1 /*
   2  * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "gc/g1/g1Allocator.inline.hpp"
  33 #include "gc/g1/g1Arguments.hpp"
  34 #include "gc/g1/g1BarrierSet.hpp"
  35 #include "gc/g1/g1BatchedTask.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectionSetCandidates.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1ConcurrentRefine.hpp"
  41 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  42 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  43 #include "gc/g1/g1DirtyCardQueue.hpp"
  44 #include "gc/g1/g1EvacStats.inline.hpp"
  45 #include "gc/g1/g1FullCollector.hpp"
  46 #include "gc/g1/g1GCCounters.hpp"
  47 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  48 #include "gc/g1/g1GCPhaseTimes.hpp"
  49 #include "gc/g1/g1GCPauseType.hpp"
  50 #include "gc/g1/g1HeapSizingPolicy.hpp"
  51 #include "gc/g1/g1HeapTransition.hpp"
  52 #include "gc/g1/g1HeapVerifier.hpp"
  53 #include "gc/g1/g1InitLogger.hpp"
  54 #include "gc/g1/g1MemoryPool.hpp"
  55 #include "gc/g1/g1MonotonicArenaFreeMemoryTask.hpp"
  56 #include "gc/g1/g1OopClosures.inline.hpp"
  57 #include "gc/g1/g1ParallelCleaning.hpp"
  58 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  59 #include "gc/g1/g1PeriodicGCTask.hpp"
  60 #include "gc/g1/g1Policy.hpp"
  61 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  62 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  63 #include "gc/g1/g1RemSet.hpp"
  64 #include "gc/g1/g1RootClosures.hpp"
  65 #include "gc/g1/g1RootProcessor.hpp"
  66 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  67 #include "gc/g1/g1ServiceThread.hpp"
  68 #include "gc/g1/g1ThreadLocalData.hpp"
  69 #include "gc/g1/g1Trace.hpp"
  70 #include "gc/g1/g1UncommitRegionTask.hpp"
  71 #include "gc/g1/g1VMOperations.hpp"
  72 #include "gc/g1/g1YoungCollector.hpp"
  73 #include "gc/g1/g1YoungGCEvacFailureInjector.hpp"
  74 #include "gc/g1/heapRegion.inline.hpp"
  75 #include "gc/g1/heapRegionRemSet.inline.hpp"
  76 #include "gc/g1/heapRegionSet.inline.hpp"
  77 #include "gc/shared/classUnloadingContext.hpp"
  78 #include "gc/shared/concurrentGCBreakpoints.hpp"
  79 #include "gc/shared/gcBehaviours.hpp"
  80 #include "gc/shared/gcHeapSummary.hpp"
  81 #include "gc/shared/gcId.hpp"
  82 #include "gc/shared/gcLocker.inline.hpp"
  83 #include "gc/shared/gcTimer.hpp"
  84 #include "gc/shared/gcTraceTime.inline.hpp"
  85 #include "gc/shared/generationSpec.hpp"
  86 #include "gc/shared/isGCActiveMark.hpp"
  87 #include "gc/shared/locationPrinter.inline.hpp"
  88 #include "gc/shared/oopStorageParState.hpp"
  89 #include "gc/shared/preservedMarks.inline.hpp"
  90 #include "gc/shared/referenceProcessor.inline.hpp"
  91 #include "gc/shared/suspendibleThreadSet.hpp"
  92 #include "gc/shared/taskqueue.inline.hpp"
  93 #include "gc/shared/taskTerminator.hpp"
  94 #include "gc/shared/tlab_globals.hpp"
  95 #include "gc/shared/workerPolicy.hpp"
  96 #include "gc/shared/weakProcessor.inline.hpp"
  97 #include "logging/log.hpp"
  98 #include "memory/allocation.hpp"
  99 #include "memory/heapInspection.hpp"
 100 #include "memory/iterator.hpp"
 101 #include "memory/metaspaceUtils.hpp"
 102 #include "memory/resourceArea.hpp"
 103 #include "memory/universe.hpp"
 104 #include "oops/access.inline.hpp"
 105 #include "oops/compressedOops.inline.hpp"
 106 #include "oops/oop.inline.hpp"
 107 #include "runtime/atomic.hpp"
 108 #include "runtime/handles.inline.hpp"
 109 #include "runtime/init.hpp"
 110 #include "runtime/java.hpp"
 111 #include "runtime/orderAccess.hpp"
 112 #include "runtime/threadSMR.hpp"
 113 #include "runtime/vmThread.hpp"
 114 #include "utilities/align.hpp"
 115 #include "utilities/autoRestore.hpp"
 116 #include "utilities/bitMap.inline.hpp"
 117 #include "utilities/globalDefinitions.hpp"
 118 #include "utilities/stack.inline.hpp"
 119 
 120 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 121 
 122 // INVARIANTS/NOTES
 123 //
 124 // All allocation activity covered by the G1CollectedHeap interface is
 125 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 126 // and allocate_new_tlab, which are the "entry" points to the
 127 // allocation code from the rest of the JVM.  (Note that this does not
 128 // apply to TLAB allocation, which is not part of this interface: it
 129 // is done by clients of this interface.)
 130 
 131 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 132   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 133 }
 134 
 135 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 136   // The from card cache is not the memory that is actually committed. So we cannot
 137   // take advantage of the zero_filled parameter.
 138   reset_from_card_cache(start_idx, num_regions);
 139 }
 140 
 141 void G1CollectedHeap::run_batch_task(G1BatchedTask* cl) {
 142   uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers()));
 143   cl->set_max_workers(num_workers);
 144   workers()->run_task(cl, num_workers);
 145 }
 146 
 147 uint G1CollectedHeap::get_chunks_per_region() {
 148   uint log_region_size = HeapRegion::LogOfHRGrainBytes;
 149   // Limit the expected input values to current known possible values of the
 150   // (log) region size. Adjust as necessary after testing if changing the permissible
 151   // values for region size.
 152   assert(log_region_size >= 20 && log_region_size <= 29,
 153          "expected value in [20,29], but got %u", log_region_size);
 154   return 1u << (log_region_size / 2 - 4);
 155 }
 156 
 157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 158                                              MemRegion mr) {
 159   return new HeapRegion(hrs_index, bot(), mr, &_card_set_config);
 160 }
 161 
 162 // Private methods.
 163 
 164 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 165                                         HeapRegionType type,
 166                                         bool do_expand,
 167                                         uint node_index) {
 168   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 169          "the only time we use this to allocate a humongous region is "
 170          "when we are allocating a single humongous region");
 171 
 172   HeapRegion* res = _hrm.allocate_free_region(type, node_index);
 173 
 174   if (res == nullptr && do_expand) {
 175     // Currently, only attempts to allocate GC alloc regions set
 176     // do_expand to true. So, we should only reach here during a
 177     // safepoint.
 178     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 179 
 180     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 181                               word_size * HeapWordSize);
 182 
 183     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 184            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 185            word_size * HeapWordSize);
 186     if (expand_single_region(node_index)) {
 187       // Given that expand_single_region() succeeded in expanding the heap, and we
 188       // always expand the heap by an amount aligned to the heap
 189       // region size, the free list should in theory not be empty.
 190       // In either case allocate_free_region() will check for null.
 191       res = _hrm.allocate_free_region(type, node_index);
 192     }
 193   }
 194   return res;
 195 }
 196 
 197 void G1CollectedHeap::set_humongous_metadata(HeapRegion* first_hr,
 198                                              uint num_regions,
 199                                              size_t word_size,
 200                                              bool update_remsets) {
 201   // Calculate the new top of the humongous object.
 202   HeapWord* obj_top = first_hr->bottom() + word_size;
 203   // The word size sum of all the regions used
 204   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 205   assert(word_size <= word_size_sum, "sanity");
 206 
 207   // How many words memory we "waste" which cannot hold a filler object.
 208   size_t words_not_fillable = 0;
 209 
 210   // Pad out the unused tail of the last region with filler
 211   // objects, for improved usage accounting.
 212 
 213   // How many words can we use for filler objects.
 214   size_t words_fillable = word_size_sum - word_size;
 215 
 216   if (words_fillable >= G1CollectedHeap::min_fill_size()) {
 217     G1CollectedHeap::fill_with_objects(obj_top, words_fillable);
 218   } else {
 219     // We have space to fill, but we cannot fit an object there.
 220     words_not_fillable = words_fillable;
 221     words_fillable = 0;
 222   }
 223 
 224   // We will set up the first region as "starts humongous". This
 225   // will also update the BOT covering all the regions to reflect
 226   // that there is a single object that starts at the bottom of the
 227   // first region.
 228   first_hr->hr_clear(false /* clear_space */);
 229   first_hr->set_starts_humongous(obj_top, words_fillable);
 230 
 231   if (update_remsets) {
 232     _policy->remset_tracker()->update_at_allocate(first_hr);
 233   }
 234 
 235   // Indices of first and last regions in the series.
 236   uint first = first_hr->hrm_index();
 237   uint last = first + num_regions - 1;
 238 
 239   HeapRegion* hr = nullptr;
 240   for (uint i = first + 1; i <= last; ++i) {
 241     hr = region_at(i);
 242     hr->hr_clear(false /* clear_space */);
 243     hr->set_continues_humongous(first_hr);
 244     if (update_remsets) {
 245       _policy->remset_tracker()->update_at_allocate(hr);
 246     }
 247   }
 248 
 249   // Up to this point no concurrent thread would have been able to
 250   // do any scanning on any region in this series. All the top
 251   // fields still point to bottom, so the intersection between
 252   // [bottom,top] and [card_start,card_end] will be empty. Before we
 253   // update the top fields, we'll do a storestore to make sure that
 254   // no thread sees the update to top before the zeroing of the
 255   // object header and the BOT initialization.
 256   OrderAccess::storestore();
 257 
 258   // Now, we will update the top fields of the "continues humongous"
 259   // regions except the last one.
 260   for (uint i = first; i < last; ++i) {
 261     hr = region_at(i);
 262     hr->set_top(hr->end());
 263   }
 264 
 265   hr = region_at(last);
 266   // If we cannot fit a filler object, we must set top to the end
 267   // of the humongous object, otherwise we cannot iterate the heap
 268   // and the BOT will not be complete.
 269   hr->set_top(hr->end() - words_not_fillable);
 270 
 271   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 272          "obj_top should be in last region");
 273 
 274   assert(words_not_fillable == 0 ||
 275          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 276          "Miscalculation in humongous allocation");
 277 }
 278 
 279 HeapWord*
 280 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 281                                                            uint num_regions,
 282                                                            size_t word_size) {
 283   assert(first_hr != nullptr, "pre-condition");
 284   assert(is_humongous(word_size), "word_size should be humongous");
 285   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 286 
 287   // Index of last region in the series.
 288   uint first = first_hr->hrm_index();
 289   uint last = first + num_regions - 1;
 290 
 291   // We need to initialize the region(s) we just discovered. This is
 292   // a bit tricky given that it can happen concurrently with
 293   // refinement threads refining cards on these regions and
 294   // potentially wanting to refine the BOT as they are scanning
 295   // those cards (this can happen shortly after a cleanup; see CR
 296   // 6991377). So we have to set up the region(s) carefully and in
 297   // a specific order.
 298 
 299   // The passed in hr will be the "starts humongous" region. The header
 300   // of the new object will be placed at the bottom of this region.
 301   HeapWord* new_obj = first_hr->bottom();
 302 
 303   // First, we need to zero the header of the space that we will be
 304   // allocating. When we update top further down, some refinement
 305   // threads might try to scan the region. By zeroing the header we
 306   // ensure that any thread that will try to scan the region will
 307   // come across the zero klass word and bail out.
 308   //
 309   // NOTE: It would not have been correct to have used
 310   // CollectedHeap::fill_with_object() and make the space look like
 311   // an int array. The thread that is doing the allocation will
 312   // later update the object header to a potentially different array
 313   // type and, for a very short period of time, the klass and length
 314   // fields will be inconsistent. This could cause a refinement
 315   // thread to calculate the object size incorrectly.
 316   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 317 
 318   // Next, update the metadata for the regions.
 319   set_humongous_metadata(first_hr, num_regions, word_size, true);
 320 
 321   HeapRegion* last_hr = region_at(last);
 322   size_t used = byte_size(first_hr->bottom(), last_hr->top());
 323 
 324   increase_used(used);
 325 
 326   for (uint i = first; i <= last; ++i) {
 327     HeapRegion *hr = region_at(i);
 328     _humongous_set.add(hr);
 329     _hr_printer.alloc(hr);
 330   }
 331 
 332   return new_obj;
 333 }
 334 
 335 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 336   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 337   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 338 }
 339 
 340 // If could fit into free regions w/o expansion, try.
 341 // Otherwise, if can expand, do so.
 342 // Otherwise, if using ex regions might help, try with ex given back.
 343 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 344   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 345 
 346   _verifier->verify_region_sets_optional();
 347 
 348   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 349 
 350   // Policy: First try to allocate a humongous object in the free list.
 351   HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions);
 352   if (humongous_start == nullptr) {
 353     // Policy: We could not find enough regions for the humongous object in the
 354     // free list. Look through the heap to find a mix of free and uncommitted regions.
 355     // If so, expand the heap and allocate the humongous object.
 356     humongous_start = _hrm.expand_and_allocate_humongous(obj_regions);
 357     if (humongous_start != nullptr) {
 358       // We managed to find a region by expanding the heap.
 359       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 360                                 word_size * HeapWordSize);
 361       policy()->record_new_heap_size(num_regions());
 362     } else {
 363       // Policy: Potentially trigger a defragmentation GC.
 364     }
 365   }
 366 
 367   HeapWord* result = nullptr;
 368   if (humongous_start != nullptr) {
 369     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 370     assert(result != nullptr, "it should always return a valid result");
 371 
 372     // A successful humongous object allocation changes the used space
 373     // information of the old generation so we need to recalculate the
 374     // sizes and update the jstat counters here.
 375     monitoring_support()->update_sizes();
 376   }
 377 
 378   _verifier->verify_region_sets_optional();
 379 
 380   return result;
 381 }
 382 
 383 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 384                                              size_t requested_size,
 385                                              size_t* actual_size) {
 386   assert_heap_not_locked_and_not_at_safepoint();
 387   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 388 
 389   return attempt_allocation(min_size, requested_size, actual_size);
 390 }
 391 
 392 HeapWord*
 393 G1CollectedHeap::mem_allocate(size_t word_size,
 394                               bool*  gc_overhead_limit_was_exceeded) {
 395   assert_heap_not_locked_and_not_at_safepoint();
 396 
 397   if (is_humongous(word_size)) {
 398     return attempt_allocation_humongous(word_size);
 399   }
 400   size_t dummy = 0;
 401   return attempt_allocation(word_size, word_size, &dummy);
 402 }
 403 
 404 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 405   ResourceMark rm; // For retrieving the thread names in log messages.
 406 
 407   // Make sure you read the note in attempt_allocation_humongous().
 408 
 409   assert_heap_not_locked_and_not_at_safepoint();
 410   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 411          "be called for humongous allocation requests");
 412 
 413   // We should only get here after the first-level allocation attempt
 414   // (attempt_allocation()) failed to allocate.
 415 
 416   // We will loop until a) we manage to successfully perform the
 417   // allocation or b) we successfully schedule a collection which
 418   // fails to perform the allocation. b) is the only case when we'll
 419   // return null.
 420   HeapWord* result = nullptr;
 421   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 422     bool should_try_gc;
 423     uint gc_count_before;
 424 
 425     {
 426       MutexLocker x(Heap_lock);
 427 
 428       // Now that we have the lock, we first retry the allocation in case another
 429       // thread changed the region while we were waiting to acquire the lock.
 430       result = _allocator->attempt_allocation_locked(word_size);
 431       if (result != nullptr) {
 432         return result;
 433       }
 434 
 435       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 436       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 437       // waiting because the GCLocker is active to not wait too long.
 438       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 439         // No need for an ergo message here, can_expand_young_list() does this when
 440         // it returns true.
 441         result = _allocator->attempt_allocation_force(word_size);
 442         if (result != nullptr) {
 443           return result;
 444         }
 445       }
 446 
 447       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 448       // the GCLocker initiated GC has been performed and then retry. This includes
 449       // the case when the GC Locker is not active but has not been performed.
 450       should_try_gc = !GCLocker::needs_gc();
 451       // Read the GC count while still holding the Heap_lock.
 452       gc_count_before = total_collections();
 453     }
 454 
 455     if (should_try_gc) {
 456       bool succeeded;
 457       result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_inc_collection_pause);
 458       if (result != nullptr) {
 459         assert(succeeded, "only way to get back a non-null result");
 460         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 461                              Thread::current()->name(), p2i(result));
 462         return result;
 463       }
 464 
 465       if (succeeded) {
 466         // We successfully scheduled a collection which failed to allocate. No
 467         // point in trying to allocate further. We'll just return null.
 468         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 469                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 470         return nullptr;
 471       }
 472       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 473                            Thread::current()->name(), word_size);
 474     } else {
 475       // Failed to schedule a collection.
 476       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 477         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 478                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 479         return nullptr;
 480       }
 481       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 482       // The GCLocker is either active or the GCLocker initiated
 483       // GC has not yet been performed. Stall until it is and
 484       // then retry the allocation.
 485       GCLocker::stall_until_clear();
 486       gclocker_retry_count += 1;
 487     }
 488 
 489     // We can reach here if we were unsuccessful in scheduling a
 490     // collection (because another thread beat us to it) or if we were
 491     // stalled due to the GC locker. In either can we should retry the
 492     // allocation attempt in case another thread successfully
 493     // performed a collection and reclaimed enough space. We do the
 494     // first attempt (without holding the Heap_lock) here and the
 495     // follow-on attempt will be at the start of the next loop
 496     // iteration (after taking the Heap_lock).
 497     size_t dummy = 0;
 498     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 499     if (result != nullptr) {
 500       return result;
 501     }
 502 
 503     // Give a warning if we seem to be looping forever.
 504     if ((QueuedAllocationWarningCount > 0) &&
 505         (try_count % QueuedAllocationWarningCount == 0)) {
 506       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 507                              Thread::current()->name(), try_count, word_size);
 508     }
 509   }
 510 
 511   ShouldNotReachHere();
 512   return nullptr;
 513 }
 514 
 515 bool G1CollectedHeap::check_archive_addresses(MemRegion range) {
 516   return _hrm.reserved().contains(range);
 517 }
 518 
 519 template <typename Func>
 520 void G1CollectedHeap::iterate_regions_in_range(MemRegion range, const Func& func) {
 521   // Mark each G1 region touched by the range as old, add it to
 522   // the old set, and set top.
 523   HeapRegion* curr_region = _hrm.addr_to_region(range.start());
 524   HeapRegion* end_region = _hrm.addr_to_region(range.last());
 525 
 526   while (curr_region != nullptr) {
 527     bool is_last = curr_region == end_region;
 528     HeapRegion* next_region = is_last ? nullptr : _hrm.next_region_in_heap(curr_region);
 529 
 530     func(curr_region, is_last);
 531 
 532     curr_region = next_region;
 533   }
 534 }
 535 
 536 bool G1CollectedHeap::alloc_archive_regions(MemRegion range) {
 537   assert(!is_init_completed(), "Expect to be called at JVM init time");
 538   MutexLocker x(Heap_lock);
 539 
 540   MemRegion reserved = _hrm.reserved();
 541 
 542   // Temporarily disable pretouching of heap pages. This interface is used
 543   // when mmap'ing archived heap data in, so pre-touching is wasted.
 544   FlagSetting fs(AlwaysPreTouch, false);
 545 
 546   // For the specified MemRegion range, allocate the corresponding G1
 547   // region(s) and mark them as old region(s).
 548   HeapWord* start_address = range.start();
 549   size_t word_size = range.word_size();
 550   HeapWord* last_address = range.last();
 551   size_t commits = 0;
 552 
 553   guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 554             "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 555             p2i(start_address), p2i(last_address));
 556 
 557   // Perform the actual region allocation, exiting if it fails.
 558   // Then note how much new space we have allocated.
 559   if (!_hrm.allocate_containing_regions(range, &commits, workers())) {
 560     return false;
 561   }
 562   increase_used(word_size * HeapWordSize);
 563   if (commits != 0) {
 564     log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 565                               HeapRegion::GrainWords * HeapWordSize * commits);
 566 
 567   }
 568 
 569   // Mark each G1 region touched by the range as old, add it to
 570   // the old set, and set top.
 571   auto set_region_to_old = [&] (HeapRegion* r, bool is_last) {
 572     assert(r->is_empty(), "Region already in use (%u)", r->hrm_index());
 573 
 574     HeapWord* top = is_last ? last_address + 1 : r->end();
 575     r->set_top(top);
 576 
 577     r->set_old();
 578     _hr_printer.alloc(r);
 579     _old_set.add(r);
 580   };
 581 
 582   iterate_regions_in_range(range, set_region_to_old);
 583   return true;
 584 }
 585 
 586 void G1CollectedHeap::populate_archive_regions_bot_part(MemRegion range) {
 587   assert(!is_init_completed(), "Expect to be called at JVM init time");
 588 
 589   iterate_regions_in_range(range,
 590                            [&] (HeapRegion* r, bool is_last) {
 591                              r->update_bot();
 592                            });
 593 }
 594 
 595 void G1CollectedHeap::dealloc_archive_regions(MemRegion range) {
 596   assert(!is_init_completed(), "Expect to be called at JVM init time");
 597   MemRegion reserved = _hrm.reserved();
 598   size_t size_used = 0;
 599   uint shrink_count = 0;
 600 
 601   // Free the G1 regions that are within the specified range.
 602   MutexLocker x(Heap_lock);
 603   HeapWord* start_address = range.start();
 604   HeapWord* last_address = range.last();
 605 
 606   assert(reserved.contains(start_address) && reserved.contains(last_address),
 607          "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 608          p2i(start_address), p2i(last_address));
 609   size_used += range.byte_size();
 610 
 611   // Free, empty and uncommit regions with CDS archive content.
 612   auto dealloc_archive_region = [&] (HeapRegion* r, bool is_last) {
 613     guarantee(r->is_old(), "Expected old region at index %u", r->hrm_index());
 614     _old_set.remove(r);
 615     r->set_free();
 616     r->set_top(r->bottom());
 617     _hrm.shrink_at(r->hrm_index(), 1);
 618     shrink_count++;
 619   };
 620 
 621   iterate_regions_in_range(range, dealloc_archive_region);
 622 
 623   if (shrink_count != 0) {
 624     log_debug(gc, ergo, heap)("Attempt heap shrinking (CDS archive regions). Total size: " SIZE_FORMAT "B",
 625                               HeapRegion::GrainWords * HeapWordSize * shrink_count);
 626     // Explicit uncommit.
 627     uncommit_regions(shrink_count);
 628   }
 629   decrease_used(size_used);
 630 }
 631 
 632 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 633                                                      size_t desired_word_size,
 634                                                      size_t* actual_word_size) {
 635   assert_heap_not_locked_and_not_at_safepoint();
 636   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 637          "be called for humongous allocation requests");
 638 
 639   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 640 
 641   if (result == nullptr) {
 642     *actual_word_size = desired_word_size;
 643     result = attempt_allocation_slow(desired_word_size);
 644   }
 645 
 646   assert_heap_not_locked();
 647   if (result != nullptr) {
 648     assert(*actual_word_size != 0, "Actual size must have been set here");
 649     dirty_young_block(result, *actual_word_size);
 650   } else {
 651     *actual_word_size = 0;
 652   }
 653 
 654   return result;
 655 }
 656 
 657 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 658   ResourceMark rm; // For retrieving the thread names in log messages.
 659 
 660   // The structure of this method has a lot of similarities to
 661   // attempt_allocation_slow(). The reason these two were not merged
 662   // into a single one is that such a method would require several "if
 663   // allocation is not humongous do this, otherwise do that"
 664   // conditional paths which would obscure its flow. In fact, an early
 665   // version of this code did use a unified method which was harder to
 666   // follow and, as a result, it had subtle bugs that were hard to
 667   // track down. So keeping these two methods separate allows each to
 668   // be more readable. It will be good to keep these two in sync as
 669   // much as possible.
 670 
 671   assert_heap_not_locked_and_not_at_safepoint();
 672   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 673          "should only be called for humongous allocations");
 674 
 675   // Humongous objects can exhaust the heap quickly, so we should check if we
 676   // need to start a marking cycle at each humongous object allocation. We do
 677   // the check before we do the actual allocation. The reason for doing it
 678   // before the allocation is that we avoid having to keep track of the newly
 679   // allocated memory while we do a GC.
 680   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 681                                         word_size)) {
 682     collect(GCCause::_g1_humongous_allocation);
 683   }
 684 
 685   // We will loop until a) we manage to successfully perform the
 686   // allocation or b) we successfully schedule a collection which
 687   // fails to perform the allocation. b) is the only case when we'll
 688   // return null.
 689   HeapWord* result = nullptr;
 690   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 691     bool should_try_gc;
 692     uint gc_count_before;
 693 
 694 
 695     {
 696       MutexLocker x(Heap_lock);
 697 
 698       size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 699       // Given that humongous objects are not allocated in young
 700       // regions, we'll first try to do the allocation without doing a
 701       // collection hoping that there's enough space in the heap.
 702       result = humongous_obj_allocate(word_size);
 703       if (result != nullptr) {
 704         policy()->old_gen_alloc_tracker()->
 705           add_allocated_humongous_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 706         return result;
 707       }
 708 
 709       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 710       // the GCLocker initiated GC has been performed and then retry. This includes
 711       // the case when the GC Locker is not active but has not been performed.
 712       should_try_gc = !GCLocker::needs_gc();
 713       // Read the GC count while still holding the Heap_lock.
 714       gc_count_before = total_collections();
 715     }
 716 
 717     if (should_try_gc) {
 718       bool succeeded;
 719       result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_humongous_allocation);
 720       if (result != nullptr) {
 721         assert(succeeded, "only way to get back a non-null result");
 722         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 723                              Thread::current()->name(), p2i(result));
 724         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 725         policy()->old_gen_alloc_tracker()->
 726           record_collection_pause_humongous_allocation(size_in_regions * HeapRegion::GrainBytes);
 727         return result;
 728       }
 729 
 730       if (succeeded) {
 731         // We successfully scheduled a collection which failed to allocate. No
 732         // point in trying to allocate further. We'll just return null.
 733         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 734                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 735         return nullptr;
 736       }
 737       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 738                            Thread::current()->name(), word_size);
 739     } else {
 740       // Failed to schedule a collection.
 741       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 742         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 743                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 744         return nullptr;
 745       }
 746       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 747       // The GCLocker is either active or the GCLocker initiated
 748       // GC has not yet been performed. Stall until it is and
 749       // then retry the allocation.
 750       GCLocker::stall_until_clear();
 751       gclocker_retry_count += 1;
 752     }
 753 
 754 
 755     // We can reach here if we were unsuccessful in scheduling a
 756     // collection (because another thread beat us to it) or if we were
 757     // stalled due to the GC locker. In either can we should retry the
 758     // allocation attempt in case another thread successfully
 759     // performed a collection and reclaimed enough space.
 760     // Humongous object allocation always needs a lock, so we wait for the retry
 761     // in the next iteration of the loop, unlike for the regular iteration case.
 762     // Give a warning if we seem to be looping forever.
 763 
 764     if ((QueuedAllocationWarningCount > 0) &&
 765         (try_count % QueuedAllocationWarningCount == 0)) {
 766       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 767                              Thread::current()->name(), try_count, word_size);
 768     }
 769   }
 770 
 771   ShouldNotReachHere();
 772   return nullptr;
 773 }
 774 
 775 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 776                                                            bool expect_null_mutator_alloc_region) {
 777   assert_at_safepoint_on_vm_thread();
 778   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 779          "the current alloc region was unexpectedly found to be non-null");
 780 
 781   if (!is_humongous(word_size)) {
 782     return _allocator->attempt_allocation_locked(word_size);
 783   } else {
 784     HeapWord* result = humongous_obj_allocate(word_size);
 785     if (result != nullptr && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 786       collector_state()->set_initiate_conc_mark_if_possible(true);
 787     }
 788     return result;
 789   }
 790 
 791   ShouldNotReachHere();
 792 }
 793 
 794 class PostCompactionPrinterClosure: public HeapRegionClosure {
 795 private:
 796   G1HRPrinter* _hr_printer;
 797 public:
 798   bool do_heap_region(HeapRegion* hr) {
 799     assert(!hr->is_young(), "not expecting to find young regions");
 800     _hr_printer->post_compaction(hr);
 801     return false;
 802   }
 803 
 804   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 805     : _hr_printer(hr_printer) { }
 806 };
 807 
 808 void G1CollectedHeap::print_heap_after_full_collection() {
 809   // Post collection region logging.
 810   // We should do this after we potentially resize the heap so
 811   // that all the COMMIT / UNCOMMIT events are generated before
 812   // the compaction events.
 813   if (_hr_printer.is_active()) {
 814     PostCompactionPrinterClosure cl(hr_printer());
 815     heap_region_iterate(&cl);
 816   }
 817 }
 818 
 819 bool G1CollectedHeap::abort_concurrent_cycle() {
 820   // Disable discovery and empty the discovered lists
 821   // for the CM ref processor.
 822   _ref_processor_cm->disable_discovery();
 823   _ref_processor_cm->abandon_partial_discovery();
 824   _ref_processor_cm->verify_no_references_recorded();
 825 
 826   // Abandon current iterations of concurrent marking and concurrent
 827   // refinement, if any are in progress.
 828   return concurrent_mark()->concurrent_cycle_abort();
 829 }
 830 
 831 void G1CollectedHeap::prepare_heap_for_full_collection() {
 832   // Make sure we'll choose a new allocation region afterwards.
 833   _allocator->release_mutator_alloc_regions();
 834   _allocator->abandon_gc_alloc_regions();
 835 
 836   // We may have added regions to the current incremental collection
 837   // set between the last GC or pause and now. We need to clear the
 838   // incremental collection set and then start rebuilding it afresh
 839   // after this full GC.
 840   abandon_collection_set(collection_set());
 841 
 842   _hrm.remove_all_free_regions();
 843 }
 844 
 845 void G1CollectedHeap::verify_before_full_collection() {
 846   assert_used_and_recalculate_used_equal(this);
 847   if (!VerifyBeforeGC) {
 848     return;
 849   }
 850   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 851     return;
 852   }
 853   _verifier->verify_region_sets_optional();
 854   _verifier->verify_before_gc();
 855   _verifier->verify_bitmap_clear(true /* above_tams_only */);
 856 }
 857 
 858 void G1CollectedHeap::prepare_for_mutator_after_full_collection() {
 859   // Prepare heap for normal collections.
 860   assert(num_free_regions() == 0, "we should not have added any free regions");
 861   rebuild_region_sets(false /* free_list_only */);
 862   abort_refinement();
 863   resize_heap_if_necessary();
 864   uncommit_regions_if_necessary();
 865 
 866   // Rebuild the code root lists for each region
 867   rebuild_code_roots();
 868 
 869   start_new_collection_set();
 870   _allocator->init_mutator_alloc_regions();
 871 
 872   // Post collection state updates.
 873   MetaspaceGC::compute_new_size();
 874 }
 875 
 876 void G1CollectedHeap::abort_refinement() {
 877   // Discard all remembered set updates and reset refinement statistics.
 878   G1BarrierSet::dirty_card_queue_set().abandon_logs_and_stats();
 879   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
 880          "DCQS should be empty");
 881   concurrent_refine()->get_and_reset_refinement_stats();
 882 }
 883 
 884 void G1CollectedHeap::verify_after_full_collection() {
 885   if (!VerifyAfterGC) {
 886     return;
 887   }
 888   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 889     return;
 890   }
 891   _hrm.verify_optional();
 892   _verifier->verify_region_sets_optional();
 893   _verifier->verify_after_gc();
 894   _verifier->verify_bitmap_clear(false /* above_tams_only */);
 895 
 896   // At this point there should be no regions in the
 897   // entire heap tagged as young.
 898   assert(check_young_list_empty(), "young list should be empty at this point");
 899 
 900   // Note: since we've just done a full GC, concurrent
 901   // marking is no longer active. Therefore we need not
 902   // re-enable reference discovery for the CM ref processor.
 903   // That will be done at the start of the next marking cycle.
 904   // We also know that the STW processor should no longer
 905   // discover any new references.
 906   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
 907   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
 908   _ref_processor_stw->verify_no_references_recorded();
 909   _ref_processor_cm->verify_no_references_recorded();
 910 }
 911 
 912 bool G1CollectedHeap::do_full_collection(bool clear_all_soft_refs,
 913                                          bool do_maximal_compaction) {
 914   assert_at_safepoint_on_vm_thread();
 915 
 916   if (GCLocker::check_active_before_gc()) {
 917     // Full GC was not completed.
 918     return false;
 919   }
 920 
 921   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 922       soft_ref_policy()->should_clear_all_soft_refs();
 923 
 924   G1FullGCMark gc_mark;
 925   GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause(), true);
 926   G1FullCollector collector(this, do_clear_all_soft_refs, do_maximal_compaction, gc_mark.tracer());
 927 
 928   collector.prepare_collection();
 929   collector.collect();
 930   collector.complete_collection();
 931 
 932   // Full collection was successfully completed.
 933   return true;
 934 }
 935 
 936 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 937   // Currently, there is no facility in the do_full_collection(bool) API to notify
 938   // the caller that the collection did not succeed (e.g., because it was locked
 939   // out by the GC locker). So, right now, we'll ignore the return value.
 940 
 941   do_full_collection(clear_all_soft_refs,
 942                      false /* do_maximal_compaction */);
 943 }
 944 
 945 bool G1CollectedHeap::upgrade_to_full_collection() {
 946   GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
 947   log_info(gc, ergo)("Attempting full compaction clearing soft references");
 948   bool success = do_full_collection(true  /* clear_all_soft_refs */,
 949                                     false /* do_maximal_compaction */);
 950   // do_full_collection only fails if blocked by GC locker and that can't
 951   // be the case here since we only call this when already completed one gc.
 952   assert(success, "invariant");
 953   return success;
 954 }
 955 
 956 void G1CollectedHeap::resize_heap_if_necessary() {
 957   assert_at_safepoint_on_vm_thread();
 958 
 959   bool should_expand;
 960   size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand);
 961 
 962   if (resize_amount == 0) {
 963     return;
 964   } else if (should_expand) {
 965     expand(resize_amount, _workers);
 966   } else {
 967     shrink(resize_amount);
 968   }
 969 }
 970 
 971 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
 972                                                             bool do_gc,
 973                                                             bool maximal_compaction,
 974                                                             bool expect_null_mutator_alloc_region,
 975                                                             bool* gc_succeeded) {
 976   *gc_succeeded = true;
 977   // Let's attempt the allocation first.
 978   HeapWord* result =
 979     attempt_allocation_at_safepoint(word_size,
 980                                     expect_null_mutator_alloc_region);
 981   if (result != nullptr) {
 982     return result;
 983   }
 984 
 985   // In a G1 heap, we're supposed to keep allocation from failing by
 986   // incremental pauses.  Therefore, at least for now, we'll favor
 987   // expansion over collection.  (This might change in the future if we can
 988   // do something smarter than full collection to satisfy a failed alloc.)
 989   result = expand_and_allocate(word_size);
 990   if (result != nullptr) {
 991     return result;
 992   }
 993 
 994   if (do_gc) {
 995     GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
 996     // Expansion didn't work, we'll try to do a Full GC.
 997     // If maximal_compaction is set we clear all soft references and don't
 998     // allow any dead wood to be left on the heap.
 999     if (maximal_compaction) {
1000       log_info(gc, ergo)("Attempting maximal full compaction clearing soft references");
1001     } else {
1002       log_info(gc, ergo)("Attempting full compaction");
1003     }
1004     *gc_succeeded = do_full_collection(maximal_compaction /* clear_all_soft_refs */ ,
1005                                        maximal_compaction /* do_maximal_compaction */);
1006   }
1007 
1008   return nullptr;
1009 }
1010 
1011 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1012                                                      bool* succeeded) {
1013   assert_at_safepoint_on_vm_thread();
1014 
1015   // Attempts to allocate followed by Full GC.
1016   HeapWord* result =
1017     satisfy_failed_allocation_helper(word_size,
1018                                      true,  /* do_gc */
1019                                      false, /* maximum_collection */
1020                                      false, /* expect_null_mutator_alloc_region */
1021                                      succeeded);
1022 
1023   if (result != nullptr || !*succeeded) {
1024     return result;
1025   }
1026 
1027   // Attempts to allocate followed by Full GC that will collect all soft references.
1028   result = satisfy_failed_allocation_helper(word_size,
1029                                             true, /* do_gc */
1030                                             true, /* maximum_collection */
1031                                             true, /* expect_null_mutator_alloc_region */
1032                                             succeeded);
1033 
1034   if (result != nullptr || !*succeeded) {
1035     return result;
1036   }
1037 
1038   // Attempts to allocate, no GC
1039   result = satisfy_failed_allocation_helper(word_size,
1040                                             false, /* do_gc */
1041                                             false, /* maximum_collection */
1042                                             true,  /* expect_null_mutator_alloc_region */
1043                                             succeeded);
1044 
1045   if (result != nullptr) {
1046     return result;
1047   }
1048 
1049   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1050          "Flag should have been handled and cleared prior to this point");
1051 
1052   // What else?  We might try synchronous finalization later.  If the total
1053   // space available is large enough for the allocation, then a more
1054   // complete compaction phase than we've tried so far might be
1055   // appropriate.
1056   return nullptr;
1057 }
1058 
1059 // Attempting to expand the heap sufficiently
1060 // to support an allocation of the given "word_size".  If
1061 // successful, perform the allocation and return the address of the
1062 // allocated block, or else null.
1063 
1064 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1065   assert_at_safepoint_on_vm_thread();
1066 
1067   _verifier->verify_region_sets_optional();
1068 
1069   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1070   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1071                             word_size * HeapWordSize);
1072 
1073 
1074   if (expand(expand_bytes, _workers)) {
1075     _hrm.verify_optional();
1076     _verifier->verify_region_sets_optional();
1077     return attempt_allocation_at_safepoint(word_size,
1078                                            false /* expect_null_mutator_alloc_region */);
1079   }
1080   return nullptr;
1081 }
1082 
1083 bool G1CollectedHeap::expand(size_t expand_bytes, WorkerThreads* pretouch_workers, double* expand_time_ms) {
1084   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1085   aligned_expand_bytes = align_up(aligned_expand_bytes,
1086                                        HeapRegion::GrainBytes);
1087 
1088   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1089                             expand_bytes, aligned_expand_bytes);
1090 
1091   if (is_maximal_no_gc()) {
1092     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1093     return false;
1094   }
1095 
1096   double expand_heap_start_time_sec = os::elapsedTime();
1097   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1098   assert(regions_to_expand > 0, "Must expand by at least one region");
1099 
1100   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1101   if (expand_time_ms != nullptr) {
1102     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1103   }
1104 
1105   assert(expanded_by > 0, "must have failed during commit.");
1106 
1107   size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1108   assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1109   policy()->record_new_heap_size(num_regions());
1110 
1111   return true;
1112 }
1113 
1114 bool G1CollectedHeap::expand_single_region(uint node_index) {
1115   uint expanded_by = _hrm.expand_on_preferred_node(node_index);
1116 
1117   if (expanded_by == 0) {
1118     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm.available());
1119     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1120     return false;
1121   }
1122 
1123   policy()->record_new_heap_size(num_regions());
1124   return true;
1125 }
1126 
1127 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1128   size_t aligned_shrink_bytes =
1129     ReservedSpace::page_align_size_down(shrink_bytes);
1130   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1131                                          HeapRegion::GrainBytes);
1132   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1133 
1134   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1135   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1136 
1137   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B actual amount shrunk: " SIZE_FORMAT "B",
1138                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1139   if (num_regions_removed > 0) {
1140     log_debug(gc, heap)("Uncommittable regions after shrink: %u", num_regions_removed);
1141     policy()->record_new_heap_size(num_regions());
1142   } else {
1143     log_debug(gc, ergo, heap)("Did not shrink the heap (heap shrinking operation failed)");
1144   }
1145 }
1146 
1147 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1148   _verifier->verify_region_sets_optional();
1149 
1150   // We should only reach here at the end of a Full GC or during Remark which
1151   // means we should not not be holding to any GC alloc regions. The method
1152   // below will make sure of that and do any remaining clean up.
1153   _allocator->abandon_gc_alloc_regions();
1154 
1155   // Instead of tearing down / rebuilding the free lists here, we
1156   // could instead use the remove_all_pending() method on free_list to
1157   // remove only the ones that we need to remove.
1158   _hrm.remove_all_free_regions();
1159   shrink_helper(shrink_bytes);
1160   rebuild_region_sets(true /* free_list_only */);
1161 
1162   _hrm.verify_optional();
1163   _verifier->verify_region_sets_optional();
1164 }
1165 
1166 class OldRegionSetChecker : public HeapRegionSetChecker {
1167 public:
1168   void check_mt_safety() {
1169     // Master Old Set MT safety protocol:
1170     // (a) If we're at a safepoint, operations on the master old set
1171     // should be invoked:
1172     // - by the VM thread (which will serialize them), or
1173     // - by the GC workers while holding the FreeList_lock, if we're
1174     //   at a safepoint for an evacuation pause (this lock is taken
1175     //   anyway when an GC alloc region is retired so that a new one
1176     //   is allocated from the free list), or
1177     // - by the GC workers while holding the OldSets_lock, if we're at a
1178     //   safepoint for a cleanup pause.
1179     // (b) If we're not at a safepoint, operations on the master old set
1180     // should be invoked while holding the Heap_lock.
1181 
1182     if (SafepointSynchronize::is_at_safepoint()) {
1183       guarantee(Thread::current()->is_VM_thread() ||
1184                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1185                 "master old set MT safety protocol at a safepoint");
1186     } else {
1187       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1188     }
1189   }
1190   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1191   const char* get_description() { return "Old Regions"; }
1192 };
1193 
1194 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1195 public:
1196   void check_mt_safety() {
1197     // Humongous Set MT safety protocol:
1198     // (a) If we're at a safepoint, operations on the master humongous
1199     // set should be invoked by either the VM thread (which will
1200     // serialize them) or by the GC workers while holding the
1201     // OldSets_lock.
1202     // (b) If we're not at a safepoint, operations on the master
1203     // humongous set should be invoked while holding the Heap_lock.
1204 
1205     if (SafepointSynchronize::is_at_safepoint()) {
1206       guarantee(Thread::current()->is_VM_thread() ||
1207                 OldSets_lock->owned_by_self(),
1208                 "master humongous set MT safety protocol at a safepoint");
1209     } else {
1210       guarantee(Heap_lock->owned_by_self(),
1211                 "master humongous set MT safety protocol outside a safepoint");
1212     }
1213   }
1214   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1215   const char* get_description() { return "Humongous Regions"; }
1216 };
1217 
1218 G1CollectedHeap::G1CollectedHeap() :
1219   CollectedHeap(),
1220   _service_thread(nullptr),
1221   _periodic_gc_task(nullptr),
1222   _free_arena_memory_task(nullptr),
1223   _workers(nullptr),
1224   _card_table(nullptr),
1225   _collection_pause_end(Ticks::now()),
1226   _soft_ref_policy(),
1227   _old_set("Old Region Set", new OldRegionSetChecker()),
1228   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1229   _bot(nullptr),
1230   _listener(),
1231   _numa(G1NUMA::create()),
1232   _hrm(),
1233   _allocator(nullptr),
1234   _evac_failure_injector(),
1235   _verifier(nullptr),
1236   _summary_bytes_used(0),
1237   _bytes_used_during_gc(0),
1238   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1239   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1240   _monitoring_support(nullptr),
1241   _num_humongous_objects(0),
1242   _num_humongous_reclaim_candidates(0),
1243   _hr_printer(),
1244   _collector_state(),
1245   _old_marking_cycles_started(0),
1246   _old_marking_cycles_completed(0),
1247   _eden(),
1248   _survivor(),
1249   _gc_timer_stw(new STWGCTimer()),
1250   _gc_tracer_stw(new G1NewTracer()),
1251   _policy(new G1Policy(_gc_timer_stw)),
1252   _heap_sizing_policy(nullptr),
1253   _collection_set(this, _policy),
1254   _rem_set(nullptr),
1255   _card_set_config(),
1256   _card_set_freelist_pool(G1CardSetConfiguration::num_mem_object_types()),
1257   _cm(nullptr),
1258   _cm_thread(nullptr),
1259   _cr(nullptr),
1260   _task_queues(nullptr),
1261   _ref_processor_stw(nullptr),
1262   _is_alive_closure_stw(this),
1263   _is_subject_to_discovery_stw(this),
1264   _ref_processor_cm(nullptr),
1265   _is_alive_closure_cm(this),
1266   _is_subject_to_discovery_cm(this),
1267   _region_attr() {
1268 
1269   _verifier = new G1HeapVerifier(this);
1270 
1271   _allocator = new G1Allocator(this);
1272 
1273   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1274 
1275   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1276 
1277   // Override the default _filler_array_max_size so that no humongous filler
1278   // objects are created.
1279   _filler_array_max_size = _humongous_object_threshold_in_words;
1280 
1281   // Override the default _stack_chunk_max_size so that no humongous stack chunks are created
1282   _stack_chunk_max_size = _humongous_object_threshold_in_words;
1283 
1284   uint n_queues = ParallelGCThreads;
1285   _task_queues = new G1ScannerTasksQueueSet(n_queues);
1286 
1287   for (uint i = 0; i < n_queues; i++) {
1288     G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1289     _task_queues->register_queue(i, q);
1290   }
1291 
1292   _gc_tracer_stw->initialize();
1293 
1294   guarantee(_task_queues != nullptr, "task_queues allocation failure.");
1295 }
1296 
1297 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1298                                                                  size_t size,
1299                                                                  size_t translation_factor) {
1300   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1301   // Allocate a new reserved space, preferring to use large pages.
1302   ReservedSpace rs(size, preferred_page_size);
1303   size_t page_size = rs.page_size();
1304   G1RegionToSpaceMapper* result  =
1305     G1RegionToSpaceMapper::create_mapper(rs,
1306                                          size,
1307                                          page_size,
1308                                          HeapRegion::GrainBytes,
1309                                          translation_factor,
1310                                          mtGC);
1311 
1312   os::trace_page_sizes_for_requested_size(description,
1313                                           size,
1314                                           page_size,
1315                                           preferred_page_size,
1316                                           rs.base(),
1317                                           rs.size());
1318 
1319   return result;
1320 }
1321 
1322 jint G1CollectedHeap::initialize_concurrent_refinement() {
1323   jint ecode = JNI_OK;
1324   _cr = G1ConcurrentRefine::create(policy(), &ecode);
1325   return ecode;
1326 }
1327 
1328 jint G1CollectedHeap::initialize_service_thread() {
1329   _service_thread = new G1ServiceThread();
1330   if (_service_thread->osthread() == nullptr) {
1331     vm_shutdown_during_initialization("Could not create G1ServiceThread");
1332     return JNI_ENOMEM;
1333   }
1334   return JNI_OK;
1335 }
1336 
1337 jint G1CollectedHeap::initialize() {
1338 
1339   // Necessary to satisfy locking discipline assertions.
1340 
1341   MutexLocker x(Heap_lock);
1342 
1343   // While there are no constraints in the GC code that HeapWordSize
1344   // be any particular value, there are multiple other areas in the
1345   // system which believe this to be true (e.g. oop->object_size in some
1346   // cases incorrectly returns the size in wordSize units rather than
1347   // HeapWordSize).
1348   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1349 
1350   size_t init_byte_size = InitialHeapSize;
1351   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1352 
1353   // Ensure that the sizes are properly aligned.
1354   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1355   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1356   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1357 
1358   // Reserve the maximum.
1359 
1360   // When compressed oops are enabled, the preferred heap base
1361   // is calculated by subtracting the requested size from the
1362   // 32Gb boundary and using the result as the base address for
1363   // heap reservation. If the requested size is not aligned to
1364   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1365   // into the ReservedHeapSpace constructor) then the actual
1366   // base of the reserved heap may end up differing from the
1367   // address that was requested (i.e. the preferred heap base).
1368   // If this happens then we could end up using a non-optimal
1369   // compressed oops mode.
1370 
1371   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1372                                                      HeapAlignment);
1373 
1374   initialize_reserved_region(heap_rs);
1375 
1376   // Create the barrier set for the entire reserved region.
1377   G1CardTable* ct = new G1CardTable(heap_rs.region());
1378   G1BarrierSet* bs = new G1BarrierSet(ct);
1379   bs->initialize();
1380   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1381   BarrierSet::set_barrier_set(bs);
1382   _card_table = ct;
1383 
1384   {
1385     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1386     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1387     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1388   }
1389 
1390   // Create space mappers.
1391   size_t page_size = heap_rs.page_size();
1392   G1RegionToSpaceMapper* heap_storage =
1393     G1RegionToSpaceMapper::create_mapper(heap_rs,
1394                                          heap_rs.size(),
1395                                          page_size,
1396                                          HeapRegion::GrainBytes,
1397                                          1,
1398                                          mtJavaHeap);
1399   if(heap_storage == nullptr) {
1400     vm_shutdown_during_initialization("Could not initialize G1 heap");
1401     return JNI_ERR;
1402   }
1403 
1404   os::trace_page_sizes("Heap",
1405                        MinHeapSize,
1406                        reserved_byte_size,
1407                        page_size,
1408                        heap_rs.base(),
1409                        heap_rs.size());
1410   heap_storage->set_mapping_changed_listener(&_listener);
1411 
1412   // Create storage for the BOT, card table and the bitmap.
1413   G1RegionToSpaceMapper* bot_storage =
1414     create_aux_memory_mapper("Block Offset Table",
1415                              G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize),
1416                              G1BlockOffsetTable::heap_map_factor());
1417 
1418   G1RegionToSpaceMapper* cardtable_storage =
1419     create_aux_memory_mapper("Card Table",
1420                              G1CardTable::compute_size(heap_rs.size() / HeapWordSize),
1421                              G1CardTable::heap_map_factor());
1422 
1423   size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size());
1424   G1RegionToSpaceMapper* bitmap_storage =
1425     create_aux_memory_mapper("Mark Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1426 
1427   _hrm.initialize(heap_storage, bitmap_storage, bot_storage, cardtable_storage);
1428   _card_table->initialize(cardtable_storage);
1429 
1430   // 6843694 - ensure that the maximum region index can fit
1431   // in the remembered set structures.
1432   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1433   guarantee((max_reserved_regions() - 1) <= max_region_idx, "too many regions");
1434 
1435   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1436   // start within the first card.
1437   guarantee((uintptr_t)(heap_rs.base()) >= G1CardTable::card_size(), "Java heap must not start within the first card.");
1438   G1FromCardCache::initialize(max_reserved_regions());
1439   // Also create a G1 rem set.
1440   _rem_set = new G1RemSet(this, _card_table);
1441   _rem_set->initialize(max_reserved_regions());
1442 
1443   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1444   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1445   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1446             "too many cards per region");
1447 
1448   HeapRegionRemSet::initialize(_reserved);
1449 
1450   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1451 
1452   _bot = new G1BlockOffsetTable(reserved(), bot_storage);
1453 
1454   {
1455     size_t granularity = HeapRegion::GrainBytes;
1456 
1457     _region_attr.initialize(reserved(), granularity);
1458   }
1459 
1460   _workers = new WorkerThreads("GC Thread", ParallelGCThreads);
1461   if (_workers == nullptr) {
1462     return JNI_ENOMEM;
1463   }
1464   _workers->initialize_workers();
1465 
1466   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1467 
1468   // Create the G1ConcurrentMark data structure and thread.
1469   // (Must do this late, so that "max_[reserved_]regions" is defined.)
1470   _cm = new G1ConcurrentMark(this, bitmap_storage);
1471   _cm_thread = _cm->cm_thread();
1472 
1473   // Now expand into the initial heap size.
1474   if (!expand(init_byte_size, _workers)) {
1475     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1476     return JNI_ENOMEM;
1477   }
1478 
1479   // Perform any initialization actions delegated to the policy.
1480   policy()->init(this, &_collection_set);
1481 
1482   jint ecode = initialize_concurrent_refinement();
1483   if (ecode != JNI_OK) {
1484     return ecode;
1485   }
1486 
1487   ecode = initialize_service_thread();
1488   if (ecode != JNI_OK) {
1489     return ecode;
1490   }
1491 
1492   // Create and schedule the periodic gc task on the service thread.
1493   _periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task");
1494   _service_thread->register_task(_periodic_gc_task);
1495 
1496   _free_arena_memory_task = new G1MonotonicArenaFreeMemoryTask("Card Set Free Memory Task");
1497   _service_thread->register_task(_free_arena_memory_task);
1498 
1499   // Here we allocate the dummy HeapRegion that is required by the
1500   // G1AllocRegion class.
1501   HeapRegion* dummy_region = _hrm.get_dummy_region();
1502 
1503   // We'll re-use the same region whether the alloc region will
1504   // require BOT updates or not and, if it doesn't, then a non-young
1505   // region will complain that it cannot support allocations without
1506   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1507   dummy_region->set_eden();
1508   // Make sure it's full.
1509   dummy_region->set_top(dummy_region->end());
1510   G1AllocRegion::setup(this, dummy_region);
1511 
1512   _allocator->init_mutator_alloc_regions();
1513 
1514   // Do create of the monitoring and management support so that
1515   // values in the heap have been properly initialized.
1516   _monitoring_support = new G1MonitoringSupport(this);
1517 
1518   _collection_set.initialize(max_reserved_regions());
1519 
1520   evac_failure_injector()->reset();
1521 
1522   G1InitLogger::print();
1523 
1524   return JNI_OK;
1525 }
1526 
1527 bool G1CollectedHeap::concurrent_mark_is_terminating() const {
1528   return _cm_thread->should_terminate();
1529 }
1530 
1531 void G1CollectedHeap::stop() {
1532   // Stop all concurrent threads. We do this to make sure these threads
1533   // do not continue to execute and access resources (e.g. logging)
1534   // that are destroyed during shutdown.
1535   _cr->stop();
1536   _service_thread->stop();
1537   _cm_thread->stop();
1538 }
1539 
1540 void G1CollectedHeap::safepoint_synchronize_begin() {
1541   SuspendibleThreadSet::synchronize();
1542 }
1543 
1544 void G1CollectedHeap::safepoint_synchronize_end() {
1545   SuspendibleThreadSet::desynchronize();
1546 }
1547 
1548 void G1CollectedHeap::post_initialize() {
1549   CollectedHeap::post_initialize();
1550   ref_processing_init();
1551 }
1552 
1553 void G1CollectedHeap::ref_processing_init() {
1554   // Reference processing in G1 currently works as follows:
1555   //
1556   // * There are two reference processor instances. One is
1557   //   used to record and process discovered references
1558   //   during concurrent marking; the other is used to
1559   //   record and process references during STW pauses
1560   //   (both full and incremental).
1561   // * Both ref processors need to 'span' the entire heap as
1562   //   the regions in the collection set may be dotted around.
1563   //
1564   // * For the concurrent marking ref processor:
1565   //   * Reference discovery is enabled at concurrent start.
1566   //   * Reference discovery is disabled and the discovered
1567   //     references processed etc during remarking.
1568   //   * Reference discovery is MT (see below).
1569   //   * Reference discovery requires a barrier (see below).
1570   //   * Reference processing may or may not be MT
1571   //     (depending on the value of ParallelRefProcEnabled
1572   //     and ParallelGCThreads).
1573   //   * A full GC disables reference discovery by the CM
1574   //     ref processor and abandons any entries on it's
1575   //     discovered lists.
1576   //
1577   // * For the STW processor:
1578   //   * Non MT discovery is enabled at the start of a full GC.
1579   //   * Processing and enqueueing during a full GC is non-MT.
1580   //   * During a full GC, references are processed after marking.
1581   //
1582   //   * Discovery (may or may not be MT) is enabled at the start
1583   //     of an incremental evacuation pause.
1584   //   * References are processed near the end of a STW evacuation pause.
1585   //   * For both types of GC:
1586   //     * Discovery is atomic - i.e. not concurrent.
1587   //     * Reference discovery will not need a barrier.
1588 
1589   // Concurrent Mark ref processor
1590   _ref_processor_cm =
1591     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1592                            ParallelGCThreads,                              // degree of mt processing
1593                            // We discover with the gc worker threads during Remark, so both
1594                            // thread counts must be considered for discovery.
1595                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1596                            true,                                           // Reference discovery is concurrent
1597                            &_is_alive_closure_cm);                         // is alive closure
1598 
1599   // STW ref processor
1600   _ref_processor_stw =
1601     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1602                            ParallelGCThreads,                    // degree of mt processing
1603                            ParallelGCThreads,                    // degree of mt discovery
1604                            false,                                // Reference discovery is not concurrent
1605                            &_is_alive_closure_stw);              // is alive closure
1606 }
1607 
1608 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1609   return &_soft_ref_policy;
1610 }
1611 
1612 size_t G1CollectedHeap::capacity() const {
1613   return _hrm.length() * HeapRegion::GrainBytes;
1614 }
1615 
1616 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1617   return _hrm.total_free_bytes();
1618 }
1619 
1620 // Computes the sum of the storage used by the various regions.
1621 size_t G1CollectedHeap::used() const {
1622   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1623   return result;
1624 }
1625 
1626 size_t G1CollectedHeap::used_unlocked() const {
1627   return _summary_bytes_used;
1628 }
1629 
1630 class SumUsedClosure: public HeapRegionClosure {
1631   size_t _used;
1632 public:
1633   SumUsedClosure() : _used(0) {}
1634   bool do_heap_region(HeapRegion* r) {
1635     _used += r->used();
1636     return false;
1637   }
1638   size_t result() { return _used; }
1639 };
1640 
1641 size_t G1CollectedHeap::recalculate_used() const {
1642   SumUsedClosure blk;
1643   heap_region_iterate(&blk);
1644   return blk.result();
1645 }
1646 
1647 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1648   return GCCause::is_user_requested_gc(cause) && ExplicitGCInvokesConcurrent;
1649 }
1650 
1651 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1652   switch (cause) {
1653     case GCCause::_g1_humongous_allocation: return true;
1654     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1655     case GCCause::_wb_breakpoint:           return true;
1656     case GCCause::_codecache_GC_aggressive: return true;
1657     case GCCause::_codecache_GC_threshold:  return true;
1658     default:                                return is_user_requested_concurrent_full_gc(cause);
1659   }
1660 }
1661 
1662 void G1CollectedHeap::increment_old_marking_cycles_started() {
1663   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1664          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1665          "Wrong marking cycle count (started: %d, completed: %d)",
1666          _old_marking_cycles_started, _old_marking_cycles_completed);
1667 
1668   _old_marking_cycles_started++;
1669 }
1670 
1671 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent,
1672                                                              bool whole_heap_examined) {
1673   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
1674 
1675   // We assume that if concurrent == true, then the caller is a
1676   // concurrent thread that was joined the Suspendible Thread
1677   // Set. If there's ever a cheap way to check this, we should add an
1678   // assert here.
1679 
1680   // Given that this method is called at the end of a Full GC or of a
1681   // concurrent cycle, and those can be nested (i.e., a Full GC can
1682   // interrupt a concurrent cycle), the number of full collections
1683   // completed should be either one (in the case where there was no
1684   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1685   // behind the number of full collections started.
1686 
1687   // This is the case for the inner caller, i.e. a Full GC.
1688   assert(concurrent ||
1689          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1690          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1691          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1692          "is inconsistent with _old_marking_cycles_completed = %u",
1693          _old_marking_cycles_started, _old_marking_cycles_completed);
1694 
1695   // This is the case for the outer caller, i.e. the concurrent cycle.
1696   assert(!concurrent ||
1697          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1698          "for outer caller (concurrent cycle): "
1699          "_old_marking_cycles_started = %u "
1700          "is inconsistent with _old_marking_cycles_completed = %u",
1701          _old_marking_cycles_started, _old_marking_cycles_completed);
1702 
1703   _old_marking_cycles_completed += 1;
1704   if (whole_heap_examined) {
1705     // Signal that we have completed a visit to all live objects.
1706     record_whole_heap_examined_timestamp();
1707   }
1708 
1709   // We need to clear the "in_progress" flag in the CM thread before
1710   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1711   // is set) so that if a waiter requests another System.gc() it doesn't
1712   // incorrectly see that a marking cycle is still in progress.
1713   if (concurrent) {
1714     _cm_thread->set_idle();
1715   }
1716 
1717   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
1718   // for a full GC to finish that their wait is over.
1719   ml.notify_all();
1720 }
1721 
1722 // Helper for collect().
1723 static G1GCCounters collection_counters(G1CollectedHeap* g1h) {
1724   MutexLocker ml(Heap_lock);
1725   return G1GCCounters(g1h);
1726 }
1727 
1728 void G1CollectedHeap::collect(GCCause::Cause cause) {
1729   try_collect(cause, collection_counters(this));
1730 }
1731 
1732 // Return true if (x < y) with allowance for wraparound.
1733 static bool gc_counter_less_than(uint x, uint y) {
1734   return (x - y) > (UINT_MAX/2);
1735 }
1736 
1737 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
1738 // Macro so msg printing is format-checked.
1739 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
1740   do {                                                                  \
1741     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
1742     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
1743       ResourceMark rm; /* For thread name. */                           \
1744       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
1745       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
1746                                        Thread::current()->name(),       \
1747                                        GCCause::to_string(cause));      \
1748       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
1749     }                                                                   \
1750   } while (0)
1751 
1752 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
1753   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
1754 
1755 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
1756                                                uint gc_counter,
1757                                                uint old_marking_started_before) {
1758   assert_heap_not_locked();
1759   assert(should_do_concurrent_full_gc(cause),
1760          "Non-concurrent cause %s", GCCause::to_string(cause));
1761 
1762   for (uint i = 1; true; ++i) {
1763     // Try to schedule concurrent start evacuation pause that will
1764     // start a concurrent cycle.
1765     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
1766     VM_G1TryInitiateConcMark op(gc_counter, cause);
1767     VMThread::execute(&op);
1768 
1769     // Request is trivially finished.
1770     if (cause == GCCause::_g1_periodic_collection) {
1771       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
1772       return op.gc_succeeded();
1773     }
1774 
1775     // If VMOp skipped initiating concurrent marking cycle because
1776     // we're terminating, then we're done.
1777     if (op.terminating()) {
1778       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
1779       return false;
1780     }
1781 
1782     // Lock to get consistent set of values.
1783     uint old_marking_started_after;
1784     uint old_marking_completed_after;
1785     {
1786       MutexLocker ml(Heap_lock);
1787       // Update gc_counter for retrying VMOp if needed. Captured here to be
1788       // consistent with the values we use below for termination tests.  If
1789       // a retry is needed after a possible wait, and another collection
1790       // occurs in the meantime, it will cause our retry to be skipped and
1791       // we'll recheck for termination with updated conditions from that
1792       // more recent collection.  That's what we want, rather than having
1793       // our retry possibly perform an unnecessary collection.
1794       gc_counter = total_collections();
1795       old_marking_started_after = _old_marking_cycles_started;
1796       old_marking_completed_after = _old_marking_cycles_completed;
1797     }
1798 
1799     if (cause == GCCause::_wb_breakpoint) {
1800       if (op.gc_succeeded()) {
1801         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1802         return true;
1803       }
1804       // When _wb_breakpoint there can't be another cycle or deferred.
1805       assert(!op.cycle_already_in_progress(), "invariant");
1806       assert(!op.whitebox_attached(), "invariant");
1807       // Concurrent cycle attempt might have been cancelled by some other
1808       // collection, so retry.  Unlike other cases below, we want to retry
1809       // even if cancelled by a STW full collection, because we really want
1810       // to start a concurrent cycle.
1811       if (old_marking_started_before != old_marking_started_after) {
1812         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
1813         old_marking_started_before = old_marking_started_after;
1814       }
1815     } else if (!GCCause::is_user_requested_gc(cause)) {
1816       // For an "automatic" (not user-requested) collection, we just need to
1817       // ensure that progress is made.
1818       //
1819       // Request is finished if any of
1820       // (1) the VMOp successfully performed a GC,
1821       // (2) a concurrent cycle was already in progress,
1822       // (3) whitebox is controlling concurrent cycles,
1823       // (4) a new cycle was started (by this thread or some other), or
1824       // (5) a Full GC was performed.
1825       // Cases (4) and (5) are detected together by a change to
1826       // _old_marking_cycles_started.
1827       //
1828       // Note that (1) does not imply (4).  If we're still in the mixed
1829       // phase of an earlier concurrent collection, the request to make the
1830       // collection a concurrent start won't be honored.  If we don't check for
1831       // both conditions we'll spin doing back-to-back collections.
1832       if (op.gc_succeeded() ||
1833           op.cycle_already_in_progress() ||
1834           op.whitebox_attached() ||
1835           (old_marking_started_before != old_marking_started_after)) {
1836         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1837         return true;
1838       }
1839     } else {                    // User-requested GC.
1840       // For a user-requested collection, we want to ensure that a complete
1841       // full collection has been performed before returning, but without
1842       // waiting for more than needed.
1843 
1844       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
1845       // new cycle was started.  That's good, because it's not clear what we
1846       // should do otherwise.  Trying again just does back to back GCs.
1847       // Can't wait for someone else to start a cycle.  And returning fails
1848       // to meet the goal of ensuring a full collection was performed.
1849       assert(!op.gc_succeeded() ||
1850              (old_marking_started_before != old_marking_started_after),
1851              "invariant: succeeded %s, started before %u, started after %u",
1852              BOOL_TO_STR(op.gc_succeeded()),
1853              old_marking_started_before, old_marking_started_after);
1854 
1855       // Request is finished if a full collection (concurrent or stw)
1856       // was started after this request and has completed, e.g.
1857       // started_before < completed_after.
1858       if (gc_counter_less_than(old_marking_started_before,
1859                                old_marking_completed_after)) {
1860         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1861         return true;
1862       }
1863 
1864       if (old_marking_started_after != old_marking_completed_after) {
1865         // If there is an in-progress cycle (possibly started by us), then
1866         // wait for that cycle to complete, e.g.
1867         // while completed_now < started_after.
1868         LOG_COLLECT_CONCURRENTLY(cause, "wait");
1869         MonitorLocker ml(G1OldGCCount_lock);
1870         while (gc_counter_less_than(_old_marking_cycles_completed,
1871                                     old_marking_started_after)) {
1872           ml.wait();
1873         }
1874         // Request is finished if the collection we just waited for was
1875         // started after this request.
1876         if (old_marking_started_before != old_marking_started_after) {
1877           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
1878           return true;
1879         }
1880       }
1881 
1882       // If VMOp was successful then it started a new cycle that the above
1883       // wait &etc should have recognized as finishing this request.  This
1884       // differs from a non-user-request, where gc_succeeded does not imply
1885       // a new cycle was started.
1886       assert(!op.gc_succeeded(), "invariant");
1887 
1888       if (op.cycle_already_in_progress()) {
1889         // If VMOp failed because a cycle was already in progress, it
1890         // is now complete.  But it didn't finish this user-requested
1891         // GC, so try again.
1892         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
1893         continue;
1894       } else if (op.whitebox_attached()) {
1895         // If WhiteBox wants control, wait for notification of a state
1896         // change in the controller, then try again.  Don't wait for
1897         // release of control, since collections may complete while in
1898         // control.  Note: This won't recognize a STW full collection
1899         // while waiting; we can't wait on multiple monitors.
1900         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
1901         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
1902         if (ConcurrentGCBreakpoints::is_controlled()) {
1903           ml.wait();
1904         }
1905         continue;
1906       }
1907     }
1908 
1909     // Collection failed and should be retried.
1910     assert(op.transient_failure(), "invariant");
1911 
1912     if (GCLocker::is_active_and_needs_gc()) {
1913       // If GCLocker is active, wait until clear before retrying.
1914       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
1915       GCLocker::stall_until_clear();
1916     }
1917 
1918     LOG_COLLECT_CONCURRENTLY(cause, "retry");
1919   }
1920 }
1921 
1922 bool G1CollectedHeap::try_collect_fullgc(GCCause::Cause cause,
1923                                          const G1GCCounters& counters_before) {
1924   assert_heap_not_locked();
1925 
1926   while(true) {
1927     VM_G1CollectFull op(counters_before.total_collections(),
1928                         counters_before.total_full_collections(),
1929                         cause);
1930     VMThread::execute(&op);
1931 
1932     // Request is trivially finished.
1933     if (!GCCause::is_explicit_full_gc(cause) || op.gc_succeeded()) {
1934       return op.gc_succeeded();
1935     }
1936 
1937     {
1938       MutexLocker ml(Heap_lock);
1939       if (counters_before.total_full_collections() != total_full_collections()) {
1940         return true;
1941       }
1942     }
1943 
1944     if (GCLocker::is_active_and_needs_gc()) {
1945       // If GCLocker is active, wait until clear before retrying.
1946       GCLocker::stall_until_clear();
1947     }
1948   }
1949 }
1950 
1951 bool G1CollectedHeap::try_collect(GCCause::Cause cause,
1952                                   const G1GCCounters& counters_before) {
1953   if (should_do_concurrent_full_gc(cause)) {
1954     return try_collect_concurrently(cause,
1955                                     counters_before.total_collections(),
1956                                     counters_before.old_marking_cycles_started());
1957   } else if (GCLocker::should_discard(cause, counters_before.total_collections())) {
1958     // Indicate failure to be consistent with VMOp failure due to
1959     // another collection slipping in after our gc_count but before
1960     // our request is processed.
1961     return false;
1962   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
1963              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
1964 
1965     // Schedule a standard evacuation pause. We're setting word_size
1966     // to 0 which means that we are not requesting a post-GC allocation.
1967     VM_G1CollectForAllocation op(0,     /* word_size */
1968                                  counters_before.total_collections(),
1969                                  cause);
1970     VMThread::execute(&op);
1971     return op.gc_succeeded();
1972   } else {
1973     // Schedule a Full GC.
1974     return try_collect_fullgc(cause, counters_before);
1975   }
1976 }
1977 
1978 void G1CollectedHeap::start_concurrent_gc_for_metadata_allocation(GCCause::Cause gc_cause) {
1979   GCCauseSetter x(this, gc_cause);
1980 
1981   // At this point we are supposed to start a concurrent cycle. We
1982   // will do so if one is not already in progress.
1983   bool should_start = policy()->force_concurrent_start_if_outside_cycle(gc_cause);
1984   if (should_start) {
1985     do_collection_pause_at_safepoint();
1986   }
1987 }
1988 
1989 bool G1CollectedHeap::is_in(const void* p) const {
1990   return is_in_reserved(p) && _hrm.is_available(addr_to_region(p));
1991 }
1992 
1993 // Iteration functions.
1994 
1995 // Iterates an ObjectClosure over all objects within a HeapRegion.
1996 
1997 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
1998   ObjectClosure* _cl;
1999 public:
2000   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2001   bool do_heap_region(HeapRegion* r) {
2002     if (!r->is_continues_humongous()) {
2003       r->object_iterate(_cl);
2004     }
2005     return false;
2006   }
2007 };
2008 
2009 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2010   IterateObjectClosureRegionClosure blk(cl);
2011   heap_region_iterate(&blk);
2012 }
2013 
2014 class G1ParallelObjectIterator : public ParallelObjectIteratorImpl {
2015 private:
2016   G1CollectedHeap*  _heap;
2017   HeapRegionClaimer _claimer;
2018 
2019 public:
2020   G1ParallelObjectIterator(uint thread_num) :
2021       _heap(G1CollectedHeap::heap()),
2022       _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {}
2023 
2024   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
2025     _heap->object_iterate_parallel(cl, worker_id, &_claimer);
2026   }
2027 };
2028 
2029 ParallelObjectIteratorImpl* G1CollectedHeap::parallel_object_iterator(uint thread_num) {
2030   return new G1ParallelObjectIterator(thread_num);
2031 }
2032 
2033 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) {
2034   IterateObjectClosureRegionClosure blk(cl);
2035   heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id);
2036 }
2037 
2038 void G1CollectedHeap::keep_alive(oop obj) {
2039   G1BarrierSet::enqueue_preloaded(obj);
2040 }
2041 
2042 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2043   _hrm.iterate(cl);
2044 }
2045 
2046 void G1CollectedHeap::heap_region_iterate(HeapRegionIndexClosure* cl) const {
2047   _hrm.iterate(cl);
2048 }
2049 
2050 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2051                                                                  HeapRegionClaimer *hrclaimer,
2052                                                                  uint worker_id) const {
2053   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2054 }
2055 
2056 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2057                                                          HeapRegionClaimer *hrclaimer) const {
2058   _hrm.par_iterate(cl, hrclaimer, 0);
2059 }
2060 
2061 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2062   _collection_set.iterate(cl);
2063 }
2064 
2065 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl,
2066                                                      HeapRegionClaimer* hr_claimer,
2067                                                      uint worker_id) {
2068   _collection_set.par_iterate(cl, hr_claimer, worker_id);
2069 }
2070 
2071 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl,
2072                                                             HeapRegionClaimer* hr_claimer,
2073                                                             uint worker_id) {
2074   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id);
2075 }
2076 
2077 void G1CollectedHeap::par_iterate_regions_array(HeapRegionClosure* cl,
2078                                                 HeapRegionClaimer* hr_claimer,
2079                                                 const uint regions[],
2080                                                 size_t length,
2081                                                 uint worker_id) const {
2082   assert_at_safepoint();
2083   if (length == 0) {
2084     return;
2085   }
2086   uint total_workers = workers()->active_workers();
2087 
2088   size_t start_pos = (worker_id * length) / total_workers;
2089   size_t cur_pos = start_pos;
2090 
2091   do {
2092     uint region_idx = regions[cur_pos];
2093     if (hr_claimer == nullptr || hr_claimer->claim_region(region_idx)) {
2094       HeapRegion* r = region_at(region_idx);
2095       bool result = cl->do_heap_region(r);
2096       guarantee(!result, "Must not cancel iteration");
2097     }
2098 
2099     cur_pos++;
2100     if (cur_pos == length) {
2101       cur_pos = 0;
2102     }
2103   } while (cur_pos != start_pos);
2104 }
2105 
2106 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2107   HeapRegion* hr = heap_region_containing(addr);
2108   // The CollectedHeap API requires us to not fail for any given address within
2109   // the heap. HeapRegion::block_start() has been optimized to not accept addresses
2110   // outside of the allocated area.
2111   if (addr >= hr->top()) {
2112     return nullptr;
2113   }
2114   return hr->block_start(addr);
2115 }
2116 
2117 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2118   HeapRegion* hr = heap_region_containing(addr);
2119   return hr->block_is_obj(addr, hr->parsable_bottom_acquire());
2120 }
2121 
2122 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2123   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2124 }
2125 
2126 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2127   return _eden.length() * HeapRegion::GrainBytes;
2128 }
2129 
2130 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2131 // must be equal to the humongous object limit.
2132 size_t G1CollectedHeap::max_tlab_size() const {
2133   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2134 }
2135 
2136 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2137   return _allocator->unsafe_max_tlab_alloc();
2138 }
2139 
2140 size_t G1CollectedHeap::max_capacity() const {
2141   return max_regions() * HeapRegion::GrainBytes;
2142 }
2143 
2144 void G1CollectedHeap::prepare_for_verify() {
2145   _verifier->prepare_for_verify();
2146 }
2147 
2148 void G1CollectedHeap::verify(VerifyOption vo) {
2149   _verifier->verify(vo);
2150 }
2151 
2152 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2153   return true;
2154 }
2155 
2156 class PrintRegionClosure: public HeapRegionClosure {
2157   outputStream* _st;
2158 public:
2159   PrintRegionClosure(outputStream* st) : _st(st) {}
2160   bool do_heap_region(HeapRegion* r) {
2161     r->print_on(_st);
2162     return false;
2163   }
2164 };
2165 
2166 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2167                                        const HeapRegion* hr,
2168                                        const VerifyOption vo) const {
2169   switch (vo) {
2170     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj, hr);
2171     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj, hr);
2172     default:                             ShouldNotReachHere();
2173   }
2174   return false; // keep some compilers happy
2175 }
2176 
2177 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2178                                        const VerifyOption vo) const {
2179   switch (vo) {
2180     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj);
2181     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj);
2182     default:                             ShouldNotReachHere();
2183   }
2184   return false; // keep some compilers happy
2185 }
2186 
2187 void G1CollectedHeap::pin_object(JavaThread* thread, oop obj) {
2188   GCLocker::lock_critical(thread);
2189 }
2190 
2191 void G1CollectedHeap::unpin_object(JavaThread* thread, oop obj) {
2192   GCLocker::unlock_critical(thread);
2193 }
2194 
2195 void G1CollectedHeap::print_heap_regions() const {
2196   LogTarget(Trace, gc, heap, region) lt;
2197   if (lt.is_enabled()) {
2198     LogStream ls(lt);
2199     print_regions_on(&ls);
2200   }
2201 }
2202 
2203 void G1CollectedHeap::print_on(outputStream* st) const {
2204   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2205   st->print(" %-20s", "garbage-first heap");
2206   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2207             capacity()/K, heap_used/K);
2208   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2209             p2i(_hrm.reserved().start()),
2210             p2i(_hrm.reserved().end()));
2211   st->cr();
2212   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2213   uint young_regions = young_regions_count();
2214   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2215             (size_t) young_regions * HeapRegion::GrainBytes / K);
2216   uint survivor_regions = survivor_regions_count();
2217   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2218             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2219   st->cr();
2220   if (_numa->is_enabled()) {
2221     uint num_nodes = _numa->num_active_nodes();
2222     st->print("  remaining free region(s) on each NUMA node: ");
2223     const int* node_ids = _numa->node_ids();
2224     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2225       uint num_free_regions = _hrm.num_free_regions(node_index);
2226       st->print("%d=%u ", node_ids[node_index], num_free_regions);
2227     }
2228     st->cr();
2229   }
2230   MetaspaceUtils::print_on(st);
2231 }
2232 
2233 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2234   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2235                "HS=humongous(starts), HC=humongous(continues), "
2236                "CS=collection set, F=free, "
2237                "TAMS=top-at-mark-start, "
2238                "PB=parsable bottom");
2239   PrintRegionClosure blk(st);
2240   heap_region_iterate(&blk);
2241 }
2242 
2243 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2244   print_on(st);
2245 
2246   // Print the per-region information.
2247   st->cr();
2248   print_regions_on(st);
2249 }
2250 
2251 void G1CollectedHeap::print_on_error(outputStream* st) const {
2252   this->CollectedHeap::print_on_error(st);
2253 
2254   if (_cm != nullptr) {
2255     st->cr();
2256     _cm->print_on_error(st);
2257   }
2258 }
2259 
2260 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2261   workers()->threads_do(tc);
2262   tc->do_thread(_cm_thread);
2263   _cm->threads_do(tc);
2264   _cr->threads_do(tc);
2265   tc->do_thread(_service_thread);
2266 }
2267 
2268 void G1CollectedHeap::print_tracing_info() const {
2269   rem_set()->print_summary_info();
2270   concurrent_mark()->print_summary_info();
2271 }
2272 
2273 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2274   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2275 }
2276 
2277 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2278 
2279   size_t eden_used_bytes = _monitoring_support->eden_space_used();
2280   size_t survivor_used_bytes = _monitoring_support->survivor_space_used();
2281   size_t old_gen_used_bytes = _monitoring_support->old_gen_used();
2282   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2283 
2284   size_t eden_capacity_bytes =
2285     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2286 
2287   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2288   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, eden_capacity_bytes,
2289                        survivor_used_bytes, old_gen_used_bytes, num_regions());
2290 }
2291 
2292 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2293   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2294                        stats->unused(), stats->used(), stats->region_end_waste(),
2295                        stats->regions_filled(), stats->num_plab_filled(),
2296                        stats->direct_allocated(), stats->num_direct_allocated(),
2297                        stats->failure_used(), stats->failure_waste());
2298 }
2299 
2300 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2301   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2302   gc_tracer->report_gc_heap_summary(when, heap_summary);
2303 
2304   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2305   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2306 }
2307 
2308 void G1CollectedHeap::gc_prologue(bool full) {
2309   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2310 
2311   // Update common counters.
2312   increment_total_collections(full /* full gc */);
2313   if (full || collector_state()->in_concurrent_start_gc()) {
2314     increment_old_marking_cycles_started();
2315   }
2316 }
2317 
2318 void G1CollectedHeap::gc_epilogue(bool full) {
2319   // Update common counters.
2320   if (full) {
2321     // Update the number of full collections that have been completed.
2322     increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */);
2323   }
2324 
2325 #if COMPILER2_OR_JVMCI
2326   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2327 #endif
2328 
2329   // We have just completed a GC. Update the soft reference
2330   // policy with the new heap occupancy
2331   Universe::heap()->update_capacity_and_used_at_gc();
2332 
2333   _collection_pause_end = Ticks::now();
2334 
2335   _free_arena_memory_task->notify_new_stats(&_young_gen_card_set_stats,
2336                                             &_collection_set_candidates_card_set_stats);
2337 }
2338 
2339 uint G1CollectedHeap::uncommit_regions(uint region_limit) {
2340   return _hrm.uncommit_inactive_regions(region_limit);
2341 }
2342 
2343 bool G1CollectedHeap::has_uncommittable_regions() {
2344   return _hrm.has_inactive_regions();
2345 }
2346 
2347 void G1CollectedHeap::uncommit_regions_if_necessary() {
2348   if (has_uncommittable_regions()) {
2349     G1UncommitRegionTask::enqueue();
2350   }
2351 }
2352 
2353 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2354   LogTarget(Trace, gc, heap, verify) lt;
2355 
2356   if (lt.is_enabled()) {
2357     LogStream ls(lt);
2358     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2359     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2360     heap_region_iterate(&cl);
2361   }
2362 }
2363 
2364 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2365                                                uint gc_count_before,
2366                                                bool* succeeded,
2367                                                GCCause::Cause gc_cause) {
2368   assert_heap_not_locked_and_not_at_safepoint();
2369   VM_G1CollectForAllocation op(word_size, gc_count_before, gc_cause);
2370   VMThread::execute(&op);
2371 
2372   HeapWord* result = op.result();
2373   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2374   assert(result == nullptr || ret_succeeded,
2375          "the result should be null if the VM did not succeed");
2376   *succeeded = ret_succeeded;
2377 
2378   assert_heap_not_locked();
2379   return result;
2380 }
2381 
2382 void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) {
2383   assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress");
2384 
2385   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2386   if (concurrent_operation_is_full_mark) {
2387     _cm->post_concurrent_mark_start();
2388     _cm_thread->start_full_mark();
2389   } else {
2390     _cm->post_concurrent_undo_start();
2391     _cm_thread->start_undo_mark();
2392   }
2393   CGC_lock->notify();
2394 }
2395 
2396 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2397   // We don't nominate objects with many remembered set entries, on
2398   // the assumption that such objects are likely still live.
2399   HeapRegionRemSet* rem_set = r->rem_set();
2400 
2401   return rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold);
2402 }
2403 
2404 #ifndef PRODUCT
2405 void G1CollectedHeap::verify_region_attr_remset_is_tracked() {
2406   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2407   public:
2408     virtual bool do_heap_region(HeapRegion* r) {
2409       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2410       bool const remset_is_tracked = g1h->region_attr(r->bottom()).remset_is_tracked();
2411       assert(r->rem_set()->is_tracked() == remset_is_tracked,
2412              "Region %u remset tracking status (%s) different to region attribute (%s)",
2413              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(remset_is_tracked));
2414       return false;
2415     }
2416   } cl;
2417   heap_region_iterate(&cl);
2418 }
2419 #endif
2420 
2421 void G1CollectedHeap::start_new_collection_set() {
2422   collection_set()->start_incremental_building();
2423 
2424   clear_region_attr();
2425 
2426   guarantee(_eden.length() == 0, "eden should have been cleared");
2427   policy()->transfer_survivors_to_cset(survivor());
2428 
2429   // We redo the verification but now wrt to the new CSet which
2430   // has just got initialized after the previous CSet was freed.
2431   _cm->verify_no_collection_set_oops();
2432 }
2433 
2434 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2435   if (collector_state()->in_concurrent_start_gc()) {
2436     return G1HeapVerifier::G1VerifyConcurrentStart;
2437   } else if (collector_state()->in_young_only_phase()) {
2438     return G1HeapVerifier::G1VerifyYoungNormal;
2439   } else {
2440     return G1HeapVerifier::G1VerifyMixed;
2441   }
2442 }
2443 
2444 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2445   if (!VerifyBeforeGC) {
2446     return;
2447   }
2448   if (!G1HeapVerifier::should_verify(type)) {
2449     return;
2450   }
2451   Ticks start = Ticks::now();
2452   _verifier->prepare_for_verify();
2453   _verifier->verify_region_sets_optional();
2454   _verifier->verify_dirty_young_regions();
2455   _verifier->verify_before_gc();
2456   verify_numa_regions("GC Start");
2457   phase_times()->record_verify_before_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2458 }
2459 
2460 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2461   if (!VerifyAfterGC) {
2462     return;
2463   }
2464   if (!G1HeapVerifier::should_verify(type)) {
2465     return;
2466   }
2467   Ticks start = Ticks::now();
2468   _verifier->verify_after_gc();
2469   verify_numa_regions("GC End");
2470   _verifier->verify_region_sets_optional();
2471   phase_times()->record_verify_after_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2472 }
2473 
2474 void G1CollectedHeap::expand_heap_after_young_collection(){
2475   size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount();
2476   if (expand_bytes > 0) {
2477     // No need for an ergo logging here,
2478     // expansion_amount() does this when it returns a value > 0.
2479     double expand_ms = 0.0;
2480     if (!expand(expand_bytes, _workers, &expand_ms)) {
2481       // We failed to expand the heap. Cannot do anything about it.
2482     }
2483     phase_times()->record_expand_heap_time(expand_ms);
2484   }
2485 }
2486 
2487 bool G1CollectedHeap::do_collection_pause_at_safepoint() {
2488   assert_at_safepoint_on_vm_thread();
2489   guarantee(!is_stw_gc_active(), "collection is not reentrant");
2490 
2491   if (GCLocker::check_active_before_gc()) {
2492     return false;
2493   }
2494 
2495   do_collection_pause_at_safepoint_helper();
2496   return true;
2497 }
2498 
2499 G1HeapPrinterMark::G1HeapPrinterMark(G1CollectedHeap* g1h) : _g1h(g1h), _heap_transition(g1h) {
2500   // This summary needs to be printed before incrementing total collections.
2501   _g1h->rem_set()->print_periodic_summary_info("Before GC RS summary",
2502                                                _g1h->total_collections(),
2503                                                true /* show_thread_times */);
2504   _g1h->print_heap_before_gc();
2505   _g1h->print_heap_regions();
2506 }
2507 
2508 G1HeapPrinterMark::~G1HeapPrinterMark() {
2509   _g1h->policy()->print_age_table();
2510   _g1h->rem_set()->print_coarsen_stats();
2511   // We are at the end of the GC. Total collections has already been increased.
2512   _g1h->rem_set()->print_periodic_summary_info("After GC RS summary",
2513                                                _g1h->total_collections() - 1,
2514                                                false /* show_thread_times */);
2515 
2516   _heap_transition.print();
2517   _g1h->print_heap_regions();
2518   _g1h->print_heap_after_gc();
2519   // Print NUMA statistics.
2520   _g1h->numa()->print_statistics();
2521 }
2522 
2523 G1JFRTracerMark::G1JFRTracerMark(STWGCTimer* timer, GCTracer* tracer) :
2524   _timer(timer), _tracer(tracer) {
2525 
2526   _timer->register_gc_start();
2527   _tracer->report_gc_start(G1CollectedHeap::heap()->gc_cause(), _timer->gc_start());
2528   G1CollectedHeap::heap()->trace_heap_before_gc(_tracer);
2529 }
2530 
2531 G1JFRTracerMark::~G1JFRTracerMark() {
2532   G1CollectedHeap::heap()->trace_heap_after_gc(_tracer);
2533   _timer->register_gc_end();
2534   _tracer->report_gc_end(_timer->gc_end(), _timer->time_partitions());
2535 }
2536 
2537 void G1CollectedHeap::prepare_for_mutator_after_young_collection() {
2538   Ticks start = Ticks::now();
2539 
2540   _survivor_evac_stats.adjust_desired_plab_size();
2541   _old_evac_stats.adjust_desired_plab_size();
2542 
2543   // Start a new incremental collection set for the mutator phase.
2544   start_new_collection_set();
2545   _allocator->init_mutator_alloc_regions();
2546 
2547   phase_times()->record_prepare_for_mutator_time_ms((Ticks::now() - start).seconds() * 1000.0);
2548 }
2549 
2550 void G1CollectedHeap::retire_tlabs() {
2551   ensure_parsability(true);
2552 }
2553 
2554 void G1CollectedHeap::do_collection_pause_at_safepoint_helper() {
2555   ResourceMark rm;
2556 
2557   IsSTWGCActiveMark active_gc_mark;
2558   GCIdMark gc_id_mark;
2559   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2560 
2561   GCTraceCPUTime tcpu(_gc_tracer_stw);
2562 
2563   _bytes_used_during_gc = 0;
2564 
2565   policy()->decide_on_concurrent_start_pause();
2566   // Record whether this pause may need to trigger a concurrent operation. Later,
2567   // when we signal the G1ConcurrentMarkThread, the collector state has already
2568   // been reset for the next pause.
2569   bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc();
2570 
2571   // Perform the collection.
2572   G1YoungCollector collector(gc_cause());
2573   collector.collect();
2574 
2575   // It should now be safe to tell the concurrent mark thread to start
2576   // without its logging output interfering with the logging output
2577   // that came from the pause.
2578   if (should_start_concurrent_mark_operation) {
2579     verifier()->verify_bitmap_clear(true /* above_tams_only */);
2580     // CAUTION: after the start_concurrent_cycle() call below, the concurrent marking
2581     // thread(s) could be running concurrently with us. Make sure that anything
2582     // after this point does not assume that we are the only GC thread running.
2583     // Note: of course, the actual marking work will not start until the safepoint
2584     // itself is released in SuspendibleThreadSet::desynchronize().
2585     start_concurrent_cycle(collector.concurrent_operation_is_full_mark());
2586     ConcurrentGCBreakpoints::notify_idle_to_active();
2587   }
2588 }
2589 
2590 void G1CollectedHeap::complete_cleaning(bool class_unloading_occurred) {
2591   uint num_workers = workers()->active_workers();
2592   G1ParallelCleaningTask unlink_task(num_workers, class_unloading_occurred);
2593   workers()->run_task(&unlink_task);
2594 }
2595 
2596 void G1CollectedHeap::unload_classes_and_code(const char* description, BoolObjectClosure* is_alive, GCTimer* timer) {
2597   GCTraceTime(Debug, gc, phases) debug(description, timer);
2598 
2599   ClassUnloadingContext ctx(workers()->active_workers(),
2600                             false /* unregister_nmethods_during_purge */,
2601                             false /* lock_codeblob_free_separately */);
2602   {
2603     CodeCache::UnlinkingScope scope(is_alive);
2604     bool unloading_occurred = SystemDictionary::do_unloading(timer);
2605     GCTraceTime(Debug, gc, phases) t("G1 Complete Cleaning", timer);
2606     complete_cleaning(unloading_occurred);
2607   }
2608   {
2609     GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", timer);
2610     ctx.purge_nmethods();
2611   }
2612   {
2613     GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", timer);
2614     G1CollectedHeap::heap()->bulk_unregister_nmethods();
2615   }
2616   {
2617     GCTraceTime(Debug, gc, phases) t("Free Code Blobs", timer);
2618     ctx.free_code_blobs();
2619   }
2620   {
2621     GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", timer);
2622     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2623     DEBUG_ONLY(MetaspaceUtils::verify();)
2624   }
2625 }
2626 
2627 class G1BulkUnregisterNMethodTask : public WorkerTask {
2628   HeapRegionClaimer _hrclaimer;
2629 
2630   class UnregisterNMethodsHeapRegionClosure : public HeapRegionClosure {
2631   public:
2632 
2633     bool do_heap_region(HeapRegion* hr) {
2634       hr->rem_set()->bulk_remove_code_roots();
2635       return false;
2636     }
2637   } _cl;
2638 
2639 public:
2640   G1BulkUnregisterNMethodTask(uint num_workers)
2641   : WorkerTask("G1 Remove Unlinked NMethods From Code Root Set Task"),
2642     _hrclaimer(num_workers) { }
2643 
2644   void work(uint worker_id) {
2645     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hrclaimer, worker_id);
2646   }
2647 };
2648 
2649 void G1CollectedHeap::bulk_unregister_nmethods() {
2650   uint num_workers = workers()->active_workers();
2651   G1BulkUnregisterNMethodTask t(num_workers);
2652   workers()->run_task(&t);
2653 }
2654 
2655 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
2656   assert(obj != nullptr, "must not be null");
2657   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
2658   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
2659   // may falsely indicate that this is not the case here: however the collection set only
2660   // contains old regions when concurrent mark is not running.
2661   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
2662 }
2663 
2664 void G1CollectedHeap::make_pending_list_reachable() {
2665   if (collector_state()->in_concurrent_start_gc()) {
2666     oop pll_head = Universe::reference_pending_list();
2667     if (pll_head != nullptr) {
2668       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
2669       _cm->mark_in_bitmap(0 /* worker_id */, pll_head);
2670     }
2671   }
2672 }
2673 
2674 void G1CollectedHeap::set_humongous_stats(uint num_humongous_total, uint num_humongous_candidates) {
2675   _num_humongous_objects = num_humongous_total;
2676   _num_humongous_reclaim_candidates = num_humongous_candidates;
2677 }
2678 
2679 bool G1CollectedHeap::should_sample_collection_set_candidates() const {
2680   const G1CollectionSetCandidates* candidates = collection_set()->candidates();
2681   return !candidates->is_empty();
2682 }
2683 
2684 void G1CollectedHeap::set_collection_set_candidates_stats(G1MonotonicArenaMemoryStats& stats) {
2685   _collection_set_candidates_card_set_stats = stats;
2686 }
2687 
2688 void G1CollectedHeap::set_young_gen_card_set_stats(const G1MonotonicArenaMemoryStats& stats) {
2689   _young_gen_card_set_stats = stats;
2690 }
2691 
2692 void G1CollectedHeap::record_obj_copy_mem_stats() {
2693   policy()->old_gen_alloc_tracker()->
2694     add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
2695 
2696   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
2697                                                create_g1_evac_summary(&_old_evac_stats));
2698 }
2699 
2700 void G1CollectedHeap::clear_bitmap_for_region(HeapRegion* hr) {
2701   concurrent_mark()->clear_bitmap_for_region(hr);
2702 }
2703 
2704 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
2705   assert(!hr->is_free(), "the region should not be free");
2706   assert(!hr->is_empty(), "the region should not be empty");
2707   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
2708 
2709   // Reset region metadata to allow reuse.
2710   hr->hr_clear(true /* clear_space */);
2711   _policy->remset_tracker()->update_at_free(hr);
2712 
2713   if (free_list != nullptr) {
2714     free_list->add_ordered(hr);
2715   }
2716 }
2717 
2718 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
2719                                             FreeRegionList* free_list) {
2720   assert(hr->is_humongous(), "this is only for humongous regions");
2721   hr->clear_humongous();
2722   free_region(hr, free_list);
2723 }
2724 
2725 void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed,
2726                                                const uint humongous_regions_removed) {
2727   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
2728     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
2729     _old_set.bulk_remove(old_regions_removed);
2730     _humongous_set.bulk_remove(humongous_regions_removed);
2731   }
2732 
2733 }
2734 
2735 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
2736   assert(list != nullptr, "list can't be null");
2737   if (!list->is_empty()) {
2738     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
2739     _hrm.insert_list_into_free_list(list);
2740   }
2741 }
2742 
2743 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
2744   decrease_used(bytes);
2745 }
2746 
2747 void G1CollectedHeap::clear_eden() {
2748   _eden.clear();
2749 }
2750 
2751 void G1CollectedHeap::clear_collection_set() {
2752   collection_set()->clear();
2753 }
2754 
2755 void G1CollectedHeap::rebuild_free_region_list() {
2756   Ticks start = Ticks::now();
2757   _hrm.rebuild_free_list(workers());
2758   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0);
2759 }
2760 
2761 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
2762 public:
2763   virtual bool do_heap_region(HeapRegion* r) {
2764     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
2765     G1CollectedHeap::heap()->clear_region_attr(r);
2766     r->clear_young_index_in_cset();
2767     return false;
2768   }
2769 };
2770 
2771 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
2772   G1AbandonCollectionSetClosure cl;
2773   collection_set_iterate_all(&cl);
2774 
2775   collection_set->clear();
2776   collection_set->stop_incremental_building();
2777 }
2778 
2779 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
2780   return _allocator->is_retained_old_region(hr);
2781 }
2782 
2783 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
2784   _eden.add(hr);
2785   _policy->set_region_eden(hr);
2786 }
2787 
2788 #ifdef ASSERT
2789 
2790 class NoYoungRegionsClosure: public HeapRegionClosure {
2791 private:
2792   bool _success;
2793 public:
2794   NoYoungRegionsClosure() : _success(true) { }
2795   bool do_heap_region(HeapRegion* r) {
2796     if (r->is_young()) {
2797       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
2798                             p2i(r->bottom()), p2i(r->end()));
2799       _success = false;
2800     }
2801     return false;
2802   }
2803   bool success() { return _success; }
2804 };
2805 
2806 bool G1CollectedHeap::check_young_list_empty() {
2807   bool ret = (young_regions_count() == 0);
2808 
2809   NoYoungRegionsClosure closure;
2810   heap_region_iterate(&closure);
2811   ret = ret && closure.success();
2812 
2813   return ret;
2814 }
2815 
2816 #endif // ASSERT
2817 
2818 // Remove the given HeapRegion from the appropriate region set.
2819 void G1CollectedHeap::prepare_region_for_full_compaction(HeapRegion* hr) {
2820   if (hr->is_humongous()) {
2821     _humongous_set.remove(hr);
2822   } else if (hr->is_old()) {
2823     _old_set.remove(hr);
2824   } else if (hr->is_young()) {
2825     // Note that emptying the eden and survivor lists is postponed and instead
2826     // done as the first step when rebuilding the regions sets again. The reason
2827     // for this is that during a full GC string deduplication needs to know if
2828     // a collected region was young or old when the full GC was initiated.
2829     hr->uninstall_surv_rate_group();
2830   } else {
2831     // We ignore free regions, we'll empty the free list afterwards.
2832     assert(hr->is_free(), "it cannot be another type");
2833   }
2834 }
2835 
2836 void G1CollectedHeap::increase_used(size_t bytes) {
2837   _summary_bytes_used += bytes;
2838 }
2839 
2840 void G1CollectedHeap::decrease_used(size_t bytes) {
2841   assert(_summary_bytes_used >= bytes,
2842          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
2843          _summary_bytes_used, bytes);
2844   _summary_bytes_used -= bytes;
2845 }
2846 
2847 void G1CollectedHeap::set_used(size_t bytes) {
2848   _summary_bytes_used = bytes;
2849 }
2850 
2851 class RebuildRegionSetsClosure : public HeapRegionClosure {
2852 private:
2853   bool _free_list_only;
2854 
2855   HeapRegionSet* _old_set;
2856   HeapRegionSet* _humongous_set;
2857 
2858   HeapRegionManager* _hrm;
2859 
2860   size_t _total_used;
2861 
2862 public:
2863   RebuildRegionSetsClosure(bool free_list_only,
2864                            HeapRegionSet* old_set,
2865                            HeapRegionSet* humongous_set,
2866                            HeapRegionManager* hrm) :
2867     _free_list_only(free_list_only), _old_set(old_set),
2868     _humongous_set(humongous_set), _hrm(hrm), _total_used(0) {
2869     assert(_hrm->num_free_regions() == 0, "pre-condition");
2870     if (!free_list_only) {
2871       assert(_old_set->is_empty(), "pre-condition");
2872       assert(_humongous_set->is_empty(), "pre-condition");
2873     }
2874   }
2875 
2876   bool do_heap_region(HeapRegion* r) {
2877     if (r->is_empty()) {
2878       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
2879       // Add free regions to the free list
2880       r->set_free();
2881       _hrm->insert_into_free_list(r);
2882     } else if (!_free_list_only) {
2883       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
2884 
2885       if (r->is_humongous()) {
2886         _humongous_set->add(r);
2887       } else {
2888         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
2889         // We now move all (non-humongous, non-old) regions to old gen,
2890         // and register them as such.
2891         r->move_to_old();
2892         _old_set->add(r);
2893       }
2894       _total_used += r->used();
2895     }
2896 
2897     return false;
2898   }
2899 
2900   size_t total_used() {
2901     return _total_used;
2902   }
2903 };
2904 
2905 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
2906   assert_at_safepoint_on_vm_thread();
2907 
2908   if (!free_list_only) {
2909     _eden.clear();
2910     _survivor.clear();
2911   }
2912 
2913   RebuildRegionSetsClosure cl(free_list_only,
2914                               &_old_set, &_humongous_set,
2915                               &_hrm);
2916   heap_region_iterate(&cl);
2917 
2918   if (!free_list_only) {
2919     set_used(cl.total_used());
2920   }
2921   assert_used_and_recalculate_used_equal(this);
2922 }
2923 
2924 // Methods for the mutator alloc region
2925 
2926 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
2927                                                       bool force,
2928                                                       uint node_index) {
2929   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
2930   bool should_allocate = policy()->should_allocate_mutator_region();
2931   if (force || should_allocate) {
2932     HeapRegion* new_alloc_region = new_region(word_size,
2933                                               HeapRegionType::Eden,
2934                                               false /* do_expand */,
2935                                               node_index);
2936     if (new_alloc_region != nullptr) {
2937       set_region_short_lived_locked(new_alloc_region);
2938       _hr_printer.alloc(new_alloc_region, !should_allocate);
2939       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
2940       return new_alloc_region;
2941     }
2942   }
2943   return nullptr;
2944 }
2945 
2946 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
2947                                                   size_t allocated_bytes) {
2948   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
2949   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
2950 
2951   collection_set()->add_eden_region(alloc_region);
2952   increase_used(allocated_bytes);
2953   _eden.add_used_bytes(allocated_bytes);
2954   _hr_printer.retire(alloc_region);
2955 
2956   // We update the eden sizes here, when the region is retired,
2957   // instead of when it's allocated, since this is the point that its
2958   // used space has been recorded in _summary_bytes_used.
2959   monitoring_support()->update_eden_size();
2960 }
2961 
2962 // Methods for the GC alloc regions
2963 
2964 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
2965   if (dest.is_old()) {
2966     return true;
2967   } else {
2968     return survivor_regions_count() < policy()->max_survivor_regions();
2969   }
2970 }
2971 
2972 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
2973   assert(FreeList_lock->owned_by_self(), "pre-condition");
2974 
2975   if (!has_more_regions(dest)) {
2976     return nullptr;
2977   }
2978 
2979   HeapRegionType type;
2980   if (dest.is_young()) {
2981     type = HeapRegionType::Survivor;
2982   } else {
2983     type = HeapRegionType::Old;
2984   }
2985 
2986   HeapRegion* new_alloc_region = new_region(word_size,
2987                                             type,
2988                                             true /* do_expand */,
2989                                             node_index);
2990 
2991   if (new_alloc_region != nullptr) {
2992     if (type.is_survivor()) {
2993       new_alloc_region->set_survivor();
2994       _survivor.add(new_alloc_region);
2995       register_new_survivor_region_with_region_attr(new_alloc_region);
2996     } else {
2997       new_alloc_region->set_old();
2998     }
2999     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
3000     register_region_with_region_attr(new_alloc_region);
3001     _hr_printer.alloc(new_alloc_region);
3002     return new_alloc_region;
3003   }
3004   return nullptr;
3005 }
3006 
3007 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
3008                                              size_t allocated_bytes,
3009                                              G1HeapRegionAttr dest) {
3010   _bytes_used_during_gc += allocated_bytes;
3011   if (dest.is_old()) {
3012     old_set_add(alloc_region);
3013   } else {
3014     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
3015     _survivor.add_used_bytes(allocated_bytes);
3016   }
3017 
3018   bool const during_im = collector_state()->in_concurrent_start_gc();
3019   if (during_im && allocated_bytes > 0) {
3020     _cm->add_root_region(alloc_region);
3021   }
3022   _hr_printer.retire(alloc_region);
3023 }
3024 
3025 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
3026   bool expanded = false;
3027   uint index = _hrm.find_highest_free(&expanded);
3028 
3029   if (index != G1_NO_HRM_INDEX) {
3030     if (expanded) {
3031       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
3032                                 HeapRegion::GrainWords * HeapWordSize);
3033     }
3034     return _hrm.allocate_free_regions_starting_at(index, 1);
3035   }
3036   return nullptr;
3037 }
3038 
3039 void G1CollectedHeap::mark_evac_failure_object(uint worker_id, const oop obj, size_t obj_size) const {
3040   assert(!_cm->is_marked_in_bitmap(obj), "must be");
3041 
3042   _cm->raw_mark_in_bitmap(obj);
3043   if (collector_state()->in_concurrent_start_gc()) {
3044     _cm->add_to_liveness(worker_id, obj, obj_size);
3045   }
3046 }
3047 
3048 // Optimized nmethod scanning
3049 class RegisterNMethodOopClosure: public OopClosure {
3050   G1CollectedHeap* _g1h;
3051   nmethod* _nm;
3052 
3053 public:
3054   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
3055     _g1h(g1h), _nm(nm) {}
3056 
3057   void do_oop(oop* p) {
3058     oop heap_oop = RawAccess<>::oop_load(p);
3059     if (!CompressedOops::is_null(heap_oop)) {
3060       oop obj = CompressedOops::decode_not_null(heap_oop);
3061       HeapRegion* hr = _g1h->heap_region_containing(obj);
3062       assert(!hr->is_continues_humongous(),
3063              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
3064              " starting at " HR_FORMAT,
3065              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
3066 
3067       hr->add_code_root(_nm);
3068     }
3069   }
3070 
3071   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3072 };
3073 
3074 void G1CollectedHeap::register_nmethod(nmethod* nm) {
3075   guarantee(nm != nullptr, "sanity");
3076   RegisterNMethodOopClosure reg_cl(this, nm);
3077   nm->oops_do(&reg_cl);
3078 }
3079 
3080 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
3081   // We always unregister nmethods in bulk during code unloading only.
3082   ShouldNotReachHere();
3083 }
3084 
3085 void G1CollectedHeap::update_used_after_gc(bool evacuation_failed) {
3086   if (evacuation_failed) {
3087     // Reset the G1EvacuationFailureALot counters and flags
3088     evac_failure_injector()->reset();
3089 
3090     set_used(recalculate_used());
3091   } else {
3092     // The "used" of the collection set have already been subtracted
3093     // when they were freed.  Add in the bytes used.
3094     increase_used(_bytes_used_during_gc);
3095   }
3096 }
3097 
3098 class RebuildCodeRootClosure: public CodeBlobClosure {
3099   G1CollectedHeap* _g1h;
3100 
3101 public:
3102   RebuildCodeRootClosure(G1CollectedHeap* g1h) :
3103     _g1h(g1h) {}
3104 
3105   void do_code_blob(CodeBlob* cb) {
3106     nmethod* nm = cb->as_nmethod_or_null();
3107     if (nm != nullptr) {
3108       _g1h->register_nmethod(nm);
3109     }
3110   }
3111 };
3112 
3113 void G1CollectedHeap::rebuild_code_roots() {
3114   RebuildCodeRootClosure blob_cl(this);
3115   CodeCache::blobs_do(&blob_cl);
3116 }
3117 
3118 void G1CollectedHeap::initialize_serviceability() {
3119   _monitoring_support->initialize_serviceability();
3120 }
3121 
3122 MemoryUsage G1CollectedHeap::memory_usage() {
3123   return _monitoring_support->memory_usage();
3124 }
3125 
3126 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
3127   return _monitoring_support->memory_managers();
3128 }
3129 
3130 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
3131   return _monitoring_support->memory_pools();
3132 }
3133 
3134 void G1CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
3135   HeapRegion* region = heap_region_containing(start);
3136   region->fill_with_dummy_object(start, pointer_delta(end, start), zap);
3137 }
3138 
3139 void G1CollectedHeap::start_codecache_marking_cycle_if_inactive(bool concurrent_mark_start) {
3140   // We can reach here with an active code cache marking cycle either because the
3141   // previous G1 concurrent marking cycle was undone (if heap occupancy after the
3142   // concurrent start young collection was below the threshold) or aborted. See
3143   // CodeCache::on_gc_marking_cycle_finish() why this is.  We must not start a new code
3144   // cache cycle then. If we are about to start a new g1 concurrent marking cycle we
3145   // still have to arm all nmethod entry barriers. They are needed for adding oop
3146   // constants to the SATB snapshot. Full GC does not need nmethods to be armed.
3147   if (!CodeCache::is_gc_marking_cycle_active()) {
3148     CodeCache::on_gc_marking_cycle_start();
3149   }
3150   if (concurrent_mark_start) {
3151     CodeCache::arm_all_nmethods();
3152   }
3153 }
3154 
3155 void G1CollectedHeap::finish_codecache_marking_cycle() {
3156   CodeCache::on_gc_marking_cycle_finish();
3157   CodeCache::arm_all_nmethods();
3158 }