1 /*
  2  * Copyright (c) 2017, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "classfile/classLoaderDataGraph.hpp"
 27 #include "classfile/systemDictionary.hpp"
 28 #include "code/codeCache.hpp"
 29 #include "compiler/oopMap.hpp"
 30 #include "gc/g1/g1CollectedHeap.hpp"
 31 #include "gc/g1/g1FullCollector.inline.hpp"
 32 #include "gc/g1/g1FullGCAdjustTask.hpp"
 33 #include "gc/g1/g1FullGCCompactTask.hpp"
 34 #include "gc/g1/g1FullGCMarker.inline.hpp"
 35 #include "gc/g1/g1FullGCMarkTask.hpp"
 36 #include "gc/g1/g1FullGCPrepareTask.inline.hpp"
 37 #include "gc/g1/g1FullGCResetMetadataTask.hpp"
 38 #include "gc/g1/g1FullGCScope.hpp"
 39 #include "gc/g1/g1OopClosures.hpp"
 40 #include "gc/g1/g1Policy.hpp"
 41 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
 42 #include "gc/shared/gcTraceTime.inline.hpp"
 43 #include "gc/shared/preservedMarks.inline.hpp"
 44 #include "gc/shared/referenceProcessor.hpp"
 45 #include "gc/shared/verifyOption.hpp"
 46 #include "gc/shared/weakProcessor.inline.hpp"
 47 #include "gc/shared/workerPolicy.hpp"
 48 #include "logging/log.hpp"
 49 #include "runtime/handles.inline.hpp"
 50 #include "utilities/debug.hpp"
 51 
 52 static void clear_and_activate_derived_pointers() {
 53 #if COMPILER2_OR_JVMCI
 54   DerivedPointerTable::clear();
 55 #endif
 56 }
 57 
 58 static void deactivate_derived_pointers() {
 59 #if COMPILER2_OR_JVMCI
 60   DerivedPointerTable::set_active(false);
 61 #endif
 62 }
 63 
 64 static void update_derived_pointers() {
 65 #if COMPILER2_OR_JVMCI
 66   DerivedPointerTable::update_pointers();
 67 #endif
 68 }
 69 
 70 G1CMBitMap* G1FullCollector::mark_bitmap() {
 71   return _heap->concurrent_mark()->mark_bitmap();
 72 }
 73 
 74 ReferenceProcessor* G1FullCollector::reference_processor() {
 75   return _heap->ref_processor_stw();
 76 }
 77 
 78 uint G1FullCollector::calc_active_workers() {
 79   G1CollectedHeap* heap = G1CollectedHeap::heap();
 80   uint max_worker_count = heap->workers()->max_workers();
 81   // Only calculate number of workers if UseDynamicNumberOfGCThreads
 82   // is enabled, otherwise use max.
 83   if (!UseDynamicNumberOfGCThreads) {
 84     return max_worker_count;
 85   }
 86 
 87   // Consider G1HeapWastePercent to decide max number of workers. Each worker
 88   // will in average cause half a region waste.
 89   uint max_wasted_regions_allowed = ((heap->num_regions() * G1HeapWastePercent) / 100);
 90   uint waste_worker_count = MAX2((max_wasted_regions_allowed * 2) , 1u);
 91   uint heap_waste_worker_limit = MIN2(waste_worker_count, max_worker_count);
 92 
 93   // Also consider HeapSizePerGCThread by calling WorkerPolicy to calculate
 94   // the number of workers.
 95   uint current_active_workers = heap->workers()->active_workers();
 96   uint active_worker_limit = WorkerPolicy::calc_active_workers(max_worker_count, current_active_workers, 0);
 97 
 98   // Finally consider the amount of used regions.
 99   uint used_worker_limit = heap->num_used_regions();
100   assert(used_worker_limit > 0, "Should never have zero used regions.");
101 
102   // Update active workers to the lower of the limits.
103   uint worker_count = MIN3(heap_waste_worker_limit, active_worker_limit, used_worker_limit);
104   log_debug(gc, task)("Requesting %u active workers for full compaction (waste limited workers: %u, "
105                       "adaptive workers: %u, used limited workers: %u)",
106                       worker_count, heap_waste_worker_limit, active_worker_limit, used_worker_limit);
107   worker_count = heap->workers()->set_active_workers(worker_count);
108   log_info(gc, task)("Using %u workers of %u for full compaction", worker_count, max_worker_count);
109 
110   return worker_count;
111 }
112 
113 G1FullCollector::G1FullCollector(G1CollectedHeap* heap,
114                                  bool clear_soft_refs,
115                                  bool do_maximal_compaction,
116                                  G1FullGCTracer* tracer) :
117     _heap(heap),
118     _scope(heap->monitoring_support(), clear_soft_refs, do_maximal_compaction, tracer),
119     _num_workers(calc_active_workers()),
120     _has_compaction_targets(false),
121     _has_humongous(false),
122     _oop_queue_set(_num_workers),
123     _array_queue_set(_num_workers),
124     _preserved_marks_set(true),
125     _serial_compaction_point(this),
126     _humongous_compaction_point(this),
127     _is_alive(this, heap->concurrent_mark()->mark_bitmap()),
128     _is_alive_mutator(heap->ref_processor_stw(), &_is_alive),
129     _humongous_compaction_regions(8),
130     _always_subject_to_discovery(),
131     _is_subject_mutator(heap->ref_processor_stw(), &_always_subject_to_discovery),
132     _region_attr_table() {
133   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
134 
135   _preserved_marks_set.init(_num_workers);
136   _markers = NEW_C_HEAP_ARRAY(G1FullGCMarker*, _num_workers, mtGC);
137   _compaction_points = NEW_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _num_workers, mtGC);
138 
139   _live_stats = NEW_C_HEAP_ARRAY(G1RegionMarkStats, _heap->max_regions(), mtGC);
140   _compaction_tops = NEW_C_HEAP_ARRAY(HeapWord*, _heap->max_regions(), mtGC);
141   for (uint j = 0; j < heap->max_regions(); j++) {
142     _live_stats[j].clear();
143     _compaction_tops[j] = nullptr;
144   }
145 
146   for (uint i = 0; i < _num_workers; i++) {
147     _markers[i] = new G1FullGCMarker(this, i, _preserved_marks_set.get(i), _live_stats);
148     _compaction_points[i] = new G1FullGCCompactionPoint(this);
149     _oop_queue_set.register_queue(i, marker(i)->oop_stack());
150     _array_queue_set.register_queue(i, marker(i)->objarray_stack());
151   }
152   _region_attr_table.initialize(heap->reserved(), HeapRegion::GrainBytes);
153 }
154 
155 G1FullCollector::~G1FullCollector() {
156   for (uint i = 0; i < _num_workers; i++) {
157     delete _markers[i];
158     delete _compaction_points[i];
159   }
160 
161   FREE_C_HEAP_ARRAY(G1FullGCMarker*, _markers);
162   FREE_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _compaction_points);
163   FREE_C_HEAP_ARRAY(HeapWord*, _compaction_tops);
164   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _live_stats);
165 }
166 
167 class PrepareRegionsClosure : public HeapRegionClosure {
168   G1FullCollector* _collector;
169 
170 public:
171   PrepareRegionsClosure(G1FullCollector* collector) : _collector(collector) { }
172 
173   bool do_heap_region(HeapRegion* hr) {
174     G1CollectedHeap::heap()->prepare_region_for_full_compaction(hr);
175     _collector->before_marking_update_attribute_table(hr);
176     return false;
177   }
178 };
179 
180 void G1FullCollector::prepare_collection() {
181   _heap->policy()->record_full_collection_start();
182 
183   // Verification needs the bitmap, so we should clear the bitmap only later.
184   bool in_concurrent_cycle = _heap->abort_concurrent_cycle();
185   _heap->verify_before_full_collection();
186   if (in_concurrent_cycle) {
187     GCTraceTime(Debug, gc) debug("Clear Bitmap");
188     _heap->concurrent_mark()->clear_bitmap(_heap->workers());
189   }
190 
191   _heap->gc_prologue(true);
192   _heap->retire_tlabs();
193   _heap->prepare_heap_for_full_collection();
194 
195   PrepareRegionsClosure cl(this);
196   _heap->heap_region_iterate(&cl);
197 
198   reference_processor()->start_discovery(scope()->should_clear_soft_refs());
199 
200   // Clear and activate derived pointer collection.
201   clear_and_activate_derived_pointers();
202 }
203 
204 void G1FullCollector::collect() {
205   G1CollectedHeap::start_codecache_marking_cycle_if_inactive(false /* concurrent_mark_start */);
206 
207   phase1_mark_live_objects();
208   verify_after_marking();
209 
210   // Don't add any more derived pointers during later phases
211   deactivate_derived_pointers();
212 
213   phase2_prepare_compaction();
214 
215   if (has_compaction_targets()) {
216     phase3_adjust_pointers();
217 
218     phase4_do_compaction();
219   } else {
220     // All regions have a high live ratio thus will not be compacted.
221     // The live ratio is only considered if do_maximal_compaction is false.
222     log_info(gc, phases) ("No Regions selected for compaction. Skipping Phase 3: Adjust pointers and Phase 4: Compact heap");
223   }
224 
225   phase5_reset_metadata();
226 
227   G1CollectedHeap::finish_codecache_marking_cycle();
228 }
229 
230 void G1FullCollector::complete_collection() {
231   // Restore all marks.
232   restore_marks();
233 
234   // When the pointers have been adjusted and moved, we can
235   // update the derived pointer table.
236   update_derived_pointers();
237 
238   // Need completely cleared claim bits for the next concurrent marking or full gc.
239   ClassLoaderDataGraph::clear_claimed_marks();
240 
241   // Prepare the bitmap for the next (potentially concurrent) marking.
242   _heap->concurrent_mark()->clear_bitmap(_heap->workers());
243 
244   _heap->prepare_for_mutator_after_full_collection();
245 
246   _heap->resize_all_tlabs();
247 
248   _heap->policy()->record_full_collection_end();
249   _heap->gc_epilogue(true);
250 
251   _heap->verify_after_full_collection();
252 
253   _heap->print_heap_after_full_collection();
254 }
255 
256 void G1FullCollector::before_marking_update_attribute_table(HeapRegion* hr) {
257   if (hr->is_free()) {
258     _region_attr_table.set_free(hr->hrm_index());
259   } else if (hr->is_humongous()) {
260     // Humongous objects will never be moved in the "main" compaction phase, but
261     // afterwards in a special phase if needed.
262     _region_attr_table.set_skip_compacting(hr->hrm_index());
263   } else {
264     // Everything else should be compacted.
265     _region_attr_table.set_compacting(hr->hrm_index());
266   }
267 }
268 
269 class G1FullGCRefProcProxyTask : public RefProcProxyTask {
270   G1FullCollector& _collector;
271 
272 public:
273   G1FullGCRefProcProxyTask(G1FullCollector &collector, uint max_workers)
274     : RefProcProxyTask("G1FullGCRefProcProxyTask", max_workers),
275       _collector(collector) {}
276 
277   void work(uint worker_id) override {
278     assert(worker_id < _max_workers, "sanity");
279     G1IsAliveClosure is_alive(&_collector);
280     uint index = (_tm == RefProcThreadModel::Single) ? 0 : worker_id;
281     G1FullKeepAliveClosure keep_alive(_collector.marker(index));
282     BarrierEnqueueDiscoveredFieldClosure enqueue;
283     G1FollowStackClosure* complete_gc = _collector.marker(index)->stack_closure();
284     _rp_task->rp_work(worker_id, &is_alive, &keep_alive, &enqueue, complete_gc);
285   }
286 };
287 
288 void G1FullCollector::phase1_mark_live_objects() {
289   // Recursively traverse all live objects and mark them.
290   GCTraceTime(Info, gc, phases) info("Phase 1: Mark live objects", scope()->timer());
291 
292   {
293     // Do the actual marking.
294     G1FullGCMarkTask marking_task(this);
295     run_task(&marking_task);
296   }
297 
298   {
299     uint old_active_mt_degree = reference_processor()->num_queues();
300     reference_processor()->set_active_mt_degree(workers());
301     GCTraceTime(Debug, gc, phases) debug("Phase 1: Reference Processing", scope()->timer());
302     // Process reference objects found during marking.
303     ReferenceProcessorPhaseTimes pt(scope()->timer(), reference_processor()->max_num_queues());
304     G1FullGCRefProcProxyTask task(*this, reference_processor()->max_num_queues());
305     const ReferenceProcessorStats& stats = reference_processor()->process_discovered_references(task, pt);
306     scope()->tracer()->report_gc_reference_stats(stats);
307     pt.print_all_references();
308     assert(marker(0)->oop_stack()->is_empty(), "Should be no oops on the stack");
309 
310     reference_processor()->set_active_mt_degree(old_active_mt_degree);
311   }
312 
313   // Weak oops cleanup.
314   {
315     GCTraceTime(Debug, gc, phases) debug("Phase 1: Weak Processing", scope()->timer());
316     WeakProcessor::weak_oops_do(_heap->workers(), &_is_alive, &do_nothing_cl, 1);
317   }
318 
319   // Class unloading and cleanup.
320   if (ClassUnloading) {
321     GCTraceTime(Debug, gc, phases) debug("Phase 1: Class Unloading and Cleanup", scope()->timer());
322     CodeCache::UnloadingScope unloading_scope(&_is_alive);
323     // Unload classes and purge the SystemDictionary.
324     bool purged_class = SystemDictionary::do_unloading(scope()->timer());
325     _heap->complete_cleaning(purged_class);
326   }
327 
328   {
329     GCTraceTime(Debug, gc, phases) debug("Report Object Count", scope()->timer());
330     scope()->tracer()->report_object_count_after_gc(&_is_alive, _heap->workers());
331   }
332 #if TASKQUEUE_STATS
333   oop_queue_set()->print_and_reset_taskqueue_stats("Oop Queue");
334   array_queue_set()->print_and_reset_taskqueue_stats("ObjArrayOop Queue");
335 #endif
336 }
337 
338 void G1FullCollector::phase2_prepare_compaction() {
339   GCTraceTime(Info, gc, phases) info("Phase 2: Prepare compaction", scope()->timer());
340 
341   phase2a_determine_worklists();
342 
343   if (!has_compaction_targets()) {
344     return;
345   }
346 
347   bool has_free_compaction_targets = phase2b_forward_oops();
348 
349   // Try to avoid OOM immediately after Full GC in case there are no free regions
350   // left after determining the result locations (i.e. this phase). Prepare to
351   // maximally compact the tail regions of the compaction queues serially.
352   if (scope()->do_maximal_compaction() || !has_free_compaction_targets) {
353     phase2c_prepare_serial_compaction();
354 
355     if (scope()->do_maximal_compaction() &&
356         has_humongous() &&
357         serial_compaction_point()->has_regions()) {
358       phase2d_prepare_humongous_compaction();
359     }
360   }
361 }
362 
363 void G1FullCollector::phase2a_determine_worklists() {
364   GCTraceTime(Debug, gc, phases) debug("Phase 2: Determine work lists", scope()->timer());
365 
366   G1DetermineCompactionQueueClosure cl(this);
367   _heap->heap_region_iterate(&cl);
368 }
369 
370 bool G1FullCollector::phase2b_forward_oops() {
371   GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare parallel compaction", scope()->timer());
372 
373   G1FullGCPrepareTask task(this);
374   run_task(&task);
375 
376   return task.has_free_compaction_targets();
377 }
378 
379 uint G1FullCollector::truncate_parallel_cps() {
380   uint lowest_current = UINT_MAX;
381   for (uint i = 0; i < workers(); i++) {
382     G1FullGCCompactionPoint* cp = compaction_point(i);
383     if (cp->has_regions()) {
384       lowest_current = MIN2(lowest_current, cp->current_region()->hrm_index());
385     }
386   }
387 
388   for (uint i = 0; i < workers(); i++) {
389     G1FullGCCompactionPoint* cp = compaction_point(i);
390     if (cp->has_regions()) {
391       cp->remove_at_or_above(lowest_current);
392     }
393   }
394   return lowest_current;
395 }
396 
397 void G1FullCollector::phase2c_prepare_serial_compaction() {
398   GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare serial compaction", scope()->timer());
399   // At this point, we know that after parallel compaction there will be regions that
400   // are partially compacted into. Thus, the last compaction region of all
401   // compaction queues still have space in them. We try to re-compact these regions
402   // in serial to avoid a premature OOM when the mutator wants to allocate the first
403   // eden region after gc.
404 
405   // For maximum compaction, we need to re-prepare all objects above the lowest
406   // region among the current regions for all thread compaction points. It may
407   // happen that due to the uneven distribution of objects to parallel threads, holes
408   // have been created as threads compact to different target regions between the
409   // lowest and the highest region in the tails of the compaction points.
410 
411   uint start_serial = truncate_parallel_cps();
412   assert(start_serial < _heap->max_reserved_regions(), "Called on empty parallel compaction queues");
413 
414   G1FullGCCompactionPoint* serial_cp = serial_compaction_point();
415   assert(!serial_cp->is_initialized(), "sanity!");
416 
417   HeapRegion* start_hr = _heap->region_at(start_serial);
418   serial_cp->add(start_hr);
419   serial_cp->initialize(start_hr);
420 
421   HeapWord* dense_prefix_top = compaction_top(start_hr);
422   G1SerialRePrepareClosure re_prepare(serial_cp, dense_prefix_top);
423 
424   for (uint i = start_serial + 1; i < _heap->max_reserved_regions(); i++) {
425     if (is_compaction_target(i)) {
426       HeapRegion* current = _heap->region_at(i);
427       set_compaction_top(current, current->bottom());
428       serial_cp->add(current);
429       current->apply_to_marked_objects(mark_bitmap(), &re_prepare);
430     }
431   }
432   serial_cp->update();
433 }
434 
435 void G1FullCollector::phase2d_prepare_humongous_compaction() {
436   GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare humongous compaction", scope()->timer());
437   G1FullGCCompactionPoint* serial_cp = serial_compaction_point();
438   assert(serial_cp->has_regions(), "Sanity!" );
439 
440   uint last_serial_target = serial_cp->current_region()->hrm_index();
441   uint region_index = last_serial_target + 1;
442   uint max_reserved_regions = _heap->max_reserved_regions();
443 
444   G1FullGCCompactionPoint* humongous_cp = humongous_compaction_point();
445 
446   while (region_index < max_reserved_regions) {
447     HeapRegion* hr = _heap->region_at_or_null(region_index);
448 
449     if (hr == nullptr) {
450       region_index++;
451       continue;
452     } else if (hr->is_starts_humongous()) {
453       uint num_regions = humongous_cp->forward_humongous(hr);
454       region_index += num_regions; // Skip over the continues humongous regions.
455       continue;
456     } else if (is_compaction_target(region_index)) {
457       // Add the region to the humongous compaction point.
458       humongous_cp->add(hr);
459     }
460     region_index++;
461   }
462 }
463 
464 void G1FullCollector::phase3_adjust_pointers() {
465   // Adjust the pointers to reflect the new locations
466   GCTraceTime(Info, gc, phases) info("Phase 3: Adjust pointers", scope()->timer());
467 
468   G1FullGCAdjustTask task(this);
469   run_task(&task);
470 }
471 
472 void G1FullCollector::phase4_do_compaction() {
473   // Compact the heap using the compaction queues created in phase 2.
474   GCTraceTime(Info, gc, phases) info("Phase 4: Compact heap", scope()->timer());
475   G1FullGCCompactTask task(this);
476   run_task(&task);
477 
478   // Serial compact to avoid OOM when very few free regions.
479   if (serial_compaction_point()->has_regions()) {
480     task.serial_compaction();
481   }
482 
483   if (!_humongous_compaction_regions.is_empty()) {
484     assert(scope()->do_maximal_compaction(), "Only compact humongous during maximal compaction");
485     task.humongous_compaction();
486   }
487 }
488 
489 void G1FullCollector::phase5_reset_metadata() {
490   // Clear region metadata that is invalid after GC for all regions.
491   GCTraceTime(Info, gc, phases) info("Phase 5: Reset Metadata", scope()->timer());
492   G1FullGCResetMetadataTask task(this);
493   run_task(&task);
494 }
495 
496 void G1FullCollector::restore_marks() {
497   _preserved_marks_set.restore(_heap->workers());
498   _preserved_marks_set.reclaim();
499 }
500 
501 void G1FullCollector::run_task(WorkerTask* task) {
502   _heap->workers()->run_task(task, _num_workers);
503 }
504 
505 void G1FullCollector::verify_after_marking() {
506   if (!VerifyDuringGC || !_heap->verifier()->should_verify(G1HeapVerifier::G1VerifyFull)) {
507     // Only do verification if VerifyDuringGC and G1VerifyFull is set.
508     return;
509   }
510 
511 #if COMPILER2_OR_JVMCI
512   DerivedPointerTableDeactivate dpt_deact;
513 #endif
514   _heap->prepare_for_verify();
515   // Note: we can verify only the heap here. When an object is
516   // marked, the previous value of the mark word (including
517   // identity hash values, ages, etc) is preserved, and the mark
518   // word is set to markWord::marked_value - effectively removing
519   // any hash values from the mark word. These hash values are
520   // used when verifying the dictionaries and so removing them
521   // from the mark word can make verification of the dictionaries
522   // fail. At the end of the GC, the original mark word values
523   // (including hash values) are restored to the appropriate
524   // objects.
525   GCTraceTime(Info, gc, verify) tm("Verifying During GC (full)");
526   _heap->verify(VerifyOption::G1UseFullMarking);
527 }