1 /*
   2  * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "gc/g1/g1Allocator.inline.hpp"
  33 #include "gc/g1/g1Arguments.hpp"
  34 #include "gc/g1/g1BarrierSet.hpp"
  35 #include "gc/g1/g1BatchedTask.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectionSetCandidates.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1ConcurrentRefine.hpp"
  41 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  42 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  43 #include "gc/g1/g1DirtyCardQueue.hpp"
  44 #include "gc/g1/g1EvacStats.inline.hpp"
  45 #include "gc/g1/g1FullCollector.hpp"
  46 #include "gc/g1/g1GCCounters.hpp"
  47 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  48 #include "gc/g1/g1GCPhaseTimes.hpp"
  49 #include "gc/g1/g1GCPauseType.hpp"
  50 #include "gc/g1/g1HeapSizingPolicy.hpp"
  51 #include "gc/g1/g1HeapTransition.hpp"
  52 #include "gc/g1/g1HeapVerifier.hpp"
  53 #include "gc/g1/g1InitLogger.hpp"
  54 #include "gc/g1/g1MemoryPool.hpp"
  55 #include "gc/g1/g1MonotonicArenaFreeMemoryTask.hpp"
  56 #include "gc/g1/g1OopClosures.inline.hpp"
  57 #include "gc/g1/g1ParallelCleaning.hpp"
  58 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  59 #include "gc/g1/g1PeriodicGCTask.hpp"
  60 #include "gc/g1/g1Policy.hpp"
  61 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  62 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  63 #include "gc/g1/g1RemSet.hpp"
  64 #include "gc/g1/g1RootClosures.hpp"
  65 #include "gc/g1/g1RootProcessor.hpp"
  66 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  67 #include "gc/g1/g1ServiceThread.hpp"
  68 #include "gc/g1/g1ThreadLocalData.hpp"
  69 #include "gc/g1/g1Trace.hpp"
  70 #include "gc/g1/g1UncommitRegionTask.hpp"
  71 #include "gc/g1/g1VMOperations.hpp"
  72 #include "gc/g1/g1YoungCollector.hpp"
  73 #include "gc/g1/g1YoungGCEvacFailureInjector.hpp"
  74 #include "gc/g1/heapRegion.inline.hpp"
  75 #include "gc/g1/heapRegionRemSet.inline.hpp"
  76 #include "gc/g1/heapRegionSet.inline.hpp"
  77 #include "gc/shared/concurrentGCBreakpoints.hpp"
  78 #include "gc/shared/gcBehaviours.hpp"
  79 #include "gc/shared/gcHeapSummary.hpp"
  80 #include "gc/shared/gcId.hpp"
  81 #include "gc/shared/gcLocker.inline.hpp"
  82 #include "gc/shared/gcTimer.hpp"
  83 #include "gc/shared/gcTraceTime.inline.hpp"
  84 #include "gc/shared/generationSpec.hpp"
  85 #include "gc/shared/isGCActiveMark.hpp"
  86 #include "gc/shared/locationPrinter.inline.hpp"
  87 #include "gc/shared/oopStorageParState.hpp"
  88 #include "gc/shared/preservedMarks.inline.hpp"
  89 #include "gc/shared/referenceProcessor.inline.hpp"
  90 #include "gc/shared/slidingForwarding.hpp"
  91 #include "gc/shared/suspendibleThreadSet.hpp"
  92 #include "gc/shared/taskqueue.inline.hpp"
  93 #include "gc/shared/taskTerminator.hpp"
  94 #include "gc/shared/tlab_globals.hpp"
  95 #include "gc/shared/workerPolicy.hpp"
  96 #include "gc/shared/weakProcessor.inline.hpp"
  97 #include "logging/log.hpp"
  98 #include "memory/allocation.hpp"
  99 #include "memory/heapInspection.hpp"
 100 #include "memory/iterator.hpp"
 101 #include "memory/metaspaceUtils.hpp"
 102 #include "memory/resourceArea.hpp"
 103 #include "memory/universe.hpp"
 104 #include "oops/access.inline.hpp"
 105 #include "oops/compressedOops.inline.hpp"
 106 #include "oops/oop.inline.hpp"
 107 #include "runtime/atomic.hpp"
 108 #include "runtime/handles.inline.hpp"
 109 #include "runtime/init.hpp"
 110 #include "runtime/java.hpp"
 111 #include "runtime/orderAccess.hpp"
 112 #include "runtime/threadSMR.hpp"
 113 #include "runtime/vmThread.hpp"
 114 #include "utilities/align.hpp"
 115 #include "utilities/autoRestore.hpp"
 116 #include "utilities/bitMap.inline.hpp"
 117 #include "utilities/globalDefinitions.hpp"
 118 #include "utilities/stack.inline.hpp"
 119 
 120 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 121 
 122 // INVARIANTS/NOTES
 123 //
 124 // All allocation activity covered by the G1CollectedHeap interface is
 125 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 126 // and allocate_new_tlab, which are the "entry" points to the
 127 // allocation code from the rest of the JVM.  (Note that this does not
 128 // apply to TLAB allocation, which is not part of this interface: it
 129 // is done by clients of this interface.)
 130 
 131 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 132   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 133 }
 134 
 135 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 136   // The from card cache is not the memory that is actually committed. So we cannot
 137   // take advantage of the zero_filled parameter.
 138   reset_from_card_cache(start_idx, num_regions);
 139 }
 140 
 141 void G1CollectedHeap::run_batch_task(G1BatchedTask* cl) {
 142   uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers()));
 143   cl->set_max_workers(num_workers);
 144   workers()->run_task(cl, num_workers);
 145 }
 146 
 147 uint G1CollectedHeap::get_chunks_per_region() {
 148   uint log_region_size = HeapRegion::LogOfHRGrainBytes;
 149   // Limit the expected input values to current known possible values of the
 150   // (log) region size. Adjust as necessary after testing if changing the permissible
 151   // values for region size.
 152   assert(log_region_size >= 20 && log_region_size <= 29,
 153          "expected value in [20,29], but got %u", log_region_size);
 154   return 1u << (log_region_size / 2 - 4);
 155 }
 156 
 157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 158                                              MemRegion mr) {
 159   return new HeapRegion(hrs_index, bot(), mr, &_card_set_config);
 160 }
 161 
 162 // Private methods.
 163 
 164 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 165                                         HeapRegionType type,
 166                                         bool do_expand,
 167                                         uint node_index) {
 168   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 169          "the only time we use this to allocate a humongous region is "
 170          "when we are allocating a single humongous region");
 171 
 172   HeapRegion* res = _hrm.allocate_free_region(type, node_index);
 173 
 174   if (res == nullptr && do_expand) {
 175     // Currently, only attempts to allocate GC alloc regions set
 176     // do_expand to true. So, we should only reach here during a
 177     // safepoint.
 178     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 179 
 180     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 181                               word_size * HeapWordSize);
 182 
 183     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 184            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 185            word_size * HeapWordSize);
 186     if (expand_single_region(node_index)) {
 187       // Given that expand_single_region() succeeded in expanding the heap, and we
 188       // always expand the heap by an amount aligned to the heap
 189       // region size, the free list should in theory not be empty.
 190       // In either case allocate_free_region() will check for null.
 191       res = _hrm.allocate_free_region(type, node_index);
 192     }
 193   }
 194   return res;
 195 }
 196 
 197 void G1CollectedHeap::set_humongous_metadata(HeapRegion* first_hr,
 198                                              uint num_regions,
 199                                              size_t word_size,
 200                                              bool update_remsets) {
 201   // Calculate the new top of the humongous object.
 202   HeapWord* obj_top = first_hr->bottom() + word_size;
 203   // The word size sum of all the regions used
 204   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 205   assert(word_size <= word_size_sum, "sanity");
 206 
 207   // How many words memory we "waste" which cannot hold a filler object.
 208   size_t words_not_fillable = 0;
 209 
 210   // Pad out the unused tail of the last region with filler
 211   // objects, for improved usage accounting.
 212 
 213   // How many words can we use for filler objects.
 214   size_t words_fillable = word_size_sum - word_size;
 215 
 216   if (words_fillable >= G1CollectedHeap::min_fill_size()) {
 217     G1CollectedHeap::fill_with_objects(obj_top, words_fillable);
 218   } else {
 219     // We have space to fill, but we cannot fit an object there.
 220     words_not_fillable = words_fillable;
 221     words_fillable = 0;
 222   }
 223 
 224   // We will set up the first region as "starts humongous". This
 225   // will also update the BOT covering all the regions to reflect
 226   // that there is a single object that starts at the bottom of the
 227   // first region.
 228   first_hr->hr_clear(false /* clear_space */);
 229   first_hr->set_starts_humongous(obj_top, words_fillable);
 230 
 231   if (update_remsets) {
 232     _policy->remset_tracker()->update_at_allocate(first_hr);
 233   }
 234 
 235   // Indices of first and last regions in the series.
 236   uint first = first_hr->hrm_index();
 237   uint last = first + num_regions - 1;
 238 
 239   HeapRegion* hr = nullptr;
 240   for (uint i = first + 1; i <= last; ++i) {
 241     hr = region_at(i);
 242     hr->hr_clear(false /* clear_space */);
 243     hr->set_continues_humongous(first_hr);
 244     if (update_remsets) {
 245       _policy->remset_tracker()->update_at_allocate(hr);
 246     }
 247   }
 248 
 249   // Up to this point no concurrent thread would have been able to
 250   // do any scanning on any region in this series. All the top
 251   // fields still point to bottom, so the intersection between
 252   // [bottom,top] and [card_start,card_end] will be empty. Before we
 253   // update the top fields, we'll do a storestore to make sure that
 254   // no thread sees the update to top before the zeroing of the
 255   // object header and the BOT initialization.
 256   OrderAccess::storestore();
 257 
 258   // Now, we will update the top fields of the "continues humongous"
 259   // regions except the last one.
 260   for (uint i = first; i < last; ++i) {
 261     hr = region_at(i);
 262     hr->set_top(hr->end());
 263   }
 264 
 265   hr = region_at(last);
 266   // If we cannot fit a filler object, we must set top to the end
 267   // of the humongous object, otherwise we cannot iterate the heap
 268   // and the BOT will not be complete.
 269   hr->set_top(hr->end() - words_not_fillable);
 270 
 271   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 272          "obj_top should be in last region");
 273 
 274   assert(words_not_fillable == 0 ||
 275          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 276          "Miscalculation in humongous allocation");
 277 }
 278 
 279 HeapWord*
 280 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 281                                                            uint num_regions,
 282                                                            size_t word_size) {
 283   assert(first_hr != nullptr, "pre-condition");
 284   assert(is_humongous(word_size), "word_size should be humongous");
 285   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 286 
 287   // Index of last region in the series.
 288   uint first = first_hr->hrm_index();
 289   uint last = first + num_regions - 1;
 290 
 291   // We need to initialize the region(s) we just discovered. This is
 292   // a bit tricky given that it can happen concurrently with
 293   // refinement threads refining cards on these regions and
 294   // potentially wanting to refine the BOT as they are scanning
 295   // those cards (this can happen shortly after a cleanup; see CR
 296   // 6991377). So we have to set up the region(s) carefully and in
 297   // a specific order.
 298 
 299   // The passed in hr will be the "starts humongous" region. The header
 300   // of the new object will be placed at the bottom of this region.
 301   HeapWord* new_obj = first_hr->bottom();
 302 
 303   // First, we need to zero the header of the space that we will be
 304   // allocating. When we update top further down, some refinement
 305   // threads might try to scan the region. By zeroing the header we
 306   // ensure that any thread that will try to scan the region will
 307   // come across the zero klass word and bail out.
 308   //
 309   // NOTE: It would not have been correct to have used
 310   // CollectedHeap::fill_with_object() and make the space look like
 311   // an int array. The thread that is doing the allocation will
 312   // later update the object header to a potentially different array
 313   // type and, for a very short period of time, the klass and length
 314   // fields will be inconsistent. This could cause a refinement
 315   // thread to calculate the object size incorrectly.
 316   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 317 
 318   // Next, update the metadata for the regions.
 319   set_humongous_metadata(first_hr, num_regions, word_size, true);
 320 
 321   HeapRegion* last_hr = region_at(last);
 322   size_t used = byte_size(first_hr->bottom(), last_hr->top());
 323 
 324   increase_used(used);
 325 
 326   for (uint i = first; i <= last; ++i) {
 327     HeapRegion *hr = region_at(i);
 328     _humongous_set.add(hr);
 329     _hr_printer.alloc(hr);
 330   }
 331 
 332   return new_obj;
 333 }
 334 
 335 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 336   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 337   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 338 }
 339 
 340 // If could fit into free regions w/o expansion, try.
 341 // Otherwise, if can expand, do so.
 342 // Otherwise, if using ex regions might help, try with ex given back.
 343 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 344   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 345 
 346   _verifier->verify_region_sets_optional();
 347 
 348   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 349 
 350   // Policy: First try to allocate a humongous object in the free list.
 351   HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions);
 352   if (humongous_start == nullptr) {
 353     // Policy: We could not find enough regions for the humongous object in the
 354     // free list. Look through the heap to find a mix of free and uncommitted regions.
 355     // If so, expand the heap and allocate the humongous object.
 356     humongous_start = _hrm.expand_and_allocate_humongous(obj_regions);
 357     if (humongous_start != nullptr) {
 358       // We managed to find a region by expanding the heap.
 359       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 360                                 word_size * HeapWordSize);
 361       policy()->record_new_heap_size(num_regions());
 362     } else {
 363       // Policy: Potentially trigger a defragmentation GC.
 364     }
 365   }
 366 
 367   HeapWord* result = nullptr;
 368   if (humongous_start != nullptr) {
 369     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 370     assert(result != nullptr, "it should always return a valid result");
 371 
 372     // A successful humongous object allocation changes the used space
 373     // information of the old generation so we need to recalculate the
 374     // sizes and update the jstat counters here.
 375     monitoring_support()->update_sizes();
 376   }
 377 
 378   _verifier->verify_region_sets_optional();
 379 
 380   return result;
 381 }
 382 
 383 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 384                                              size_t requested_size,
 385                                              size_t* actual_size) {
 386   assert_heap_not_locked_and_not_at_safepoint();
 387   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 388 
 389   return attempt_allocation(min_size, requested_size, actual_size);
 390 }
 391 
 392 HeapWord*
 393 G1CollectedHeap::mem_allocate(size_t word_size,
 394                               bool*  gc_overhead_limit_was_exceeded) {
 395   assert_heap_not_locked_and_not_at_safepoint();
 396 
 397   if (is_humongous(word_size)) {
 398     return attempt_allocation_humongous(word_size);
 399   }
 400   size_t dummy = 0;
 401   return attempt_allocation(word_size, word_size, &dummy);
 402 }
 403 
 404 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 405   ResourceMark rm; // For retrieving the thread names in log messages.
 406 
 407   // Make sure you read the note in attempt_allocation_humongous().
 408 
 409   assert_heap_not_locked_and_not_at_safepoint();
 410   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 411          "be called for humongous allocation requests");
 412 
 413   // We should only get here after the first-level allocation attempt
 414   // (attempt_allocation()) failed to allocate.
 415 
 416   // We will loop until a) we manage to successfully perform the
 417   // allocation or b) we successfully schedule a collection which
 418   // fails to perform the allocation. b) is the only case when we'll
 419   // return null.
 420   HeapWord* result = nullptr;
 421   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 422     bool should_try_gc;
 423     uint gc_count_before;
 424 
 425     {
 426       MutexLocker x(Heap_lock);
 427 
 428       // Now that we have the lock, we first retry the allocation in case another
 429       // thread changed the region while we were waiting to acquire the lock.
 430       result = _allocator->attempt_allocation_locked(word_size);
 431       if (result != nullptr) {
 432         return result;
 433       }
 434 
 435       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 436       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 437       // waiting because the GCLocker is active to not wait too long.
 438       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 439         // No need for an ergo message here, can_expand_young_list() does this when
 440         // it returns true.
 441         result = _allocator->attempt_allocation_force(word_size);
 442         if (result != nullptr) {
 443           return result;
 444         }
 445       }
 446 
 447       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 448       // the GCLocker initiated GC has been performed and then retry. This includes
 449       // the case when the GC Locker is not active but has not been performed.
 450       should_try_gc = !GCLocker::needs_gc();
 451       // Read the GC count while still holding the Heap_lock.
 452       gc_count_before = total_collections();
 453     }
 454 
 455     if (should_try_gc) {
 456       bool succeeded;
 457       result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_inc_collection_pause);
 458       if (result != nullptr) {
 459         assert(succeeded, "only way to get back a non-null result");
 460         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 461                              Thread::current()->name(), p2i(result));
 462         return result;
 463       }
 464 
 465       if (succeeded) {
 466         // We successfully scheduled a collection which failed to allocate. No
 467         // point in trying to allocate further. We'll just return null.
 468         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 469                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 470         return nullptr;
 471       }
 472       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 473                            Thread::current()->name(), word_size);
 474     } else {
 475       // Failed to schedule a collection.
 476       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 477         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 478                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 479         return nullptr;
 480       }
 481       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 482       // The GCLocker is either active or the GCLocker initiated
 483       // GC has not yet been performed. Stall until it is and
 484       // then retry the allocation.
 485       GCLocker::stall_until_clear();
 486       gclocker_retry_count += 1;
 487     }
 488 
 489     // We can reach here if we were unsuccessful in scheduling a
 490     // collection (because another thread beat us to it) or if we were
 491     // stalled due to the GC locker. In either can we should retry the
 492     // allocation attempt in case another thread successfully
 493     // performed a collection and reclaimed enough space. We do the
 494     // first attempt (without holding the Heap_lock) here and the
 495     // follow-on attempt will be at the start of the next loop
 496     // iteration (after taking the Heap_lock).
 497     size_t dummy = 0;
 498     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 499     if (result != nullptr) {
 500       return result;
 501     }
 502 
 503     // Give a warning if we seem to be looping forever.
 504     if ((QueuedAllocationWarningCount > 0) &&
 505         (try_count % QueuedAllocationWarningCount == 0)) {
 506       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 507                              Thread::current()->name(), try_count, word_size);
 508     }
 509   }
 510 
 511   ShouldNotReachHere();
 512   return nullptr;
 513 }
 514 
 515 bool G1CollectedHeap::check_archive_addresses(MemRegion range) {
 516   return _hrm.reserved().contains(range);
 517 }
 518 
 519 template <typename Func>
 520 void G1CollectedHeap::iterate_regions_in_range(MemRegion range, const Func& func) {
 521   // Mark each G1 region touched by the range as old, add it to
 522   // the old set, and set top.
 523   HeapRegion* curr_region = _hrm.addr_to_region(range.start());
 524   HeapRegion* end_region = _hrm.addr_to_region(range.last());
 525 
 526   while (curr_region != nullptr) {
 527     bool is_last = curr_region == end_region;
 528     HeapRegion* next_region = is_last ? nullptr : _hrm.next_region_in_heap(curr_region);
 529 
 530     func(curr_region, is_last);
 531 
 532     curr_region = next_region;
 533   }
 534 }
 535 
 536 bool G1CollectedHeap::alloc_archive_regions(MemRegion range) {
 537   assert(!is_init_completed(), "Expect to be called at JVM init time");
 538   MutexLocker x(Heap_lock);
 539 
 540   MemRegion reserved = _hrm.reserved();
 541 
 542   // Temporarily disable pretouching of heap pages. This interface is used
 543   // when mmap'ing archived heap data in, so pre-touching is wasted.
 544   FlagSetting fs(AlwaysPreTouch, false);
 545 
 546   // For the specified MemRegion range, allocate the corresponding G1
 547   // region(s) and mark them as old region(s).
 548   HeapWord* start_address = range.start();
 549   size_t word_size = range.word_size();
 550   HeapWord* last_address = range.last();
 551   size_t commits = 0;
 552 
 553   guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 554             "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 555             p2i(start_address), p2i(last_address));
 556 
 557   // Perform the actual region allocation, exiting if it fails.
 558   // Then note how much new space we have allocated.
 559   if (!_hrm.allocate_containing_regions(range, &commits, workers())) {
 560     return false;
 561   }
 562   increase_used(word_size * HeapWordSize);
 563   if (commits != 0) {
 564     log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 565                               HeapRegion::GrainWords * HeapWordSize * commits);
 566 
 567   }
 568 
 569   // Mark each G1 region touched by the range as old, add it to
 570   // the old set, and set top.
 571   auto set_region_to_old = [&] (HeapRegion* r, bool is_last) {
 572     assert(r->is_empty(), "Region already in use (%u)", r->hrm_index());
 573 
 574     HeapWord* top = is_last ? last_address + 1 : r->end();
 575     r->set_top(top);
 576 
 577     r->set_old();
 578     _hr_printer.alloc(r);
 579     _old_set.add(r);
 580   };
 581 
 582   iterate_regions_in_range(range, set_region_to_old);
 583   return true;
 584 }
 585 
 586 void G1CollectedHeap::populate_archive_regions_bot_part(MemRegion range) {
 587   assert(!is_init_completed(), "Expect to be called at JVM init time");
 588 
 589   iterate_regions_in_range(range,
 590                            [&] (HeapRegion* r, bool is_last) {
 591                              r->update_bot();
 592                            });
 593 }
 594 
 595 void G1CollectedHeap::dealloc_archive_regions(MemRegion range) {
 596   assert(!is_init_completed(), "Expect to be called at JVM init time");
 597   MemRegion reserved = _hrm.reserved();
 598   size_t size_used = 0;
 599   uint shrink_count = 0;
 600 
 601   // Free the G1 regions that are within the specified range.
 602   MutexLocker x(Heap_lock);
 603   HeapWord* start_address = range.start();
 604   HeapWord* last_address = range.last();
 605 
 606   assert(reserved.contains(start_address) && reserved.contains(last_address),
 607          "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 608          p2i(start_address), p2i(last_address));
 609   size_used += range.byte_size();
 610 
 611   // Free, empty and uncommit regions with CDS archive content.
 612   auto dealloc_archive_region = [&] (HeapRegion* r, bool is_last) {
 613     guarantee(r->is_old(), "Expected old region at index %u", r->hrm_index());
 614     _old_set.remove(r);
 615     r->set_free();
 616     r->set_top(r->bottom());
 617     _hrm.shrink_at(r->hrm_index(), 1);
 618     shrink_count++;
 619   };
 620 
 621   iterate_regions_in_range(range, dealloc_archive_region);
 622 
 623   if (shrink_count != 0) {
 624     log_debug(gc, ergo, heap)("Attempt heap shrinking (CDS archive regions). Total size: " SIZE_FORMAT "B",
 625                               HeapRegion::GrainWords * HeapWordSize * shrink_count);
 626     // Explicit uncommit.
 627     uncommit_regions(shrink_count);
 628   }
 629   decrease_used(size_used);
 630 }
 631 
 632 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 633                                                      size_t desired_word_size,
 634                                                      size_t* actual_word_size) {
 635   assert_heap_not_locked_and_not_at_safepoint();
 636   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 637          "be called for humongous allocation requests");
 638 
 639   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 640 
 641   if (result == nullptr) {
 642     *actual_word_size = desired_word_size;
 643     result = attempt_allocation_slow(desired_word_size);
 644   }
 645 
 646   assert_heap_not_locked();
 647   if (result != nullptr) {
 648     assert(*actual_word_size != 0, "Actual size must have been set here");
 649     dirty_young_block(result, *actual_word_size);
 650   } else {
 651     *actual_word_size = 0;
 652   }
 653 
 654   return result;
 655 }
 656 
 657 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 658   ResourceMark rm; // For retrieving the thread names in log messages.
 659 
 660   // The structure of this method has a lot of similarities to
 661   // attempt_allocation_slow(). The reason these two were not merged
 662   // into a single one is that such a method would require several "if
 663   // allocation is not humongous do this, otherwise do that"
 664   // conditional paths which would obscure its flow. In fact, an early
 665   // version of this code did use a unified method which was harder to
 666   // follow and, as a result, it had subtle bugs that were hard to
 667   // track down. So keeping these two methods separate allows each to
 668   // be more readable. It will be good to keep these two in sync as
 669   // much as possible.
 670 
 671   assert_heap_not_locked_and_not_at_safepoint();
 672   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 673          "should only be called for humongous allocations");
 674 
 675   // Humongous objects can exhaust the heap quickly, so we should check if we
 676   // need to start a marking cycle at each humongous object allocation. We do
 677   // the check before we do the actual allocation. The reason for doing it
 678   // before the allocation is that we avoid having to keep track of the newly
 679   // allocated memory while we do a GC.
 680   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 681                                         word_size)) {
 682     collect(GCCause::_g1_humongous_allocation);
 683   }
 684 
 685   // We will loop until a) we manage to successfully perform the
 686   // allocation or b) we successfully schedule a collection which
 687   // fails to perform the allocation. b) is the only case when we'll
 688   // return null.
 689   HeapWord* result = nullptr;
 690   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 691     bool should_try_gc;
 692     uint gc_count_before;
 693 
 694 
 695     {
 696       MutexLocker x(Heap_lock);
 697 
 698       size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 699       // Given that humongous objects are not allocated in young
 700       // regions, we'll first try to do the allocation without doing a
 701       // collection hoping that there's enough space in the heap.
 702       result = humongous_obj_allocate(word_size);
 703       if (result != nullptr) {
 704         policy()->old_gen_alloc_tracker()->
 705           add_allocated_humongous_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 706         return result;
 707       }
 708 
 709       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 710       // the GCLocker initiated GC has been performed and then retry. This includes
 711       // the case when the GC Locker is not active but has not been performed.
 712       should_try_gc = !GCLocker::needs_gc();
 713       // Read the GC count while still holding the Heap_lock.
 714       gc_count_before = total_collections();
 715     }
 716 
 717     if (should_try_gc) {
 718       bool succeeded;
 719       result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_humongous_allocation);
 720       if (result != nullptr) {
 721         assert(succeeded, "only way to get back a non-null result");
 722         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 723                              Thread::current()->name(), p2i(result));
 724         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 725         policy()->old_gen_alloc_tracker()->
 726           record_collection_pause_humongous_allocation(size_in_regions * HeapRegion::GrainBytes);
 727         return result;
 728       }
 729 
 730       if (succeeded) {
 731         // We successfully scheduled a collection which failed to allocate. No
 732         // point in trying to allocate further. We'll just return null.
 733         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 734                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 735         return nullptr;
 736       }
 737       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 738                            Thread::current()->name(), word_size);
 739     } else {
 740       // Failed to schedule a collection.
 741       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 742         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 743                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 744         return nullptr;
 745       }
 746       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 747       // The GCLocker is either active or the GCLocker initiated
 748       // GC has not yet been performed. Stall until it is and
 749       // then retry the allocation.
 750       GCLocker::stall_until_clear();
 751       gclocker_retry_count += 1;
 752     }
 753 
 754 
 755     // We can reach here if we were unsuccessful in scheduling a
 756     // collection (because another thread beat us to it) or if we were
 757     // stalled due to the GC locker. In either can we should retry the
 758     // allocation attempt in case another thread successfully
 759     // performed a collection and reclaimed enough space.
 760     // Humongous object allocation always needs a lock, so we wait for the retry
 761     // in the next iteration of the loop, unlike for the regular iteration case.
 762     // Give a warning if we seem to be looping forever.
 763 
 764     if ((QueuedAllocationWarningCount > 0) &&
 765         (try_count % QueuedAllocationWarningCount == 0)) {
 766       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 767                              Thread::current()->name(), try_count, word_size);
 768     }
 769   }
 770 
 771   ShouldNotReachHere();
 772   return nullptr;
 773 }
 774 
 775 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 776                                                            bool expect_null_mutator_alloc_region) {
 777   assert_at_safepoint_on_vm_thread();
 778   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 779          "the current alloc region was unexpectedly found to be non-null");
 780 
 781   if (!is_humongous(word_size)) {
 782     return _allocator->attempt_allocation_locked(word_size);
 783   } else {
 784     HeapWord* result = humongous_obj_allocate(word_size);
 785     if (result != nullptr && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 786       collector_state()->set_initiate_conc_mark_if_possible(true);
 787     }
 788     return result;
 789   }
 790 
 791   ShouldNotReachHere();
 792 }
 793 
 794 class PostCompactionPrinterClosure: public HeapRegionClosure {
 795 private:
 796   G1HRPrinter* _hr_printer;
 797 public:
 798   bool do_heap_region(HeapRegion* hr) {
 799     assert(!hr->is_young(), "not expecting to find young regions");
 800     _hr_printer->post_compaction(hr);
 801     return false;
 802   }
 803 
 804   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 805     : _hr_printer(hr_printer) { }
 806 };
 807 
 808 void G1CollectedHeap::print_heap_after_full_collection() {
 809   // Post collection region logging.
 810   // We should do this after we potentially resize the heap so
 811   // that all the COMMIT / UNCOMMIT events are generated before
 812   // the compaction events.
 813   if (_hr_printer.is_active()) {
 814     PostCompactionPrinterClosure cl(hr_printer());
 815     heap_region_iterate(&cl);
 816   }
 817 }
 818 
 819 bool G1CollectedHeap::abort_concurrent_cycle() {
 820   // Disable discovery and empty the discovered lists
 821   // for the CM ref processor.
 822   _ref_processor_cm->disable_discovery();
 823   _ref_processor_cm->abandon_partial_discovery();
 824   _ref_processor_cm->verify_no_references_recorded();
 825 
 826   // Abandon current iterations of concurrent marking and concurrent
 827   // refinement, if any are in progress.
 828   return concurrent_mark()->concurrent_cycle_abort();
 829 }
 830 
 831 void G1CollectedHeap::prepare_heap_for_full_collection() {
 832   // Make sure we'll choose a new allocation region afterwards.
 833   _allocator->release_mutator_alloc_regions();
 834   _allocator->abandon_gc_alloc_regions();
 835 
 836   // We may have added regions to the current incremental collection
 837   // set between the last GC or pause and now. We need to clear the
 838   // incremental collection set and then start rebuilding it afresh
 839   // after this full GC.
 840   abandon_collection_set(collection_set());
 841 
 842   _hrm.remove_all_free_regions();
 843 }
 844 
 845 void G1CollectedHeap::verify_before_full_collection() {
 846   assert_used_and_recalculate_used_equal(this);
 847   if (!VerifyBeforeGC) {
 848     return;
 849   }
 850   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 851     return;
 852   }
 853   _verifier->verify_region_sets_optional();
 854   _verifier->verify_before_gc();
 855   _verifier->verify_bitmap_clear(true /* above_tams_only */);
 856 }
 857 
 858 void G1CollectedHeap::prepare_for_mutator_after_full_collection() {
 859   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 860   ClassLoaderDataGraph::purge(/*at_safepoint*/true);
 861   DEBUG_ONLY(MetaspaceUtils::verify();)
 862 
 863   // Prepare heap for normal collections.
 864   assert(num_free_regions() == 0, "we should not have added any free regions");
 865   rebuild_region_sets(false /* free_list_only */);
 866   abort_refinement();
 867   resize_heap_if_necessary();
 868   uncommit_regions_if_necessary();
 869 
 870   // Rebuild the code root lists for each region
 871   rebuild_code_roots();
 872 
 873   start_new_collection_set();
 874   _allocator->init_mutator_alloc_regions();
 875 
 876   // Post collection state updates.
 877   MetaspaceGC::compute_new_size();
 878 }
 879 
 880 void G1CollectedHeap::abort_refinement() {
 881   // Discard all remembered set updates and reset refinement statistics.
 882   G1BarrierSet::dirty_card_queue_set().abandon_logs_and_stats();
 883   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
 884          "DCQS should be empty");
 885   concurrent_refine()->get_and_reset_refinement_stats();
 886 }
 887 
 888 void G1CollectedHeap::verify_after_full_collection() {
 889   if (!VerifyAfterGC) {
 890     return;
 891   }
 892   if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) {
 893     return;
 894   }
 895   _hrm.verify_optional();
 896   _verifier->verify_region_sets_optional();
 897   _verifier->verify_after_gc();
 898   _verifier->verify_bitmap_clear(false /* above_tams_only */);
 899 
 900   // At this point there should be no regions in the
 901   // entire heap tagged as young.
 902   assert(check_young_list_empty(), "young list should be empty at this point");
 903 
 904   // Note: since we've just done a full GC, concurrent
 905   // marking is no longer active. Therefore we need not
 906   // re-enable reference discovery for the CM ref processor.
 907   // That will be done at the start of the next marking cycle.
 908   // We also know that the STW processor should no longer
 909   // discover any new references.
 910   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
 911   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
 912   _ref_processor_stw->verify_no_references_recorded();
 913   _ref_processor_cm->verify_no_references_recorded();
 914 }
 915 
 916 bool G1CollectedHeap::do_full_collection(bool clear_all_soft_refs,
 917                                          bool do_maximal_compaction) {
 918   assert_at_safepoint_on_vm_thread();
 919 
 920   if (GCLocker::check_active_before_gc()) {
 921     // Full GC was not completed.
 922     return false;
 923   }
 924 
 925   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 926       soft_ref_policy()->should_clear_all_soft_refs();
 927 
 928   G1FullGCMark gc_mark;
 929   GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause(), true);
 930   G1FullCollector collector(this, do_clear_all_soft_refs, do_maximal_compaction, gc_mark.tracer());
 931 
 932   collector.prepare_collection();
 933   collector.collect();
 934   collector.complete_collection();
 935 
 936   // Full collection was successfully completed.
 937   return true;
 938 }
 939 
 940 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 941   // Currently, there is no facility in the do_full_collection(bool) API to notify
 942   // the caller that the collection did not succeed (e.g., because it was locked
 943   // out by the GC locker). So, right now, we'll ignore the return value.
 944 
 945   do_full_collection(clear_all_soft_refs,
 946                      false /* do_maximal_compaction */);
 947 }
 948 
 949 bool G1CollectedHeap::upgrade_to_full_collection() {
 950   GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
 951   log_info(gc, ergo)("Attempting full compaction clearing soft references");
 952   bool success = do_full_collection(true  /* clear_all_soft_refs */,
 953                                     false /* do_maximal_compaction */);
 954   // do_full_collection only fails if blocked by GC locker and that can't
 955   // be the case here since we only call this when already completed one gc.
 956   assert(success, "invariant");
 957   return success;
 958 }
 959 
 960 void G1CollectedHeap::resize_heap_if_necessary() {
 961   assert_at_safepoint_on_vm_thread();
 962 
 963   bool should_expand;
 964   size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand);
 965 
 966   if (resize_amount == 0) {
 967     return;
 968   } else if (should_expand) {
 969     expand(resize_amount, _workers);
 970   } else {
 971     shrink(resize_amount);
 972   }
 973 }
 974 
 975 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
 976                                                             bool do_gc,
 977                                                             bool maximal_compaction,
 978                                                             bool expect_null_mutator_alloc_region,
 979                                                             bool* gc_succeeded) {
 980   *gc_succeeded = true;
 981   // Let's attempt the allocation first.
 982   HeapWord* result =
 983     attempt_allocation_at_safepoint(word_size,
 984                                     expect_null_mutator_alloc_region);
 985   if (result != nullptr) {
 986     return result;
 987   }
 988 
 989   // In a G1 heap, we're supposed to keep allocation from failing by
 990   // incremental pauses.  Therefore, at least for now, we'll favor
 991   // expansion over collection.  (This might change in the future if we can
 992   // do something smarter than full collection to satisfy a failed alloc.)
 993   result = expand_and_allocate(word_size);
 994   if (result != nullptr) {
 995     return result;
 996   }
 997 
 998   if (do_gc) {
 999     GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
1000     // Expansion didn't work, we'll try to do a Full GC.
1001     // If maximal_compaction is set we clear all soft references and don't
1002     // allow any dead wood to be left on the heap.
1003     if (maximal_compaction) {
1004       log_info(gc, ergo)("Attempting maximal full compaction clearing soft references");
1005     } else {
1006       log_info(gc, ergo)("Attempting full compaction");
1007     }
1008     *gc_succeeded = do_full_collection(maximal_compaction /* clear_all_soft_refs */ ,
1009                                        maximal_compaction /* do_maximal_compaction */);
1010   }
1011 
1012   return nullptr;
1013 }
1014 
1015 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1016                                                      bool* succeeded) {
1017   assert_at_safepoint_on_vm_thread();
1018 
1019   // Attempts to allocate followed by Full GC.
1020   HeapWord* result =
1021     satisfy_failed_allocation_helper(word_size,
1022                                      true,  /* do_gc */
1023                                      false, /* maximum_collection */
1024                                      false, /* expect_null_mutator_alloc_region */
1025                                      succeeded);
1026 
1027   if (result != nullptr || !*succeeded) {
1028     return result;
1029   }
1030 
1031   // Attempts to allocate followed by Full GC that will collect all soft references.
1032   result = satisfy_failed_allocation_helper(word_size,
1033                                             true, /* do_gc */
1034                                             true, /* maximum_collection */
1035                                             true, /* expect_null_mutator_alloc_region */
1036                                             succeeded);
1037 
1038   if (result != nullptr || !*succeeded) {
1039     return result;
1040   }
1041 
1042   // Attempts to allocate, no GC
1043   result = satisfy_failed_allocation_helper(word_size,
1044                                             false, /* do_gc */
1045                                             false, /* maximum_collection */
1046                                             true,  /* expect_null_mutator_alloc_region */
1047                                             succeeded);
1048 
1049   if (result != nullptr) {
1050     return result;
1051   }
1052 
1053   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1054          "Flag should have been handled and cleared prior to this point");
1055 
1056   // What else?  We might try synchronous finalization later.  If the total
1057   // space available is large enough for the allocation, then a more
1058   // complete compaction phase than we've tried so far might be
1059   // appropriate.
1060   return nullptr;
1061 }
1062 
1063 // Attempting to expand the heap sufficiently
1064 // to support an allocation of the given "word_size".  If
1065 // successful, perform the allocation and return the address of the
1066 // allocated block, or else null.
1067 
1068 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1069   assert_at_safepoint_on_vm_thread();
1070 
1071   _verifier->verify_region_sets_optional();
1072 
1073   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1074   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1075                             word_size * HeapWordSize);
1076 
1077 
1078   if (expand(expand_bytes, _workers)) {
1079     _hrm.verify_optional();
1080     _verifier->verify_region_sets_optional();
1081     return attempt_allocation_at_safepoint(word_size,
1082                                            false /* expect_null_mutator_alloc_region */);
1083   }
1084   return nullptr;
1085 }
1086 
1087 bool G1CollectedHeap::expand(size_t expand_bytes, WorkerThreads* pretouch_workers, double* expand_time_ms) {
1088   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1089   aligned_expand_bytes = align_up(aligned_expand_bytes,
1090                                        HeapRegion::GrainBytes);
1091 
1092   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1093                             expand_bytes, aligned_expand_bytes);
1094 
1095   if (is_maximal_no_gc()) {
1096     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1097     return false;
1098   }
1099 
1100   double expand_heap_start_time_sec = os::elapsedTime();
1101   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1102   assert(regions_to_expand > 0, "Must expand by at least one region");
1103 
1104   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1105   if (expand_time_ms != nullptr) {
1106     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1107   }
1108 
1109   assert(expanded_by > 0, "must have failed during commit.");
1110 
1111   size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1112   assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1113   policy()->record_new_heap_size(num_regions());
1114 
1115   return true;
1116 }
1117 
1118 bool G1CollectedHeap::expand_single_region(uint node_index) {
1119   uint expanded_by = _hrm.expand_on_preferred_node(node_index);
1120 
1121   if (expanded_by == 0) {
1122     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm.available());
1123     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1124     return false;
1125   }
1126 
1127   policy()->record_new_heap_size(num_regions());
1128   return true;
1129 }
1130 
1131 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1132   size_t aligned_shrink_bytes =
1133     ReservedSpace::page_align_size_down(shrink_bytes);
1134   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1135                                          HeapRegion::GrainBytes);
1136   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1137 
1138   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1139   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1140 
1141   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B actual amount shrunk: " SIZE_FORMAT "B",
1142                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1143   if (num_regions_removed > 0) {
1144     log_debug(gc, heap)("Uncommittable regions after shrink: %u", num_regions_removed);
1145     policy()->record_new_heap_size(num_regions());
1146   } else {
1147     log_debug(gc, ergo, heap)("Did not shrink the heap (heap shrinking operation failed)");
1148   }
1149 }
1150 
1151 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1152   _verifier->verify_region_sets_optional();
1153 
1154   // We should only reach here at the end of a Full GC or during Remark which
1155   // means we should not not be holding to any GC alloc regions. The method
1156   // below will make sure of that and do any remaining clean up.
1157   _allocator->abandon_gc_alloc_regions();
1158 
1159   // Instead of tearing down / rebuilding the free lists here, we
1160   // could instead use the remove_all_pending() method on free_list to
1161   // remove only the ones that we need to remove.
1162   _hrm.remove_all_free_regions();
1163   shrink_helper(shrink_bytes);
1164   rebuild_region_sets(true /* free_list_only */);
1165 
1166   _hrm.verify_optional();
1167   _verifier->verify_region_sets_optional();
1168 }
1169 
1170 class OldRegionSetChecker : public HeapRegionSetChecker {
1171 public:
1172   void check_mt_safety() {
1173     // Master Old Set MT safety protocol:
1174     // (a) If we're at a safepoint, operations on the master old set
1175     // should be invoked:
1176     // - by the VM thread (which will serialize them), or
1177     // - by the GC workers while holding the FreeList_lock, if we're
1178     //   at a safepoint for an evacuation pause (this lock is taken
1179     //   anyway when an GC alloc region is retired so that a new one
1180     //   is allocated from the free list), or
1181     // - by the GC workers while holding the OldSets_lock, if we're at a
1182     //   safepoint for a cleanup pause.
1183     // (b) If we're not at a safepoint, operations on the master old set
1184     // should be invoked while holding the Heap_lock.
1185 
1186     if (SafepointSynchronize::is_at_safepoint()) {
1187       guarantee(Thread::current()->is_VM_thread() ||
1188                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1189                 "master old set MT safety protocol at a safepoint");
1190     } else {
1191       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1192     }
1193   }
1194   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1195   const char* get_description() { return "Old Regions"; }
1196 };
1197 
1198 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1199 public:
1200   void check_mt_safety() {
1201     // Humongous Set MT safety protocol:
1202     // (a) If we're at a safepoint, operations on the master humongous
1203     // set should be invoked by either the VM thread (which will
1204     // serialize them) or by the GC workers while holding the
1205     // OldSets_lock.
1206     // (b) If we're not at a safepoint, operations on the master
1207     // humongous set should be invoked while holding the Heap_lock.
1208 
1209     if (SafepointSynchronize::is_at_safepoint()) {
1210       guarantee(Thread::current()->is_VM_thread() ||
1211                 OldSets_lock->owned_by_self(),
1212                 "master humongous set MT safety protocol at a safepoint");
1213     } else {
1214       guarantee(Heap_lock->owned_by_self(),
1215                 "master humongous set MT safety protocol outside a safepoint");
1216     }
1217   }
1218   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1219   const char* get_description() { return "Humongous Regions"; }
1220 };
1221 
1222 G1CollectedHeap::G1CollectedHeap() :
1223   CollectedHeap(),
1224   _service_thread(nullptr),
1225   _periodic_gc_task(nullptr),
1226   _free_arena_memory_task(nullptr),
1227   _workers(nullptr),
1228   _card_table(nullptr),
1229   _collection_pause_end(Ticks::now()),
1230   _soft_ref_policy(),
1231   _old_set("Old Region Set", new OldRegionSetChecker()),
1232   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1233   _bot(nullptr),
1234   _listener(),
1235   _numa(G1NUMA::create()),
1236   _hrm(),
1237   _allocator(nullptr),
1238   _evac_failure_injector(),
1239   _verifier(nullptr),
1240   _summary_bytes_used(0),
1241   _bytes_used_during_gc(0),
1242   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1243   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1244   _monitoring_support(nullptr),
1245   _num_humongous_objects(0),
1246   _num_humongous_reclaim_candidates(0),
1247   _hr_printer(),
1248   _collector_state(),
1249   _old_marking_cycles_started(0),
1250   _old_marking_cycles_completed(0),
1251   _eden(),
1252   _survivor(),
1253   _gc_timer_stw(new STWGCTimer()),
1254   _gc_tracer_stw(new G1NewTracer()),
1255   _policy(new G1Policy(_gc_timer_stw)),
1256   _heap_sizing_policy(nullptr),
1257   _collection_set(this, _policy),
1258   _rem_set(nullptr),
1259   _card_set_config(),
1260   _card_set_freelist_pool(G1CardSetConfiguration::num_mem_object_types()),
1261   _cm(nullptr),
1262   _cm_thread(nullptr),
1263   _cr(nullptr),
1264   _task_queues(nullptr),
1265   _ref_processor_stw(nullptr),
1266   _is_alive_closure_stw(this),
1267   _is_subject_to_discovery_stw(this),
1268   _ref_processor_cm(nullptr),
1269   _is_alive_closure_cm(this),
1270   _is_subject_to_discovery_cm(this),
1271   _region_attr() {
1272 
1273   _verifier = new G1HeapVerifier(this);
1274 
1275   _allocator = new G1Allocator(this);
1276 
1277   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1278 
1279   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1280 
1281   // Override the default _filler_array_max_size so that no humongous filler
1282   // objects are created.
1283   _filler_array_max_size = _humongous_object_threshold_in_words;
1284 
1285   // Override the default _stack_chunk_max_size so that no humongous stack chunks are created
1286   _stack_chunk_max_size = _humongous_object_threshold_in_words;
1287 
1288   uint n_queues = ParallelGCThreads;
1289   _task_queues = new G1ScannerTasksQueueSet(n_queues);
1290 
1291   for (uint i = 0; i < n_queues; i++) {
1292     G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1293     _task_queues->register_queue(i, q);
1294   }
1295 
1296   _gc_tracer_stw->initialize();
1297 
1298   guarantee(_task_queues != nullptr, "task_queues allocation failure.");
1299 }
1300 
1301 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1302                                                                  size_t size,
1303                                                                  size_t translation_factor) {
1304   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1305   // Allocate a new reserved space, preferring to use large pages.
1306   ReservedSpace rs(size, preferred_page_size);
1307   size_t page_size = rs.page_size();
1308   G1RegionToSpaceMapper* result  =
1309     G1RegionToSpaceMapper::create_mapper(rs,
1310                                          size,
1311                                          page_size,
1312                                          HeapRegion::GrainBytes,
1313                                          translation_factor,
1314                                          mtGC);
1315 
1316   os::trace_page_sizes_for_requested_size(description,
1317                                           size,
1318                                           page_size,
1319                                           preferred_page_size,
1320                                           rs.base(),
1321                                           rs.size());
1322 
1323   return result;
1324 }
1325 
1326 jint G1CollectedHeap::initialize_concurrent_refinement() {
1327   jint ecode = JNI_OK;
1328   _cr = G1ConcurrentRefine::create(policy(), &ecode);
1329   return ecode;
1330 }
1331 
1332 jint G1CollectedHeap::initialize_service_thread() {
1333   _service_thread = new G1ServiceThread();
1334   if (_service_thread->osthread() == nullptr) {
1335     vm_shutdown_during_initialization("Could not create G1ServiceThread");
1336     return JNI_ENOMEM;
1337   }
1338   return JNI_OK;
1339 }
1340 
1341 jint G1CollectedHeap::initialize() {
1342 
1343   // Necessary to satisfy locking discipline assertions.
1344 
1345   MutexLocker x(Heap_lock);
1346 
1347   // While there are no constraints in the GC code that HeapWordSize
1348   // be any particular value, there are multiple other areas in the
1349   // system which believe this to be true (e.g. oop->object_size in some
1350   // cases incorrectly returns the size in wordSize units rather than
1351   // HeapWordSize).
1352   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1353 
1354   size_t init_byte_size = InitialHeapSize;
1355   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1356 
1357   // Ensure that the sizes are properly aligned.
1358   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1359   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1360   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1361 
1362   // Reserve the maximum.
1363 
1364   // When compressed oops are enabled, the preferred heap base
1365   // is calculated by subtracting the requested size from the
1366   // 32Gb boundary and using the result as the base address for
1367   // heap reservation. If the requested size is not aligned to
1368   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1369   // into the ReservedHeapSpace constructor) then the actual
1370   // base of the reserved heap may end up differing from the
1371   // address that was requested (i.e. the preferred heap base).
1372   // If this happens then we could end up using a non-optimal
1373   // compressed oops mode.
1374 
1375   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1376                                                      HeapAlignment);
1377 
1378   initialize_reserved_region(heap_rs);
1379 
1380   // Create the barrier set for the entire reserved region.
1381   G1CardTable* ct = new G1CardTable(heap_rs.region());
1382   G1BarrierSet* bs = new G1BarrierSet(ct);
1383   bs->initialize();
1384   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1385   BarrierSet::set_barrier_set(bs);
1386   _card_table = ct;
1387 
1388   {
1389     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1390     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1391     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1392   }
1393 
1394   // Create space mappers.
1395   size_t page_size = heap_rs.page_size();
1396   G1RegionToSpaceMapper* heap_storage =
1397     G1RegionToSpaceMapper::create_mapper(heap_rs,
1398                                          heap_rs.size(),
1399                                          page_size,
1400                                          HeapRegion::GrainBytes,
1401                                          1,
1402                                          mtJavaHeap);
1403   if(heap_storage == nullptr) {
1404     vm_shutdown_during_initialization("Could not initialize G1 heap");
1405     return JNI_ERR;
1406   }
1407 
1408   os::trace_page_sizes("Heap",
1409                        MinHeapSize,
1410                        reserved_byte_size,
1411                        page_size,
1412                        heap_rs.base(),
1413                        heap_rs.size());
1414   heap_storage->set_mapping_changed_listener(&_listener);
1415 
1416   // Create storage for the BOT, card table and the bitmap.
1417   G1RegionToSpaceMapper* bot_storage =
1418     create_aux_memory_mapper("Block Offset Table",
1419                              G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize),
1420                              G1BlockOffsetTable::heap_map_factor());
1421 
1422   G1RegionToSpaceMapper* cardtable_storage =
1423     create_aux_memory_mapper("Card Table",
1424                              G1CardTable::compute_size(heap_rs.size() / HeapWordSize),
1425                              G1CardTable::heap_map_factor());
1426 
1427   size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size());
1428   G1RegionToSpaceMapper* bitmap_storage =
1429     create_aux_memory_mapper("Mark Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1430 
1431   _hrm.initialize(heap_storage, bitmap_storage, bot_storage, cardtable_storage);
1432   _card_table->initialize(cardtable_storage);
1433 
1434   // 6843694 - ensure that the maximum region index can fit
1435   // in the remembered set structures.
1436   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1437   guarantee((max_reserved_regions() - 1) <= max_region_idx, "too many regions");
1438 
1439   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1440   // start within the first card.
1441   guarantee((uintptr_t)(heap_rs.base()) >= G1CardTable::card_size(), "Java heap must not start within the first card.");
1442   G1FromCardCache::initialize(max_reserved_regions());
1443   // Also create a G1 rem set.
1444   _rem_set = new G1RemSet(this, _card_table);
1445   _rem_set->initialize(max_reserved_regions());
1446 
1447   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1448   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1449   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1450             "too many cards per region");
1451 
1452   HeapRegionRemSet::initialize(_reserved);
1453 
1454   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1455 
1456   _bot = new G1BlockOffsetTable(reserved(), bot_storage);
1457 
1458   {
1459     size_t granularity = HeapRegion::GrainBytes;
1460 
1461     _region_attr.initialize(reserved(), granularity);
1462   }
1463 
1464   _workers = new WorkerThreads("GC Thread", ParallelGCThreads);
1465   if (_workers == nullptr) {
1466     return JNI_ENOMEM;
1467   }
1468   _workers->initialize_workers();
1469 
1470   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1471 
1472   // Create the G1ConcurrentMark data structure and thread.
1473   // (Must do this late, so that "max_[reserved_]regions" is defined.)
1474   _cm = new G1ConcurrentMark(this, bitmap_storage);
1475   _cm_thread = _cm->cm_thread();
1476 
1477   // Now expand into the initial heap size.
1478   if (!expand(init_byte_size, _workers)) {
1479     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1480     return JNI_ENOMEM;
1481   }
1482 
1483   // Perform any initialization actions delegated to the policy.
1484   policy()->init(this, &_collection_set);
1485 
1486   jint ecode = initialize_concurrent_refinement();
1487   if (ecode != JNI_OK) {
1488     return ecode;
1489   }
1490 
1491   ecode = initialize_service_thread();
1492   if (ecode != JNI_OK) {
1493     return ecode;
1494   }
1495 
1496   // Create and schedule the periodic gc task on the service thread.
1497   _periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task");
1498   _service_thread->register_task(_periodic_gc_task);
1499 
1500   _free_arena_memory_task = new G1MonotonicArenaFreeMemoryTask("Card Set Free Memory Task");
1501   _service_thread->register_task(_free_arena_memory_task);
1502 
1503   // Here we allocate the dummy HeapRegion that is required by the
1504   // G1AllocRegion class.
1505   HeapRegion* dummy_region = _hrm.get_dummy_region();
1506 
1507   // We'll re-use the same region whether the alloc region will
1508   // require BOT updates or not and, if it doesn't, then a non-young
1509   // region will complain that it cannot support allocations without
1510   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1511   dummy_region->set_eden();
1512   // Make sure it's full.
1513   dummy_region->set_top(dummy_region->end());
1514   G1AllocRegion::setup(this, dummy_region);
1515 
1516   _allocator->init_mutator_alloc_regions();
1517 
1518   // Do create of the monitoring and management support so that
1519   // values in the heap have been properly initialized.
1520   _monitoring_support = new G1MonitoringSupport(this);
1521 
1522   _collection_set.initialize(max_reserved_regions());
1523 
1524   evac_failure_injector()->reset();
1525 
1526   G1InitLogger::print();
1527 
1528   SlidingForwarding::initialize(heap_rs.region(), HeapRegion::GrainWords);
1529 
1530   return JNI_OK;
1531 }
1532 
1533 bool G1CollectedHeap::concurrent_mark_is_terminating() const {
1534   return _cm_thread->should_terminate();
1535 }
1536 
1537 void G1CollectedHeap::stop() {
1538   // Stop all concurrent threads. We do this to make sure these threads
1539   // do not continue to execute and access resources (e.g. logging)
1540   // that are destroyed during shutdown.
1541   _cr->stop();
1542   _service_thread->stop();
1543   _cm_thread->stop();
1544 }
1545 
1546 void G1CollectedHeap::safepoint_synchronize_begin() {
1547   SuspendibleThreadSet::synchronize();
1548 }
1549 
1550 void G1CollectedHeap::safepoint_synchronize_end() {
1551   SuspendibleThreadSet::desynchronize();
1552 }
1553 
1554 void G1CollectedHeap::post_initialize() {
1555   CollectedHeap::post_initialize();
1556   ref_processing_init();
1557 }
1558 
1559 void G1CollectedHeap::ref_processing_init() {
1560   // Reference processing in G1 currently works as follows:
1561   //
1562   // * There are two reference processor instances. One is
1563   //   used to record and process discovered references
1564   //   during concurrent marking; the other is used to
1565   //   record and process references during STW pauses
1566   //   (both full and incremental).
1567   // * Both ref processors need to 'span' the entire heap as
1568   //   the regions in the collection set may be dotted around.
1569   //
1570   // * For the concurrent marking ref processor:
1571   //   * Reference discovery is enabled at concurrent start.
1572   //   * Reference discovery is disabled and the discovered
1573   //     references processed etc during remarking.
1574   //   * Reference discovery is MT (see below).
1575   //   * Reference discovery requires a barrier (see below).
1576   //   * Reference processing may or may not be MT
1577   //     (depending on the value of ParallelRefProcEnabled
1578   //     and ParallelGCThreads).
1579   //   * A full GC disables reference discovery by the CM
1580   //     ref processor and abandons any entries on it's
1581   //     discovered lists.
1582   //
1583   // * For the STW processor:
1584   //   * Non MT discovery is enabled at the start of a full GC.
1585   //   * Processing and enqueueing during a full GC is non-MT.
1586   //   * During a full GC, references are processed after marking.
1587   //
1588   //   * Discovery (may or may not be MT) is enabled at the start
1589   //     of an incremental evacuation pause.
1590   //   * References are processed near the end of a STW evacuation pause.
1591   //   * For both types of GC:
1592   //     * Discovery is atomic - i.e. not concurrent.
1593   //     * Reference discovery will not need a barrier.
1594 
1595   // Concurrent Mark ref processor
1596   _ref_processor_cm =
1597     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1598                            ParallelGCThreads,                              // degree of mt processing
1599                            // We discover with the gc worker threads during Remark, so both
1600                            // thread counts must be considered for discovery.
1601                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1602                            true,                                           // Reference discovery is concurrent
1603                            &_is_alive_closure_cm);                         // is alive closure
1604 
1605   // STW ref processor
1606   _ref_processor_stw =
1607     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1608                            ParallelGCThreads,                    // degree of mt processing
1609                            ParallelGCThreads,                    // degree of mt discovery
1610                            false,                                // Reference discovery is not concurrent
1611                            &_is_alive_closure_stw);              // is alive closure
1612 }
1613 
1614 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1615   return &_soft_ref_policy;
1616 }
1617 
1618 size_t G1CollectedHeap::capacity() const {
1619   return _hrm.length() * HeapRegion::GrainBytes;
1620 }
1621 
1622 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1623   return _hrm.total_free_bytes();
1624 }
1625 
1626 // Computes the sum of the storage used by the various regions.
1627 size_t G1CollectedHeap::used() const {
1628   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1629   return result;
1630 }
1631 
1632 size_t G1CollectedHeap::used_unlocked() const {
1633   return _summary_bytes_used;
1634 }
1635 
1636 class SumUsedClosure: public HeapRegionClosure {
1637   size_t _used;
1638 public:
1639   SumUsedClosure() : _used(0) {}
1640   bool do_heap_region(HeapRegion* r) {
1641     _used += r->used();
1642     return false;
1643   }
1644   size_t result() { return _used; }
1645 };
1646 
1647 size_t G1CollectedHeap::recalculate_used() const {
1648   SumUsedClosure blk;
1649   heap_region_iterate(&blk);
1650   return blk.result();
1651 }
1652 
1653 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1654   return GCCause::is_user_requested_gc(cause) && ExplicitGCInvokesConcurrent;
1655 }
1656 
1657 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1658   switch (cause) {
1659     case GCCause::_g1_humongous_allocation: return true;
1660     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1661     case GCCause::_wb_breakpoint:           return true;
1662     case GCCause::_codecache_GC_aggressive: return true;
1663     case GCCause::_codecache_GC_threshold:  return true;
1664     default:                                return is_user_requested_concurrent_full_gc(cause);
1665   }
1666 }
1667 
1668 void G1CollectedHeap::increment_old_marking_cycles_started() {
1669   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1670          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1671          "Wrong marking cycle count (started: %d, completed: %d)",
1672          _old_marking_cycles_started, _old_marking_cycles_completed);
1673 
1674   _old_marking_cycles_started++;
1675 }
1676 
1677 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent,
1678                                                              bool whole_heap_examined) {
1679   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
1680 
1681   // We assume that if concurrent == true, then the caller is a
1682   // concurrent thread that was joined the Suspendible Thread
1683   // Set. If there's ever a cheap way to check this, we should add an
1684   // assert here.
1685 
1686   // Given that this method is called at the end of a Full GC or of a
1687   // concurrent cycle, and those can be nested (i.e., a Full GC can
1688   // interrupt a concurrent cycle), the number of full collections
1689   // completed should be either one (in the case where there was no
1690   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1691   // behind the number of full collections started.
1692 
1693   // This is the case for the inner caller, i.e. a Full GC.
1694   assert(concurrent ||
1695          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1696          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1697          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1698          "is inconsistent with _old_marking_cycles_completed = %u",
1699          _old_marking_cycles_started, _old_marking_cycles_completed);
1700 
1701   // This is the case for the outer caller, i.e. the concurrent cycle.
1702   assert(!concurrent ||
1703          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1704          "for outer caller (concurrent cycle): "
1705          "_old_marking_cycles_started = %u "
1706          "is inconsistent with _old_marking_cycles_completed = %u",
1707          _old_marking_cycles_started, _old_marking_cycles_completed);
1708 
1709   _old_marking_cycles_completed += 1;
1710   if (whole_heap_examined) {
1711     // Signal that we have completed a visit to all live objects.
1712     record_whole_heap_examined_timestamp();
1713   }
1714 
1715   // We need to clear the "in_progress" flag in the CM thread before
1716   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1717   // is set) so that if a waiter requests another System.gc() it doesn't
1718   // incorrectly see that a marking cycle is still in progress.
1719   if (concurrent) {
1720     _cm_thread->set_idle();
1721   }
1722 
1723   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
1724   // for a full GC to finish that their wait is over.
1725   ml.notify_all();
1726 }
1727 
1728 // Helper for collect().
1729 static G1GCCounters collection_counters(G1CollectedHeap* g1h) {
1730   MutexLocker ml(Heap_lock);
1731   return G1GCCounters(g1h);
1732 }
1733 
1734 void G1CollectedHeap::collect(GCCause::Cause cause) {
1735   try_collect(cause, collection_counters(this));
1736 }
1737 
1738 // Return true if (x < y) with allowance for wraparound.
1739 static bool gc_counter_less_than(uint x, uint y) {
1740   return (x - y) > (UINT_MAX/2);
1741 }
1742 
1743 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
1744 // Macro so msg printing is format-checked.
1745 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
1746   do {                                                                  \
1747     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
1748     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
1749       ResourceMark rm; /* For thread name. */                           \
1750       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
1751       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
1752                                        Thread::current()->name(),       \
1753                                        GCCause::to_string(cause));      \
1754       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
1755     }                                                                   \
1756   } while (0)
1757 
1758 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
1759   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
1760 
1761 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
1762                                                uint gc_counter,
1763                                                uint old_marking_started_before) {
1764   assert_heap_not_locked();
1765   assert(should_do_concurrent_full_gc(cause),
1766          "Non-concurrent cause %s", GCCause::to_string(cause));
1767 
1768   for (uint i = 1; true; ++i) {
1769     // Try to schedule concurrent start evacuation pause that will
1770     // start a concurrent cycle.
1771     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
1772     VM_G1TryInitiateConcMark op(gc_counter, cause);
1773     VMThread::execute(&op);
1774 
1775     // Request is trivially finished.
1776     if (cause == GCCause::_g1_periodic_collection) {
1777       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
1778       return op.gc_succeeded();
1779     }
1780 
1781     // If VMOp skipped initiating concurrent marking cycle because
1782     // we're terminating, then we're done.
1783     if (op.terminating()) {
1784       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
1785       return false;
1786     }
1787 
1788     // Lock to get consistent set of values.
1789     uint old_marking_started_after;
1790     uint old_marking_completed_after;
1791     {
1792       MutexLocker ml(Heap_lock);
1793       // Update gc_counter for retrying VMOp if needed. Captured here to be
1794       // consistent with the values we use below for termination tests.  If
1795       // a retry is needed after a possible wait, and another collection
1796       // occurs in the meantime, it will cause our retry to be skipped and
1797       // we'll recheck for termination with updated conditions from that
1798       // more recent collection.  That's what we want, rather than having
1799       // our retry possibly perform an unnecessary collection.
1800       gc_counter = total_collections();
1801       old_marking_started_after = _old_marking_cycles_started;
1802       old_marking_completed_after = _old_marking_cycles_completed;
1803     }
1804 
1805     if (cause == GCCause::_wb_breakpoint) {
1806       if (op.gc_succeeded()) {
1807         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1808         return true;
1809       }
1810       // When _wb_breakpoint there can't be another cycle or deferred.
1811       assert(!op.cycle_already_in_progress(), "invariant");
1812       assert(!op.whitebox_attached(), "invariant");
1813       // Concurrent cycle attempt might have been cancelled by some other
1814       // collection, so retry.  Unlike other cases below, we want to retry
1815       // even if cancelled by a STW full collection, because we really want
1816       // to start a concurrent cycle.
1817       if (old_marking_started_before != old_marking_started_after) {
1818         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
1819         old_marking_started_before = old_marking_started_after;
1820       }
1821     } else if (!GCCause::is_user_requested_gc(cause)) {
1822       // For an "automatic" (not user-requested) collection, we just need to
1823       // ensure that progress is made.
1824       //
1825       // Request is finished if any of
1826       // (1) the VMOp successfully performed a GC,
1827       // (2) a concurrent cycle was already in progress,
1828       // (3) whitebox is controlling concurrent cycles,
1829       // (4) a new cycle was started (by this thread or some other), or
1830       // (5) a Full GC was performed.
1831       // Cases (4) and (5) are detected together by a change to
1832       // _old_marking_cycles_started.
1833       //
1834       // Note that (1) does not imply (4).  If we're still in the mixed
1835       // phase of an earlier concurrent collection, the request to make the
1836       // collection a concurrent start won't be honored.  If we don't check for
1837       // both conditions we'll spin doing back-to-back collections.
1838       if (op.gc_succeeded() ||
1839           op.cycle_already_in_progress() ||
1840           op.whitebox_attached() ||
1841           (old_marking_started_before != old_marking_started_after)) {
1842         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1843         return true;
1844       }
1845     } else {                    // User-requested GC.
1846       // For a user-requested collection, we want to ensure that a complete
1847       // full collection has been performed before returning, but without
1848       // waiting for more than needed.
1849 
1850       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
1851       // new cycle was started.  That's good, because it's not clear what we
1852       // should do otherwise.  Trying again just does back to back GCs.
1853       // Can't wait for someone else to start a cycle.  And returning fails
1854       // to meet the goal of ensuring a full collection was performed.
1855       assert(!op.gc_succeeded() ||
1856              (old_marking_started_before != old_marking_started_after),
1857              "invariant: succeeded %s, started before %u, started after %u",
1858              BOOL_TO_STR(op.gc_succeeded()),
1859              old_marking_started_before, old_marking_started_after);
1860 
1861       // Request is finished if a full collection (concurrent or stw)
1862       // was started after this request and has completed, e.g.
1863       // started_before < completed_after.
1864       if (gc_counter_less_than(old_marking_started_before,
1865                                old_marking_completed_after)) {
1866         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
1867         return true;
1868       }
1869 
1870       if (old_marking_started_after != old_marking_completed_after) {
1871         // If there is an in-progress cycle (possibly started by us), then
1872         // wait for that cycle to complete, e.g.
1873         // while completed_now < started_after.
1874         LOG_COLLECT_CONCURRENTLY(cause, "wait");
1875         MonitorLocker ml(G1OldGCCount_lock);
1876         while (gc_counter_less_than(_old_marking_cycles_completed,
1877                                     old_marking_started_after)) {
1878           ml.wait();
1879         }
1880         // Request is finished if the collection we just waited for was
1881         // started after this request.
1882         if (old_marking_started_before != old_marking_started_after) {
1883           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
1884           return true;
1885         }
1886       }
1887 
1888       // If VMOp was successful then it started a new cycle that the above
1889       // wait &etc should have recognized as finishing this request.  This
1890       // differs from a non-user-request, where gc_succeeded does not imply
1891       // a new cycle was started.
1892       assert(!op.gc_succeeded(), "invariant");
1893 
1894       if (op.cycle_already_in_progress()) {
1895         // If VMOp failed because a cycle was already in progress, it
1896         // is now complete.  But it didn't finish this user-requested
1897         // GC, so try again.
1898         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
1899         continue;
1900       } else if (op.whitebox_attached()) {
1901         // If WhiteBox wants control, wait for notification of a state
1902         // change in the controller, then try again.  Don't wait for
1903         // release of control, since collections may complete while in
1904         // control.  Note: This won't recognize a STW full collection
1905         // while waiting; we can't wait on multiple monitors.
1906         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
1907         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
1908         if (ConcurrentGCBreakpoints::is_controlled()) {
1909           ml.wait();
1910         }
1911         continue;
1912       }
1913     }
1914 
1915     // Collection failed and should be retried.
1916     assert(op.transient_failure(), "invariant");
1917 
1918     if (GCLocker::is_active_and_needs_gc()) {
1919       // If GCLocker is active, wait until clear before retrying.
1920       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
1921       GCLocker::stall_until_clear();
1922     }
1923 
1924     LOG_COLLECT_CONCURRENTLY(cause, "retry");
1925   }
1926 }
1927 
1928 bool G1CollectedHeap::try_collect_fullgc(GCCause::Cause cause,
1929                                          const G1GCCounters& counters_before) {
1930   assert_heap_not_locked();
1931 
1932   while(true) {
1933     VM_G1CollectFull op(counters_before.total_collections(),
1934                         counters_before.total_full_collections(),
1935                         cause);
1936     VMThread::execute(&op);
1937 
1938     // Request is trivially finished.
1939     if (!GCCause::is_explicit_full_gc(cause) || op.gc_succeeded()) {
1940       return op.gc_succeeded();
1941     }
1942 
1943     {
1944       MutexLocker ml(Heap_lock);
1945       if (counters_before.total_full_collections() != total_full_collections()) {
1946         return true;
1947       }
1948     }
1949 
1950     if (GCLocker::is_active_and_needs_gc()) {
1951       // If GCLocker is active, wait until clear before retrying.
1952       GCLocker::stall_until_clear();
1953     }
1954   }
1955 }
1956 
1957 bool G1CollectedHeap::try_collect(GCCause::Cause cause,
1958                                   const G1GCCounters& counters_before) {
1959   if (should_do_concurrent_full_gc(cause)) {
1960     return try_collect_concurrently(cause,
1961                                     counters_before.total_collections(),
1962                                     counters_before.old_marking_cycles_started());
1963   } else if (GCLocker::should_discard(cause, counters_before.total_collections())) {
1964     // Indicate failure to be consistent with VMOp failure due to
1965     // another collection slipping in after our gc_count but before
1966     // our request is processed.
1967     return false;
1968   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
1969              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
1970 
1971     // Schedule a standard evacuation pause. We're setting word_size
1972     // to 0 which means that we are not requesting a post-GC allocation.
1973     VM_G1CollectForAllocation op(0,     /* word_size */
1974                                  counters_before.total_collections(),
1975                                  cause);
1976     VMThread::execute(&op);
1977     return op.gc_succeeded();
1978   } else {
1979     // Schedule a Full GC.
1980     return try_collect_fullgc(cause, counters_before);
1981   }
1982 }
1983 
1984 void G1CollectedHeap::start_concurrent_gc_for_metadata_allocation(GCCause::Cause gc_cause) {
1985   GCCauseSetter x(this, gc_cause);
1986 
1987   // At this point we are supposed to start a concurrent cycle. We
1988   // will do so if one is not already in progress.
1989   bool should_start = policy()->force_concurrent_start_if_outside_cycle(gc_cause);
1990   if (should_start) {
1991     do_collection_pause_at_safepoint();
1992   }
1993 }
1994 
1995 bool G1CollectedHeap::is_in(const void* p) const {
1996   return is_in_reserved(p) && _hrm.is_available(addr_to_region(p));
1997 }
1998 
1999 // Iteration functions.
2000 
2001 // Iterates an ObjectClosure over all objects within a HeapRegion.
2002 
2003 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2004   ObjectClosure* _cl;
2005 public:
2006   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2007   bool do_heap_region(HeapRegion* r) {
2008     if (!r->is_continues_humongous()) {
2009       r->object_iterate(_cl);
2010     }
2011     return false;
2012   }
2013 };
2014 
2015 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2016   IterateObjectClosureRegionClosure blk(cl);
2017   heap_region_iterate(&blk);
2018 }
2019 
2020 class G1ParallelObjectIterator : public ParallelObjectIteratorImpl {
2021 private:
2022   G1CollectedHeap*  _heap;
2023   HeapRegionClaimer _claimer;
2024 
2025 public:
2026   G1ParallelObjectIterator(uint thread_num) :
2027       _heap(G1CollectedHeap::heap()),
2028       _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {}
2029 
2030   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
2031     _heap->object_iterate_parallel(cl, worker_id, &_claimer);
2032   }
2033 };
2034 
2035 ParallelObjectIteratorImpl* G1CollectedHeap::parallel_object_iterator(uint thread_num) {
2036   return new G1ParallelObjectIterator(thread_num);
2037 }
2038 
2039 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) {
2040   IterateObjectClosureRegionClosure blk(cl);
2041   heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id);
2042 }
2043 
2044 void G1CollectedHeap::keep_alive(oop obj) {
2045   G1BarrierSet::enqueue_preloaded(obj);
2046 }
2047 
2048 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2049   _hrm.iterate(cl);
2050 }
2051 
2052 void G1CollectedHeap::heap_region_iterate(HeapRegionIndexClosure* cl) const {
2053   _hrm.iterate(cl);
2054 }
2055 
2056 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2057                                                                  HeapRegionClaimer *hrclaimer,
2058                                                                  uint worker_id) const {
2059   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2060 }
2061 
2062 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2063                                                          HeapRegionClaimer *hrclaimer) const {
2064   _hrm.par_iterate(cl, hrclaimer, 0);
2065 }
2066 
2067 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2068   _collection_set.iterate(cl);
2069 }
2070 
2071 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl,
2072                                                      HeapRegionClaimer* hr_claimer,
2073                                                      uint worker_id) {
2074   _collection_set.par_iterate(cl, hr_claimer, worker_id);
2075 }
2076 
2077 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl,
2078                                                             HeapRegionClaimer* hr_claimer,
2079                                                             uint worker_id) {
2080   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id);
2081 }
2082 
2083 void G1CollectedHeap::par_iterate_regions_array(HeapRegionClosure* cl,
2084                                                 HeapRegionClaimer* hr_claimer,
2085                                                 const uint regions[],
2086                                                 size_t length,
2087                                                 uint worker_id) const {
2088   assert_at_safepoint();
2089   if (length == 0) {
2090     return;
2091   }
2092   uint total_workers = workers()->active_workers();
2093 
2094   size_t start_pos = (worker_id * length) / total_workers;
2095   size_t cur_pos = start_pos;
2096 
2097   do {
2098     uint region_idx = regions[cur_pos];
2099     if (hr_claimer == nullptr || hr_claimer->claim_region(region_idx)) {
2100       HeapRegion* r = region_at(region_idx);
2101       bool result = cl->do_heap_region(r);
2102       guarantee(!result, "Must not cancel iteration");
2103     }
2104 
2105     cur_pos++;
2106     if (cur_pos == length) {
2107       cur_pos = 0;
2108     }
2109   } while (cur_pos != start_pos);
2110 }
2111 
2112 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2113   HeapRegion* hr = heap_region_containing(addr);
2114   // The CollectedHeap API requires us to not fail for any given address within
2115   // the heap. HeapRegion::block_start() has been optimized to not accept addresses
2116   // outside of the allocated area.
2117   if (addr >= hr->top()) {
2118     return nullptr;
2119   }
2120   return hr->block_start(addr);
2121 }
2122 
2123 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2124   HeapRegion* hr = heap_region_containing(addr);
2125   return hr->block_is_obj(addr, hr->parsable_bottom_acquire());
2126 }
2127 
2128 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2129   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2130 }
2131 
2132 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2133   return _eden.length() * HeapRegion::GrainBytes;
2134 }
2135 
2136 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2137 // must be equal to the humongous object limit.
2138 size_t G1CollectedHeap::max_tlab_size() const {
2139   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2140 }
2141 
2142 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2143   return _allocator->unsafe_max_tlab_alloc();
2144 }
2145 
2146 size_t G1CollectedHeap::max_capacity() const {
2147   return max_regions() * HeapRegion::GrainBytes;
2148 }
2149 
2150 void G1CollectedHeap::prepare_for_verify() {
2151   _verifier->prepare_for_verify();
2152 }
2153 
2154 void G1CollectedHeap::verify(VerifyOption vo) {
2155   _verifier->verify(vo);
2156 }
2157 
2158 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2159   return true;
2160 }
2161 
2162 class PrintRegionClosure: public HeapRegionClosure {
2163   outputStream* _st;
2164 public:
2165   PrintRegionClosure(outputStream* st) : _st(st) {}
2166   bool do_heap_region(HeapRegion* r) {
2167     r->print_on(_st);
2168     return false;
2169   }
2170 };
2171 
2172 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2173                                        const HeapRegion* hr,
2174                                        const VerifyOption vo) const {
2175   switch (vo) {
2176     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj, hr);
2177     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj, hr);
2178     default:                             ShouldNotReachHere();
2179   }
2180   return false; // keep some compilers happy
2181 }
2182 
2183 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2184                                        const VerifyOption vo) const {
2185   switch (vo) {
2186     case VerifyOption::G1UseConcMarking: return is_obj_dead(obj);
2187     case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj);
2188     default:                             ShouldNotReachHere();
2189   }
2190   return false; // keep some compilers happy
2191 }
2192 
2193 void G1CollectedHeap::pin_object(JavaThread* thread, oop obj) {
2194   GCLocker::lock_critical(thread);
2195 }
2196 
2197 void G1CollectedHeap::unpin_object(JavaThread* thread, oop obj) {
2198   GCLocker::unlock_critical(thread);
2199 }
2200 
2201 void G1CollectedHeap::print_heap_regions() const {
2202   LogTarget(Trace, gc, heap, region) lt;
2203   if (lt.is_enabled()) {
2204     LogStream ls(lt);
2205     print_regions_on(&ls);
2206   }
2207 }
2208 
2209 void G1CollectedHeap::print_on(outputStream* st) const {
2210   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2211   st->print(" %-20s", "garbage-first heap");
2212   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2213             capacity()/K, heap_used/K);
2214   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2215             p2i(_hrm.reserved().start()),
2216             p2i(_hrm.reserved().end()));
2217   st->cr();
2218   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2219   uint young_regions = young_regions_count();
2220   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2221             (size_t) young_regions * HeapRegion::GrainBytes / K);
2222   uint survivor_regions = survivor_regions_count();
2223   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2224             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2225   st->cr();
2226   if (_numa->is_enabled()) {
2227     uint num_nodes = _numa->num_active_nodes();
2228     st->print("  remaining free region(s) on each NUMA node: ");
2229     const int* node_ids = _numa->node_ids();
2230     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2231       uint num_free_regions = _hrm.num_free_regions(node_index);
2232       st->print("%d=%u ", node_ids[node_index], num_free_regions);
2233     }
2234     st->cr();
2235   }
2236   MetaspaceUtils::print_on(st);
2237 }
2238 
2239 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2240   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2241                "HS=humongous(starts), HC=humongous(continues), "
2242                "CS=collection set, F=free, "
2243                "TAMS=top-at-mark-start, "
2244                "PB=parsable bottom");
2245   PrintRegionClosure blk(st);
2246   heap_region_iterate(&blk);
2247 }
2248 
2249 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2250   print_on(st);
2251 
2252   // Print the per-region information.
2253   st->cr();
2254   print_regions_on(st);
2255 }
2256 
2257 void G1CollectedHeap::print_on_error(outputStream* st) const {
2258   this->CollectedHeap::print_on_error(st);
2259 
2260   if (_cm != nullptr) {
2261     st->cr();
2262     _cm->print_on_error(st);
2263   }
2264 }
2265 
2266 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2267   workers()->threads_do(tc);
2268   tc->do_thread(_cm_thread);
2269   _cm->threads_do(tc);
2270   _cr->threads_do(tc);
2271   tc->do_thread(_service_thread);
2272 }
2273 
2274 void G1CollectedHeap::print_tracing_info() const {
2275   rem_set()->print_summary_info();
2276   concurrent_mark()->print_summary_info();
2277 }
2278 
2279 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2280   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2281 }
2282 
2283 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2284 
2285   size_t eden_used_bytes = _monitoring_support->eden_space_used();
2286   size_t survivor_used_bytes = _monitoring_support->survivor_space_used();
2287   size_t old_gen_used_bytes = _monitoring_support->old_gen_used();
2288   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2289 
2290   size_t eden_capacity_bytes =
2291     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2292 
2293   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2294   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, eden_capacity_bytes,
2295                        survivor_used_bytes, old_gen_used_bytes, num_regions());
2296 }
2297 
2298 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2299   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2300                        stats->unused(), stats->used(), stats->region_end_waste(),
2301                        stats->regions_filled(), stats->num_plab_filled(),
2302                        stats->direct_allocated(), stats->num_direct_allocated(),
2303                        stats->failure_used(), stats->failure_waste());
2304 }
2305 
2306 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2307   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2308   gc_tracer->report_gc_heap_summary(when, heap_summary);
2309 
2310   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2311   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2312 }
2313 
2314 void G1CollectedHeap::gc_prologue(bool full) {
2315   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2316 
2317   // Update common counters.
2318   increment_total_collections(full /* full gc */);
2319   if (full || collector_state()->in_concurrent_start_gc()) {
2320     increment_old_marking_cycles_started();
2321   }
2322 }
2323 
2324 void G1CollectedHeap::gc_epilogue(bool full) {
2325   // Update common counters.
2326   if (full) {
2327     // Update the number of full collections that have been completed.
2328     increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */);
2329   }
2330 
2331 #if COMPILER2_OR_JVMCI
2332   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2333 #endif
2334 
2335   // We have just completed a GC. Update the soft reference
2336   // policy with the new heap occupancy
2337   Universe::heap()->update_capacity_and_used_at_gc();
2338 
2339   _collection_pause_end = Ticks::now();
2340 
2341   _free_arena_memory_task->notify_new_stats(&_young_gen_card_set_stats,
2342                                             &_collection_set_candidates_card_set_stats);
2343 }
2344 
2345 uint G1CollectedHeap::uncommit_regions(uint region_limit) {
2346   return _hrm.uncommit_inactive_regions(region_limit);
2347 }
2348 
2349 bool G1CollectedHeap::has_uncommittable_regions() {
2350   return _hrm.has_inactive_regions();
2351 }
2352 
2353 void G1CollectedHeap::uncommit_regions_if_necessary() {
2354   if (has_uncommittable_regions()) {
2355     G1UncommitRegionTask::enqueue();
2356   }
2357 }
2358 
2359 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2360   LogTarget(Trace, gc, heap, verify) lt;
2361 
2362   if (lt.is_enabled()) {
2363     LogStream ls(lt);
2364     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2365     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2366     heap_region_iterate(&cl);
2367   }
2368 }
2369 
2370 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2371                                                uint gc_count_before,
2372                                                bool* succeeded,
2373                                                GCCause::Cause gc_cause) {
2374   assert_heap_not_locked_and_not_at_safepoint();
2375   VM_G1CollectForAllocation op(word_size, gc_count_before, gc_cause);
2376   VMThread::execute(&op);
2377 
2378   HeapWord* result = op.result();
2379   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2380   assert(result == nullptr || ret_succeeded,
2381          "the result should be null if the VM did not succeed");
2382   *succeeded = ret_succeeded;
2383 
2384   assert_heap_not_locked();
2385   return result;
2386 }
2387 
2388 void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) {
2389   assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress");
2390 
2391   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2392   if (concurrent_operation_is_full_mark) {
2393     _cm->post_concurrent_mark_start();
2394     _cm_thread->start_full_mark();
2395   } else {
2396     _cm->post_concurrent_undo_start();
2397     _cm_thread->start_undo_mark();
2398   }
2399   CGC_lock->notify();
2400 }
2401 
2402 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2403   // We don't nominate objects with many remembered set entries, on
2404   // the assumption that such objects are likely still live.
2405   HeapRegionRemSet* rem_set = r->rem_set();
2406 
2407   return rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold);
2408 }
2409 
2410 #ifndef PRODUCT
2411 void G1CollectedHeap::verify_region_attr_remset_is_tracked() {
2412   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2413   public:
2414     virtual bool do_heap_region(HeapRegion* r) {
2415       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2416       bool const remset_is_tracked = g1h->region_attr(r->bottom()).remset_is_tracked();
2417       assert(r->rem_set()->is_tracked() == remset_is_tracked,
2418              "Region %u remset tracking status (%s) different to region attribute (%s)",
2419              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(remset_is_tracked));
2420       return false;
2421     }
2422   } cl;
2423   heap_region_iterate(&cl);
2424 }
2425 #endif
2426 
2427 void G1CollectedHeap::start_new_collection_set() {
2428   collection_set()->start_incremental_building();
2429 
2430   clear_region_attr();
2431 
2432   guarantee(_eden.length() == 0, "eden should have been cleared");
2433   policy()->transfer_survivors_to_cset(survivor());
2434 
2435   // We redo the verification but now wrt to the new CSet which
2436   // has just got initialized after the previous CSet was freed.
2437   _cm->verify_no_collection_set_oops();
2438 }
2439 
2440 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2441   if (collector_state()->in_concurrent_start_gc()) {
2442     return G1HeapVerifier::G1VerifyConcurrentStart;
2443   } else if (collector_state()->in_young_only_phase()) {
2444     return G1HeapVerifier::G1VerifyYoungNormal;
2445   } else {
2446     return G1HeapVerifier::G1VerifyMixed;
2447   }
2448 }
2449 
2450 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2451   if (!VerifyBeforeGC) {
2452     return;
2453   }
2454   if (!G1HeapVerifier::should_verify(type)) {
2455     return;
2456   }
2457   Ticks start = Ticks::now();
2458   _verifier->prepare_for_verify();
2459   _verifier->verify_region_sets_optional();
2460   _verifier->verify_dirty_young_regions();
2461   _verifier->verify_before_gc();
2462   verify_numa_regions("GC Start");
2463   phase_times()->record_verify_before_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2464 }
2465 
2466 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2467   if (!VerifyAfterGC) {
2468     return;
2469   }
2470   if (!G1HeapVerifier::should_verify(type)) {
2471     return;
2472   }
2473   Ticks start = Ticks::now();
2474   _verifier->verify_after_gc();
2475   verify_numa_regions("GC End");
2476   _verifier->verify_region_sets_optional();
2477   phase_times()->record_verify_after_time_ms((Ticks::now() - start).seconds() * MILLIUNITS);
2478 }
2479 
2480 void G1CollectedHeap::expand_heap_after_young_collection(){
2481   size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount();
2482   if (expand_bytes > 0) {
2483     // No need for an ergo logging here,
2484     // expansion_amount() does this when it returns a value > 0.
2485     double expand_ms = 0.0;
2486     if (!expand(expand_bytes, _workers, &expand_ms)) {
2487       // We failed to expand the heap. Cannot do anything about it.
2488     }
2489     phase_times()->record_expand_heap_time(expand_ms);
2490   }
2491 }
2492 
2493 bool G1CollectedHeap::do_collection_pause_at_safepoint() {
2494   assert_at_safepoint_on_vm_thread();
2495   guarantee(!is_gc_active(), "collection is not reentrant");
2496 
2497   if (GCLocker::check_active_before_gc()) {
2498     return false;
2499   }
2500 
2501   do_collection_pause_at_safepoint_helper();
2502   return true;
2503 }
2504 
2505 G1HeapPrinterMark::G1HeapPrinterMark(G1CollectedHeap* g1h) : _g1h(g1h), _heap_transition(g1h) {
2506   // This summary needs to be printed before incrementing total collections.
2507   _g1h->rem_set()->print_periodic_summary_info("Before GC RS summary",
2508                                                _g1h->total_collections(),
2509                                                true /* show_thread_times */);
2510   _g1h->print_heap_before_gc();
2511   _g1h->print_heap_regions();
2512 }
2513 
2514 G1HeapPrinterMark::~G1HeapPrinterMark() {
2515   _g1h->policy()->print_age_table();
2516   _g1h->rem_set()->print_coarsen_stats();
2517   // We are at the end of the GC. Total collections has already been increased.
2518   _g1h->rem_set()->print_periodic_summary_info("After GC RS summary",
2519                                                _g1h->total_collections() - 1,
2520                                                false /* show_thread_times */);
2521 
2522   _heap_transition.print();
2523   _g1h->print_heap_regions();
2524   _g1h->print_heap_after_gc();
2525   // Print NUMA statistics.
2526   _g1h->numa()->print_statistics();
2527 }
2528 
2529 G1JFRTracerMark::G1JFRTracerMark(STWGCTimer* timer, GCTracer* tracer) :
2530   _timer(timer), _tracer(tracer) {
2531 
2532   _timer->register_gc_start();
2533   _tracer->report_gc_start(G1CollectedHeap::heap()->gc_cause(), _timer->gc_start());
2534   G1CollectedHeap::heap()->trace_heap_before_gc(_tracer);
2535 }
2536 
2537 G1JFRTracerMark::~G1JFRTracerMark() {
2538   G1CollectedHeap::heap()->trace_heap_after_gc(_tracer);
2539   _timer->register_gc_end();
2540   _tracer->report_gc_end(_timer->gc_end(), _timer->time_partitions());
2541 }
2542 
2543 void G1CollectedHeap::prepare_for_mutator_after_young_collection() {
2544   Ticks start = Ticks::now();
2545 
2546   _survivor_evac_stats.adjust_desired_plab_size();
2547   _old_evac_stats.adjust_desired_plab_size();
2548 
2549   // Start a new incremental collection set for the mutator phase.
2550   start_new_collection_set();
2551   _allocator->init_mutator_alloc_regions();
2552 
2553   phase_times()->record_prepare_for_mutator_time_ms((Ticks::now() - start).seconds() * 1000.0);
2554 }
2555 
2556 void G1CollectedHeap::retire_tlabs() {
2557   ensure_parsability(true);
2558 }
2559 
2560 void G1CollectedHeap::do_collection_pause_at_safepoint_helper() {
2561   ResourceMark rm;
2562 
2563   IsGCActiveMark active_gc_mark;
2564   GCIdMark gc_id_mark;
2565   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2566 
2567   GCTraceCPUTime tcpu(_gc_tracer_stw);
2568 
2569   _bytes_used_during_gc = 0;
2570 
2571   policy()->decide_on_concurrent_start_pause();
2572   // Record whether this pause may need to trigger a concurrent operation. Later,
2573   // when we signal the G1ConcurrentMarkThread, the collector state has already
2574   // been reset for the next pause.
2575   bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc();
2576 
2577   // Perform the collection.
2578   G1YoungCollector collector(gc_cause());
2579   collector.collect();
2580 
2581   // It should now be safe to tell the concurrent mark thread to start
2582   // without its logging output interfering with the logging output
2583   // that came from the pause.
2584   if (should_start_concurrent_mark_operation) {
2585     verifier()->verify_bitmap_clear(true /* above_tams_only */);
2586     // CAUTION: after the start_concurrent_cycle() call below, the concurrent marking
2587     // thread(s) could be running concurrently with us. Make sure that anything
2588     // after this point does not assume that we are the only GC thread running.
2589     // Note: of course, the actual marking work will not start until the safepoint
2590     // itself is released in SuspendibleThreadSet::desynchronize().
2591     start_concurrent_cycle(collector.concurrent_operation_is_full_mark());
2592     ConcurrentGCBreakpoints::notify_idle_to_active();
2593   }
2594 }
2595 
2596 void G1CollectedHeap::complete_cleaning(bool class_unloading_occurred) {
2597   uint num_workers = workers()->active_workers();
2598   G1ParallelCleaningTask unlink_task(num_workers, class_unloading_occurred);
2599   workers()->run_task(&unlink_task);
2600 }
2601 
2602 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
2603   assert(obj != nullptr, "must not be null");
2604   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
2605   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
2606   // may falsely indicate that this is not the case here: however the collection set only
2607   // contains old regions when concurrent mark is not running.
2608   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
2609 }
2610 
2611 void G1CollectedHeap::make_pending_list_reachable() {
2612   if (collector_state()->in_concurrent_start_gc()) {
2613     oop pll_head = Universe::reference_pending_list();
2614     if (pll_head != nullptr) {
2615       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
2616       _cm->mark_in_bitmap(0 /* worker_id */, pll_head);
2617     }
2618   }
2619 }
2620 
2621 void G1CollectedHeap::set_humongous_stats(uint num_humongous_total, uint num_humongous_candidates) {
2622   _num_humongous_objects = num_humongous_total;
2623   _num_humongous_reclaim_candidates = num_humongous_candidates;
2624 }
2625 
2626 bool G1CollectedHeap::should_sample_collection_set_candidates() const {
2627   const G1CollectionSetCandidates* candidates = collection_set()->candidates();
2628   return !candidates->is_empty();
2629 }
2630 
2631 void G1CollectedHeap::set_collection_set_candidates_stats(G1MonotonicArenaMemoryStats& stats) {
2632   _collection_set_candidates_card_set_stats = stats;
2633 }
2634 
2635 void G1CollectedHeap::set_young_gen_card_set_stats(const G1MonotonicArenaMemoryStats& stats) {
2636   _young_gen_card_set_stats = stats;
2637 }
2638 
2639 void G1CollectedHeap::record_obj_copy_mem_stats() {
2640   policy()->old_gen_alloc_tracker()->
2641     add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
2642 
2643   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
2644                                                create_g1_evac_summary(&_old_evac_stats));
2645 }
2646 
2647 void G1CollectedHeap::clear_bitmap_for_region(HeapRegion* hr) {
2648   concurrent_mark()->clear_bitmap_for_region(hr);
2649 }
2650 
2651 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
2652   assert(!hr->is_free(), "the region should not be free");
2653   assert(!hr->is_empty(), "the region should not be empty");
2654   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
2655 
2656   // Reset region metadata to allow reuse.
2657   hr->hr_clear(true /* clear_space */);
2658   _policy->remset_tracker()->update_at_free(hr);
2659 
2660   if (free_list != nullptr) {
2661     free_list->add_ordered(hr);
2662   }
2663 }
2664 
2665 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
2666                                             FreeRegionList* free_list) {
2667   assert(hr->is_humongous(), "this is only for humongous regions");
2668   hr->clear_humongous();
2669   free_region(hr, free_list);
2670 }
2671 
2672 void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed,
2673                                                const uint humongous_regions_removed) {
2674   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
2675     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
2676     _old_set.bulk_remove(old_regions_removed);
2677     _humongous_set.bulk_remove(humongous_regions_removed);
2678   }
2679 
2680 }
2681 
2682 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
2683   assert(list != nullptr, "list can't be null");
2684   if (!list->is_empty()) {
2685     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
2686     _hrm.insert_list_into_free_list(list);
2687   }
2688 }
2689 
2690 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
2691   decrease_used(bytes);
2692 }
2693 
2694 void G1CollectedHeap::clear_eden() {
2695   _eden.clear();
2696 }
2697 
2698 void G1CollectedHeap::clear_collection_set() {
2699   collection_set()->clear();
2700 }
2701 
2702 void G1CollectedHeap::rebuild_free_region_list() {
2703   Ticks start = Ticks::now();
2704   _hrm.rebuild_free_list(workers());
2705   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0);
2706 }
2707 
2708 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
2709 public:
2710   virtual bool do_heap_region(HeapRegion* r) {
2711     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
2712     G1CollectedHeap::heap()->clear_region_attr(r);
2713     r->clear_young_index_in_cset();
2714     return false;
2715   }
2716 };
2717 
2718 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
2719   G1AbandonCollectionSetClosure cl;
2720   collection_set_iterate_all(&cl);
2721 
2722   collection_set->clear();
2723   collection_set->stop_incremental_building();
2724 }
2725 
2726 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
2727   return _allocator->is_retained_old_region(hr);
2728 }
2729 
2730 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
2731   _eden.add(hr);
2732   _policy->set_region_eden(hr);
2733 }
2734 
2735 #ifdef ASSERT
2736 
2737 class NoYoungRegionsClosure: public HeapRegionClosure {
2738 private:
2739   bool _success;
2740 public:
2741   NoYoungRegionsClosure() : _success(true) { }
2742   bool do_heap_region(HeapRegion* r) {
2743     if (r->is_young()) {
2744       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
2745                             p2i(r->bottom()), p2i(r->end()));
2746       _success = false;
2747     }
2748     return false;
2749   }
2750   bool success() { return _success; }
2751 };
2752 
2753 bool G1CollectedHeap::check_young_list_empty() {
2754   bool ret = (young_regions_count() == 0);
2755 
2756   NoYoungRegionsClosure closure;
2757   heap_region_iterate(&closure);
2758   ret = ret && closure.success();
2759 
2760   return ret;
2761 }
2762 
2763 #endif // ASSERT
2764 
2765 // Remove the given HeapRegion from the appropriate region set.
2766 void G1CollectedHeap::prepare_region_for_full_compaction(HeapRegion* hr) {
2767    if (hr->is_humongous()) {
2768     _humongous_set.remove(hr);
2769   } else if (hr->is_old()) {
2770     _old_set.remove(hr);
2771   } else if (hr->is_young()) {
2772     // Note that emptying the eden and survivor lists is postponed and instead
2773     // done as the first step when rebuilding the regions sets again. The reason
2774     // for this is that during a full GC string deduplication needs to know if
2775     // a collected region was young or old when the full GC was initiated.
2776     hr->uninstall_surv_rate_group();
2777   } else {
2778     // We ignore free regions, we'll empty the free list afterwards.
2779     assert(hr->is_free(), "it cannot be another type");
2780   }
2781 }
2782 
2783 void G1CollectedHeap::increase_used(size_t bytes) {
2784   _summary_bytes_used += bytes;
2785 }
2786 
2787 void G1CollectedHeap::decrease_used(size_t bytes) {
2788   assert(_summary_bytes_used >= bytes,
2789          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
2790          _summary_bytes_used, bytes);
2791   _summary_bytes_used -= bytes;
2792 }
2793 
2794 void G1CollectedHeap::set_used(size_t bytes) {
2795   _summary_bytes_used = bytes;
2796 }
2797 
2798 class RebuildRegionSetsClosure : public HeapRegionClosure {
2799 private:
2800   bool _free_list_only;
2801 
2802   HeapRegionSet* _old_set;
2803   HeapRegionSet* _humongous_set;
2804 
2805   HeapRegionManager* _hrm;
2806 
2807   size_t _total_used;
2808 
2809 public:
2810   RebuildRegionSetsClosure(bool free_list_only,
2811                            HeapRegionSet* old_set,
2812                            HeapRegionSet* humongous_set,
2813                            HeapRegionManager* hrm) :
2814     _free_list_only(free_list_only), _old_set(old_set),
2815     _humongous_set(humongous_set), _hrm(hrm), _total_used(0) {
2816     assert(_hrm->num_free_regions() == 0, "pre-condition");
2817     if (!free_list_only) {
2818       assert(_old_set->is_empty(), "pre-condition");
2819       assert(_humongous_set->is_empty(), "pre-condition");
2820     }
2821   }
2822 
2823   bool do_heap_region(HeapRegion* r) {
2824     if (r->is_empty()) {
2825       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
2826       // Add free regions to the free list
2827       r->set_free();
2828       _hrm->insert_into_free_list(r);
2829     } else if (!_free_list_only) {
2830       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
2831 
2832       if (r->is_humongous()) {
2833         _humongous_set->add(r);
2834       } else {
2835         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
2836         // We now move all (non-humongous, non-old) regions to old gen,
2837         // and register them as such.
2838         r->move_to_old();
2839         _old_set->add(r);
2840       }
2841       _total_used += r->used();
2842     }
2843 
2844     return false;
2845   }
2846 
2847   size_t total_used() {
2848     return _total_used;
2849   }
2850 };
2851 
2852 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
2853   assert_at_safepoint_on_vm_thread();
2854 
2855   if (!free_list_only) {
2856     _eden.clear();
2857     _survivor.clear();
2858   }
2859 
2860   RebuildRegionSetsClosure cl(free_list_only,
2861                               &_old_set, &_humongous_set,
2862                               &_hrm);
2863   heap_region_iterate(&cl);
2864 
2865   if (!free_list_only) {
2866     set_used(cl.total_used());
2867   }
2868   assert_used_and_recalculate_used_equal(this);
2869 }
2870 
2871 // Methods for the mutator alloc region
2872 
2873 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
2874                                                       bool force,
2875                                                       uint node_index) {
2876   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
2877   bool should_allocate = policy()->should_allocate_mutator_region();
2878   if (force || should_allocate) {
2879     HeapRegion* new_alloc_region = new_region(word_size,
2880                                               HeapRegionType::Eden,
2881                                               false /* do_expand */,
2882                                               node_index);
2883     if (new_alloc_region != nullptr) {
2884       set_region_short_lived_locked(new_alloc_region);
2885       _hr_printer.alloc(new_alloc_region, !should_allocate);
2886       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
2887       return new_alloc_region;
2888     }
2889   }
2890   return nullptr;
2891 }
2892 
2893 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
2894                                                   size_t allocated_bytes) {
2895   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
2896   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
2897 
2898   collection_set()->add_eden_region(alloc_region);
2899   increase_used(allocated_bytes);
2900   _eden.add_used_bytes(allocated_bytes);
2901   _hr_printer.retire(alloc_region);
2902 
2903   // We update the eden sizes here, when the region is retired,
2904   // instead of when it's allocated, since this is the point that its
2905   // used space has been recorded in _summary_bytes_used.
2906   monitoring_support()->update_eden_size();
2907 }
2908 
2909 // Methods for the GC alloc regions
2910 
2911 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
2912   if (dest.is_old()) {
2913     return true;
2914   } else {
2915     return survivor_regions_count() < policy()->max_survivor_regions();
2916   }
2917 }
2918 
2919 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
2920   assert(FreeList_lock->owned_by_self(), "pre-condition");
2921 
2922   if (!has_more_regions(dest)) {
2923     return nullptr;
2924   }
2925 
2926   HeapRegionType type;
2927   if (dest.is_young()) {
2928     type = HeapRegionType::Survivor;
2929   } else {
2930     type = HeapRegionType::Old;
2931   }
2932 
2933   HeapRegion* new_alloc_region = new_region(word_size,
2934                                             type,
2935                                             true /* do_expand */,
2936                                             node_index);
2937 
2938   if (new_alloc_region != nullptr) {
2939     if (type.is_survivor()) {
2940       new_alloc_region->set_survivor();
2941       _survivor.add(new_alloc_region);
2942       register_new_survivor_region_with_region_attr(new_alloc_region);
2943     } else {
2944       new_alloc_region->set_old();
2945     }
2946     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
2947     register_region_with_region_attr(new_alloc_region);
2948     _hr_printer.alloc(new_alloc_region);
2949     return new_alloc_region;
2950   }
2951   return nullptr;
2952 }
2953 
2954 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
2955                                              size_t allocated_bytes,
2956                                              G1HeapRegionAttr dest) {
2957   _bytes_used_during_gc += allocated_bytes;
2958   if (dest.is_old()) {
2959     old_set_add(alloc_region);
2960   } else {
2961     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
2962     _survivor.add_used_bytes(allocated_bytes);
2963   }
2964 
2965   bool const during_im = collector_state()->in_concurrent_start_gc();
2966   if (during_im && allocated_bytes > 0) {
2967     _cm->add_root_region(alloc_region);
2968   }
2969   _hr_printer.retire(alloc_region);
2970 }
2971 
2972 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
2973   bool expanded = false;
2974   uint index = _hrm.find_highest_free(&expanded);
2975 
2976   if (index != G1_NO_HRM_INDEX) {
2977     if (expanded) {
2978       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
2979                                 HeapRegion::GrainWords * HeapWordSize);
2980     }
2981     return _hrm.allocate_free_regions_starting_at(index, 1);
2982   }
2983   return nullptr;
2984 }
2985 
2986 void G1CollectedHeap::mark_evac_failure_object(uint worker_id, const oop obj, size_t obj_size) const {
2987   assert(!_cm->is_marked_in_bitmap(obj), "must be");
2988 
2989   _cm->raw_mark_in_bitmap(obj);
2990   if (collector_state()->in_concurrent_start_gc()) {
2991     _cm->add_to_liveness(worker_id, obj, obj_size);
2992   }
2993 }
2994 
2995 // Optimized nmethod scanning
2996 class RegisterNMethodOopClosure: public OopClosure {
2997   G1CollectedHeap* _g1h;
2998   nmethod* _nm;
2999 
3000 public:
3001   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
3002     _g1h(g1h), _nm(nm) {}
3003 
3004   void do_oop(oop* p) {
3005     oop heap_oop = RawAccess<>::oop_load(p);
3006     if (!CompressedOops::is_null(heap_oop)) {
3007       oop obj = CompressedOops::decode_not_null(heap_oop);
3008       HeapRegion* hr = _g1h->heap_region_containing(obj);
3009       assert(!hr->is_continues_humongous(),
3010              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
3011              " starting at " HR_FORMAT,
3012              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
3013 
3014       // HeapRegion::add_code_root_locked() avoids adding duplicate entries.
3015       hr->add_code_root_locked(_nm);
3016     }
3017   }
3018 
3019   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3020 };
3021 
3022 class UnregisterNMethodOopClosure: public OopClosure {
3023   G1CollectedHeap* _g1h;
3024   nmethod* _nm;
3025 
3026 public:
3027   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
3028     _g1h(g1h), _nm(nm) {}
3029 
3030   void do_oop(oop* p) {
3031     oop heap_oop = RawAccess<>::oop_load(p);
3032     if (!CompressedOops::is_null(heap_oop)) {
3033       oop obj = CompressedOops::decode_not_null(heap_oop);
3034       HeapRegion* hr = _g1h->heap_region_containing(obj);
3035       assert(!hr->is_continues_humongous(),
3036              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
3037              " starting at " HR_FORMAT,
3038              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
3039 
3040       hr->remove_code_root(_nm);
3041     }
3042   }
3043 
3044   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3045 };
3046 
3047 void G1CollectedHeap::register_nmethod(nmethod* nm) {
3048   guarantee(nm != nullptr, "sanity");
3049   RegisterNMethodOopClosure reg_cl(this, nm);
3050   nm->oops_do(&reg_cl);
3051 }
3052 
3053 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
3054   guarantee(nm != nullptr, "sanity");
3055   UnregisterNMethodOopClosure reg_cl(this, nm);
3056   nm->oops_do(&reg_cl, true);
3057 }
3058 
3059 void G1CollectedHeap::update_used_after_gc(bool evacuation_failed) {
3060   if (evacuation_failed) {
3061     // Reset the G1EvacuationFailureALot counters and flags
3062     evac_failure_injector()->reset();
3063 
3064     set_used(recalculate_used());
3065   } else {
3066     // The "used" of the collection set have already been subtracted
3067     // when they were freed.  Add in the bytes used.
3068     increase_used(_bytes_used_during_gc);
3069   }
3070 }
3071 
3072 class RebuildCodeRootClosure: public CodeBlobClosure {
3073   G1CollectedHeap* _g1h;
3074 
3075 public:
3076   RebuildCodeRootClosure(G1CollectedHeap* g1h) :
3077     _g1h(g1h) {}
3078 
3079   void do_code_blob(CodeBlob* cb) {
3080     nmethod* nm = cb->as_nmethod_or_null();
3081     if (nm != nullptr) {
3082       _g1h->register_nmethod(nm);
3083     }
3084   }
3085 };
3086 
3087 void G1CollectedHeap::rebuild_code_roots() {
3088   RebuildCodeRootClosure blob_cl(this);
3089   CodeCache::blobs_do(&blob_cl);
3090 }
3091 
3092 void G1CollectedHeap::initialize_serviceability() {
3093   _monitoring_support->initialize_serviceability();
3094 }
3095 
3096 MemoryUsage G1CollectedHeap::memory_usage() {
3097   return _monitoring_support->memory_usage();
3098 }
3099 
3100 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
3101   return _monitoring_support->memory_managers();
3102 }
3103 
3104 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
3105   return _monitoring_support->memory_pools();
3106 }
3107 
3108 void G1CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
3109   HeapRegion* region = heap_region_containing(start);
3110   region->fill_with_dummy_object(start, pointer_delta(end, start), zap);
3111 }
3112 
3113 void G1CollectedHeap::start_codecache_marking_cycle_if_inactive(bool concurrent_mark_start) {
3114   // We can reach here with an active code cache marking cycle either because the
3115   // previous G1 concurrent marking cycle was undone (if heap occupancy after the
3116   // concurrent start young collection was below the threshold) or aborted. See
3117   // CodeCache::on_gc_marking_cycle_finish() why this is.  We must not start a new code
3118   // cache cycle then. If we are about to start a new g1 concurrent marking cycle we
3119   // still have to arm all nmethod entry barriers. They are needed for adding oop
3120   // constants to the SATB snapshot. Full GC does not need nmethods to be armed.
3121   if (!CodeCache::is_gc_marking_cycle_active()) {
3122     CodeCache::on_gc_marking_cycle_start();
3123   }
3124   if (concurrent_mark_start) {
3125     CodeCache::arm_all_nmethods();
3126   }
3127 }
3128 
3129 void G1CollectedHeap::finish_codecache_marking_cycle() {
3130   CodeCache::on_gc_marking_cycle_finish();
3131   CodeCache::arm_all_nmethods();
3132 }