1 /* 2 * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "memory/allocation.hpp" 28 #include "memory/universe.hpp" 29 30 #include "gc/shared/gcArguments.hpp" 31 #include "gc/shared/gcTimer.hpp" 32 #include "gc/shared/gcTraceTime.inline.hpp" 33 #include "gc/shared/locationPrinter.inline.hpp" 34 #include "gc/shared/memAllocator.hpp" 35 #include "gc/shared/plab.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 38 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 39 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 40 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 41 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 42 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 43 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 44 #include "gc/shenandoah/shenandoahControlThread.hpp" 45 #include "gc/shenandoah/shenandoahFreeSet.hpp" 46 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 47 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 48 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 49 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 50 #include "gc/shenandoah/shenandoahInitLogger.hpp" 51 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 52 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 53 #include "gc/shenandoah/shenandoahMetrics.hpp" 54 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 55 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 56 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 57 #include "gc/shenandoah/shenandoahPadding.hpp" 58 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 59 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 60 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 61 #include "gc/shenandoah/shenandoahSTWMark.hpp" 62 #include "gc/shenandoah/shenandoahUtils.hpp" 63 #include "gc/shenandoah/shenandoahVerifier.hpp" 64 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 65 #include "gc/shenandoah/shenandoahVMOperations.hpp" 66 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 67 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 68 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 69 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 70 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 71 #if INCLUDE_JFR 72 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 73 #endif 74 75 #include "classfile/systemDictionary.hpp" 76 #include "code/codeCache.hpp" 77 #include "memory/classLoaderMetaspace.hpp" 78 #include "memory/metaspaceUtils.hpp" 79 #include "oops/compressedOops.inline.hpp" 80 #include "prims/jvmtiTagMap.hpp" 81 #include "runtime/atomic.hpp" 82 #include "runtime/globals.hpp" 83 #include "runtime/interfaceSupport.inline.hpp" 84 #include "runtime/java.hpp" 85 #include "runtime/orderAccess.hpp" 86 #include "runtime/safepointMechanism.hpp" 87 #include "runtime/vmThread.hpp" 88 #include "services/mallocTracker.hpp" 89 #include "services/memTracker.hpp" 90 #include "utilities/events.hpp" 91 #include "utilities/powerOfTwo.hpp" 92 93 class ShenandoahPretouchHeapTask : public WorkerTask { 94 private: 95 ShenandoahRegionIterator _regions; 96 const size_t _page_size; 97 public: 98 ShenandoahPretouchHeapTask(size_t page_size) : 99 WorkerTask("Shenandoah Pretouch Heap"), 100 _page_size(page_size) {} 101 102 virtual void work(uint worker_id) { 103 ShenandoahHeapRegion* r = _regions.next(); 104 while (r != nullptr) { 105 if (r->is_committed()) { 106 os::pretouch_memory(r->bottom(), r->end(), _page_size); 107 } 108 r = _regions.next(); 109 } 110 } 111 }; 112 113 class ShenandoahPretouchBitmapTask : public WorkerTask { 114 private: 115 ShenandoahRegionIterator _regions; 116 char* _bitmap_base; 117 const size_t _bitmap_size; 118 const size_t _page_size; 119 public: 120 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 121 WorkerTask("Shenandoah Pretouch Bitmap"), 122 _bitmap_base(bitmap_base), 123 _bitmap_size(bitmap_size), 124 _page_size(page_size) {} 125 126 virtual void work(uint worker_id) { 127 ShenandoahHeapRegion* r = _regions.next(); 128 while (r != nullptr) { 129 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 130 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 131 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 132 133 if (r->is_committed()) { 134 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 135 } 136 137 r = _regions.next(); 138 } 139 } 140 }; 141 142 jint ShenandoahHeap::initialize() { 143 // 144 // Figure out heap sizing 145 // 146 147 size_t init_byte_size = InitialHeapSize; 148 size_t min_byte_size = MinHeapSize; 149 size_t max_byte_size = MaxHeapSize; 150 size_t heap_alignment = HeapAlignment; 151 152 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 153 154 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 155 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 156 157 _num_regions = ShenandoahHeapRegion::region_count(); 158 assert(_num_regions == (max_byte_size / reg_size_bytes), 159 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 160 _num_regions, max_byte_size, reg_size_bytes); 161 162 // Now we know the number of regions, initialize the heuristics. 163 initialize_heuristics(); 164 165 size_t num_committed_regions = init_byte_size / reg_size_bytes; 166 num_committed_regions = MIN2(num_committed_regions, _num_regions); 167 assert(num_committed_regions <= _num_regions, "sanity"); 168 _initial_size = num_committed_regions * reg_size_bytes; 169 170 size_t num_min_regions = min_byte_size / reg_size_bytes; 171 num_min_regions = MIN2(num_min_regions, _num_regions); 172 assert(num_min_regions <= _num_regions, "sanity"); 173 _minimum_size = num_min_regions * reg_size_bytes; 174 175 // Default to max heap size. 176 _soft_max_size = _num_regions * reg_size_bytes; 177 178 _committed = _initial_size; 179 180 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 181 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 182 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 183 184 // 185 // Reserve and commit memory for heap 186 // 187 188 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 189 initialize_reserved_region(heap_rs); 190 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 191 _heap_region_special = heap_rs.special(); 192 193 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 194 "Misaligned heap: " PTR_FORMAT, p2i(base())); 195 196 #if SHENANDOAH_OPTIMIZED_MARKTASK 197 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 198 // Fail if we ever attempt to address more than we can. 199 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 200 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 201 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 202 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 203 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 204 vm_exit_during_initialization("Fatal Error", buf); 205 } 206 #endif 207 208 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 209 if (!_heap_region_special) { 210 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 211 "Cannot commit heap memory"); 212 } 213 214 // 215 // Reserve and commit memory for bitmap(s) 216 // 217 218 _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 219 _bitmap_size = align_up(_bitmap_size, bitmap_page_size); 220 221 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 222 223 guarantee(bitmap_bytes_per_region != 0, 224 "Bitmap bytes per region should not be zero"); 225 guarantee(is_power_of_2(bitmap_bytes_per_region), 226 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 227 228 if (bitmap_page_size > bitmap_bytes_per_region) { 229 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 230 _bitmap_bytes_per_slice = bitmap_page_size; 231 } else { 232 _bitmap_regions_per_slice = 1; 233 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 234 } 235 236 guarantee(_bitmap_regions_per_slice >= 1, 237 "Should have at least one region per slice: " SIZE_FORMAT, 238 _bitmap_regions_per_slice); 239 240 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 241 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 242 _bitmap_bytes_per_slice, bitmap_page_size); 243 244 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 245 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 246 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 247 _bitmap_region_special = bitmap.special(); 248 249 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 250 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 251 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 252 if (!_bitmap_region_special) { 253 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 254 "Cannot commit bitmap memory"); 255 } 256 257 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 258 259 if (ShenandoahVerify) { 260 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 261 if (!verify_bitmap.special()) { 262 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 263 "Cannot commit verification bitmap memory"); 264 } 265 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 266 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 267 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 268 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 269 } 270 271 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 272 ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size); 273 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 274 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 275 _aux_bitmap_region_special = aux_bitmap.special(); 276 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 277 278 // 279 // Create regions and region sets 280 // 281 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 282 size_t region_storage_size = align_up(region_align * _num_regions, region_page_size); 283 region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity()); 284 285 ReservedSpace region_storage(region_storage_size, region_page_size); 286 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 287 if (!region_storage.special()) { 288 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 289 "Cannot commit region memory"); 290 } 291 292 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 293 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 294 // If not successful, bite a bullet and allocate at whatever address. 295 { 296 size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 297 size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 298 299 uintptr_t min = round_up_power_of_2(cset_align); 300 uintptr_t max = (1u << 30u); 301 302 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 303 char* req_addr = (char*)addr; 304 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 305 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr); 306 if (cset_rs.is_reserved()) { 307 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 308 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 309 break; 310 } 311 } 312 313 if (_collection_set == nullptr) { 314 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size()); 315 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 316 } 317 } 318 319 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 320 _free_set = new ShenandoahFreeSet(this, _num_regions); 321 322 { 323 ShenandoahHeapLocker locker(lock()); 324 325 for (size_t i = 0; i < _num_regions; i++) { 326 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 327 bool is_committed = i < num_committed_regions; 328 void* loc = region_storage.base() + i * region_align; 329 330 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 331 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 332 333 _marking_context->initialize_top_at_mark_start(r); 334 _regions[i] = r; 335 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 336 } 337 338 // Initialize to complete 339 _marking_context->mark_complete(); 340 341 _free_set->rebuild(); 342 } 343 344 if (AlwaysPreTouch) { 345 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 346 // before initialize() below zeroes it with initializing thread. For any given region, 347 // we touch the region and the corresponding bitmaps from the same thread. 348 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 349 350 _pretouch_heap_page_size = heap_page_size; 351 _pretouch_bitmap_page_size = bitmap_page_size; 352 353 #ifdef LINUX 354 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge 355 // pages. But, the kernel needs to know that every small page is used, in order to coalesce 356 // them into huge one. Therefore, we need to pretouch with smaller pages. 357 if (UseTransparentHugePages) { 358 _pretouch_heap_page_size = (size_t)os::vm_page_size(); 359 _pretouch_bitmap_page_size = (size_t)os::vm_page_size(); 360 } 361 #endif 362 363 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 364 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 365 366 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 367 _workers->run_task(&bcl); 368 369 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 370 _workers->run_task(&hcl); 371 } 372 373 // 374 // Initialize the rest of GC subsystems 375 // 376 377 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 378 for (uint worker = 0; worker < _max_workers; worker++) { 379 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 380 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 381 } 382 383 // There should probably be Shenandoah-specific options for these, 384 // just as there are G1-specific options. 385 { 386 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 387 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 388 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 389 } 390 391 _monitoring_support = new ShenandoahMonitoringSupport(this); 392 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 393 ShenandoahCodeRoots::initialize(); 394 395 if (ShenandoahPacing) { 396 _pacer = new ShenandoahPacer(this); 397 _pacer->setup_for_idle(); 398 } else { 399 _pacer = nullptr; 400 } 401 402 _control_thread = new ShenandoahControlThread(); 403 404 ShenandoahInitLogger::print(); 405 406 return JNI_OK; 407 } 408 409 void ShenandoahHeap::initialize_mode() { 410 if (ShenandoahGCMode != nullptr) { 411 if (strcmp(ShenandoahGCMode, "satb") == 0) { 412 _gc_mode = new ShenandoahSATBMode(); 413 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 414 _gc_mode = new ShenandoahIUMode(); 415 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 416 _gc_mode = new ShenandoahPassiveMode(); 417 } else { 418 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 419 } 420 } else { 421 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 422 } 423 _gc_mode->initialize_flags(); 424 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 425 vm_exit_during_initialization( 426 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 427 _gc_mode->name())); 428 } 429 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 430 vm_exit_during_initialization( 431 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 432 _gc_mode->name())); 433 } 434 } 435 436 void ShenandoahHeap::initialize_heuristics() { 437 assert(_gc_mode != nullptr, "Must be initialized"); 438 _heuristics = _gc_mode->initialize_heuristics(); 439 440 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 441 vm_exit_during_initialization( 442 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 443 _heuristics->name())); 444 } 445 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 446 vm_exit_during_initialization( 447 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 448 _heuristics->name())); 449 } 450 } 451 452 #ifdef _MSC_VER 453 #pragma warning( push ) 454 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 455 #endif 456 457 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 458 CollectedHeap(), 459 _initial_size(0), 460 _used(0), 461 _committed(0), 462 _bytes_allocated_since_gc_start(0), 463 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 464 _workers(nullptr), 465 _safepoint_workers(nullptr), 466 _heap_region_special(false), 467 _num_regions(0), 468 _regions(nullptr), 469 _update_refs_iterator(this), 470 _control_thread(nullptr), 471 _shenandoah_policy(policy), 472 _gc_mode(nullptr), 473 _heuristics(nullptr), 474 _free_set(nullptr), 475 _pacer(nullptr), 476 _verifier(nullptr), 477 _phase_timings(nullptr), 478 _monitoring_support(nullptr), 479 _memory_pool(nullptr), 480 _stw_memory_manager("Shenandoah Pauses"), 481 _cycle_memory_manager("Shenandoah Cycles"), 482 _gc_timer(new ConcurrentGCTimer()), 483 _soft_ref_policy(), 484 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 485 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 486 _marking_context(nullptr), 487 _bitmap_size(0), 488 _bitmap_regions_per_slice(0), 489 _bitmap_bytes_per_slice(0), 490 _bitmap_region_special(false), 491 _aux_bitmap_region_special(false), 492 _liveness_cache(nullptr), 493 _collection_set(nullptr) 494 { 495 // Initialize GC mode early, so we can adjust barrier support 496 initialize_mode(); 497 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 498 499 _max_workers = MAX2(_max_workers, 1U); 500 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 501 if (_workers == nullptr) { 502 vm_exit_during_initialization("Failed necessary allocation."); 503 } else { 504 _workers->initialize_workers(); 505 } 506 507 if (ParallelGCThreads > 1) { 508 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", 509 ParallelGCThreads); 510 _safepoint_workers->initialize_workers(); 511 } 512 } 513 514 #ifdef _MSC_VER 515 #pragma warning( pop ) 516 #endif 517 518 class ShenandoahResetBitmapTask : public WorkerTask { 519 private: 520 ShenandoahRegionIterator _regions; 521 522 public: 523 ShenandoahResetBitmapTask() : 524 WorkerTask("Shenandoah Reset Bitmap") {} 525 526 void work(uint worker_id) { 527 ShenandoahHeapRegion* region = _regions.next(); 528 ShenandoahHeap* heap = ShenandoahHeap::heap(); 529 ShenandoahMarkingContext* const ctx = heap->marking_context(); 530 while (region != nullptr) { 531 if (heap->is_bitmap_slice_committed(region)) { 532 ctx->clear_bitmap(region); 533 } 534 region = _regions.next(); 535 } 536 } 537 }; 538 539 void ShenandoahHeap::reset_mark_bitmap() { 540 assert_gc_workers(_workers->active_workers()); 541 mark_incomplete_marking_context(); 542 543 ShenandoahResetBitmapTask task; 544 _workers->run_task(&task); 545 } 546 547 void ShenandoahHeap::print_on(outputStream* st) const { 548 st->print_cr("Shenandoah Heap"); 549 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 550 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 551 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 552 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 553 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 554 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 555 num_regions(), 556 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 557 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 558 559 st->print("Status: "); 560 if (has_forwarded_objects()) st->print("has forwarded objects, "); 561 if (is_concurrent_mark_in_progress()) st->print("marking, "); 562 if (is_evacuation_in_progress()) st->print("evacuating, "); 563 if (is_update_refs_in_progress()) st->print("updating refs, "); 564 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 565 if (is_full_gc_in_progress()) st->print("full gc, "); 566 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 567 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 568 if (is_concurrent_strong_root_in_progress() && 569 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 570 571 if (cancelled_gc()) { 572 st->print("cancelled"); 573 } else { 574 st->print("not cancelled"); 575 } 576 st->cr(); 577 578 st->print_cr("Reserved region:"); 579 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 580 p2i(reserved_region().start()), 581 p2i(reserved_region().end())); 582 583 ShenandoahCollectionSet* cset = collection_set(); 584 st->print_cr("Collection set:"); 585 if (cset != nullptr) { 586 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 587 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 588 } else { 589 st->print_cr(" (null)"); 590 } 591 592 st->cr(); 593 MetaspaceUtils::print_on(st); 594 595 if (Verbose) { 596 st->cr(); 597 print_heap_regions_on(st); 598 } 599 } 600 601 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 602 public: 603 void do_thread(Thread* thread) { 604 assert(thread != nullptr, "Sanity"); 605 assert(thread->is_Worker_thread(), "Only worker thread expected"); 606 ShenandoahThreadLocalData::initialize_gclab(thread); 607 } 608 }; 609 610 void ShenandoahHeap::post_initialize() { 611 CollectedHeap::post_initialize(); 612 MutexLocker ml(Threads_lock); 613 614 ShenandoahInitWorkerGCLABClosure init_gclabs; 615 _workers->threads_do(&init_gclabs); 616 617 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 618 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 619 _workers->set_initialize_gclab(); 620 if (_safepoint_workers != nullptr) { 621 _safepoint_workers->threads_do(&init_gclabs); 622 _safepoint_workers->set_initialize_gclab(); 623 } 624 625 _heuristics->initialize(); 626 627 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 628 } 629 630 size_t ShenandoahHeap::used() const { 631 return Atomic::load(&_used); 632 } 633 634 size_t ShenandoahHeap::committed() const { 635 return Atomic::load(&_committed); 636 } 637 638 void ShenandoahHeap::increase_committed(size_t bytes) { 639 shenandoah_assert_heaplocked_or_safepoint(); 640 _committed += bytes; 641 } 642 643 void ShenandoahHeap::decrease_committed(size_t bytes) { 644 shenandoah_assert_heaplocked_or_safepoint(); 645 _committed -= bytes; 646 } 647 648 void ShenandoahHeap::increase_used(size_t bytes) { 649 Atomic::add(&_used, bytes, memory_order_relaxed); 650 } 651 652 void ShenandoahHeap::set_used(size_t bytes) { 653 Atomic::store(&_used, bytes); 654 } 655 656 void ShenandoahHeap::decrease_used(size_t bytes) { 657 assert(used() >= bytes, "never decrease heap size by more than we've left"); 658 Atomic::sub(&_used, bytes, memory_order_relaxed); 659 } 660 661 void ShenandoahHeap::increase_allocated(size_t bytes) { 662 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 663 } 664 665 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 666 size_t bytes = words * HeapWordSize; 667 if (!waste) { 668 increase_used(bytes); 669 } 670 increase_allocated(bytes); 671 if (ShenandoahPacing) { 672 control_thread()->pacing_notify_alloc(words); 673 if (waste) { 674 pacer()->claim_for_alloc(words, true); 675 } 676 } 677 } 678 679 size_t ShenandoahHeap::capacity() const { 680 return committed(); 681 } 682 683 size_t ShenandoahHeap::max_capacity() const { 684 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 685 } 686 687 size_t ShenandoahHeap::soft_max_capacity() const { 688 size_t v = Atomic::load(&_soft_max_size); 689 assert(min_capacity() <= v && v <= max_capacity(), 690 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 691 min_capacity(), v, max_capacity()); 692 return v; 693 } 694 695 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 696 assert(min_capacity() <= v && v <= max_capacity(), 697 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 698 min_capacity(), v, max_capacity()); 699 Atomic::store(&_soft_max_size, v); 700 } 701 702 size_t ShenandoahHeap::min_capacity() const { 703 return _minimum_size; 704 } 705 706 size_t ShenandoahHeap::initial_capacity() const { 707 return _initial_size; 708 } 709 710 bool ShenandoahHeap::is_in(const void* p) const { 711 HeapWord* heap_base = (HeapWord*) base(); 712 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 713 return p >= heap_base && p < last_region_end; 714 } 715 716 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 717 assert (ShenandoahUncommit, "should be enabled"); 718 719 // Application allocates from the beginning of the heap, and GC allocates at 720 // the end of it. It is more efficient to uncommit from the end, so that applications 721 // could enjoy the near committed regions. GC allocations are much less frequent, 722 // and therefore can accept the committing costs. 723 724 size_t count = 0; 725 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 726 ShenandoahHeapRegion* r = get_region(i - 1); 727 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 728 ShenandoahHeapLocker locker(lock()); 729 if (r->is_empty_committed()) { 730 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 731 break; 732 } 733 734 r->make_uncommitted(); 735 count++; 736 } 737 } 738 SpinPause(); // allow allocators to take the lock 739 } 740 741 if (count > 0) { 742 control_thread()->notify_heap_changed(); 743 } 744 } 745 746 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 747 // New object should fit the GCLAB size 748 size_t min_size = MAX2(size, PLAB::min_size()); 749 750 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 751 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 752 new_size = MIN2(new_size, PLAB::max_size()); 753 new_size = MAX2(new_size, PLAB::min_size()); 754 755 // Record new heuristic value even if we take any shortcut. This captures 756 // the case when moderately-sized objects always take a shortcut. At some point, 757 // heuristics should catch up with them. 758 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 759 760 if (new_size < size) { 761 // New size still does not fit the object. Fall back to shared allocation. 762 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 763 return nullptr; 764 } 765 766 // Retire current GCLAB, and allocate a new one. 767 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 768 gclab->retire(); 769 770 size_t actual_size = 0; 771 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 772 if (gclab_buf == nullptr) { 773 return nullptr; 774 } 775 776 assert (size <= actual_size, "allocation should fit"); 777 778 if (ZeroTLAB) { 779 // ..and clear it. 780 Copy::zero_to_words(gclab_buf, actual_size); 781 } else { 782 // ...and zap just allocated object. 783 #ifdef ASSERT 784 // Skip mangling the space corresponding to the object header to 785 // ensure that the returned space is not considered parsable by 786 // any concurrent GC thread. 787 size_t hdr_size = oopDesc::header_size(); 788 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 789 #endif // ASSERT 790 } 791 gclab->set_buf(gclab_buf, actual_size); 792 return gclab->allocate(size); 793 } 794 795 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 796 size_t requested_size, 797 size_t* actual_size) { 798 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 799 HeapWord* res = allocate_memory(req); 800 if (res != nullptr) { 801 *actual_size = req.actual_size(); 802 } else { 803 *actual_size = 0; 804 } 805 return res; 806 } 807 808 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 809 size_t word_size, 810 size_t* actual_size) { 811 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 812 HeapWord* res = allocate_memory(req); 813 if (res != nullptr) { 814 *actual_size = req.actual_size(); 815 } else { 816 *actual_size = 0; 817 } 818 return res; 819 } 820 821 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 822 intptr_t pacer_epoch = 0; 823 bool in_new_region = false; 824 HeapWord* result = nullptr; 825 826 if (req.is_mutator_alloc()) { 827 if (ShenandoahPacing) { 828 pacer()->pace_for_alloc(req.size()); 829 pacer_epoch = pacer()->epoch(); 830 } 831 832 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 833 result = allocate_memory_under_lock(req, in_new_region); 834 } 835 836 // Allocation failed, block until control thread reacted, then retry allocation. 837 // 838 // It might happen that one of the threads requesting allocation would unblock 839 // way later after GC happened, only to fail the second allocation, because 840 // other threads have already depleted the free storage. In this case, a better 841 // strategy is to try again, as long as GC makes progress. 842 // 843 // Then, we need to make sure the allocation was retried after at least one 844 // Full GC, which means we want to try more than ShenandoahFullGCThreshold times. 845 846 size_t tries = 0; 847 848 while (result == nullptr && _progress_last_gc.is_set()) { 849 tries++; 850 control_thread()->handle_alloc_failure(req); 851 result = allocate_memory_under_lock(req, in_new_region); 852 } 853 854 while (result == nullptr && tries <= ShenandoahFullGCThreshold) { 855 tries++; 856 control_thread()->handle_alloc_failure(req); 857 result = allocate_memory_under_lock(req, in_new_region); 858 } 859 860 } else { 861 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 862 result = allocate_memory_under_lock(req, in_new_region); 863 // Do not call handle_alloc_failure() here, because we cannot block. 864 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 865 } 866 867 if (in_new_region) { 868 control_thread()->notify_heap_changed(); 869 } 870 871 if (result != nullptr) { 872 size_t requested = req.size(); 873 size_t actual = req.actual_size(); 874 875 assert (req.is_lab_alloc() || (requested == actual), 876 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 877 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 878 879 if (req.is_mutator_alloc()) { 880 notify_mutator_alloc_words(actual, false); 881 882 // If we requested more than we were granted, give the rest back to pacer. 883 // This only matters if we are in the same pacing epoch: do not try to unpace 884 // over the budget for the other phase. 885 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 886 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 887 } 888 } else { 889 increase_used(actual*HeapWordSize); 890 } 891 } 892 893 return result; 894 } 895 896 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 897 ShenandoahHeapLocker locker(lock()); 898 return _free_set->allocate(req, in_new_region); 899 } 900 901 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 902 bool* gc_overhead_limit_was_exceeded) { 903 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 904 return allocate_memory(req); 905 } 906 907 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 908 size_t size, 909 Metaspace::MetadataType mdtype) { 910 MetaWord* result; 911 912 // Inform metaspace OOM to GC heuristics if class unloading is possible. 913 if (heuristics()->can_unload_classes()) { 914 ShenandoahHeuristics* h = heuristics(); 915 h->record_metaspace_oom(); 916 } 917 918 // Expand and retry allocation 919 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 920 if (result != nullptr) { 921 return result; 922 } 923 924 // Start full GC 925 collect(GCCause::_metadata_GC_clear_soft_refs); 926 927 // Retry allocation 928 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 929 if (result != nullptr) { 930 return result; 931 } 932 933 // Expand and retry allocation 934 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 935 if (result != nullptr) { 936 return result; 937 } 938 939 // Out of memory 940 return nullptr; 941 } 942 943 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 944 private: 945 ShenandoahHeap* const _heap; 946 Thread* const _thread; 947 public: 948 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 949 _heap(heap), _thread(Thread::current()) {} 950 951 void do_object(oop p) { 952 shenandoah_assert_marked(nullptr, p); 953 if (!p->is_forwarded()) { 954 _heap->evacuate_object(p, _thread); 955 } 956 } 957 }; 958 959 class ShenandoahEvacuationTask : public WorkerTask { 960 private: 961 ShenandoahHeap* const _sh; 962 ShenandoahCollectionSet* const _cs; 963 bool _concurrent; 964 public: 965 ShenandoahEvacuationTask(ShenandoahHeap* sh, 966 ShenandoahCollectionSet* cs, 967 bool concurrent) : 968 WorkerTask("Shenandoah Evacuation"), 969 _sh(sh), 970 _cs(cs), 971 _concurrent(concurrent) 972 {} 973 974 void work(uint worker_id) { 975 if (_concurrent) { 976 ShenandoahConcurrentWorkerSession worker_session(worker_id); 977 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers); 978 ShenandoahEvacOOMScope oom_evac_scope; 979 do_work(); 980 } else { 981 ShenandoahParallelWorkerSession worker_session(worker_id); 982 ShenandoahEvacOOMScope oom_evac_scope; 983 do_work(); 984 } 985 } 986 987 private: 988 void do_work() { 989 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 990 ShenandoahHeapRegion* r; 991 while ((r =_cs->claim_next()) != nullptr) { 992 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 993 _sh->marked_object_iterate(r, &cl); 994 995 if (ShenandoahPacing) { 996 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 997 } 998 999 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1000 break; 1001 } 1002 } 1003 } 1004 }; 1005 1006 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1007 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1008 workers()->run_task(&task); 1009 } 1010 1011 void ShenandoahHeap::trash_cset_regions() { 1012 ShenandoahHeapLocker locker(lock()); 1013 1014 ShenandoahCollectionSet* set = collection_set(); 1015 ShenandoahHeapRegion* r; 1016 set->clear_current_index(); 1017 while ((r = set->next()) != nullptr) { 1018 r->make_trash(); 1019 } 1020 collection_set()->clear(); 1021 } 1022 1023 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1024 st->print_cr("Heap Regions:"); 1025 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1026 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1027 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1028 st->print_cr("UWM=update watermark, U=used"); 1029 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1030 st->print_cr("S=shared allocs, L=live data"); 1031 st->print_cr("CP=critical pins"); 1032 1033 for (size_t i = 0; i < num_regions(); i++) { 1034 get_region(i)->print_on(st); 1035 } 1036 } 1037 1038 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1039 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1040 1041 oop humongous_obj = cast_to_oop(start->bottom()); 1042 size_t size = humongous_obj->size(); 1043 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1044 size_t index = start->index() + required_regions - 1; 1045 1046 assert(!start->has_live(), "liveness must be zero"); 1047 1048 for(size_t i = 0; i < required_regions; i++) { 1049 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1050 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1051 ShenandoahHeapRegion* region = get_region(index --); 1052 1053 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1054 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1055 1056 region->make_trash_immediate(); 1057 } 1058 } 1059 1060 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1061 public: 1062 ShenandoahCheckCleanGCLABClosure() {} 1063 void do_thread(Thread* thread) { 1064 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1065 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1066 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1067 } 1068 }; 1069 1070 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1071 private: 1072 bool const _resize; 1073 public: 1074 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1075 void do_thread(Thread* thread) { 1076 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1077 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1078 gclab->retire(); 1079 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1080 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1081 } 1082 } 1083 }; 1084 1085 void ShenandoahHeap::labs_make_parsable() { 1086 assert(UseTLAB, "Only call with UseTLAB"); 1087 1088 ShenandoahRetireGCLABClosure cl(false); 1089 1090 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1091 ThreadLocalAllocBuffer& tlab = t->tlab(); 1092 tlab.make_parsable(); 1093 cl.do_thread(t); 1094 } 1095 1096 workers()->threads_do(&cl); 1097 } 1098 1099 void ShenandoahHeap::tlabs_retire(bool resize) { 1100 assert(UseTLAB, "Only call with UseTLAB"); 1101 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1102 1103 ThreadLocalAllocStats stats; 1104 1105 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1106 ThreadLocalAllocBuffer& tlab = t->tlab(); 1107 tlab.retire(&stats); 1108 if (resize) { 1109 tlab.resize(); 1110 } 1111 } 1112 1113 stats.publish(); 1114 1115 #ifdef ASSERT 1116 ShenandoahCheckCleanGCLABClosure cl; 1117 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1118 cl.do_thread(t); 1119 } 1120 workers()->threads_do(&cl); 1121 #endif 1122 } 1123 1124 void ShenandoahHeap::gclabs_retire(bool resize) { 1125 assert(UseTLAB, "Only call with UseTLAB"); 1126 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1127 1128 ShenandoahRetireGCLABClosure cl(resize); 1129 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1130 cl.do_thread(t); 1131 } 1132 workers()->threads_do(&cl); 1133 1134 if (safepoint_workers() != nullptr) { 1135 safepoint_workers()->threads_do(&cl); 1136 } 1137 } 1138 1139 // Returns size in bytes 1140 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1141 if (ShenandoahElasticTLAB) { 1142 // With Elastic TLABs, return the max allowed size, and let the allocation path 1143 // figure out the safe size for current allocation. 1144 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1145 } else { 1146 return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes()); 1147 } 1148 } 1149 1150 size_t ShenandoahHeap::max_tlab_size() const { 1151 // Returns size in words 1152 return ShenandoahHeapRegion::max_tlab_size_words(); 1153 } 1154 1155 void ShenandoahHeap::collect(GCCause::Cause cause) { 1156 control_thread()->request_gc(cause); 1157 } 1158 1159 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1160 //assert(false, "Shouldn't need to do full collections"); 1161 } 1162 1163 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1164 ShenandoahHeapRegion* r = heap_region_containing(addr); 1165 if (r != nullptr) { 1166 return r->block_start(addr); 1167 } 1168 return nullptr; 1169 } 1170 1171 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1172 ShenandoahHeapRegion* r = heap_region_containing(addr); 1173 return r->block_is_obj(addr); 1174 } 1175 1176 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1177 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1178 } 1179 1180 void ShenandoahHeap::prepare_for_verify() { 1181 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1182 labs_make_parsable(); 1183 } 1184 } 1185 1186 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1187 tcl->do_thread(_control_thread); 1188 workers()->threads_do(tcl); 1189 if (_safepoint_workers != nullptr) { 1190 _safepoint_workers->threads_do(tcl); 1191 } 1192 } 1193 1194 void ShenandoahHeap::print_tracing_info() const { 1195 LogTarget(Info, gc, stats) lt; 1196 if (lt.is_enabled()) { 1197 ResourceMark rm; 1198 LogStream ls(lt); 1199 1200 phase_timings()->print_global_on(&ls); 1201 1202 ls.cr(); 1203 ls.cr(); 1204 1205 shenandoah_policy()->print_gc_stats(&ls); 1206 1207 ls.cr(); 1208 ls.cr(); 1209 } 1210 } 1211 1212 void ShenandoahHeap::verify(VerifyOption vo) { 1213 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1214 if (ShenandoahVerify) { 1215 verifier()->verify_generic(vo); 1216 } else { 1217 // TODO: Consider allocating verification bitmaps on demand, 1218 // and turn this on unconditionally. 1219 } 1220 } 1221 } 1222 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1223 return _free_set->capacity(); 1224 } 1225 1226 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1227 private: 1228 MarkBitMap* _bitmap; 1229 ShenandoahScanObjectStack* _oop_stack; 1230 ShenandoahHeap* const _heap; 1231 ShenandoahMarkingContext* const _marking_context; 1232 1233 template <class T> 1234 void do_oop_work(T* p) { 1235 T o = RawAccess<>::oop_load(p); 1236 if (!CompressedOops::is_null(o)) { 1237 oop obj = CompressedOops::decode_not_null(o); 1238 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1239 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1240 return; 1241 } 1242 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1243 1244 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1245 if (!_bitmap->is_marked(obj)) { 1246 _bitmap->mark(obj); 1247 _oop_stack->push(obj); 1248 } 1249 } 1250 } 1251 public: 1252 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1253 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1254 _marking_context(_heap->marking_context()) {} 1255 void do_oop(oop* p) { do_oop_work(p); } 1256 void do_oop(narrowOop* p) { do_oop_work(p); } 1257 }; 1258 1259 /* 1260 * This is public API, used in preparation of object_iterate(). 1261 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1262 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1263 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1264 */ 1265 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1266 // No-op. 1267 } 1268 1269 /* 1270 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1271 * 1272 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1273 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1274 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1275 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1276 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1277 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1278 * wiped the bitmap in preparation for next marking). 1279 * 1280 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1281 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1282 * is allowed to report dead objects, but is not required to do so. 1283 */ 1284 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1285 // Reset bitmap 1286 if (!prepare_aux_bitmap_for_iteration()) 1287 return; 1288 1289 ShenandoahScanObjectStack oop_stack; 1290 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1291 // Seed the stack with root scan 1292 scan_roots_for_iteration(&oop_stack, &oops); 1293 1294 // Work through the oop stack to traverse heap 1295 while (! oop_stack.is_empty()) { 1296 oop obj = oop_stack.pop(); 1297 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1298 cl->do_object(obj); 1299 obj->oop_iterate(&oops); 1300 } 1301 1302 assert(oop_stack.is_empty(), "should be empty"); 1303 // Reclaim bitmap 1304 reclaim_aux_bitmap_for_iteration(); 1305 } 1306 1307 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1308 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1309 1310 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1311 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1312 return false; 1313 } 1314 // Reset bitmap 1315 _aux_bit_map.clear(); 1316 return true; 1317 } 1318 1319 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1320 // Process GC roots according to current GC cycle 1321 // This populates the work stack with initial objects 1322 // It is important to relinquish the associated locks before diving 1323 // into heap dumper 1324 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1325 ShenandoahHeapIterationRootScanner rp(n_workers); 1326 rp.roots_do(oops); 1327 } 1328 1329 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1330 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1331 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1332 } 1333 } 1334 1335 // Closure for parallelly iterate objects 1336 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1337 private: 1338 MarkBitMap* _bitmap; 1339 ShenandoahObjToScanQueue* _queue; 1340 ShenandoahHeap* const _heap; 1341 ShenandoahMarkingContext* const _marking_context; 1342 1343 template <class T> 1344 void do_oop_work(T* p) { 1345 T o = RawAccess<>::oop_load(p); 1346 if (!CompressedOops::is_null(o)) { 1347 oop obj = CompressedOops::decode_not_null(o); 1348 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1349 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1350 return; 1351 } 1352 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1353 1354 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1355 if (_bitmap->par_mark(obj)) { 1356 _queue->push(ShenandoahMarkTask(obj)); 1357 } 1358 } 1359 } 1360 public: 1361 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1362 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1363 _marking_context(_heap->marking_context()) {} 1364 void do_oop(oop* p) { do_oop_work(p); } 1365 void do_oop(narrowOop* p) { do_oop_work(p); } 1366 }; 1367 1368 // Object iterator for parallel heap iteraion. 1369 // The root scanning phase happenes in construction as a preparation of 1370 // parallel marking queues. 1371 // Every worker processes it's own marking queue. work-stealing is used 1372 // to balance workload. 1373 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1374 private: 1375 uint _num_workers; 1376 bool _init_ready; 1377 MarkBitMap* _aux_bit_map; 1378 ShenandoahHeap* _heap; 1379 ShenandoahScanObjectStack _roots_stack; // global roots stack 1380 ShenandoahObjToScanQueueSet* _task_queues; 1381 public: 1382 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1383 _num_workers(num_workers), 1384 _init_ready(false), 1385 _aux_bit_map(bitmap), 1386 _heap(ShenandoahHeap::heap()) { 1387 // Initialize bitmap 1388 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1389 if (!_init_ready) { 1390 return; 1391 } 1392 1393 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1394 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1395 1396 _init_ready = prepare_worker_queues(); 1397 } 1398 1399 ~ShenandoahParallelObjectIterator() { 1400 // Reclaim bitmap 1401 _heap->reclaim_aux_bitmap_for_iteration(); 1402 // Reclaim queue for workers 1403 if (_task_queues!= nullptr) { 1404 for (uint i = 0; i < _num_workers; ++i) { 1405 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1406 if (q != nullptr) { 1407 delete q; 1408 _task_queues->register_queue(i, nullptr); 1409 } 1410 } 1411 delete _task_queues; 1412 _task_queues = nullptr; 1413 } 1414 } 1415 1416 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1417 if (_init_ready) { 1418 object_iterate_parallel(cl, worker_id, _task_queues); 1419 } 1420 } 1421 1422 private: 1423 // Divide global root_stack into worker queues 1424 bool prepare_worker_queues() { 1425 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1426 // Initialize queues for every workers 1427 for (uint i = 0; i < _num_workers; ++i) { 1428 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1429 _task_queues->register_queue(i, task_queue); 1430 } 1431 // Divide roots among the workers. Assume that object referencing distribution 1432 // is related with root kind, use round-robin to make every worker have same chance 1433 // to process every kind of roots 1434 size_t roots_num = _roots_stack.size(); 1435 if (roots_num == 0) { 1436 // No work to do 1437 return false; 1438 } 1439 1440 for (uint j = 0; j < roots_num; j++) { 1441 uint stack_id = j % _num_workers; 1442 oop obj = _roots_stack.pop(); 1443 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1444 } 1445 return true; 1446 } 1447 1448 void object_iterate_parallel(ObjectClosure* cl, 1449 uint worker_id, 1450 ShenandoahObjToScanQueueSet* queue_set) { 1451 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1452 assert(queue_set != nullptr, "task queue must not be null"); 1453 1454 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1455 assert(q != nullptr, "object iterate queue must not be null"); 1456 1457 ShenandoahMarkTask t; 1458 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1459 1460 // Work through the queue to traverse heap. 1461 // Steal when there is no task in queue. 1462 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1463 oop obj = t.obj(); 1464 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1465 cl->do_object(obj); 1466 obj->oop_iterate(&oops); 1467 } 1468 assert(q->is_empty(), "should be empty"); 1469 } 1470 }; 1471 1472 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1473 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1474 } 1475 1476 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1477 void ShenandoahHeap::keep_alive(oop obj) { 1478 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1479 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1480 } 1481 } 1482 1483 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1484 for (size_t i = 0; i < num_regions(); i++) { 1485 ShenandoahHeapRegion* current = get_region(i); 1486 blk->heap_region_do(current); 1487 } 1488 } 1489 1490 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1491 private: 1492 ShenandoahHeap* const _heap; 1493 ShenandoahHeapRegionClosure* const _blk; 1494 1495 shenandoah_padding(0); 1496 volatile size_t _index; 1497 shenandoah_padding(1); 1498 1499 public: 1500 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) : 1501 WorkerTask("Shenandoah Parallel Region Operation"), 1502 _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {} 1503 1504 void work(uint worker_id) { 1505 ShenandoahParallelWorkerSession worker_session(worker_id); 1506 size_t stride = ShenandoahParallelRegionStride; 1507 1508 size_t max = _heap->num_regions(); 1509 while (Atomic::load(&_index) < max) { 1510 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1511 size_t start = cur; 1512 size_t end = MIN2(cur + stride, max); 1513 if (start >= max) break; 1514 1515 for (size_t i = cur; i < end; i++) { 1516 ShenandoahHeapRegion* current = _heap->get_region(i); 1517 _blk->heap_region_do(current); 1518 } 1519 } 1520 } 1521 }; 1522 1523 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1524 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1525 if (num_regions() > ShenandoahParallelRegionStride) { 1526 ShenandoahParallelHeapRegionTask task(blk); 1527 workers()->run_task(&task); 1528 } else { 1529 heap_region_iterate(blk); 1530 } 1531 } 1532 1533 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1534 private: 1535 ShenandoahMarkingContext* const _ctx; 1536 public: 1537 ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1538 1539 void heap_region_do(ShenandoahHeapRegion* r) { 1540 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1541 if (r->is_active()) { 1542 // Check if region needs updating its TAMS. We have updated it already during concurrent 1543 // reset, so it is very likely we don't need to do another write here. 1544 if (_ctx->top_at_mark_start(r) != r->top()) { 1545 _ctx->capture_top_at_mark_start(r); 1546 } 1547 } else { 1548 assert(_ctx->top_at_mark_start(r) == r->top(), 1549 "Region " SIZE_FORMAT " should already have correct TAMS", r->index()); 1550 } 1551 } 1552 1553 bool is_thread_safe() { return true; } 1554 }; 1555 1556 class ShenandoahRendezvousClosure : public HandshakeClosure { 1557 public: 1558 inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {} 1559 inline void do_thread(Thread* thread) {} 1560 }; 1561 1562 void ShenandoahHeap::rendezvous_threads() { 1563 ShenandoahRendezvousClosure cl; 1564 Handshake::execute(&cl); 1565 } 1566 1567 void ShenandoahHeap::recycle_trash() { 1568 free_set()->recycle_trash(); 1569 } 1570 1571 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1572 private: 1573 ShenandoahMarkingContext* const _ctx; 1574 public: 1575 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1576 1577 void heap_region_do(ShenandoahHeapRegion* r) { 1578 if (r->is_active()) { 1579 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1580 // anyway to capture any updates that happened since now. 1581 r->clear_live_data(); 1582 _ctx->capture_top_at_mark_start(r); 1583 } 1584 } 1585 1586 bool is_thread_safe() { return true; } 1587 }; 1588 1589 void ShenandoahHeap::prepare_gc() { 1590 reset_mark_bitmap(); 1591 1592 ShenandoahResetUpdateRegionStateClosure cl; 1593 parallel_heap_region_iterate(&cl); 1594 } 1595 1596 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1597 private: 1598 ShenandoahMarkingContext* const _ctx; 1599 ShenandoahHeapLock* const _lock; 1600 1601 public: 1602 ShenandoahFinalMarkUpdateRegionStateClosure() : 1603 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1604 1605 void heap_region_do(ShenandoahHeapRegion* r) { 1606 if (r->is_active()) { 1607 // All allocations past TAMS are implicitly live, adjust the region data. 1608 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1609 HeapWord *tams = _ctx->top_at_mark_start(r); 1610 HeapWord *top = r->top(); 1611 if (top > tams) { 1612 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1613 } 1614 1615 // We are about to select the collection set, make sure it knows about 1616 // current pinning status. Also, this allows trashing more regions that 1617 // now have their pinning status dropped. 1618 if (r->is_pinned()) { 1619 if (r->pin_count() == 0) { 1620 ShenandoahHeapLocker locker(_lock); 1621 r->make_unpinned(); 1622 } 1623 } else { 1624 if (r->pin_count() > 0) { 1625 ShenandoahHeapLocker locker(_lock); 1626 r->make_pinned(); 1627 } 1628 } 1629 1630 // Remember limit for updating refs. It's guaranteed that we get no 1631 // from-space-refs written from here on. 1632 r->set_update_watermark_at_safepoint(r->top()); 1633 } else { 1634 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1635 assert(_ctx->top_at_mark_start(r) == r->top(), 1636 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1637 } 1638 } 1639 1640 bool is_thread_safe() { return true; } 1641 }; 1642 1643 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1644 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1645 { 1646 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1647 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1648 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1649 parallel_heap_region_iterate(&cl); 1650 1651 assert_pinned_region_status(); 1652 } 1653 1654 { 1655 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1656 ShenandoahPhaseTimings::degen_gc_choose_cset); 1657 ShenandoahHeapLocker locker(lock()); 1658 _collection_set->clear(); 1659 heuristics()->choose_collection_set(_collection_set); 1660 } 1661 1662 { 1663 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1664 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1665 ShenandoahHeapLocker locker(lock()); 1666 _free_set->rebuild(); 1667 } 1668 } 1669 1670 void ShenandoahHeap::do_class_unloading() { 1671 _unloader.unload(); 1672 } 1673 1674 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1675 // Weak refs processing 1676 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1677 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1678 ShenandoahTimingsTracker t(phase); 1679 ShenandoahGCWorkerPhase worker_phase(phase); 1680 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1681 } 1682 1683 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1684 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1685 1686 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1687 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1688 // for future GCLABs here. 1689 if (UseTLAB) { 1690 ShenandoahGCPhase phase(concurrent ? 1691 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1692 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1693 gclabs_retire(ResizeTLAB); 1694 } 1695 1696 _update_refs_iterator.reset(); 1697 } 1698 1699 void ShenandoahHeap::set_gc_state_all_threads(char state) { 1700 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1701 ShenandoahThreadLocalData::set_gc_state(t, state); 1702 } 1703 } 1704 1705 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) { 1706 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should really be Shenandoah safepoint"); 1707 _gc_state.set_cond(mask, value); 1708 set_gc_state_all_threads(_gc_state.raw_value()); 1709 } 1710 1711 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1712 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1713 set_gc_state_mask(MARKING, in_progress); 1714 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1715 } 1716 1717 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1718 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1719 set_gc_state_mask(EVACUATION, in_progress); 1720 } 1721 1722 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1723 if (in_progress) { 1724 _concurrent_strong_root_in_progress.set(); 1725 } else { 1726 _concurrent_strong_root_in_progress.unset(); 1727 } 1728 } 1729 1730 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1731 set_gc_state_mask(WEAK_ROOTS, cond); 1732 } 1733 1734 GCTracer* ShenandoahHeap::tracer() { 1735 return shenandoah_policy()->tracer(); 1736 } 1737 1738 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1739 return _free_set->used(); 1740 } 1741 1742 bool ShenandoahHeap::try_cancel_gc() { 1743 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1744 return prev == CANCELLABLE; 1745 } 1746 1747 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1748 if (try_cancel_gc()) { 1749 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1750 log_info(gc)("%s", msg.buffer()); 1751 Events::log(Thread::current(), "%s", msg.buffer()); 1752 } 1753 } 1754 1755 uint ShenandoahHeap::max_workers() { 1756 return _max_workers; 1757 } 1758 1759 void ShenandoahHeap::stop() { 1760 // The shutdown sequence should be able to terminate when GC is running. 1761 1762 // Step 0. Notify policy to disable event recording. 1763 _shenandoah_policy->record_shutdown(); 1764 1765 // Step 1. Notify control thread that we are in shutdown. 1766 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1767 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1768 control_thread()->prepare_for_graceful_shutdown(); 1769 1770 // Step 2. Notify GC workers that we are cancelling GC. 1771 cancel_gc(GCCause::_shenandoah_stop_vm); 1772 1773 // Step 3. Wait until GC worker exits normally. 1774 control_thread()->stop(); 1775 } 1776 1777 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1778 if (!unload_classes()) return; 1779 // Unload classes and purge SystemDictionary. 1780 { 1781 ShenandoahPhaseTimings::Phase phase = full_gc ? 1782 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1783 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1784 ShenandoahIsAliveSelector is_alive; 1785 CodeCache::UnloadingScope scope(is_alive.is_alive_closure()); 1786 ShenandoahGCPhase gc_phase(phase); 1787 ShenandoahGCWorkerPhase worker_phase(phase); 1788 bool purged_class = SystemDictionary::do_unloading(gc_timer()); 1789 1790 uint num_workers = _workers->active_workers(); 1791 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, purged_class); 1792 _workers->run_task(&unlink_task); 1793 } 1794 1795 { 1796 ShenandoahGCPhase phase(full_gc ? 1797 ShenandoahPhaseTimings::full_gc_purge_cldg : 1798 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1799 ClassLoaderDataGraph::purge(/*at_safepoint*/true); 1800 } 1801 // Resize and verify metaspace 1802 MetaspaceGC::compute_new_size(); 1803 DEBUG_ONLY(MetaspaceUtils::verify();) 1804 } 1805 1806 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 1807 // so they should not have forwarded oops. 1808 // However, we do need to "null" dead oops in the roots, if can not be done 1809 // in concurrent cycles. 1810 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 1811 uint num_workers = _workers->active_workers(); 1812 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 1813 ShenandoahPhaseTimings::full_gc_purge_weak_par : 1814 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 1815 ShenandoahGCPhase phase(timing_phase); 1816 ShenandoahGCWorkerPhase worker_phase(timing_phase); 1817 // Cleanup weak roots 1818 if (has_forwarded_objects()) { 1819 ShenandoahForwardedIsAliveClosure is_alive; 1820 ShenandoahUpdateRefsClosure keep_alive; 1821 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 1822 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 1823 _workers->run_task(&cleaning_task); 1824 } else { 1825 ShenandoahIsAliveClosure is_alive; 1826 #ifdef ASSERT 1827 ShenandoahAssertNotForwardedClosure verify_cl; 1828 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 1829 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 1830 #else 1831 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 1832 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 1833 #endif 1834 _workers->run_task(&cleaning_task); 1835 } 1836 } 1837 1838 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 1839 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1840 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 1841 ShenandoahGCPhase phase(full_gc ? 1842 ShenandoahPhaseTimings::full_gc_purge : 1843 ShenandoahPhaseTimings::degen_gc_purge); 1844 stw_weak_refs(full_gc); 1845 stw_process_weak_roots(full_gc); 1846 stw_unload_classes(full_gc); 1847 } 1848 1849 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 1850 set_gc_state_mask(HAS_FORWARDED, cond); 1851 } 1852 1853 void ShenandoahHeap::set_unload_classes(bool uc) { 1854 _unload_classes.set_cond(uc); 1855 } 1856 1857 bool ShenandoahHeap::unload_classes() const { 1858 return _unload_classes.is_set(); 1859 } 1860 1861 address ShenandoahHeap::in_cset_fast_test_addr() { 1862 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1863 assert(heap->collection_set() != nullptr, "Sanity"); 1864 return (address) heap->collection_set()->biased_map_address(); 1865 } 1866 1867 address ShenandoahHeap::cancelled_gc_addr() { 1868 return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of(); 1869 } 1870 1871 address ShenandoahHeap::gc_state_addr() { 1872 return (address) ShenandoahHeap::heap()->_gc_state.addr_of(); 1873 } 1874 1875 size_t ShenandoahHeap::bytes_allocated_since_gc_start() { 1876 return Atomic::load(&_bytes_allocated_since_gc_start); 1877 } 1878 1879 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 1880 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 1881 } 1882 1883 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 1884 _degenerated_gc_in_progress.set_cond(in_progress); 1885 } 1886 1887 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 1888 _full_gc_in_progress.set_cond(in_progress); 1889 } 1890 1891 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 1892 assert (is_full_gc_in_progress(), "should be"); 1893 _full_gc_move_in_progress.set_cond(in_progress); 1894 } 1895 1896 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 1897 set_gc_state_mask(UPDATEREFS, in_progress); 1898 } 1899 1900 void ShenandoahHeap::register_nmethod(nmethod* nm) { 1901 ShenandoahCodeRoots::register_nmethod(nm); 1902 } 1903 1904 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 1905 ShenandoahCodeRoots::unregister_nmethod(nm); 1906 } 1907 1908 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 1909 heap_region_containing(o)->record_pin(); 1910 } 1911 1912 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 1913 ShenandoahHeapRegion* r = heap_region_containing(o); 1914 assert(r != nullptr, "Sanity"); 1915 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 1916 r->record_unpin(); 1917 } 1918 1919 void ShenandoahHeap::sync_pinned_region_status() { 1920 ShenandoahHeapLocker locker(lock()); 1921 1922 for (size_t i = 0; i < num_regions(); i++) { 1923 ShenandoahHeapRegion *r = get_region(i); 1924 if (r->is_active()) { 1925 if (r->is_pinned()) { 1926 if (r->pin_count() == 0) { 1927 r->make_unpinned(); 1928 } 1929 } else { 1930 if (r->pin_count() > 0) { 1931 r->make_pinned(); 1932 } 1933 } 1934 } 1935 } 1936 1937 assert_pinned_region_status(); 1938 } 1939 1940 #ifdef ASSERT 1941 void ShenandoahHeap::assert_pinned_region_status() { 1942 for (size_t i = 0; i < num_regions(); i++) { 1943 ShenandoahHeapRegion* r = get_region(i); 1944 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 1945 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 1946 } 1947 } 1948 #endif 1949 1950 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 1951 return _gc_timer; 1952 } 1953 1954 void ShenandoahHeap::prepare_concurrent_roots() { 1955 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1956 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1957 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 1958 set_concurrent_weak_root_in_progress(true); 1959 if (unload_classes()) { 1960 _unloader.prepare(); 1961 } 1962 } 1963 1964 void ShenandoahHeap::finish_concurrent_roots() { 1965 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1966 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1967 if (unload_classes()) { 1968 _unloader.finish(); 1969 } 1970 } 1971 1972 #ifdef ASSERT 1973 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 1974 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 1975 1976 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1977 if (UseDynamicNumberOfGCThreads) { 1978 assert(nworkers <= ParallelGCThreads, "Cannot use more than it has"); 1979 } else { 1980 // Use ParallelGCThreads inside safepoints 1981 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints"); 1982 } 1983 } else { 1984 if (UseDynamicNumberOfGCThreads) { 1985 assert(nworkers <= ConcGCThreads, "Cannot use more than it has"); 1986 } else { 1987 // Use ConcGCThreads outside safepoints 1988 assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints"); 1989 } 1990 } 1991 } 1992 #endif 1993 1994 ShenandoahVerifier* ShenandoahHeap::verifier() { 1995 guarantee(ShenandoahVerify, "Should be enabled"); 1996 assert (_verifier != nullptr, "sanity"); 1997 return _verifier; 1998 } 1999 2000 template<bool CONCURRENT> 2001 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2002 private: 2003 ShenandoahHeap* _heap; 2004 ShenandoahRegionIterator* _regions; 2005 public: 2006 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2007 WorkerTask("Shenandoah Update References"), 2008 _heap(ShenandoahHeap::heap()), 2009 _regions(regions) { 2010 } 2011 2012 void work(uint worker_id) { 2013 if (CONCURRENT) { 2014 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2015 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers); 2016 do_work<ShenandoahConcUpdateRefsClosure>(); 2017 } else { 2018 ShenandoahParallelWorkerSession worker_session(worker_id); 2019 do_work<ShenandoahSTWUpdateRefsClosure>(); 2020 } 2021 } 2022 2023 private: 2024 template<class T> 2025 void do_work() { 2026 T cl; 2027 ShenandoahHeapRegion* r = _regions->next(); 2028 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2029 while (r != nullptr) { 2030 HeapWord* update_watermark = r->get_update_watermark(); 2031 assert (update_watermark >= r->bottom(), "sanity"); 2032 if (r->is_active() && !r->is_cset()) { 2033 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2034 } 2035 if (ShenandoahPacing) { 2036 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2037 } 2038 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2039 return; 2040 } 2041 r = _regions->next(); 2042 } 2043 } 2044 }; 2045 2046 void ShenandoahHeap::update_heap_references(bool concurrent) { 2047 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2048 2049 if (concurrent) { 2050 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2051 workers()->run_task(&task); 2052 } else { 2053 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2054 workers()->run_task(&task); 2055 } 2056 } 2057 2058 2059 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2060 private: 2061 ShenandoahHeapLock* const _lock; 2062 2063 public: 2064 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2065 2066 void heap_region_do(ShenandoahHeapRegion* r) { 2067 // Drop unnecessary "pinned" state from regions that does not have CP marks 2068 // anymore, as this would allow trashing them. 2069 2070 if (r->is_active()) { 2071 if (r->is_pinned()) { 2072 if (r->pin_count() == 0) { 2073 ShenandoahHeapLocker locker(_lock); 2074 r->make_unpinned(); 2075 } 2076 } else { 2077 if (r->pin_count() > 0) { 2078 ShenandoahHeapLocker locker(_lock); 2079 r->make_pinned(); 2080 } 2081 } 2082 } 2083 } 2084 2085 bool is_thread_safe() { return true; } 2086 }; 2087 2088 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2089 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2090 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2091 2092 { 2093 ShenandoahGCPhase phase(concurrent ? 2094 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2095 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2096 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2097 parallel_heap_region_iterate(&cl); 2098 2099 assert_pinned_region_status(); 2100 } 2101 2102 { 2103 ShenandoahGCPhase phase(concurrent ? 2104 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2105 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2106 trash_cset_regions(); 2107 } 2108 } 2109 2110 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2111 { 2112 ShenandoahGCPhase phase(concurrent ? 2113 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2114 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2115 ShenandoahHeapLocker locker(lock()); 2116 _free_set->rebuild(); 2117 } 2118 } 2119 2120 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2121 print_on(st); 2122 st->cr(); 2123 print_heap_regions_on(st); 2124 } 2125 2126 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2127 size_t slice = r->index() / _bitmap_regions_per_slice; 2128 2129 size_t regions_from = _bitmap_regions_per_slice * slice; 2130 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2131 for (size_t g = regions_from; g < regions_to; g++) { 2132 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2133 if (skip_self && g == r->index()) continue; 2134 if (get_region(g)->is_committed()) { 2135 return true; 2136 } 2137 } 2138 return false; 2139 } 2140 2141 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2142 shenandoah_assert_heaplocked(); 2143 2144 // Bitmaps in special regions do not need commits 2145 if (_bitmap_region_special) { 2146 return true; 2147 } 2148 2149 if (is_bitmap_slice_committed(r, true)) { 2150 // Some other region from the group is already committed, meaning the bitmap 2151 // slice is already committed, we exit right away. 2152 return true; 2153 } 2154 2155 // Commit the bitmap slice: 2156 size_t slice = r->index() / _bitmap_regions_per_slice; 2157 size_t off = _bitmap_bytes_per_slice * slice; 2158 size_t len = _bitmap_bytes_per_slice; 2159 char* start = (char*) _bitmap_region.start() + off; 2160 2161 if (!os::commit_memory(start, len, false)) { 2162 return false; 2163 } 2164 2165 if (AlwaysPreTouch) { 2166 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2167 } 2168 2169 return true; 2170 } 2171 2172 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2173 shenandoah_assert_heaplocked(); 2174 2175 // Bitmaps in special regions do not need uncommits 2176 if (_bitmap_region_special) { 2177 return true; 2178 } 2179 2180 if (is_bitmap_slice_committed(r, true)) { 2181 // Some other region from the group is still committed, meaning the bitmap 2182 // slice is should stay committed, exit right away. 2183 return true; 2184 } 2185 2186 // Uncommit the bitmap slice: 2187 size_t slice = r->index() / _bitmap_regions_per_slice; 2188 size_t off = _bitmap_bytes_per_slice * slice; 2189 size_t len = _bitmap_bytes_per_slice; 2190 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2191 return false; 2192 } 2193 return true; 2194 } 2195 2196 void ShenandoahHeap::safepoint_synchronize_begin() { 2197 if (ShenandoahSuspendibleWorkers) { 2198 SuspendibleThreadSet::synchronize(); 2199 } 2200 } 2201 2202 void ShenandoahHeap::safepoint_synchronize_end() { 2203 if (ShenandoahSuspendibleWorkers) { 2204 SuspendibleThreadSet::desynchronize(); 2205 } 2206 } 2207 2208 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) { 2209 static const char *msg = "Concurrent uncommit"; 2210 ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 2211 EventMark em("%s", msg); 2212 2213 op_uncommit(shrink_before, shrink_until); 2214 } 2215 2216 void ShenandoahHeap::try_inject_alloc_failure() { 2217 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2218 _inject_alloc_failure.set(); 2219 os::naked_short_sleep(1); 2220 if (cancelled_gc()) { 2221 log_info(gc)("Allocation failure was successfully injected"); 2222 } 2223 } 2224 } 2225 2226 bool ShenandoahHeap::should_inject_alloc_failure() { 2227 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2228 } 2229 2230 void ShenandoahHeap::initialize_serviceability() { 2231 _memory_pool = new ShenandoahMemoryPool(this); 2232 _cycle_memory_manager.add_pool(_memory_pool); 2233 _stw_memory_manager.add_pool(_memory_pool); 2234 } 2235 2236 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2237 GrowableArray<GCMemoryManager*> memory_managers(2); 2238 memory_managers.append(&_cycle_memory_manager); 2239 memory_managers.append(&_stw_memory_manager); 2240 return memory_managers; 2241 } 2242 2243 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2244 GrowableArray<MemoryPool*> memory_pools(1); 2245 memory_pools.append(_memory_pool); 2246 return memory_pools; 2247 } 2248 2249 MemoryUsage ShenandoahHeap::memory_usage() { 2250 return _memory_pool->get_memory_usage(); 2251 } 2252 2253 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2254 _heap(ShenandoahHeap::heap()), 2255 _index(0) {} 2256 2257 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2258 _heap(heap), 2259 _index(0) {} 2260 2261 void ShenandoahRegionIterator::reset() { 2262 _index = 0; 2263 } 2264 2265 bool ShenandoahRegionIterator::has_next() const { 2266 return _index < _heap->num_regions(); 2267 } 2268 2269 char ShenandoahHeap::gc_state() const { 2270 return _gc_state.raw_value(); 2271 } 2272 2273 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2274 #ifdef ASSERT 2275 assert(_liveness_cache != nullptr, "sanity"); 2276 assert(worker_id < _max_workers, "sanity"); 2277 for (uint i = 0; i < num_regions(); i++) { 2278 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2279 } 2280 #endif 2281 return _liveness_cache[worker_id]; 2282 } 2283 2284 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2285 assert(worker_id < _max_workers, "sanity"); 2286 assert(_liveness_cache != nullptr, "sanity"); 2287 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2288 for (uint i = 0; i < num_regions(); i++) { 2289 ShenandoahLiveData live = ld[i]; 2290 if (live > 0) { 2291 ShenandoahHeapRegion* r = get_region(i); 2292 r->increase_live_data_gc_words(live); 2293 ld[i] = 0; 2294 } 2295 } 2296 } 2297 2298 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2299 if (is_idle()) return false; 2300 2301 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2302 // marking phase. 2303 if (is_concurrent_mark_in_progress() && 2304 !marking_context()->allocated_after_mark_start(obj)) { 2305 return true; 2306 } 2307 2308 // Can not guarantee obj is deeply good. 2309 if (has_forwarded_objects()) { 2310 return true; 2311 } 2312 2313 return false; 2314 }