1 /* 2 * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/archiveHeapWriter.hpp" 27 #include "cds/filemap.hpp" 28 #include "cds/heapShared.hpp" 29 #include "gc/shared/collectedHeap.hpp" 30 #include "memory/iterator.inline.hpp" 31 #include "memory/oopFactory.hpp" 32 #include "memory/universe.hpp" 33 #include "oops/compressedOops.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "oops/objArrayOop.inline.hpp" 36 #include "oops/oopHandle.inline.hpp" 37 #include "oops/typeArrayKlass.hpp" 38 #include "oops/typeArrayOop.hpp" 39 #include "runtime/java.hpp" 40 #include "runtime/mutexLocker.hpp" 41 #include "utilities/bitMap.inline.hpp" 42 43 #if INCLUDE_G1GC 44 #include "gc/g1/g1CollectedHeap.hpp" 45 #include "gc/g1/heapRegion.hpp" 46 #endif 47 48 #if INCLUDE_CDS_JAVA_HEAP 49 50 GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer; 51 52 // The following are offsets from buffer_bottom() 53 size_t ArchiveHeapWriter::_buffer_used; 54 size_t ArchiveHeapWriter::_heap_roots_bottom_offset; 55 56 size_t ArchiveHeapWriter::_heap_roots_word_size; 57 58 address ArchiveHeapWriter::_requested_bottom; 59 address ArchiveHeapWriter::_requested_top; 60 61 GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers; 62 GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs; 63 64 ArchiveHeapWriter::BufferOffsetToSourceObjectTable* 65 ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr; 66 67 void ArchiveHeapWriter::init() { 68 if (HeapShared::can_write()) { 69 Universe::heap()->collect(GCCause::_java_lang_system_gc); 70 71 _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(); 72 73 _requested_bottom = nullptr; 74 _requested_top = nullptr; 75 76 _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048); 77 _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000); 78 79 guarantee(UseG1GC, "implementation limitation"); 80 guarantee(MIN_GC_REGION_ALIGNMENT <= /*G1*/HeapRegion::min_region_size_in_words() * HeapWordSize, "must be"); 81 } 82 } 83 84 void ArchiveHeapWriter::add_source_obj(oop src_obj) { 85 _source_objs->append(src_obj); 86 } 87 88 void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots, 89 ArchiveHeapInfo* heap_info) { 90 assert(HeapShared::can_write(), "sanity"); 91 allocate_buffer(); 92 copy_source_objs_to_buffer(roots); 93 set_requested_address(heap_info); 94 relocate_embedded_oops(roots, heap_info); 95 } 96 97 bool ArchiveHeapWriter::is_too_large_to_archive(oop o) { 98 return is_too_large_to_archive(o->size()); 99 } 100 101 bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) { 102 typeArrayOop value = java_lang_String::value_no_keepalive(string); 103 return is_too_large_to_archive(value); 104 } 105 106 bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) { 107 assert(size > 0, "no zero-size object"); 108 assert(size * HeapWordSize > size, "no overflow"); 109 static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive"); 110 111 size_t byte_size = size * HeapWordSize; 112 if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) { 113 return true; 114 } else { 115 return false; 116 } 117 } 118 119 // Various lookup functions between source_obj, buffered_obj and requested_obj 120 bool ArchiveHeapWriter::is_in_requested_range(oop o) { 121 assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized"); 122 address a = cast_from_oop<address>(o); 123 return (_requested_bottom <= a && a < _requested_top); 124 } 125 126 oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) { 127 oop req_obj = cast_to_oop(_requested_bottom + offset); 128 assert(is_in_requested_range(req_obj), "must be"); 129 return req_obj; 130 } 131 132 oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) { 133 assert(DumpSharedSpaces, "dump-time only"); 134 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 135 if (p != nullptr) { 136 return requested_obj_from_buffer_offset(p->buffer_offset()); 137 } else { 138 return nullptr; 139 } 140 } 141 142 oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) { 143 oop* p = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr)); 144 if (p != nullptr) { 145 return *p; 146 } else { 147 return nullptr; 148 } 149 } 150 151 address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) { 152 return _requested_bottom + buffered_address_to_offset(buffered_addr); 153 } 154 155 oop ArchiveHeapWriter::heap_roots_requested_address() { 156 return cast_to_oop(_requested_bottom + _heap_roots_bottom_offset); 157 } 158 159 address ArchiveHeapWriter::requested_address() { 160 assert(_buffer != nullptr, "must be initialized"); 161 return _requested_bottom; 162 } 163 164 void ArchiveHeapWriter::allocate_buffer() { 165 int initial_buffer_size = 100000; 166 _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size); 167 _buffer_used = 0; 168 ensure_buffer_space(1); // so that buffer_bottom() works 169 } 170 171 void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) { 172 // We usually have very small heaps. If we get a huge one it's probably caused by a bug. 173 guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects"); 174 _buffer->at_grow(to_array_index(min_bytes)); 175 } 176 177 void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 178 Klass* k = Universe::objectArrayKlassObj(); // already relocated to point to archived klass 179 int length = roots->length(); 180 _heap_roots_word_size = objArrayOopDesc::object_size(length); 181 size_t byte_size = _heap_roots_word_size * HeapWordSize; 182 if (byte_size >= MIN_GC_REGION_ALIGNMENT) { 183 log_error(cds, heap)("roots array is too large. Please reduce the number of classes"); 184 vm_exit(1); 185 } 186 187 maybe_fill_gc_region_gap(byte_size); 188 189 size_t new_used = _buffer_used + byte_size; 190 ensure_buffer_space(new_used); 191 192 HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used); 193 memset(mem, 0, byte_size); 194 { 195 // This is copied from MemAllocator::finish 196 if (UseCompactObjectHeaders) { 197 oopDesc::release_set_mark(mem, k->prototype_header()); 198 } else { 199 oopDesc::set_mark(mem, markWord::prototype()); 200 oopDesc::release_set_klass(mem, k); 201 } 202 } 203 { 204 // This is copied from ObjArrayAllocator::initialize 205 arrayOopDesc::set_length(mem, length); 206 } 207 208 objArrayOop arrayOop = objArrayOop(cast_to_oop(mem)); 209 for (int i = 0; i < length; i++) { 210 // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside of the real heap! 211 oop o = roots->at(i); 212 if (UseCompressedOops) { 213 * arrayOop->obj_at_addr<narrowOop>(i) = CompressedOops::encode(o); 214 } else { 215 * arrayOop->obj_at_addr<oop>(i) = o; 216 } 217 } 218 log_info(cds, heap)("archived obj roots[%d] = " SIZE_FORMAT " bytes, klass = %p, obj = %p", length, byte_size, k, mem); 219 220 _heap_roots_bottom_offset = _buffer_used; 221 _buffer_used = new_used; 222 } 223 224 void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 225 for (int i = 0; i < _source_objs->length(); i++) { 226 oop src_obj = _source_objs->at(i); 227 HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj); 228 assert(info != nullptr, "must be"); 229 size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj); 230 info->set_buffer_offset(buffer_offset); 231 232 _buffer_offset_to_source_obj_table->put(buffer_offset, src_obj); 233 } 234 235 copy_roots_to_buffer(roots); 236 237 log_info(cds)("Size of heap region = " SIZE_FORMAT " bytes, %d objects, %d roots", 238 _buffer_used, _source_objs->length() + 1, roots->length()); 239 } 240 241 size_t ArchiveHeapWriter::filler_array_byte_size(int length) { 242 size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize; 243 return byte_size; 244 } 245 246 int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) { 247 assert(is_object_aligned(fill_bytes), "must be"); 248 size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 249 250 int initial_length = to_array_length(fill_bytes / elemSize); 251 for (int length = initial_length; length >= 0; length --) { 252 size_t array_byte_size = filler_array_byte_size(length); 253 if (array_byte_size == fill_bytes) { 254 return length; 255 } 256 } 257 258 ShouldNotReachHere(); 259 return -1; 260 } 261 262 void ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) { 263 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 264 Klass* oak = Universe::objectArrayKlassObj(); // already relocated to point to archived klass 265 HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used); 266 memset(mem, 0, fill_bytes); 267 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak); 268 if (UseCompactObjectHeaders) { 269 oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk)); 270 } else { 271 oopDesc::set_mark(mem, markWord::prototype()); 272 cast_to_oop(mem)->set_narrow_klass(nk); 273 } 274 arrayOopDesc::set_length(mem, array_length); 275 } 276 277 void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) { 278 // We fill only with arrays (so we don't need to use a single HeapWord filler if the 279 // leftover space is smaller than a zero-sized array object). Therefore, we need to 280 // make sure there's enough space of min_filler_byte_size in the current region after 281 // required_byte_size has been allocated. If not, fill the remainder of the current 282 // region. 283 size_t min_filler_byte_size = filler_array_byte_size(0); 284 size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size; 285 286 const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 287 const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 288 289 if (cur_min_region_bottom != next_min_region_bottom) { 290 // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way 291 // we can map the region in any region-based collector. 292 assert(next_min_region_bottom > cur_min_region_bottom, "must be"); 293 assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT, 294 "no buffered object can be larger than %d bytes", MIN_GC_REGION_ALIGNMENT); 295 296 const size_t filler_end = next_min_region_bottom; 297 const size_t fill_bytes = filler_end - _buffer_used; 298 assert(fill_bytes > 0, "must be"); 299 ensure_buffer_space(filler_end); 300 301 int array_length = filler_array_length(fill_bytes); 302 log_info(cds, heap)("Inserting filler obj array of %d elements (" SIZE_FORMAT " bytes total) @ buffer offset " SIZE_FORMAT, 303 array_length, fill_bytes, _buffer_used); 304 init_filler_array_at_buffer_top(array_length, fill_bytes); 305 306 _buffer_used = filler_end; 307 } 308 } 309 310 size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) { 311 assert(!is_too_large_to_archive(src_obj), "already checked"); 312 size_t byte_size = src_obj->size() * HeapWordSize; 313 assert(byte_size > 0, "no zero-size objects"); 314 315 // For region-based collectors such as G1, the archive heap may be mapped into 316 // multiple regions. We need to make sure that we don't have an object that can possible 317 // span across two regions. 318 maybe_fill_gc_region_gap(byte_size); 319 320 size_t new_used = _buffer_used + byte_size; 321 assert(new_used > _buffer_used, "no wrap around"); 322 323 size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 324 size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 325 assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries"); 326 327 ensure_buffer_space(new_used); 328 329 address from = cast_from_oop<address>(src_obj); 330 address to = offset_to_buffered_address<address>(_buffer_used); 331 assert(is_object_aligned(_buffer_used), "sanity"); 332 assert(is_object_aligned(byte_size), "sanity"); 333 memcpy(to, from, byte_size); 334 335 size_t buffered_obj_offset = _buffer_used; 336 _buffer_used = new_used; 337 338 return buffered_obj_offset; 339 } 340 341 void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) { 342 assert(!info->is_used(), "only set once"); 343 assert(UseG1GC, "must be"); 344 address heap_end = (address)G1CollectedHeap::heap()->reserved().end(); 345 log_info(cds, heap)("Heap end = %p", heap_end); 346 347 size_t heap_region_byte_size = _buffer_used; 348 assert(heap_region_byte_size > 0, "must archived at least one object!"); 349 350 _requested_bottom = align_down(heap_end - heap_region_byte_size, HeapRegion::GrainBytes); 351 assert(is_aligned(_requested_bottom, HeapRegion::GrainBytes), "sanity"); 352 353 _requested_top = _requested_bottom + _buffer_used; 354 355 info->set_memregion(MemRegion(offset_to_buffered_address<HeapWord*>(0), 356 offset_to_buffered_address<HeapWord*>(_buffer_used))); 357 } 358 359 // Oop relocation 360 361 template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) { 362 assert(is_in_requested_range(cast_to_oop(p)), "must be"); 363 364 address addr = address(p); 365 assert(addr >= _requested_bottom, "must be"); 366 size_t offset = addr - _requested_bottom; 367 return offset_to_buffered_address<T*>(offset); 368 } 369 370 template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) { 371 oop o = load_oop_from_buffer(buffered_addr); 372 assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop"); 373 return o; 374 } 375 376 template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr, 377 oop request_oop) { 378 assert(is_in_requested_range(request_oop), "must be"); 379 store_oop_in_buffer(buffered_addr, request_oop); 380 } 381 382 void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) { 383 // Make heap content deterministic. See comments inside HeapShared::to_requested_address. 384 *buffered_addr = HeapShared::to_requested_address(requested_obj); 385 } 386 387 void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) { 388 // Note: HeapShared::to_requested_address() is not necessary because 389 // the heap always starts at a deterministic address with UseCompressedOops==true. 390 narrowOop val = CompressedOops::encode_not_null(requested_obj); 391 *buffered_addr = val; 392 } 393 394 oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) { 395 return *buffered_addr; 396 } 397 398 oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) { 399 return CompressedOops::decode(*buffered_addr); 400 } 401 402 template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) { 403 oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer); 404 if (!CompressedOops::is_null(source_referent)) { 405 oop request_referent = source_obj_to_requested_obj(source_referent); 406 store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent); 407 mark_oop_pointer<T>(field_addr_in_buffer, oopmap); 408 } 409 } 410 411 template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) { 412 T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr)); 413 address requested_region_bottom; 414 415 assert(request_p >= (T*)_requested_bottom, "sanity"); 416 assert(request_p < (T*)_requested_top, "sanity"); 417 requested_region_bottom = _requested_bottom; 418 419 // Mark the pointer in the oopmap 420 T* region_bottom = (T*)requested_region_bottom; 421 assert(request_p >= region_bottom, "must be"); 422 BitMap::idx_t idx = request_p - region_bottom; 423 assert(idx < oopmap->size(), "overflow"); 424 oopmap->set_bit(idx); 425 } 426 427 void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj, Klass* src_klass) { 428 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 429 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass); 430 address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj)); 431 432 oop fake_oop = cast_to_oop(buffered_addr); 433 if (UseCompactObjectHeaders) { 434 fake_oop->set_mark(fake_oop->mark().set_narrow_klass(nk)); 435 } else { 436 fake_oop->set_narrow_klass(nk); 437 } 438 439 // We need to retain the identity_hash, because it may have been used by some hashtables 440 // in the shared heap. 441 if (src_obj != nullptr && !src_obj->fast_no_hash_check()) { 442 int src_hash = src_obj->identity_hash(); 443 if (UseCompactObjectHeaders) { 444 fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash)); 445 } else { 446 fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash)); 447 } 448 assert(fake_oop->mark().is_unlocked(), "sanity"); 449 450 DEBUG_ONLY(int archived_hash = fake_oop->identity_hash()); 451 assert(src_hash == archived_hash, "Different hash codes: original %x, archived %x", src_hash, archived_hash); 452 } 453 } 454 455 // Relocate an element in the buffered copy of HeapShared::roots() 456 template <typename T> void ArchiveHeapWriter::relocate_root_at(oop requested_roots, int index, CHeapBitMap* oopmap) { 457 size_t offset = (size_t)((objArrayOop)requested_roots)->obj_at_offset<T>(index); 458 relocate_field_in_buffer<T>((T*)(buffered_heap_roots_addr() + offset), oopmap); 459 } 460 461 class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure { 462 oop _src_obj; 463 address _buffered_obj; 464 CHeapBitMap* _oopmap; 465 466 public: 467 EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) : 468 _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap) {} 469 470 void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); } 471 void do_oop( oop *p) { EmbeddedOopRelocator::do_oop_work(p); } 472 473 private: 474 template <class T> void do_oop_work(T *p) { 475 size_t field_offset = pointer_delta(p, _src_obj, sizeof(char)); 476 ArchiveHeapWriter::relocate_field_in_buffer<T>((T*)(_buffered_obj + field_offset), _oopmap); 477 } 478 }; 479 480 // Update all oop fields embedded in the buffered objects 481 void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots, 482 ArchiveHeapInfo* heap_info) { 483 size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 484 size_t heap_region_byte_size = _buffer_used; 485 heap_info->oopmap()->resize(heap_region_byte_size / oopmap_unit); 486 487 auto iterator = [&] (oop src_obj, HeapShared::CachedOopInfo& info) { 488 oop requested_obj = requested_obj_from_buffer_offset(info.buffer_offset()); 489 update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass()); 490 address buffered_obj = offset_to_buffered_address<address>(info.buffer_offset()); 491 EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap()); 492 src_obj->oop_iterate(&relocator); 493 }; 494 HeapShared::archived_object_cache()->iterate_all(iterator); 495 496 // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and 497 // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it. 498 oop requested_roots = requested_obj_from_buffer_offset(_heap_roots_bottom_offset); 499 update_header_for_requested_obj(requested_roots, nullptr, Universe::objectArrayKlassObj()); 500 int length = roots != nullptr ? roots->length() : 0; 501 for (int i = 0; i < length; i++) { 502 if (UseCompressedOops) { 503 relocate_root_at<narrowOop>(requested_roots, i, heap_info->oopmap()); 504 } else { 505 relocate_root_at<oop>(requested_roots, i, heap_info->oopmap()); 506 } 507 } 508 509 compute_ptrmap(heap_info); 510 } 511 512 void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) { 513 Metadata* ptr = src_obj->metadata_field_acquire(field_offset); 514 if (ptr != nullptr) { 515 NativePointerInfo info; 516 info._src_obj = src_obj; 517 info._field_offset = field_offset; 518 _native_pointers->append(info); 519 } 520 } 521 522 void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) { 523 int num_non_null_ptrs = 0; 524 Metadata** bottom = (Metadata**) _requested_bottom; 525 Metadata** top = (Metadata**) _requested_top; // exclusive 526 heap_info->ptrmap()->resize(top - bottom); 527 528 BitMap::idx_t max_idx = 32; // paranoid - don't make it too small 529 for (int i = 0; i < _native_pointers->length(); i++) { 530 NativePointerInfo info = _native_pointers->at(i); 531 oop src_obj = info._src_obj; 532 int field_offset = info._field_offset; 533 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 534 // requested_field_addr = the address of this field in the requested space 535 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 536 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 537 assert(bottom <= requested_field_addr && requested_field_addr < top, "range check"); 538 539 // Mark this field in the bitmap 540 BitMap::idx_t idx = requested_field_addr - bottom; 541 heap_info->ptrmap()->set_bit(idx); 542 num_non_null_ptrs ++; 543 max_idx = MAX2(max_idx, idx); 544 545 // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have 546 // this address if the RO/RW regions are mapped at the default location). 547 548 Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr); 549 Metadata* native_ptr = *buffered_field_addr; 550 assert(native_ptr != nullptr, "sanity"); 551 552 address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr); 553 address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr); 554 *buffered_field_addr = (Metadata*)requested_native_ptr; 555 } 556 557 heap_info->ptrmap()->resize(max_idx + 1); 558 log_info(cds, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (" SIZE_FORMAT " bits)", 559 num_non_null_ptrs, size_t(heap_info->ptrmap()->size())); 560 } 561 562 #endif // INCLUDE_CDS_JAVA_HEAP