1 /* 2 * Copyright (c) 2017, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderDataGraph.hpp" 27 #include "gc/g1/g1CollectedHeap.hpp" 28 #include "gc/g1/g1FullCollector.inline.hpp" 29 #include "gc/g1/g1FullGCAdjustTask.hpp" 30 #include "gc/g1/g1FullGCCompactTask.hpp" 31 #include "gc/g1/g1FullGCMarker.inline.hpp" 32 #include "gc/g1/g1FullGCMarkTask.hpp" 33 #include "gc/g1/g1FullGCPrepareTask.inline.hpp" 34 #include "gc/g1/g1FullGCResetMetadataTask.hpp" 35 #include "gc/g1/g1FullGCScope.hpp" 36 #include "gc/g1/g1OopClosures.hpp" 37 #include "gc/g1/g1Policy.hpp" 38 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp" 39 #include "gc/shared/gcTraceTime.inline.hpp" 40 #include "gc/shared/preservedMarks.inline.hpp" 41 #include "gc/shared/classUnloadingContext.hpp" 42 #include "gc/shared/referenceProcessor.hpp" 43 #include "gc/shared/slidingForwarding.hpp" 44 #include "gc/shared/verifyOption.hpp" 45 #include "gc/shared/weakProcessor.inline.hpp" 46 #include "gc/shared/workerPolicy.hpp" 47 #include "logging/log.hpp" 48 #include "runtime/handles.inline.hpp" 49 #include "utilities/debug.hpp" 50 51 static void clear_and_activate_derived_pointers() { 52 #if COMPILER2_OR_JVMCI 53 DerivedPointerTable::clear(); 54 #endif 55 } 56 57 static void deactivate_derived_pointers() { 58 #if COMPILER2_OR_JVMCI 59 DerivedPointerTable::set_active(false); 60 #endif 61 } 62 63 static void update_derived_pointers() { 64 #if COMPILER2_OR_JVMCI 65 DerivedPointerTable::update_pointers(); 66 #endif 67 } 68 69 G1CMBitMap* G1FullCollector::mark_bitmap() { 70 return _heap->concurrent_mark()->mark_bitmap(); 71 } 72 73 ReferenceProcessor* G1FullCollector::reference_processor() { 74 return _heap->ref_processor_stw(); 75 } 76 77 uint G1FullCollector::calc_active_workers() { 78 G1CollectedHeap* heap = G1CollectedHeap::heap(); 79 uint max_worker_count = heap->workers()->max_workers(); 80 // Only calculate number of workers if UseDynamicNumberOfGCThreads 81 // is enabled, otherwise use max. 82 if (!UseDynamicNumberOfGCThreads) { 83 return max_worker_count; 84 } 85 86 // Consider G1HeapWastePercent to decide max number of workers. Each worker 87 // will in average cause half a region waste. 88 uint max_wasted_regions_allowed = ((heap->num_regions() * G1HeapWastePercent) / 100); 89 uint waste_worker_count = MAX2((max_wasted_regions_allowed * 2) , 1u); 90 uint heap_waste_worker_limit = MIN2(waste_worker_count, max_worker_count); 91 92 // Also consider HeapSizePerGCThread by calling WorkerPolicy to calculate 93 // the number of workers. 94 uint current_active_workers = heap->workers()->active_workers(); 95 uint active_worker_limit = WorkerPolicy::calc_active_workers(max_worker_count, current_active_workers, 0); 96 97 // Finally consider the amount of used regions. 98 uint used_worker_limit = heap->num_used_regions(); 99 assert(used_worker_limit > 0, "Should never have zero used regions."); 100 101 // Update active workers to the lower of the limits. 102 uint worker_count = MIN3(heap_waste_worker_limit, active_worker_limit, used_worker_limit); 103 log_debug(gc, task)("Requesting %u active workers for full compaction (waste limited workers: %u, " 104 "adaptive workers: %u, used limited workers: %u)", 105 worker_count, heap_waste_worker_limit, active_worker_limit, used_worker_limit); 106 worker_count = heap->workers()->set_active_workers(worker_count); 107 log_info(gc, task)("Using %u workers of %u for full compaction", worker_count, max_worker_count); 108 109 return worker_count; 110 } 111 112 G1FullCollector::G1FullCollector(G1CollectedHeap* heap, 113 bool clear_soft_refs, 114 bool do_maximal_compaction, 115 G1FullGCTracer* tracer) : 116 _heap(heap), 117 _scope(heap->monitoring_support(), clear_soft_refs, do_maximal_compaction, tracer), 118 _num_workers(calc_active_workers()), 119 _has_compaction_targets(false), 120 _has_humongous(false), 121 _oop_queue_set(_num_workers), 122 _array_queue_set(_num_workers), 123 _preserved_marks_set(true), 124 _serial_compaction_point(this), 125 _humongous_compaction_point(this), 126 _is_alive(this, heap->concurrent_mark()->mark_bitmap()), 127 _is_alive_mutator(heap->ref_processor_stw(), &_is_alive), 128 _humongous_compaction_regions(8), 129 _always_subject_to_discovery(), 130 _is_subject_mutator(heap->ref_processor_stw(), &_always_subject_to_discovery), 131 _region_attr_table() { 132 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 133 134 _preserved_marks_set.init(_num_workers); 135 _markers = NEW_C_HEAP_ARRAY(G1FullGCMarker*, _num_workers, mtGC); 136 _compaction_points = NEW_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _num_workers, mtGC); 137 138 _live_stats = NEW_C_HEAP_ARRAY(G1RegionMarkStats, _heap->max_regions(), mtGC); 139 _compaction_tops = NEW_C_HEAP_ARRAY(HeapWord*, _heap->max_regions(), mtGC); 140 for (uint j = 0; j < heap->max_regions(); j++) { 141 _live_stats[j].clear(); 142 _compaction_tops[j] = nullptr; 143 } 144 145 for (uint i = 0; i < _num_workers; i++) { 146 _markers[i] = new G1FullGCMarker(this, i, _preserved_marks_set.get(i), _live_stats); 147 _compaction_points[i] = new G1FullGCCompactionPoint(this); 148 _oop_queue_set.register_queue(i, marker(i)->oop_stack()); 149 _array_queue_set.register_queue(i, marker(i)->objarray_stack()); 150 } 151 _region_attr_table.initialize(heap->reserved(), HeapRegion::GrainBytes); 152 } 153 154 G1FullCollector::~G1FullCollector() { 155 for (uint i = 0; i < _num_workers; i++) { 156 delete _markers[i]; 157 delete _compaction_points[i]; 158 } 159 160 FREE_C_HEAP_ARRAY(G1FullGCMarker*, _markers); 161 FREE_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _compaction_points); 162 FREE_C_HEAP_ARRAY(HeapWord*, _compaction_tops); 163 FREE_C_HEAP_ARRAY(G1RegionMarkStats, _live_stats); 164 } 165 166 class PrepareRegionsClosure : public HeapRegionClosure { 167 G1FullCollector* _collector; 168 169 public: 170 PrepareRegionsClosure(G1FullCollector* collector) : _collector(collector) { } 171 172 bool do_heap_region(HeapRegion* hr) { 173 hr->prepare_for_full_gc(); 174 G1CollectedHeap::heap()->prepare_region_for_full_compaction(hr); 175 _collector->before_marking_update_attribute_table(hr); 176 return false; 177 } 178 }; 179 180 void G1FullCollector::prepare_collection() { 181 _heap->policy()->record_full_collection_start(); 182 183 // Verification needs the bitmap, so we should clear the bitmap only later. 184 bool in_concurrent_cycle = _heap->abort_concurrent_cycle(); 185 _heap->verify_before_full_collection(); 186 if (in_concurrent_cycle) { 187 GCTraceTime(Debug, gc) debug("Clear Bitmap"); 188 _heap->concurrent_mark()->clear_bitmap(_heap->workers()); 189 } 190 191 _heap->gc_prologue(true); 192 _heap->retire_tlabs(); 193 _heap->prepare_heap_for_full_collection(); 194 195 PrepareRegionsClosure cl(this); 196 _heap->heap_region_iterate(&cl); 197 198 reference_processor()->start_discovery(scope()->should_clear_soft_refs()); 199 200 // Clear and activate derived pointer collection. 201 clear_and_activate_derived_pointers(); 202 } 203 204 void G1FullCollector::collect() { 205 G1CollectedHeap::start_codecache_marking_cycle_if_inactive(false /* concurrent_mark_start */); 206 207 phase1_mark_live_objects(); 208 verify_after_marking(); 209 210 // Don't add any more derived pointers during later phases 211 deactivate_derived_pointers(); 212 213 SlidingForwarding::begin(); 214 215 phase2_prepare_compaction(); 216 217 if (has_compaction_targets()) { 218 phase3_adjust_pointers(); 219 220 phase4_do_compaction(); 221 } else { 222 // All regions have a high live ratio thus will not be compacted. 223 // The live ratio is only considered if do_maximal_compaction is false. 224 log_info(gc, phases) ("No Regions selected for compaction. Skipping Phase 3: Adjust pointers and Phase 4: Compact heap"); 225 } 226 227 SlidingForwarding::end(); 228 229 phase5_reset_metadata(); 230 231 G1CollectedHeap::finish_codecache_marking_cycle(); 232 } 233 234 void G1FullCollector::complete_collection() { 235 // Restore all marks. 236 restore_marks(); 237 238 // When the pointers have been adjusted and moved, we can 239 // update the derived pointer table. 240 update_derived_pointers(); 241 242 // Need completely cleared claim bits for the next concurrent marking or full gc. 243 ClassLoaderDataGraph::clear_claimed_marks(); 244 245 // Prepare the bitmap for the next (potentially concurrent) marking. 246 _heap->concurrent_mark()->clear_bitmap(_heap->workers()); 247 248 _heap->prepare_for_mutator_after_full_collection(); 249 250 _heap->resize_all_tlabs(); 251 252 _heap->policy()->record_full_collection_end(); 253 _heap->gc_epilogue(true); 254 255 _heap->verify_after_full_collection(); 256 257 _heap->print_heap_after_full_collection(); 258 } 259 260 void G1FullCollector::before_marking_update_attribute_table(HeapRegion* hr) { 261 if (hr->is_free()) { 262 _region_attr_table.set_free(hr->hrm_index()); 263 } else if (hr->is_humongous()) { 264 // Humongous objects will never be moved in the "main" compaction phase, but 265 // afterwards in a special phase if needed. 266 _region_attr_table.set_skip_compacting(hr->hrm_index()); 267 } else { 268 // Everything else should be compacted. 269 _region_attr_table.set_compacting(hr->hrm_index()); 270 } 271 } 272 273 class G1FullGCRefProcProxyTask : public RefProcProxyTask { 274 G1FullCollector& _collector; 275 276 public: 277 G1FullGCRefProcProxyTask(G1FullCollector &collector, uint max_workers) 278 : RefProcProxyTask("G1FullGCRefProcProxyTask", max_workers), 279 _collector(collector) {} 280 281 void work(uint worker_id) override { 282 assert(worker_id < _max_workers, "sanity"); 283 G1IsAliveClosure is_alive(&_collector); 284 uint index = (_tm == RefProcThreadModel::Single) ? 0 : worker_id; 285 G1FullKeepAliveClosure keep_alive(_collector.marker(index)); 286 BarrierEnqueueDiscoveredFieldClosure enqueue; 287 G1FollowStackClosure* complete_gc = _collector.marker(index)->stack_closure(); 288 _rp_task->rp_work(worker_id, &is_alive, &keep_alive, &enqueue, complete_gc); 289 } 290 }; 291 292 void G1FullCollector::phase1_mark_live_objects() { 293 // Recursively traverse all live objects and mark them. 294 GCTraceTime(Info, gc, phases) info("Phase 1: Mark live objects", scope()->timer()); 295 296 { 297 // Do the actual marking. 298 G1FullGCMarkTask marking_task(this); 299 run_task(&marking_task); 300 } 301 302 { 303 uint old_active_mt_degree = reference_processor()->num_queues(); 304 reference_processor()->set_active_mt_degree(workers()); 305 GCTraceTime(Debug, gc, phases) debug("Phase 1: Reference Processing", scope()->timer()); 306 // Process reference objects found during marking. 307 ReferenceProcessorPhaseTimes pt(scope()->timer(), reference_processor()->max_num_queues()); 308 G1FullGCRefProcProxyTask task(*this, reference_processor()->max_num_queues()); 309 const ReferenceProcessorStats& stats = reference_processor()->process_discovered_references(task, pt); 310 scope()->tracer()->report_gc_reference_stats(stats); 311 pt.print_all_references(); 312 assert(marker(0)->oop_stack()->is_empty(), "Should be no oops on the stack"); 313 314 reference_processor()->set_active_mt_degree(old_active_mt_degree); 315 } 316 317 // Weak oops cleanup. 318 { 319 GCTraceTime(Debug, gc, phases) debug("Phase 1: Weak Processing", scope()->timer()); 320 WeakProcessor::weak_oops_do(_heap->workers(), &_is_alive, &do_nothing_cl, 1); 321 } 322 323 // Class unloading and cleanup. 324 if (ClassUnloading) { 325 _heap->unload_classes_and_code("Phase 1: Class Unloading and Cleanup", &_is_alive, scope()->timer()); 326 } 327 328 { 329 GCTraceTime(Debug, gc, phases) debug("Report Object Count", scope()->timer()); 330 scope()->tracer()->report_object_count_after_gc(&_is_alive, _heap->workers()); 331 } 332 #if TASKQUEUE_STATS 333 oop_queue_set()->print_and_reset_taskqueue_stats("Oop Queue"); 334 array_queue_set()->print_and_reset_taskqueue_stats("ObjArrayOop Queue"); 335 #endif 336 } 337 338 void G1FullCollector::phase2_prepare_compaction() { 339 GCTraceTime(Info, gc, phases) info("Phase 2: Prepare compaction", scope()->timer()); 340 341 phase2a_determine_worklists(); 342 343 if (!has_compaction_targets()) { 344 return; 345 } 346 347 bool has_free_compaction_targets = phase2b_forward_oops(); 348 349 // Try to avoid OOM immediately after Full GC in case there are no free regions 350 // left after determining the result locations (i.e. this phase). Prepare to 351 // maximally compact the tail regions of the compaction queues serially. 352 if (scope()->do_maximal_compaction() || !has_free_compaction_targets) { 353 phase2c_prepare_serial_compaction(); 354 355 if (scope()->do_maximal_compaction() && 356 has_humongous() && 357 serial_compaction_point()->has_regions()) { 358 phase2d_prepare_humongous_compaction(); 359 } 360 } 361 } 362 363 void G1FullCollector::phase2a_determine_worklists() { 364 GCTraceTime(Debug, gc, phases) debug("Phase 2: Determine work lists", scope()->timer()); 365 366 G1DetermineCompactionQueueClosure cl(this); 367 _heap->heap_region_iterate(&cl); 368 } 369 370 bool G1FullCollector::phase2b_forward_oops() { 371 GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare parallel compaction", scope()->timer()); 372 373 G1FullGCPrepareTask task(this); 374 run_task(&task); 375 376 return task.has_free_compaction_targets(); 377 } 378 379 uint G1FullCollector::truncate_parallel_cps() { 380 uint lowest_current = UINT_MAX; 381 for (uint i = 0; i < workers(); i++) { 382 G1FullGCCompactionPoint* cp = compaction_point(i); 383 if (cp->has_regions()) { 384 lowest_current = MIN2(lowest_current, cp->current_region()->hrm_index()); 385 } 386 } 387 388 for (uint i = 0; i < workers(); i++) { 389 G1FullGCCompactionPoint* cp = compaction_point(i); 390 if (cp->has_regions()) { 391 cp->remove_at_or_above(lowest_current); 392 } 393 } 394 return lowest_current; 395 } 396 397 template <bool ALT_FWD> 398 void G1FullCollector::phase2c_prepare_serial_compaction_impl() { 399 GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare serial compaction", scope()->timer()); 400 // At this point, we know that after parallel compaction there will be regions that 401 // are partially compacted into. Thus, the last compaction region of all 402 // compaction queues still have space in them. We try to re-compact these regions 403 // in serial to avoid a premature OOM when the mutator wants to allocate the first 404 // eden region after gc. 405 406 // For maximum compaction, we need to re-prepare all objects above the lowest 407 // region among the current regions for all thread compaction points. It may 408 // happen that due to the uneven distribution of objects to parallel threads, holes 409 // have been created as threads compact to different target regions between the 410 // lowest and the highest region in the tails of the compaction points. 411 412 uint start_serial = truncate_parallel_cps(); 413 assert(start_serial < _heap->max_reserved_regions(), "Called on empty parallel compaction queues"); 414 415 G1FullGCCompactionPoint* serial_cp = serial_compaction_point(); 416 assert(!serial_cp->is_initialized(), "sanity!"); 417 418 HeapRegion* start_hr = _heap->region_at(start_serial); 419 serial_cp->add(start_hr); 420 serial_cp->initialize(start_hr); 421 422 HeapWord* dense_prefix_top = compaction_top(start_hr); 423 G1SerialRePrepareClosure<ALT_FWD> re_prepare(serial_cp, dense_prefix_top); 424 425 for (uint i = start_serial + 1; i < _heap->max_reserved_regions(); i++) { 426 if (is_compaction_target(i)) { 427 HeapRegion* current = _heap->region_at(i); 428 set_compaction_top(current, current->bottom()); 429 serial_cp->add(current); 430 current->apply_to_marked_objects(mark_bitmap(), &re_prepare); 431 } 432 } 433 serial_cp->update(); 434 } 435 436 void G1FullCollector::phase2c_prepare_serial_compaction() { 437 if (UseAltGCForwarding) { 438 phase2c_prepare_serial_compaction_impl<true>(); 439 } else { 440 phase2c_prepare_serial_compaction_impl<false>(); 441 } 442 } 443 444 template <bool ALT_FWD> 445 void G1FullCollector::phase2d_prepare_humongous_compaction_impl() { 446 GCTraceTime(Debug, gc, phases) debug("Phase 2: Prepare humongous compaction", scope()->timer()); 447 G1FullGCCompactionPoint* serial_cp = serial_compaction_point(); 448 assert(serial_cp->has_regions(), "Sanity!" ); 449 450 uint last_serial_target = serial_cp->current_region()->hrm_index(); 451 uint region_index = last_serial_target + 1; 452 uint max_reserved_regions = _heap->max_reserved_regions(); 453 454 G1FullGCCompactionPoint* humongous_cp = humongous_compaction_point(); 455 456 while (region_index < max_reserved_regions) { 457 HeapRegion* hr = _heap->region_at_or_null(region_index); 458 459 if (hr == nullptr) { 460 region_index++; 461 continue; 462 } else if (hr->is_starts_humongous()) { 463 uint num_regions = humongous_cp->forward_humongous<ALT_FWD>(hr); 464 region_index += num_regions; // Skip over the continues humongous regions. 465 continue; 466 } else if (is_compaction_target(region_index)) { 467 // Add the region to the humongous compaction point. 468 humongous_cp->add(hr); 469 } 470 region_index++; 471 } 472 } 473 474 void G1FullCollector::phase2d_prepare_humongous_compaction() { 475 if (UseAltGCForwarding) { 476 phase2d_prepare_humongous_compaction_impl<true>(); 477 } else { 478 phase2d_prepare_humongous_compaction_impl<false>(); 479 } 480 } 481 482 void G1FullCollector::phase3_adjust_pointers() { 483 // Adjust the pointers to reflect the new locations 484 GCTraceTime(Info, gc, phases) info("Phase 3: Adjust pointers", scope()->timer()); 485 486 G1FullGCAdjustTask task(this); 487 run_task(&task); 488 } 489 490 void G1FullCollector::phase4_do_compaction() { 491 // Compact the heap using the compaction queues created in phase 2. 492 GCTraceTime(Info, gc, phases) info("Phase 4: Compact heap", scope()->timer()); 493 G1FullGCCompactTask task(this); 494 run_task(&task); 495 496 // Serial compact to avoid OOM when very few free regions. 497 if (serial_compaction_point()->has_regions()) { 498 task.serial_compaction(); 499 } 500 501 if (!_humongous_compaction_regions.is_empty()) { 502 assert(scope()->do_maximal_compaction(), "Only compact humongous during maximal compaction"); 503 task.humongous_compaction(); 504 } 505 } 506 507 void G1FullCollector::phase5_reset_metadata() { 508 // Clear region metadata that is invalid after GC for all regions. 509 GCTraceTime(Info, gc, phases) info("Phase 5: Reset Metadata", scope()->timer()); 510 G1FullGCResetMetadataTask task(this); 511 run_task(&task); 512 } 513 514 void G1FullCollector::restore_marks() { 515 _preserved_marks_set.restore(_heap->workers()); 516 _preserved_marks_set.reclaim(); 517 } 518 519 void G1FullCollector::run_task(WorkerTask* task) { 520 _heap->workers()->run_task(task, _num_workers); 521 } 522 523 void G1FullCollector::verify_after_marking() { 524 if (!VerifyDuringGC || !_heap->verifier()->should_verify(G1HeapVerifier::G1VerifyFull)) { 525 // Only do verification if VerifyDuringGC and G1VerifyFull is set. 526 return; 527 } 528 529 #if COMPILER2_OR_JVMCI 530 DerivedPointerTableDeactivate dpt_deact; 531 #endif 532 _heap->prepare_for_verify(); 533 // Note: we can verify only the heap here. When an object is 534 // marked, the previous value of the mark word (including 535 // identity hash values, ages, etc) is preserved, and the mark 536 // word is set to markWord::marked_value - effectively removing 537 // any hash values from the mark word. These hash values are 538 // used when verifying the dictionaries and so removing them 539 // from the mark word can make verification of the dictionaries 540 // fail. At the end of the GC, the original mark word values 541 // (including hash values) are restored to the appropriate 542 // objects. 543 GCTraceTime(Info, gc, verify) tm("Verifying During GC (full)"); 544 _heap->verify(VerifyOption::G1UseFullMarking); 545 }