); break;
3546 case lir_membar : __ membar(); break;
3547 case lir_membar_loadload : __ membar_loadload(); break;
3548 case lir_membar_storestore: __ membar_storestore(); break;
3549 case lir_membar_loadstore : __ membar_loadstore(); break;
3550 case lir_membar_storeload : __ membar_storeload(); break;
3551 default : ShouldNotReachHere(); break;
3552 }
3553 }
3554
3555 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3556 LIR_Opr value_fixed = rlock_byte(T_BYTE);
3557 if (two_operand_lir_form) {
3558 __ move(value, value_fixed);
3559 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3560 } else {
3561 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3562 }
3563 LIR_Opr klass = new_register(T_METADATA);
3564 load_klass(array, klass, null_check_info);
3565 null_check_info = nullptr;
3566 LIR_Opr layout = new_register(T_INT);
3567 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3568 int diffbit = Klass::layout_helper_boolean_diffbit();
3569 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3570 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3571 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3572 value = value_fixed;
3573 return value;
3574 }