1 /*
  2  * Copyright (c) 2002, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
 26 #define SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
 27 
 28 #include "gc/parallel/psPromotionManager.hpp"
 29 
 30 #include "gc/parallel/parallelScavengeHeap.hpp"
 31 #include "gc/parallel/parMarkBitMap.inline.hpp"
 32 #include "gc/parallel/psOldGen.hpp"
 33 #include "gc/parallel/psPromotionLAB.inline.hpp"
 34 #include "gc/parallel/psScavenge.inline.hpp"
 35 #include "gc/parallel/psStringDedup.hpp"
 36 #include "gc/shared/continuationGCSupport.inline.hpp"
 37 #include "gc/shared/taskqueue.inline.hpp"
 38 #include "gc/shared/tlab_globals.hpp"
 39 #include "logging/log.hpp"
 40 #include "memory/iterator.inline.hpp"
 41 #include "oops/access.inline.hpp"
 42 #include "oops/oop.inline.hpp"
 43 #include "runtime/orderAccess.hpp"
 44 #include "runtime/prefetch.inline.hpp"
 45 #include "utilities/copy.hpp"
 46 
 47 inline PSPromotionManager* PSPromotionManager::manager_array(uint index) {
 48   assert(_manager_array != nullptr, "access of null manager_array");
 49   assert(index < ParallelGCThreads, "out of range manager_array access");
 50   return &_manager_array[index];
 51 }
 52 
 53 inline void PSPromotionManager::push_depth(ScannerTask task) {
 54   claimed_stack_depth()->push(task);
 55 }
 56 
 57 template <class T>
 58 inline void PSPromotionManager::claim_or_forward_depth(T* p) {
 59   assert(should_scavenge(p, true), "revisiting object?");
 60   assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap");
 61   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
 62   Prefetch::write(obj->mark_addr(), 0);
 63   push_depth(ScannerTask(p));
 64 }
 65 
 66 inline void PSPromotionManager::promotion_trace_event(oop new_obj, Klass* klass,
 67                                                       size_t obj_size,
 68                                                       uint age, bool tenured,
 69                                                       const PSPromotionLAB* lab) {
 70   // Skip if memory allocation failed
 71   if (new_obj != nullptr) {
 72     const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer();
 73 
 74     if (lab != nullptr) {
 75       // Promotion of object through newly allocated PLAB
 76       if (gc_tracer->should_report_promotion_in_new_plab_event()) {
 77         size_t obj_bytes = obj_size * HeapWordSize;
 78         size_t lab_size = lab->capacity();
 79         gc_tracer->report_promotion_in_new_plab_event(klass, obj_bytes,
 80                                                       age, tenured, lab_size);
 81       }
 82     } else {
 83       // Promotion of object directly to heap
 84       if (gc_tracer->should_report_promotion_outside_plab_event()) {
 85         size_t obj_bytes = obj_size * HeapWordSize;
 86         gc_tracer->report_promotion_outside_plab_event(klass, obj_bytes,
 87                                                        age, tenured);
 88       }
 89     }
 90   }
 91 }
 92 
 93 class PSPushContentsClosure: public BasicOopIterateClosure {
 94   PSPromotionManager* _pm;
 95  public:
 96   PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {}
 97 
 98   template <typename T> void do_oop_nv(T* p) {
 99     if (PSScavenge::should_scavenge(p)) {
100       _pm->claim_or_forward_depth(p);
101     }
102   }
103 
104   virtual void do_oop(oop* p)       { do_oop_nv(p); }
105   virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
106 };
107 
108 //
109 // This closure specialization will override the one that is defined in
110 // instanceRefKlass.inline.cpp. It swaps the order of oop_oop_iterate and
111 // oop_oop_iterate_ref_processing. Unfortunately G1 and Parallel behaves
112 // significantly better (especially in the Derby benchmark) using opposite
113 // order of these function calls.
114 //
115 template <>
116 inline void InstanceRefKlass::oop_oop_iterate_reverse<oop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
117   oop_oop_iterate_ref_processing<oop>(obj, closure);
118   InstanceKlass::oop_oop_iterate_reverse<oop>(obj, closure);
119 }
120 
121 template <>
122 inline void InstanceRefKlass::oop_oop_iterate_reverse<narrowOop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
123   oop_oop_iterate_ref_processing<narrowOop>(obj, closure);
124   InstanceKlass::oop_oop_iterate_reverse<narrowOop>(obj, closure);
125 }
126 
127 inline void PSPromotionManager::push_contents(oop obj) {
128   if (!obj->klass()->is_typeArray_klass()) {
129     PSPushContentsClosure pcc(this);
130     obj->oop_iterate_backwards(&pcc);
131   }
132 }
133 
134 inline void PSPromotionManager::push_contents_bounded(oop obj, HeapWord* left, HeapWord* right) {
135   PSPushContentsClosure pcc(this);
136   obj->oop_iterate(&pcc, MemRegion(left, right));
137 }
138 
139 template<bool promote_immediately>
140 inline oop PSPromotionManager::copy_to_survivor_space(oop o) {
141   assert(should_scavenge(&o), "Sanity");
142 
143   // NOTE! We must be very careful with any methods that access the mark
144   // in o. There may be multiple threads racing on it, and it may be forwarded
145   // at any time.
146   markWord m = o->mark();
147   if (!m.is_marked()) {
148     return copy_unmarked_to_survivor_space<promote_immediately>(o, m);
149   } else {
150     // Ensure any loads from the forwardee follow all changes that precede
151     // the release-cmpxchg that performed the forwarding, possibly in some
152     // other thread.
153     OrderAccess::acquire();
154     // Return the already installed forwardee.
155     return o->forwardee(m);
156   }
157 }
158 
159 //
160 // This method is pretty bulky. It would be nice to split it up
161 // into smaller submethods, but we need to be careful not to hurt
162 // performance.
163 //
164 template<bool promote_immediately>
165 inline oop PSPromotionManager::copy_unmarked_to_survivor_space(oop o,
166                                                                markWord test_mark) {
167   assert(should_scavenge(&o), "Sanity");
168 
169   oop new_obj = nullptr;
170   bool new_obj_is_tenured = false;
171   // NOTE: With compact headers, it is not safe to load the Klass* from o, because
172   // that would access the mark-word, and the mark-word might change at any time by
173   // concurrent promotion. The promoted mark-word would point to the forwardee, which
174   // may not yet have completed copying. Therefore we must load the Klass* from
175   // the mark-word that we have already loaded. This is safe, because we have checked
176   // that this is not yet forwarded in the caller.
177   Klass* klass = o->forward_safe_klass(test_mark);
178   size_t new_obj_size = o->size_given_klass(klass);
179 
180   // Find the objects age, MT safe.
181   uint age = (test_mark.has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
182       test_mark.displaced_mark_helper().age() : test_mark.age();
183 
184   if (!promote_immediately) {
185     // Try allocating obj in to-space (unless too old)
186     if (age < PSScavenge::tenuring_threshold()) {
187       new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
188       if (new_obj == nullptr && !_young_gen_is_full) {
189         // Do we allocate directly, or flush and refill?
190         if (new_obj_size > (YoungPLABSize / 2)) {
191           // Allocate this object directly
192           new_obj = cast_to_oop(young_space()->cas_allocate(new_obj_size));
193           promotion_trace_event(new_obj, klass, new_obj_size, age, false, nullptr);
194         } else {
195           // Flush and fill
196           _young_lab.flush();
197 
198           HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
199           if (lab_base != nullptr) {
200             _young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
201             // Try the young lab allocation again.
202             new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
203             promotion_trace_event(new_obj, klass, new_obj_size, age, false, &_young_lab);
204           } else {
205             _young_gen_is_full = true;
206           }
207         }
208       }
209     }
210   }
211 
212   // Otherwise try allocating obj tenured
213   if (new_obj == nullptr) {
214 #ifndef PRODUCT
215     if (ParallelScavengeHeap::heap()->promotion_should_fail()) {
216       return oop_promotion_failed(o, test_mark);
217     }
218 #endif  // #ifndef PRODUCT
219 
220     new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
221     new_obj_is_tenured = true;
222 
223     if (new_obj == nullptr) {
224       if (!_old_gen_is_full) {
225         // Do we allocate directly, or flush and refill?
226         if (new_obj_size > (OldPLABSize / 2)) {
227           // Allocate this object directly
228           new_obj = cast_to_oop(old_gen()->allocate(new_obj_size));
229           promotion_trace_event(new_obj, klass, new_obj_size, age, true, nullptr);
230         } else {
231           // Flush and fill
232           _old_lab.flush();
233 
234           HeapWord* lab_base = old_gen()->allocate(OldPLABSize);
235           if(lab_base != nullptr) {
236             _old_lab.initialize(MemRegion(lab_base, OldPLABSize));
237             // Try the old lab allocation again.
238             new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
239             promotion_trace_event(new_obj, klass, new_obj_size, age, true, &_old_lab);
240           }
241         }
242       }
243 
244       // This is the promotion failed test, and code handling.
245       // The code belongs here for two reasons. It is slightly
246       // different than the code below, and cannot share the
247       // CAS testing code. Keeping the code here also minimizes
248       // the impact on the common case fast path code.
249 
250       if (new_obj == nullptr) {
251         _old_gen_is_full = true;
252         return oop_promotion_failed(o, test_mark);
253       }
254     }
255   }
256 
257   assert(new_obj != nullptr, "allocation should have succeeded");
258 
259   // Copy obj
260   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(o), cast_from_oop<HeapWord*>(new_obj), new_obj_size);
261 
262   // Parallel GC claims with a release - so other threads might access this object
263   // after claiming and they should see the "completed" object.
264   if (UseCompactObjectHeaders) {
265     // The copy above is not atomic. Make sure we have seen the proper mark
266     // and re-install it into the copy, so that Klass* is guaranteed to be correct.
267     markWord mark = o->mark();
268     if (!mark.is_marked()) {
269       new_obj->set_mark(mark);
270       ContinuationGCSupport::transform_stack_chunk(new_obj);
271     } else {
272       // If we copied a mark-word that indicates 'forwarded' state, the object
273       // installation would not succeed. We cannot access Klass* anymore either.
274       // Skip the transformation.
275     }
276   } else {
277     ContinuationGCSupport::transform_stack_chunk(new_obj);
278   }
279 
280   // Now we have to CAS in the header.
281   // Make copy visible to threads reading the forwardee.
282   oop forwardee = o->forward_to_atomic(new_obj, test_mark, memory_order_release);
283   if (forwardee == nullptr) {  // forwardee is null when forwarding is successful
284     // We won any races, we "own" this object.
285     assert(new_obj == o->forwardee(), "Sanity");
286 
287     // Increment age if obj still in new generation. Now that
288     // we're dealing with a markWord that cannot change, it is
289     // okay to use the non mt safe oop methods.
290     if (!new_obj_is_tenured) {
291       new_obj->incr_age();
292       assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
293     }
294 
295     // Do the size comparison first with new_obj_size, which we
296     // already have. Hopefully, only a few objects are larger than
297     // _min_array_size_for_chunking, and most of them will be arrays.
298     // So, the is->objArray() test would be very infrequent.
299     if (new_obj_size > _min_array_size_for_chunking &&
300         new_obj->is_objArray() &&
301         PSChunkLargeArrays) {
302       // we'll chunk it
303       push_depth(ScannerTask(PartialArrayScanTask(o)));
304       TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_array_chunk_pushes);
305     } else {
306       // we'll just push its contents
307       push_contents(new_obj);
308 
309       if (StringDedup::is_enabled() &&
310           java_lang_String::is_instance(new_obj) &&
311           psStringDedup::is_candidate_from_evacuation(new_obj, new_obj_is_tenured)) {
312         _string_dedup_requests.add(o);
313       }
314     }
315     return new_obj;
316   } else {
317     // We lost, someone else "owns" this object.
318     // Ensure loads from the forwardee follow all changes that preceded the
319     // release-cmpxchg that performed the forwarding in another thread.
320     OrderAccess::acquire();
321 
322     assert(o->is_forwarded(), "Object must be forwarded if the cas failed.");
323     assert(o->forwardee() == forwardee, "invariant");
324 
325     if (new_obj_is_tenured) {
326       _old_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size);
327     } else {
328       _young_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size);
329     }
330     return forwardee;
331   }
332 }
333 
334 // Attempt to "claim" oop at p via CAS, push the new obj if successful
335 template <bool promote_immediately, class T>
336 inline void PSPromotionManager::copy_and_push_safe_barrier(T* p) {
337   assert(ParallelScavengeHeap::heap()->is_in_reserved(p), "precondition");
338   assert(should_scavenge(p, true), "revisiting object?");
339 
340   oop o = RawAccess<IS_NOT_NULL>::oop_load(p);
341   oop new_obj = copy_to_survivor_space<promote_immediately>(o);
342   RawAccess<IS_NOT_NULL>::oop_store(p, new_obj);
343 
344   if (!PSScavenge::is_obj_in_young((HeapWord*)p) &&
345        PSScavenge::is_obj_in_young(new_obj)) {
346     PSScavenge::card_table()->inline_write_ref_field_gc(p);
347   }
348 }
349 
350 inline void PSPromotionManager::process_popped_location_depth(ScannerTask task) {
351   if (task.is_partial_array_task()) {
352     assert(PSChunkLargeArrays, "invariant");
353     process_array_chunk(task.to_partial_array_task());
354   } else {
355     if (task.is_narrow_oop_ptr()) {
356       assert(UseCompressedOops, "Error");
357       copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_narrow_oop_ptr());
358     } else {
359       copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_oop_ptr());
360     }
361   }
362 }
363 
364 inline bool PSPromotionManager::steal_depth(int queue_num, ScannerTask& t) {
365   return stack_array_depth()->steal(queue_num, t);
366 }
367 
368 #if TASKQUEUE_STATS
369 void PSPromotionManager::record_steal(ScannerTask task) {
370   if (task.is_partial_array_task()) {
371     ++_array_chunk_steals;
372   }
373 }
374 #endif // TASKQUEUE_STATS
375 
376 #endif // SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP