1 /* 2 * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "compiler/compilerDefinitions.inline.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/c1/barrierSetC1.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/stubRoutines.hpp" 43 #include "runtime/vm_version.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #include "utilities/macros.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 #ifdef ASSERT 49 #define __ gen()->lir(__FILE__, __LINE__)-> 50 #else 51 #define __ gen()->lir()-> 52 #endif 53 54 #ifndef PATCHED_ADDR 55 #define PATCHED_ADDR (max_jint) 56 #endif 57 58 void PhiResolverState::reset() { 59 _virtual_operands.clear(); 60 _other_operands.clear(); 61 _vreg_table.clear(); 62 } 63 64 65 //-------------------------------------------------------------- 66 // PhiResolver 67 68 // Resolves cycles: 69 // 70 // r1 := r2 becomes temp := r1 71 // r2 := r1 r1 := r2 72 // r2 := temp 73 // and orders moves: 74 // 75 // r2 := r3 becomes r1 := r2 76 // r1 := r2 r2 := r3 77 78 PhiResolver::PhiResolver(LIRGenerator* gen) 79 : _gen(gen) 80 , _state(gen->resolver_state()) 81 , _loop(nullptr) 82 , _temp(LIR_OprFact::illegalOpr) 83 { 84 // reinitialize the shared state arrays 85 _state.reset(); 86 } 87 88 89 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 90 assert(src->is_valid(), ""); 91 assert(dest->is_valid(), ""); 92 __ move(src, dest); 93 } 94 95 96 void PhiResolver::move_temp_to(LIR_Opr dest) { 97 assert(_temp->is_valid(), ""); 98 emit_move(_temp, dest); 99 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 100 } 101 102 103 void PhiResolver::move_to_temp(LIR_Opr src) { 104 assert(_temp->is_illegal(), ""); 105 _temp = _gen->new_register(src->type()); 106 emit_move(src, _temp); 107 } 108 109 110 // Traverse assignment graph in depth first order and generate moves in post order 111 // ie. two assignments: b := c, a := b start with node c: 112 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 113 // Generates moves in this order: move b to a and move c to b 114 // ie. cycle a := b, b := a start with node a 115 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 116 // Generates moves in this order: move b to temp, move a to b, move temp to a 117 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 118 if (!dest->visited()) { 119 dest->set_visited(); 120 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 121 move(dest, dest->destination_at(i)); 122 } 123 } else if (!dest->start_node()) { 124 // cylce in graph detected 125 assert(_loop == nullptr, "only one loop valid!"); 126 _loop = dest; 127 move_to_temp(src->operand()); 128 return; 129 } // else dest is a start node 130 131 if (!dest->assigned()) { 132 if (_loop == dest) { 133 move_temp_to(dest->operand()); 134 dest->set_assigned(); 135 } else if (src != nullptr) { 136 emit_move(src->operand(), dest->operand()); 137 dest->set_assigned(); 138 } 139 } 140 } 141 142 143 PhiResolver::~PhiResolver() { 144 int i; 145 // resolve any cycles in moves from and to virtual registers 146 for (i = virtual_operands().length() - 1; i >= 0; i --) { 147 ResolveNode* node = virtual_operands().at(i); 148 if (!node->visited()) { 149 _loop = nullptr; 150 move(nullptr, node); 151 node->set_start_node(); 152 assert(_temp->is_illegal(), "move_temp_to() call missing"); 153 } 154 } 155 156 // generate move for move from non virtual register to abitrary destination 157 for (i = other_operands().length() - 1; i >= 0; i --) { 158 ResolveNode* node = other_operands().at(i); 159 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 160 emit_move(node->operand(), node->destination_at(j)->operand()); 161 } 162 } 163 } 164 165 166 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 167 ResolveNode* node; 168 if (opr->is_virtual()) { 169 int vreg_num = opr->vreg_number(); 170 node = vreg_table().at_grow(vreg_num, nullptr); 171 assert(node == nullptr || node->operand() == opr, ""); 172 if (node == nullptr) { 173 node = new ResolveNode(opr); 174 vreg_table().at_put(vreg_num, node); 175 } 176 // Make sure that all virtual operands show up in the list when 177 // they are used as the source of a move. 178 if (source && !virtual_operands().contains(node)) { 179 virtual_operands().append(node); 180 } 181 } else { 182 assert(source, ""); 183 node = new ResolveNode(opr); 184 other_operands().append(node); 185 } 186 return node; 187 } 188 189 190 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 191 assert(dest->is_virtual(), ""); 192 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 193 assert(src->is_valid(), ""); 194 assert(dest->is_valid(), ""); 195 ResolveNode* source = source_node(src); 196 source->append(destination_node(dest)); 197 } 198 199 200 //-------------------------------------------------------------- 201 // LIRItem 202 203 void LIRItem::set_result(LIR_Opr opr) { 204 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 205 value()->set_operand(opr); 206 207 if (opr->is_virtual()) { 208 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 209 } 210 211 _result = opr; 212 } 213 214 void LIRItem::load_item() { 215 if (result()->is_illegal()) { 216 // update the items result 217 _result = value()->operand(); 218 } 219 if (!result()->is_register()) { 220 LIR_Opr reg = _gen->new_register(value()->type()); 221 __ move(result(), reg); 222 if (result()->is_constant()) { 223 _result = reg; 224 } else { 225 set_result(reg); 226 } 227 } 228 } 229 230 231 void LIRItem::load_for_store(BasicType type) { 232 if (_gen->can_store_as_constant(value(), type)) { 233 _result = value()->operand(); 234 if (!_result->is_constant()) { 235 _result = LIR_OprFact::value_type(value()->type()); 236 } 237 } else if (type == T_BYTE || type == T_BOOLEAN) { 238 load_byte_item(); 239 } else { 240 load_item(); 241 } 242 } 243 244 void LIRItem::load_item_force(LIR_Opr reg) { 245 LIR_Opr r = result(); 246 if (r != reg) { 247 #if !defined(ARM) && !defined(E500V2) 248 if (r->type() != reg->type()) { 249 // moves between different types need an intervening spill slot 250 r = _gen->force_to_spill(r, reg->type()); 251 } 252 #endif 253 __ move(r, reg); 254 _result = reg; 255 } 256 } 257 258 ciObject* LIRItem::get_jobject_constant() const { 259 ObjectType* oc = type()->as_ObjectType(); 260 if (oc) { 261 return oc->constant_value(); 262 } 263 return nullptr; 264 } 265 266 267 jint LIRItem::get_jint_constant() const { 268 assert(is_constant() && value() != nullptr, ""); 269 assert(type()->as_IntConstant() != nullptr, "type check"); 270 return type()->as_IntConstant()->value(); 271 } 272 273 274 jint LIRItem::get_address_constant() const { 275 assert(is_constant() && value() != nullptr, ""); 276 assert(type()->as_AddressConstant() != nullptr, "type check"); 277 return type()->as_AddressConstant()->value(); 278 } 279 280 281 jfloat LIRItem::get_jfloat_constant() const { 282 assert(is_constant() && value() != nullptr, ""); 283 assert(type()->as_FloatConstant() != nullptr, "type check"); 284 return type()->as_FloatConstant()->value(); 285 } 286 287 288 jdouble LIRItem::get_jdouble_constant() const { 289 assert(is_constant() && value() != nullptr, ""); 290 assert(type()->as_DoubleConstant() != nullptr, "type check"); 291 return type()->as_DoubleConstant()->value(); 292 } 293 294 295 jlong LIRItem::get_jlong_constant() const { 296 assert(is_constant() && value() != nullptr, ""); 297 assert(type()->as_LongConstant() != nullptr, "type check"); 298 return type()->as_LongConstant()->value(); 299 } 300 301 302 303 //-------------------------------------------------------------- 304 305 306 void LIRGenerator::block_do_prolog(BlockBegin* block) { 307 #ifndef PRODUCT 308 if (PrintIRWithLIR) { 309 block->print(); 310 } 311 #endif 312 313 // set up the list of LIR instructions 314 assert(block->lir() == nullptr, "LIR list already computed for this block"); 315 _lir = new LIR_List(compilation(), block); 316 block->set_lir(_lir); 317 318 __ branch_destination(block->label()); 319 320 if (LIRTraceExecution && 321 Compilation::current()->hir()->start()->block_id() != block->block_id() && 322 !block->is_set(BlockBegin::exception_entry_flag)) { 323 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 324 trace_block_entry(block); 325 } 326 } 327 328 329 void LIRGenerator::block_do_epilog(BlockBegin* block) { 330 #ifndef PRODUCT 331 if (PrintIRWithLIR) { 332 tty->cr(); 333 } 334 #endif 335 336 // LIR_Opr for unpinned constants shouldn't be referenced by other 337 // blocks so clear them out after processing the block. 338 for (int i = 0; i < _unpinned_constants.length(); i++) { 339 _unpinned_constants.at(i)->clear_operand(); 340 } 341 _unpinned_constants.trunc_to(0); 342 343 // clear our any registers for other local constants 344 _constants.trunc_to(0); 345 _reg_for_constants.trunc_to(0); 346 } 347 348 349 void LIRGenerator::block_do(BlockBegin* block) { 350 CHECK_BAILOUT(); 351 352 block_do_prolog(block); 353 set_block(block); 354 355 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 356 if (instr->is_pinned()) do_root(instr); 357 } 358 359 set_block(nullptr); 360 block_do_epilog(block); 361 } 362 363 364 //-------------------------LIRGenerator----------------------------- 365 366 // This is where the tree-walk starts; instr must be root; 367 void LIRGenerator::do_root(Value instr) { 368 CHECK_BAILOUT(); 369 370 InstructionMark im(compilation(), instr); 371 372 assert(instr->is_pinned(), "use only with roots"); 373 assert(instr->subst() == instr, "shouldn't have missed substitution"); 374 375 instr->visit(this); 376 377 assert(!instr->has_uses() || instr->operand()->is_valid() || 378 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 379 } 380 381 382 // This is called for each node in tree; the walk stops if a root is reached 383 void LIRGenerator::walk(Value instr) { 384 InstructionMark im(compilation(), instr); 385 //stop walk when encounter a root 386 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 387 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 388 } else { 389 assert(instr->subst() == instr, "shouldn't have missed substitution"); 390 instr->visit(this); 391 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 392 } 393 } 394 395 396 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 397 assert(state != nullptr, "state must be defined"); 398 399 #ifndef PRODUCT 400 state->verify(); 401 #endif 402 403 ValueStack* s = state; 404 for_each_state(s) { 405 if (s->kind() == ValueStack::EmptyExceptionState) { 406 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 407 continue; 408 } 409 410 int index; 411 Value value; 412 for_each_stack_value(s, index, value) { 413 assert(value->subst() == value, "missed substitution"); 414 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 415 walk(value); 416 assert(value->operand()->is_valid(), "must be evaluated now"); 417 } 418 } 419 420 int bci = s->bci(); 421 IRScope* scope = s->scope(); 422 ciMethod* method = scope->method(); 423 424 MethodLivenessResult liveness = method->liveness_at_bci(bci); 425 if (bci == SynchronizationEntryBCI) { 426 if (x->as_ExceptionObject() || x->as_Throw()) { 427 // all locals are dead on exit from the synthetic unlocker 428 liveness.clear(); 429 } else { 430 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 431 } 432 } 433 if (!liveness.is_valid()) { 434 // Degenerate or breakpointed method. 435 bailout("Degenerate or breakpointed method"); 436 } else { 437 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 438 for_each_local_value(s, index, value) { 439 assert(value->subst() == value, "missed substitution"); 440 if (liveness.at(index) && !value->type()->is_illegal()) { 441 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 442 walk(value); 443 assert(value->operand()->is_valid(), "must be evaluated now"); 444 } 445 } else { 446 // null out this local so that linear scan can assume that all non-null values are live. 447 s->invalidate_local(index); 448 } 449 } 450 } 451 } 452 453 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 454 } 455 456 457 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 458 return state_for(x, x->exception_state()); 459 } 460 461 462 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 463 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 464 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 465 * the class. */ 466 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 467 assert(info != nullptr, "info must be set if class is not loaded"); 468 __ klass2reg_patch(nullptr, r, info); 469 } else { 470 // no patching needed 471 __ metadata2reg(obj->constant_encoding(), r); 472 } 473 } 474 475 476 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 477 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 478 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 479 if (index->is_constant()) { 480 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 481 index->as_jint(), null_check_info); 482 __ branch(lir_cond_belowEqual, stub); // forward branch 483 } else { 484 cmp_reg_mem(lir_cond_aboveEqual, index, array, 485 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 486 __ branch(lir_cond_aboveEqual, stub); // forward branch 487 } 488 } 489 490 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 491 LIR_Opr result_op = result; 492 LIR_Opr left_op = left; 493 LIR_Opr right_op = right; 494 495 if (two_operand_lir_form && left_op != result_op) { 496 assert(right_op != result_op, "malformed"); 497 __ move(left_op, result_op); 498 left_op = result_op; 499 } 500 501 switch(code) { 502 case Bytecodes::_dadd: 503 case Bytecodes::_fadd: 504 case Bytecodes::_ladd: 505 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 506 case Bytecodes::_fmul: 507 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 508 509 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 510 511 case Bytecodes::_imul: 512 { 513 bool did_strength_reduce = false; 514 515 if (right->is_constant()) { 516 jint c = right->as_jint(); 517 if (c > 0 && is_power_of_2(c)) { 518 // do not need tmp here 519 __ shift_left(left_op, exact_log2(c), result_op); 520 did_strength_reduce = true; 521 } else { 522 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 523 } 524 } 525 // we couldn't strength reduce so just emit the multiply 526 if (!did_strength_reduce) { 527 __ mul(left_op, right_op, result_op); 528 } 529 } 530 break; 531 532 case Bytecodes::_dsub: 533 case Bytecodes::_fsub: 534 case Bytecodes::_lsub: 535 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 536 537 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 538 // ldiv and lrem are implemented with a direct runtime call 539 540 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 541 542 case Bytecodes::_drem: 543 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 544 545 default: ShouldNotReachHere(); 546 } 547 } 548 549 550 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 551 arithmetic_op(code, result, left, right, tmp); 552 } 553 554 555 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 556 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 557 } 558 559 560 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 561 arithmetic_op(code, result, left, right, tmp); 562 } 563 564 565 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 566 567 if (two_operand_lir_form && value != result_op 568 // Only 32bit right shifts require two operand form on S390. 569 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 570 assert(count != result_op, "malformed"); 571 __ move(value, result_op); 572 value = result_op; 573 } 574 575 assert(count->is_constant() || count->is_register(), "must be"); 576 switch(code) { 577 case Bytecodes::_ishl: 578 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 579 case Bytecodes::_ishr: 580 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 581 case Bytecodes::_iushr: 582 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 583 default: ShouldNotReachHere(); 584 } 585 } 586 587 588 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 589 if (two_operand_lir_form && left_op != result_op) { 590 assert(right_op != result_op, "malformed"); 591 __ move(left_op, result_op); 592 left_op = result_op; 593 } 594 595 switch(code) { 596 case Bytecodes::_iand: 597 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 598 599 case Bytecodes::_ior: 600 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 601 602 case Bytecodes::_ixor: 603 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 604 605 default: ShouldNotReachHere(); 606 } 607 } 608 609 610 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 611 if (!GenerateSynchronizationCode) return; 612 // for slow path, use debug info for state after successful locking 613 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 614 __ load_stack_address_monitor(monitor_no, lock); 615 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 616 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 617 } 618 619 620 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 621 if (!GenerateSynchronizationCode) return; 622 // setup registers 623 LIR_Opr hdr = lock; 624 lock = new_hdr; 625 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 626 __ load_stack_address_monitor(monitor_no, lock); 627 __ unlock_object(hdr, object, lock, scratch, slow_path); 628 } 629 630 #ifndef PRODUCT 631 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 632 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 633 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 634 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 635 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 636 } 637 } 638 #endif 639 640 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 641 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 642 // If klass is not loaded we do not know if the klass has finalizers: 643 if (UseFastNewInstance && klass->is_loaded() 644 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 645 646 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 647 648 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 649 650 assert(klass->is_loaded(), "must be loaded"); 651 // allocate space for instance 652 assert(klass->size_helper() > 0, "illegal instance size"); 653 const int instance_size = align_object_size(klass->size_helper()); 654 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 655 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 656 } else { 657 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 658 __ branch(lir_cond_always, slow_path); 659 __ branch_destination(slow_path->continuation()); 660 } 661 } 662 663 664 static bool is_constant_zero(Instruction* inst) { 665 IntConstant* c = inst->type()->as_IntConstant(); 666 if (c) { 667 return (c->value() == 0); 668 } 669 return false; 670 } 671 672 673 static bool positive_constant(Instruction* inst) { 674 IntConstant* c = inst->type()->as_IntConstant(); 675 if (c) { 676 return (c->value() >= 0); 677 } 678 return false; 679 } 680 681 682 static ciArrayKlass* as_array_klass(ciType* type) { 683 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 684 return (ciArrayKlass*)type; 685 } else { 686 return nullptr; 687 } 688 } 689 690 static ciType* phi_declared_type(Phi* phi) { 691 ciType* t = phi->operand_at(0)->declared_type(); 692 if (t == nullptr) { 693 return nullptr; 694 } 695 for(int i = 1; i < phi->operand_count(); i++) { 696 if (t != phi->operand_at(i)->declared_type()) { 697 return nullptr; 698 } 699 } 700 return t; 701 } 702 703 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 704 Instruction* src = x->argument_at(0); 705 Instruction* src_pos = x->argument_at(1); 706 Instruction* dst = x->argument_at(2); 707 Instruction* dst_pos = x->argument_at(3); 708 Instruction* length = x->argument_at(4); 709 710 // first try to identify the likely type of the arrays involved 711 ciArrayKlass* expected_type = nullptr; 712 bool is_exact = false, src_objarray = false, dst_objarray = false; 713 { 714 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 715 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 716 Phi* phi; 717 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 718 src_declared_type = as_array_klass(phi_declared_type(phi)); 719 } 720 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 721 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 722 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 723 dst_declared_type = as_array_klass(phi_declared_type(phi)); 724 } 725 726 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 727 // the types exactly match so the type is fully known 728 is_exact = true; 729 expected_type = src_exact_type; 730 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 731 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 732 ciArrayKlass* src_type = nullptr; 733 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 734 src_type = (ciArrayKlass*) src_exact_type; 735 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 736 src_type = (ciArrayKlass*) src_declared_type; 737 } 738 if (src_type != nullptr) { 739 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 740 is_exact = true; 741 expected_type = dst_type; 742 } 743 } 744 } 745 // at least pass along a good guess 746 if (expected_type == nullptr) expected_type = dst_exact_type; 747 if (expected_type == nullptr) expected_type = src_declared_type; 748 if (expected_type == nullptr) expected_type = dst_declared_type; 749 750 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 751 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 752 } 753 754 // if a probable array type has been identified, figure out if any 755 // of the required checks for a fast case can be elided. 756 int flags = LIR_OpArrayCopy::all_flags; 757 758 if (!src_objarray) 759 flags &= ~LIR_OpArrayCopy::src_objarray; 760 if (!dst_objarray) 761 flags &= ~LIR_OpArrayCopy::dst_objarray; 762 763 if (!x->arg_needs_null_check(0)) 764 flags &= ~LIR_OpArrayCopy::src_null_check; 765 if (!x->arg_needs_null_check(2)) 766 flags &= ~LIR_OpArrayCopy::dst_null_check; 767 768 769 if (expected_type != nullptr) { 770 Value length_limit = nullptr; 771 772 IfOp* ifop = length->as_IfOp(); 773 if (ifop != nullptr) { 774 // look for expressions like min(v, a.length) which ends up as 775 // x > y ? y : x or x >= y ? y : x 776 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 777 ifop->x() == ifop->fval() && 778 ifop->y() == ifop->tval()) { 779 length_limit = ifop->y(); 780 } 781 } 782 783 // try to skip null checks and range checks 784 NewArray* src_array = src->as_NewArray(); 785 if (src_array != nullptr) { 786 flags &= ~LIR_OpArrayCopy::src_null_check; 787 if (length_limit != nullptr && 788 src_array->length() == length_limit && 789 is_constant_zero(src_pos)) { 790 flags &= ~LIR_OpArrayCopy::src_range_check; 791 } 792 } 793 794 NewArray* dst_array = dst->as_NewArray(); 795 if (dst_array != nullptr) { 796 flags &= ~LIR_OpArrayCopy::dst_null_check; 797 if (length_limit != nullptr && 798 dst_array->length() == length_limit && 799 is_constant_zero(dst_pos)) { 800 flags &= ~LIR_OpArrayCopy::dst_range_check; 801 } 802 } 803 804 // check from incoming constant values 805 if (positive_constant(src_pos)) 806 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 807 if (positive_constant(dst_pos)) 808 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 809 if (positive_constant(length)) 810 flags &= ~LIR_OpArrayCopy::length_positive_check; 811 812 // see if the range check can be elided, which might also imply 813 // that src or dst is non-null. 814 ArrayLength* al = length->as_ArrayLength(); 815 if (al != nullptr) { 816 if (al->array() == src) { 817 // it's the length of the source array 818 flags &= ~LIR_OpArrayCopy::length_positive_check; 819 flags &= ~LIR_OpArrayCopy::src_null_check; 820 if (is_constant_zero(src_pos)) 821 flags &= ~LIR_OpArrayCopy::src_range_check; 822 } 823 if (al->array() == dst) { 824 // it's the length of the destination array 825 flags &= ~LIR_OpArrayCopy::length_positive_check; 826 flags &= ~LIR_OpArrayCopy::dst_null_check; 827 if (is_constant_zero(dst_pos)) 828 flags &= ~LIR_OpArrayCopy::dst_range_check; 829 } 830 } 831 if (is_exact) { 832 flags &= ~LIR_OpArrayCopy::type_check; 833 } 834 } 835 836 IntConstant* src_int = src_pos->type()->as_IntConstant(); 837 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 838 if (src_int && dst_int) { 839 int s_offs = src_int->value(); 840 int d_offs = dst_int->value(); 841 if (src_int->value() >= dst_int->value()) { 842 flags &= ~LIR_OpArrayCopy::overlapping; 843 } 844 if (expected_type != nullptr) { 845 BasicType t = expected_type->element_type()->basic_type(); 846 int element_size = type2aelembytes(t); 847 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 848 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 849 flags &= ~LIR_OpArrayCopy::unaligned; 850 } 851 } 852 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 853 // src and dest positions are the same, or dst is zero so assume 854 // nonoverlapping copy. 855 flags &= ~LIR_OpArrayCopy::overlapping; 856 } 857 858 if (src == dst) { 859 // moving within a single array so no type checks are needed 860 if (flags & LIR_OpArrayCopy::type_check) { 861 flags &= ~LIR_OpArrayCopy::type_check; 862 } 863 } 864 *flagsp = flags; 865 *expected_typep = (ciArrayKlass*)expected_type; 866 } 867 868 869 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 870 assert(opr->is_register(), "why spill if item is not register?"); 871 872 if (strict_fp_requires_explicit_rounding) { 873 #ifdef IA32 874 if (UseSSE < 1 && opr->is_single_fpu()) { 875 LIR_Opr result = new_register(T_FLOAT); 876 set_vreg_flag(result, must_start_in_memory); 877 assert(opr->is_register(), "only a register can be spilled"); 878 assert(opr->value_type()->is_float(), "rounding only for floats available"); 879 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 880 return result; 881 } 882 #else 883 Unimplemented(); 884 #endif // IA32 885 } 886 return opr; 887 } 888 889 890 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 891 assert(type2size[t] == type2size[value->type()], 892 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 893 if (!value->is_register()) { 894 // force into a register 895 LIR_Opr r = new_register(value->type()); 896 __ move(value, r); 897 value = r; 898 } 899 900 // create a spill location 901 LIR_Opr tmp = new_register(t); 902 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 903 904 // move from register to spill 905 __ move(value, tmp); 906 return tmp; 907 } 908 909 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 910 if (if_instr->should_profile()) { 911 ciMethod* method = if_instr->profiled_method(); 912 assert(method != nullptr, "method should be set if branch is profiled"); 913 ciMethodData* md = method->method_data_or_null(); 914 assert(md != nullptr, "Sanity"); 915 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 916 assert(data != nullptr, "must have profiling data"); 917 assert(data->is_BranchData(), "need BranchData for two-way branches"); 918 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 919 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 920 if (if_instr->is_swapped()) { 921 int t = taken_count_offset; 922 taken_count_offset = not_taken_count_offset; 923 not_taken_count_offset = t; 924 } 925 926 LIR_Opr md_reg = new_register(T_METADATA); 927 __ metadata2reg(md->constant_encoding(), md_reg); 928 929 LIR_Opr data_offset_reg = new_pointer_register(); 930 __ cmove(lir_cond(cond), 931 LIR_OprFact::intptrConst(taken_count_offset), 932 LIR_OprFact::intptrConst(not_taken_count_offset), 933 data_offset_reg, as_BasicType(if_instr->x()->type())); 934 935 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 936 LIR_Opr data_reg = new_pointer_register(); 937 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 938 __ move(data_addr, data_reg); 939 // Use leal instead of add to avoid destroying condition codes on x86 940 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 941 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 942 __ move(data_reg, data_addr); 943 } 944 } 945 946 // Phi technique: 947 // This is about passing live values from one basic block to the other. 948 // In code generated with Java it is rather rare that more than one 949 // value is on the stack from one basic block to the other. 950 // We optimize our technique for efficient passing of one value 951 // (of type long, int, double..) but it can be extended. 952 // When entering or leaving a basic block, all registers and all spill 953 // slots are release and empty. We use the released registers 954 // and spill slots to pass the live values from one block 955 // to the other. The topmost value, i.e., the value on TOS of expression 956 // stack is passed in registers. All other values are stored in spilling 957 // area. Every Phi has an index which designates its spill slot 958 // At exit of a basic block, we fill the register(s) and spill slots. 959 // At entry of a basic block, the block_prolog sets up the content of phi nodes 960 // and locks necessary registers and spilling slots. 961 962 963 // move current value to referenced phi function 964 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 965 Phi* phi = sux_val->as_Phi(); 966 // cur_val can be null without phi being null in conjunction with inlining 967 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 968 if (phi->is_local()) { 969 for (int i = 0; i < phi->operand_count(); i++) { 970 Value op = phi->operand_at(i); 971 if (op != nullptr && op->type()->is_illegal()) { 972 bailout("illegal phi operand"); 973 } 974 } 975 } 976 Phi* cur_phi = cur_val->as_Phi(); 977 if (cur_phi != nullptr && cur_phi->is_illegal()) { 978 // Phi and local would need to get invalidated 979 // (which is unexpected for Linear Scan). 980 // But this case is very rare so we simply bail out. 981 bailout("propagation of illegal phi"); 982 return; 983 } 984 LIR_Opr operand = cur_val->operand(); 985 if (operand->is_illegal()) { 986 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 987 "these can be produced lazily"); 988 operand = operand_for_instruction(cur_val); 989 } 990 resolver->move(operand, operand_for_instruction(phi)); 991 } 992 } 993 994 995 // Moves all stack values into their PHI position 996 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 997 BlockBegin* bb = block(); 998 if (bb->number_of_sux() == 1) { 999 BlockBegin* sux = bb->sux_at(0); 1000 assert(sux->number_of_preds() > 0, "invalid CFG"); 1001 1002 // a block with only one predecessor never has phi functions 1003 if (sux->number_of_preds() > 1) { 1004 PhiResolver resolver(this); 1005 1006 ValueStack* sux_state = sux->state(); 1007 Value sux_value; 1008 int index; 1009 1010 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1011 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1012 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1013 1014 for_each_stack_value(sux_state, index, sux_value) { 1015 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1016 } 1017 1018 for_each_local_value(sux_state, index, sux_value) { 1019 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1020 } 1021 1022 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1023 } 1024 } 1025 } 1026 1027 1028 LIR_Opr LIRGenerator::new_register(BasicType type) { 1029 int vreg_num = _virtual_register_number; 1030 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1031 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1032 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1033 bailout("out of virtual registers in LIR generator"); 1034 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1035 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1036 _virtual_register_number = LIR_Opr::vreg_base; 1037 vreg_num = LIR_Opr::vreg_base; 1038 } 1039 } 1040 _virtual_register_number += 1; 1041 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1042 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1043 return vreg; 1044 } 1045 1046 1047 // Try to lock using register in hint 1048 LIR_Opr LIRGenerator::rlock(Value instr) { 1049 return new_register(instr->type()); 1050 } 1051 1052 1053 // does an rlock and sets result 1054 LIR_Opr LIRGenerator::rlock_result(Value x) { 1055 LIR_Opr reg = rlock(x); 1056 set_result(x, reg); 1057 return reg; 1058 } 1059 1060 1061 // does an rlock and sets result 1062 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1063 LIR_Opr reg; 1064 switch (type) { 1065 case T_BYTE: 1066 case T_BOOLEAN: 1067 reg = rlock_byte(type); 1068 break; 1069 default: 1070 reg = rlock(x); 1071 break; 1072 } 1073 1074 set_result(x, reg); 1075 return reg; 1076 } 1077 1078 1079 //--------------------------------------------------------------------- 1080 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1081 ObjectType* oc = value->type()->as_ObjectType(); 1082 if (oc) { 1083 return oc->constant_value(); 1084 } 1085 return nullptr; 1086 } 1087 1088 1089 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1090 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1091 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1092 1093 // no moves are created for phi functions at the begin of exception 1094 // handlers, so assign operands manually here 1095 for_each_phi_fun(block(), phi, 1096 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1097 1098 LIR_Opr thread_reg = getThreadPointer(); 1099 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1100 exceptionOopOpr()); 1101 __ move_wide(LIR_OprFact::oopConst(nullptr), 1102 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1103 __ move_wide(LIR_OprFact::oopConst(nullptr), 1104 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1105 1106 LIR_Opr result = new_register(T_OBJECT); 1107 __ move(exceptionOopOpr(), result); 1108 set_result(x, result); 1109 } 1110 1111 1112 //---------------------------------------------------------------------- 1113 //---------------------------------------------------------------------- 1114 //---------------------------------------------------------------------- 1115 //---------------------------------------------------------------------- 1116 // visitor functions 1117 //---------------------------------------------------------------------- 1118 //---------------------------------------------------------------------- 1119 //---------------------------------------------------------------------- 1120 //---------------------------------------------------------------------- 1121 1122 void LIRGenerator::do_Phi(Phi* x) { 1123 // phi functions are never visited directly 1124 ShouldNotReachHere(); 1125 } 1126 1127 1128 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1129 void LIRGenerator::do_Constant(Constant* x) { 1130 if (x->state_before() != nullptr) { 1131 // Any constant with a ValueStack requires patching so emit the patch here 1132 LIR_Opr reg = rlock_result(x); 1133 CodeEmitInfo* info = state_for(x, x->state_before()); 1134 __ oop2reg_patch(nullptr, reg, info); 1135 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1136 if (!x->is_pinned()) { 1137 // unpinned constants are handled specially so that they can be 1138 // put into registers when they are used multiple times within a 1139 // block. After the block completes their operand will be 1140 // cleared so that other blocks can't refer to that register. 1141 set_result(x, load_constant(x)); 1142 } else { 1143 LIR_Opr res = x->operand(); 1144 if (!res->is_valid()) { 1145 res = LIR_OprFact::value_type(x->type()); 1146 } 1147 if (res->is_constant()) { 1148 LIR_Opr reg = rlock_result(x); 1149 __ move(res, reg); 1150 } else { 1151 set_result(x, res); 1152 } 1153 } 1154 } else { 1155 set_result(x, LIR_OprFact::value_type(x->type())); 1156 } 1157 } 1158 1159 1160 void LIRGenerator::do_Local(Local* x) { 1161 // operand_for_instruction has the side effect of setting the result 1162 // so there's no need to do it here. 1163 operand_for_instruction(x); 1164 } 1165 1166 1167 void LIRGenerator::do_Return(Return* x) { 1168 if (compilation()->env()->dtrace_method_probes()) { 1169 BasicTypeList signature; 1170 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1171 signature.append(T_METADATA); // Method* 1172 LIR_OprList* args = new LIR_OprList(); 1173 args->append(getThreadPointer()); 1174 LIR_Opr meth = new_register(T_METADATA); 1175 __ metadata2reg(method()->constant_encoding(), meth); 1176 args->append(meth); 1177 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1178 } 1179 1180 if (x->type()->is_void()) { 1181 __ return_op(LIR_OprFact::illegalOpr); 1182 } else { 1183 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1184 LIRItem result(x->result(), this); 1185 1186 result.load_item_force(reg); 1187 __ return_op(result.result()); 1188 } 1189 set_no_result(x); 1190 } 1191 1192 // Example: ref.get() 1193 // Combination of LoadField and g1 pre-write barrier 1194 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1195 1196 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1197 1198 assert(x->number_of_arguments() == 1, "wrong type"); 1199 1200 LIRItem reference(x->argument_at(0), this); 1201 reference.load_item(); 1202 1203 // need to perform the null check on the reference object 1204 CodeEmitInfo* info = nullptr; 1205 if (x->needs_null_check()) { 1206 info = state_for(x); 1207 } 1208 1209 LIR_Opr result = rlock_result(x, T_OBJECT); 1210 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1211 reference, LIR_OprFact::intConst(referent_offset), result, 1212 nullptr, info); 1213 } 1214 1215 // Example: clazz.isInstance(object) 1216 void LIRGenerator::do_isInstance(Intrinsic* x) { 1217 assert(x->number_of_arguments() == 2, "wrong type"); 1218 1219 // TODO could try to substitute this node with an equivalent InstanceOf 1220 // if clazz is known to be a constant Class. This will pick up newly found 1221 // constants after HIR construction. I'll leave this to a future change. 1222 1223 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1224 // could follow the aastore example in a future change. 1225 1226 LIRItem clazz(x->argument_at(0), this); 1227 LIRItem object(x->argument_at(1), this); 1228 clazz.load_item(); 1229 object.load_item(); 1230 LIR_Opr result = rlock_result(x); 1231 1232 // need to perform null check on clazz 1233 if (x->needs_null_check()) { 1234 CodeEmitInfo* info = state_for(x); 1235 __ null_check(clazz.result(), info); 1236 } 1237 1238 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1239 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1240 x->type(), 1241 nullptr); // null CodeEmitInfo results in a leaf call 1242 __ move(call_result, result); 1243 } 1244 1245 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1246 CodeStub* slow_path = UseCompactObjectHeaders ? new LoadKlassStub(klass) : nullptr; 1247 __ load_klass(obj, klass, null_check_info, slow_path); 1248 } 1249 1250 // Example: object.getClass () 1251 void LIRGenerator::do_getClass(Intrinsic* x) { 1252 assert(x->number_of_arguments() == 1, "wrong type"); 1253 1254 LIRItem rcvr(x->argument_at(0), this); 1255 rcvr.load_item(); 1256 LIR_Opr temp = new_register(T_ADDRESS); 1257 LIR_Opr result = rlock_result(x); 1258 1259 // need to perform the null check on the rcvr 1260 CodeEmitInfo* info = nullptr; 1261 if (x->needs_null_check()) { 1262 info = state_for(x); 1263 } 1264 1265 LIR_Opr klass = new_register(T_METADATA); 1266 load_klass(rcvr.result(), klass, info); 1267 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1268 // mirror = ((OopHandle)mirror)->resolve(); 1269 access_load(IN_NATIVE, T_OBJECT, 1270 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1271 } 1272 1273 // java.lang.Class::isPrimitive() 1274 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1275 assert(x->number_of_arguments() == 1, "wrong type"); 1276 1277 LIRItem rcvr(x->argument_at(0), this); 1278 rcvr.load_item(); 1279 LIR_Opr temp = new_register(T_METADATA); 1280 LIR_Opr result = rlock_result(x); 1281 1282 CodeEmitInfo* info = nullptr; 1283 if (x->needs_null_check()) { 1284 info = state_for(x); 1285 } 1286 1287 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1288 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1289 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1290 } 1291 1292 // Example: Foo.class.getModifiers() 1293 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1294 assert(x->number_of_arguments() == 1, "wrong type"); 1295 1296 LIRItem receiver(x->argument_at(0), this); 1297 receiver.load_item(); 1298 LIR_Opr result = rlock_result(x); 1299 1300 CodeEmitInfo* info = nullptr; 1301 if (x->needs_null_check()) { 1302 info = state_for(x); 1303 } 1304 1305 // While reading off the universal constant mirror is less efficient than doing 1306 // another branch and returning the constant answer, this branchless code runs into 1307 // much less risk of confusion for C1 register allocator. The choice of the universe 1308 // object here is correct as long as it returns the same modifiers we would expect 1309 // from the primitive class itself. See spec for Class.getModifiers that provides 1310 // the typed array klasses with similar modifiers as their component types. 1311 1312 Klass* univ_klass_obj = Universe::byteArrayKlassObj(); 1313 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1314 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj); 1315 1316 LIR_Opr recv_klass = new_register(T_METADATA); 1317 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1318 1319 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1320 LIR_Opr klass = new_register(T_METADATA); 1321 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0)); 1322 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1323 1324 // Get the answer. 1325 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1326 } 1327 1328 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1329 assert(x->number_of_arguments() == 3, "wrong type"); 1330 LIR_Opr result_reg = rlock_result(x); 1331 1332 LIRItem value(x->argument_at(2), this); 1333 value.load_item(); 1334 1335 LIR_Opr klass = new_register(T_METADATA); 1336 load_klass(value.result(), klass, nullptr); 1337 LIR_Opr layout = new_register(T_INT); 1338 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1339 1340 LabelObj* L_done = new LabelObj(); 1341 LabelObj* L_array = new LabelObj(); 1342 1343 __ cmp(lir_cond_lessEqual, layout, 0); 1344 __ branch(lir_cond_lessEqual, L_array->label()); 1345 1346 // Instance case: the layout helper gives us instance size almost directly, 1347 // but we need to mask out the _lh_instance_slow_path_bit. 1348 1349 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1350 1351 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1352 __ logical_and(layout, mask, layout); 1353 __ convert(Bytecodes::_i2l, layout, result_reg); 1354 1355 __ branch(lir_cond_always, L_done->label()); 1356 1357 // Array case: size is round(header + element_size*arraylength). 1358 // Since arraylength is different for every array instance, we have to 1359 // compute the whole thing at runtime. 1360 1361 __ branch_destination(L_array->label()); 1362 1363 int round_mask = MinObjAlignmentInBytes - 1; 1364 1365 // Figure out header sizes first. 1366 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1367 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1368 1369 LIR_Opr header_size = new_register(T_INT); 1370 __ move(layout, header_size); 1371 LIR_Opr tmp = new_register(T_INT); 1372 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1373 __ logical_and(header_size, hsm, header_size); 1374 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1375 1376 // Figure out the array length in bytes 1377 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1378 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1379 __ logical_and(layout, l2esm, layout); 1380 1381 LIR_Opr length_int = new_register(T_INT); 1382 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1383 1384 #ifdef _LP64 1385 LIR_Opr length = new_register(T_LONG); 1386 __ convert(Bytecodes::_i2l, length_int, length); 1387 #endif 1388 1389 // Shift-left awkwardness. Normally it is just: 1390 // __ shift_left(length, layout, length); 1391 // But C1 cannot perform shift_left with non-constant count, so we end up 1392 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1393 // longs, so we have to act on ints. 1394 LabelObj* L_shift_loop = new LabelObj(); 1395 LabelObj* L_shift_exit = new LabelObj(); 1396 1397 __ branch_destination(L_shift_loop->label()); 1398 __ cmp(lir_cond_equal, layout, 0); 1399 __ branch(lir_cond_equal, L_shift_exit->label()); 1400 1401 #ifdef _LP64 1402 __ shift_left(length, 1, length); 1403 #else 1404 __ shift_left(length_int, 1, length_int); 1405 #endif 1406 1407 __ sub(layout, LIR_OprFact::intConst(1), layout); 1408 1409 __ branch(lir_cond_always, L_shift_loop->label()); 1410 __ branch_destination(L_shift_exit->label()); 1411 1412 // Mix all up, round, and push to the result. 1413 #ifdef _LP64 1414 LIR_Opr header_size_long = new_register(T_LONG); 1415 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1416 __ add(length, header_size_long, length); 1417 if (round_mask != 0) { 1418 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1419 __ logical_and(length, round_mask_opr, length); 1420 } 1421 __ move(length, result_reg); 1422 #else 1423 __ add(length_int, header_size, length_int); 1424 if (round_mask != 0) { 1425 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1426 __ logical_and(length_int, round_mask_opr, length_int); 1427 } 1428 __ convert(Bytecodes::_i2l, length_int, result_reg); 1429 #endif 1430 1431 __ branch_destination(L_done->label()); 1432 } 1433 1434 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1435 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1436 } 1437 1438 // Example: Thread.currentCarrierThread() 1439 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1440 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1441 } 1442 1443 void LIRGenerator::do_vthread(Intrinsic* x) { 1444 do_JavaThreadField(x, JavaThread::vthread_offset()); 1445 } 1446 1447 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1448 assert(x->number_of_arguments() == 0, "wrong type"); 1449 LIR_Opr temp = new_register(T_ADDRESS); 1450 LIR_Opr reg = rlock_result(x); 1451 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1452 access_load(IN_NATIVE, T_OBJECT, 1453 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1454 } 1455 1456 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1457 assert(x->number_of_arguments() == 1, "wrong type"); 1458 LIRItem receiver(x->argument_at(0), this); 1459 1460 receiver.load_item(); 1461 BasicTypeList signature; 1462 signature.append(T_OBJECT); // receiver 1463 LIR_OprList* args = new LIR_OprList(); 1464 args->append(receiver.result()); 1465 CodeEmitInfo* info = state_for(x, x->state()); 1466 call_runtime(&signature, args, 1467 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1468 voidType, info); 1469 1470 set_no_result(x); 1471 } 1472 1473 1474 //------------------------local access-------------------------------------- 1475 1476 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1477 if (x->operand()->is_illegal()) { 1478 Constant* c = x->as_Constant(); 1479 if (c != nullptr) { 1480 x->set_operand(LIR_OprFact::value_type(c->type())); 1481 } else { 1482 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1483 // allocate a virtual register for this local or phi 1484 x->set_operand(rlock(x)); 1485 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1486 } 1487 } 1488 return x->operand(); 1489 } 1490 1491 1492 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1493 if (opr->is_virtual()) { 1494 return instruction_for_vreg(opr->vreg_number()); 1495 } 1496 return nullptr; 1497 } 1498 1499 1500 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1501 if (reg_num < _instruction_for_operand.length()) { 1502 return _instruction_for_operand.at(reg_num); 1503 } 1504 return nullptr; 1505 } 1506 1507 1508 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1509 if (_vreg_flags.size_in_bits() == 0) { 1510 BitMap2D temp(100, num_vreg_flags); 1511 _vreg_flags = temp; 1512 } 1513 _vreg_flags.at_put_grow(vreg_num, f, true); 1514 } 1515 1516 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1517 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1518 return false; 1519 } 1520 return _vreg_flags.at(vreg_num, f); 1521 } 1522 1523 1524 // Block local constant handling. This code is useful for keeping 1525 // unpinned constants and constants which aren't exposed in the IR in 1526 // registers. Unpinned Constant instructions have their operands 1527 // cleared when the block is finished so that other blocks can't end 1528 // up referring to their registers. 1529 1530 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1531 assert(!x->is_pinned(), "only for unpinned constants"); 1532 _unpinned_constants.append(x); 1533 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1534 } 1535 1536 1537 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1538 BasicType t = c->type(); 1539 for (int i = 0; i < _constants.length(); i++) { 1540 LIR_Const* other = _constants.at(i); 1541 if (t == other->type()) { 1542 switch (t) { 1543 case T_INT: 1544 case T_FLOAT: 1545 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1546 break; 1547 case T_LONG: 1548 case T_DOUBLE: 1549 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1550 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1551 break; 1552 case T_OBJECT: 1553 if (c->as_jobject() != other->as_jobject()) continue; 1554 break; 1555 default: 1556 break; 1557 } 1558 return _reg_for_constants.at(i); 1559 } 1560 } 1561 1562 LIR_Opr result = new_register(t); 1563 __ move((LIR_Opr)c, result); 1564 _constants.append(c); 1565 _reg_for_constants.append(result); 1566 return result; 1567 } 1568 1569 //------------------------field access-------------------------------------- 1570 1571 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1572 assert(x->number_of_arguments() == 4, "wrong type"); 1573 LIRItem obj (x->argument_at(0), this); // object 1574 LIRItem offset(x->argument_at(1), this); // offset of field 1575 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1576 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1577 assert(obj.type()->tag() == objectTag, "invalid type"); 1578 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1579 assert(val.type()->tag() == type->tag(), "invalid type"); 1580 1581 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1582 obj, offset, cmp, val); 1583 set_result(x, result); 1584 } 1585 1586 // Comment copied form templateTable_i486.cpp 1587 // ---------------------------------------------------------------------------- 1588 // Volatile variables demand their effects be made known to all CPU's in 1589 // order. Store buffers on most chips allow reads & writes to reorder; the 1590 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1591 // memory barrier (i.e., it's not sufficient that the interpreter does not 1592 // reorder volatile references, the hardware also must not reorder them). 1593 // 1594 // According to the new Java Memory Model (JMM): 1595 // (1) All volatiles are serialized wrt to each other. 1596 // ALSO reads & writes act as acquire & release, so: 1597 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1598 // the read float up to before the read. It's OK for non-volatile memory refs 1599 // that happen before the volatile read to float down below it. 1600 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1601 // that happen BEFORE the write float down to after the write. It's OK for 1602 // non-volatile memory refs that happen after the volatile write to float up 1603 // before it. 1604 // 1605 // We only put in barriers around volatile refs (they are expensive), not 1606 // _between_ memory refs (that would require us to track the flavor of the 1607 // previous memory refs). Requirements (2) and (3) require some barriers 1608 // before volatile stores and after volatile loads. These nearly cover 1609 // requirement (1) but miss the volatile-store-volatile-load case. This final 1610 // case is placed after volatile-stores although it could just as well go 1611 // before volatile-loads. 1612 1613 1614 void LIRGenerator::do_StoreField(StoreField* x) { 1615 bool needs_patching = x->needs_patching(); 1616 bool is_volatile = x->field()->is_volatile(); 1617 BasicType field_type = x->field_type(); 1618 1619 CodeEmitInfo* info = nullptr; 1620 if (needs_patching) { 1621 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1622 info = state_for(x, x->state_before()); 1623 } else if (x->needs_null_check()) { 1624 NullCheck* nc = x->explicit_null_check(); 1625 if (nc == nullptr) { 1626 info = state_for(x); 1627 } else { 1628 info = state_for(nc); 1629 } 1630 } 1631 1632 LIRItem object(x->obj(), this); 1633 LIRItem value(x->value(), this); 1634 1635 object.load_item(); 1636 1637 if (is_volatile || needs_patching) { 1638 // load item if field is volatile (fewer special cases for volatiles) 1639 // load item if field not initialized 1640 // load item if field not constant 1641 // because of code patching we cannot inline constants 1642 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1643 value.load_byte_item(); 1644 } else { 1645 value.load_item(); 1646 } 1647 } else { 1648 value.load_for_store(field_type); 1649 } 1650 1651 set_no_result(x); 1652 1653 #ifndef PRODUCT 1654 if (PrintNotLoaded && needs_patching) { 1655 tty->print_cr(" ###class not loaded at store_%s bci %d", 1656 x->is_static() ? "static" : "field", x->printable_bci()); 1657 } 1658 #endif 1659 1660 if (x->needs_null_check() && 1661 (needs_patching || 1662 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1663 // Emit an explicit null check because the offset is too large. 1664 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1665 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1666 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1667 } 1668 1669 DecoratorSet decorators = IN_HEAP; 1670 if (is_volatile) { 1671 decorators |= MO_SEQ_CST; 1672 } 1673 if (needs_patching) { 1674 decorators |= C1_NEEDS_PATCHING; 1675 } 1676 1677 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1678 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1679 } 1680 1681 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1682 assert(x->is_pinned(),""); 1683 bool needs_range_check = x->compute_needs_range_check(); 1684 bool use_length = x->length() != nullptr; 1685 bool obj_store = is_reference_type(x->elt_type()); 1686 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1687 !get_jobject_constant(x->value())->is_null_object() || 1688 x->should_profile()); 1689 1690 LIRItem array(x->array(), this); 1691 LIRItem index(x->index(), this); 1692 LIRItem value(x->value(), this); 1693 LIRItem length(this); 1694 1695 array.load_item(); 1696 index.load_nonconstant(); 1697 1698 if (use_length && needs_range_check) { 1699 length.set_instruction(x->length()); 1700 length.load_item(); 1701 1702 } 1703 if (needs_store_check || x->check_boolean()) { 1704 value.load_item(); 1705 } else { 1706 value.load_for_store(x->elt_type()); 1707 } 1708 1709 set_no_result(x); 1710 1711 // the CodeEmitInfo must be duplicated for each different 1712 // LIR-instruction because spilling can occur anywhere between two 1713 // instructions and so the debug information must be different 1714 CodeEmitInfo* range_check_info = state_for(x); 1715 CodeEmitInfo* null_check_info = nullptr; 1716 if (x->needs_null_check()) { 1717 null_check_info = new CodeEmitInfo(range_check_info); 1718 } 1719 1720 if (needs_range_check) { 1721 if (use_length) { 1722 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1723 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1724 } else { 1725 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1726 // range_check also does the null check 1727 null_check_info = nullptr; 1728 } 1729 } 1730 1731 if (GenerateArrayStoreCheck && needs_store_check) { 1732 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1733 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1734 } 1735 1736 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1737 if (x->check_boolean()) { 1738 decorators |= C1_MASK_BOOLEAN; 1739 } 1740 1741 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1742 nullptr, null_check_info); 1743 } 1744 1745 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1746 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1747 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1748 decorators |= ACCESS_READ; 1749 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1750 if (access.is_raw()) { 1751 _barrier_set->BarrierSetC1::load_at(access, result); 1752 } else { 1753 _barrier_set->load_at(access, result); 1754 } 1755 } 1756 1757 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1758 LIR_Opr addr, LIR_Opr result) { 1759 decorators |= ACCESS_READ; 1760 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1761 access.set_resolved_addr(addr); 1762 if (access.is_raw()) { 1763 _barrier_set->BarrierSetC1::load(access, result); 1764 } else { 1765 _barrier_set->load(access, result); 1766 } 1767 } 1768 1769 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1770 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1771 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1772 decorators |= ACCESS_WRITE; 1773 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1774 if (access.is_raw()) { 1775 _barrier_set->BarrierSetC1::store_at(access, value); 1776 } else { 1777 _barrier_set->store_at(access, value); 1778 } 1779 } 1780 1781 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1782 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1783 decorators |= ACCESS_READ; 1784 decorators |= ACCESS_WRITE; 1785 // Atomic operations are SEQ_CST by default 1786 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1787 LIRAccess access(this, decorators, base, offset, type); 1788 if (access.is_raw()) { 1789 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1790 } else { 1791 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1792 } 1793 } 1794 1795 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1796 LIRItem& base, LIRItem& offset, LIRItem& value) { 1797 decorators |= ACCESS_READ; 1798 decorators |= ACCESS_WRITE; 1799 // Atomic operations are SEQ_CST by default 1800 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1801 LIRAccess access(this, decorators, base, offset, type); 1802 if (access.is_raw()) { 1803 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1804 } else { 1805 return _barrier_set->atomic_xchg_at(access, value); 1806 } 1807 } 1808 1809 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1810 LIRItem& base, LIRItem& offset, LIRItem& value) { 1811 decorators |= ACCESS_READ; 1812 decorators |= ACCESS_WRITE; 1813 // Atomic operations are SEQ_CST by default 1814 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1815 LIRAccess access(this, decorators, base, offset, type); 1816 if (access.is_raw()) { 1817 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1818 } else { 1819 return _barrier_set->atomic_add_at(access, value); 1820 } 1821 } 1822 1823 void LIRGenerator::do_LoadField(LoadField* x) { 1824 bool needs_patching = x->needs_patching(); 1825 bool is_volatile = x->field()->is_volatile(); 1826 BasicType field_type = x->field_type(); 1827 1828 CodeEmitInfo* info = nullptr; 1829 if (needs_patching) { 1830 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1831 info = state_for(x, x->state_before()); 1832 } else if (x->needs_null_check()) { 1833 NullCheck* nc = x->explicit_null_check(); 1834 if (nc == nullptr) { 1835 info = state_for(x); 1836 } else { 1837 info = state_for(nc); 1838 } 1839 } 1840 1841 LIRItem object(x->obj(), this); 1842 1843 object.load_item(); 1844 1845 #ifndef PRODUCT 1846 if (PrintNotLoaded && needs_patching) { 1847 tty->print_cr(" ###class not loaded at load_%s bci %d", 1848 x->is_static() ? "static" : "field", x->printable_bci()); 1849 } 1850 #endif 1851 1852 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1853 if (x->needs_null_check() && 1854 (needs_patching || 1855 MacroAssembler::needs_explicit_null_check(x->offset()) || 1856 stress_deopt)) { 1857 LIR_Opr obj = object.result(); 1858 if (stress_deopt) { 1859 obj = new_register(T_OBJECT); 1860 __ move(LIR_OprFact::oopConst(nullptr), obj); 1861 } 1862 // Emit an explicit null check because the offset is too large. 1863 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1864 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1865 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1866 } 1867 1868 DecoratorSet decorators = IN_HEAP; 1869 if (is_volatile) { 1870 decorators |= MO_SEQ_CST; 1871 } 1872 if (needs_patching) { 1873 decorators |= C1_NEEDS_PATCHING; 1874 } 1875 1876 LIR_Opr result = rlock_result(x, field_type); 1877 access_load_at(decorators, field_type, 1878 object, LIR_OprFact::intConst(x->offset()), result, 1879 info ? new CodeEmitInfo(info) : nullptr, info); 1880 } 1881 1882 // int/long jdk.internal.util.Preconditions.checkIndex 1883 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1884 assert(x->number_of_arguments() == 3, "wrong type"); 1885 LIRItem index(x->argument_at(0), this); 1886 LIRItem length(x->argument_at(1), this); 1887 LIRItem oobef(x->argument_at(2), this); 1888 1889 index.load_item(); 1890 length.load_item(); 1891 oobef.load_item(); 1892 1893 LIR_Opr result = rlock_result(x); 1894 // x->state() is created from copy_state_for_exception, it does not contains arguments 1895 // we should prepare them before entering into interpreter mode due to deoptimization. 1896 ValueStack* state = x->state(); 1897 for (int i = 0; i < x->number_of_arguments(); i++) { 1898 Value arg = x->argument_at(i); 1899 state->push(arg->type(), arg); 1900 } 1901 CodeEmitInfo* info = state_for(x, state); 1902 1903 LIR_Opr len = length.result(); 1904 LIR_Opr zero; 1905 if (type == T_INT) { 1906 zero = LIR_OprFact::intConst(0); 1907 if (length.result()->is_constant()){ 1908 len = LIR_OprFact::intConst(length.result()->as_jint()); 1909 } 1910 } else { 1911 assert(type == T_LONG, "sanity check"); 1912 zero = LIR_OprFact::longConst(0); 1913 if (length.result()->is_constant()){ 1914 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1915 } 1916 } 1917 // C1 can not handle the case that comparing index with constant value while condition 1918 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1919 LIR_Opr zero_reg = new_register(type); 1920 __ move(zero, zero_reg); 1921 #if defined(X86) && !defined(_LP64) 1922 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1923 LIR_Opr index_copy = new_register(index.type()); 1924 // index >= 0 1925 __ move(index.result(), index_copy); 1926 __ cmp(lir_cond_less, index_copy, zero_reg); 1927 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1928 Deoptimization::Action_make_not_entrant)); 1929 // index < length 1930 __ move(index.result(), index_copy); 1931 __ cmp(lir_cond_greaterEqual, index_copy, len); 1932 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1933 Deoptimization::Action_make_not_entrant)); 1934 #else 1935 // index >= 0 1936 __ cmp(lir_cond_less, index.result(), zero_reg); 1937 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1938 Deoptimization::Action_make_not_entrant)); 1939 // index < length 1940 __ cmp(lir_cond_greaterEqual, index.result(), len); 1941 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1942 Deoptimization::Action_make_not_entrant)); 1943 #endif 1944 __ move(index.result(), result); 1945 } 1946 1947 //------------------------array access-------------------------------------- 1948 1949 1950 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1951 LIRItem array(x->array(), this); 1952 array.load_item(); 1953 LIR_Opr reg = rlock_result(x); 1954 1955 CodeEmitInfo* info = nullptr; 1956 if (x->needs_null_check()) { 1957 NullCheck* nc = x->explicit_null_check(); 1958 if (nc == nullptr) { 1959 info = state_for(x); 1960 } else { 1961 info = state_for(nc); 1962 } 1963 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1964 LIR_Opr obj = new_register(T_OBJECT); 1965 __ move(LIR_OprFact::oopConst(nullptr), obj); 1966 __ null_check(obj, new CodeEmitInfo(info)); 1967 } 1968 } 1969 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1970 } 1971 1972 1973 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1974 bool use_length = x->length() != nullptr; 1975 LIRItem array(x->array(), this); 1976 LIRItem index(x->index(), this); 1977 LIRItem length(this); 1978 bool needs_range_check = x->compute_needs_range_check(); 1979 1980 if (use_length && needs_range_check) { 1981 length.set_instruction(x->length()); 1982 length.load_item(); 1983 } 1984 1985 array.load_item(); 1986 if (index.is_constant() && can_inline_as_constant(x->index())) { 1987 // let it be a constant 1988 index.dont_load_item(); 1989 } else { 1990 index.load_item(); 1991 } 1992 1993 CodeEmitInfo* range_check_info = state_for(x); 1994 CodeEmitInfo* null_check_info = nullptr; 1995 if (x->needs_null_check()) { 1996 NullCheck* nc = x->explicit_null_check(); 1997 if (nc != nullptr) { 1998 null_check_info = state_for(nc); 1999 } else { 2000 null_check_info = range_check_info; 2001 } 2002 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2003 LIR_Opr obj = new_register(T_OBJECT); 2004 __ move(LIR_OprFact::oopConst(nullptr), obj); 2005 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2006 } 2007 } 2008 2009 if (needs_range_check) { 2010 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2011 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2012 } else if (use_length) { 2013 // TODO: use a (modified) version of array_range_check that does not require a 2014 // constant length to be loaded to a register 2015 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2016 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2017 } else { 2018 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2019 // The range check performs the null check, so clear it out for the load 2020 null_check_info = nullptr; 2021 } 2022 } 2023 2024 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2025 2026 LIR_Opr result = rlock_result(x, x->elt_type()); 2027 access_load_at(decorators, x->elt_type(), 2028 array, index.result(), result, 2029 nullptr, null_check_info); 2030 } 2031 2032 2033 void LIRGenerator::do_NullCheck(NullCheck* x) { 2034 if (x->can_trap()) { 2035 LIRItem value(x->obj(), this); 2036 value.load_item(); 2037 CodeEmitInfo* info = state_for(x); 2038 __ null_check(value.result(), info); 2039 } 2040 } 2041 2042 2043 void LIRGenerator::do_TypeCast(TypeCast* x) { 2044 LIRItem value(x->obj(), this); 2045 value.load_item(); 2046 // the result is the same as from the node we are casting 2047 set_result(x, value.result()); 2048 } 2049 2050 2051 void LIRGenerator::do_Throw(Throw* x) { 2052 LIRItem exception(x->exception(), this); 2053 exception.load_item(); 2054 set_no_result(x); 2055 LIR_Opr exception_opr = exception.result(); 2056 CodeEmitInfo* info = state_for(x, x->state()); 2057 2058 #ifndef PRODUCT 2059 if (PrintC1Statistics) { 2060 increment_counter(Runtime1::throw_count_address(), T_INT); 2061 } 2062 #endif 2063 2064 // check if the instruction has an xhandler in any of the nested scopes 2065 bool unwind = false; 2066 if (info->exception_handlers()->length() == 0) { 2067 // this throw is not inside an xhandler 2068 unwind = true; 2069 } else { 2070 // get some idea of the throw type 2071 bool type_is_exact = true; 2072 ciType* throw_type = x->exception()->exact_type(); 2073 if (throw_type == nullptr) { 2074 type_is_exact = false; 2075 throw_type = x->exception()->declared_type(); 2076 } 2077 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2078 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2079 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2080 } 2081 } 2082 2083 // do null check before moving exception oop into fixed register 2084 // to avoid a fixed interval with an oop during the null check. 2085 // Use a copy of the CodeEmitInfo because debug information is 2086 // different for null_check and throw. 2087 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2088 // if the exception object wasn't created using new then it might be null. 2089 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2090 } 2091 2092 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2093 // we need to go through the exception lookup path to get JVMTI 2094 // notification done 2095 unwind = false; 2096 } 2097 2098 // move exception oop into fixed register 2099 __ move(exception_opr, exceptionOopOpr()); 2100 2101 if (unwind) { 2102 __ unwind_exception(exceptionOopOpr()); 2103 } else { 2104 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2105 } 2106 } 2107 2108 2109 void LIRGenerator::do_RoundFP(RoundFP* x) { 2110 assert(strict_fp_requires_explicit_rounding, "not required"); 2111 2112 LIRItem input(x->input(), this); 2113 input.load_item(); 2114 LIR_Opr input_opr = input.result(); 2115 assert(input_opr->is_register(), "why round if value is not in a register?"); 2116 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2117 if (input_opr->is_single_fpu()) { 2118 set_result(x, round_item(input_opr)); // This code path not currently taken 2119 } else { 2120 LIR_Opr result = new_register(T_DOUBLE); 2121 set_vreg_flag(result, must_start_in_memory); 2122 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2123 set_result(x, result); 2124 } 2125 } 2126 2127 2128 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2129 BasicType type = x->basic_type(); 2130 LIRItem src(x->object(), this); 2131 LIRItem off(x->offset(), this); 2132 2133 off.load_item(); 2134 src.load_item(); 2135 2136 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2137 2138 if (x->is_volatile()) { 2139 decorators |= MO_SEQ_CST; 2140 } 2141 if (type == T_BOOLEAN) { 2142 decorators |= C1_MASK_BOOLEAN; 2143 } 2144 if (is_reference_type(type)) { 2145 decorators |= ON_UNKNOWN_OOP_REF; 2146 } 2147 2148 LIR_Opr result = rlock_result(x, type); 2149 if (!x->is_raw()) { 2150 access_load_at(decorators, type, src, off.result(), result); 2151 } else { 2152 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2153 // It reads the value from [src + offset] directly. 2154 #ifdef _LP64 2155 LIR_Opr offset = new_register(T_LONG); 2156 __ convert(Bytecodes::_i2l, off.result(), offset); 2157 #else 2158 LIR_Opr offset = off.result(); 2159 #endif 2160 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2161 if (is_reference_type(type)) { 2162 __ move_wide(addr, result); 2163 } else { 2164 __ move(addr, result); 2165 } 2166 } 2167 } 2168 2169 2170 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2171 BasicType type = x->basic_type(); 2172 LIRItem src(x->object(), this); 2173 LIRItem off(x->offset(), this); 2174 LIRItem data(x->value(), this); 2175 2176 src.load_item(); 2177 if (type == T_BOOLEAN || type == T_BYTE) { 2178 data.load_byte_item(); 2179 } else { 2180 data.load_item(); 2181 } 2182 off.load_item(); 2183 2184 set_no_result(x); 2185 2186 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2187 if (is_reference_type(type)) { 2188 decorators |= ON_UNKNOWN_OOP_REF; 2189 } 2190 if (x->is_volatile()) { 2191 decorators |= MO_SEQ_CST; 2192 } 2193 access_store_at(decorators, type, src, off.result(), data.result()); 2194 } 2195 2196 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2197 BasicType type = x->basic_type(); 2198 LIRItem src(x->object(), this); 2199 LIRItem off(x->offset(), this); 2200 LIRItem value(x->value(), this); 2201 2202 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2203 2204 if (is_reference_type(type)) { 2205 decorators |= ON_UNKNOWN_OOP_REF; 2206 } 2207 2208 LIR_Opr result; 2209 if (x->is_add()) { 2210 result = access_atomic_add_at(decorators, type, src, off, value); 2211 } else { 2212 result = access_atomic_xchg_at(decorators, type, src, off, value); 2213 } 2214 set_result(x, result); 2215 } 2216 2217 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2218 int lng = x->length(); 2219 2220 for (int i = 0; i < lng; i++) { 2221 C1SwitchRange* one_range = x->at(i); 2222 int low_key = one_range->low_key(); 2223 int high_key = one_range->high_key(); 2224 BlockBegin* dest = one_range->sux(); 2225 if (low_key == high_key) { 2226 __ cmp(lir_cond_equal, value, low_key); 2227 __ branch(lir_cond_equal, dest); 2228 } else if (high_key - low_key == 1) { 2229 __ cmp(lir_cond_equal, value, low_key); 2230 __ branch(lir_cond_equal, dest); 2231 __ cmp(lir_cond_equal, value, high_key); 2232 __ branch(lir_cond_equal, dest); 2233 } else { 2234 LabelObj* L = new LabelObj(); 2235 __ cmp(lir_cond_less, value, low_key); 2236 __ branch(lir_cond_less, L->label()); 2237 __ cmp(lir_cond_lessEqual, value, high_key); 2238 __ branch(lir_cond_lessEqual, dest); 2239 __ branch_destination(L->label()); 2240 } 2241 } 2242 __ jump(default_sux); 2243 } 2244 2245 2246 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2247 SwitchRangeList* res = new SwitchRangeList(); 2248 int len = x->length(); 2249 if (len > 0) { 2250 BlockBegin* sux = x->sux_at(0); 2251 int low = x->lo_key(); 2252 BlockBegin* default_sux = x->default_sux(); 2253 C1SwitchRange* range = new C1SwitchRange(low, sux); 2254 for (int i = 0; i < len; i++) { 2255 int key = low + i; 2256 BlockBegin* new_sux = x->sux_at(i); 2257 if (sux == new_sux) { 2258 // still in same range 2259 range->set_high_key(key); 2260 } else { 2261 // skip tests which explicitly dispatch to the default 2262 if (sux != default_sux) { 2263 res->append(range); 2264 } 2265 range = new C1SwitchRange(key, new_sux); 2266 } 2267 sux = new_sux; 2268 } 2269 if (res->length() == 0 || res->last() != range) res->append(range); 2270 } 2271 return res; 2272 } 2273 2274 2275 // we expect the keys to be sorted by increasing value 2276 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2277 SwitchRangeList* res = new SwitchRangeList(); 2278 int len = x->length(); 2279 if (len > 0) { 2280 BlockBegin* default_sux = x->default_sux(); 2281 int key = x->key_at(0); 2282 BlockBegin* sux = x->sux_at(0); 2283 C1SwitchRange* range = new C1SwitchRange(key, sux); 2284 for (int i = 1; i < len; i++) { 2285 int new_key = x->key_at(i); 2286 BlockBegin* new_sux = x->sux_at(i); 2287 if (key+1 == new_key && sux == new_sux) { 2288 // still in same range 2289 range->set_high_key(new_key); 2290 } else { 2291 // skip tests which explicitly dispatch to the default 2292 if (range->sux() != default_sux) { 2293 res->append(range); 2294 } 2295 range = new C1SwitchRange(new_key, new_sux); 2296 } 2297 key = new_key; 2298 sux = new_sux; 2299 } 2300 if (res->length() == 0 || res->last() != range) res->append(range); 2301 } 2302 return res; 2303 } 2304 2305 2306 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2307 LIRItem tag(x->tag(), this); 2308 tag.load_item(); 2309 set_no_result(x); 2310 2311 if (x->is_safepoint()) { 2312 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2313 } 2314 2315 // move values into phi locations 2316 move_to_phi(x->state()); 2317 2318 int lo_key = x->lo_key(); 2319 int len = x->length(); 2320 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2321 LIR_Opr value = tag.result(); 2322 2323 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2324 ciMethod* method = x->state()->scope()->method(); 2325 ciMethodData* md = method->method_data_or_null(); 2326 assert(md != nullptr, "Sanity"); 2327 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2328 assert(data != nullptr, "must have profiling data"); 2329 assert(data->is_MultiBranchData(), "bad profile data?"); 2330 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2331 LIR_Opr md_reg = new_register(T_METADATA); 2332 __ metadata2reg(md->constant_encoding(), md_reg); 2333 LIR_Opr data_offset_reg = new_pointer_register(); 2334 LIR_Opr tmp_reg = new_pointer_register(); 2335 2336 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2337 for (int i = 0; i < len; i++) { 2338 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2339 __ cmp(lir_cond_equal, value, i + lo_key); 2340 __ move(data_offset_reg, tmp_reg); 2341 __ cmove(lir_cond_equal, 2342 LIR_OprFact::intptrConst(count_offset), 2343 tmp_reg, 2344 data_offset_reg, T_INT); 2345 } 2346 2347 LIR_Opr data_reg = new_pointer_register(); 2348 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2349 __ move(data_addr, data_reg); 2350 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2351 __ move(data_reg, data_addr); 2352 } 2353 2354 if (UseTableRanges) { 2355 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2356 } else { 2357 for (int i = 0; i < len; i++) { 2358 __ cmp(lir_cond_equal, value, i + lo_key); 2359 __ branch(lir_cond_equal, x->sux_at(i)); 2360 } 2361 __ jump(x->default_sux()); 2362 } 2363 } 2364 2365 2366 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2367 LIRItem tag(x->tag(), this); 2368 tag.load_item(); 2369 set_no_result(x); 2370 2371 if (x->is_safepoint()) { 2372 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2373 } 2374 2375 // move values into phi locations 2376 move_to_phi(x->state()); 2377 2378 LIR_Opr value = tag.result(); 2379 int len = x->length(); 2380 2381 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2382 ciMethod* method = x->state()->scope()->method(); 2383 ciMethodData* md = method->method_data_or_null(); 2384 assert(md != nullptr, "Sanity"); 2385 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2386 assert(data != nullptr, "must have profiling data"); 2387 assert(data->is_MultiBranchData(), "bad profile data?"); 2388 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2389 LIR_Opr md_reg = new_register(T_METADATA); 2390 __ metadata2reg(md->constant_encoding(), md_reg); 2391 LIR_Opr data_offset_reg = new_pointer_register(); 2392 LIR_Opr tmp_reg = new_pointer_register(); 2393 2394 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2395 for (int i = 0; i < len; i++) { 2396 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2397 __ cmp(lir_cond_equal, value, x->key_at(i)); 2398 __ move(data_offset_reg, tmp_reg); 2399 __ cmove(lir_cond_equal, 2400 LIR_OprFact::intptrConst(count_offset), 2401 tmp_reg, 2402 data_offset_reg, T_INT); 2403 } 2404 2405 LIR_Opr data_reg = new_pointer_register(); 2406 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2407 __ move(data_addr, data_reg); 2408 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2409 __ move(data_reg, data_addr); 2410 } 2411 2412 if (UseTableRanges) { 2413 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2414 } else { 2415 int len = x->length(); 2416 for (int i = 0; i < len; i++) { 2417 __ cmp(lir_cond_equal, value, x->key_at(i)); 2418 __ branch(lir_cond_equal, x->sux_at(i)); 2419 } 2420 __ jump(x->default_sux()); 2421 } 2422 } 2423 2424 2425 void LIRGenerator::do_Goto(Goto* x) { 2426 set_no_result(x); 2427 2428 if (block()->next()->as_OsrEntry()) { 2429 // need to free up storage used for OSR entry point 2430 LIR_Opr osrBuffer = block()->next()->operand(); 2431 BasicTypeList signature; 2432 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2433 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2434 __ move(osrBuffer, cc->args()->at(0)); 2435 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2436 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2437 } 2438 2439 if (x->is_safepoint()) { 2440 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2441 2442 // increment backedge counter if needed 2443 CodeEmitInfo* info = state_for(x, state); 2444 increment_backedge_counter(info, x->profiled_bci()); 2445 CodeEmitInfo* safepoint_info = state_for(x, state); 2446 __ safepoint(safepoint_poll_register(), safepoint_info); 2447 } 2448 2449 // Gotos can be folded Ifs, handle this case. 2450 if (x->should_profile()) { 2451 ciMethod* method = x->profiled_method(); 2452 assert(method != nullptr, "method should be set if branch is profiled"); 2453 ciMethodData* md = method->method_data_or_null(); 2454 assert(md != nullptr, "Sanity"); 2455 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2456 assert(data != nullptr, "must have profiling data"); 2457 int offset; 2458 if (x->direction() == Goto::taken) { 2459 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2460 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2461 } else if (x->direction() == Goto::not_taken) { 2462 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2463 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2464 } else { 2465 assert(data->is_JumpData(), "need JumpData for branches"); 2466 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2467 } 2468 LIR_Opr md_reg = new_register(T_METADATA); 2469 __ metadata2reg(md->constant_encoding(), md_reg); 2470 2471 increment_counter(new LIR_Address(md_reg, offset, 2472 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2473 } 2474 2475 // emit phi-instruction move after safepoint since this simplifies 2476 // describing the state as the safepoint. 2477 move_to_phi(x->state()); 2478 2479 __ jump(x->default_sux()); 2480 } 2481 2482 /** 2483 * Emit profiling code if needed for arguments, parameters, return value types 2484 * 2485 * @param md MDO the code will update at runtime 2486 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2487 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2488 * @param profiled_k current profile 2489 * @param obj IR node for the object to be profiled 2490 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2491 * Set once we find an update to make and use for next ones. 2492 * @param not_null true if we know obj cannot be null 2493 * @param signature_at_call_k signature at call for obj 2494 * @param callee_signature_k signature of callee for obj 2495 * at call and callee signatures differ at method handle call 2496 * @return the only klass we know will ever be seen at this profile point 2497 */ 2498 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2499 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2500 ciKlass* callee_signature_k) { 2501 ciKlass* result = nullptr; 2502 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2503 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2504 // known not to be null or null bit already set and already set to 2505 // unknown: nothing we can do to improve profiling 2506 if (!do_null && !do_update) { 2507 return result; 2508 } 2509 2510 ciKlass* exact_klass = nullptr; 2511 Compilation* comp = Compilation::current(); 2512 if (do_update) { 2513 // try to find exact type, using CHA if possible, so that loading 2514 // the klass from the object can be avoided 2515 ciType* type = obj->exact_type(); 2516 if (type == nullptr) { 2517 type = obj->declared_type(); 2518 type = comp->cha_exact_type(type); 2519 } 2520 assert(type == nullptr || type->is_klass(), "type should be class"); 2521 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2522 2523 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2524 } 2525 2526 if (!do_null && !do_update) { 2527 return result; 2528 } 2529 2530 ciKlass* exact_signature_k = nullptr; 2531 if (do_update) { 2532 // Is the type from the signature exact (the only one possible)? 2533 exact_signature_k = signature_at_call_k->exact_klass(); 2534 if (exact_signature_k == nullptr) { 2535 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2536 } else { 2537 result = exact_signature_k; 2538 // Known statically. No need to emit any code: prevent 2539 // LIR_Assembler::emit_profile_type() from emitting useless code 2540 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2541 } 2542 // exact_klass and exact_signature_k can be both non null but 2543 // different if exact_klass is loaded after the ciObject for 2544 // exact_signature_k is created. 2545 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2546 // sometimes the type of the signature is better than the best type 2547 // the compiler has 2548 exact_klass = exact_signature_k; 2549 } 2550 if (callee_signature_k != nullptr && 2551 callee_signature_k != signature_at_call_k) { 2552 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2553 if (improved_klass == nullptr) { 2554 improved_klass = comp->cha_exact_type(callee_signature_k); 2555 } 2556 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2557 exact_klass = exact_signature_k; 2558 } 2559 } 2560 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2561 } 2562 2563 if (!do_null && !do_update) { 2564 return result; 2565 } 2566 2567 if (mdp == LIR_OprFact::illegalOpr) { 2568 mdp = new_register(T_METADATA); 2569 __ metadata2reg(md->constant_encoding(), mdp); 2570 if (md_base_offset != 0) { 2571 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2572 mdp = new_pointer_register(); 2573 __ leal(LIR_OprFact::address(base_type_address), mdp); 2574 } 2575 } 2576 LIRItem value(obj, this); 2577 value.load_item(); 2578 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2579 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2580 return result; 2581 } 2582 2583 // profile parameters on entry to the root of the compilation 2584 void LIRGenerator::profile_parameters(Base* x) { 2585 if (compilation()->profile_parameters()) { 2586 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2587 ciMethodData* md = scope()->method()->method_data_or_null(); 2588 assert(md != nullptr, "Sanity"); 2589 2590 if (md->parameters_type_data() != nullptr) { 2591 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2592 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2593 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2594 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2595 LIR_Opr src = args->at(i); 2596 assert(!src->is_illegal(), "check"); 2597 BasicType t = src->type(); 2598 if (is_reference_type(t)) { 2599 intptr_t profiled_k = parameters->type(j); 2600 Local* local = x->state()->local_at(java_index)->as_Local(); 2601 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2602 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2603 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2604 // If the profile is known statically set it once for all and do not emit any code 2605 if (exact != nullptr) { 2606 md->set_parameter_type(j, exact); 2607 } 2608 j++; 2609 } 2610 java_index += type2size[t]; 2611 } 2612 } 2613 } 2614 } 2615 2616 void LIRGenerator::do_Base(Base* x) { 2617 __ std_entry(LIR_OprFact::illegalOpr); 2618 // Emit moves from physical registers / stack slots to virtual registers 2619 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2620 IRScope* irScope = compilation()->hir()->top_scope(); 2621 int java_index = 0; 2622 for (int i = 0; i < args->length(); i++) { 2623 LIR_Opr src = args->at(i); 2624 assert(!src->is_illegal(), "check"); 2625 BasicType t = src->type(); 2626 2627 // Types which are smaller than int are passed as int, so 2628 // correct the type which passed. 2629 switch (t) { 2630 case T_BYTE: 2631 case T_BOOLEAN: 2632 case T_SHORT: 2633 case T_CHAR: 2634 t = T_INT; 2635 break; 2636 default: 2637 break; 2638 } 2639 2640 LIR_Opr dest = new_register(t); 2641 __ move(src, dest); 2642 2643 // Assign new location to Local instruction for this local 2644 Local* local = x->state()->local_at(java_index)->as_Local(); 2645 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2646 #ifndef __SOFTFP__ 2647 // The java calling convention passes double as long and float as int. 2648 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2649 #endif // __SOFTFP__ 2650 local->set_operand(dest); 2651 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2652 java_index += type2size[t]; 2653 } 2654 2655 if (compilation()->env()->dtrace_method_probes()) { 2656 BasicTypeList signature; 2657 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2658 signature.append(T_METADATA); // Method* 2659 LIR_OprList* args = new LIR_OprList(); 2660 args->append(getThreadPointer()); 2661 LIR_Opr meth = new_register(T_METADATA); 2662 __ metadata2reg(method()->constant_encoding(), meth); 2663 args->append(meth); 2664 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2665 } 2666 2667 if (method()->is_synchronized()) { 2668 LIR_Opr obj; 2669 if (method()->is_static()) { 2670 obj = new_register(T_OBJECT); 2671 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2672 } else { 2673 Local* receiver = x->state()->local_at(0)->as_Local(); 2674 assert(receiver != nullptr, "must already exist"); 2675 obj = receiver->operand(); 2676 } 2677 assert(obj->is_valid(), "must be valid"); 2678 2679 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2680 LIR_Opr lock = syncLockOpr(); 2681 __ load_stack_address_monitor(0, lock); 2682 2683 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2684 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2685 2686 // receiver is guaranteed non-null so don't need CodeEmitInfo 2687 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2688 } 2689 } 2690 // increment invocation counters if needed 2691 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2692 profile_parameters(x); 2693 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2694 increment_invocation_counter(info); 2695 } 2696 2697 // all blocks with a successor must end with an unconditional jump 2698 // to the successor even if they are consecutive 2699 __ jump(x->default_sux()); 2700 } 2701 2702 2703 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2704 // construct our frame and model the production of incoming pointer 2705 // to the OSR buffer. 2706 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2707 LIR_Opr result = rlock_result(x); 2708 __ move(LIR_Assembler::osrBufferPointer(), result); 2709 } 2710 2711 2712 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2713 assert(args->length() == arg_list->length(), 2714 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2715 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2716 LIRItem* param = args->at(i); 2717 LIR_Opr loc = arg_list->at(i); 2718 if (loc->is_register()) { 2719 param->load_item_force(loc); 2720 } else { 2721 LIR_Address* addr = loc->as_address_ptr(); 2722 param->load_for_store(addr->type()); 2723 if (addr->type() == T_OBJECT) { 2724 __ move_wide(param->result(), addr); 2725 } else 2726 __ move(param->result(), addr); 2727 } 2728 } 2729 2730 if (x->has_receiver()) { 2731 LIRItem* receiver = args->at(0); 2732 LIR_Opr loc = arg_list->at(0); 2733 if (loc->is_register()) { 2734 receiver->load_item_force(loc); 2735 } else { 2736 assert(loc->is_address(), "just checking"); 2737 receiver->load_for_store(T_OBJECT); 2738 __ move_wide(receiver->result(), loc->as_address_ptr()); 2739 } 2740 } 2741 } 2742 2743 2744 // Visits all arguments, returns appropriate items without loading them 2745 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2746 LIRItemList* argument_items = new LIRItemList(); 2747 if (x->has_receiver()) { 2748 LIRItem* receiver = new LIRItem(x->receiver(), this); 2749 argument_items->append(receiver); 2750 } 2751 for (int i = 0; i < x->number_of_arguments(); i++) { 2752 LIRItem* param = new LIRItem(x->argument_at(i), this); 2753 argument_items->append(param); 2754 } 2755 return argument_items; 2756 } 2757 2758 2759 // The invoke with receiver has following phases: 2760 // a) traverse and load/lock receiver; 2761 // b) traverse all arguments -> item-array (invoke_visit_argument) 2762 // c) push receiver on stack 2763 // d) load each of the items and push on stack 2764 // e) unlock receiver 2765 // f) move receiver into receiver-register %o0 2766 // g) lock result registers and emit call operation 2767 // 2768 // Before issuing a call, we must spill-save all values on stack 2769 // that are in caller-save register. "spill-save" moves those registers 2770 // either in a free callee-save register or spills them if no free 2771 // callee save register is available. 2772 // 2773 // The problem is where to invoke spill-save. 2774 // - if invoked between e) and f), we may lock callee save 2775 // register in "spill-save" that destroys the receiver register 2776 // before f) is executed 2777 // - if we rearrange f) to be earlier (by loading %o0) it 2778 // may destroy a value on the stack that is currently in %o0 2779 // and is waiting to be spilled 2780 // - if we keep the receiver locked while doing spill-save, 2781 // we cannot spill it as it is spill-locked 2782 // 2783 void LIRGenerator::do_Invoke(Invoke* x) { 2784 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2785 2786 LIR_OprList* arg_list = cc->args(); 2787 LIRItemList* args = invoke_visit_arguments(x); 2788 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2789 2790 // setup result register 2791 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2792 if (x->type() != voidType) { 2793 result_register = result_register_for(x->type()); 2794 } 2795 2796 CodeEmitInfo* info = state_for(x, x->state()); 2797 2798 invoke_load_arguments(x, args, arg_list); 2799 2800 if (x->has_receiver()) { 2801 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2802 receiver = args->at(0)->result(); 2803 } 2804 2805 // emit invoke code 2806 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2807 2808 // JSR 292 2809 // Preserve the SP over MethodHandle call sites, if needed. 2810 ciMethod* target = x->target(); 2811 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2812 target->is_method_handle_intrinsic() || 2813 target->is_compiled_lambda_form()); 2814 if (is_method_handle_invoke) { 2815 info->set_is_method_handle_invoke(true); 2816 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2817 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2818 } 2819 } 2820 2821 switch (x->code()) { 2822 case Bytecodes::_invokestatic: 2823 __ call_static(target, result_register, 2824 SharedRuntime::get_resolve_static_call_stub(), 2825 arg_list, info); 2826 break; 2827 case Bytecodes::_invokespecial: 2828 case Bytecodes::_invokevirtual: 2829 case Bytecodes::_invokeinterface: 2830 // for loaded and final (method or class) target we still produce an inline cache, 2831 // in order to be able to call mixed mode 2832 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2833 __ call_opt_virtual(target, receiver, result_register, 2834 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2835 arg_list, info); 2836 } else { 2837 __ call_icvirtual(target, receiver, result_register, 2838 SharedRuntime::get_resolve_virtual_call_stub(), 2839 arg_list, info); 2840 } 2841 break; 2842 case Bytecodes::_invokedynamic: { 2843 __ call_dynamic(target, receiver, result_register, 2844 SharedRuntime::get_resolve_static_call_stub(), 2845 arg_list, info); 2846 break; 2847 } 2848 default: 2849 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2850 break; 2851 } 2852 2853 // JSR 292 2854 // Restore the SP after MethodHandle call sites, if needed. 2855 if (is_method_handle_invoke 2856 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2857 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2858 } 2859 2860 if (result_register->is_valid()) { 2861 LIR_Opr result = rlock_result(x); 2862 __ move(result_register, result); 2863 } 2864 } 2865 2866 2867 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2868 assert(x->number_of_arguments() == 1, "wrong type"); 2869 LIRItem value (x->argument_at(0), this); 2870 LIR_Opr reg = rlock_result(x); 2871 value.load_item(); 2872 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2873 __ move(tmp, reg); 2874 } 2875 2876 2877 2878 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2879 void LIRGenerator::do_IfOp(IfOp* x) { 2880 #ifdef ASSERT 2881 { 2882 ValueTag xtag = x->x()->type()->tag(); 2883 ValueTag ttag = x->tval()->type()->tag(); 2884 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2885 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2886 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2887 } 2888 #endif 2889 2890 LIRItem left(x->x(), this); 2891 LIRItem right(x->y(), this); 2892 left.load_item(); 2893 if (can_inline_as_constant(right.value())) { 2894 right.dont_load_item(); 2895 } else { 2896 right.load_item(); 2897 } 2898 2899 LIRItem t_val(x->tval(), this); 2900 LIRItem f_val(x->fval(), this); 2901 t_val.dont_load_item(); 2902 f_val.dont_load_item(); 2903 LIR_Opr reg = rlock_result(x); 2904 2905 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2906 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2907 } 2908 2909 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2910 assert(x->number_of_arguments() == 0, "wrong type"); 2911 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2912 BasicTypeList signature; 2913 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2914 LIR_Opr reg = result_register_for(x->type()); 2915 __ call_runtime_leaf(routine, getThreadTemp(), 2916 reg, new LIR_OprList()); 2917 LIR_Opr result = rlock_result(x); 2918 __ move(reg, result); 2919 } 2920 2921 2922 2923 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2924 switch (x->id()) { 2925 case vmIntrinsics::_intBitsToFloat : 2926 case vmIntrinsics::_doubleToRawLongBits : 2927 case vmIntrinsics::_longBitsToDouble : 2928 case vmIntrinsics::_floatToRawIntBits : { 2929 do_FPIntrinsics(x); 2930 break; 2931 } 2932 2933 #ifdef JFR_HAVE_INTRINSICS 2934 case vmIntrinsics::_counterTime: 2935 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2936 break; 2937 #endif 2938 2939 case vmIntrinsics::_currentTimeMillis: 2940 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2941 break; 2942 2943 case vmIntrinsics::_nanoTime: 2944 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2945 break; 2946 2947 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2948 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2949 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 2950 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 2951 case vmIntrinsics::_getClass: do_getClass(x); break; 2952 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2953 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2954 case vmIntrinsics::_currentThread: do_vthread(x); break; 2955 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2956 2957 case vmIntrinsics::_dlog: // fall through 2958 case vmIntrinsics::_dlog10: // fall through 2959 case vmIntrinsics::_dabs: // fall through 2960 case vmIntrinsics::_dsqrt: // fall through 2961 case vmIntrinsics::_dsqrt_strict: // fall through 2962 case vmIntrinsics::_dtan: // fall through 2963 case vmIntrinsics::_dsin : // fall through 2964 case vmIntrinsics::_dcos : // fall through 2965 case vmIntrinsics::_dexp : // fall through 2966 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2967 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2968 2969 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2970 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2971 2972 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2973 case vmIntrinsics::_floatToFloat16: // fall through 2974 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 2975 2976 case vmIntrinsics::_Preconditions_checkIndex: 2977 do_PreconditionsCheckIndex(x, T_INT); 2978 break; 2979 case vmIntrinsics::_Preconditions_checkLongIndex: 2980 do_PreconditionsCheckIndex(x, T_LONG); 2981 break; 2982 2983 case vmIntrinsics::_compareAndSetReference: 2984 do_CompareAndSwap(x, objectType); 2985 break; 2986 case vmIntrinsics::_compareAndSetInt: 2987 do_CompareAndSwap(x, intType); 2988 break; 2989 case vmIntrinsics::_compareAndSetLong: 2990 do_CompareAndSwap(x, longType); 2991 break; 2992 2993 case vmIntrinsics::_loadFence : 2994 __ membar_acquire(); 2995 break; 2996 case vmIntrinsics::_storeFence: 2997 __ membar_release(); 2998 break; 2999 case vmIntrinsics::_storeStoreFence: 3000 __ membar_storestore(); 3001 break; 3002 case vmIntrinsics::_fullFence : 3003 __ membar(); 3004 break; 3005 case vmIntrinsics::_onSpinWait: 3006 __ on_spin_wait(); 3007 break; 3008 case vmIntrinsics::_Reference_get: 3009 do_Reference_get(x); 3010 break; 3011 3012 case vmIntrinsics::_updateCRC32: 3013 case vmIntrinsics::_updateBytesCRC32: 3014 case vmIntrinsics::_updateByteBufferCRC32: 3015 do_update_CRC32(x); 3016 break; 3017 3018 case vmIntrinsics::_updateBytesCRC32C: 3019 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3020 do_update_CRC32C(x); 3021 break; 3022 3023 case vmIntrinsics::_vectorizedMismatch: 3024 do_vectorizedMismatch(x); 3025 break; 3026 3027 case vmIntrinsics::_blackhole: 3028 do_blackhole(x); 3029 break; 3030 3031 default: ShouldNotReachHere(); break; 3032 } 3033 } 3034 3035 void LIRGenerator::profile_arguments(ProfileCall* x) { 3036 if (compilation()->profile_arguments()) { 3037 int bci = x->bci_of_invoke(); 3038 ciMethodData* md = x->method()->method_data_or_null(); 3039 assert(md != nullptr, "Sanity"); 3040 ciProfileData* data = md->bci_to_data(bci); 3041 if (data != nullptr) { 3042 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3043 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3044 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3045 int base_offset = md->byte_offset_of_slot(data, extra); 3046 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3047 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3048 3049 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3050 int start = 0; 3051 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3052 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3053 // first argument is not profiled at call (method handle invoke) 3054 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3055 start = 1; 3056 } 3057 ciSignature* callee_signature = x->callee()->signature(); 3058 // method handle call to virtual method 3059 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3060 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3061 3062 bool ignored_will_link; 3063 ciSignature* signature_at_call = nullptr; 3064 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3065 ciSignatureStream signature_at_call_stream(signature_at_call); 3066 3067 // if called through method handle invoke, some arguments may have been popped 3068 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3069 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3070 ciKlass* exact = profile_type(md, base_offset, off, 3071 args->type(i), x->profiled_arg_at(i+start), mdp, 3072 !x->arg_needs_null_check(i+start), 3073 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3074 if (exact != nullptr) { 3075 md->set_argument_type(bci, i, exact); 3076 } 3077 } 3078 } else { 3079 #ifdef ASSERT 3080 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3081 int n = x->nb_profiled_args(); 3082 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3083 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3084 "only at JSR292 bytecodes"); 3085 #endif 3086 } 3087 } 3088 } 3089 } 3090 3091 // profile parameters on entry to an inlined method 3092 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3093 if (compilation()->profile_parameters() && x->inlined()) { 3094 ciMethodData* md = x->callee()->method_data_or_null(); 3095 if (md != nullptr) { 3096 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3097 if (parameters_type_data != nullptr) { 3098 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3099 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3100 bool has_receiver = !x->callee()->is_static(); 3101 ciSignature* sig = x->callee()->signature(); 3102 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3103 int i = 0; // to iterate on the Instructions 3104 Value arg = x->recv(); 3105 bool not_null = false; 3106 int bci = x->bci_of_invoke(); 3107 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3108 // The first parameter is the receiver so that's what we start 3109 // with if it exists. One exception is method handle call to 3110 // virtual method: the receiver is in the args list 3111 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3112 i = 1; 3113 arg = x->profiled_arg_at(0); 3114 not_null = !x->arg_needs_null_check(0); 3115 } 3116 int k = 0; // to iterate on the profile data 3117 for (;;) { 3118 intptr_t profiled_k = parameters->type(k); 3119 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3120 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3121 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3122 // If the profile is known statically set it once for all and do not emit any code 3123 if (exact != nullptr) { 3124 md->set_parameter_type(k, exact); 3125 } 3126 k++; 3127 if (k >= parameters_type_data->number_of_parameters()) { 3128 #ifdef ASSERT 3129 int extra = 0; 3130 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3131 x->nb_profiled_args() >= TypeProfileParmsLimit && 3132 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3133 extra += 1; 3134 } 3135 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3136 #endif 3137 break; 3138 } 3139 arg = x->profiled_arg_at(i); 3140 not_null = !x->arg_needs_null_check(i); 3141 i++; 3142 } 3143 } 3144 } 3145 } 3146 } 3147 3148 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3149 // Need recv in a temporary register so it interferes with the other temporaries 3150 LIR_Opr recv = LIR_OprFact::illegalOpr; 3151 LIR_Opr mdo = new_register(T_METADATA); 3152 // tmp is used to hold the counters on SPARC 3153 LIR_Opr tmp = new_pointer_register(); 3154 3155 if (x->nb_profiled_args() > 0) { 3156 profile_arguments(x); 3157 } 3158 3159 // profile parameters on inlined method entry including receiver 3160 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3161 profile_parameters_at_call(x); 3162 } 3163 3164 if (x->recv() != nullptr) { 3165 LIRItem value(x->recv(), this); 3166 value.load_item(); 3167 recv = new_register(T_OBJECT); 3168 __ move(value.result(), recv); 3169 } 3170 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3171 } 3172 3173 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3174 int bci = x->bci_of_invoke(); 3175 ciMethodData* md = x->method()->method_data_or_null(); 3176 assert(md != nullptr, "Sanity"); 3177 ciProfileData* data = md->bci_to_data(bci); 3178 if (data != nullptr) { 3179 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3180 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3181 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3182 3183 bool ignored_will_link; 3184 ciSignature* signature_at_call = nullptr; 3185 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3186 3187 // The offset within the MDO of the entry to update may be too large 3188 // to be used in load/store instructions on some platforms. So have 3189 // profile_type() compute the address of the profile in a register. 3190 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3191 ret->type(), x->ret(), mdp, 3192 !x->needs_null_check(), 3193 signature_at_call->return_type()->as_klass(), 3194 x->callee()->signature()->return_type()->as_klass()); 3195 if (exact != nullptr) { 3196 md->set_return_type(bci, exact); 3197 } 3198 } 3199 } 3200 3201 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3202 // We can safely ignore accessors here, since c2 will inline them anyway, 3203 // accessors are also always mature. 3204 if (!x->inlinee()->is_accessor()) { 3205 CodeEmitInfo* info = state_for(x, x->state(), true); 3206 // Notify the runtime very infrequently only to take care of counter overflows 3207 int freq_log = Tier23InlineeNotifyFreqLog; 3208 double scale; 3209 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3210 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3211 } 3212 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3213 } 3214 } 3215 3216 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3217 if (compilation()->is_profiling()) { 3218 #if defined(X86) && !defined(_LP64) 3219 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3220 LIR_Opr left_copy = new_register(left->type()); 3221 __ move(left, left_copy); 3222 __ cmp(cond, left_copy, right); 3223 #else 3224 __ cmp(cond, left, right); 3225 #endif 3226 LIR_Opr step = new_register(T_INT); 3227 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3228 LIR_Opr zero = LIR_OprFact::intConst(0); 3229 __ cmove(cond, 3230 (left_bci < bci) ? plus_one : zero, 3231 (right_bci < bci) ? plus_one : zero, 3232 step, left->type()); 3233 increment_backedge_counter(info, step, bci); 3234 } 3235 } 3236 3237 3238 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3239 int freq_log = 0; 3240 int level = compilation()->env()->comp_level(); 3241 if (level == CompLevel_limited_profile) { 3242 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3243 } else if (level == CompLevel_full_profile) { 3244 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3245 } else { 3246 ShouldNotReachHere(); 3247 } 3248 // Increment the appropriate invocation/backedge counter and notify the runtime. 3249 double scale; 3250 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3251 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3252 } 3253 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3254 } 3255 3256 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3257 ciMethod *method, LIR_Opr step, int frequency, 3258 int bci, bool backedge, bool notify) { 3259 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3260 int level = _compilation->env()->comp_level(); 3261 assert(level > CompLevel_simple, "Shouldn't be here"); 3262 3263 int offset = -1; 3264 LIR_Opr counter_holder; 3265 if (level == CompLevel_limited_profile) { 3266 MethodCounters* counters_adr = method->ensure_method_counters(); 3267 if (counters_adr == nullptr) { 3268 bailout("method counters allocation failed"); 3269 return; 3270 } 3271 counter_holder = new_pointer_register(); 3272 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3273 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3274 MethodCounters::invocation_counter_offset()); 3275 } else if (level == CompLevel_full_profile) { 3276 counter_holder = new_register(T_METADATA); 3277 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3278 MethodData::invocation_counter_offset()); 3279 ciMethodData* md = method->method_data_or_null(); 3280 assert(md != nullptr, "Sanity"); 3281 __ metadata2reg(md->constant_encoding(), counter_holder); 3282 } else { 3283 ShouldNotReachHere(); 3284 } 3285 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3286 LIR_Opr result = new_register(T_INT); 3287 __ load(counter, result); 3288 __ add(result, step, result); 3289 __ store(result, counter); 3290 if (notify && (!backedge || UseOnStackReplacement)) { 3291 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3292 // The bci for info can point to cmp for if's we want the if bci 3293 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3294 int freq = frequency << InvocationCounter::count_shift; 3295 if (freq == 0) { 3296 if (!step->is_constant()) { 3297 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3298 __ branch(lir_cond_notEqual, overflow); 3299 } else { 3300 __ branch(lir_cond_always, overflow); 3301 } 3302 } else { 3303 LIR_Opr mask = load_immediate(freq, T_INT); 3304 if (!step->is_constant()) { 3305 // If step is 0, make sure the overflow check below always fails 3306 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3307 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3308 } 3309 __ logical_and(result, mask, result); 3310 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3311 __ branch(lir_cond_equal, overflow); 3312 } 3313 __ branch_destination(overflow->continuation()); 3314 } 3315 } 3316 3317 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3318 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3319 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3320 3321 if (x->pass_thread()) { 3322 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3323 args->append(getThreadPointer()); 3324 } 3325 3326 for (int i = 0; i < x->number_of_arguments(); i++) { 3327 Value a = x->argument_at(i); 3328 LIRItem* item = new LIRItem(a, this); 3329 item->load_item(); 3330 args->append(item->result()); 3331 signature->append(as_BasicType(a->type())); 3332 } 3333 3334 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3335 if (x->type() == voidType) { 3336 set_no_result(x); 3337 } else { 3338 __ move(result, rlock_result(x)); 3339 } 3340 } 3341 3342 #ifdef ASSERT 3343 void LIRGenerator::do_Assert(Assert *x) { 3344 ValueTag tag = x->x()->type()->tag(); 3345 If::Condition cond = x->cond(); 3346 3347 LIRItem xitem(x->x(), this); 3348 LIRItem yitem(x->y(), this); 3349 LIRItem* xin = &xitem; 3350 LIRItem* yin = &yitem; 3351 3352 assert(tag == intTag, "Only integer assertions are valid!"); 3353 3354 xin->load_item(); 3355 yin->dont_load_item(); 3356 3357 set_no_result(x); 3358 3359 LIR_Opr left = xin->result(); 3360 LIR_Opr right = yin->result(); 3361 3362 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3363 } 3364 #endif 3365 3366 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3367 3368 3369 Instruction *a = x->x(); 3370 Instruction *b = x->y(); 3371 if (!a || StressRangeCheckElimination) { 3372 assert(!b || StressRangeCheckElimination, "B must also be null"); 3373 3374 CodeEmitInfo *info = state_for(x, x->state()); 3375 CodeStub* stub = new PredicateFailedStub(info); 3376 3377 __ jump(stub); 3378 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3379 int a_int = a->type()->as_IntConstant()->value(); 3380 int b_int = b->type()->as_IntConstant()->value(); 3381 3382 bool ok = false; 3383 3384 switch(x->cond()) { 3385 case Instruction::eql: ok = (a_int == b_int); break; 3386 case Instruction::neq: ok = (a_int != b_int); break; 3387 case Instruction::lss: ok = (a_int < b_int); break; 3388 case Instruction::leq: ok = (a_int <= b_int); break; 3389 case Instruction::gtr: ok = (a_int > b_int); break; 3390 case Instruction::geq: ok = (a_int >= b_int); break; 3391 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3392 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3393 default: ShouldNotReachHere(); 3394 } 3395 3396 if (ok) { 3397 3398 CodeEmitInfo *info = state_for(x, x->state()); 3399 CodeStub* stub = new PredicateFailedStub(info); 3400 3401 __ jump(stub); 3402 } 3403 } else { 3404 3405 ValueTag tag = x->x()->type()->tag(); 3406 If::Condition cond = x->cond(); 3407 LIRItem xitem(x->x(), this); 3408 LIRItem yitem(x->y(), this); 3409 LIRItem* xin = &xitem; 3410 LIRItem* yin = &yitem; 3411 3412 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3413 3414 xin->load_item(); 3415 yin->dont_load_item(); 3416 set_no_result(x); 3417 3418 LIR_Opr left = xin->result(); 3419 LIR_Opr right = yin->result(); 3420 3421 CodeEmitInfo *info = state_for(x, x->state()); 3422 CodeStub* stub = new PredicateFailedStub(info); 3423 3424 __ cmp(lir_cond(cond), left, right); 3425 __ branch(lir_cond(cond), stub); 3426 } 3427 } 3428 3429 void LIRGenerator::do_blackhole(Intrinsic *x) { 3430 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3431 for (int c = 0; c < x->number_of_arguments(); c++) { 3432 // Load the argument 3433 LIRItem vitem(x->argument_at(c), this); 3434 vitem.load_item(); 3435 // ...and leave it unused. 3436 } 3437 } 3438 3439 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3440 LIRItemList args(1); 3441 LIRItem value(arg1, this); 3442 args.append(&value); 3443 BasicTypeList signature; 3444 signature.append(as_BasicType(arg1->type())); 3445 3446 return call_runtime(&signature, &args, entry, result_type, info); 3447 } 3448 3449 3450 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3451 LIRItemList args(2); 3452 LIRItem value1(arg1, this); 3453 LIRItem value2(arg2, this); 3454 args.append(&value1); 3455 args.append(&value2); 3456 BasicTypeList signature; 3457 signature.append(as_BasicType(arg1->type())); 3458 signature.append(as_BasicType(arg2->type())); 3459 3460 return call_runtime(&signature, &args, entry, result_type, info); 3461 } 3462 3463 3464 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3465 address entry, ValueType* result_type, CodeEmitInfo* info) { 3466 // get a result register 3467 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3468 LIR_Opr result = LIR_OprFact::illegalOpr; 3469 if (result_type->tag() != voidTag) { 3470 result = new_register(result_type); 3471 phys_reg = result_register_for(result_type); 3472 } 3473 3474 // move the arguments into the correct location 3475 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3476 assert(cc->length() == args->length(), "argument mismatch"); 3477 for (int i = 0; i < args->length(); i++) { 3478 LIR_Opr arg = args->at(i); 3479 LIR_Opr loc = cc->at(i); 3480 if (loc->is_register()) { 3481 __ move(arg, loc); 3482 } else { 3483 LIR_Address* addr = loc->as_address_ptr(); 3484 // if (!can_store_as_constant(arg)) { 3485 // LIR_Opr tmp = new_register(arg->type()); 3486 // __ move(arg, tmp); 3487 // arg = tmp; 3488 // } 3489 __ move(arg, addr); 3490 } 3491 } 3492 3493 if (info) { 3494 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3495 } else { 3496 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3497 } 3498 if (result->is_valid()) { 3499 __ move(phys_reg, result); 3500 } 3501 return result; 3502 } 3503 3504 3505 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3506 address entry, ValueType* result_type, CodeEmitInfo* info) { 3507 // get a result register 3508 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3509 LIR_Opr result = LIR_OprFact::illegalOpr; 3510 if (result_type->tag() != voidTag) { 3511 result = new_register(result_type); 3512 phys_reg = result_register_for(result_type); 3513 } 3514 3515 // move the arguments into the correct location 3516 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3517 3518 assert(cc->length() == args->length(), "argument mismatch"); 3519 for (int i = 0; i < args->length(); i++) { 3520 LIRItem* arg = args->at(i); 3521 LIR_Opr loc = cc->at(i); 3522 if (loc->is_register()) { 3523 arg->load_item_force(loc); 3524 } else { 3525 LIR_Address* addr = loc->as_address_ptr(); 3526 arg->load_for_store(addr->type()); 3527 __ move(arg->result(), addr); 3528 } 3529 } 3530 3531 if (info) { 3532 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3533 } else { 3534 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3535 } 3536 if (result->is_valid()) { 3537 __ move(phys_reg, result); 3538 } 3539 return result; 3540 } 3541 3542 void LIRGenerator::do_MemBar(MemBar* x) { 3543 LIR_Code code = x->code(); 3544 switch(code) { 3545 case lir_membar_acquire : __ membar_acquire(); break; 3546 case lir_membar_release : __ membar_release(); break; 3547 case lir_membar : __ membar(); break; 3548 case lir_membar_loadload : __ membar_loadload(); break; 3549 case lir_membar_storestore: __ membar_storestore(); break; 3550 case lir_membar_loadstore : __ membar_loadstore(); break; 3551 case lir_membar_storeload : __ membar_storeload(); break; 3552 default : ShouldNotReachHere(); break; 3553 } 3554 } 3555 3556 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3557 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3558 if (two_operand_lir_form) { 3559 __ move(value, value_fixed); 3560 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3561 } else { 3562 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3563 } 3564 LIR_Opr klass = new_register(T_METADATA); 3565 load_klass(array, klass, null_check_info); 3566 null_check_info = nullptr; 3567 LIR_Opr layout = new_register(T_INT); 3568 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3569 int diffbit = Klass::layout_helper_boolean_diffbit(); 3570 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3571 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3572 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3573 value = value_fixed; 3574 return value; 3575 }