1 /*
   2  * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/serial/cardTableRS.hpp"
  34 #include "gc/serial/defNewGeneration.hpp"
  35 #include "gc/serial/genMarkSweep.hpp"
  36 #include "gc/serial/markSweep.hpp"
  37 #include "gc/shared/adaptiveSizePolicy.hpp"
  38 #include "gc/shared/cardTableBarrierSet.hpp"
  39 #include "gc/shared/collectedHeap.inline.hpp"
  40 #include "gc/shared/collectorCounters.hpp"
  41 #include "gc/shared/continuationGCSupport.inline.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcInitLogger.hpp"
  44 #include "gc/shared/gcLocker.hpp"
  45 #include "gc/shared/gcPolicyCounters.hpp"
  46 #include "gc/shared/gcTrace.hpp"
  47 #include "gc/shared/gcTraceTime.inline.hpp"
  48 #include "gc/shared/gcVMOperations.hpp"
  49 #include "gc/shared/genArguments.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/generationSpec.hpp"
  52 #include "gc/shared/locationPrinter.inline.hpp"
  53 #include "gc/shared/oopStorage.inline.hpp"
  54 #include "gc/shared/oopStorageParState.inline.hpp"
  55 #include "gc/shared/oopStorageSet.inline.hpp"
  56 #include "gc/shared/scavengableNMethods.hpp"
  57 #include "gc/shared/space.hpp"
  58 #include "gc/shared/strongRootsScope.hpp"
  59 #include "gc/shared/weakProcessor.hpp"
  60 #include "gc/shared/workerThread.hpp"
  61 #include "memory/iterator.hpp"
  62 #include "memory/metaspaceCounters.hpp"
  63 #include "memory/metaspaceUtils.hpp"
  64 #include "memory/resourceArea.hpp"
  65 #include "memory/universe.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/handles.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/threads.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "services/memoryService.hpp"
  73 #include "utilities/autoRestore.hpp"
  74 #include "utilities/debug.hpp"
  75 #include "utilities/formatBuffer.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/stack.inline.hpp"
  78 #include "utilities/vmError.hpp"
  79 #if INCLUDE_JVMCI
  80 #include "jvmci/jvmci.hpp"
  81 #endif
  82 
  83 GenCollectedHeap::GenCollectedHeap(Generation::Name young,
  84                                    Generation::Name old,
  85                                    const char* policy_counters_name) :
  86   CollectedHeap(),
  87   _young_gen(nullptr),
  88   _old_gen(nullptr),
  89   _young_gen_spec(new GenerationSpec(young,
  90                                      NewSize,
  91                                      MaxNewSize,
  92                                      GenAlignment)),
  93   _old_gen_spec(new GenerationSpec(old,
  94                                    OldSize,
  95                                    MaxOldSize,
  96                                    GenAlignment)),
  97   _rem_set(nullptr),
  98   _soft_ref_gen_policy(),
  99   _size_policy(nullptr),
 100   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
 101   _incremental_collection_failed(false),
 102   _full_collections_completed(0),
 103   _young_manager(nullptr),
 104   _old_manager(nullptr) {
 105 }
 106 
 107 jint GenCollectedHeap::initialize() {
 108   // Allocate space for the heap.
 109 
 110   ReservedHeapSpace heap_rs = allocate(HeapAlignment);
 111 
 112   if (!heap_rs.is_reserved()) {
 113     vm_shutdown_during_initialization(
 114       "Could not reserve enough space for object heap");
 115     return JNI_ENOMEM;
 116   }
 117 
 118   initialize_reserved_region(heap_rs);
 119 
 120   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size());
 121   ReservedSpace old_rs = heap_rs.last_part(_young_gen_spec->max_size());
 122 
 123   _rem_set = create_rem_set(heap_rs.region());
 124   _rem_set->initialize(young_rs.base(), old_rs.base());
 125 
 126   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 127   bs->initialize();
 128   BarrierSet::set_barrier_set(bs);
 129 
 130   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 131   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 132 
 133   GCInitLogger::print();
 134 
 135   return JNI_OK;
 136 }
 137 
 138 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 139   return new CardTableRS(reserved_region);
 140 }
 141 
 142 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 143                                               size_t init_promo_size,
 144                                               size_t init_survivor_size) {
 145   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 146   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 147                                         init_promo_size,
 148                                         init_survivor_size,
 149                                         max_gc_pause_sec,
 150                                         GCTimeRatio);
 151 }
 152 
 153 ReservedHeapSpace GenCollectedHeap::allocate(size_t alignment) {
 154   // Now figure out the total size.
 155   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 156   assert(alignment % pageSize == 0, "Must be");
 157 
 158   // Check for overflow.
 159   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 160   if (total_reserved < _young_gen_spec->max_size()) {
 161     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 162                                   "the maximum representable size");
 163   }
 164   assert(total_reserved % alignment == 0,
 165          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 166          SIZE_FORMAT, total_reserved, alignment);
 167 
 168   ReservedHeapSpace heap_rs = Universe::reserve_heap(total_reserved, alignment);
 169   size_t used_page_size = heap_rs.page_size();
 170 
 171   os::trace_page_sizes("Heap",
 172                        MinHeapSize,
 173                        total_reserved,
 174                        used_page_size,
 175                        heap_rs.base(),
 176                        heap_rs.size());
 177 
 178   return heap_rs;
 179 }
 180 
 181 class GenIsScavengable : public BoolObjectClosure {
 182 public:
 183   bool do_object_b(oop obj) {
 184     return GenCollectedHeap::heap()->is_in_young(obj);
 185   }
 186 };
 187 
 188 static GenIsScavengable _is_scavengable;
 189 
 190 void GenCollectedHeap::post_initialize() {
 191   CollectedHeap::post_initialize();
 192 
 193   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 194 
 195   def_new_gen->ref_processor_init();
 196 
 197   initialize_size_policy(def_new_gen->eden()->capacity(),
 198                          _old_gen->capacity(),
 199                          def_new_gen->from()->capacity());
 200 
 201   MarkSweep::initialize();
 202 
 203   ScavengableNMethods::initialize(&_is_scavengable);
 204 }
 205 
 206 PreGenGCValues GenCollectedHeap::get_pre_gc_values() const {
 207   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
 208 
 209   return PreGenGCValues(def_new_gen->used(),
 210                         def_new_gen->capacity(),
 211                         def_new_gen->eden()->used(),
 212                         def_new_gen->eden()->capacity(),
 213                         def_new_gen->from()->used(),
 214                         def_new_gen->from()->capacity(),
 215                         old_gen()->used(),
 216                         old_gen()->capacity());
 217 }
 218 
 219 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 220   return _young_gen_spec;
 221 }
 222 
 223 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 224   return _old_gen_spec;
 225 }
 226 
 227 size_t GenCollectedHeap::capacity() const {
 228   return _young_gen->capacity() + _old_gen->capacity();
 229 }
 230 
 231 size_t GenCollectedHeap::used() const {
 232   return _young_gen->used() + _old_gen->used();
 233 }
 234 
 235 void GenCollectedHeap::save_used_regions() {
 236   _old_gen->save_used_region();
 237   _young_gen->save_used_region();
 238 }
 239 
 240 size_t GenCollectedHeap::max_capacity() const {
 241   return _young_gen->max_capacity() + _old_gen->max_capacity();
 242 }
 243 
 244 // Update the _full_collections_completed counter
 245 // at the end of a stop-world full GC.
 246 unsigned int GenCollectedHeap::update_full_collections_completed() {
 247   assert(_full_collections_completed <= _total_full_collections,
 248          "Can't complete more collections than were started");
 249   _full_collections_completed = _total_full_collections;
 250   return _full_collections_completed;
 251 }
 252 
 253 // Return true if any of the following is true:
 254 // . the allocation won't fit into the current young gen heap
 255 // . gc locker is occupied (jni critical section)
 256 // . heap memory is tight -- the most recent previous collection
 257 //   was a full collection because a partial collection (would
 258 //   have) failed and is likely to fail again
 259 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 260   size_t young_capacity = _young_gen->capacity_before_gc();
 261   return    (word_size > heap_word_size(young_capacity))
 262          || GCLocker::is_active_and_needs_gc()
 263          || incremental_collection_failed();
 264 }
 265 
 266 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 267   HeapWord* result = nullptr;
 268   if (_old_gen->should_allocate(size, is_tlab)) {
 269     result = _old_gen->expand_and_allocate(size, is_tlab);
 270   }
 271   if (result == nullptr) {
 272     if (_young_gen->should_allocate(size, is_tlab)) {
 273       result = _young_gen->expand_and_allocate(size, is_tlab);
 274     }
 275   }
 276   assert(result == nullptr || is_in_reserved(result), "result not in heap");
 277   return result;
 278 }
 279 
 280 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 281                                               bool is_tlab) {
 282 
 283   HeapWord* result = nullptr;
 284 
 285   // Loop until the allocation is satisfied, or unsatisfied after GC.
 286   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 287 
 288     // First allocation attempt is lock-free.
 289     Generation *young = _young_gen;
 290     if (young->should_allocate(size, is_tlab)) {
 291       result = young->par_allocate(size, is_tlab);
 292       if (result != nullptr) {
 293         assert(is_in_reserved(result), "result not in heap");
 294         return result;
 295       }
 296     }
 297     uint gc_count_before;  // Read inside the Heap_lock locked region.
 298     {
 299       MutexLocker ml(Heap_lock);
 300       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 301       // Note that only large objects get a shot at being
 302       // allocated in later generations.
 303       bool first_only = !should_try_older_generation_allocation(size);
 304 
 305       result = attempt_allocation(size, is_tlab, first_only);
 306       if (result != nullptr) {
 307         assert(is_in_reserved(result), "result not in heap");
 308         return result;
 309       }
 310 
 311       if (GCLocker::is_active_and_needs_gc()) {
 312         if (is_tlab) {
 313           return nullptr;  // Caller will retry allocating individual object.
 314         }
 315         if (!is_maximal_no_gc()) {
 316           // Try and expand heap to satisfy request.
 317           result = expand_heap_and_allocate(size, is_tlab);
 318           // Result could be null if we are out of space.
 319           if (result != nullptr) {
 320             return result;
 321           }
 322         }
 323 
 324         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 325           return nullptr; // We didn't get to do a GC and we didn't get any memory.
 326         }
 327 
 328         // If this thread is not in a jni critical section, we stall
 329         // the requestor until the critical section has cleared and
 330         // GC allowed. When the critical section clears, a GC is
 331         // initiated by the last thread exiting the critical section; so
 332         // we retry the allocation sequence from the beginning of the loop,
 333         // rather than causing more, now probably unnecessary, GC attempts.
 334         JavaThread* jthr = JavaThread::current();
 335         if (!jthr->in_critical()) {
 336           MutexUnlocker mul(Heap_lock);
 337           // Wait for JNI critical section to be exited
 338           GCLocker::stall_until_clear();
 339           gclocker_stalled_count += 1;
 340           continue;
 341         } else {
 342           if (CheckJNICalls) {
 343             fatal("Possible deadlock due to allocating while"
 344                   " in jni critical section");
 345           }
 346           return nullptr;
 347         }
 348       }
 349 
 350       // Read the gc count while the heap lock is held.
 351       gc_count_before = total_collections();
 352     }
 353 
 354     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 355     VMThread::execute(&op);
 356     if (op.prologue_succeeded()) {
 357       result = op.result();
 358       if (op.gc_locked()) {
 359          assert(result == nullptr, "must be null if gc_locked() is true");
 360          continue;  // Retry and/or stall as necessary.
 361       }
 362 
 363       assert(result == nullptr || is_in_reserved(result),
 364              "result not in heap");
 365       return result;
 366     }
 367 
 368     // Give a warning if we seem to be looping forever.
 369     if ((QueuedAllocationWarningCount > 0) &&
 370         (try_count % QueuedAllocationWarningCount == 0)) {
 371           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 372                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 373     }
 374   }
 375 }
 376 
 377 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 378                                                bool is_tlab,
 379                                                bool first_only) {
 380   HeapWord* res = nullptr;
 381 
 382   if (_young_gen->should_allocate(size, is_tlab)) {
 383     res = _young_gen->allocate(size, is_tlab);
 384     if (res != nullptr || first_only) {
 385       return res;
 386     }
 387   }
 388 
 389   if (_old_gen->should_allocate(size, is_tlab)) {
 390     res = _old_gen->allocate(size, is_tlab);
 391   }
 392 
 393   return res;
 394 }
 395 
 396 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 397                                          bool* gc_overhead_limit_was_exceeded) {
 398   return mem_allocate_work(size,
 399                            false /* is_tlab */);
 400 }
 401 
 402 bool GenCollectedHeap::must_clear_all_soft_refs() {
 403   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 404          _gc_cause == GCCause::_wb_full_gc;
 405 }
 406 
 407 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 408                                           bool is_tlab, bool run_verification, bool clear_soft_refs) {
 409   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 410   GCTraceTime(Trace, gc, phases) t1(title);
 411   TraceCollectorStats tcs(gen->counters());
 412   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause(), heap()->is_young_gen(gen) ? "end of minor GC" : "end of major GC");
 413 
 414   gen->stat_record()->invocations++;
 415   gen->stat_record()->accumulated_time.start();
 416 
 417   // Must be done anew before each collection because
 418   // a previous collection will do mangling and will
 419   // change top of some spaces.
 420   record_gen_tops_before_GC();
 421 
 422   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 423 
 424   if (run_verification && VerifyBeforeGC) {
 425     Universe::verify("Before GC");
 426   }
 427   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::clear());
 428 
 429   // Do collection work
 430   {
 431     save_marks();   // save marks for all gens
 432 
 433     gen->collect(full, clear_soft_refs, size, is_tlab);
 434   }
 435 
 436   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::update_pointers());
 437 
 438   gen->stat_record()->accumulated_time.stop();
 439 
 440   update_gc_stats(gen, full);
 441 
 442   if (run_verification && VerifyAfterGC) {
 443     Universe::verify("After GC");
 444   }
 445 }
 446 
 447 void GenCollectedHeap::do_collection(bool           full,
 448                                      bool           clear_all_soft_refs,
 449                                      size_t         size,
 450                                      bool           is_tlab,
 451                                      GenerationType max_generation) {
 452   ResourceMark rm;
 453   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 454 
 455   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 456   assert(my_thread->is_VM_thread(), "only VM thread");
 457   assert(Heap_lock->is_locked(),
 458          "the requesting thread should have the Heap_lock");
 459   guarantee(!is_gc_active(), "collection is not reentrant");
 460 
 461   if (GCLocker::check_active_before_gc()) {
 462     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 463   }
 464 
 465   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 466                           soft_ref_policy()->should_clear_all_soft_refs();
 467 
 468   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 469 
 470   AutoModifyRestore<bool> temporarily(_is_gc_active, true);
 471 
 472   bool complete = full && (max_generation == OldGen);
 473   bool old_collects_young = complete && !ScavengeBeforeFullGC;
 474   bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 475 
 476   const PreGenGCValues pre_gc_values = get_pre_gc_values();
 477 
 478   bool run_verification = total_collections() >= VerifyGCStartAt;
 479   bool prepared_for_verification = false;
 480   bool do_full_collection = false;
 481 
 482   if (do_young_collection) {
 483     GCIdMark gc_id_mark;
 484     GCTraceCPUTime tcpu(((DefNewGeneration*)_young_gen)->gc_tracer());
 485     GCTraceTime(Info, gc) t("Pause Young", nullptr, gc_cause(), true);
 486 
 487     print_heap_before_gc();
 488 
 489     if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 490       prepare_for_verify();
 491       prepared_for_verification = true;
 492     }
 493 
 494     gc_prologue(complete);
 495     increment_total_collections(complete);
 496 
 497     collect_generation(_young_gen,
 498                        full,
 499                        size,
 500                        is_tlab,
 501                        run_verification && VerifyGCLevel <= 0,
 502                        do_clear_all_soft_refs);
 503 
 504     if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 505         size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 506       // Allocation request was met by young GC.
 507       size = 0;
 508     }
 509 
 510     // Ask if young collection is enough. If so, do the final steps for young collection,
 511     // and fallthrough to the end.
 512     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 513     if (!do_full_collection) {
 514       // Adjust generation sizes.
 515       _young_gen->compute_new_size();
 516 
 517       print_heap_change(pre_gc_values);
 518 
 519       // Track memory usage and detect low memory after GC finishes
 520       MemoryService::track_memory_usage();
 521 
 522       gc_epilogue(complete);
 523     }
 524 
 525     print_heap_after_gc();
 526 
 527   } else {
 528     // No young collection, ask if we need to perform Full collection.
 529     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 530   }
 531 
 532   if (do_full_collection) {
 533     GCIdMark gc_id_mark;
 534     GCTraceCPUTime tcpu(GenMarkSweep::gc_tracer());
 535     GCTraceTime(Info, gc) t("Pause Full", nullptr, gc_cause(), true);
 536 
 537     print_heap_before_gc();
 538 
 539     if (!prepared_for_verification && run_verification &&
 540         VerifyGCLevel <= 1 && VerifyBeforeGC) {
 541       prepare_for_verify();
 542     }
 543 
 544     if (!do_young_collection) {
 545       gc_prologue(complete);
 546       increment_total_collections(complete);
 547     }
 548 
 549     // Accounting quirk: total full collections would be incremented when "complete"
 550     // is set, by calling increment_total_collections above. However, we also need to
 551     // account Full collections that had "complete" unset.
 552     if (!complete) {
 553       increment_total_full_collections();
 554     }
 555 
 556     CodeCache::on_gc_marking_cycle_start();
 557 
 558     collect_generation(_old_gen,
 559                        full,
 560                        size,
 561                        is_tlab,
 562                        run_verification && VerifyGCLevel <= 1,
 563                        do_clear_all_soft_refs);
 564 
 565     CodeCache::on_gc_marking_cycle_finish();
 566     CodeCache::arm_all_nmethods();
 567 
 568     // Adjust generation sizes.
 569     _old_gen->compute_new_size();
 570     _young_gen->compute_new_size();
 571 
 572     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 573     ClassLoaderDataGraph::purge(/*at_safepoint*/true);
 574     DEBUG_ONLY(MetaspaceUtils::verify();)
 575 
 576     // Need to clear claim bits for the next mark.
 577     ClassLoaderDataGraph::clear_claimed_marks();
 578 
 579     // Resize the metaspace capacity after full collections
 580     MetaspaceGC::compute_new_size();
 581     update_full_collections_completed();
 582 
 583     print_heap_change(pre_gc_values);
 584 
 585     // Track memory usage and detect low memory after GC finishes
 586     MemoryService::track_memory_usage();
 587 
 588     // Need to tell the epilogue code we are done with Full GC, regardless what was
 589     // the initial value for "complete" flag.
 590     gc_epilogue(true);
 591 
 592     print_heap_after_gc();
 593   }
 594 }
 595 
 596 bool GenCollectedHeap::should_do_full_collection(size_t size, bool full, bool is_tlab,
 597                                                  GenCollectedHeap::GenerationType max_gen) const {
 598   return max_gen == OldGen && _old_gen->should_collect(full, size, is_tlab);
 599 }
 600 
 601 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 602   ScavengableNMethods::register_nmethod(nm);
 603 }
 604 
 605 void GenCollectedHeap::unregister_nmethod(nmethod* nm) {
 606   ScavengableNMethods::unregister_nmethod(nm);
 607 }
 608 
 609 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 610   ScavengableNMethods::verify_nmethod(nm);
 611 }
 612 
 613 void GenCollectedHeap::prune_scavengable_nmethods() {
 614   ScavengableNMethods::prune_nmethods();
 615 }
 616 
 617 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 618   GCCauseSetter x(this, GCCause::_allocation_failure);
 619   HeapWord* result = nullptr;
 620 
 621   assert(size != 0, "Precondition violated");
 622   if (GCLocker::is_active_and_needs_gc()) {
 623     // GC locker is active; instead of a collection we will attempt
 624     // to expand the heap, if there's room for expansion.
 625     if (!is_maximal_no_gc()) {
 626       result = expand_heap_and_allocate(size, is_tlab);
 627     }
 628     return result;   // Could be null if we are out of space.
 629   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 630     // Do an incremental collection.
 631     do_collection(false,                     // full
 632                   false,                     // clear_all_soft_refs
 633                   size,                      // size
 634                   is_tlab,                   // is_tlab
 635                   GenCollectedHeap::OldGen); // max_generation
 636   } else {
 637     log_trace(gc)(" :: Trying full because partial may fail :: ");
 638     // Try a full collection; see delta for bug id 6266275
 639     // for the original code and why this has been simplified
 640     // with from-space allocation criteria modified and
 641     // such allocation moved out of the safepoint path.
 642     do_collection(true,                      // full
 643                   false,                     // clear_all_soft_refs
 644                   size,                      // size
 645                   is_tlab,                   // is_tlab
 646                   GenCollectedHeap::OldGen); // max_generation
 647   }
 648 
 649   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 650 
 651   if (result != nullptr) {
 652     assert(is_in_reserved(result), "result not in heap");
 653     return result;
 654   }
 655 
 656   // OK, collection failed, try expansion.
 657   result = expand_heap_and_allocate(size, is_tlab);
 658   if (result != nullptr) {
 659     return result;
 660   }
 661 
 662   // If we reach this point, we're really out of memory. Try every trick
 663   // we can to reclaim memory. Force collection of soft references. Force
 664   // a complete compaction of the heap. Any additional methods for finding
 665   // free memory should be here, especially if they are expensive. If this
 666   // attempt fails, an OOM exception will be thrown.
 667   {
 668     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 669 
 670     do_collection(true,                      // full
 671                   true,                      // clear_all_soft_refs
 672                   size,                      // size
 673                   is_tlab,                   // is_tlab
 674                   GenCollectedHeap::OldGen); // max_generation
 675   }
 676 
 677   result = attempt_allocation(size, is_tlab, false /* first_only */);
 678   if (result != nullptr) {
 679     assert(is_in_reserved(result), "result not in heap");
 680     return result;
 681   }
 682 
 683   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 684     "Flag should have been handled and cleared prior to this point");
 685 
 686   // What else?  We might try synchronous finalization later.  If the total
 687   // space available is large enough for the allocation, then a more
 688   // complete compaction phase than we've tried so far might be
 689   // appropriate.
 690   return nullptr;
 691 }
 692 
 693 #ifdef ASSERT
 694 class AssertNonScavengableClosure: public OopClosure {
 695 public:
 696   virtual void do_oop(oop* p) {
 697     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 698       "Referent should not be scavengable.");  }
 699   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 700 };
 701 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 702 #endif
 703 
 704 void GenCollectedHeap::process_roots(ScanningOption so,
 705                                      OopClosure* strong_roots,
 706                                      CLDClosure* strong_cld_closure,
 707                                      CLDClosure* weak_cld_closure,
 708                                      CodeBlobToOopClosure* code_roots) {
 709   // General roots.
 710   assert(code_roots != nullptr, "code root closure should always be set");
 711 
 712   ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 713 
 714   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 715   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? nullptr : code_roots;
 716 
 717   Threads::oops_do(strong_roots, roots_from_code_p);
 718 
 719   OopStorageSet::strong_oops_do(strong_roots);
 720 
 721   if (so & SO_ScavengeCodeCache) {
 722     assert(code_roots != nullptr, "must supply closure for code cache");
 723 
 724     // We only visit parts of the CodeCache when scavenging.
 725     ScavengableNMethods::nmethods_do(code_roots);
 726   }
 727   if (so & SO_AllCodeCache) {
 728     assert(code_roots != nullptr, "must supply closure for code cache");
 729 
 730     // CMSCollector uses this to do intermediate-strength collections.
 731     // We scan the entire code cache, since CodeCache::do_unloading is not called.
 732     CodeCache::blobs_do(code_roots);
 733   }
 734   // Verify that the code cache contents are not subject to
 735   // movement by a scavenging collection.
 736   DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 737   DEBUG_ONLY(ScavengableNMethods::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 738 }
 739 
 740 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 741   WeakProcessor::oops_do(root_closure);
 742 }
 743 
 744 bool GenCollectedHeap::no_allocs_since_save_marks() {
 745   return _young_gen->no_allocs_since_save_marks() &&
 746          _old_gen->no_allocs_since_save_marks();
 747 }
 748 
 749 // public collection interfaces
 750 void GenCollectedHeap::collect(GCCause::Cause cause) {
 751   // The caller doesn't have the Heap_lock
 752   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 753 
 754   unsigned int gc_count_before;
 755   unsigned int full_gc_count_before;
 756 
 757   {
 758     MutexLocker ml(Heap_lock);
 759     // Read the GC count while holding the Heap_lock
 760     gc_count_before      = total_collections();
 761     full_gc_count_before = total_full_collections();
 762   }
 763 
 764   if (GCLocker::should_discard(cause, gc_count_before)) {
 765     return;
 766   }
 767 
 768   bool should_run_young_gc =  (cause == GCCause::_wb_young_gc)
 769                            || (cause == GCCause::_gc_locker)
 770                 DEBUG_ONLY(|| (cause == GCCause::_scavenge_alot));
 771 
 772   const GenerationType max_generation = should_run_young_gc
 773                                       ? YoungGen
 774                                       : OldGen;
 775 
 776   while (true) {
 777     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 778                         cause, max_generation);
 779     VMThread::execute(&op);
 780 
 781     if (!GCCause::is_explicit_full_gc(cause)) {
 782       return;
 783     }
 784 
 785     {
 786       MutexLocker ml(Heap_lock);
 787       // Read the GC count while holding the Heap_lock
 788       if (full_gc_count_before != total_full_collections()) {
 789         return;
 790       }
 791     }
 792 
 793     if (GCLocker::is_active_and_needs_gc()) {
 794       // If GCLocker is active, wait until clear before retrying.
 795       GCLocker::stall_until_clear();
 796     }
 797   }
 798 }
 799 
 800 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 801    do_full_collection(clear_all_soft_refs, OldGen);
 802 }
 803 
 804 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 805                                           GenerationType last_generation) {
 806   do_collection(true,                   // full
 807                 clear_all_soft_refs,    // clear_all_soft_refs
 808                 0,                      // size
 809                 false,                  // is_tlab
 810                 last_generation);       // last_generation
 811   // Hack XXX FIX ME !!!
 812   // A scavenge may not have been attempted, or may have
 813   // been attempted and failed, because the old gen was too full
 814   if (gc_cause() == GCCause::_gc_locker && incremental_collection_failed()) {
 815     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 816     // This time allow the old gen to be collected as well
 817     do_collection(true,                // full
 818                   clear_all_soft_refs, // clear_all_soft_refs
 819                   0,                   // size
 820                   false,               // is_tlab
 821                   OldGen);             // last_generation
 822   }
 823 }
 824 
 825 bool GenCollectedHeap::is_in_young(const void* p) const {
 826   bool result = p < _old_gen->reserved().start();
 827   assert(result == _young_gen->is_in_reserved(p),
 828          "incorrect test - result=%d, p=" PTR_FORMAT, result, p2i(p));
 829   return result;
 830 }
 831 
 832 bool GenCollectedHeap::requires_barriers(stackChunkOop obj) const {
 833   return !is_in_young(obj);
 834 }
 835 
 836 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 837 bool GenCollectedHeap::is_in(const void* p) const {
 838   return _young_gen->is_in(p) || _old_gen->is_in(p);
 839 }
 840 
 841 #ifdef ASSERT
 842 // Don't implement this by using is_in_young().  This method is used
 843 // in some cases to check that is_in_young() is correct.
 844 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 845   assert(is_in_reserved(p) || p == nullptr,
 846     "Does not work if address is non-null and outside of the heap");
 847   return p < _young_gen->reserved().end() && p != nullptr;
 848 }
 849 #endif
 850 
 851 void GenCollectedHeap::oop_iterate(OopIterateClosure* cl) {
 852   _young_gen->oop_iterate(cl);
 853   _old_gen->oop_iterate(cl);
 854 }
 855 
 856 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 857   _young_gen->object_iterate(cl);
 858   _old_gen->object_iterate(cl);
 859 }
 860 
 861 Space* GenCollectedHeap::space_containing(const void* addr) const {
 862   Space* res = _young_gen->space_containing(addr);
 863   if (res != nullptr) {
 864     return res;
 865   }
 866   res = _old_gen->space_containing(addr);
 867   assert(res != nullptr, "Could not find containing space");
 868   return res;
 869 }
 870 
 871 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 872   assert(is_in_reserved(addr), "block_start of address outside of heap");
 873   if (_young_gen->is_in_reserved(addr)) {
 874     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 875     return _young_gen->block_start(addr);
 876   }
 877 
 878   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 879   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 880   return _old_gen->block_start(addr);
 881 }
 882 
 883 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 884   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 885   assert(block_start(addr) == addr, "addr must be a block start");
 886   if (_young_gen->is_in_reserved(addr)) {
 887     return _young_gen->block_is_obj(addr);
 888   }
 889 
 890   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 891   return _old_gen->block_is_obj(addr);
 892 }
 893 
 894 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 895   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 896   assert(_young_gen->supports_tlab_allocation(), "Young gen doesn't support TLAB allocation?!");
 897   return _young_gen->tlab_capacity();
 898 }
 899 
 900 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 901   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 902   assert(_young_gen->supports_tlab_allocation(), "Young gen doesn't support TLAB allocation?!");
 903   return _young_gen->tlab_used();
 904 }
 905 
 906 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 907   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 908   assert(_young_gen->supports_tlab_allocation(), "Young gen doesn't support TLAB allocation?!");
 909   return _young_gen->unsafe_max_tlab_alloc();
 910 }
 911 
 912 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
 913                                               size_t requested_size,
 914                                               size_t* actual_size) {
 915   HeapWord* result = mem_allocate_work(requested_size /* size */,
 916                                        true /* is_tlab */);
 917   if (result != nullptr) {
 918     *actual_size = requested_size;
 919   }
 920 
 921   return result;
 922 }
 923 
 924 // Requires "*prev_ptr" to be non-null.  Deletes and a block of minimal size
 925 // from the list headed by "*prev_ptr".
 926 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 927   bool first = true;
 928   size_t min_size = 0;   // "first" makes this conceptually infinite.
 929   ScratchBlock **smallest_ptr, *smallest;
 930   ScratchBlock  *cur = *prev_ptr;
 931   while (cur) {
 932     assert(*prev_ptr == cur, "just checking");
 933     if (first || cur->num_words < min_size) {
 934       smallest_ptr = prev_ptr;
 935       smallest     = cur;
 936       min_size     = smallest->num_words;
 937       first        = false;
 938     }
 939     prev_ptr = &cur->next;
 940     cur     =  cur->next;
 941   }
 942   smallest      = *smallest_ptr;
 943   *smallest_ptr = smallest->next;
 944   return smallest;
 945 }
 946 
 947 // Sort the scratch block list headed by res into decreasing size order,
 948 // and set "res" to the result.
 949 static void sort_scratch_list(ScratchBlock*& list) {
 950   ScratchBlock* sorted = nullptr;
 951   ScratchBlock* unsorted = list;
 952   while (unsorted) {
 953     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 954     smallest->next  = sorted;
 955     sorted          = smallest;
 956   }
 957   list = sorted;
 958 }
 959 
 960 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 961                                                size_t max_alloc_words) {
 962   ScratchBlock* res = nullptr;
 963   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 964   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 965   sort_scratch_list(res);
 966   return res;
 967 }
 968 
 969 void GenCollectedHeap::release_scratch() {
 970   _young_gen->reset_scratch();
 971   _old_gen->reset_scratch();
 972 }
 973 
 974 void GenCollectedHeap::prepare_for_verify() {
 975   ensure_parsability(false);        // no need to retire TLABs
 976 }
 977 
 978 void GenCollectedHeap::generation_iterate(GenClosure* cl,
 979                                           bool old_to_young) {
 980   if (old_to_young) {
 981     cl->do_generation(_old_gen);
 982     cl->do_generation(_young_gen);
 983   } else {
 984     cl->do_generation(_young_gen);
 985     cl->do_generation(_old_gen);
 986   }
 987 }
 988 
 989 bool GenCollectedHeap::is_maximal_no_gc() const {
 990   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
 991 }
 992 
 993 void GenCollectedHeap::save_marks() {
 994   _young_gen->save_marks();
 995   _old_gen->save_marks();
 996 }
 997 
 998 GenCollectedHeap* GenCollectedHeap::heap() {
 999   // SerialHeap is the only subtype of GenCollectedHeap.
1000   return named_heap<GenCollectedHeap>(CollectedHeap::Serial);
1001 }
1002 
1003 #if INCLUDE_SERIALGC
1004 void GenCollectedHeap::prepare_for_compaction() {
1005   // Start by compacting into same gen.
1006   CompactPoint cp(_old_gen);
1007   _old_gen->prepare_for_compaction(&cp);
1008   _young_gen->prepare_for_compaction(&cp);
1009 }
1010 #endif // INCLUDE_SERIALGC
1011 
1012 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1013   log_debug(gc, verify)("%s", _old_gen->name());
1014   _old_gen->verify();
1015 
1016   log_debug(gc, verify)("%s", _young_gen->name());
1017   _young_gen->verify();
1018 
1019   log_debug(gc, verify)("RemSet");
1020   rem_set()->verify();
1021 }
1022 
1023 void GenCollectedHeap::print_on(outputStream* st) const {
1024   if (_young_gen != nullptr) {
1025     _young_gen->print_on(st);
1026   }
1027   if (_old_gen != nullptr) {
1028     _old_gen->print_on(st);
1029   }
1030   MetaspaceUtils::print_on(st);
1031 }
1032 
1033 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1034 }
1035 
1036 bool GenCollectedHeap::print_location(outputStream* st, void* addr) const {
1037   return BlockLocationPrinter<GenCollectedHeap>::print_location(st, addr);
1038 }
1039 
1040 void GenCollectedHeap::print_tracing_info() const {
1041   if (log_is_enabled(Debug, gc, heap, exit)) {
1042     LogStreamHandle(Debug, gc, heap, exit) lsh;
1043     _young_gen->print_summary_info_on(&lsh);
1044     _old_gen->print_summary_info_on(&lsh);
1045   }
1046 }
1047 
1048 void GenCollectedHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
1049   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
1050 
1051   log_info(gc, heap)(HEAP_CHANGE_FORMAT" "
1052                      HEAP_CHANGE_FORMAT" "
1053                      HEAP_CHANGE_FORMAT,
1054                      HEAP_CHANGE_FORMAT_ARGS(def_new_gen->short_name(),
1055                                              pre_gc_values.young_gen_used(),
1056                                              pre_gc_values.young_gen_capacity(),
1057                                              def_new_gen->used(),
1058                                              def_new_gen->capacity()),
1059                      HEAP_CHANGE_FORMAT_ARGS("Eden",
1060                                              pre_gc_values.eden_used(),
1061                                              pre_gc_values.eden_capacity(),
1062                                              def_new_gen->eden()->used(),
1063                                              def_new_gen->eden()->capacity()),
1064                      HEAP_CHANGE_FORMAT_ARGS("From",
1065                                              pre_gc_values.from_used(),
1066                                              pre_gc_values.from_capacity(),
1067                                              def_new_gen->from()->used(),
1068                                              def_new_gen->from()->capacity()));
1069   log_info(gc, heap)(HEAP_CHANGE_FORMAT,
1070                      HEAP_CHANGE_FORMAT_ARGS(old_gen()->short_name(),
1071                                              pre_gc_values.old_gen_used(),
1072                                              pre_gc_values.old_gen_capacity(),
1073                                              old_gen()->used(),
1074                                              old_gen()->capacity()));
1075   MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
1076 }
1077 
1078 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1079  private:
1080   bool _full;
1081  public:
1082   void do_generation(Generation* gen) {
1083     gen->gc_prologue(_full);
1084   }
1085   GenGCPrologueClosure(bool full) : _full(full) {};
1086 };
1087 
1088 void GenCollectedHeap::gc_prologue(bool full) {
1089   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1090 
1091   // Fill TLAB's and such
1092   ensure_parsability(true);   // retire TLABs
1093 
1094   // Walk generations
1095   GenGCPrologueClosure blk(full);
1096   generation_iterate(&blk, false);  // not old-to-young.
1097 };
1098 
1099 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1100  private:
1101   bool _full;
1102  public:
1103   void do_generation(Generation* gen) {
1104     gen->gc_epilogue(_full);
1105   }
1106   GenGCEpilogueClosure(bool full) : _full(full) {};
1107 };
1108 
1109 void GenCollectedHeap::gc_epilogue(bool full) {
1110 #if COMPILER2_OR_JVMCI
1111   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1112 #endif // COMPILER2_OR_JVMCI
1113 
1114   resize_all_tlabs();
1115 
1116   GenGCEpilogueClosure blk(full);
1117   generation_iterate(&blk, false);  // not old-to-young.
1118 
1119   MetaspaceCounters::update_performance_counters();
1120 };
1121 
1122 #ifndef PRODUCT
1123 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1124  private:
1125  public:
1126   void do_generation(Generation* gen) {
1127     gen->record_spaces_top();
1128   }
1129 };
1130 
1131 void GenCollectedHeap::record_gen_tops_before_GC() {
1132   if (ZapUnusedHeapArea) {
1133     GenGCSaveTopsBeforeGCClosure blk;
1134     generation_iterate(&blk, false);  // not old-to-young.
1135   }
1136 }
1137 #endif  // not PRODUCT
1138 
1139 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1140  public:
1141   void do_generation(Generation* gen) {
1142     gen->ensure_parsability();
1143   }
1144 };
1145 
1146 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1147   CollectedHeap::ensure_parsability(retire_tlabs);
1148   GenEnsureParsabilityClosure ep_cl;
1149   generation_iterate(&ep_cl, false);
1150 }