1 /* 2 * Copyright (c) 2002, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP 26 #define SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP 27 28 #include "gc/parallel/psPromotionManager.hpp" 29 30 #include "gc/parallel/parallelScavengeHeap.hpp" 31 #include "gc/parallel/parMarkBitMap.inline.hpp" 32 #include "gc/parallel/psOldGen.hpp" 33 #include "gc/parallel/psPromotionLAB.inline.hpp" 34 #include "gc/parallel/psScavenge.inline.hpp" 35 #include "gc/parallel/psStringDedup.hpp" 36 #include "gc/shared/continuationGCSupport.inline.hpp" 37 #include "gc/shared/taskqueue.inline.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "logging/log.hpp" 40 #include "memory/iterator.inline.hpp" 41 #include "oops/access.inline.hpp" 42 #include "oops/oop.inline.hpp" 43 #include "runtime/orderAccess.hpp" 44 #include "runtime/prefetch.inline.hpp" 45 #include "utilities/copy.hpp" 46 47 inline PSPromotionManager* PSPromotionManager::manager_array(uint index) { 48 assert(_manager_array != nullptr, "access of null manager_array"); 49 assert(index < ParallelGCThreads, "out of range manager_array access"); 50 return &_manager_array[index]; 51 } 52 53 inline void PSPromotionManager::push_depth(ScannerTask task) { 54 claimed_stack_depth()->push(task); 55 } 56 57 template <class T> 58 inline void PSPromotionManager::claim_or_forward_depth(T* p) { 59 assert(should_scavenge(p, true), "revisiting object?"); 60 assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap"); 61 oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); 62 Prefetch::write(obj->mark_addr(), 0); 63 push_depth(ScannerTask(p)); 64 } 65 66 inline void PSPromotionManager::promotion_trace_event(oop new_obj, Klass* klass, 67 size_t obj_size, 68 uint age, bool tenured, 69 const PSPromotionLAB* lab) { 70 // Skip if memory allocation failed 71 if (new_obj != nullptr) { 72 const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer(); 73 74 if (lab != nullptr) { 75 // Promotion of object through newly allocated PLAB 76 if (gc_tracer->should_report_promotion_in_new_plab_event()) { 77 size_t obj_bytes = obj_size * HeapWordSize; 78 size_t lab_size = lab->capacity(); 79 gc_tracer->report_promotion_in_new_plab_event(klass, obj_bytes, 80 age, tenured, lab_size); 81 } 82 } else { 83 // Promotion of object directly to heap 84 if (gc_tracer->should_report_promotion_outside_plab_event()) { 85 size_t obj_bytes = obj_size * HeapWordSize; 86 gc_tracer->report_promotion_outside_plab_event(klass, obj_bytes, 87 age, tenured); 88 } 89 } 90 } 91 } 92 93 class PSPushContentsClosure: public BasicOopIterateClosure { 94 PSPromotionManager* _pm; 95 public: 96 PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {} 97 98 template <typename T> void do_oop_nv(T* p) { 99 if (PSScavenge::should_scavenge(p)) { 100 _pm->claim_or_forward_depth(p); 101 } 102 } 103 104 virtual void do_oop(oop* p) { do_oop_nv(p); } 105 virtual void do_oop(narrowOop* p) { do_oop_nv(p); } 106 }; 107 108 // 109 // This closure specialization will override the one that is defined in 110 // instanceRefKlass.inline.cpp. It swaps the order of oop_oop_iterate and 111 // oop_oop_iterate_ref_processing. Unfortunately G1 and Parallel behaves 112 // significantly better (especially in the Derby benchmark) using opposite 113 // order of these function calls. 114 // 115 template <> 116 inline void InstanceRefKlass::oop_oop_iterate_reverse<oop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) { 117 oop_oop_iterate_ref_processing<oop>(obj, closure); 118 InstanceKlass::oop_oop_iterate_reverse<oop>(obj, closure); 119 } 120 121 template <> 122 inline void InstanceRefKlass::oop_oop_iterate_reverse<narrowOop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) { 123 oop_oop_iterate_ref_processing<narrowOop>(obj, closure); 124 InstanceKlass::oop_oop_iterate_reverse<narrowOop>(obj, closure); 125 } 126 127 inline void PSPromotionManager::push_contents(oop obj) { 128 if (!obj->klass()->is_typeArray_klass()) { 129 PSPushContentsClosure pcc(this); 130 obj->oop_iterate_backwards(&pcc); 131 } 132 } 133 134 inline void PSPromotionManager::push_contents_bounded(oop obj, HeapWord* left, HeapWord* right) { 135 PSPushContentsClosure pcc(this); 136 obj->oop_iterate(&pcc, MemRegion(left, right)); 137 } 138 139 template<bool promote_immediately> 140 inline oop PSPromotionManager::copy_to_survivor_space(oop o) { 141 assert(should_scavenge(&o), "Sanity"); 142 143 // NOTE! We must be very careful with any methods that access the mark 144 // in o. There may be multiple threads racing on it, and it may be forwarded 145 // at any time. 146 markWord m = o->mark(); 147 if (!m.is_marked()) { 148 return copy_unmarked_to_survivor_space<promote_immediately>(o, m); 149 } else { 150 // Ensure any loads from the forwardee follow all changes that precede 151 // the release-cmpxchg that performed the forwarding, possibly in some 152 // other thread. 153 OrderAccess::acquire(); 154 // Return the already installed forwardee. 155 return o->forwardee(m); 156 } 157 } 158 159 // 160 // This method is pretty bulky. It would be nice to split it up 161 // into smaller submethods, but we need to be careful not to hurt 162 // performance. 163 // 164 template<bool promote_immediately> 165 inline oop PSPromotionManager::copy_unmarked_to_survivor_space(oop o, 166 markWord test_mark) { 167 assert(should_scavenge(&o), "Sanity"); 168 169 oop new_obj = nullptr; 170 bool new_obj_is_tenured = false; 171 // NOTE: With compact headers, it is not safe to load the Klass* from o, because 172 // that would access the mark-word, and the mark-word might change at any time by 173 // concurrent promotion. The promoted mark-word would point to the forwardee, which 174 // may not yet have completed copying. Therefore we must load the Klass* from 175 // the mark-word that we have already loaded. This is safe, because we have checked 176 // that this is not yet forwarded in the caller. 177 Klass* klass = o->forward_safe_klass(test_mark); 178 size_t new_obj_size = o->size_given_klass(klass); 179 180 // Find the objects age, MT safe. 181 uint age = (test_mark.has_displaced_mark_helper() /* o->has_displaced_mark() */) ? 182 test_mark.displaced_mark_helper().age() : test_mark.age(); 183 184 if (!promote_immediately) { 185 // Try allocating obj in to-space (unless too old) 186 if (age < PSScavenge::tenuring_threshold()) { 187 new_obj = cast_to_oop(_young_lab.allocate(new_obj_size)); 188 if (new_obj == nullptr && !_young_gen_is_full) { 189 // Do we allocate directly, or flush and refill? 190 if (new_obj_size > (YoungPLABSize / 2)) { 191 // Allocate this object directly 192 new_obj = cast_to_oop(young_space()->cas_allocate(new_obj_size)); 193 promotion_trace_event(new_obj, klass, new_obj_size, age, false, nullptr); 194 } else { 195 // Flush and fill 196 _young_lab.flush(); 197 198 HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize); 199 if (lab_base != nullptr) { 200 _young_lab.initialize(MemRegion(lab_base, YoungPLABSize)); 201 // Try the young lab allocation again. 202 new_obj = cast_to_oop(_young_lab.allocate(new_obj_size)); 203 promotion_trace_event(new_obj, klass, new_obj_size, age, false, &_young_lab); 204 } else { 205 _young_gen_is_full = true; 206 } 207 } 208 } 209 } 210 } 211 212 // Otherwise try allocating obj tenured 213 if (new_obj == nullptr) { 214 #ifndef PRODUCT 215 if (ParallelScavengeHeap::heap()->promotion_should_fail()) { 216 return oop_promotion_failed(o, test_mark); 217 } 218 #endif // #ifndef PRODUCT 219 220 new_obj = cast_to_oop(_old_lab.allocate(new_obj_size)); 221 new_obj_is_tenured = true; 222 223 if (new_obj == nullptr) { 224 if (!_old_gen_is_full) { 225 // Do we allocate directly, or flush and refill? 226 if (new_obj_size > (OldPLABSize / 2)) { 227 // Allocate this object directly 228 new_obj = cast_to_oop(old_gen()->allocate(new_obj_size)); 229 promotion_trace_event(new_obj, klass, new_obj_size, age, true, nullptr); 230 } else { 231 // Flush and fill 232 _old_lab.flush(); 233 234 HeapWord* lab_base = old_gen()->allocate(OldPLABSize); 235 if(lab_base != nullptr) { 236 _old_lab.initialize(MemRegion(lab_base, OldPLABSize)); 237 // Try the old lab allocation again. 238 new_obj = cast_to_oop(_old_lab.allocate(new_obj_size)); 239 promotion_trace_event(new_obj, klass, new_obj_size, age, true, &_old_lab); 240 } 241 } 242 } 243 244 // This is the promotion failed test, and code handling. 245 // The code belongs here for two reasons. It is slightly 246 // different than the code below, and cannot share the 247 // CAS testing code. Keeping the code here also minimizes 248 // the impact on the common case fast path code. 249 250 if (new_obj == nullptr) { 251 _old_gen_is_full = true; 252 return oop_promotion_failed(o, test_mark); 253 } 254 } 255 } 256 257 assert(new_obj != nullptr, "allocation should have succeeded"); 258 259 // Copy obj 260 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(o), cast_from_oop<HeapWord*>(new_obj), new_obj_size); 261 262 // Parallel GC claims with a release - so other threads might access this object 263 // after claiming and they should see the "completed" object. 264 if (UseCompactObjectHeaders) { 265 // The copy above is not atomic. Make sure we have seen the proper mark 266 // and re-install it into the copy, so that Klass* is guaranteed to be correct. 267 markWord mark = o->mark(); 268 if (!mark.is_marked()) { 269 new_obj->set_mark(mark); 270 ContinuationGCSupport::transform_stack_chunk(new_obj); 271 } else { 272 // If we copied a mark-word that indicates 'forwarded' state, the object 273 // installation would not succeed. We cannot access Klass* anymore either. 274 // Skip the transformation. 275 } 276 } else { 277 ContinuationGCSupport::transform_stack_chunk(new_obj); 278 } 279 280 // Now we have to CAS in the header. 281 // Make copy visible to threads reading the forwardee. 282 oop forwardee = o->forward_to_atomic(new_obj, test_mark, memory_order_release); 283 if (forwardee == nullptr) { // forwardee is null when forwarding is successful 284 // We won any races, we "own" this object. 285 assert(new_obj == o->forwardee(), "Sanity"); 286 287 // Increment age if obj still in new generation. Now that 288 // we're dealing with a markWord that cannot change, it is 289 // okay to use the non mt safe oop methods. 290 if (!new_obj_is_tenured) { 291 new_obj->incr_age(); 292 assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj"); 293 } 294 295 // Do the size comparison first with new_obj_size, which we 296 // already have. Hopefully, only a few objects are larger than 297 // _min_array_size_for_chunking, and most of them will be arrays. 298 // So, the is->objArray() test would be very infrequent. 299 if (new_obj_size > _min_array_size_for_chunking && 300 new_obj->is_objArray() && 301 PSChunkLargeArrays) { 302 // we'll chunk it 303 push_depth(ScannerTask(PartialArrayScanTask(o))); 304 TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_array_chunk_pushes); 305 } else { 306 // we'll just push its contents 307 push_contents(new_obj); 308 309 if (StringDedup::is_enabled() && 310 java_lang_String::is_instance(new_obj) && 311 psStringDedup::is_candidate_from_evacuation(new_obj, new_obj_is_tenured)) { 312 _string_dedup_requests.add(o); 313 } 314 } 315 return new_obj; 316 } else { 317 // We lost, someone else "owns" this object. 318 // Ensure loads from the forwardee follow all changes that preceded the 319 // release-cmpxchg that performed the forwarding in another thread. 320 OrderAccess::acquire(); 321 322 assert(o->is_forwarded(), "Object must be forwarded if the cas failed."); 323 assert(o->forwardee() == forwardee, "invariant"); 324 325 if (new_obj_is_tenured) { 326 _old_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size); 327 } else { 328 _young_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size); 329 } 330 return forwardee; 331 } 332 } 333 334 // Attempt to "claim" oop at p via CAS, push the new obj if successful 335 template <bool promote_immediately, class T> 336 inline void PSPromotionManager::copy_and_push_safe_barrier(T* p) { 337 assert(ParallelScavengeHeap::heap()->is_in_reserved(p), "precondition"); 338 assert(should_scavenge(p, true), "revisiting object?"); 339 340 oop o = RawAccess<IS_NOT_NULL>::oop_load(p); 341 oop new_obj = copy_to_survivor_space<promote_immediately>(o); 342 RawAccess<IS_NOT_NULL>::oop_store(p, new_obj); 343 344 if (!PSScavenge::is_obj_in_young((HeapWord*)p) && 345 PSScavenge::is_obj_in_young(new_obj)) { 346 PSScavenge::card_table()->inline_write_ref_field_gc(p); 347 } 348 } 349 350 inline void PSPromotionManager::process_popped_location_depth(ScannerTask task) { 351 if (task.is_partial_array_task()) { 352 assert(PSChunkLargeArrays, "invariant"); 353 process_array_chunk(task.to_partial_array_task()); 354 } else { 355 if (task.is_narrow_oop_ptr()) { 356 assert(UseCompressedOops, "Error"); 357 copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_narrow_oop_ptr()); 358 } else { 359 copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_oop_ptr()); 360 } 361 } 362 } 363 364 inline bool PSPromotionManager::steal_depth(int queue_num, ScannerTask& t) { 365 return stack_array_depth()->steal(queue_num, t); 366 } 367 368 #if TASKQUEUE_STATS 369 void PSPromotionManager::record_steal(ScannerTask task) { 370 if (task.is_partial_array_task()) { 371 ++_array_chunk_steals; 372 } 373 } 374 #endif // TASKQUEUE_STATS 375 376 #endif // SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP