1 /* 2 * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "memory/allocation.hpp" 28 #include "memory/universe.hpp" 29 30 #include "gc/shared/classUnloadingContext.hpp" 31 #include "gc/shared/gcArguments.hpp" 32 #include "gc/shared/gcTimer.hpp" 33 #include "gc/shared/gcTraceTime.inline.hpp" 34 #include "gc/shared/locationPrinter.inline.hpp" 35 #include "gc/shared/memAllocator.hpp" 36 #include "gc/shared/plab.hpp" 37 #include "gc/shared/slidingForwarding.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 40 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 41 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 42 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 43 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 44 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 45 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 46 #include "gc/shenandoah/shenandoahControlThread.hpp" 47 #include "gc/shenandoah/shenandoahFreeSet.hpp" 48 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 49 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 50 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 51 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 52 #include "gc/shenandoah/shenandoahInitLogger.hpp" 53 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 54 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 55 #include "gc/shenandoah/shenandoahMetrics.hpp" 56 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 57 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 58 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 59 #include "gc/shenandoah/shenandoahPadding.hpp" 60 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 61 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 62 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 63 #include "gc/shenandoah/shenandoahSTWMark.hpp" 64 #include "gc/shenandoah/shenandoahUtils.hpp" 65 #include "gc/shenandoah/shenandoahVerifier.hpp" 66 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 67 #include "gc/shenandoah/shenandoahVMOperations.hpp" 68 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 69 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 70 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 71 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 72 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 73 #if INCLUDE_JFR 74 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 75 #endif 76 77 #include "classfile/systemDictionary.hpp" 78 #include "code/codeCache.hpp" 79 #include "memory/classLoaderMetaspace.hpp" 80 #include "memory/metaspaceUtils.hpp" 81 #include "oops/compressedOops.inline.hpp" 82 #include "prims/jvmtiTagMap.hpp" 83 #include "runtime/atomic.hpp" 84 #include "runtime/globals.hpp" 85 #include "runtime/interfaceSupport.inline.hpp" 86 #include "runtime/java.hpp" 87 #include "runtime/orderAccess.hpp" 88 #include "runtime/safepointMechanism.hpp" 89 #include "runtime/vmThread.hpp" 90 #include "services/mallocTracker.hpp" 91 #include "services/memTracker.hpp" 92 #include "utilities/events.hpp" 93 #include "utilities/powerOfTwo.hpp" 94 95 class ShenandoahPretouchHeapTask : public WorkerTask { 96 private: 97 ShenandoahRegionIterator _regions; 98 const size_t _page_size; 99 public: 100 ShenandoahPretouchHeapTask(size_t page_size) : 101 WorkerTask("Shenandoah Pretouch Heap"), 102 _page_size(page_size) {} 103 104 virtual void work(uint worker_id) { 105 ShenandoahHeapRegion* r = _regions.next(); 106 while (r != nullptr) { 107 if (r->is_committed()) { 108 os::pretouch_memory(r->bottom(), r->end(), _page_size); 109 } 110 r = _regions.next(); 111 } 112 } 113 }; 114 115 class ShenandoahPretouchBitmapTask : public WorkerTask { 116 private: 117 ShenandoahRegionIterator _regions; 118 char* _bitmap_base; 119 const size_t _bitmap_size; 120 const size_t _page_size; 121 public: 122 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 123 WorkerTask("Shenandoah Pretouch Bitmap"), 124 _bitmap_base(bitmap_base), 125 _bitmap_size(bitmap_size), 126 _page_size(page_size) {} 127 128 virtual void work(uint worker_id) { 129 ShenandoahHeapRegion* r = _regions.next(); 130 while (r != nullptr) { 131 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 132 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 133 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 134 135 if (r->is_committed()) { 136 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 137 } 138 139 r = _regions.next(); 140 } 141 } 142 }; 143 144 jint ShenandoahHeap::initialize() { 145 // 146 // Figure out heap sizing 147 // 148 149 size_t init_byte_size = InitialHeapSize; 150 size_t min_byte_size = MinHeapSize; 151 size_t max_byte_size = MaxHeapSize; 152 size_t heap_alignment = HeapAlignment; 153 154 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 155 156 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 157 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 158 159 _num_regions = ShenandoahHeapRegion::region_count(); 160 assert(_num_regions == (max_byte_size / reg_size_bytes), 161 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 162 _num_regions, max_byte_size, reg_size_bytes); 163 164 // Now we know the number of regions, initialize the heuristics. 165 initialize_heuristics(); 166 167 size_t num_committed_regions = init_byte_size / reg_size_bytes; 168 num_committed_regions = MIN2(num_committed_regions, _num_regions); 169 assert(num_committed_regions <= _num_regions, "sanity"); 170 _initial_size = num_committed_regions * reg_size_bytes; 171 172 size_t num_min_regions = min_byte_size / reg_size_bytes; 173 num_min_regions = MIN2(num_min_regions, _num_regions); 174 assert(num_min_regions <= _num_regions, "sanity"); 175 _minimum_size = num_min_regions * reg_size_bytes; 176 177 // Default to max heap size. 178 _soft_max_size = _num_regions * reg_size_bytes; 179 180 _committed = _initial_size; 181 182 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 183 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 184 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 185 186 // 187 // Reserve and commit memory for heap 188 // 189 190 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 191 initialize_reserved_region(heap_rs); 192 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 193 _heap_region_special = heap_rs.special(); 194 195 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 196 "Misaligned heap: " PTR_FORMAT, p2i(base())); 197 198 #if SHENANDOAH_OPTIMIZED_MARKTASK 199 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 200 // Fail if we ever attempt to address more than we can. 201 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 202 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 203 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 204 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 205 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 206 vm_exit_during_initialization("Fatal Error", buf); 207 } 208 #endif 209 210 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 211 if (!_heap_region_special) { 212 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 213 "Cannot commit heap memory"); 214 } 215 216 // 217 // Reserve and commit memory for bitmap(s) 218 // 219 220 _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 221 _bitmap_size = align_up(_bitmap_size, bitmap_page_size); 222 223 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 224 225 guarantee(bitmap_bytes_per_region != 0, 226 "Bitmap bytes per region should not be zero"); 227 guarantee(is_power_of_2(bitmap_bytes_per_region), 228 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 229 230 if (bitmap_page_size > bitmap_bytes_per_region) { 231 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 232 _bitmap_bytes_per_slice = bitmap_page_size; 233 } else { 234 _bitmap_regions_per_slice = 1; 235 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 236 } 237 238 guarantee(_bitmap_regions_per_slice >= 1, 239 "Should have at least one region per slice: " SIZE_FORMAT, 240 _bitmap_regions_per_slice); 241 242 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 243 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 244 _bitmap_bytes_per_slice, bitmap_page_size); 245 246 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 247 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 248 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 249 _bitmap_region_special = bitmap.special(); 250 251 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 252 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 253 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 254 if (!_bitmap_region_special) { 255 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 256 "Cannot commit bitmap memory"); 257 } 258 259 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 260 261 if (ShenandoahVerify) { 262 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 263 if (!verify_bitmap.special()) { 264 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 265 "Cannot commit verification bitmap memory"); 266 } 267 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 268 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 269 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 270 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 271 } 272 273 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 274 ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size); 275 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 276 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 277 _aux_bitmap_region_special = aux_bitmap.special(); 278 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 279 280 // 281 // Create regions and region sets 282 // 283 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 284 size_t region_storage_size = align_up(region_align * _num_regions, region_page_size); 285 region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity()); 286 287 ReservedSpace region_storage(region_storage_size, region_page_size); 288 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 289 if (!region_storage.special()) { 290 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 291 "Cannot commit region memory"); 292 } 293 294 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 295 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 296 // If not successful, bite a bullet and allocate at whatever address. 297 { 298 size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 299 size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 300 301 uintptr_t min = round_up_power_of_2(cset_align); 302 uintptr_t max = (1u << 30u); 303 304 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 305 char* req_addr = (char*)addr; 306 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 307 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr); 308 if (cset_rs.is_reserved()) { 309 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 310 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 311 break; 312 } 313 } 314 315 if (_collection_set == nullptr) { 316 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size()); 317 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 318 } 319 } 320 321 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 322 _free_set = new ShenandoahFreeSet(this, _num_regions); 323 324 { 325 ShenandoahHeapLocker locker(lock()); 326 327 for (size_t i = 0; i < _num_regions; i++) { 328 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 329 bool is_committed = i < num_committed_regions; 330 void* loc = region_storage.base() + i * region_align; 331 332 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 333 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 334 335 _marking_context->initialize_top_at_mark_start(r); 336 _regions[i] = r; 337 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 338 } 339 340 // Initialize to complete 341 _marking_context->mark_complete(); 342 343 _free_set->rebuild(); 344 } 345 346 if (AlwaysPreTouch) { 347 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 348 // before initialize() below zeroes it with initializing thread. For any given region, 349 // we touch the region and the corresponding bitmaps from the same thread. 350 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 351 352 _pretouch_heap_page_size = heap_page_size; 353 _pretouch_bitmap_page_size = bitmap_page_size; 354 355 #ifdef LINUX 356 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge 357 // pages. But, the kernel needs to know that every small page is used, in order to coalesce 358 // them into huge one. Therefore, we need to pretouch with smaller pages. 359 if (UseTransparentHugePages) { 360 _pretouch_heap_page_size = (size_t)os::vm_page_size(); 361 _pretouch_bitmap_page_size = (size_t)os::vm_page_size(); 362 } 363 #endif 364 365 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 366 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 367 368 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 369 _workers->run_task(&bcl); 370 371 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 372 _workers->run_task(&hcl); 373 } 374 375 // 376 // Initialize the rest of GC subsystems 377 // 378 379 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 380 for (uint worker = 0; worker < _max_workers; worker++) { 381 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 382 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 383 } 384 385 // There should probably be Shenandoah-specific options for these, 386 // just as there are G1-specific options. 387 { 388 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 389 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 390 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 391 } 392 393 _monitoring_support = new ShenandoahMonitoringSupport(this); 394 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 395 ShenandoahCodeRoots::initialize(); 396 397 if (ShenandoahPacing) { 398 _pacer = new ShenandoahPacer(this); 399 _pacer->setup_for_idle(); 400 } else { 401 _pacer = nullptr; 402 } 403 404 _control_thread = new ShenandoahControlThread(); 405 406 ShenandoahInitLogger::print(); 407 408 SlidingForwarding::initialize(_heap_region, ShenandoahHeapRegion::region_size_words()); 409 410 return JNI_OK; 411 } 412 413 void ShenandoahHeap::initialize_mode() { 414 if (ShenandoahGCMode != nullptr) { 415 if (strcmp(ShenandoahGCMode, "satb") == 0) { 416 _gc_mode = new ShenandoahSATBMode(); 417 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 418 _gc_mode = new ShenandoahIUMode(); 419 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 420 _gc_mode = new ShenandoahPassiveMode(); 421 } else { 422 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 423 } 424 } else { 425 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 426 } 427 _gc_mode->initialize_flags(); 428 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 429 vm_exit_during_initialization( 430 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 431 _gc_mode->name())); 432 } 433 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 434 vm_exit_during_initialization( 435 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 436 _gc_mode->name())); 437 } 438 } 439 440 void ShenandoahHeap::initialize_heuristics() { 441 assert(_gc_mode != nullptr, "Must be initialized"); 442 _heuristics = _gc_mode->initialize_heuristics(); 443 444 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 445 vm_exit_during_initialization( 446 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 447 _heuristics->name())); 448 } 449 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 450 vm_exit_during_initialization( 451 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 452 _heuristics->name())); 453 } 454 } 455 456 #ifdef _MSC_VER 457 #pragma warning( push ) 458 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 459 #endif 460 461 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 462 CollectedHeap(), 463 _initial_size(0), 464 _used(0), 465 _committed(0), 466 _bytes_allocated_since_gc_start(0), 467 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 468 _workers(nullptr), 469 _safepoint_workers(nullptr), 470 _heap_region_special(false), 471 _num_regions(0), 472 _regions(nullptr), 473 _update_refs_iterator(this), 474 _gc_state_changed(false), 475 _control_thread(nullptr), 476 _shenandoah_policy(policy), 477 _gc_mode(nullptr), 478 _heuristics(nullptr), 479 _free_set(nullptr), 480 _pacer(nullptr), 481 _verifier(nullptr), 482 _phase_timings(nullptr), 483 _monitoring_support(nullptr), 484 _memory_pool(nullptr), 485 _stw_memory_manager("Shenandoah Pauses"), 486 _cycle_memory_manager("Shenandoah Cycles"), 487 _gc_timer(new ConcurrentGCTimer()), 488 _soft_ref_policy(), 489 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 490 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 491 _marking_context(nullptr), 492 _bitmap_size(0), 493 _bitmap_regions_per_slice(0), 494 _bitmap_bytes_per_slice(0), 495 _bitmap_region_special(false), 496 _aux_bitmap_region_special(false), 497 _liveness_cache(nullptr), 498 _collection_set(nullptr) 499 { 500 // Initialize GC mode early, so we can adjust barrier support 501 initialize_mode(); 502 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 503 504 _max_workers = MAX2(_max_workers, 1U); 505 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 506 if (_workers == nullptr) { 507 vm_exit_during_initialization("Failed necessary allocation."); 508 } else { 509 _workers->initialize_workers(); 510 } 511 512 if (ParallelGCThreads > 1) { 513 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", 514 ParallelGCThreads); 515 _safepoint_workers->initialize_workers(); 516 } 517 } 518 519 #ifdef _MSC_VER 520 #pragma warning( pop ) 521 #endif 522 523 class ShenandoahResetBitmapTask : public WorkerTask { 524 private: 525 ShenandoahRegionIterator _regions; 526 527 public: 528 ShenandoahResetBitmapTask() : 529 WorkerTask("Shenandoah Reset Bitmap") {} 530 531 void work(uint worker_id) { 532 ShenandoahHeapRegion* region = _regions.next(); 533 ShenandoahHeap* heap = ShenandoahHeap::heap(); 534 ShenandoahMarkingContext* const ctx = heap->marking_context(); 535 while (region != nullptr) { 536 if (heap->is_bitmap_slice_committed(region)) { 537 ctx->clear_bitmap(region); 538 } 539 region = _regions.next(); 540 } 541 } 542 }; 543 544 void ShenandoahHeap::reset_mark_bitmap() { 545 assert_gc_workers(_workers->active_workers()); 546 mark_incomplete_marking_context(); 547 548 ShenandoahResetBitmapTask task; 549 _workers->run_task(&task); 550 } 551 552 void ShenandoahHeap::print_on(outputStream* st) const { 553 st->print_cr("Shenandoah Heap"); 554 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 555 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 556 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 557 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 558 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 559 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 560 num_regions(), 561 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 562 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 563 564 st->print("Status: "); 565 if (has_forwarded_objects()) st->print("has forwarded objects, "); 566 if (is_concurrent_mark_in_progress()) st->print("marking, "); 567 if (is_evacuation_in_progress()) st->print("evacuating, "); 568 if (is_update_refs_in_progress()) st->print("updating refs, "); 569 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 570 if (is_full_gc_in_progress()) st->print("full gc, "); 571 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 572 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 573 if (is_concurrent_strong_root_in_progress() && 574 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 575 576 if (cancelled_gc()) { 577 st->print("cancelled"); 578 } else { 579 st->print("not cancelled"); 580 } 581 st->cr(); 582 583 st->print_cr("Reserved region:"); 584 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 585 p2i(reserved_region().start()), 586 p2i(reserved_region().end())); 587 588 ShenandoahCollectionSet* cset = collection_set(); 589 st->print_cr("Collection set:"); 590 if (cset != nullptr) { 591 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 592 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 593 } else { 594 st->print_cr(" (null)"); 595 } 596 597 st->cr(); 598 MetaspaceUtils::print_on(st); 599 600 if (Verbose) { 601 st->cr(); 602 print_heap_regions_on(st); 603 } 604 } 605 606 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 607 public: 608 void do_thread(Thread* thread) { 609 assert(thread != nullptr, "Sanity"); 610 assert(thread->is_Worker_thread(), "Only worker thread expected"); 611 ShenandoahThreadLocalData::initialize_gclab(thread); 612 } 613 }; 614 615 void ShenandoahHeap::post_initialize() { 616 CollectedHeap::post_initialize(); 617 MutexLocker ml(Threads_lock); 618 619 ShenandoahInitWorkerGCLABClosure init_gclabs; 620 _workers->threads_do(&init_gclabs); 621 622 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 623 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 624 _workers->set_initialize_gclab(); 625 if (_safepoint_workers != nullptr) { 626 _safepoint_workers->threads_do(&init_gclabs); 627 _safepoint_workers->set_initialize_gclab(); 628 } 629 630 _heuristics->initialize(); 631 632 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 633 } 634 635 size_t ShenandoahHeap::used() const { 636 return Atomic::load(&_used); 637 } 638 639 size_t ShenandoahHeap::committed() const { 640 return Atomic::load(&_committed); 641 } 642 643 void ShenandoahHeap::increase_committed(size_t bytes) { 644 shenandoah_assert_heaplocked_or_safepoint(); 645 _committed += bytes; 646 } 647 648 void ShenandoahHeap::decrease_committed(size_t bytes) { 649 shenandoah_assert_heaplocked_or_safepoint(); 650 _committed -= bytes; 651 } 652 653 void ShenandoahHeap::increase_used(size_t bytes) { 654 Atomic::add(&_used, bytes, memory_order_relaxed); 655 } 656 657 void ShenandoahHeap::set_used(size_t bytes) { 658 Atomic::store(&_used, bytes); 659 } 660 661 void ShenandoahHeap::decrease_used(size_t bytes) { 662 assert(used() >= bytes, "never decrease heap size by more than we've left"); 663 Atomic::sub(&_used, bytes, memory_order_relaxed); 664 } 665 666 void ShenandoahHeap::increase_allocated(size_t bytes) { 667 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 668 } 669 670 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 671 size_t bytes = words * HeapWordSize; 672 if (!waste) { 673 increase_used(bytes); 674 } 675 increase_allocated(bytes); 676 if (ShenandoahPacing) { 677 control_thread()->pacing_notify_alloc(words); 678 if (waste) { 679 pacer()->claim_for_alloc(words, true); 680 } 681 } 682 } 683 684 size_t ShenandoahHeap::capacity() const { 685 return committed(); 686 } 687 688 size_t ShenandoahHeap::max_capacity() const { 689 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 690 } 691 692 size_t ShenandoahHeap::soft_max_capacity() const { 693 size_t v = Atomic::load(&_soft_max_size); 694 assert(min_capacity() <= v && v <= max_capacity(), 695 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 696 min_capacity(), v, max_capacity()); 697 return v; 698 } 699 700 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 701 assert(min_capacity() <= v && v <= max_capacity(), 702 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 703 min_capacity(), v, max_capacity()); 704 Atomic::store(&_soft_max_size, v); 705 } 706 707 size_t ShenandoahHeap::min_capacity() const { 708 return _minimum_size; 709 } 710 711 size_t ShenandoahHeap::initial_capacity() const { 712 return _initial_size; 713 } 714 715 bool ShenandoahHeap::is_in(const void* p) const { 716 HeapWord* heap_base = (HeapWord*) base(); 717 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 718 return p >= heap_base && p < last_region_end; 719 } 720 721 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 722 assert (ShenandoahUncommit, "should be enabled"); 723 724 // Application allocates from the beginning of the heap, and GC allocates at 725 // the end of it. It is more efficient to uncommit from the end, so that applications 726 // could enjoy the near committed regions. GC allocations are much less frequent, 727 // and therefore can accept the committing costs. 728 729 size_t count = 0; 730 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 731 ShenandoahHeapRegion* r = get_region(i - 1); 732 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 733 ShenandoahHeapLocker locker(lock()); 734 if (r->is_empty_committed()) { 735 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 736 break; 737 } 738 739 r->make_uncommitted(); 740 count++; 741 } 742 } 743 SpinPause(); // allow allocators to take the lock 744 } 745 746 if (count > 0) { 747 control_thread()->notify_heap_changed(); 748 } 749 } 750 751 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 752 // New object should fit the GCLAB size 753 size_t min_size = MAX2(size, PLAB::min_size()); 754 755 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 756 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 757 new_size = MIN2(new_size, PLAB::max_size()); 758 new_size = MAX2(new_size, PLAB::min_size()); 759 760 // Record new heuristic value even if we take any shortcut. This captures 761 // the case when moderately-sized objects always take a shortcut. At some point, 762 // heuristics should catch up with them. 763 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 764 765 if (new_size < size) { 766 // New size still does not fit the object. Fall back to shared allocation. 767 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 768 return nullptr; 769 } 770 771 // Retire current GCLAB, and allocate a new one. 772 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 773 gclab->retire(); 774 775 size_t actual_size = 0; 776 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 777 if (gclab_buf == nullptr) { 778 return nullptr; 779 } 780 781 assert (size <= actual_size, "allocation should fit"); 782 783 // ...and clear or zap just allocated TLAB, if needed. 784 if (ZeroTLAB) { 785 Copy::zero_to_words(gclab_buf, actual_size); 786 } else if (ZapTLAB) { 787 // Skip mangling the space corresponding to the object header to 788 // ensure that the returned space is not considered parsable by 789 // any concurrent GC thread. 790 size_t hdr_size = oopDesc::header_size(); 791 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 792 } 793 gclab->set_buf(gclab_buf, actual_size); 794 return gclab->allocate(size); 795 } 796 797 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 798 size_t requested_size, 799 size_t* actual_size) { 800 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 801 HeapWord* res = allocate_memory(req); 802 if (res != nullptr) { 803 *actual_size = req.actual_size(); 804 } else { 805 *actual_size = 0; 806 } 807 return res; 808 } 809 810 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 811 size_t word_size, 812 size_t* actual_size) { 813 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 814 HeapWord* res = allocate_memory(req); 815 if (res != nullptr) { 816 *actual_size = req.actual_size(); 817 } else { 818 *actual_size = 0; 819 } 820 return res; 821 } 822 823 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 824 intptr_t pacer_epoch = 0; 825 bool in_new_region = false; 826 HeapWord* result = nullptr; 827 828 if (req.is_mutator_alloc()) { 829 if (ShenandoahPacing) { 830 pacer()->pace_for_alloc(req.size()); 831 pacer_epoch = pacer()->epoch(); 832 } 833 834 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 835 result = allocate_memory_under_lock(req, in_new_region); 836 } 837 838 // Allocation failed, block until control thread reacted, then retry allocation. 839 // 840 // It might happen that one of the threads requesting allocation would unblock 841 // way later after GC happened, only to fail the second allocation, because 842 // other threads have already depleted the free storage. In this case, a better 843 // strategy is to try again, as long as GC makes progress (or until at least 844 // one full GC has completed). 845 size_t original_count = shenandoah_policy()->full_gc_count(); 846 while (result == nullptr 847 && (_progress_last_gc.is_set() || original_count == shenandoah_policy()->full_gc_count())) { 848 control_thread()->handle_alloc_failure(req); 849 result = allocate_memory_under_lock(req, in_new_region); 850 } 851 } else { 852 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 853 result = allocate_memory_under_lock(req, in_new_region); 854 // Do not call handle_alloc_failure() here, because we cannot block. 855 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 856 } 857 858 if (in_new_region) { 859 control_thread()->notify_heap_changed(); 860 } 861 862 if (result != nullptr) { 863 size_t requested = req.size(); 864 size_t actual = req.actual_size(); 865 866 assert (req.is_lab_alloc() || (requested == actual), 867 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 868 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 869 870 if (req.is_mutator_alloc()) { 871 notify_mutator_alloc_words(actual, false); 872 873 // If we requested more than we were granted, give the rest back to pacer. 874 // This only matters if we are in the same pacing epoch: do not try to unpace 875 // over the budget for the other phase. 876 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 877 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 878 } 879 } else { 880 increase_used(actual*HeapWordSize); 881 } 882 } 883 884 return result; 885 } 886 887 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 888 // If we are dealing with mutator allocation, then we may need to block for safepoint. 889 // We cannot block for safepoint for GC allocations, because there is a high chance 890 // we are already running at safepoint or from stack watermark machinery, and we cannot 891 // block again. 892 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 893 return _free_set->allocate(req, in_new_region); 894 } 895 896 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 897 bool* gc_overhead_limit_was_exceeded) { 898 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 899 return allocate_memory(req); 900 } 901 902 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 903 size_t size, 904 Metaspace::MetadataType mdtype) { 905 MetaWord* result; 906 907 // Inform metaspace OOM to GC heuristics if class unloading is possible. 908 if (heuristics()->can_unload_classes()) { 909 ShenandoahHeuristics* h = heuristics(); 910 h->record_metaspace_oom(); 911 } 912 913 // Expand and retry allocation 914 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 915 if (result != nullptr) { 916 return result; 917 } 918 919 // Start full GC 920 collect(GCCause::_metadata_GC_clear_soft_refs); 921 922 // Retry allocation 923 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 924 if (result != nullptr) { 925 return result; 926 } 927 928 // Expand and retry allocation 929 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 930 if (result != nullptr) { 931 return result; 932 } 933 934 // Out of memory 935 return nullptr; 936 } 937 938 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 939 private: 940 ShenandoahHeap* const _heap; 941 Thread* const _thread; 942 public: 943 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 944 _heap(heap), _thread(Thread::current()) {} 945 946 void do_object(oop p) { 947 shenandoah_assert_marked(nullptr, p); 948 if (!p->is_forwarded()) { 949 _heap->evacuate_object(p, _thread); 950 } 951 } 952 }; 953 954 class ShenandoahEvacuationTask : public WorkerTask { 955 private: 956 ShenandoahHeap* const _sh; 957 ShenandoahCollectionSet* const _cs; 958 bool _concurrent; 959 public: 960 ShenandoahEvacuationTask(ShenandoahHeap* sh, 961 ShenandoahCollectionSet* cs, 962 bool concurrent) : 963 WorkerTask("Shenandoah Evacuation"), 964 _sh(sh), 965 _cs(cs), 966 _concurrent(concurrent) 967 {} 968 969 void work(uint worker_id) { 970 if (_concurrent) { 971 ShenandoahConcurrentWorkerSession worker_session(worker_id); 972 ShenandoahSuspendibleThreadSetJoiner stsj; 973 ShenandoahEvacOOMScope oom_evac_scope; 974 do_work(); 975 } else { 976 ShenandoahParallelWorkerSession worker_session(worker_id); 977 ShenandoahEvacOOMScope oom_evac_scope; 978 do_work(); 979 } 980 } 981 982 private: 983 void do_work() { 984 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 985 ShenandoahHeapRegion* r; 986 while ((r =_cs->claim_next()) != nullptr) { 987 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 988 _sh->marked_object_iterate(r, &cl); 989 990 if (ShenandoahPacing) { 991 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 992 } 993 994 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 995 break; 996 } 997 } 998 } 999 }; 1000 1001 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1002 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1003 workers()->run_task(&task); 1004 } 1005 1006 void ShenandoahHeap::trash_cset_regions() { 1007 ShenandoahHeapLocker locker(lock()); 1008 1009 ShenandoahCollectionSet* set = collection_set(); 1010 ShenandoahHeapRegion* r; 1011 set->clear_current_index(); 1012 while ((r = set->next()) != nullptr) { 1013 r->make_trash(); 1014 } 1015 collection_set()->clear(); 1016 } 1017 1018 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1019 st->print_cr("Heap Regions:"); 1020 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1021 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1022 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1023 st->print_cr("UWM=update watermark, U=used"); 1024 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1025 st->print_cr("S=shared allocs, L=live data"); 1026 st->print_cr("CP=critical pins"); 1027 1028 for (size_t i = 0; i < num_regions(); i++) { 1029 get_region(i)->print_on(st); 1030 } 1031 } 1032 1033 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1034 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1035 1036 oop humongous_obj = cast_to_oop(start->bottom()); 1037 size_t size = humongous_obj->size(); 1038 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1039 size_t index = start->index() + required_regions - 1; 1040 1041 assert(!start->has_live(), "liveness must be zero"); 1042 1043 for(size_t i = 0; i < required_regions; i++) { 1044 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1045 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1046 ShenandoahHeapRegion* region = get_region(index --); 1047 1048 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1049 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1050 1051 region->make_trash_immediate(); 1052 } 1053 } 1054 1055 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1056 public: 1057 ShenandoahCheckCleanGCLABClosure() {} 1058 void do_thread(Thread* thread) { 1059 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1060 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1061 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1062 } 1063 }; 1064 1065 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1066 private: 1067 bool const _resize; 1068 public: 1069 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1070 void do_thread(Thread* thread) { 1071 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1072 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1073 gclab->retire(); 1074 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1075 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1076 } 1077 } 1078 }; 1079 1080 void ShenandoahHeap::labs_make_parsable() { 1081 assert(UseTLAB, "Only call with UseTLAB"); 1082 1083 ShenandoahRetireGCLABClosure cl(false); 1084 1085 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1086 ThreadLocalAllocBuffer& tlab = t->tlab(); 1087 tlab.make_parsable(); 1088 cl.do_thread(t); 1089 } 1090 1091 workers()->threads_do(&cl); 1092 } 1093 1094 void ShenandoahHeap::tlabs_retire(bool resize) { 1095 assert(UseTLAB, "Only call with UseTLAB"); 1096 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1097 1098 ThreadLocalAllocStats stats; 1099 1100 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1101 ThreadLocalAllocBuffer& tlab = t->tlab(); 1102 tlab.retire(&stats); 1103 if (resize) { 1104 tlab.resize(); 1105 } 1106 } 1107 1108 stats.publish(); 1109 1110 #ifdef ASSERT 1111 ShenandoahCheckCleanGCLABClosure cl; 1112 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1113 cl.do_thread(t); 1114 } 1115 workers()->threads_do(&cl); 1116 #endif 1117 } 1118 1119 void ShenandoahHeap::gclabs_retire(bool resize) { 1120 assert(UseTLAB, "Only call with UseTLAB"); 1121 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1122 1123 ShenandoahRetireGCLABClosure cl(resize); 1124 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1125 cl.do_thread(t); 1126 } 1127 workers()->threads_do(&cl); 1128 1129 if (safepoint_workers() != nullptr) { 1130 safepoint_workers()->threads_do(&cl); 1131 } 1132 } 1133 1134 // Returns size in bytes 1135 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1136 // Return the max allowed size, and let the allocation path 1137 // figure out the safe size for current allocation. 1138 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1139 } 1140 1141 size_t ShenandoahHeap::max_tlab_size() const { 1142 // Returns size in words 1143 return ShenandoahHeapRegion::max_tlab_size_words(); 1144 } 1145 1146 void ShenandoahHeap::collect(GCCause::Cause cause) { 1147 control_thread()->request_gc(cause); 1148 } 1149 1150 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1151 //assert(false, "Shouldn't need to do full collections"); 1152 } 1153 1154 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1155 ShenandoahHeapRegion* r = heap_region_containing(addr); 1156 if (r != nullptr) { 1157 return r->block_start(addr); 1158 } 1159 return nullptr; 1160 } 1161 1162 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1163 ShenandoahHeapRegion* r = heap_region_containing(addr); 1164 return r->block_is_obj(addr); 1165 } 1166 1167 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1168 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1169 } 1170 1171 void ShenandoahHeap::prepare_for_verify() { 1172 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1173 labs_make_parsable(); 1174 } 1175 } 1176 1177 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1178 tcl->do_thread(_control_thread); 1179 workers()->threads_do(tcl); 1180 if (_safepoint_workers != nullptr) { 1181 _safepoint_workers->threads_do(tcl); 1182 } 1183 } 1184 1185 void ShenandoahHeap::print_tracing_info() const { 1186 LogTarget(Info, gc, stats) lt; 1187 if (lt.is_enabled()) { 1188 ResourceMark rm; 1189 LogStream ls(lt); 1190 1191 phase_timings()->print_global_on(&ls); 1192 1193 ls.cr(); 1194 ls.cr(); 1195 1196 shenandoah_policy()->print_gc_stats(&ls); 1197 1198 ls.cr(); 1199 ls.cr(); 1200 } 1201 } 1202 1203 void ShenandoahHeap::verify(VerifyOption vo) { 1204 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1205 if (ShenandoahVerify) { 1206 verifier()->verify_generic(vo); 1207 } else { 1208 // TODO: Consider allocating verification bitmaps on demand, 1209 // and turn this on unconditionally. 1210 } 1211 } 1212 } 1213 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1214 return _free_set->capacity(); 1215 } 1216 1217 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1218 private: 1219 MarkBitMap* _bitmap; 1220 ShenandoahScanObjectStack* _oop_stack; 1221 ShenandoahHeap* const _heap; 1222 ShenandoahMarkingContext* const _marking_context; 1223 1224 template <class T> 1225 void do_oop_work(T* p) { 1226 T o = RawAccess<>::oop_load(p); 1227 if (!CompressedOops::is_null(o)) { 1228 oop obj = CompressedOops::decode_not_null(o); 1229 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1230 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1231 return; 1232 } 1233 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1234 1235 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1236 if (!_bitmap->is_marked(obj)) { 1237 _bitmap->mark(obj); 1238 _oop_stack->push(obj); 1239 } 1240 } 1241 } 1242 public: 1243 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1244 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1245 _marking_context(_heap->marking_context()) {} 1246 void do_oop(oop* p) { do_oop_work(p); } 1247 void do_oop(narrowOop* p) { do_oop_work(p); } 1248 }; 1249 1250 /* 1251 * This is public API, used in preparation of object_iterate(). 1252 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1253 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1254 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1255 */ 1256 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1257 // No-op. 1258 } 1259 1260 /* 1261 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1262 * 1263 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1264 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1265 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1266 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1267 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1268 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1269 * wiped the bitmap in preparation for next marking). 1270 * 1271 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1272 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1273 * is allowed to report dead objects, but is not required to do so. 1274 */ 1275 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1276 // Reset bitmap 1277 if (!prepare_aux_bitmap_for_iteration()) 1278 return; 1279 1280 ShenandoahScanObjectStack oop_stack; 1281 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1282 // Seed the stack with root scan 1283 scan_roots_for_iteration(&oop_stack, &oops); 1284 1285 // Work through the oop stack to traverse heap 1286 while (! oop_stack.is_empty()) { 1287 oop obj = oop_stack.pop(); 1288 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1289 cl->do_object(obj); 1290 obj->oop_iterate(&oops); 1291 } 1292 1293 assert(oop_stack.is_empty(), "should be empty"); 1294 // Reclaim bitmap 1295 reclaim_aux_bitmap_for_iteration(); 1296 } 1297 1298 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1299 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1300 1301 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1302 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1303 return false; 1304 } 1305 // Reset bitmap 1306 _aux_bit_map.clear(); 1307 return true; 1308 } 1309 1310 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1311 // Process GC roots according to current GC cycle 1312 // This populates the work stack with initial objects 1313 // It is important to relinquish the associated locks before diving 1314 // into heap dumper 1315 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1316 ShenandoahHeapIterationRootScanner rp(n_workers); 1317 rp.roots_do(oops); 1318 } 1319 1320 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1321 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1322 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1323 } 1324 } 1325 1326 // Closure for parallelly iterate objects 1327 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1328 private: 1329 MarkBitMap* _bitmap; 1330 ShenandoahObjToScanQueue* _queue; 1331 ShenandoahHeap* const _heap; 1332 ShenandoahMarkingContext* const _marking_context; 1333 1334 template <class T> 1335 void do_oop_work(T* p) { 1336 T o = RawAccess<>::oop_load(p); 1337 if (!CompressedOops::is_null(o)) { 1338 oop obj = CompressedOops::decode_not_null(o); 1339 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1340 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1341 return; 1342 } 1343 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1344 1345 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1346 if (_bitmap->par_mark(obj)) { 1347 _queue->push(ShenandoahMarkTask(obj)); 1348 } 1349 } 1350 } 1351 public: 1352 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1353 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1354 _marking_context(_heap->marking_context()) {} 1355 void do_oop(oop* p) { do_oop_work(p); } 1356 void do_oop(narrowOop* p) { do_oop_work(p); } 1357 }; 1358 1359 // Object iterator for parallel heap iteraion. 1360 // The root scanning phase happenes in construction as a preparation of 1361 // parallel marking queues. 1362 // Every worker processes it's own marking queue. work-stealing is used 1363 // to balance workload. 1364 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1365 private: 1366 uint _num_workers; 1367 bool _init_ready; 1368 MarkBitMap* _aux_bit_map; 1369 ShenandoahHeap* _heap; 1370 ShenandoahScanObjectStack _roots_stack; // global roots stack 1371 ShenandoahObjToScanQueueSet* _task_queues; 1372 public: 1373 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1374 _num_workers(num_workers), 1375 _init_ready(false), 1376 _aux_bit_map(bitmap), 1377 _heap(ShenandoahHeap::heap()) { 1378 // Initialize bitmap 1379 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1380 if (!_init_ready) { 1381 return; 1382 } 1383 1384 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1385 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1386 1387 _init_ready = prepare_worker_queues(); 1388 } 1389 1390 ~ShenandoahParallelObjectIterator() { 1391 // Reclaim bitmap 1392 _heap->reclaim_aux_bitmap_for_iteration(); 1393 // Reclaim queue for workers 1394 if (_task_queues!= nullptr) { 1395 for (uint i = 0; i < _num_workers; ++i) { 1396 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1397 if (q != nullptr) { 1398 delete q; 1399 _task_queues->register_queue(i, nullptr); 1400 } 1401 } 1402 delete _task_queues; 1403 _task_queues = nullptr; 1404 } 1405 } 1406 1407 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1408 if (_init_ready) { 1409 object_iterate_parallel(cl, worker_id, _task_queues); 1410 } 1411 } 1412 1413 private: 1414 // Divide global root_stack into worker queues 1415 bool prepare_worker_queues() { 1416 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1417 // Initialize queues for every workers 1418 for (uint i = 0; i < _num_workers; ++i) { 1419 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1420 _task_queues->register_queue(i, task_queue); 1421 } 1422 // Divide roots among the workers. Assume that object referencing distribution 1423 // is related with root kind, use round-robin to make every worker have same chance 1424 // to process every kind of roots 1425 size_t roots_num = _roots_stack.size(); 1426 if (roots_num == 0) { 1427 // No work to do 1428 return false; 1429 } 1430 1431 for (uint j = 0; j < roots_num; j++) { 1432 uint stack_id = j % _num_workers; 1433 oop obj = _roots_stack.pop(); 1434 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1435 } 1436 return true; 1437 } 1438 1439 void object_iterate_parallel(ObjectClosure* cl, 1440 uint worker_id, 1441 ShenandoahObjToScanQueueSet* queue_set) { 1442 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1443 assert(queue_set != nullptr, "task queue must not be null"); 1444 1445 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1446 assert(q != nullptr, "object iterate queue must not be null"); 1447 1448 ShenandoahMarkTask t; 1449 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1450 1451 // Work through the queue to traverse heap. 1452 // Steal when there is no task in queue. 1453 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1454 oop obj = t.obj(); 1455 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1456 cl->do_object(obj); 1457 obj->oop_iterate(&oops); 1458 } 1459 assert(q->is_empty(), "should be empty"); 1460 } 1461 }; 1462 1463 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1464 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1465 } 1466 1467 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1468 void ShenandoahHeap::keep_alive(oop obj) { 1469 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1470 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1471 } 1472 } 1473 1474 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1475 for (size_t i = 0; i < num_regions(); i++) { 1476 ShenandoahHeapRegion* current = get_region(i); 1477 blk->heap_region_do(current); 1478 } 1479 } 1480 1481 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1482 private: 1483 ShenandoahHeap* const _heap; 1484 ShenandoahHeapRegionClosure* const _blk; 1485 1486 shenandoah_padding(0); 1487 volatile size_t _index; 1488 shenandoah_padding(1); 1489 1490 public: 1491 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) : 1492 WorkerTask("Shenandoah Parallel Region Operation"), 1493 _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {} 1494 1495 void work(uint worker_id) { 1496 ShenandoahParallelWorkerSession worker_session(worker_id); 1497 size_t stride = ShenandoahParallelRegionStride; 1498 1499 size_t max = _heap->num_regions(); 1500 while (Atomic::load(&_index) < max) { 1501 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1502 size_t start = cur; 1503 size_t end = MIN2(cur + stride, max); 1504 if (start >= max) break; 1505 1506 for (size_t i = cur; i < end; i++) { 1507 ShenandoahHeapRegion* current = _heap->get_region(i); 1508 _blk->heap_region_do(current); 1509 } 1510 } 1511 } 1512 }; 1513 1514 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1515 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1516 if (num_regions() > ShenandoahParallelRegionStride) { 1517 ShenandoahParallelHeapRegionTask task(blk); 1518 workers()->run_task(&task); 1519 } else { 1520 heap_region_iterate(blk); 1521 } 1522 } 1523 1524 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1525 private: 1526 ShenandoahMarkingContext* const _ctx; 1527 public: 1528 ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1529 1530 void heap_region_do(ShenandoahHeapRegion* r) { 1531 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1532 if (r->is_active()) { 1533 // Check if region needs updating its TAMS. We have updated it already during concurrent 1534 // reset, so it is very likely we don't need to do another write here. 1535 if (_ctx->top_at_mark_start(r) != r->top()) { 1536 _ctx->capture_top_at_mark_start(r); 1537 } 1538 } else { 1539 assert(_ctx->top_at_mark_start(r) == r->top(), 1540 "Region " SIZE_FORMAT " should already have correct TAMS", r->index()); 1541 } 1542 } 1543 1544 bool is_thread_safe() { return true; } 1545 }; 1546 1547 class ShenandoahRendezvousClosure : public HandshakeClosure { 1548 public: 1549 inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {} 1550 inline void do_thread(Thread* thread) {} 1551 }; 1552 1553 void ShenandoahHeap::rendezvous_threads() { 1554 ShenandoahRendezvousClosure cl; 1555 Handshake::execute(&cl); 1556 } 1557 1558 void ShenandoahHeap::recycle_trash() { 1559 free_set()->recycle_trash(); 1560 } 1561 1562 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1563 private: 1564 ShenandoahMarkingContext* const _ctx; 1565 public: 1566 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1567 1568 void heap_region_do(ShenandoahHeapRegion* r) { 1569 if (r->is_active()) { 1570 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1571 // anyway to capture any updates that happened since now. 1572 r->clear_live_data(); 1573 _ctx->capture_top_at_mark_start(r); 1574 } 1575 } 1576 1577 bool is_thread_safe() { return true; } 1578 }; 1579 1580 void ShenandoahHeap::prepare_gc() { 1581 reset_mark_bitmap(); 1582 1583 ShenandoahResetUpdateRegionStateClosure cl; 1584 parallel_heap_region_iterate(&cl); 1585 } 1586 1587 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1588 private: 1589 ShenandoahMarkingContext* const _ctx; 1590 ShenandoahHeapLock* const _lock; 1591 1592 public: 1593 ShenandoahFinalMarkUpdateRegionStateClosure() : 1594 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1595 1596 void heap_region_do(ShenandoahHeapRegion* r) { 1597 if (r->is_active()) { 1598 // All allocations past TAMS are implicitly live, adjust the region data. 1599 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1600 HeapWord *tams = _ctx->top_at_mark_start(r); 1601 HeapWord *top = r->top(); 1602 if (top > tams) { 1603 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1604 } 1605 1606 // We are about to select the collection set, make sure it knows about 1607 // current pinning status. Also, this allows trashing more regions that 1608 // now have their pinning status dropped. 1609 if (r->is_pinned()) { 1610 if (r->pin_count() == 0) { 1611 ShenandoahHeapLocker locker(_lock); 1612 r->make_unpinned(); 1613 } 1614 } else { 1615 if (r->pin_count() > 0) { 1616 ShenandoahHeapLocker locker(_lock); 1617 r->make_pinned(); 1618 } 1619 } 1620 1621 // Remember limit for updating refs. It's guaranteed that we get no 1622 // from-space-refs written from here on. 1623 r->set_update_watermark_at_safepoint(r->top()); 1624 } else { 1625 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1626 assert(_ctx->top_at_mark_start(r) == r->top(), 1627 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1628 } 1629 } 1630 1631 bool is_thread_safe() { return true; } 1632 }; 1633 1634 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1635 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1636 { 1637 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1638 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1639 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1640 parallel_heap_region_iterate(&cl); 1641 1642 assert_pinned_region_status(); 1643 } 1644 1645 { 1646 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1647 ShenandoahPhaseTimings::degen_gc_choose_cset); 1648 ShenandoahHeapLocker locker(lock()); 1649 _collection_set->clear(); 1650 heuristics()->choose_collection_set(_collection_set); 1651 } 1652 1653 { 1654 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1655 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1656 ShenandoahHeapLocker locker(lock()); 1657 _free_set->rebuild(); 1658 } 1659 } 1660 1661 void ShenandoahHeap::do_class_unloading() { 1662 _unloader.unload(); 1663 } 1664 1665 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1666 // Weak refs processing 1667 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1668 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1669 ShenandoahTimingsTracker t(phase); 1670 ShenandoahGCWorkerPhase worker_phase(phase); 1671 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1672 } 1673 1674 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1675 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1676 1677 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1678 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1679 // for future GCLABs here. 1680 if (UseTLAB) { 1681 ShenandoahGCPhase phase(concurrent ? 1682 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1683 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1684 gclabs_retire(ResizeTLAB); 1685 } 1686 1687 _update_refs_iterator.reset(); 1688 } 1689 1690 void ShenandoahHeap::propagate_gc_state_to_java_threads() { 1691 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1692 if (_gc_state_changed) { 1693 _gc_state_changed = false; 1694 char state = gc_state(); 1695 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1696 ShenandoahThreadLocalData::set_gc_state(t, state); 1697 } 1698 } 1699 } 1700 1701 void ShenandoahHeap::set_gc_state(uint mask, bool value) { 1702 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1703 _gc_state.set_cond(mask, value); 1704 _gc_state_changed = true; 1705 } 1706 1707 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1708 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1709 set_gc_state(MARKING, in_progress); 1710 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1711 } 1712 1713 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1714 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1715 set_gc_state(EVACUATION, in_progress); 1716 } 1717 1718 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1719 if (in_progress) { 1720 _concurrent_strong_root_in_progress.set(); 1721 } else { 1722 _concurrent_strong_root_in_progress.unset(); 1723 } 1724 } 1725 1726 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1727 set_gc_state(WEAK_ROOTS, cond); 1728 } 1729 1730 GCTracer* ShenandoahHeap::tracer() { 1731 return shenandoah_policy()->tracer(); 1732 } 1733 1734 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1735 return _free_set->used(); 1736 } 1737 1738 bool ShenandoahHeap::try_cancel_gc() { 1739 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1740 return prev == CANCELLABLE; 1741 } 1742 1743 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1744 if (try_cancel_gc()) { 1745 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1746 log_info(gc)("%s", msg.buffer()); 1747 Events::log(Thread::current(), "%s", msg.buffer()); 1748 } 1749 } 1750 1751 uint ShenandoahHeap::max_workers() { 1752 return _max_workers; 1753 } 1754 1755 void ShenandoahHeap::stop() { 1756 // The shutdown sequence should be able to terminate when GC is running. 1757 1758 // Step 0. Notify policy to disable event recording. 1759 _shenandoah_policy->record_shutdown(); 1760 1761 // Step 1. Notify control thread that we are in shutdown. 1762 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1763 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1764 control_thread()->prepare_for_graceful_shutdown(); 1765 1766 // Step 2. Notify GC workers that we are cancelling GC. 1767 cancel_gc(GCCause::_shenandoah_stop_vm); 1768 1769 // Step 3. Wait until GC worker exits normally. 1770 control_thread()->stop(); 1771 } 1772 1773 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1774 if (!unload_classes()) return; 1775 ClassUnloadingContext ctx(_workers->active_workers(), 1776 true /* unregister_nmethods_during_purge */, 1777 false /* lock_codeblob_free_separately */); 1778 1779 // Unload classes and purge SystemDictionary. 1780 { 1781 ShenandoahPhaseTimings::Phase phase = full_gc ? 1782 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1783 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1784 ShenandoahIsAliveSelector is_alive; 1785 { 1786 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 1787 ShenandoahGCPhase gc_phase(phase); 1788 ShenandoahGCWorkerPhase worker_phase(phase); 1789 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 1790 1791 uint num_workers = _workers->active_workers(); 1792 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 1793 _workers->run_task(&unlink_task); 1794 } 1795 // Release unloaded nmethods's memory. 1796 ClassUnloadingContext::context()->purge_and_free_nmethods(); 1797 } 1798 1799 { 1800 ShenandoahGCPhase phase(full_gc ? 1801 ShenandoahPhaseTimings::full_gc_purge_cldg : 1802 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1803 ClassLoaderDataGraph::purge(true /* at_safepoint */); 1804 } 1805 // Resize and verify metaspace 1806 MetaspaceGC::compute_new_size(); 1807 DEBUG_ONLY(MetaspaceUtils::verify();) 1808 } 1809 1810 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 1811 // so they should not have forwarded oops. 1812 // However, we do need to "null" dead oops in the roots, if can not be done 1813 // in concurrent cycles. 1814 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 1815 uint num_workers = _workers->active_workers(); 1816 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 1817 ShenandoahPhaseTimings::full_gc_purge_weak_par : 1818 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 1819 ShenandoahGCPhase phase(timing_phase); 1820 ShenandoahGCWorkerPhase worker_phase(timing_phase); 1821 // Cleanup weak roots 1822 if (has_forwarded_objects()) { 1823 ShenandoahForwardedIsAliveClosure is_alive; 1824 ShenandoahUpdateRefsClosure keep_alive; 1825 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 1826 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 1827 _workers->run_task(&cleaning_task); 1828 } else { 1829 ShenandoahIsAliveClosure is_alive; 1830 #ifdef ASSERT 1831 ShenandoahAssertNotForwardedClosure verify_cl; 1832 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 1833 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 1834 #else 1835 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 1836 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 1837 #endif 1838 _workers->run_task(&cleaning_task); 1839 } 1840 } 1841 1842 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 1843 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1844 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 1845 ShenandoahGCPhase phase(full_gc ? 1846 ShenandoahPhaseTimings::full_gc_purge : 1847 ShenandoahPhaseTimings::degen_gc_purge); 1848 stw_weak_refs(full_gc); 1849 stw_process_weak_roots(full_gc); 1850 stw_unload_classes(full_gc); 1851 } 1852 1853 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 1854 set_gc_state(HAS_FORWARDED, cond); 1855 } 1856 1857 void ShenandoahHeap::set_unload_classes(bool uc) { 1858 _unload_classes.set_cond(uc); 1859 } 1860 1861 bool ShenandoahHeap::unload_classes() const { 1862 return _unload_classes.is_set(); 1863 } 1864 1865 address ShenandoahHeap::in_cset_fast_test_addr() { 1866 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1867 assert(heap->collection_set() != nullptr, "Sanity"); 1868 return (address) heap->collection_set()->biased_map_address(); 1869 } 1870 1871 size_t ShenandoahHeap::bytes_allocated_since_gc_start() { 1872 return Atomic::load(&_bytes_allocated_since_gc_start); 1873 } 1874 1875 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 1876 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 1877 } 1878 1879 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 1880 _degenerated_gc_in_progress.set_cond(in_progress); 1881 } 1882 1883 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 1884 _full_gc_in_progress.set_cond(in_progress); 1885 } 1886 1887 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 1888 assert (is_full_gc_in_progress(), "should be"); 1889 _full_gc_move_in_progress.set_cond(in_progress); 1890 } 1891 1892 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 1893 set_gc_state(UPDATEREFS, in_progress); 1894 } 1895 1896 void ShenandoahHeap::register_nmethod(nmethod* nm) { 1897 ShenandoahCodeRoots::register_nmethod(nm); 1898 } 1899 1900 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 1901 ShenandoahCodeRoots::unregister_nmethod(nm); 1902 } 1903 1904 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 1905 heap_region_containing(o)->record_pin(); 1906 } 1907 1908 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 1909 ShenandoahHeapRegion* r = heap_region_containing(o); 1910 assert(r != nullptr, "Sanity"); 1911 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 1912 r->record_unpin(); 1913 } 1914 1915 void ShenandoahHeap::sync_pinned_region_status() { 1916 ShenandoahHeapLocker locker(lock()); 1917 1918 for (size_t i = 0; i < num_regions(); i++) { 1919 ShenandoahHeapRegion *r = get_region(i); 1920 if (r->is_active()) { 1921 if (r->is_pinned()) { 1922 if (r->pin_count() == 0) { 1923 r->make_unpinned(); 1924 } 1925 } else { 1926 if (r->pin_count() > 0) { 1927 r->make_pinned(); 1928 } 1929 } 1930 } 1931 } 1932 1933 assert_pinned_region_status(); 1934 } 1935 1936 #ifdef ASSERT 1937 void ShenandoahHeap::assert_pinned_region_status() { 1938 for (size_t i = 0; i < num_regions(); i++) { 1939 ShenandoahHeapRegion* r = get_region(i); 1940 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 1941 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 1942 } 1943 } 1944 #endif 1945 1946 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 1947 return _gc_timer; 1948 } 1949 1950 void ShenandoahHeap::prepare_concurrent_roots() { 1951 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1952 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1953 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 1954 set_concurrent_weak_root_in_progress(true); 1955 if (unload_classes()) { 1956 _unloader.prepare(); 1957 } 1958 } 1959 1960 void ShenandoahHeap::finish_concurrent_roots() { 1961 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1962 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1963 if (unload_classes()) { 1964 _unloader.finish(); 1965 } 1966 } 1967 1968 #ifdef ASSERT 1969 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 1970 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 1971 1972 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1973 if (UseDynamicNumberOfGCThreads) { 1974 assert(nworkers <= ParallelGCThreads, "Cannot use more than it has"); 1975 } else { 1976 // Use ParallelGCThreads inside safepoints 1977 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints"); 1978 } 1979 } else { 1980 if (UseDynamicNumberOfGCThreads) { 1981 assert(nworkers <= ConcGCThreads, "Cannot use more than it has"); 1982 } else { 1983 // Use ConcGCThreads outside safepoints 1984 assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints"); 1985 } 1986 } 1987 } 1988 #endif 1989 1990 ShenandoahVerifier* ShenandoahHeap::verifier() { 1991 guarantee(ShenandoahVerify, "Should be enabled"); 1992 assert (_verifier != nullptr, "sanity"); 1993 return _verifier; 1994 } 1995 1996 template<bool CONCURRENT> 1997 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 1998 private: 1999 ShenandoahHeap* _heap; 2000 ShenandoahRegionIterator* _regions; 2001 public: 2002 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2003 WorkerTask("Shenandoah Update References"), 2004 _heap(ShenandoahHeap::heap()), 2005 _regions(regions) { 2006 } 2007 2008 void work(uint worker_id) { 2009 if (CONCURRENT) { 2010 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2011 ShenandoahSuspendibleThreadSetJoiner stsj; 2012 do_work<ShenandoahConcUpdateRefsClosure>(); 2013 } else { 2014 ShenandoahParallelWorkerSession worker_session(worker_id); 2015 do_work<ShenandoahSTWUpdateRefsClosure>(); 2016 } 2017 } 2018 2019 private: 2020 template<class T> 2021 void do_work() { 2022 T cl; 2023 ShenandoahHeapRegion* r = _regions->next(); 2024 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2025 while (r != nullptr) { 2026 HeapWord* update_watermark = r->get_update_watermark(); 2027 assert (update_watermark >= r->bottom(), "sanity"); 2028 if (r->is_active() && !r->is_cset()) { 2029 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2030 } 2031 if (ShenandoahPacing) { 2032 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2033 } 2034 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2035 return; 2036 } 2037 r = _regions->next(); 2038 } 2039 } 2040 }; 2041 2042 void ShenandoahHeap::update_heap_references(bool concurrent) { 2043 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2044 2045 if (concurrent) { 2046 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2047 workers()->run_task(&task); 2048 } else { 2049 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2050 workers()->run_task(&task); 2051 } 2052 } 2053 2054 2055 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2056 private: 2057 ShenandoahHeapLock* const _lock; 2058 2059 public: 2060 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2061 2062 void heap_region_do(ShenandoahHeapRegion* r) { 2063 // Drop unnecessary "pinned" state from regions that does not have CP marks 2064 // anymore, as this would allow trashing them. 2065 2066 if (r->is_active()) { 2067 if (r->is_pinned()) { 2068 if (r->pin_count() == 0) { 2069 ShenandoahHeapLocker locker(_lock); 2070 r->make_unpinned(); 2071 } 2072 } else { 2073 if (r->pin_count() > 0) { 2074 ShenandoahHeapLocker locker(_lock); 2075 r->make_pinned(); 2076 } 2077 } 2078 } 2079 } 2080 2081 bool is_thread_safe() { return true; } 2082 }; 2083 2084 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2085 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2086 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2087 2088 { 2089 ShenandoahGCPhase phase(concurrent ? 2090 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2091 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2092 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2093 parallel_heap_region_iterate(&cl); 2094 2095 assert_pinned_region_status(); 2096 } 2097 2098 { 2099 ShenandoahGCPhase phase(concurrent ? 2100 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2101 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2102 trash_cset_regions(); 2103 } 2104 } 2105 2106 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2107 { 2108 ShenandoahGCPhase phase(concurrent ? 2109 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2110 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2111 ShenandoahHeapLocker locker(lock()); 2112 _free_set->rebuild(); 2113 } 2114 } 2115 2116 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2117 print_on(st); 2118 st->cr(); 2119 print_heap_regions_on(st); 2120 } 2121 2122 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2123 size_t slice = r->index() / _bitmap_regions_per_slice; 2124 2125 size_t regions_from = _bitmap_regions_per_slice * slice; 2126 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2127 for (size_t g = regions_from; g < regions_to; g++) { 2128 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2129 if (skip_self && g == r->index()) continue; 2130 if (get_region(g)->is_committed()) { 2131 return true; 2132 } 2133 } 2134 return false; 2135 } 2136 2137 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2138 shenandoah_assert_heaplocked(); 2139 2140 // Bitmaps in special regions do not need commits 2141 if (_bitmap_region_special) { 2142 return true; 2143 } 2144 2145 if (is_bitmap_slice_committed(r, true)) { 2146 // Some other region from the group is already committed, meaning the bitmap 2147 // slice is already committed, we exit right away. 2148 return true; 2149 } 2150 2151 // Commit the bitmap slice: 2152 size_t slice = r->index() / _bitmap_regions_per_slice; 2153 size_t off = _bitmap_bytes_per_slice * slice; 2154 size_t len = _bitmap_bytes_per_slice; 2155 char* start = (char*) _bitmap_region.start() + off; 2156 2157 if (!os::commit_memory(start, len, false)) { 2158 return false; 2159 } 2160 2161 if (AlwaysPreTouch) { 2162 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2163 } 2164 2165 return true; 2166 } 2167 2168 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2169 shenandoah_assert_heaplocked(); 2170 2171 // Bitmaps in special regions do not need uncommits 2172 if (_bitmap_region_special) { 2173 return true; 2174 } 2175 2176 if (is_bitmap_slice_committed(r, true)) { 2177 // Some other region from the group is still committed, meaning the bitmap 2178 // slice is should stay committed, exit right away. 2179 return true; 2180 } 2181 2182 // Uncommit the bitmap slice: 2183 size_t slice = r->index() / _bitmap_regions_per_slice; 2184 size_t off = _bitmap_bytes_per_slice * slice; 2185 size_t len = _bitmap_bytes_per_slice; 2186 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2187 return false; 2188 } 2189 return true; 2190 } 2191 2192 void ShenandoahHeap::safepoint_synchronize_begin() { 2193 SuspendibleThreadSet::synchronize(); 2194 } 2195 2196 void ShenandoahHeap::safepoint_synchronize_end() { 2197 SuspendibleThreadSet::desynchronize(); 2198 } 2199 2200 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) { 2201 static const char *msg = "Concurrent uncommit"; 2202 ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 2203 EventMark em("%s", msg); 2204 2205 op_uncommit(shrink_before, shrink_until); 2206 } 2207 2208 void ShenandoahHeap::try_inject_alloc_failure() { 2209 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2210 _inject_alloc_failure.set(); 2211 os::naked_short_sleep(1); 2212 if (cancelled_gc()) { 2213 log_info(gc)("Allocation failure was successfully injected"); 2214 } 2215 } 2216 } 2217 2218 bool ShenandoahHeap::should_inject_alloc_failure() { 2219 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2220 } 2221 2222 void ShenandoahHeap::initialize_serviceability() { 2223 _memory_pool = new ShenandoahMemoryPool(this); 2224 _cycle_memory_manager.add_pool(_memory_pool); 2225 _stw_memory_manager.add_pool(_memory_pool); 2226 } 2227 2228 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2229 GrowableArray<GCMemoryManager*> memory_managers(2); 2230 memory_managers.append(&_cycle_memory_manager); 2231 memory_managers.append(&_stw_memory_manager); 2232 return memory_managers; 2233 } 2234 2235 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2236 GrowableArray<MemoryPool*> memory_pools(1); 2237 memory_pools.append(_memory_pool); 2238 return memory_pools; 2239 } 2240 2241 MemoryUsage ShenandoahHeap::memory_usage() { 2242 return _memory_pool->get_memory_usage(); 2243 } 2244 2245 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2246 _heap(ShenandoahHeap::heap()), 2247 _index(0) {} 2248 2249 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2250 _heap(heap), 2251 _index(0) {} 2252 2253 void ShenandoahRegionIterator::reset() { 2254 _index = 0; 2255 } 2256 2257 bool ShenandoahRegionIterator::has_next() const { 2258 return _index < _heap->num_regions(); 2259 } 2260 2261 char ShenandoahHeap::gc_state() const { 2262 return _gc_state.raw_value(); 2263 } 2264 2265 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2266 #ifdef ASSERT 2267 assert(_liveness_cache != nullptr, "sanity"); 2268 assert(worker_id < _max_workers, "sanity"); 2269 for (uint i = 0; i < num_regions(); i++) { 2270 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2271 } 2272 #endif 2273 return _liveness_cache[worker_id]; 2274 } 2275 2276 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2277 assert(worker_id < _max_workers, "sanity"); 2278 assert(_liveness_cache != nullptr, "sanity"); 2279 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2280 for (uint i = 0; i < num_regions(); i++) { 2281 ShenandoahLiveData live = ld[i]; 2282 if (live > 0) { 2283 ShenandoahHeapRegion* r = get_region(i); 2284 r->increase_live_data_gc_words(live); 2285 ld[i] = 0; 2286 } 2287 } 2288 } 2289 2290 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2291 if (is_idle()) return false; 2292 2293 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2294 // marking phase. 2295 if (is_concurrent_mark_in_progress() && 2296 !marking_context()->allocated_after_mark_start(obj)) { 2297 return true; 2298 } 2299 2300 // Can not guarantee obj is deeply good. 2301 if (has_forwarded_objects()) { 2302 return true; 2303 } 2304 2305 return false; 2306 }