1 /* 2 * Copyright (c) 2017, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderDataGraph.hpp" 27 #include "gc/g1/g1CollectedHeap.hpp" 28 #include "gc/g1/g1FullCollector.inline.hpp" 29 #include "gc/g1/g1FullGCAdjustTask.hpp" 30 #include "gc/g1/g1FullGCCompactTask.hpp" 31 #include "gc/g1/g1FullGCMarker.inline.hpp" 32 #include "gc/g1/g1FullGCMarkTask.hpp" 33 #include "gc/g1/g1FullGCPrepareTask.inline.hpp" 34 #include "gc/g1/g1FullGCResetMetadataTask.hpp" 35 #include "gc/g1/g1FullGCScope.hpp" 36 #include "gc/g1/g1OopClosures.hpp" 37 #include "gc/g1/g1Policy.hpp" 38 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp" 39 #include "gc/shared/gcTraceTime.inline.hpp" 40 #include "gc/shared/preservedMarks.inline.hpp" 41 #include "gc/shared/classUnloadingContext.hpp" 42 #include "gc/shared/referenceProcessor.hpp" 43 #include "gc/shared/verifyOption.hpp" 44 #include "gc/shared/weakProcessor.inline.hpp" 45 #include "gc/shared/workerPolicy.hpp" 46 #include "logging/log.hpp" 47 #include "runtime/handles.inline.hpp" 48 #include "utilities/debug.hpp" 49 50 static void clear_and_activate_derived_pointers() { 51 #if COMPILER2_OR_JVMCI 52 DerivedPointerTable::clear(); 53 #endif 54 } 55 56 static void deactivate_derived_pointers() { 57 #if COMPILER2_OR_JVMCI 58 DerivedPointerTable::set_active(false); 59 #endif 60 } 61 62 static void update_derived_pointers() { 63 #if COMPILER2_OR_JVMCI 64 DerivedPointerTable::update_pointers(); 65 #endif 66 } 67 68 G1CMBitMap* G1FullCollector::mark_bitmap() { 69 return _heap->concurrent_mark()->mark_bitmap(); 70 } 71 72 ReferenceProcessor* G1FullCollector::reference_processor() { 73 return _heap->ref_processor_stw(); 74 } 75 76 uint G1FullCollector::calc_active_workers() { 77 G1CollectedHeap* heap = G1CollectedHeap::heap(); 78 uint max_worker_count = heap->workers()->max_workers(); 79 // Only calculate number of workers if UseDynamicNumberOfGCThreads 80 // is enabled, otherwise use max. 81 if (!UseDynamicNumberOfGCThreads) { 82 return max_worker_count; 83 } 84 85 // Consider G1HeapWastePercent to decide max number of workers. Each worker 86 // will in average cause half a region waste. 87 uint max_wasted_regions_allowed = ((heap->num_regions() * G1HeapWastePercent) / 100); 88 uint waste_worker_count = MAX2((max_wasted_regions_allowed * 2) , 1u); 89 uint heap_waste_worker_limit = MIN2(waste_worker_count, max_worker_count); 90 91 // Also consider HeapSizePerGCThread by calling WorkerPolicy to calculate 92 // the number of workers. 93 uint current_active_workers = heap->workers()->active_workers(); 94 uint active_worker_limit = WorkerPolicy::calc_active_workers(max_worker_count, current_active_workers, 0); 95 96 // Finally consider the amount of used regions. 97 uint used_worker_limit = heap->num_used_regions(); 98 assert(used_worker_limit > 0, "Should never have zero used regions."); 99 100 // Update active workers to the lower of the limits. 101 uint worker_count = MIN3(heap_waste_worker_limit, active_worker_limit, used_worker_limit); 102 log_debug(gc, task)("Requesting %u active workers for full compaction (waste limited workers: %u, " 103 "adaptive workers: %u, used limited workers: %u)", 104 worker_count, heap_waste_worker_limit, active_worker_limit, used_worker_limit); 105 worker_count = heap->workers()->set_active_workers(worker_count); 106 log_info(gc, task)("Using %u workers of %u for full compaction", worker_count, max_worker_count); 107 108 return worker_count; 109 } 110 111 G1FullCollector::G1FullCollector(G1CollectedHeap* heap, 112 bool clear_soft_refs, 113 bool do_maximal_compaction, 114 G1FullGCTracer* tracer) : 115 _heap(heap), 116 _scope(heap->monitoring_support(), clear_soft_refs, do_maximal_compaction, tracer), 117 _num_workers(calc_active_workers()), 118 _has_compaction_targets(false), 119 _has_humongous(false), 120 _oop_queue_set(_num_workers), 121 _array_queue_set(_num_workers), 122 _preserved_marks_set(true), 123 _serial_compaction_point(this), 124 _humongous_compaction_point(this), 125 _is_alive(this, heap->concurrent_mark()->mark_bitmap()), 126 _is_alive_mutator(heap->ref_processor_stw(), &_is_alive), 127 _humongous_compaction_regions(8), 128 _always_subject_to_discovery(), 129 _is_subject_mutator(heap->ref_processor_stw(), &_always_subject_to_discovery), 130 _region_attr_table() { 131 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 132 133 _preserved_marks_set.init(_num_workers); 134 _markers = NEW_C_HEAP_ARRAY(G1FullGCMarker*, _num_workers, mtGC); 135 _compaction_points = NEW_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _num_workers, mtGC); 136 137 _live_stats = NEW_C_HEAP_ARRAY(G1RegionMarkStats, _heap->max_regions(), mtGC); 138 _compaction_tops = NEW_C_HEAP_ARRAY(HeapWord*, _heap->max_regions(), mtGC); 139 for (uint j = 0; j < heap->max_regions(); j++) { 140 _live_stats[j].clear(); 141 _compaction_tops[j] = nullptr; 142 } 143 144 for (uint i = 0; i < _num_workers; i++) { 145 _markers[i] = new G1FullGCMarker(this, i, _preserved_marks_set.get(i), _live_stats); 146 _compaction_points[i] = new G1FullGCCompactionPoint(this); 147 _oop_queue_set.register_queue(i, marker(i)->oop_stack()); 148 _array_queue_set.register_queue(i, marker(i)->objarray_stack()); 149 } 150 _region_attr_table.initialize(heap->reserved(), HeapRegion::GrainBytes); 151 } 152 153 G1FullCollector::~G1FullCollector() { 154 for (uint i = 0; i < _num_workers; i++) { 155 delete _markers[i]; 156 delete _compaction_points[i]; 157 } 158 159 FREE_C_HEAP_ARRAY(G1FullGCMarker*, _markers); 160 FREE_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _compaction_points); 161 FREE_C_HEAP_ARRAY(HeapWord*, _compaction_tops); 162 FREE_C_HEAP_ARRAY(G1RegionMarkStats, _live_stats); 163 } 164 165 class PrepareRegionsClosure : public HeapRegionClosure { 166 G1FullCollector* _collector; 167 168 public: 169 PrepareRegionsClosure(G1FullCollector* collector) : _collector(collector) { } 170 171 bool do_heap_region(HeapRegion* hr) { 172 hr->prepare_for_full_gc(); 173 G1CollectedHeap::heap()->prepare_region_for_full_compaction(hr); 174 _collector->before_marking_update_attribute_table(hr); 175 return false; 176 } 177 }; 178 179 void G1FullCollector::prepare_collection() { 180 _heap->policy()->record_full_collection_start(); 181 182 // Verification needs the bitmap, so we should clear the bitmap only later. 183 bool in_concurrent_cycle = _heap->abort_concurrent_cycle(); 184 _heap->verify_before_full_collection(); 185 if (in_concurrent_cycle) { 186 GCTraceTime(Debug, gc) debug("Clear Bitmap"); 187 _heap->concurrent_mark()->clear_bitmap(_heap->workers()); 188 } 189 190 _heap->gc_prologue(true); 191 _heap->retire_tlabs(); 192 _heap->prepare_heap_for_full_collection(); 193 194 PrepareRegionsClosure cl(this); 195 _heap->heap_region_iterate(&cl); 196 197 reference_processor()->start_discovery(scope()->should_clear_soft_refs()); 198 199 // Clear and activate derived pointer collection. 200 clear_and_activate_derived_pointers(); 201 } 202 203 void G1FullCollector::collect() { 204 G1CollectedHeap::start_codecache_marking_cycle_if_inactive(false /* concurrent_mark_start */); 205 206 phase1_mark_live_objects(); 207 verify_after_marking(); 208 209 // Don't add any more derived pointers during later phases 210 deactivate_derived_pointers(); 211 212 phase2_prepare_compaction(); 213 214 if (has_compaction_targets()) { 215 phase3_adjust_pointers(); 216 217 phase4_do_compaction(); 218 } else { 219 // All regions have a high live ratio thus will not be compacted. 220 // The live ratio is only considered if do_maximal_compaction is false. 221 log_info(gc, phases) ("No Regions selected for compaction. Skipping Phase 3: Adjust pointers and Phase 4: Compact heap"); 222 } 223 224 phase5_reset_metadata(); 225 226 G1CollectedHeap::finish_codecache_marking_cycle(); 227 } 228 229 void G1FullCollector::complete_collection() { 230 // Restore all marks. 231 restore_marks(); 232 233 // When the pointers have been adjusted and moved, we can 234 // update the derived pointer table. 235 update_derived_pointers(); 236 237 // Need completely cleared claim bits for the next concurrent marking or full gc. 238 ClassLoaderDataGraph::clear_claimed_marks(); 239 240 // Prepare the bitmap for the next (potentially concurrent) marking. 241 _heap->concurrent_mark()->clear_bitmap(_heap->workers()); 242 243 _heap->prepare_for_mutator_after_full_collection(); 244 245 _heap->resize_all_tlabs(); 246 247 _heap->policy()->record_full_collection_end(); 248 _heap->gc_epilogue(true); 249 250 _heap->verify_after_full_collection(); 251 252 _heap->print_heap_after_full_collection(); 253 } 254 255 void G1FullCollector::before_marking_update_attribute_table(HeapRegion* hr) { 256 if (hr->is_free()) { 257 _region_attr_table.set_free(hr->hrm_index()); 258 } else if (hr->is_humongous()) { 259 // Humongous objects will never be moved in the "main" compaction phase, but 260 // afterwards in a special phase if needed. 261 _region_attr_table.set_skip_compacting(hr->hrm_index()); 262 } else { 263 // Everything else should be compacted. 264 _region_attr_table.set_compacting(hr->hrm_index()); 265 } 266 } 267 268 class G1FullGCRefProcProxyTask : public RefProcProxyTask { 269 G1FullCollector& _collector; 270 271 public: 272 G1FullGCRefProcProxyTask(G1FullCollector &collector, uint max_workers) 273 : RefProcProxyTask("G1FullGCRefProcProxyTask", max_workers), 274 _collector(collector) {} 275 276 void work(uint worker_id) override { 277 assert(worker_id < _max_workers, "sanity"); 278 G1IsAliveClosure is_alive(&_collector); 279 uint index = (_tm == RefProcThreadModel::Single) ? 0 : worker_id; 280 G1FullKeepAliveClosure keep_alive(_collector.marker(index)); 281 BarrierEnqueueDiscoveredFieldClosure enqueue; 282 G1FollowStackClosure* complete_gc = _collector.marker(index)->stack_closure(); 283 _rp_task->rp_work(worker_id, &is_alive, &keep_alive, &enqueue, complete_gc); 284 } 285 }; 286 287 void G1FullCollector::phase1_mark_live_objects() { 288 // Recursively traverse all live objects and mark them. 289 GCTraceTime(Info, gc, phases) info("Phase 1: Mark live objects", scope()->timer()); 290 291 { 292 // Do the actual marking. 293 G1FullGCMarkTask marking_task(this); 294 run_task(&marking_task); 295 } 296 297 { 298 uint old_active_mt_degree = reference_processor()->num_queues(); 299 reference_processor()->set_active_mt_degree(workers()); 300 GCTraceTime(Debug, gc, phases) debug("Phase 1: Reference Processing", scope()->timer()); 301 // Process reference objects found during marking. 302 ReferenceProcessorPhaseTimes pt(scope()->timer(), reference_processor()->max_num_queues()); 303 G1FullGCRefProcProxyTask task(*this, reference_processor()->max_num_queues()); 304 const ReferenceProcessorStats& stats = reference_processor()->process_discovered_references(task, pt); 305 scope()->tracer()->report_gc_reference_stats(stats); 306 pt.print_all_references(); 307 assert(marker(0)->oop_stack()->is_empty(), "Should be no oops on the stack"); 308 309 reference_processor()->set_active_mt_degree(old_active_mt_degree); 310 } 311 312 // Weak oops cleanup. 313 { 314 GCTraceTime(Debug, gc, phases) debug("Phase 1: Weak Processing", scope()->timer()); 315 WeakProcessor::weak_oops_do(_heap->workers(), &_is_alive, &do_nothing_cl, 1); 316 } 317 318 // Class unloading and cleanup. 319 if (ClassUnloading) { 320 _heap->unload_classes_and_code("Phase 1: Class Unloading and Cleanup", &_is_alive, scope()->timer()); 321 } 322 323 { 324 GCTraceTime(Debug, gc, phases) debug("Report Object Count", scope()->timer()); 325 scope()->tracer()->report_object_count_after_gc(&_is_alive, _heap->workers()); 326 } 327 #if TASKQUEUE_STATS 328 oop_queue_set()->print_and_reset_taskqueue_stats("Oop Queue"); 329 array_queue_set()->print_and_reset_taskqueue_stats("ObjArrayOop Queue"); 330 #endif 331 } 332 333 void G1FullCollector::phase2_prepare_compaction() { 334 GCTraceTime(Info, gc, phases) info("Phase 2: Prepare compaction", scope()->timer()); 335 336 phase2a_determine_worklists(); 337 338 if (!has_compaction_targets()) { 339 return; 340 } 341 342 bool has_free_compaction_targets = phase2b_forward_oops(); 343 344 // Try to avoid OOM immediately after Full GC in case there are no free regions 345 // left after determining the result locations (i.e. this phase). Prepare to 346 // maximally compact the tail regions of the compaction queues serially. 347 if (scope()->do_maximal_compaction() || !has_free_compaction_targets) { 348 phase2c_prepare_serial_compaction(); 349 350 if (scope()->do_maximal_compaction() && 351 has_humongous() && 352 serial_compaction_point()->has_regions()) { 353 phase2d_prepare_humongous_compaction(); 354 } 355 } 356 } 357 358 void G1FullCollector::phase2a_determine_worklists() { 359 GCTraceTime(Debug, gc, phases) debug("Phase 2: Determine work lists", scope()->timer()); 360 361 G1DetermineCompactionQueueClosure cl(this); 362 _heap->heap_region_iterate(&cl); 363 } 364 365 bool G1FullCollector::phase2b_forward_oops() { 366 GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare parallel compaction", scope()->timer()); 367 368 G1FullGCPrepareTask task(this); 369 run_task(&task); 370 371 return task.has_free_compaction_targets(); 372 } 373 374 uint G1FullCollector::truncate_parallel_cps() { 375 uint lowest_current = UINT_MAX; 376 for (uint i = 0; i < workers(); i++) { 377 G1FullGCCompactionPoint* cp = compaction_point(i); 378 if (cp->has_regions()) { 379 lowest_current = MIN2(lowest_current, cp->current_region()->hrm_index()); 380 } 381 } 382 383 for (uint i = 0; i < workers(); i++) { 384 G1FullGCCompactionPoint* cp = compaction_point(i); 385 if (cp->has_regions()) { 386 cp->remove_at_or_above(lowest_current); 387 } 388 } 389 return lowest_current; 390 } 391 392 void G1FullCollector::phase2c_prepare_serial_compaction() { 393 GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare serial compaction", scope()->timer()); 394 // At this point, we know that after parallel compaction there will be regions that 395 // are partially compacted into. Thus, the last compaction region of all 396 // compaction queues still have space in them. We try to re-compact these regions 397 // in serial to avoid a premature OOM when the mutator wants to allocate the first 398 // eden region after gc. 399 400 // For maximum compaction, we need to re-prepare all objects above the lowest 401 // region among the current regions for all thread compaction points. It may 402 // happen that due to the uneven distribution of objects to parallel threads, holes 403 // have been created as threads compact to different target regions between the 404 // lowest and the highest region in the tails of the compaction points. 405 406 uint start_serial = truncate_parallel_cps(); 407 assert(start_serial < _heap->max_reserved_regions(), "Called on empty parallel compaction queues"); 408 409 G1FullGCCompactionPoint* serial_cp = serial_compaction_point(); 410 assert(!serial_cp->is_initialized(), "sanity!"); 411 412 HeapRegion* start_hr = _heap->region_at(start_serial); 413 serial_cp->add(start_hr); 414 serial_cp->initialize(start_hr); 415 416 HeapWord* dense_prefix_top = compaction_top(start_hr); 417 G1SerialRePrepareClosure re_prepare(serial_cp, dense_prefix_top); 418 419 for (uint i = start_serial + 1; i < _heap->max_reserved_regions(); i++) { 420 if (is_compaction_target(i)) { 421 HeapRegion* current = _heap->region_at(i); 422 set_compaction_top(current, current->bottom()); 423 serial_cp->add(current); 424 current->apply_to_marked_objects(mark_bitmap(), &re_prepare); 425 } 426 } 427 serial_cp->update(); 428 } 429 430 void G1FullCollector::phase2d_prepare_humongous_compaction() { 431 GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare humongous compaction", scope()->timer()); 432 G1FullGCCompactionPoint* serial_cp = serial_compaction_point(); 433 assert(serial_cp->has_regions(), "Sanity!" ); 434 435 uint last_serial_target = serial_cp->current_region()->hrm_index(); 436 uint region_index = last_serial_target + 1; 437 uint max_reserved_regions = _heap->max_reserved_regions(); 438 439 G1FullGCCompactionPoint* humongous_cp = humongous_compaction_point(); 440 441 while (region_index < max_reserved_regions) { 442 HeapRegion* hr = _heap->region_at_or_null(region_index); 443 444 if (hr == nullptr) { 445 region_index++; 446 continue; 447 } else if (hr->is_starts_humongous()) { 448 uint num_regions = humongous_cp->forward_humongous(hr); 449 region_index += num_regions; // Skip over the continues humongous regions. 450 continue; 451 } else if (is_compaction_target(region_index)) { 452 // Add the region to the humongous compaction point. 453 humongous_cp->add(hr); 454 } 455 region_index++; 456 } 457 } 458 459 void G1FullCollector::phase3_adjust_pointers() { 460 // Adjust the pointers to reflect the new locations 461 GCTraceTime(Info, gc, phases) info("Phase 3: Adjust pointers", scope()->timer()); 462 463 G1FullGCAdjustTask task(this); 464 run_task(&task); 465 } 466 467 void G1FullCollector::phase4_do_compaction() { 468 // Compact the heap using the compaction queues created in phase 2. 469 GCTraceTime(Info, gc, phases) info("Phase 4: Compact heap", scope()->timer()); 470 G1FullGCCompactTask task(this); 471 run_task(&task); 472 473 // Serial compact to avoid OOM when very few free regions. 474 if (serial_compaction_point()->has_regions()) { 475 task.serial_compaction(); 476 } 477 478 if (!_humongous_compaction_regions.is_empty()) { 479 assert(scope()->do_maximal_compaction(), "Only compact humongous during maximal compaction"); 480 task.humongous_compaction(); 481 } 482 } 483 484 void G1FullCollector::phase5_reset_metadata() { 485 // Clear region metadata that is invalid after GC for all regions. 486 GCTraceTime(Info, gc, phases) info("Phase 5: Reset Metadata", scope()->timer()); 487 G1FullGCResetMetadataTask task(this); 488 run_task(&task); 489 } 490 491 void G1FullCollector::restore_marks() { 492 _preserved_marks_set.restore(_heap->workers()); 493 _preserved_marks_set.reclaim(); 494 } 495 496 void G1FullCollector::run_task(WorkerTask* task) { 497 _heap->workers()->run_task(task, _num_workers); 498 } 499 500 void G1FullCollector::verify_after_marking() { 501 if (!VerifyDuringGC || !_heap->verifier()->should_verify(G1HeapVerifier::G1VerifyFull)) { 502 // Only do verification if VerifyDuringGC and G1VerifyFull is set. 503 return; 504 } 505 506 #if COMPILER2_OR_JVMCI 507 DerivedPointerTableDeactivate dpt_deact; 508 #endif 509 _heap->prepare_for_verify(); 510 // Note: we can verify only the heap here. When an object is 511 // marked, the previous value of the mark word (including 512 // identity hash values, ages, etc) is preserved, and the mark 513 // word is set to markWord::marked_value - effectively removing 514 // any hash values from the mark word. These hash values are 515 // used when verifying the dictionaries and so removing them 516 // from the mark word can make verification of the dictionaries 517 // fail. At the end of the GC, the original mark word values 518 // (including hash values) are restored to the appropriate 519 // objects. 520 GCTraceTime(Info, gc, verify) tm("Verifying During GC (full)"); 521 _heap->verify(VerifyOption::G1UseFullMarking); 522 }