1 /*
2 * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "c1/c1_Compilation.hpp"
27 #include "c1/c1_Defs.hpp"
28 #include "c1/c1_FrameMap.hpp"
29 #include "c1/c1_Instruction.hpp"
30 #include "c1/c1_LIRAssembler.hpp"
31 #include "c1/c1_LIRGenerator.hpp"
32 #include "c1/c1_ValueStack.hpp"
33 #include "ci/ciArrayKlass.hpp"
34 #include "ci/ciInstance.hpp"
35 #include "ci/ciObjArray.hpp"
36 #include "ci/ciUtilities.hpp"
37 #include "compiler/compilerDefinitions.inline.hpp"
38 #include "gc/shared/barrierSet.hpp"
39 #include "gc/shared/c1/barrierSetC1.hpp"
40 #include "oops/klass.inline.hpp"
41 #include "runtime/sharedRuntime.hpp"
42 #include "runtime/stubRoutines.hpp"
43 #include "runtime/vm_version.hpp"
44 #include "utilities/bitMap.inline.hpp"
45 #include "utilities/macros.hpp"
46 #include "utilities/powerOfTwo.hpp"
47
48 #ifdef ASSERT
49 #define __ gen()->lir(__FILE__, __LINE__)->
50 #else
51 #define __ gen()->lir()->
52 #endif
53
54 #ifndef PATCHED_ADDR
55 #define PATCHED_ADDR (max_jint)
56 #endif
57
58 void PhiResolverState::reset() {
59 _virtual_operands.clear();
60 _other_operands.clear();
61 _vreg_table.clear();
62 }
63
64
65 //--------------------------------------------------------------
66 // PhiResolver
67
68 // Resolves cycles:
69 //
70 // r1 := r2 becomes temp := r1
71 // r2 := r1 r1 := r2
72 // r2 := temp
73 // and orders moves:
74 //
75 // r2 := r3 becomes r1 := r2
76 // r1 := r2 r2 := r3
77
78 PhiResolver::PhiResolver(LIRGenerator* gen)
79 : _gen(gen)
80 , _state(gen->resolver_state())
81 , _loop(nullptr)
82 , _temp(LIR_OprFact::illegalOpr)
83 {
84 // reinitialize the shared state arrays
85 _state.reset();
86 }
87
88
89 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
90 assert(src->is_valid(), "");
91 assert(dest->is_valid(), "");
92 __ move(src, dest);
93 }
94
95
96 void PhiResolver::move_temp_to(LIR_Opr dest) {
97 assert(_temp->is_valid(), "");
98 emit_move(_temp, dest);
99 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
100 }
101
102
103 void PhiResolver::move_to_temp(LIR_Opr src) {
104 assert(_temp->is_illegal(), "");
105 _temp = _gen->new_register(src->type());
106 emit_move(src, _temp);
107 }
108
109
110 // Traverse assignment graph in depth first order and generate moves in post order
111 // ie. two assignments: b := c, a := b start with node c:
112 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
113 // Generates moves in this order: move b to a and move c to b
114 // ie. cycle a := b, b := a start with node a
115 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
116 // Generates moves in this order: move b to temp, move a to b, move temp to a
117 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
118 if (!dest->visited()) {
119 dest->set_visited();
120 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
121 move(dest, dest->destination_at(i));
122 }
123 } else if (!dest->start_node()) {
124 // cylce in graph detected
125 assert(_loop == nullptr, "only one loop valid!");
126 _loop = dest;
127 move_to_temp(src->operand());
128 return;
129 } // else dest is a start node
130
131 if (!dest->assigned()) {
132 if (_loop == dest) {
133 move_temp_to(dest->operand());
134 dest->set_assigned();
135 } else if (src != nullptr) {
136 emit_move(src->operand(), dest->operand());
137 dest->set_assigned();
138 }
139 }
140 }
141
142
143 PhiResolver::~PhiResolver() {
144 int i;
145 // resolve any cycles in moves from and to virtual registers
146 for (i = virtual_operands().length() - 1; i >= 0; i --) {
147 ResolveNode* node = virtual_operands().at(i);
148 if (!node->visited()) {
149 _loop = nullptr;
150 move(nullptr, node);
151 node->set_start_node();
152 assert(_temp->is_illegal(), "move_temp_to() call missing");
153 }
154 }
155
156 // generate move for move from non virtual register to abitrary destination
157 for (i = other_operands().length() - 1; i >= 0; i --) {
158 ResolveNode* node = other_operands().at(i);
159 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
160 emit_move(node->operand(), node->destination_at(j)->operand());
161 }
162 }
163 }
164
165
166 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
167 ResolveNode* node;
168 if (opr->is_virtual()) {
169 int vreg_num = opr->vreg_number();
170 node = vreg_table().at_grow(vreg_num, nullptr);
171 assert(node == nullptr || node->operand() == opr, "");
172 if (node == nullptr) {
173 node = new ResolveNode(opr);
174 vreg_table().at_put(vreg_num, node);
175 }
176 // Make sure that all virtual operands show up in the list when
177 // they are used as the source of a move.
178 if (source && !virtual_operands().contains(node)) {
179 virtual_operands().append(node);
180 }
181 } else {
182 assert(source, "");
183 node = new ResolveNode(opr);
184 other_operands().append(node);
185 }
186 return node;
187 }
188
189
190 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
191 assert(dest->is_virtual(), "");
192 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
193 assert(src->is_valid(), "");
194 assert(dest->is_valid(), "");
195 ResolveNode* source = source_node(src);
196 source->append(destination_node(dest));
197 }
198
199
200 //--------------------------------------------------------------
201 // LIRItem
202
203 void LIRItem::set_result(LIR_Opr opr) {
204 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
205 value()->set_operand(opr);
206
207 if (opr->is_virtual()) {
208 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
209 }
210
211 _result = opr;
212 }
213
214 void LIRItem::load_item() {
215 if (result()->is_illegal()) {
216 // update the items result
217 _result = value()->operand();
218 }
219 if (!result()->is_register()) {
220 LIR_Opr reg = _gen->new_register(value()->type());
221 __ move(result(), reg);
222 if (result()->is_constant()) {
223 _result = reg;
224 } else {
225 set_result(reg);
226 }
227 }
228 }
229
230
231 void LIRItem::load_for_store(BasicType type) {
232 if (_gen->can_store_as_constant(value(), type)) {
233 _result = value()->operand();
234 if (!_result->is_constant()) {
235 _result = LIR_OprFact::value_type(value()->type());
236 }
237 } else if (type == T_BYTE || type == T_BOOLEAN) {
238 load_byte_item();
239 } else {
240 load_item();
241 }
242 }
243
244 void LIRItem::load_item_force(LIR_Opr reg) {
245 LIR_Opr r = result();
246 if (r != reg) {
247 #if !defined(ARM) && !defined(E500V2)
248 if (r->type() != reg->type()) {
249 // moves between different types need an intervening spill slot
250 r = _gen->force_to_spill(r, reg->type());
251 }
252 #endif
253 __ move(r, reg);
254 _result = reg;
255 }
256 }
257
258 ciObject* LIRItem::get_jobject_constant() const {
259 ObjectType* oc = type()->as_ObjectType();
260 if (oc) {
261 return oc->constant_value();
262 }
263 return nullptr;
264 }
265
266
267 jint LIRItem::get_jint_constant() const {
268 assert(is_constant() && value() != nullptr, "");
269 assert(type()->as_IntConstant() != nullptr, "type check");
270 return type()->as_IntConstant()->value();
271 }
272
273
274 jint LIRItem::get_address_constant() const {
275 assert(is_constant() && value() != nullptr, "");
276 assert(type()->as_AddressConstant() != nullptr, "type check");
277 return type()->as_AddressConstant()->value();
278 }
279
280
281 jfloat LIRItem::get_jfloat_constant() const {
282 assert(is_constant() && value() != nullptr, "");
283 assert(type()->as_FloatConstant() != nullptr, "type check");
284 return type()->as_FloatConstant()->value();
285 }
286
287
288 jdouble LIRItem::get_jdouble_constant() const {
289 assert(is_constant() && value() != nullptr, "");
290 assert(type()->as_DoubleConstant() != nullptr, "type check");
291 return type()->as_DoubleConstant()->value();
292 }
293
294
295 jlong LIRItem::get_jlong_constant() const {
296 assert(is_constant() && value() != nullptr, "");
297 assert(type()->as_LongConstant() != nullptr, "type check");
298 return type()->as_LongConstant()->value();
299 }
300
301
302
303 //--------------------------------------------------------------
304
305
306 void LIRGenerator::block_do_prolog(BlockBegin* block) {
307 #ifndef PRODUCT
308 if (PrintIRWithLIR) {
309 block->print();
310 }
311 #endif
312
313 // set up the list of LIR instructions
314 assert(block->lir() == nullptr, "LIR list already computed for this block");
315 _lir = new LIR_List(compilation(), block);
316 block->set_lir(_lir);
317
318 __ branch_destination(block->label());
319
320 if (LIRTraceExecution &&
321 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
322 !block->is_set(BlockBegin::exception_entry_flag)) {
323 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
324 trace_block_entry(block);
325 }
326 }
327
328
329 void LIRGenerator::block_do_epilog(BlockBegin* block) {
330 #ifndef PRODUCT
331 if (PrintIRWithLIR) {
332 tty->cr();
333 }
334 #endif
335
336 // LIR_Opr for unpinned constants shouldn't be referenced by other
337 // blocks so clear them out after processing the block.
338 for (int i = 0; i < _unpinned_constants.length(); i++) {
339 _unpinned_constants.at(i)->clear_operand();
340 }
341 _unpinned_constants.trunc_to(0);
342
343 // clear our any registers for other local constants
344 _constants.trunc_to(0);
345 _reg_for_constants.trunc_to(0);
346 }
347
348
349 void LIRGenerator::block_do(BlockBegin* block) {
350 CHECK_BAILOUT();
351
352 block_do_prolog(block);
353 set_block(block);
354
355 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
356 if (instr->is_pinned()) do_root(instr);
357 }
358
359 set_block(nullptr);
360 block_do_epilog(block);
361 }
362
363
364 //-------------------------LIRGenerator-----------------------------
365
366 // This is where the tree-walk starts; instr must be root;
367 void LIRGenerator::do_root(Value instr) {
368 CHECK_BAILOUT();
369
370 InstructionMark im(compilation(), instr);
371
372 assert(instr->is_pinned(), "use only with roots");
373 assert(instr->subst() == instr, "shouldn't have missed substitution");
374
375 instr->visit(this);
376
377 assert(!instr->has_uses() || instr->operand()->is_valid() ||
378 instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
379 }
380
381
382 // This is called for each node in tree; the walk stops if a root is reached
383 void LIRGenerator::walk(Value instr) {
384 InstructionMark im(compilation(), instr);
385 //stop walk when encounter a root
386 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
387 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
388 } else {
389 assert(instr->subst() == instr, "shouldn't have missed substitution");
390 instr->visit(this);
391 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
392 }
393 }
394
395
396 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
397 assert(state != nullptr, "state must be defined");
398
399 #ifndef PRODUCT
400 state->verify();
401 #endif
402
403 ValueStack* s = state;
404 for_each_state(s) {
405 if (s->kind() == ValueStack::EmptyExceptionState) {
406 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
407 continue;
408 }
409
410 int index;
411 Value value;
412 for_each_stack_value(s, index, value) {
413 assert(value->subst() == value, "missed substitution");
414 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
415 walk(value);
416 assert(value->operand()->is_valid(), "must be evaluated now");
417 }
418 }
419
420 int bci = s->bci();
421 IRScope* scope = s->scope();
422 ciMethod* method = scope->method();
423
424 MethodLivenessResult liveness = method->liveness_at_bci(bci);
425 if (bci == SynchronizationEntryBCI) {
426 if (x->as_ExceptionObject() || x->as_Throw()) {
427 // all locals are dead on exit from the synthetic unlocker
428 liveness.clear();
429 } else {
430 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
431 }
432 }
433 if (!liveness.is_valid()) {
434 // Degenerate or breakpointed method.
435 bailout("Degenerate or breakpointed method");
436 } else {
437 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
438 for_each_local_value(s, index, value) {
439 assert(value->subst() == value, "missed substitution");
440 if (liveness.at(index) && !value->type()->is_illegal()) {
441 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
442 walk(value);
443 assert(value->operand()->is_valid(), "must be evaluated now");
444 }
445 } else {
446 // null out this local so that linear scan can assume that all non-null values are live.
447 s->invalidate_local(index);
448 }
449 }
450 }
451 }
452
453 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
454 }
455
456
457 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
458 return state_for(x, x->exception_state());
459 }
460
461
462 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
463 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
464 * is active and the class hasn't yet been resolved we need to emit a patch that resolves
465 * the class. */
466 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
467 assert(info != nullptr, "info must be set if class is not loaded");
468 __ klass2reg_patch(nullptr, r, info);
469 } else {
470 // no patching needed
471 __ metadata2reg(obj->constant_encoding(), r);
472 }
473 }
474
475
476 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
477 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
478 CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
479 if (index->is_constant()) {
480 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
481 index->as_jint(), null_check_info);
482 __ branch(lir_cond_belowEqual, stub); // forward branch
483 } else {
484 cmp_reg_mem(lir_cond_aboveEqual, index, array,
485 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
486 __ branch(lir_cond_aboveEqual, stub); // forward branch
487 }
488 }
489
490 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
491 LIR_Opr result_op = result;
492 LIR_Opr left_op = left;
493 LIR_Opr right_op = right;
494
495 if (two_operand_lir_form && left_op != result_op) {
496 assert(right_op != result_op, "malformed");
497 __ move(left_op, result_op);
498 left_op = result_op;
499 }
500
501 switch(code) {
502 case Bytecodes::_dadd:
503 case Bytecodes::_fadd:
504 case Bytecodes::_ladd:
505 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
506 case Bytecodes::_fmul:
507 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
508
509 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break;
510
511 case Bytecodes::_imul:
512 {
513 bool did_strength_reduce = false;
514
515 if (right->is_constant()) {
516 jint c = right->as_jint();
517 if (c > 0 && is_power_of_2(c)) {
518 // do not need tmp here
519 __ shift_left(left_op, exact_log2(c), result_op);
520 did_strength_reduce = true;
521 } else {
522 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
523 }
524 }
525 // we couldn't strength reduce so just emit the multiply
526 if (!did_strength_reduce) {
527 __ mul(left_op, right_op, result_op);
528 }
529 }
530 break;
531
532 case Bytecodes::_dsub:
533 case Bytecodes::_fsub:
534 case Bytecodes::_lsub:
535 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
536
537 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
538 // ldiv and lrem are implemented with a direct runtime call
539
540 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
541
542 case Bytecodes::_drem:
543 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
544
545 default: ShouldNotReachHere();
546 }
547 }
548
549
550 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
551 arithmetic_op(code, result, left, right, tmp);
552 }
553
554
555 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
556 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
557 }
558
559
560 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
561 arithmetic_op(code, result, left, right, tmp);
562 }
563
564
565 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
566
567 if (two_operand_lir_form && value != result_op
568 // Only 32bit right shifts require two operand form on S390.
569 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
570 assert(count != result_op, "malformed");
571 __ move(value, result_op);
572 value = result_op;
573 }
574
575 assert(count->is_constant() || count->is_register(), "must be");
576 switch(code) {
577 case Bytecodes::_ishl:
578 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
579 case Bytecodes::_ishr:
580 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
581 case Bytecodes::_iushr:
582 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
583 default: ShouldNotReachHere();
584 }
585 }
586
587
588 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
589 if (two_operand_lir_form && left_op != result_op) {
590 assert(right_op != result_op, "malformed");
591 __ move(left_op, result_op);
592 left_op = result_op;
593 }
594
595 switch(code) {
596 case Bytecodes::_iand:
597 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
598
599 case Bytecodes::_ior:
600 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
601
602 case Bytecodes::_ixor:
603 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
604
605 default: ShouldNotReachHere();
606 }
607 }
608
609
610 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
611 if (!GenerateSynchronizationCode) return;
612 // for slow path, use debug info for state after successful locking
613 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
614 __ load_stack_address_monitor(monitor_no, lock);
615 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
616 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
617 }
618
619
620 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
621 if (!GenerateSynchronizationCode) return;
622 // setup registers
623 LIR_Opr hdr = lock;
624 lock = new_hdr;
625 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
626 __ load_stack_address_monitor(monitor_no, lock);
627 __ unlock_object(hdr, object, lock, scratch, slow_path);
628 }
629
630 #ifndef PRODUCT
631 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
632 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
633 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
634 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
635 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
636 }
637 }
638 #endif
639
640 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
641 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
642 // If klass is not loaded we do not know if the klass has finalizers:
643 if (UseFastNewInstance && klass->is_loaded()
644 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
645
646 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
647
648 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
649
650 assert(klass->is_loaded(), "must be loaded");
651 // allocate space for instance
652 assert(klass->size_helper() > 0, "illegal instance size");
653 const int instance_size = align_object_size(klass->size_helper());
654 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
655 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
656 } else {
657 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
658 __ branch(lir_cond_always, slow_path);
659 __ branch_destination(slow_path->continuation());
660 }
661 }
662
663
664 static bool is_constant_zero(Instruction* inst) {
665 IntConstant* c = inst->type()->as_IntConstant();
666 if (c) {
667 return (c->value() == 0);
668 }
669 return false;
670 }
671
672
673 static bool positive_constant(Instruction* inst) {
674 IntConstant* c = inst->type()->as_IntConstant();
675 if (c) {
676 return (c->value() >= 0);
677 }
678 return false;
679 }
680
681
682 static ciArrayKlass* as_array_klass(ciType* type) {
683 if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
684 return (ciArrayKlass*)type;
685 } else {
686 return nullptr;
687 }
688 }
689
690 static ciType* phi_declared_type(Phi* phi) {
691 ciType* t = phi->operand_at(0)->declared_type();
692 if (t == nullptr) {
693 return nullptr;
694 }
695 for(int i = 1; i < phi->operand_count(); i++) {
696 if (t != phi->operand_at(i)->declared_type()) {
697 return nullptr;
698 }
699 }
700 return t;
701 }
702
703 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
704 Instruction* src = x->argument_at(0);
705 Instruction* src_pos = x->argument_at(1);
706 Instruction* dst = x->argument_at(2);
707 Instruction* dst_pos = x->argument_at(3);
708 Instruction* length = x->argument_at(4);
709
710 // first try to identify the likely type of the arrays involved
711 ciArrayKlass* expected_type = nullptr;
712 bool is_exact = false, src_objarray = false, dst_objarray = false;
713 {
714 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
715 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
716 Phi* phi;
717 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
718 src_declared_type = as_array_klass(phi_declared_type(phi));
719 }
720 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
721 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
722 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
723 dst_declared_type = as_array_klass(phi_declared_type(phi));
724 }
725
726 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
727 // the types exactly match so the type is fully known
728 is_exact = true;
729 expected_type = src_exact_type;
730 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
731 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
732 ciArrayKlass* src_type = nullptr;
733 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
734 src_type = (ciArrayKlass*) src_exact_type;
735 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
736 src_type = (ciArrayKlass*) src_declared_type;
737 }
738 if (src_type != nullptr) {
739 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
740 is_exact = true;
741 expected_type = dst_type;
742 }
743 }
744 }
745 // at least pass along a good guess
746 if (expected_type == nullptr) expected_type = dst_exact_type;
747 if (expected_type == nullptr) expected_type = src_declared_type;
748 if (expected_type == nullptr) expected_type = dst_declared_type;
749
750 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
751 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
752 }
753
754 // if a probable array type has been identified, figure out if any
755 // of the required checks for a fast case can be elided.
756 int flags = LIR_OpArrayCopy::all_flags;
757
758 if (!src_objarray)
759 flags &= ~LIR_OpArrayCopy::src_objarray;
760 if (!dst_objarray)
761 flags &= ~LIR_OpArrayCopy::dst_objarray;
762
763 if (!x->arg_needs_null_check(0))
764 flags &= ~LIR_OpArrayCopy::src_null_check;
765 if (!x->arg_needs_null_check(2))
766 flags &= ~LIR_OpArrayCopy::dst_null_check;
767
768
769 if (expected_type != nullptr) {
770 Value length_limit = nullptr;
771
772 IfOp* ifop = length->as_IfOp();
773 if (ifop != nullptr) {
774 // look for expressions like min(v, a.length) which ends up as
775 // x > y ? y : x or x >= y ? y : x
776 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
777 ifop->x() == ifop->fval() &&
778 ifop->y() == ifop->tval()) {
779 length_limit = ifop->y();
780 }
781 }
782
783 // try to skip null checks and range checks
784 NewArray* src_array = src->as_NewArray();
785 if (src_array != nullptr) {
786 flags &= ~LIR_OpArrayCopy::src_null_check;
787 if (length_limit != nullptr &&
788 src_array->length() == length_limit &&
789 is_constant_zero(src_pos)) {
790 flags &= ~LIR_OpArrayCopy::src_range_check;
791 }
792 }
793
794 NewArray* dst_array = dst->as_NewArray();
795 if (dst_array != nullptr) {
796 flags &= ~LIR_OpArrayCopy::dst_null_check;
797 if (length_limit != nullptr &&
798 dst_array->length() == length_limit &&
799 is_constant_zero(dst_pos)) {
800 flags &= ~LIR_OpArrayCopy::dst_range_check;
801 }
802 }
803
804 // check from incoming constant values
805 if (positive_constant(src_pos))
806 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
807 if (positive_constant(dst_pos))
808 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
809 if (positive_constant(length))
810 flags &= ~LIR_OpArrayCopy::length_positive_check;
811
812 // see if the range check can be elided, which might also imply
813 // that src or dst is non-null.
814 ArrayLength* al = length->as_ArrayLength();
815 if (al != nullptr) {
816 if (al->array() == src) {
817 // it's the length of the source array
818 flags &= ~LIR_OpArrayCopy::length_positive_check;
819 flags &= ~LIR_OpArrayCopy::src_null_check;
820 if (is_constant_zero(src_pos))
821 flags &= ~LIR_OpArrayCopy::src_range_check;
822 }
823 if (al->array() == dst) {
824 // it's the length of the destination array
825 flags &= ~LIR_OpArrayCopy::length_positive_check;
826 flags &= ~LIR_OpArrayCopy::dst_null_check;
827 if (is_constant_zero(dst_pos))
828 flags &= ~LIR_OpArrayCopy::dst_range_check;
829 }
830 }
831 if (is_exact) {
832 flags &= ~LIR_OpArrayCopy::type_check;
833 }
834 }
835
836 IntConstant* src_int = src_pos->type()->as_IntConstant();
837 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
838 if (src_int && dst_int) {
839 int s_offs = src_int->value();
840 int d_offs = dst_int->value();
841 if (src_int->value() >= dst_int->value()) {
842 flags &= ~LIR_OpArrayCopy::overlapping;
843 }
844 if (expected_type != nullptr) {
845 BasicType t = expected_type->element_type()->basic_type();
846 int element_size = type2aelembytes(t);
847 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
848 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
849 flags &= ~LIR_OpArrayCopy::unaligned;
850 }
851 }
852 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
853 // src and dest positions are the same, or dst is zero so assume
854 // nonoverlapping copy.
855 flags &= ~LIR_OpArrayCopy::overlapping;
856 }
857
858 if (src == dst) {
859 // moving within a single array so no type checks are needed
860 if (flags & LIR_OpArrayCopy::type_check) {
861 flags &= ~LIR_OpArrayCopy::type_check;
862 }
863 }
864 *flagsp = flags;
865 *expected_typep = (ciArrayKlass*)expected_type;
866 }
867
868
869 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
870 assert(opr->is_register(), "why spill if item is not register?");
871
872 if (strict_fp_requires_explicit_rounding) {
873 #ifdef IA32
874 if (UseSSE < 1 && opr->is_single_fpu()) {
875 LIR_Opr result = new_register(T_FLOAT);
876 set_vreg_flag(result, must_start_in_memory);
877 assert(opr->is_register(), "only a register can be spilled");
878 assert(opr->value_type()->is_float(), "rounding only for floats available");
879 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
880 return result;
881 }
882 #else
883 Unimplemented();
884 #endif // IA32
885 }
886 return opr;
887 }
888
889
890 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
891 assert(type2size[t] == type2size[value->type()],
892 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
893 if (!value->is_register()) {
894 // force into a register
895 LIR_Opr r = new_register(value->type());
896 __ move(value, r);
897 value = r;
898 }
899
900 // create a spill location
901 LIR_Opr tmp = new_register(t);
902 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
903
904 // move from register to spill
905 __ move(value, tmp);
906 return tmp;
907 }
908
909 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
910 if (if_instr->should_profile()) {
911 ciMethod* method = if_instr->profiled_method();
912 assert(method != nullptr, "method should be set if branch is profiled");
913 ciMethodData* md = method->method_data_or_null();
914 assert(md != nullptr, "Sanity");
915 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
916 assert(data != nullptr, "must have profiling data");
917 assert(data->is_BranchData(), "need BranchData for two-way branches");
918 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
919 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
920 if (if_instr->is_swapped()) {
921 int t = taken_count_offset;
922 taken_count_offset = not_taken_count_offset;
923 not_taken_count_offset = t;
924 }
925
926 LIR_Opr md_reg = new_register(T_METADATA);
927 __ metadata2reg(md->constant_encoding(), md_reg);
928
929 LIR_Opr data_offset_reg = new_pointer_register();
930 __ cmove(lir_cond(cond),
931 LIR_OprFact::intptrConst(taken_count_offset),
932 LIR_OprFact::intptrConst(not_taken_count_offset),
933 data_offset_reg, as_BasicType(if_instr->x()->type()));
934
935 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
936 LIR_Opr data_reg = new_pointer_register();
937 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
938 __ move(data_addr, data_reg);
939 // Use leal instead of add to avoid destroying condition codes on x86
940 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
941 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
942 __ move(data_reg, data_addr);
943 }
944 }
945
946 // Phi technique:
947 // This is about passing live values from one basic block to the other.
948 // In code generated with Java it is rather rare that more than one
949 // value is on the stack from one basic block to the other.
950 // We optimize our technique for efficient passing of one value
951 // (of type long, int, double..) but it can be extended.
952 // When entering or leaving a basic block, all registers and all spill
953 // slots are release and empty. We use the released registers
954 // and spill slots to pass the live values from one block
955 // to the other. The topmost value, i.e., the value on TOS of expression
956 // stack is passed in registers. All other values are stored in spilling
957 // area. Every Phi has an index which designates its spill slot
958 // At exit of a basic block, we fill the register(s) and spill slots.
959 // At entry of a basic block, the block_prolog sets up the content of phi nodes
960 // and locks necessary registers and spilling slots.
961
962
963 // move current value to referenced phi function
964 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
965 Phi* phi = sux_val->as_Phi();
966 // cur_val can be null without phi being null in conjunction with inlining
967 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
968 if (phi->is_local()) {
969 for (int i = 0; i < phi->operand_count(); i++) {
970 Value op = phi->operand_at(i);
971 if (op != nullptr && op->type()->is_illegal()) {
972 bailout("illegal phi operand");
973 }
974 }
975 }
976 Phi* cur_phi = cur_val->as_Phi();
977 if (cur_phi != nullptr && cur_phi->is_illegal()) {
978 // Phi and local would need to get invalidated
979 // (which is unexpected for Linear Scan).
980 // But this case is very rare so we simply bail out.
981 bailout("propagation of illegal phi");
982 return;
983 }
984 LIR_Opr operand = cur_val->operand();
985 if (operand->is_illegal()) {
986 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
987 "these can be produced lazily");
988 operand = operand_for_instruction(cur_val);
989 }
990 resolver->move(operand, operand_for_instruction(phi));
991 }
992 }
993
994
995 // Moves all stack values into their PHI position
996 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
997 BlockBegin* bb = block();
998 if (bb->number_of_sux() == 1) {
999 BlockBegin* sux = bb->sux_at(0);
1000 assert(sux->number_of_preds() > 0, "invalid CFG");
1001
1002 // a block with only one predecessor never has phi functions
1003 if (sux->number_of_preds() > 1) {
1004 PhiResolver resolver(this);
1005
1006 ValueStack* sux_state = sux->state();
1007 Value sux_value;
1008 int index;
1009
1010 assert(cur_state->scope() == sux_state->scope(), "not matching");
1011 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1012 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1013
1014 for_each_stack_value(sux_state, index, sux_value) {
1015 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1016 }
1017
1018 for_each_local_value(sux_state, index, sux_value) {
1019 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1020 }
1021
1022 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1023 }
1024 }
1025 }
1026
1027
1028 LIR_Opr LIRGenerator::new_register(BasicType type) {
1029 int vreg_num = _virtual_register_number;
1030 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1031 // a few extra registers before we really run out which helps to avoid to trip over assertions.
1032 if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1033 bailout("out of virtual registers in LIR generator");
1034 if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1035 // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1036 _virtual_register_number = LIR_Opr::vreg_base;
1037 vreg_num = LIR_Opr::vreg_base;
1038 }
1039 }
1040 _virtual_register_number += 1;
1041 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1042 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1043 return vreg;
1044 }
1045
1046
1047 // Try to lock using register in hint
1048 LIR_Opr LIRGenerator::rlock(Value instr) {
1049 return new_register(instr->type());
1050 }
1051
1052
1053 // does an rlock and sets result
1054 LIR_Opr LIRGenerator::rlock_result(Value x) {
1055 LIR_Opr reg = rlock(x);
1056 set_result(x, reg);
1057 return reg;
1058 }
1059
1060
1061 // does an rlock and sets result
1062 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1063 LIR_Opr reg;
1064 switch (type) {
1065 case T_BYTE:
1066 case T_BOOLEAN:
1067 reg = rlock_byte(type);
1068 break;
1069 default:
1070 reg = rlock(x);
1071 break;
1072 }
1073
1074 set_result(x, reg);
1075 return reg;
1076 }
1077
1078
1079 //---------------------------------------------------------------------
1080 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1081 ObjectType* oc = value->type()->as_ObjectType();
1082 if (oc) {
1083 return oc->constant_value();
1084 }
1085 return nullptr;
1086 }
1087
1088
1089 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1090 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1091 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1092
1093 // no moves are created for phi functions at the begin of exception
1094 // handlers, so assign operands manually here
1095 for_each_phi_fun(block(), phi,
1096 if (!phi->is_illegal()) { operand_for_instruction(phi); });
1097
1098 LIR_Opr thread_reg = getThreadPointer();
1099 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1100 exceptionOopOpr());
1101 __ move_wide(LIR_OprFact::oopConst(nullptr),
1102 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1103 __ move_wide(LIR_OprFact::oopConst(nullptr),
1104 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1105
1106 LIR_Opr result = new_register(T_OBJECT);
1107 __ move(exceptionOopOpr(), result);
1108 set_result(x, result);
1109 }
1110
1111
1112 //----------------------------------------------------------------------
1113 //----------------------------------------------------------------------
1114 //----------------------------------------------------------------------
1115 //----------------------------------------------------------------------
1116 // visitor functions
1117 //----------------------------------------------------------------------
1118 //----------------------------------------------------------------------
1119 //----------------------------------------------------------------------
1120 //----------------------------------------------------------------------
1121
1122 void LIRGenerator::do_Phi(Phi* x) {
1123 // phi functions are never visited directly
1124 ShouldNotReachHere();
1125 }
1126
1127
1128 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1129 void LIRGenerator::do_Constant(Constant* x) {
1130 if (x->state_before() != nullptr) {
1131 // Any constant with a ValueStack requires patching so emit the patch here
1132 LIR_Opr reg = rlock_result(x);
1133 CodeEmitInfo* info = state_for(x, x->state_before());
1134 __ oop2reg_patch(nullptr, reg, info);
1135 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1136 if (!x->is_pinned()) {
1137 // unpinned constants are handled specially so that they can be
1138 // put into registers when they are used multiple times within a
1139 // block. After the block completes their operand will be
1140 // cleared so that other blocks can't refer to that register.
1141 set_result(x, load_constant(x));
1142 } else {
1143 LIR_Opr res = x->operand();
1144 if (!res->is_valid()) {
1145 res = LIR_OprFact::value_type(x->type());
1146 }
1147 if (res->is_constant()) {
1148 LIR_Opr reg = rlock_result(x);
1149 __ move(res, reg);
1150 } else {
1151 set_result(x, res);
1152 }
1153 }
1154 } else {
1155 set_result(x, LIR_OprFact::value_type(x->type()));
1156 }
1157 }
1158
1159
1160 void LIRGenerator::do_Local(Local* x) {
1161 // operand_for_instruction has the side effect of setting the result
1162 // so there's no need to do it here.
1163 operand_for_instruction(x);
1164 }
1165
1166
1167 void LIRGenerator::do_Return(Return* x) {
1168 if (compilation()->env()->dtrace_method_probes()) {
1169 BasicTypeList signature;
1170 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1171 signature.append(T_METADATA); // Method*
1172 LIR_OprList* args = new LIR_OprList();
1173 args->append(getThreadPointer());
1174 LIR_Opr meth = new_register(T_METADATA);
1175 __ metadata2reg(method()->constant_encoding(), meth);
1176 args->append(meth);
1177 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1178 }
1179
1180 if (x->type()->is_void()) {
1181 __ return_op(LIR_OprFact::illegalOpr);
1182 } else {
1183 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1184 LIRItem result(x->result(), this);
1185
1186 result.load_item_force(reg);
1187 __ return_op(result.result());
1188 }
1189 set_no_result(x);
1190 }
1191
1192 // Example: ref.get()
1193 // Combination of LoadField and g1 pre-write barrier
1194 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1195
1196 const int referent_offset = java_lang_ref_Reference::referent_offset();
1197
1198 assert(x->number_of_arguments() == 1, "wrong type");
1199
1200 LIRItem reference(x->argument_at(0), this);
1201 reference.load_item();
1202
1203 // need to perform the null check on the reference object
1204 CodeEmitInfo* info = nullptr;
1205 if (x->needs_null_check()) {
1206 info = state_for(x);
1207 }
1208
1209 LIR_Opr result = rlock_result(x, T_OBJECT);
1210 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1211 reference, LIR_OprFact::intConst(referent_offset), result,
1212 nullptr, info);
1213 }
1214
1215 // Example: clazz.isInstance(object)
1216 void LIRGenerator::do_isInstance(Intrinsic* x) {
1217 assert(x->number_of_arguments() == 2, "wrong type");
1218
1219 // TODO could try to substitute this node with an equivalent InstanceOf
1220 // if clazz is known to be a constant Class. This will pick up newly found
1221 // constants after HIR construction. I'll leave this to a future change.
1222
1223 // as a first cut, make a simple leaf call to runtime to stay platform independent.
1224 // could follow the aastore example in a future change.
1225
1226 LIRItem clazz(x->argument_at(0), this);
1227 LIRItem object(x->argument_at(1), this);
1228 clazz.load_item();
1229 object.load_item();
1230 LIR_Opr result = rlock_result(x);
1231
1232 // need to perform null check on clazz
1233 if (x->needs_null_check()) {
1234 CodeEmitInfo* info = state_for(x);
1235 __ null_check(clazz.result(), info);
1236 }
1237
1238 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1239 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1240 x->type(),
1241 nullptr); // null CodeEmitInfo results in a leaf call
1242 __ move(call_result, result);
1243 }
1244
1245 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1246 CodeStub* slow_path = UseCompactObjectHeaders ? new LoadKlassStub(klass) : nullptr;
1247 __ load_klass(obj, klass, null_check_info, slow_path);
1248 }
1249
1250 // Example: object.getClass ()
1251 void LIRGenerator::do_getClass(Intrinsic* x) {
1252 assert(x->number_of_arguments() == 1, "wrong type");
1253
1254 LIRItem rcvr(x->argument_at(0), this);
1255 rcvr.load_item();
1256 LIR_Opr temp = new_register(T_ADDRESS);
1257 LIR_Opr result = rlock_result(x);
1258
1259 // need to perform the null check on the rcvr
1260 CodeEmitInfo* info = nullptr;
1261 if (x->needs_null_check()) {
1262 info = state_for(x);
1263 }
1264
1265 LIR_Opr klass = new_register(T_METADATA);
1266 load_klass(rcvr.result(), klass, info);
1267 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1268 // mirror = ((OopHandle)mirror)->resolve();
1269 access_load(IN_NATIVE, T_OBJECT,
1270 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1271 }
1272
1273 // java.lang.Class::isPrimitive()
1274 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1275 assert(x->number_of_arguments() == 1, "wrong type");
1276
1277 LIRItem rcvr(x->argument_at(0), this);
1278 rcvr.load_item();
1279 LIR_Opr temp = new_register(T_METADATA);
1280 LIR_Opr result = rlock_result(x);
1281
1282 CodeEmitInfo* info = nullptr;
1283 if (x->needs_null_check()) {
1284 info = state_for(x);
1285 }
1286
1287 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1288 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1289 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1290 }
1291
1292 // Example: Foo.class.getModifiers()
1293 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1294 assert(x->number_of_arguments() == 1, "wrong type");
1295
1296 LIRItem receiver(x->argument_at(0), this);
1297 receiver.load_item();
1298 LIR_Opr result = rlock_result(x);
1299
1300 CodeEmitInfo* info = nullptr;
1301 if (x->needs_null_check()) {
1302 info = state_for(x);
1303 }
1304
1305 // While reading off the universal constant mirror is less efficient than doing
1306 // another branch and returning the constant answer, this branchless code runs into
1307 // much less risk of confusion for C1 register allocator. The choice of the universe
1308 // object here is correct as long as it returns the same modifiers we would expect
1309 // from the primitive class itself. See spec for Class.getModifiers that provides
1310 // the typed array klasses with similar modifiers as their component types.
1311
1312 Klass* univ_klass_obj = Universe::byteArrayKlassObj();
1313 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1314 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
1315
1316 LIR_Opr recv_klass = new_register(T_METADATA);
1317 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1318
1319 // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1320 LIR_Opr klass = new_register(T_METADATA);
1321 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1322 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1323
1324 // Get the answer.
1325 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1326 }
1327
1328 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1329 assert(x->number_of_arguments() == 3, "wrong type");
1330 LIR_Opr result_reg = rlock_result(x);
1331
1332 LIRItem value(x->argument_at(2), this);
1333 value.load_item();
1334
1335 LIR_Opr klass = new_register(T_METADATA);
1336 load_klass(value.result(), klass, nullptr);
1337 LIR_Opr layout = new_register(T_INT);
1338 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1339
1340 LabelObj* L_done = new LabelObj();
1341 LabelObj* L_array = new LabelObj();
1342
1343 __ cmp(lir_cond_lessEqual, layout, 0);
1344 __ branch(lir_cond_lessEqual, L_array->label());
1345
1346 // Instance case: the layout helper gives us instance size almost directly,
1347 // but we need to mask out the _lh_instance_slow_path_bit.
1348
1349 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1350
1351 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1352 __ logical_and(layout, mask, layout);
1353 __ convert(Bytecodes::_i2l, layout, result_reg);
1354
1355 __ branch(lir_cond_always, L_done->label());
1356
1357 // Array case: size is round(header + element_size*arraylength).
1358 // Since arraylength is different for every array instance, we have to
1359 // compute the whole thing at runtime.
1360
1361 __ branch_destination(L_array->label());
1362
1363 int round_mask = MinObjAlignmentInBytes - 1;
1364
1365 // Figure out header sizes first.
1366 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1367 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1368
1369 LIR_Opr header_size = new_register(T_INT);
1370 __ move(layout, header_size);
1371 LIR_Opr tmp = new_register(T_INT);
1372 __ unsigned_shift_right(header_size, hss, header_size, tmp);
1373 __ logical_and(header_size, hsm, header_size);
1374 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1375
1376 // Figure out the array length in bytes
1377 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1378 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1379 __ logical_and(layout, l2esm, layout);
1380
1381 LIR_Opr length_int = new_register(T_INT);
1382 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1383
1384 #ifdef _LP64
1385 LIR_Opr length = new_register(T_LONG);
1386 __ convert(Bytecodes::_i2l, length_int, length);
1387 #endif
1388
1389 // Shift-left awkwardness. Normally it is just:
1390 // __ shift_left(length, layout, length);
1391 // But C1 cannot perform shift_left with non-constant count, so we end up
1392 // doing the per-bit loop dance here. x86_32 also does not know how to shift
1393 // longs, so we have to act on ints.
1394 LabelObj* L_shift_loop = new LabelObj();
1395 LabelObj* L_shift_exit = new LabelObj();
1396
1397 __ branch_destination(L_shift_loop->label());
1398 __ cmp(lir_cond_equal, layout, 0);
1399 __ branch(lir_cond_equal, L_shift_exit->label());
1400
1401 #ifdef _LP64
1402 __ shift_left(length, 1, length);
1403 #else
1404 __ shift_left(length_int, 1, length_int);
1405 #endif
1406
1407 __ sub(layout, LIR_OprFact::intConst(1), layout);
1408
1409 __ branch(lir_cond_always, L_shift_loop->label());
1410 __ branch_destination(L_shift_exit->label());
1411
1412 // Mix all up, round, and push to the result.
1413 #ifdef _LP64
1414 LIR_Opr header_size_long = new_register(T_LONG);
1415 __ convert(Bytecodes::_i2l, header_size, header_size_long);
1416 __ add(length, header_size_long, length);
1417 if (round_mask != 0) {
1418 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1419 __ logical_and(length, round_mask_opr, length);
1420 }
1421 __ move(length, result_reg);
1422 #else
1423 __ add(length_int, header_size, length_int);
1424 if (round_mask != 0) {
1425 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1426 __ logical_and(length_int, round_mask_opr, length_int);
1427 }
1428 __ convert(Bytecodes::_i2l, length_int, result_reg);
1429 #endif
1430
1431 __ branch_destination(L_done->label());
1432 }
1433
1434 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1435 do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1436 }
1437
1438 // Example: Thread.currentCarrierThread()
1439 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1440 do_JavaThreadField(x, JavaThread::threadObj_offset());
1441 }
1442
1443 void LIRGenerator::do_vthread(Intrinsic* x) {
1444 do_JavaThreadField(x, JavaThread::vthread_offset());
1445 }
1446
1447 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1448 assert(x->number_of_arguments() == 0, "wrong type");
1449 LIR_Opr temp = new_register(T_ADDRESS);
1450 LIR_Opr reg = rlock_result(x);
1451 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1452 access_load(IN_NATIVE, T_OBJECT,
1453 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1454 }
1455
1456 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1457 assert(x->number_of_arguments() == 1, "wrong type");
1458 LIRItem receiver(x->argument_at(0), this);
1459
1460 receiver.load_item();
1461 BasicTypeList signature;
1462 signature.append(T_OBJECT); // receiver
1463 LIR_OprList* args = new LIR_OprList();
1464 args->append(receiver.result());
1465 CodeEmitInfo* info = state_for(x, x->state());
1466 call_runtime(&signature, args,
1467 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1468 voidType, info);
1469
1470 set_no_result(x);
1471 }
1472
1473
1474 //------------------------local access--------------------------------------
1475
1476 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1477 if (x->operand()->is_illegal()) {
1478 Constant* c = x->as_Constant();
1479 if (c != nullptr) {
1480 x->set_operand(LIR_OprFact::value_type(c->type()));
1481 } else {
1482 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1483 // allocate a virtual register for this local or phi
1484 x->set_operand(rlock(x));
1485 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1486 }
1487 }
1488 return x->operand();
1489 }
1490
1491
1492 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1493 if (opr->is_virtual()) {
1494 return instruction_for_vreg(opr->vreg_number());
1495 }
1496 return nullptr;
1497 }
1498
1499
1500 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1501 if (reg_num < _instruction_for_operand.length()) {
1502 return _instruction_for_operand.at(reg_num);
1503 }
1504 return nullptr;
1505 }
1506
1507
1508 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1509 if (_vreg_flags.size_in_bits() == 0) {
1510 BitMap2D temp(100, num_vreg_flags);
1511 _vreg_flags = temp;
1512 }
1513 _vreg_flags.at_put_grow(vreg_num, f, true);
1514 }
1515
1516 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1517 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1518 return false;
1519 }
1520 return _vreg_flags.at(vreg_num, f);
1521 }
1522
1523
1524 // Block local constant handling. This code is useful for keeping
1525 // unpinned constants and constants which aren't exposed in the IR in
1526 // registers. Unpinned Constant instructions have their operands
1527 // cleared when the block is finished so that other blocks can't end
1528 // up referring to their registers.
1529
1530 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1531 assert(!x->is_pinned(), "only for unpinned constants");
1532 _unpinned_constants.append(x);
1533 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1534 }
1535
1536
1537 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1538 BasicType t = c->type();
1539 for (int i = 0; i < _constants.length(); i++) {
1540 LIR_Const* other = _constants.at(i);
1541 if (t == other->type()) {
1542 switch (t) {
1543 case T_INT:
1544 case T_FLOAT:
1545 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1546 break;
1547 case T_LONG:
1548 case T_DOUBLE:
1549 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1550 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1551 break;
1552 case T_OBJECT:
1553 if (c->as_jobject() != other->as_jobject()) continue;
1554 break;
1555 default:
1556 break;
1557 }
1558 return _reg_for_constants.at(i);
1559 }
1560 }
1561
1562 LIR_Opr result = new_register(t);
1563 __ move((LIR_Opr)c, result);
1564 _constants.append(c);
1565 _reg_for_constants.append(result);
1566 return result;
1567 }
1568
1569 //------------------------field access--------------------------------------
1570
1571 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1572 assert(x->number_of_arguments() == 4, "wrong type");
1573 LIRItem obj (x->argument_at(0), this); // object
1574 LIRItem offset(x->argument_at(1), this); // offset of field
1575 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1576 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1577 assert(obj.type()->tag() == objectTag, "invalid type");
1578 assert(cmp.type()->tag() == type->tag(), "invalid type");
1579 assert(val.type()->tag() == type->tag(), "invalid type");
1580
1581 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1582 obj, offset, cmp, val);
1583 set_result(x, result);
1584 }
1585
1586 // Comment copied form templateTable_i486.cpp
1587 // ----------------------------------------------------------------------------
1588 // Volatile variables demand their effects be made known to all CPU's in
1589 // order. Store buffers on most chips allow reads & writes to reorder; the
1590 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1591 // memory barrier (i.e., it's not sufficient that the interpreter does not
1592 // reorder volatile references, the hardware also must not reorder them).
1593 //
1594 // According to the new Java Memory Model (JMM):
1595 // (1) All volatiles are serialized wrt to each other.
1596 // ALSO reads & writes act as acquire & release, so:
1597 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1598 // the read float up to before the read. It's OK for non-volatile memory refs
1599 // that happen before the volatile read to float down below it.
1600 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1601 // that happen BEFORE the write float down to after the write. It's OK for
1602 // non-volatile memory refs that happen after the volatile write to float up
1603 // before it.
1604 //
1605 // We only put in barriers around volatile refs (they are expensive), not
1606 // _between_ memory refs (that would require us to track the flavor of the
1607 // previous memory refs). Requirements (2) and (3) require some barriers
1608 // before volatile stores and after volatile loads. These nearly cover
1609 // requirement (1) but miss the volatile-store-volatile-load case. This final
1610 // case is placed after volatile-stores although it could just as well go
1611 // before volatile-loads.
1612
1613
1614 void LIRGenerator::do_StoreField(StoreField* x) {
1615 bool needs_patching = x->needs_patching();
1616 bool is_volatile = x->field()->is_volatile();
1617 BasicType field_type = x->field_type();
1618
1619 CodeEmitInfo* info = nullptr;
1620 if (needs_patching) {
1621 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1622 info = state_for(x, x->state_before());
1623 } else if (x->needs_null_check()) {
1624 NullCheck* nc = x->explicit_null_check();
1625 if (nc == nullptr) {
1626 info = state_for(x);
1627 } else {
1628 info = state_for(nc);
1629 }
1630 }
1631
1632 LIRItem object(x->obj(), this);
1633 LIRItem value(x->value(), this);
1634
1635 object.load_item();
1636
1637 if (is_volatile || needs_patching) {
1638 // load item if field is volatile (fewer special cases for volatiles)
1639 // load item if field not initialized
1640 // load item if field not constant
1641 // because of code patching we cannot inline constants
1642 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1643 value.load_byte_item();
1644 } else {
1645 value.load_item();
1646 }
1647 } else {
1648 value.load_for_store(field_type);
1649 }
1650
1651 set_no_result(x);
1652
1653 #ifndef PRODUCT
1654 if (PrintNotLoaded && needs_patching) {
1655 tty->print_cr(" ###class not loaded at store_%s bci %d",
1656 x->is_static() ? "static" : "field", x->printable_bci());
1657 }
1658 #endif
1659
1660 if (x->needs_null_check() &&
1661 (needs_patching ||
1662 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1663 // Emit an explicit null check because the offset is too large.
1664 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1665 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1666 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1667 }
1668
1669 DecoratorSet decorators = IN_HEAP;
1670 if (is_volatile) {
1671 decorators |= MO_SEQ_CST;
1672 }
1673 if (needs_patching) {
1674 decorators |= C1_NEEDS_PATCHING;
1675 }
1676
1677 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1678 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1679 }
1680
1681 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1682 assert(x->is_pinned(),"");
1683 bool needs_range_check = x->compute_needs_range_check();
1684 bool use_length = x->length() != nullptr;
1685 bool obj_store = is_reference_type(x->elt_type());
1686 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1687 !get_jobject_constant(x->value())->is_null_object() ||
1688 x->should_profile());
1689
1690 LIRItem array(x->array(), this);
1691 LIRItem index(x->index(), this);
1692 LIRItem value(x->value(), this);
1693 LIRItem length(this);
1694
1695 array.load_item();
1696 index.load_nonconstant();
1697
1698 if (use_length && needs_range_check) {
1699 length.set_instruction(x->length());
1700 length.load_item();
1701
1702 }
1703 if (needs_store_check || x->check_boolean()) {
1704 value.load_item();
1705 } else {
1706 value.load_for_store(x->elt_type());
1707 }
1708
1709 set_no_result(x);
1710
1711 // the CodeEmitInfo must be duplicated for each different
1712 // LIR-instruction because spilling can occur anywhere between two
1713 // instructions and so the debug information must be different
1714 CodeEmitInfo* range_check_info = state_for(x);
1715 CodeEmitInfo* null_check_info = nullptr;
1716 if (x->needs_null_check()) {
1717 null_check_info = new CodeEmitInfo(range_check_info);
1718 }
1719
1720 if (needs_range_check) {
1721 if (use_length) {
1722 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1723 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1724 } else {
1725 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1726 // range_check also does the null check
1727 null_check_info = nullptr;
1728 }
1729 }
1730
1731 if (GenerateArrayStoreCheck && needs_store_check) {
1732 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1733 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1734 }
1735
1736 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1737 if (x->check_boolean()) {
1738 decorators |= C1_MASK_BOOLEAN;
1739 }
1740
1741 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1742 nullptr, null_check_info);
1743 }
1744
1745 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1746 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1747 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1748 decorators |= ACCESS_READ;
1749 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1750 if (access.is_raw()) {
1751 _barrier_set->BarrierSetC1::load_at(access, result);
1752 } else {
1753 _barrier_set->load_at(access, result);
1754 }
1755 }
1756
1757 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1758 LIR_Opr addr, LIR_Opr result) {
1759 decorators |= ACCESS_READ;
1760 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1761 access.set_resolved_addr(addr);
1762 if (access.is_raw()) {
1763 _barrier_set->BarrierSetC1::load(access, result);
1764 } else {
1765 _barrier_set->load(access, result);
1766 }
1767 }
1768
1769 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1770 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1771 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1772 decorators |= ACCESS_WRITE;
1773 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1774 if (access.is_raw()) {
1775 _barrier_set->BarrierSetC1::store_at(access, value);
1776 } else {
1777 _barrier_set->store_at(access, value);
1778 }
1779 }
1780
1781 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1782 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1783 decorators |= ACCESS_READ;
1784 decorators |= ACCESS_WRITE;
1785 // Atomic operations are SEQ_CST by default
1786 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1787 LIRAccess access(this, decorators, base, offset, type);
1788 if (access.is_raw()) {
1789 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1790 } else {
1791 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1792 }
1793 }
1794
1795 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1796 LIRItem& base, LIRItem& offset, LIRItem& value) {
1797 decorators |= ACCESS_READ;
1798 decorators |= ACCESS_WRITE;
1799 // Atomic operations are SEQ_CST by default
1800 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1801 LIRAccess access(this, decorators, base, offset, type);
1802 if (access.is_raw()) {
1803 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1804 } else {
1805 return _barrier_set->atomic_xchg_at(access, value);
1806 }
1807 }
1808
1809 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1810 LIRItem& base, LIRItem& offset, LIRItem& value) {
1811 decorators |= ACCESS_READ;
1812 decorators |= ACCESS_WRITE;
1813 // Atomic operations are SEQ_CST by default
1814 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1815 LIRAccess access(this, decorators, base, offset, type);
1816 if (access.is_raw()) {
1817 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1818 } else {
1819 return _barrier_set->atomic_add_at(access, value);
1820 }
1821 }
1822
1823 void LIRGenerator::do_LoadField(LoadField* x) {
1824 bool needs_patching = x->needs_patching();
1825 bool is_volatile = x->field()->is_volatile();
1826 BasicType field_type = x->field_type();
1827
1828 CodeEmitInfo* info = nullptr;
1829 if (needs_patching) {
1830 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1831 info = state_for(x, x->state_before());
1832 } else if (x->needs_null_check()) {
1833 NullCheck* nc = x->explicit_null_check();
1834 if (nc == nullptr) {
1835 info = state_for(x);
1836 } else {
1837 info = state_for(nc);
1838 }
1839 }
1840
1841 LIRItem object(x->obj(), this);
1842
1843 object.load_item();
1844
1845 #ifndef PRODUCT
1846 if (PrintNotLoaded && needs_patching) {
1847 tty->print_cr(" ###class not loaded at load_%s bci %d",
1848 x->is_static() ? "static" : "field", x->printable_bci());
1849 }
1850 #endif
1851
1852 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1853 if (x->needs_null_check() &&
1854 (needs_patching ||
1855 MacroAssembler::needs_explicit_null_check(x->offset()) ||
1856 stress_deopt)) {
1857 LIR_Opr obj = object.result();
1858 if (stress_deopt) {
1859 obj = new_register(T_OBJECT);
1860 __ move(LIR_OprFact::oopConst(nullptr), obj);
1861 }
1862 // Emit an explicit null check because the offset is too large.
1863 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1864 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1865 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1866 }
1867
1868 DecoratorSet decorators = IN_HEAP;
1869 if (is_volatile) {
1870 decorators |= MO_SEQ_CST;
1871 }
1872 if (needs_patching) {
1873 decorators |= C1_NEEDS_PATCHING;
1874 }
1875
1876 LIR_Opr result = rlock_result(x, field_type);
1877 access_load_at(decorators, field_type,
1878 object, LIR_OprFact::intConst(x->offset()), result,
1879 info ? new CodeEmitInfo(info) : nullptr, info);
1880 }
1881
1882 // int/long jdk.internal.util.Preconditions.checkIndex
1883 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1884 assert(x->number_of_arguments() == 3, "wrong type");
1885 LIRItem index(x->argument_at(0), this);
1886 LIRItem length(x->argument_at(1), this);
1887 LIRItem oobef(x->argument_at(2), this);
1888
1889 index.load_item();
1890 length.load_item();
1891 oobef.load_item();
1892
1893 LIR_Opr result = rlock_result(x);
1894 // x->state() is created from copy_state_for_exception, it does not contains arguments
1895 // we should prepare them before entering into interpreter mode due to deoptimization.
1896 ValueStack* state = x->state();
1897 for (int i = 0; i < x->number_of_arguments(); i++) {
1898 Value arg = x->argument_at(i);
1899 state->push(arg->type(), arg);
1900 }
1901 CodeEmitInfo* info = state_for(x, state);
1902
1903 LIR_Opr len = length.result();
1904 LIR_Opr zero;
1905 if (type == T_INT) {
1906 zero = LIR_OprFact::intConst(0);
1907 if (length.result()->is_constant()){
1908 len = LIR_OprFact::intConst(length.result()->as_jint());
1909 }
1910 } else {
1911 assert(type == T_LONG, "sanity check");
1912 zero = LIR_OprFact::longConst(0);
1913 if (length.result()->is_constant()){
1914 len = LIR_OprFact::longConst(length.result()->as_jlong());
1915 }
1916 }
1917 // C1 can not handle the case that comparing index with constant value while condition
1918 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1919 LIR_Opr zero_reg = new_register(type);
1920 __ move(zero, zero_reg);
1921 #if defined(X86) && !defined(_LP64)
1922 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1923 LIR_Opr index_copy = new_register(index.type());
1924 // index >= 0
1925 __ move(index.result(), index_copy);
1926 __ cmp(lir_cond_less, index_copy, zero_reg);
1927 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1928 Deoptimization::Action_make_not_entrant));
1929 // index < length
1930 __ move(index.result(), index_copy);
1931 __ cmp(lir_cond_greaterEqual, index_copy, len);
1932 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1933 Deoptimization::Action_make_not_entrant));
1934 #else
1935 // index >= 0
1936 __ cmp(lir_cond_less, index.result(), zero_reg);
1937 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1938 Deoptimization::Action_make_not_entrant));
1939 // index < length
1940 __ cmp(lir_cond_greaterEqual, index.result(), len);
1941 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1942 Deoptimization::Action_make_not_entrant));
1943 #endif
1944 __ move(index.result(), result);
1945 }
1946
1947 //------------------------array access--------------------------------------
1948
1949
1950 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1951 LIRItem array(x->array(), this);
1952 array.load_item();
1953 LIR_Opr reg = rlock_result(x);
1954
1955 CodeEmitInfo* info = nullptr;
1956 if (x->needs_null_check()) {
1957 NullCheck* nc = x->explicit_null_check();
1958 if (nc == nullptr) {
1959 info = state_for(x);
1960 } else {
1961 info = state_for(nc);
1962 }
1963 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1964 LIR_Opr obj = new_register(T_OBJECT);
1965 __ move(LIR_OprFact::oopConst(nullptr), obj);
1966 __ null_check(obj, new CodeEmitInfo(info));
1967 }
1968 }
1969 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1970 }
1971
1972
1973 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1974 bool use_length = x->length() != nullptr;
1975 LIRItem array(x->array(), this);
1976 LIRItem index(x->index(), this);
1977 LIRItem length(this);
1978 bool needs_range_check = x->compute_needs_range_check();
1979
1980 if (use_length && needs_range_check) {
1981 length.set_instruction(x->length());
1982 length.load_item();
1983 }
1984
1985 array.load_item();
1986 if (index.is_constant() && can_inline_as_constant(x->index())) {
1987 // let it be a constant
1988 index.dont_load_item();
1989 } else {
1990 index.load_item();
1991 }
1992
1993 CodeEmitInfo* range_check_info = state_for(x);
1994 CodeEmitInfo* null_check_info = nullptr;
1995 if (x->needs_null_check()) {
1996 NullCheck* nc = x->explicit_null_check();
1997 if (nc != nullptr) {
1998 null_check_info = state_for(nc);
1999 } else {
2000 null_check_info = range_check_info;
2001 }
2002 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2003 LIR_Opr obj = new_register(T_OBJECT);
2004 __ move(LIR_OprFact::oopConst(nullptr), obj);
2005 __ null_check(obj, new CodeEmitInfo(null_check_info));
2006 }
2007 }
2008
2009 if (needs_range_check) {
2010 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2011 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2012 } else if (use_length) {
2013 // TODO: use a (modified) version of array_range_check that does not require a
2014 // constant length to be loaded to a register
2015 __ cmp(lir_cond_belowEqual, length.result(), index.result());
2016 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2017 } else {
2018 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2019 // The range check performs the null check, so clear it out for the load
2020 null_check_info = nullptr;
2021 }
2022 }
2023
2024 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2025
2026 LIR_Opr result = rlock_result(x, x->elt_type());
2027 access_load_at(decorators, x->elt_type(),
2028 array, index.result(), result,
2029 nullptr, null_check_info);
2030 }
2031
2032
2033 void LIRGenerator::do_NullCheck(NullCheck* x) {
2034 if (x->can_trap()) {
2035 LIRItem value(x->obj(), this);
2036 value.load_item();
2037 CodeEmitInfo* info = state_for(x);
2038 __ null_check(value.result(), info);
2039 }
2040 }
2041
2042
2043 void LIRGenerator::do_TypeCast(TypeCast* x) {
2044 LIRItem value(x->obj(), this);
2045 value.load_item();
2046 // the result is the same as from the node we are casting
2047 set_result(x, value.result());
2048 }
2049
2050
2051 void LIRGenerator::do_Throw(Throw* x) {
2052 LIRItem exception(x->exception(), this);
2053 exception.load_item();
2054 set_no_result(x);
2055 LIR_Opr exception_opr = exception.result();
2056 CodeEmitInfo* info = state_for(x, x->state());
2057
2058 #ifndef PRODUCT
2059 if (PrintC1Statistics) {
2060 increment_counter(Runtime1::throw_count_address(), T_INT);
2061 }
2062 #endif
2063
2064 // check if the instruction has an xhandler in any of the nested scopes
2065 bool unwind = false;
2066 if (info->exception_handlers()->length() == 0) {
2067 // this throw is not inside an xhandler
2068 unwind = true;
2069 } else {
2070 // get some idea of the throw type
2071 bool type_is_exact = true;
2072 ciType* throw_type = x->exception()->exact_type();
2073 if (throw_type == nullptr) {
2074 type_is_exact = false;
2075 throw_type = x->exception()->declared_type();
2076 }
2077 if (throw_type != nullptr && throw_type->is_instance_klass()) {
2078 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2079 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2080 }
2081 }
2082
2083 // do null check before moving exception oop into fixed register
2084 // to avoid a fixed interval with an oop during the null check.
2085 // Use a copy of the CodeEmitInfo because debug information is
2086 // different for null_check and throw.
2087 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2088 // if the exception object wasn't created using new then it might be null.
2089 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2090 }
2091
2092 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2093 // we need to go through the exception lookup path to get JVMTI
2094 // notification done
2095 unwind = false;
2096 }
2097
2098 // move exception oop into fixed register
2099 __ move(exception_opr, exceptionOopOpr());
2100
2101 if (unwind) {
2102 __ unwind_exception(exceptionOopOpr());
2103 } else {
2104 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2105 }
2106 }
2107
2108
2109 void LIRGenerator::do_RoundFP(RoundFP* x) {
2110 assert(strict_fp_requires_explicit_rounding, "not required");
2111
2112 LIRItem input(x->input(), this);
2113 input.load_item();
2114 LIR_Opr input_opr = input.result();
2115 assert(input_opr->is_register(), "why round if value is not in a register?");
2116 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2117 if (input_opr->is_single_fpu()) {
2118 set_result(x, round_item(input_opr)); // This code path not currently taken
2119 } else {
2120 LIR_Opr result = new_register(T_DOUBLE);
2121 set_vreg_flag(result, must_start_in_memory);
2122 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2123 set_result(x, result);
2124 }
2125 }
2126
2127
2128 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2129 BasicType type = x->basic_type();
2130 LIRItem src(x->object(), this);
2131 LIRItem off(x->offset(), this);
2132
2133 off.load_item();
2134 src.load_item();
2135
2136 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2137
2138 if (x->is_volatile()) {
2139 decorators |= MO_SEQ_CST;
2140 }
2141 if (type == T_BOOLEAN) {
2142 decorators |= C1_MASK_BOOLEAN;
2143 }
2144 if (is_reference_type(type)) {
2145 decorators |= ON_UNKNOWN_OOP_REF;
2146 }
2147
2148 LIR_Opr result = rlock_result(x, type);
2149 if (!x->is_raw()) {
2150 access_load_at(decorators, type, src, off.result(), result);
2151 } else {
2152 // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2153 // It reads the value from [src + offset] directly.
2154 #ifdef _LP64
2155 LIR_Opr offset = new_register(T_LONG);
2156 __ convert(Bytecodes::_i2l, off.result(), offset);
2157 #else
2158 LIR_Opr offset = off.result();
2159 #endif
2160 LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2161 if (is_reference_type(type)) {
2162 __ move_wide(addr, result);
2163 } else {
2164 __ move(addr, result);
2165 }
2166 }
2167 }
2168
2169
2170 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2171 BasicType type = x->basic_type();
2172 LIRItem src(x->object(), this);
2173 LIRItem off(x->offset(), this);
2174 LIRItem data(x->value(), this);
2175
2176 src.load_item();
2177 if (type == T_BOOLEAN || type == T_BYTE) {
2178 data.load_byte_item();
2179 } else {
2180 data.load_item();
2181 }
2182 off.load_item();
2183
2184 set_no_result(x);
2185
2186 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2187 if (is_reference_type(type)) {
2188 decorators |= ON_UNKNOWN_OOP_REF;
2189 }
2190 if (x->is_volatile()) {
2191 decorators |= MO_SEQ_CST;
2192 }
2193 access_store_at(decorators, type, src, off.result(), data.result());
2194 }
2195
2196 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2197 BasicType type = x->basic_type();
2198 LIRItem src(x->object(), this);
2199 LIRItem off(x->offset(), this);
2200 LIRItem value(x->value(), this);
2201
2202 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2203
2204 if (is_reference_type(type)) {
2205 decorators |= ON_UNKNOWN_OOP_REF;
2206 }
2207
2208 LIR_Opr result;
2209 if (x->is_add()) {
2210 result = access_atomic_add_at(decorators, type, src, off, value);
2211 } else {
2212 result = access_atomic_xchg_at(decorators, type, src, off, value);
2213 }
2214 set_result(x, result);
2215 }
2216
2217 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2218 int lng = x->length();
2219
2220 for (int i = 0; i < lng; i++) {
2221 C1SwitchRange* one_range = x->at(i);
2222 int low_key = one_range->low_key();
2223 int high_key = one_range->high_key();
2224 BlockBegin* dest = one_range->sux();
2225 if (low_key == high_key) {
2226 __ cmp(lir_cond_equal, value, low_key);
2227 __ branch(lir_cond_equal, dest);
2228 } else if (high_key - low_key == 1) {
2229 __ cmp(lir_cond_equal, value, low_key);
2230 __ branch(lir_cond_equal, dest);
2231 __ cmp(lir_cond_equal, value, high_key);
2232 __ branch(lir_cond_equal, dest);
2233 } else {
2234 LabelObj* L = new LabelObj();
2235 __ cmp(lir_cond_less, value, low_key);
2236 __ branch(lir_cond_less, L->label());
2237 __ cmp(lir_cond_lessEqual, value, high_key);
2238 __ branch(lir_cond_lessEqual, dest);
2239 __ branch_destination(L->label());
2240 }
2241 }
2242 __ jump(default_sux);
2243 }
2244
2245
2246 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2247 SwitchRangeList* res = new SwitchRangeList();
2248 int len = x->length();
2249 if (len > 0) {
2250 BlockBegin* sux = x->sux_at(0);
2251 int low = x->lo_key();
2252 BlockBegin* default_sux = x->default_sux();
2253 C1SwitchRange* range = new C1SwitchRange(low, sux);
2254 for (int i = 0; i < len; i++) {
2255 int key = low + i;
2256 BlockBegin* new_sux = x->sux_at(i);
2257 if (sux == new_sux) {
2258 // still in same range
2259 range->set_high_key(key);
2260 } else {
2261 // skip tests which explicitly dispatch to the default
2262 if (sux != default_sux) {
2263 res->append(range);
2264 }
2265 range = new C1SwitchRange(key, new_sux);
2266 }
2267 sux = new_sux;
2268 }
2269 if (res->length() == 0 || res->last() != range) res->append(range);
2270 }
2271 return res;
2272 }
2273
2274
2275 // we expect the keys to be sorted by increasing value
2276 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2277 SwitchRangeList* res = new SwitchRangeList();
2278 int len = x->length();
2279 if (len > 0) {
2280 BlockBegin* default_sux = x->default_sux();
2281 int key = x->key_at(0);
2282 BlockBegin* sux = x->sux_at(0);
2283 C1SwitchRange* range = new C1SwitchRange(key, sux);
2284 for (int i = 1; i < len; i++) {
2285 int new_key = x->key_at(i);
2286 BlockBegin* new_sux = x->sux_at(i);
2287 if (key+1 == new_key && sux == new_sux) {
2288 // still in same range
2289 range->set_high_key(new_key);
2290 } else {
2291 // skip tests which explicitly dispatch to the default
2292 if (range->sux() != default_sux) {
2293 res->append(range);
2294 }
2295 range = new C1SwitchRange(new_key, new_sux);
2296 }
2297 key = new_key;
2298 sux = new_sux;
2299 }
2300 if (res->length() == 0 || res->last() != range) res->append(range);
2301 }
2302 return res;
2303 }
2304
2305
2306 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2307 LIRItem tag(x->tag(), this);
2308 tag.load_item();
2309 set_no_result(x);
2310
2311 if (x->is_safepoint()) {
2312 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2313 }
2314
2315 // move values into phi locations
2316 move_to_phi(x->state());
2317
2318 int lo_key = x->lo_key();
2319 int len = x->length();
2320 assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2321 LIR_Opr value = tag.result();
2322
2323 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2324 ciMethod* method = x->state()->scope()->method();
2325 ciMethodData* md = method->method_data_or_null();
2326 assert(md != nullptr, "Sanity");
2327 ciProfileData* data = md->bci_to_data(x->state()->bci());
2328 assert(data != nullptr, "must have profiling data");
2329 assert(data->is_MultiBranchData(), "bad profile data?");
2330 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2331 LIR_Opr md_reg = new_register(T_METADATA);
2332 __ metadata2reg(md->constant_encoding(), md_reg);
2333 LIR_Opr data_offset_reg = new_pointer_register();
2334 LIR_Opr tmp_reg = new_pointer_register();
2335
2336 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2337 for (int i = 0; i < len; i++) {
2338 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2339 __ cmp(lir_cond_equal, value, i + lo_key);
2340 __ move(data_offset_reg, tmp_reg);
2341 __ cmove(lir_cond_equal,
2342 LIR_OprFact::intptrConst(count_offset),
2343 tmp_reg,
2344 data_offset_reg, T_INT);
2345 }
2346
2347 LIR_Opr data_reg = new_pointer_register();
2348 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2349 __ move(data_addr, data_reg);
2350 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2351 __ move(data_reg, data_addr);
2352 }
2353
2354 if (UseTableRanges) {
2355 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2356 } else {
2357 for (int i = 0; i < len; i++) {
2358 __ cmp(lir_cond_equal, value, i + lo_key);
2359 __ branch(lir_cond_equal, x->sux_at(i));
2360 }
2361 __ jump(x->default_sux());
2362 }
2363 }
2364
2365
2366 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2367 LIRItem tag(x->tag(), this);
2368 tag.load_item();
2369 set_no_result(x);
2370
2371 if (x->is_safepoint()) {
2372 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2373 }
2374
2375 // move values into phi locations
2376 move_to_phi(x->state());
2377
2378 LIR_Opr value = tag.result();
2379 int len = x->length();
2380
2381 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2382 ciMethod* method = x->state()->scope()->method();
2383 ciMethodData* md = method->method_data_or_null();
2384 assert(md != nullptr, "Sanity");
2385 ciProfileData* data = md->bci_to_data(x->state()->bci());
2386 assert(data != nullptr, "must have profiling data");
2387 assert(data->is_MultiBranchData(), "bad profile data?");
2388 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2389 LIR_Opr md_reg = new_register(T_METADATA);
2390 __ metadata2reg(md->constant_encoding(), md_reg);
2391 LIR_Opr data_offset_reg = new_pointer_register();
2392 LIR_Opr tmp_reg = new_pointer_register();
2393
2394 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2395 for (int i = 0; i < len; i++) {
2396 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2397 __ cmp(lir_cond_equal, value, x->key_at(i));
2398 __ move(data_offset_reg, tmp_reg);
2399 __ cmove(lir_cond_equal,
2400 LIR_OprFact::intptrConst(count_offset),
2401 tmp_reg,
2402 data_offset_reg, T_INT);
2403 }
2404
2405 LIR_Opr data_reg = new_pointer_register();
2406 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2407 __ move(data_addr, data_reg);
2408 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2409 __ move(data_reg, data_addr);
2410 }
2411
2412 if (UseTableRanges) {
2413 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2414 } else {
2415 int len = x->length();
2416 for (int i = 0; i < len; i++) {
2417 __ cmp(lir_cond_equal, value, x->key_at(i));
2418 __ branch(lir_cond_equal, x->sux_at(i));
2419 }
2420 __ jump(x->default_sux());
2421 }
2422 }
2423
2424
2425 void LIRGenerator::do_Goto(Goto* x) {
2426 set_no_result(x);
2427
2428 if (block()->next()->as_OsrEntry()) {
2429 // need to free up storage used for OSR entry point
2430 LIR_Opr osrBuffer = block()->next()->operand();
2431 BasicTypeList signature;
2432 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2433 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2434 __ move(osrBuffer, cc->args()->at(0));
2435 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2436 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2437 }
2438
2439 if (x->is_safepoint()) {
2440 ValueStack* state = x->state_before() ? x->state_before() : x->state();
2441
2442 // increment backedge counter if needed
2443 CodeEmitInfo* info = state_for(x, state);
2444 increment_backedge_counter(info, x->profiled_bci());
2445 CodeEmitInfo* safepoint_info = state_for(x, state);
2446 __ safepoint(safepoint_poll_register(), safepoint_info);
2447 }
2448
2449 // Gotos can be folded Ifs, handle this case.
2450 if (x->should_profile()) {
2451 ciMethod* method = x->profiled_method();
2452 assert(method != nullptr, "method should be set if branch is profiled");
2453 ciMethodData* md = method->method_data_or_null();
2454 assert(md != nullptr, "Sanity");
2455 ciProfileData* data = md->bci_to_data(x->profiled_bci());
2456 assert(data != nullptr, "must have profiling data");
2457 int offset;
2458 if (x->direction() == Goto::taken) {
2459 assert(data->is_BranchData(), "need BranchData for two-way branches");
2460 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2461 } else if (x->direction() == Goto::not_taken) {
2462 assert(data->is_BranchData(), "need BranchData for two-way branches");
2463 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2464 } else {
2465 assert(data->is_JumpData(), "need JumpData for branches");
2466 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2467 }
2468 LIR_Opr md_reg = new_register(T_METADATA);
2469 __ metadata2reg(md->constant_encoding(), md_reg);
2470
2471 increment_counter(new LIR_Address(md_reg, offset,
2472 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2473 }
2474
2475 // emit phi-instruction move after safepoint since this simplifies
2476 // describing the state as the safepoint.
2477 move_to_phi(x->state());
2478
2479 __ jump(x->default_sux());
2480 }
2481
2482 /**
2483 * Emit profiling code if needed for arguments, parameters, return value types
2484 *
2485 * @param md MDO the code will update at runtime
2486 * @param md_base_offset common offset in the MDO for this profile and subsequent ones
2487 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2488 * @param profiled_k current profile
2489 * @param obj IR node for the object to be profiled
2490 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2491 * Set once we find an update to make and use for next ones.
2492 * @param not_null true if we know obj cannot be null
2493 * @param signature_at_call_k signature at call for obj
2494 * @param callee_signature_k signature of callee for obj
2495 * at call and callee signatures differ at method handle call
2496 * @return the only klass we know will ever be seen at this profile point
2497 */
2498 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2499 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2500 ciKlass* callee_signature_k) {
2501 ciKlass* result = nullptr;
2502 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2503 bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2504 // known not to be null or null bit already set and already set to
2505 // unknown: nothing we can do to improve profiling
2506 if (!do_null && !do_update) {
2507 return result;
2508 }
2509
2510 ciKlass* exact_klass = nullptr;
2511 Compilation* comp = Compilation::current();
2512 if (do_update) {
2513 // try to find exact type, using CHA if possible, so that loading
2514 // the klass from the object can be avoided
2515 ciType* type = obj->exact_type();
2516 if (type == nullptr) {
2517 type = obj->declared_type();
2518 type = comp->cha_exact_type(type);
2519 }
2520 assert(type == nullptr || type->is_klass(), "type should be class");
2521 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2522
2523 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2524 }
2525
2526 if (!do_null && !do_update) {
2527 return result;
2528 }
2529
2530 ciKlass* exact_signature_k = nullptr;
2531 if (do_update) {
2532 // Is the type from the signature exact (the only one possible)?
2533 exact_signature_k = signature_at_call_k->exact_klass();
2534 if (exact_signature_k == nullptr) {
2535 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2536 } else {
2537 result = exact_signature_k;
2538 // Known statically. No need to emit any code: prevent
2539 // LIR_Assembler::emit_profile_type() from emitting useless code
2540 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2541 }
2542 // exact_klass and exact_signature_k can be both non null but
2543 // different if exact_klass is loaded after the ciObject for
2544 // exact_signature_k is created.
2545 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2546 // sometimes the type of the signature is better than the best type
2547 // the compiler has
2548 exact_klass = exact_signature_k;
2549 }
2550 if (callee_signature_k != nullptr &&
2551 callee_signature_k != signature_at_call_k) {
2552 ciKlass* improved_klass = callee_signature_k->exact_klass();
2553 if (improved_klass == nullptr) {
2554 improved_klass = comp->cha_exact_type(callee_signature_k);
2555 }
2556 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2557 exact_klass = exact_signature_k;
2558 }
2559 }
2560 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2561 }
2562
2563 if (!do_null && !do_update) {
2564 return result;
2565 }
2566
2567 if (mdp == LIR_OprFact::illegalOpr) {
2568 mdp = new_register(T_METADATA);
2569 __ metadata2reg(md->constant_encoding(), mdp);
2570 if (md_base_offset != 0) {
2571 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2572 mdp = new_pointer_register();
2573 __ leal(LIR_OprFact::address(base_type_address), mdp);
2574 }
2575 }
2576 LIRItem value(obj, this);
2577 value.load_item();
2578 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2579 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2580 return result;
2581 }
2582
2583 // profile parameters on entry to the root of the compilation
2584 void LIRGenerator::profile_parameters(Base* x) {
2585 if (compilation()->profile_parameters()) {
2586 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2587 ciMethodData* md = scope()->method()->method_data_or_null();
2588 assert(md != nullptr, "Sanity");
2589
2590 if (md->parameters_type_data() != nullptr) {
2591 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2592 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2593 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2594 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2595 LIR_Opr src = args->at(i);
2596 assert(!src->is_illegal(), "check");
2597 BasicType t = src->type();
2598 if (is_reference_type(t)) {
2599 intptr_t profiled_k = parameters->type(j);
2600 Local* local = x->state()->local_at(java_index)->as_Local();
2601 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2602 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2603 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2604 // If the profile is known statically set it once for all and do not emit any code
2605 if (exact != nullptr) {
2606 md->set_parameter_type(j, exact);
2607 }
2608 j++;
2609 }
2610 java_index += type2size[t];
2611 }
2612 }
2613 }
2614 }
2615
2616 void LIRGenerator::do_Base(Base* x) {
2617 __ std_entry(LIR_OprFact::illegalOpr);
2618 // Emit moves from physical registers / stack slots to virtual registers
2619 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2620 IRScope* irScope = compilation()->hir()->top_scope();
2621 int java_index = 0;
2622 for (int i = 0; i < args->length(); i++) {
2623 LIR_Opr src = args->at(i);
2624 assert(!src->is_illegal(), "check");
2625 BasicType t = src->type();
2626
2627 // Types which are smaller than int are passed as int, so
2628 // correct the type which passed.
2629 switch (t) {
2630 case T_BYTE:
2631 case T_BOOLEAN:
2632 case T_SHORT:
2633 case T_CHAR:
2634 t = T_INT;
2635 break;
2636 default:
2637 break;
2638 }
2639
2640 LIR_Opr dest = new_register(t);
2641 __ move(src, dest);
2642
2643 // Assign new location to Local instruction for this local
2644 Local* local = x->state()->local_at(java_index)->as_Local();
2645 assert(local != nullptr, "Locals for incoming arguments must have been created");
2646 #ifndef __SOFTFP__
2647 // The java calling convention passes double as long and float as int.
2648 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2649 #endif // __SOFTFP__
2650 local->set_operand(dest);
2651 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2652 java_index += type2size[t];
2653 }
2654
2655 if (compilation()->env()->dtrace_method_probes()) {
2656 BasicTypeList signature;
2657 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2658 signature.append(T_METADATA); // Method*
2659 LIR_OprList* args = new LIR_OprList();
2660 args->append(getThreadPointer());
2661 LIR_Opr meth = new_register(T_METADATA);
2662 __ metadata2reg(method()->constant_encoding(), meth);
2663 args->append(meth);
2664 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2665 }
2666
2667 if (method()->is_synchronized()) {
2668 LIR_Opr obj;
2669 if (method()->is_static()) {
2670 obj = new_register(T_OBJECT);
2671 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2672 } else {
2673 Local* receiver = x->state()->local_at(0)->as_Local();
2674 assert(receiver != nullptr, "must already exist");
2675 obj = receiver->operand();
2676 }
2677 assert(obj->is_valid(), "must be valid");
2678
2679 if (method()->is_synchronized() && GenerateSynchronizationCode) {
2680 LIR_Opr lock = syncLockOpr();
2681 __ load_stack_address_monitor(0, lock);
2682
2683 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2684 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2685
2686 // receiver is guaranteed non-null so don't need CodeEmitInfo
2687 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2688 }
2689 }
2690 // increment invocation counters if needed
2691 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2692 profile_parameters(x);
2693 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2694 increment_invocation_counter(info);
2695 }
2696
2697 // all blocks with a successor must end with an unconditional jump
2698 // to the successor even if they are consecutive
2699 __ jump(x->default_sux());
2700 }
2701
2702
2703 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2704 // construct our frame and model the production of incoming pointer
2705 // to the OSR buffer.
2706 __ osr_entry(LIR_Assembler::osrBufferPointer());
2707 LIR_Opr result = rlock_result(x);
2708 __ move(LIR_Assembler::osrBufferPointer(), result);
2709 }
2710
2711
2712 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2713 assert(args->length() == arg_list->length(),
2714 "args=%d, arg_list=%d", args->length(), arg_list->length());
2715 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2716 LIRItem* param = args->at(i);
2717 LIR_Opr loc = arg_list->at(i);
2718 if (loc->is_register()) {
2719 param->load_item_force(loc);
2720 } else {
2721 LIR_Address* addr = loc->as_address_ptr();
2722 param->load_for_store(addr->type());
2723 if (addr->type() == T_OBJECT) {
2724 __ move_wide(param->result(), addr);
2725 } else
2726 __ move(param->result(), addr);
2727 }
2728 }
2729
2730 if (x->has_receiver()) {
2731 LIRItem* receiver = args->at(0);
2732 LIR_Opr loc = arg_list->at(0);
2733 if (loc->is_register()) {
2734 receiver->load_item_force(loc);
2735 } else {
2736 assert(loc->is_address(), "just checking");
2737 receiver->load_for_store(T_OBJECT);
2738 __ move_wide(receiver->result(), loc->as_address_ptr());
2739 }
2740 }
2741 }
2742
2743
2744 // Visits all arguments, returns appropriate items without loading them
2745 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2746 LIRItemList* argument_items = new LIRItemList();
2747 if (x->has_receiver()) {
2748 LIRItem* receiver = new LIRItem(x->receiver(), this);
2749 argument_items->append(receiver);
2750 }
2751 for (int i = 0; i < x->number_of_arguments(); i++) {
2752 LIRItem* param = new LIRItem(x->argument_at(i), this);
2753 argument_items->append(param);
2754 }
2755 return argument_items;
2756 }
2757
2758
2759 // The invoke with receiver has following phases:
2760 // a) traverse and load/lock receiver;
2761 // b) traverse all arguments -> item-array (invoke_visit_argument)
2762 // c) push receiver on stack
2763 // d) load each of the items and push on stack
2764 // e) unlock receiver
2765 // f) move receiver into receiver-register %o0
2766 // g) lock result registers and emit call operation
2767 //
2768 // Before issuing a call, we must spill-save all values on stack
2769 // that are in caller-save register. "spill-save" moves those registers
2770 // either in a free callee-save register or spills them if no free
2771 // callee save register is available.
2772 //
2773 // The problem is where to invoke spill-save.
2774 // - if invoked between e) and f), we may lock callee save
2775 // register in "spill-save" that destroys the receiver register
2776 // before f) is executed
2777 // - if we rearrange f) to be earlier (by loading %o0) it
2778 // may destroy a value on the stack that is currently in %o0
2779 // and is waiting to be spilled
2780 // - if we keep the receiver locked while doing spill-save,
2781 // we cannot spill it as it is spill-locked
2782 //
2783 void LIRGenerator::do_Invoke(Invoke* x) {
2784 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2785
2786 LIR_OprList* arg_list = cc->args();
2787 LIRItemList* args = invoke_visit_arguments(x);
2788 LIR_Opr receiver = LIR_OprFact::illegalOpr;
2789
2790 // setup result register
2791 LIR_Opr result_register = LIR_OprFact::illegalOpr;
2792 if (x->type() != voidType) {
2793 result_register = result_register_for(x->type());
2794 }
2795
2796 CodeEmitInfo* info = state_for(x, x->state());
2797
2798 invoke_load_arguments(x, args, arg_list);
2799
2800 if (x->has_receiver()) {
2801 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2802 receiver = args->at(0)->result();
2803 }
2804
2805 // emit invoke code
2806 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2807
2808 // JSR 292
2809 // Preserve the SP over MethodHandle call sites, if needed.
2810 ciMethod* target = x->target();
2811 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2812 target->is_method_handle_intrinsic() ||
2813 target->is_compiled_lambda_form());
2814 if (is_method_handle_invoke) {
2815 info->set_is_method_handle_invoke(true);
2816 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2817 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2818 }
2819 }
2820
2821 switch (x->code()) {
2822 case Bytecodes::_invokestatic:
2823 __ call_static(target, result_register,
2824 SharedRuntime::get_resolve_static_call_stub(),
2825 arg_list, info);
2826 break;
2827 case Bytecodes::_invokespecial:
2828 case Bytecodes::_invokevirtual:
2829 case Bytecodes::_invokeinterface:
2830 // for loaded and final (method or class) target we still produce an inline cache,
2831 // in order to be able to call mixed mode
2832 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2833 __ call_opt_virtual(target, receiver, result_register,
2834 SharedRuntime::get_resolve_opt_virtual_call_stub(),
2835 arg_list, info);
2836 } else {
2837 __ call_icvirtual(target, receiver, result_register,
2838 SharedRuntime::get_resolve_virtual_call_stub(),
2839 arg_list, info);
2840 }
2841 break;
2842 case Bytecodes::_invokedynamic: {
2843 __ call_dynamic(target, receiver, result_register,
2844 SharedRuntime::get_resolve_static_call_stub(),
2845 arg_list, info);
2846 break;
2847 }
2848 default:
2849 fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2850 break;
2851 }
2852
2853 // JSR 292
2854 // Restore the SP after MethodHandle call sites, if needed.
2855 if (is_method_handle_invoke
2856 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2857 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2858 }
2859
2860 if (result_register->is_valid()) {
2861 LIR_Opr result = rlock_result(x);
2862 __ move(result_register, result);
2863 }
2864 }
2865
2866
2867 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2868 assert(x->number_of_arguments() == 1, "wrong type");
2869 LIRItem value (x->argument_at(0), this);
2870 LIR_Opr reg = rlock_result(x);
2871 value.load_item();
2872 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2873 __ move(tmp, reg);
2874 }
2875
2876
2877
2878 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2879 void LIRGenerator::do_IfOp(IfOp* x) {
2880 #ifdef ASSERT
2881 {
2882 ValueTag xtag = x->x()->type()->tag();
2883 ValueTag ttag = x->tval()->type()->tag();
2884 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2885 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2886 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2887 }
2888 #endif
2889
2890 LIRItem left(x->x(), this);
2891 LIRItem right(x->y(), this);
2892 left.load_item();
2893 if (can_inline_as_constant(right.value())) {
2894 right.dont_load_item();
2895 } else {
2896 right.load_item();
2897 }
2898
2899 LIRItem t_val(x->tval(), this);
2900 LIRItem f_val(x->fval(), this);
2901 t_val.dont_load_item();
2902 f_val.dont_load_item();
2903 LIR_Opr reg = rlock_result(x);
2904
2905 __ cmp(lir_cond(x->cond()), left.result(), right.result());
2906 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2907 }
2908
2909 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2910 assert(x->number_of_arguments() == 0, "wrong type");
2911 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2912 BasicTypeList signature;
2913 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2914 LIR_Opr reg = result_register_for(x->type());
2915 __ call_runtime_leaf(routine, getThreadTemp(),
2916 reg, new LIR_OprList());
2917 LIR_Opr result = rlock_result(x);
2918 __ move(reg, result);
2919 }
2920
2921
2922
2923 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2924 switch (x->id()) {
2925 case vmIntrinsics::_intBitsToFloat :
2926 case vmIntrinsics::_doubleToRawLongBits :
2927 case vmIntrinsics::_longBitsToDouble :
2928 case vmIntrinsics::_floatToRawIntBits : {
2929 do_FPIntrinsics(x);
2930 break;
2931 }
2932
2933 #ifdef JFR_HAVE_INTRINSICS
2934 case vmIntrinsics::_counterTime:
2935 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2936 break;
2937 #endif
2938
2939 case vmIntrinsics::_currentTimeMillis:
2940 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2941 break;
2942
2943 case vmIntrinsics::_nanoTime:
2944 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2945 break;
2946
2947 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
2948 case vmIntrinsics::_isInstance: do_isInstance(x); break;
2949 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break;
2950 case vmIntrinsics::_getModifiers: do_getModifiers(x); break;
2951 case vmIntrinsics::_getClass: do_getClass(x); break;
2952 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break;
2953 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2954 case vmIntrinsics::_currentThread: do_vthread(x); break;
2955 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2956
2957 case vmIntrinsics::_dlog: // fall through
2958 case vmIntrinsics::_dlog10: // fall through
2959 case vmIntrinsics::_dabs: // fall through
2960 case vmIntrinsics::_dsqrt: // fall through
2961 case vmIntrinsics::_dsqrt_strict: // fall through
2962 case vmIntrinsics::_dtan: // fall through
2963 case vmIntrinsics::_dsin : // fall through
2964 case vmIntrinsics::_dcos : // fall through
2965 case vmIntrinsics::_dexp : // fall through
2966 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
2967 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
2968
2969 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break;
2970 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break;
2971
2972 // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2973 case vmIntrinsics::_floatToFloat16: // fall through
2974 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2975
2976 case vmIntrinsics::_Preconditions_checkIndex:
2977 do_PreconditionsCheckIndex(x, T_INT);
2978 break;
2979 case vmIntrinsics::_Preconditions_checkLongIndex:
2980 do_PreconditionsCheckIndex(x, T_LONG);
2981 break;
2982
2983 case vmIntrinsics::_compareAndSetReference:
2984 do_CompareAndSwap(x, objectType);
2985 break;
2986 case vmIntrinsics::_compareAndSetInt:
2987 do_CompareAndSwap(x, intType);
2988 break;
2989 case vmIntrinsics::_compareAndSetLong:
2990 do_CompareAndSwap(x, longType);
2991 break;
2992
2993 case vmIntrinsics::_loadFence :
2994 __ membar_acquire();
2995 break;
2996 case vmIntrinsics::_storeFence:
2997 __ membar_release();
2998 break;
2999 case vmIntrinsics::_storeStoreFence:
3000 __ membar_storestore();
3001 break;
3002 case vmIntrinsics::_fullFence :
3003 __ membar();
3004 break;
3005 case vmIntrinsics::_onSpinWait:
3006 __ on_spin_wait();
3007 break;
3008 case vmIntrinsics::_Reference_get:
3009 do_Reference_get(x);
3010 break;
3011
3012 case vmIntrinsics::_updateCRC32:
3013 case vmIntrinsics::_updateBytesCRC32:
3014 case vmIntrinsics::_updateByteBufferCRC32:
3015 do_update_CRC32(x);
3016 break;
3017
3018 case vmIntrinsics::_updateBytesCRC32C:
3019 case vmIntrinsics::_updateDirectByteBufferCRC32C:
3020 do_update_CRC32C(x);
3021 break;
3022
3023 case vmIntrinsics::_vectorizedMismatch:
3024 do_vectorizedMismatch(x);
3025 break;
3026
3027 case vmIntrinsics::_blackhole:
3028 do_blackhole(x);
3029 break;
3030
3031 default: ShouldNotReachHere(); break;
3032 }
3033 }
3034
3035 void LIRGenerator::profile_arguments(ProfileCall* x) {
3036 if (compilation()->profile_arguments()) {
3037 int bci = x->bci_of_invoke();
3038 ciMethodData* md = x->method()->method_data_or_null();
3039 assert(md != nullptr, "Sanity");
3040 ciProfileData* data = md->bci_to_data(bci);
3041 if (data != nullptr) {
3042 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3043 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3044 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3045 int base_offset = md->byte_offset_of_slot(data, extra);
3046 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3047 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3048
3049 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3050 int start = 0;
3051 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3052 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3053 // first argument is not profiled at call (method handle invoke)
3054 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3055 start = 1;
3056 }
3057 ciSignature* callee_signature = x->callee()->signature();
3058 // method handle call to virtual method
3059 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3060 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
3061
3062 bool ignored_will_link;
3063 ciSignature* signature_at_call = nullptr;
3064 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3065 ciSignatureStream signature_at_call_stream(signature_at_call);
3066
3067 // if called through method handle invoke, some arguments may have been popped
3068 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3069 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3070 ciKlass* exact = profile_type(md, base_offset, off,
3071 args->type(i), x->profiled_arg_at(i+start), mdp,
3072 !x->arg_needs_null_check(i+start),
3073 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3074 if (exact != nullptr) {
3075 md->set_argument_type(bci, i, exact);
3076 }
3077 }
3078 } else {
3079 #ifdef ASSERT
3080 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3081 int n = x->nb_profiled_args();
3082 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3083 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3084 "only at JSR292 bytecodes");
3085 #endif
3086 }
3087 }
3088 }
3089 }
3090
3091 // profile parameters on entry to an inlined method
3092 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3093 if (compilation()->profile_parameters() && x->inlined()) {
3094 ciMethodData* md = x->callee()->method_data_or_null();
3095 if (md != nullptr) {
3096 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3097 if (parameters_type_data != nullptr) {
3098 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3099 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3100 bool has_receiver = !x->callee()->is_static();
3101 ciSignature* sig = x->callee()->signature();
3102 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3103 int i = 0; // to iterate on the Instructions
3104 Value arg = x->recv();
3105 bool not_null = false;
3106 int bci = x->bci_of_invoke();
3107 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3108 // The first parameter is the receiver so that's what we start
3109 // with if it exists. One exception is method handle call to
3110 // virtual method: the receiver is in the args list
3111 if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3112 i = 1;
3113 arg = x->profiled_arg_at(0);
3114 not_null = !x->arg_needs_null_check(0);
3115 }
3116 int k = 0; // to iterate on the profile data
3117 for (;;) {
3118 intptr_t profiled_k = parameters->type(k);
3119 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3120 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3121 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3122 // If the profile is known statically set it once for all and do not emit any code
3123 if (exact != nullptr) {
3124 md->set_parameter_type(k, exact);
3125 }
3126 k++;
3127 if (k >= parameters_type_data->number_of_parameters()) {
3128 #ifdef ASSERT
3129 int extra = 0;
3130 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3131 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3132 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3133 extra += 1;
3134 }
3135 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3136 #endif
3137 break;
3138 }
3139 arg = x->profiled_arg_at(i);
3140 not_null = !x->arg_needs_null_check(i);
3141 i++;
3142 }
3143 }
3144 }
3145 }
3146 }
3147
3148 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3149 // Need recv in a temporary register so it interferes with the other temporaries
3150 LIR_Opr recv = LIR_OprFact::illegalOpr;
3151 LIR_Opr mdo = new_register(T_METADATA);
3152 // tmp is used to hold the counters on SPARC
3153 LIR_Opr tmp = new_pointer_register();
3154
3155 if (x->nb_profiled_args() > 0) {
3156 profile_arguments(x);
3157 }
3158
3159 // profile parameters on inlined method entry including receiver
3160 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3161 profile_parameters_at_call(x);
3162 }
3163
3164 if (x->recv() != nullptr) {
3165 LIRItem value(x->recv(), this);
3166 value.load_item();
3167 recv = new_register(T_OBJECT);
3168 __ move(value.result(), recv);
3169 }
3170 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3171 }
3172
3173 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3174 int bci = x->bci_of_invoke();
3175 ciMethodData* md = x->method()->method_data_or_null();
3176 assert(md != nullptr, "Sanity");
3177 ciProfileData* data = md->bci_to_data(bci);
3178 if (data != nullptr) {
3179 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3180 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3181 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3182
3183 bool ignored_will_link;
3184 ciSignature* signature_at_call = nullptr;
3185 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3186
3187 // The offset within the MDO of the entry to update may be too large
3188 // to be used in load/store instructions on some platforms. So have
3189 // profile_type() compute the address of the profile in a register.
3190 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3191 ret->type(), x->ret(), mdp,
3192 !x->needs_null_check(),
3193 signature_at_call->return_type()->as_klass(),
3194 x->callee()->signature()->return_type()->as_klass());
3195 if (exact != nullptr) {
3196 md->set_return_type(bci, exact);
3197 }
3198 }
3199 }
3200
3201 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3202 // We can safely ignore accessors here, since c2 will inline them anyway,
3203 // accessors are also always mature.
3204 if (!x->inlinee()->is_accessor()) {
3205 CodeEmitInfo* info = state_for(x, x->state(), true);
3206 // Notify the runtime very infrequently only to take care of counter overflows
3207 int freq_log = Tier23InlineeNotifyFreqLog;
3208 double scale;
3209 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3210 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3211 }
3212 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3213 }
3214 }
3215
3216 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3217 if (compilation()->is_profiling()) {
3218 #if defined(X86) && !defined(_LP64)
3219 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3220 LIR_Opr left_copy = new_register(left->type());
3221 __ move(left, left_copy);
3222 __ cmp(cond, left_copy, right);
3223 #else
3224 __ cmp(cond, left, right);
3225 #endif
3226 LIR_Opr step = new_register(T_INT);
3227 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3228 LIR_Opr zero = LIR_OprFact::intConst(0);
3229 __ cmove(cond,
3230 (left_bci < bci) ? plus_one : zero,
3231 (right_bci < bci) ? plus_one : zero,
3232 step, left->type());
3233 increment_backedge_counter(info, step, bci);
3234 }
3235 }
3236
3237
3238 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3239 int freq_log = 0;
3240 int level = compilation()->env()->comp_level();
3241 if (level == CompLevel_limited_profile) {
3242 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3243 } else if (level == CompLevel_full_profile) {
3244 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3245 } else {
3246 ShouldNotReachHere();
3247 }
3248 // Increment the appropriate invocation/backedge counter and notify the runtime.
3249 double scale;
3250 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3251 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3252 }
3253 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3254 }
3255
3256 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3257 ciMethod *method, LIR_Opr step, int frequency,
3258 int bci, bool backedge, bool notify) {
3259 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3260 int level = _compilation->env()->comp_level();
3261 assert(level > CompLevel_simple, "Shouldn't be here");
3262
3263 int offset = -1;
3264 LIR_Opr counter_holder;
3265 if (level == CompLevel_limited_profile) {
3266 MethodCounters* counters_adr = method->ensure_method_counters();
3267 if (counters_adr == nullptr) {
3268 bailout("method counters allocation failed");
3269 return;
3270 }
3271 counter_holder = new_pointer_register();
3272 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3273 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3274 MethodCounters::invocation_counter_offset());
3275 } else if (level == CompLevel_full_profile) {
3276 counter_holder = new_register(T_METADATA);
3277 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3278 MethodData::invocation_counter_offset());
3279 ciMethodData* md = method->method_data_or_null();
3280 assert(md != nullptr, "Sanity");
3281 __ metadata2reg(md->constant_encoding(), counter_holder);
3282 } else {
3283 ShouldNotReachHere();
3284 }
3285 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3286 LIR_Opr result = new_register(T_INT);
3287 __ load(counter, result);
3288 __ add(result, step, result);
3289 __ store(result, counter);
3290 if (notify && (!backedge || UseOnStackReplacement)) {
3291 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3292 // The bci for info can point to cmp for if's we want the if bci
3293 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3294 int freq = frequency << InvocationCounter::count_shift;
3295 if (freq == 0) {
3296 if (!step->is_constant()) {
3297 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3298 __ branch(lir_cond_notEqual, overflow);
3299 } else {
3300 __ branch(lir_cond_always, overflow);
3301 }
3302 } else {
3303 LIR_Opr mask = load_immediate(freq, T_INT);
3304 if (!step->is_constant()) {
3305 // If step is 0, make sure the overflow check below always fails
3306 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3307 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3308 }
3309 __ logical_and(result, mask, result);
3310 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3311 __ branch(lir_cond_equal, overflow);
3312 }
3313 __ branch_destination(overflow->continuation());
3314 }
3315 }
3316
3317 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3318 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3319 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3320
3321 if (x->pass_thread()) {
3322 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3323 args->append(getThreadPointer());
3324 }
3325
3326 for (int i = 0; i < x->number_of_arguments(); i++) {
3327 Value a = x->argument_at(i);
3328 LIRItem* item = new LIRItem(a, this);
3329 item->load_item();
3330 args->append(item->result());
3331 signature->append(as_BasicType(a->type()));
3332 }
3333
3334 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3335 if (x->type() == voidType) {
3336 set_no_result(x);
3337 } else {
3338 __ move(result, rlock_result(x));
3339 }
3340 }
3341
3342 #ifdef ASSERT
3343 void LIRGenerator::do_Assert(Assert *x) {
3344 ValueTag tag = x->x()->type()->tag();
3345 If::Condition cond = x->cond();
3346
3347 LIRItem xitem(x->x(), this);
3348 LIRItem yitem(x->y(), this);
3349 LIRItem* xin = &xitem;
3350 LIRItem* yin = &yitem;
3351
3352 assert(tag == intTag, "Only integer assertions are valid!");
3353
3354 xin->load_item();
3355 yin->dont_load_item();
3356
3357 set_no_result(x);
3358
3359 LIR_Opr left = xin->result();
3360 LIR_Opr right = yin->result();
3361
3362 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3363 }
3364 #endif
3365
3366 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3367
3368
3369 Instruction *a = x->x();
3370 Instruction *b = x->y();
3371 if (!a || StressRangeCheckElimination) {
3372 assert(!b || StressRangeCheckElimination, "B must also be null");
3373
3374 CodeEmitInfo *info = state_for(x, x->state());
3375 CodeStub* stub = new PredicateFailedStub(info);
3376
3377 __ jump(stub);
3378 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3379 int a_int = a->type()->as_IntConstant()->value();
3380 int b_int = b->type()->as_IntConstant()->value();
3381
3382 bool ok = false;
3383
3384 switch(x->cond()) {
3385 case Instruction::eql: ok = (a_int == b_int); break;
3386 case Instruction::neq: ok = (a_int != b_int); break;
3387 case Instruction::lss: ok = (a_int < b_int); break;
3388 case Instruction::leq: ok = (a_int <= b_int); break;
3389 case Instruction::gtr: ok = (a_int > b_int); break;
3390 case Instruction::geq: ok = (a_int >= b_int); break;
3391 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3392 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3393 default: ShouldNotReachHere();
3394 }
3395
3396 if (ok) {
3397
3398 CodeEmitInfo *info = state_for(x, x->state());
3399 CodeStub* stub = new PredicateFailedStub(info);
3400
3401 __ jump(stub);
3402 }
3403 } else {
3404
3405 ValueTag tag = x->x()->type()->tag();
3406 If::Condition cond = x->cond();
3407 LIRItem xitem(x->x(), this);
3408 LIRItem yitem(x->y(), this);
3409 LIRItem* xin = &xitem;
3410 LIRItem* yin = &yitem;
3411
3412 assert(tag == intTag, "Only integer deoptimizations are valid!");
3413
3414 xin->load_item();
3415 yin->dont_load_item();
3416 set_no_result(x);
3417
3418 LIR_Opr left = xin->result();
3419 LIR_Opr right = yin->result();
3420
3421 CodeEmitInfo *info = state_for(x, x->state());
3422 CodeStub* stub = new PredicateFailedStub(info);
3423
3424 __ cmp(lir_cond(cond), left, right);
3425 __ branch(lir_cond(cond), stub);
3426 }
3427 }
3428
3429 void LIRGenerator::do_blackhole(Intrinsic *x) {
3430 assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3431 for (int c = 0; c < x->number_of_arguments(); c++) {
3432 // Load the argument
3433 LIRItem vitem(x->argument_at(c), this);
3434 vitem.load_item();
3435 // ...and leave it unused.
3436 }
3437 }
3438
3439 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3440 LIRItemList args(1);
3441 LIRItem value(arg1, this);
3442 args.append(&value);
3443 BasicTypeList signature;
3444 signature.append(as_BasicType(arg1->type()));
3445
3446 return call_runtime(&signature, &args, entry, result_type, info);
3447 }
3448
3449
3450 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3451 LIRItemList args(2);
3452 LIRItem value1(arg1, this);
3453 LIRItem value2(arg2, this);
3454 args.append(&value1);
3455 args.append(&value2);
3456 BasicTypeList signature;
3457 signature.append(as_BasicType(arg1->type()));
3458 signature.append(as_BasicType(arg2->type()));
3459
3460 return call_runtime(&signature, &args, entry, result_type, info);
3461 }
3462
3463
3464 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3465 address entry, ValueType* result_type, CodeEmitInfo* info) {
3466 // get a result register
3467 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3468 LIR_Opr result = LIR_OprFact::illegalOpr;
3469 if (result_type->tag() != voidTag) {
3470 result = new_register(result_type);
3471 phys_reg = result_register_for(result_type);
3472 }
3473
3474 // move the arguments into the correct location
3475 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3476 assert(cc->length() == args->length(), "argument mismatch");
3477 for (int i = 0; i < args->length(); i++) {
3478 LIR_Opr arg = args->at(i);
3479 LIR_Opr loc = cc->at(i);
3480 if (loc->is_register()) {
3481 __ move(arg, loc);
3482 } else {
3483 LIR_Address* addr = loc->as_address_ptr();
3484 // if (!can_store_as_constant(arg)) {
3485 // LIR_Opr tmp = new_register(arg->type());
3486 // __ move(arg, tmp);
3487 // arg = tmp;
3488 // }
3489 __ move(arg, addr);
3490 }
3491 }
3492
3493 if (info) {
3494 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3495 } else {
3496 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3497 }
3498 if (result->is_valid()) {
3499 __ move(phys_reg, result);
3500 }
3501 return result;
3502 }
3503
3504
3505 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3506 address entry, ValueType* result_type, CodeEmitInfo* info) {
3507 // get a result register
3508 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3509 LIR_Opr result = LIR_OprFact::illegalOpr;
3510 if (result_type->tag() != voidTag) {
3511 result = new_register(result_type);
3512 phys_reg = result_register_for(result_type);
3513 }
3514
3515 // move the arguments into the correct location
3516 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3517
3518 assert(cc->length() == args->length(), "argument mismatch");
3519 for (int i = 0; i < args->length(); i++) {
3520 LIRItem* arg = args->at(i);
3521 LIR_Opr loc = cc->at(i);
3522 if (loc->is_register()) {
3523 arg->load_item_force(loc);
3524 } else {
3525 LIR_Address* addr = loc->as_address_ptr();
3526 arg->load_for_store(addr->type());
3527 __ move(arg->result(), addr);
3528 }
3529 }
3530
3531 if (info) {
3532 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3533 } else {
3534 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3535 }
3536 if (result->is_valid()) {
3537 __ move(phys_reg, result);
3538 }
3539 return result;
3540 }
3541
3542 void LIRGenerator::do_MemBar(MemBar* x) {
3543 LIR_Code code = x->code();
3544 switch(code) {
3545 case lir_membar_acquire : __ membar_acquire(); break;
3546 case lir_membar_release : __ membar_release(); break;
3547 case lir_membar : __ membar(); break;
3548 case lir_membar_loadload : __ membar_loadload(); break;
3549 case lir_membar_storestore: __ membar_storestore(); break;
3550 case lir_membar_loadstore : __ membar_loadstore(); break;
3551 case lir_membar_storeload : __ membar_storeload(); break;
3552 default : ShouldNotReachHere(); break;
3553 }
3554 }
3555
3556 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3557 LIR_Opr value_fixed = rlock_byte(T_BYTE);
3558 if (two_operand_lir_form) {
3559 __ move(value, value_fixed);
3560 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3561 } else {
3562 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3563 }
3564 LIR_Opr klass = new_register(T_METADATA);
3565 load_klass(array, klass, null_check_info);
3566 null_check_info = nullptr;
3567 LIR_Opr layout = new_register(T_INT);
3568 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3569 int diffbit = Klass::layout_helper_boolean_diffbit();
3570 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3571 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3572 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3573 value = value_fixed;
3574 return value;
3575 }