1 /* 2 * Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/g1/g1Allocator.inline.hpp" 27 #include "gc/g1/g1CollectedHeap.inline.hpp" 28 #include "gc/g1/g1CollectionSet.hpp" 29 #include "gc/g1/g1EvacFailureRegions.inline.hpp" 30 #include "gc/g1/g1OopClosures.inline.hpp" 31 #include "gc/g1/g1ParScanThreadState.inline.hpp" 32 #include "gc/g1/g1RootClosures.hpp" 33 #include "gc/g1/g1StringDedup.hpp" 34 #include "gc/g1/g1Trace.hpp" 35 #include "gc/g1/g1YoungGCEvacFailureInjector.inline.hpp" 36 #include "gc/shared/continuationGCSupport.inline.hpp" 37 #include "gc/shared/partialArrayTaskStepper.inline.hpp" 38 #include "gc/shared/preservedMarks.inline.hpp" 39 #include "gc/shared/stringdedup/stringDedup.hpp" 40 #include "gc/shared/taskqueue.inline.hpp" 41 #include "memory/allocation.inline.hpp" 42 #include "oops/access.inline.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "runtime/atomic.hpp" 45 #include "runtime/prefetch.inline.hpp" 46 #include "utilities/globalDefinitions.hpp" 47 #include "utilities/macros.hpp" 48 49 // In fastdebug builds the code size can get out of hand, potentially 50 // tripping over compiler limits (which may be bugs, but nevertheless 51 // need to be taken into consideration). A side benefit of limiting 52 // inlining is that we get more call frames that might aid debugging. 53 // And the fastdebug compile time for this file is much reduced. 54 // Explicit NOINLINE to block ATTRIBUTE_FLATTENing. 55 #define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE) 56 57 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, 58 G1RedirtyCardsQueueSet* rdcqs, 59 PreservedMarks* preserved_marks, 60 uint worker_id, 61 uint num_workers, 62 G1CollectionSet* collection_set, 63 G1EvacFailureRegions* evac_failure_regions) 64 : _g1h(g1h), 65 _task_queue(g1h->task_queue(worker_id)), 66 _rdc_local_qset(rdcqs), 67 _ct(g1h->card_table()), 68 _closures(nullptr), 69 _plab_allocator(nullptr), 70 _age_table(false), 71 _tenuring_threshold(g1h->policy()->tenuring_threshold()), 72 _scanner(g1h, this), 73 _worker_id(worker_id), 74 _last_enqueued_card(SIZE_MAX), 75 _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1), 76 _stack_trim_lower_threshold(GCDrainStackTargetSize), 77 _trim_ticks(), 78 _surviving_young_words_base(nullptr), 79 _surviving_young_words(nullptr), 80 _surviving_words_length(collection_set->young_region_length() + 1), 81 _old_gen_is_full(false), 82 _partial_objarray_chunk_size(ParGCArrayScanChunk), 83 _partial_array_stepper(num_workers), 84 _string_dedup_requests(), 85 _max_num_optional_regions(collection_set->optional_region_length()), 86 _numa(g1h->numa()), 87 _obj_alloc_stat(nullptr), 88 EVAC_FAILURE_INJECTOR_ONLY(_evac_failure_inject_counter(0) COMMA) 89 _preserved_marks(preserved_marks), 90 _evacuation_failed_info(), 91 _evac_failure_regions(evac_failure_regions) 92 { 93 // We allocate number of young gen regions in the collection set plus one 94 // entries, since entry 0 keeps track of surviving bytes for non-young regions. 95 // We also add a few elements at the beginning and at the end in 96 // an attempt to eliminate cache contention 97 const size_t padding_elem_num = (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t)); 98 size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num; 99 100 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); 101 _surviving_young_words = _surviving_young_words_base + padding_elem_num; 102 memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t)); 103 104 _plab_allocator = new G1PLABAllocator(_g1h->allocator()); 105 106 _closures = G1EvacuationRootClosures::create_root_closures(_g1h, 107 this, 108 collection_set->only_contains_young_regions()); 109 110 _oops_into_optional_regions = new G1OopStarChunkedList[_max_num_optional_regions]; 111 112 initialize_numa_stats(); 113 } 114 115 size_t G1ParScanThreadState::flush_stats(size_t* surviving_young_words, uint num_workers) { 116 _rdc_local_qset.flush(); 117 flush_numa_stats(); 118 // Update allocation statistics. 119 _plab_allocator->flush_and_retire_stats(num_workers); 120 _g1h->policy()->record_age_table(&_age_table); 121 122 if (_evacuation_failed_info.has_failed()) { 123 _g1h->gc_tracer_stw()->report_evacuation_failed(_evacuation_failed_info); 124 } 125 126 size_t sum = 0; 127 for (uint i = 0; i < _surviving_words_length; i++) { 128 surviving_young_words[i] += _surviving_young_words[i]; 129 sum += _surviving_young_words[i]; 130 } 131 return sum; 132 } 133 134 G1ParScanThreadState::~G1ParScanThreadState() { 135 delete _plab_allocator; 136 delete _closures; 137 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); 138 delete[] _oops_into_optional_regions; 139 FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat); 140 } 141 142 size_t G1ParScanThreadState::lab_waste_words() const { 143 return _plab_allocator->waste(); 144 } 145 146 size_t G1ParScanThreadState::lab_undo_waste_words() const { 147 return _plab_allocator->undo_waste(); 148 } 149 150 #ifdef ASSERT 151 void G1ParScanThreadState::verify_task(narrowOop* task) const { 152 assert(task != nullptr, "invariant"); 153 assert(UseCompressedOops, "sanity"); 154 oop p = RawAccess<>::oop_load(task); 155 assert(_g1h->is_in_reserved(p), 156 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 157 } 158 159 void G1ParScanThreadState::verify_task(oop* task) const { 160 assert(task != nullptr, "invariant"); 161 oop p = RawAccess<>::oop_load(task); 162 assert(_g1h->is_in_reserved(p), 163 "task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p)); 164 } 165 166 void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const { 167 // Must be in the collection set--it's already been copied. 168 oop p = task.to_source_array(); 169 assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p)); 170 } 171 172 void G1ParScanThreadState::verify_task(ScannerTask task) const { 173 if (task.is_narrow_oop_ptr()) { 174 verify_task(task.to_narrow_oop_ptr()); 175 } else if (task.is_oop_ptr()) { 176 verify_task(task.to_oop_ptr()); 177 } else if (task.is_partial_array_task()) { 178 verify_task(task.to_partial_array_task()); 179 } else { 180 ShouldNotReachHere(); 181 } 182 } 183 #endif // ASSERT 184 185 template <class T> 186 MAYBE_INLINE_EVACUATION 187 void G1ParScanThreadState::do_oop_evac(T* p) { 188 // Reference should not be null here as such are never pushed to the task queue. 189 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 190 191 // Although we never intentionally push references outside of the collection 192 // set, due to (benign) races in the claim mechanism during RSet scanning more 193 // than one thread might claim the same card. So the same card may be 194 // processed multiple times, and so we might get references into old gen here. 195 // So we need to redo this check. 196 const G1HeapRegionAttr region_attr = _g1h->region_attr(obj); 197 // References pushed onto the work stack should never point to a humongous region 198 // as they are not added to the collection set due to above precondition. 199 assert(!region_attr.is_humongous_candidate(), 200 "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT, 201 p2i(obj), _g1h->addr_to_region(obj), p2i(p)); 202 203 if (!region_attr.is_in_cset()) { 204 // In this case somebody else already did all the work. 205 return; 206 } 207 208 markWord m = obj->mark(); 209 if (m.is_marked()) { 210 obj = cast_to_oop(m.decode_pointer()); 211 } else { 212 obj = do_copy_to_survivor_space(region_attr, obj, m); 213 } 214 RawAccess<IS_NOT_NULL>::oop_store(p, obj); 215 216 write_ref_field_post(p, obj); 217 } 218 219 MAYBE_INLINE_EVACUATION 220 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) { 221 oop from_obj = task.to_source_array(); 222 223 assert(_g1h->is_in_reserved(from_obj), "must be in heap."); 224 assert(from_obj->is_objArray(), "must be obj array"); 225 assert(from_obj->is_forwarded(), "must be forwarded"); 226 227 oop to_obj = from_obj->forwardee(); 228 assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); 229 assert(to_obj->is_objArray(), "must be obj array"); 230 objArrayOop to_array = objArrayOop(to_obj); 231 232 PartialArrayTaskStepper::Step step 233 = _partial_array_stepper.next(objArrayOop(from_obj), 234 to_array, 235 _partial_objarray_chunk_size); 236 for (uint i = 0; i < step._ncreate; ++i) { 237 push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); 238 } 239 240 G1HeapRegionAttr dest_attr = _g1h->region_attr(to_array); 241 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_new_survivor()); 242 // Process claimed task. The length of to_array is not correct, but 243 // fortunately the iteration ignores the length field and just relies 244 // on start/end. 245 to_array->oop_iterate_range(&_scanner, 246 step._index, 247 step._index + _partial_objarray_chunk_size); 248 } 249 250 MAYBE_INLINE_EVACUATION 251 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr, 252 oop from_obj, 253 oop to_obj) { 254 assert(from_obj->is_objArray(), "precondition"); 255 assert(from_obj->is_forwarded(), "precondition"); 256 assert(from_obj->forwardee() == to_obj, "precondition"); 257 assert(from_obj != to_obj, "should not be scanning self-forwarded objects"); 258 assert(to_obj->is_objArray(), "precondition"); 259 260 objArrayOop to_array = objArrayOop(to_obj); 261 262 PartialArrayTaskStepper::Step step 263 = _partial_array_stepper.start(objArrayOop(from_obj), 264 to_array, 265 _partial_objarray_chunk_size); 266 267 // Push any needed partial scan tasks. Pushed before processing the 268 // initial chunk to allow other workers to steal while we're processing. 269 for (uint i = 0; i < step._ncreate; ++i) { 270 push_on_queue(ScannerTask(PartialArrayScanTask(from_obj))); 271 } 272 273 // Skip the card enqueue iff the object (to_array) is in survivor region. 274 // However, HeapRegion::is_survivor() is too expensive here. 275 // Instead, we use dest_attr.is_young() because the two values are always 276 // equal: successfully allocated young regions must be survivor regions. 277 assert(dest_attr.is_young() == _g1h->heap_region_containing(to_array)->is_survivor(), "must be"); 278 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 279 // Process the initial chunk. No need to process the type in the 280 // klass, as it will already be handled by processing the built-in 281 // module. The length of to_array is not correct, but fortunately 282 // the iteration ignores that length field and relies on start/end. 283 to_array->oop_iterate_range(&_scanner, 0, step._index); 284 } 285 286 MAYBE_INLINE_EVACUATION 287 void G1ParScanThreadState::dispatch_task(ScannerTask task) { 288 verify_task(task); 289 if (task.is_narrow_oop_ptr()) { 290 do_oop_evac(task.to_narrow_oop_ptr()); 291 } else if (task.is_oop_ptr()) { 292 do_oop_evac(task.to_oop_ptr()); 293 } else { 294 do_partial_array(task.to_partial_array_task()); 295 } 296 } 297 298 // Process tasks until overflow queue is empty and local queue 299 // contains no more than threshold entries. NOINLINE to prevent 300 // inlining into steal_and_trim_queue. 301 ATTRIBUTE_FLATTEN NOINLINE 302 void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) { 303 ScannerTask task; 304 do { 305 while (_task_queue->pop_overflow(task)) { 306 if (!_task_queue->try_push_to_taskqueue(task)) { 307 dispatch_task(task); 308 } 309 } 310 while (_task_queue->pop_local(task, threshold)) { 311 dispatch_task(task); 312 } 313 } while (!_task_queue->overflow_empty()); 314 } 315 316 ATTRIBUTE_FLATTEN 317 void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) { 318 ScannerTask stolen_task; 319 while (task_queues->steal(_worker_id, stolen_task)) { 320 dispatch_task(stolen_task); 321 // Processing stolen task may have added tasks to our queue. 322 trim_queue(); 323 } 324 } 325 326 HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, 327 size_t word_sz, 328 bool previous_plab_refill_failed, 329 uint node_index) { 330 331 assert(dest->is_in_cset_or_humongous_candidate(), "Unexpected dest: %s region attr", dest->get_type_str()); 332 333 // Right now we only have two types of regions (young / old) so 334 // let's keep the logic here simple. We can generalize it when necessary. 335 if (dest->is_young()) { 336 bool plab_refill_in_old_failed = false; 337 HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old, 338 word_sz, 339 &plab_refill_in_old_failed, 340 node_index); 341 // Make sure that we won't attempt to copy any other objects out 342 // of a survivor region (given that apparently we cannot allocate 343 // any new ones) to avoid coming into this slow path again and again. 344 // Only consider failed PLAB refill here: failed inline allocations are 345 // typically large, so not indicative of remaining space. 346 if (previous_plab_refill_failed) { 347 _tenuring_threshold = 0; 348 } 349 350 if (obj_ptr != nullptr) { 351 dest->set_old(); 352 } else { 353 // We just failed to allocate in old gen. The same idea as explained above 354 // for making survivor gen unavailable for allocation applies for old gen. 355 _old_gen_is_full = plab_refill_in_old_failed; 356 } 357 return obj_ptr; 358 } else { 359 _old_gen_is_full = previous_plab_refill_failed; 360 assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str()); 361 // no other space to try. 362 return nullptr; 363 } 364 } 365 366 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) { 367 assert(region_attr.is_young() || region_attr.is_old(), "must be either Young or Old"); 368 369 if (region_attr.is_young()) { 370 age = !m.has_displaced_mark_helper() ? m.age() 371 : m.displaced_mark_helper().age(); 372 if (age < _tenuring_threshold) { 373 return region_attr; 374 } 375 } 376 // young-to-old (promotion) or old-to-old; destination is old in both cases. 377 return G1HeapRegionAttr::Old; 378 } 379 380 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr, 381 oop const old, size_t word_sz, uint age, 382 HeapWord * const obj_ptr, uint node_index) const { 383 PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index); 384 if (alloc_buf->contains(obj_ptr)) { 385 _g1h->gc_tracer_stw()->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age, 386 dest_attr.type() == G1HeapRegionAttr::Old, 387 alloc_buf->word_sz() * HeapWordSize); 388 } else { 389 _g1h->gc_tracer_stw()->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age, 390 dest_attr.type() == G1HeapRegionAttr::Old); 391 } 392 } 393 394 NOINLINE 395 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr, 396 oop old, 397 size_t word_sz, 398 uint age, 399 uint node_index) { 400 HeapWord* obj_ptr = nullptr; 401 // Try slow-path allocation unless we're allocating old and old is already full. 402 if (!(dest_attr->is_old() && _old_gen_is_full)) { 403 bool plab_refill_failed = false; 404 obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr, 405 word_sz, 406 &plab_refill_failed, 407 node_index); 408 if (obj_ptr == nullptr) { 409 obj_ptr = allocate_in_next_plab(dest_attr, 410 word_sz, 411 plab_refill_failed, 412 node_index); 413 } 414 } 415 if (obj_ptr != nullptr) { 416 update_numa_stats(node_index); 417 if (_g1h->gc_tracer_stw()->should_report_promotion_events()) { 418 // The events are checked individually as part of the actual commit 419 report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index); 420 } 421 } 422 return obj_ptr; 423 } 424 425 #if EVAC_FAILURE_INJECTOR 426 bool G1ParScanThreadState::inject_evacuation_failure(uint region_idx) { 427 return _g1h->evac_failure_injector()->evacuation_should_fail(_evac_failure_inject_counter, region_idx); 428 } 429 #endif 430 431 NOINLINE 432 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr, 433 HeapWord* obj_ptr, 434 size_t word_sz, 435 uint node_index) { 436 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 437 } 438 439 void G1ParScanThreadState::update_bot_after_copying(oop obj, size_t word_sz) { 440 HeapWord* obj_start = cast_from_oop<HeapWord*>(obj); 441 HeapRegion* region = _g1h->heap_region_containing(obj_start); 442 region->update_bot_for_obj(obj_start, word_sz); 443 } 444 445 // Private inline function, for direct internal use and providing the 446 // implementation of the public not-inline function. 447 MAYBE_INLINE_EVACUATION 448 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr, 449 oop const old, 450 markWord const old_mark) { 451 assert(region_attr.is_in_cset(), 452 "Unexpected region attr type: %s", region_attr.get_type_str()); 453 454 // Get the klass once. We'll need it again later, and this avoids 455 // re-decoding when it's compressed. 456 Klass* klass = old->klass(); 457 const size_t word_sz = old->size_given_klass(klass); 458 459 uint age = 0; 460 G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); 461 HeapRegion* const from_region = _g1h->heap_region_containing(old); 462 uint node_index = from_region->node_index(); 463 464 HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); 465 466 // PLAB allocations should succeed most of the time, so we'll 467 // normally check against null once and that's it. 468 if (obj_ptr == nullptr) { 469 obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index); 470 if (obj_ptr == nullptr) { 471 // This will either forward-to-self, or detect that someone else has 472 // installed a forwarding pointer. 473 return handle_evacuation_failure_par(old, old_mark, word_sz); 474 } 475 } 476 477 assert(obj_ptr != nullptr, "when we get here, allocation should have succeeded"); 478 assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); 479 480 // Should this evacuation fail? 481 if (inject_evacuation_failure(from_region->hrm_index())) { 482 // Doing this after all the allocation attempts also tests the 483 // undo_allocation() method too. 484 undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 485 return handle_evacuation_failure_par(old, old_mark, word_sz); 486 } 487 488 // We're going to allocate linearly, so might as well prefetch ahead. 489 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); 490 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz); 491 492 const oop obj = cast_to_oop(obj_ptr); 493 // Because the forwarding is done with memory_order_relaxed there is no 494 // ordering with the above copy. Clients that get the forwardee must not 495 // examine its contents without other synchronization, since the contents 496 // may not be up to date for them. 497 const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); 498 if (forward_ptr == nullptr) { 499 500 { 501 const uint young_index = from_region->young_index_in_cset(); 502 assert((from_region->is_young() && young_index > 0) || 503 (!from_region->is_young() && young_index == 0), "invariant" ); 504 _surviving_young_words[young_index] += word_sz; 505 } 506 507 if (dest_attr.is_young()) { 508 if (age < markWord::max_age) { 509 age++; 510 obj->incr_age(); 511 } 512 _age_table.add(age, word_sz); 513 } else { 514 update_bot_after_copying(obj, word_sz); 515 } 516 517 // Most objects are not arrays, so do one array check rather than 518 // checking for each array category for each object. 519 if (klass->is_array_klass()) { 520 if (klass->is_objArray_klass()) { 521 start_partial_objarray(dest_attr, old, obj); 522 } else { 523 // Nothing needs to be done for typeArrays. Body doesn't contain 524 // any oops to scan, and the type in the klass will already be handled 525 // by processing the built-in module. 526 assert(klass->is_typeArray_klass(), "invariant"); 527 } 528 return obj; 529 } 530 531 ContinuationGCSupport::transform_stack_chunk(obj); 532 533 // Check for deduplicating young Strings. 534 if (G1StringDedup::is_candidate_from_evacuation(klass, 535 region_attr, 536 dest_attr, 537 age)) { 538 // Record old; request adds a new weak reference, which reference 539 // processing expects to refer to a from-space object. 540 _string_dedup_requests.add(old); 541 } 542 543 // Skip the card enqueue iff the object (obj) is in survivor region. 544 // However, HeapRegion::is_survivor() is too expensive here. 545 // Instead, we use dest_attr.is_young() because the two values are always 546 // equal: successfully allocated young regions must be survivor regions. 547 assert(dest_attr.is_young() == _g1h->heap_region_containing(obj)->is_survivor(), "must be"); 548 G1SkipCardEnqueueSetter x(&_scanner, dest_attr.is_young()); 549 obj->oop_iterate_backwards(&_scanner, klass); 550 return obj; 551 } else { 552 _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); 553 return forward_ptr; 554 } 555 } 556 557 // Public not-inline entry point. 558 ATTRIBUTE_FLATTEN 559 oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr, 560 oop old, 561 markWord old_mark) { 562 return do_copy_to_survivor_space(region_attr, old, old_mark); 563 } 564 565 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) { 566 assert(worker_id < _num_workers, "out of bounds access"); 567 if (_states[worker_id] == nullptr) { 568 _states[worker_id] = 569 new G1ParScanThreadState(_g1h, rdcqs(), 570 _preserved_marks_set.get(worker_id), 571 worker_id, 572 _num_workers, 573 _collection_set, 574 _evac_failure_regions); 575 } 576 return _states[worker_id]; 577 } 578 579 const size_t* G1ParScanThreadStateSet::surviving_young_words() const { 580 assert(_flushed, "thread local state from the per thread states should have been flushed"); 581 return _surviving_young_words_total; 582 } 583 584 void G1ParScanThreadStateSet::flush_stats() { 585 assert(!_flushed, "thread local state from the per thread states should be flushed once"); 586 587 for (uint worker_id = 0; worker_id < _num_workers; ++worker_id) { 588 G1ParScanThreadState* pss = _states[worker_id]; 589 assert(pss != nullptr, "must be initialized"); 590 591 G1GCPhaseTimes* p = _g1h->phase_times(); 592 593 // Need to get the following two before the call to G1ParThreadScanState::flush() 594 // because it resets the PLAB allocator where we get this info from. 595 size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize; 596 size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize; 597 size_t copied_bytes = pss->flush_stats(_surviving_young_words_total, _num_workers) * HeapWordSize; 598 599 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes); 600 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes); 601 p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes); 602 603 delete pss; 604 _states[worker_id] = nullptr; 605 } 606 _flushed = true; 607 } 608 609 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) { 610 for (uint worker_index = 0; worker_index < _num_workers; ++worker_index) { 611 G1ParScanThreadState* pss = _states[worker_index]; 612 assert(pss != nullptr, "must be initialized"); 613 614 size_t used_memory = pss->oops_into_optional_region(hr)->used_memory(); 615 _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory); 616 } 617 } 618 619 NOINLINE 620 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m, size_t word_sz) { 621 assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old)); 622 623 oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed); 624 if (forward_ptr == nullptr) { 625 // Forward-to-self succeeded. We are the "owner" of the object. 626 HeapRegion* r = _g1h->heap_region_containing(old); 627 628 if (_evac_failure_regions->record(r->hrm_index())) { 629 _g1h->hr_printer()->evac_failure(r); 630 } 631 632 // Mark the failing object in the marking bitmap and later use the bitmap to handle 633 // evacuation failure recovery. 634 _g1h->mark_evac_failure_object(_worker_id, old, word_sz); 635 636 _preserved_marks->push_if_necessary(old, m); 637 638 ContinuationGCSupport::transform_stack_chunk(old); 639 640 _evacuation_failed_info.register_copy_failure(word_sz); 641 642 // For iterating objects that failed evacuation currently we can reuse the 643 // existing closure to scan evacuated objects because: 644 // - for objects referring into the collection set we do not need to gather 645 // cards at this time. The regions they are in will be unconditionally turned 646 // to old regions without remembered sets. 647 // - since we are iterating from a collection set region (i.e. never a Survivor 648 // region), we always need to gather cards for this case. 649 G1SkipCardEnqueueSetter x(&_scanner, false /* skip_card_enqueue */); 650 old->oop_iterate_backwards(&_scanner); 651 652 return old; 653 } else { 654 // Forward-to-self failed. Either someone else managed to allocate 655 // space for this object (old != forward_ptr) or they beat us in 656 // self-forwarding it (old == forward_ptr). 657 assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr), 658 "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " " 659 "should not be in the CSet", 660 p2i(old), p2i(forward_ptr)); 661 return forward_ptr; 662 } 663 } 664 665 void G1ParScanThreadState::initialize_numa_stats() { 666 if (_numa->is_enabled()) { 667 LogTarget(Info, gc, heap, numa) lt; 668 669 if (lt.is_enabled()) { 670 uint num_nodes = _numa->num_active_nodes(); 671 // Record only if there are multiple active nodes. 672 _obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC); 673 memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes); 674 } 675 } 676 } 677 678 void G1ParScanThreadState::flush_numa_stats() { 679 if (_obj_alloc_stat != nullptr) { 680 uint node_index = _numa->index_of_current_thread(); 681 _numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat); 682 } 683 } 684 685 void G1ParScanThreadState::update_numa_stats(uint node_index) { 686 if (_obj_alloc_stat != nullptr) { 687 _obj_alloc_stat[node_index]++; 688 } 689 } 690 691 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, 692 uint num_workers, 693 G1CollectionSet* collection_set, 694 G1EvacFailureRegions* evac_failure_regions) : 695 _g1h(g1h), 696 _collection_set(collection_set), 697 _rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()), 698 _preserved_marks_set(true /* in_c_heap */), 699 _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, num_workers, mtGC)), 700 _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, collection_set->young_region_length() + 1, mtGC)), 701 _num_workers(num_workers), 702 _flushed(false), 703 _evac_failure_regions(evac_failure_regions) { 704 _preserved_marks_set.init(num_workers); 705 for (uint i = 0; i < num_workers; ++i) { 706 _states[i] = nullptr; 707 } 708 memset(_surviving_young_words_total, 0, (collection_set->young_region_length() + 1) * sizeof(size_t)); 709 } 710 711 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() { 712 assert(_flushed, "thread local state from the per thread states should have been flushed"); 713 FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states); 714 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total); 715 _preserved_marks_set.assert_empty(); 716 _preserved_marks_set.reclaim(); 717 }