1 /*
  2  * Copyright (c) 2015, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  */
 23 
 24 #include "precompiled.hpp"
 25 #include "asm/macroAssembler.hpp"
 26 #include "classfile/javaClasses.hpp"
 27 #include "gc/z/c2/zBarrierSetC2.hpp"
 28 #include "gc/z/zBarrierSet.hpp"
 29 #include "gc/z/zBarrierSetAssembler.hpp"
 30 #include "gc/z/zBarrierSetRuntime.hpp"
 31 #include "opto/arraycopynode.hpp"
 32 #include "opto/addnode.hpp"
 33 #include "opto/block.hpp"
 34 #include "opto/compile.hpp"
 35 #include "opto/graphKit.hpp"
 36 #include "opto/machnode.hpp"
 37 #include "opto/macro.hpp"
 38 #include "opto/memnode.hpp"
 39 #include "opto/node.hpp"
 40 #include "opto/output.hpp"
 41 #include "opto/regalloc.hpp"
 42 #include "opto/rootnode.hpp"
 43 #include "opto/runtime.hpp"
 44 #include "opto/type.hpp"
 45 #include "utilities/debug.hpp"
 46 #include "utilities/growableArray.hpp"
 47 #include "utilities/macros.hpp"
 48 
 49 template<typename K, typename V, size_t _table_size>
 50 class ZArenaHashtable : public ResourceObj {
 51   class ZArenaHashtableEntry : public ResourceObj {
 52   public:
 53     ZArenaHashtableEntry* _next;
 54     K _key;
 55     V _value;
 56   };
 57 
 58   static const size_t _table_mask = _table_size - 1;
 59 
 60   Arena* _arena;
 61   ZArenaHashtableEntry* _table[_table_size];
 62 
 63 public:
 64   class Iterator {
 65     ZArenaHashtable* _table;
 66     ZArenaHashtableEntry* _current_entry;
 67     size_t _current_index;
 68 
 69   public:
 70     Iterator(ZArenaHashtable* table)
 71       : _table(table),
 72         _current_entry(table->_table[0]),
 73         _current_index(0) {
 74       if (_current_entry == nullptr) {
 75         next();
 76       }
 77     }
 78 
 79     bool has_next() { return _current_entry != nullptr; }
 80     K key()         { return _current_entry->_key; }
 81     V value()       { return _current_entry->_value; }
 82 
 83     void next() {
 84       if (_current_entry != nullptr) {
 85         _current_entry = _current_entry->_next;
 86       }
 87       while (_current_entry == nullptr && ++_current_index < _table_size) {
 88         _current_entry = _table->_table[_current_index];
 89       }
 90     }
 91   };
 92 
 93   ZArenaHashtable(Arena* arena)
 94     : _arena(arena),
 95       _table() {
 96     Copy::zero_to_bytes(&_table, sizeof(_table));
 97   }
 98 
 99   void add(K key, V value) {
100     ZArenaHashtableEntry* entry = new (_arena) ZArenaHashtableEntry();
101     entry->_key = key;
102     entry->_value = value;
103     entry->_next = _table[key & _table_mask];
104     _table[key & _table_mask] = entry;
105   }
106 
107   V* get(K key) const {
108     for (ZArenaHashtableEntry* e = _table[key & _table_mask]; e != nullptr; e = e->_next) {
109       if (e->_key == key) {
110         return &(e->_value);
111       }
112     }
113     return nullptr;
114   }
115 
116   Iterator iterator() {
117     return Iterator(this);
118   }
119 };
120 
121 typedef ZArenaHashtable<intptr_t, bool, 4> ZOffsetTable;
122 
123 class ZBarrierSetC2State : public ArenaObj {
124 private:
125   GrowableArray<ZBarrierStubC2*>* _stubs;
126   Node_Array                      _live;
127   int                             _trampoline_stubs_count;
128   int                             _stubs_start_offset;
129 
130 public:
131   ZBarrierSetC2State(Arena* arena)
132     : _stubs(new (arena) GrowableArray<ZBarrierStubC2*>(arena, 8,  0, nullptr)),
133       _live(arena),
134       _trampoline_stubs_count(0),
135       _stubs_start_offset(0) {}
136 
137   GrowableArray<ZBarrierStubC2*>* stubs() {
138     return _stubs;
139   }
140 
141   RegMask* live(const Node* node) {
142     if (!node->is_Mach()) {
143       // Don't need liveness for non-MachNodes
144       return nullptr;
145     }
146 
147     const MachNode* const mach = node->as_Mach();
148     if (mach->barrier_data() == ZBarrierElided) {
149       // Don't need liveness data for nodes without barriers
150       return nullptr;
151     }
152 
153     RegMask* live = (RegMask*)_live[node->_idx];
154     if (live == nullptr) {
155       live = new (Compile::current()->comp_arena()->AmallocWords(sizeof(RegMask))) RegMask();
156       _live.map(node->_idx, (Node*)live);
157     }
158 
159     return live;
160   }
161 
162   void inc_trampoline_stubs_count() {
163     assert(_trampoline_stubs_count != INT_MAX, "Overflow");
164     ++_trampoline_stubs_count;
165   }
166 
167   int trampoline_stubs_count() {
168     return _trampoline_stubs_count;
169   }
170 
171   void set_stubs_start_offset(int offset) {
172     _stubs_start_offset = offset;
173   }
174 
175   int stubs_start_offset() {
176     return _stubs_start_offset;
177   }
178 };
179 
180 static ZBarrierSetC2State* barrier_set_state() {
181   return reinterpret_cast<ZBarrierSetC2State*>(Compile::current()->barrier_set_state());
182 }
183 
184 void ZBarrierStubC2::register_stub(ZBarrierStubC2* stub) {
185   if (!Compile::current()->output()->in_scratch_emit_size()) {
186     barrier_set_state()->stubs()->append(stub);
187   }
188 }
189 
190 void ZBarrierStubC2::inc_trampoline_stubs_count() {
191   if (!Compile::current()->output()->in_scratch_emit_size()) {
192     barrier_set_state()->inc_trampoline_stubs_count();
193   }
194 }
195 
196 int ZBarrierStubC2::trampoline_stubs_count() {
197   return barrier_set_state()->trampoline_stubs_count();
198 }
199 
200 int ZBarrierStubC2::stubs_start_offset() {
201   return barrier_set_state()->stubs_start_offset();
202 }
203 
204 ZBarrierStubC2::ZBarrierStubC2(const MachNode* node)
205   : _node(node),
206     _entry(),
207     _continuation() {}
208 
209 Register ZBarrierStubC2::result() const {
210   return noreg;
211 }
212 
213 RegMask& ZBarrierStubC2::live() const {
214   return *barrier_set_state()->live(_node);
215 }
216 
217 Label* ZBarrierStubC2::entry() {
218   // The _entry will never be bound when in_scratch_emit_size() is true.
219   // However, we still need to return a label that is not bound now, but
220   // will eventually be bound. Any eventually bound label will do, as it
221   // will only act as a placeholder, so we return the _continuation label.
222   return Compile::current()->output()->in_scratch_emit_size() ? &_continuation : &_entry;
223 }
224 
225 Label* ZBarrierStubC2::continuation() {
226   return &_continuation;
227 }
228 
229 ZLoadBarrierStubC2* ZLoadBarrierStubC2::create(const MachNode* node, Address ref_addr, Register ref) {
230   AARCH64_ONLY(fatal("Should use ZLoadBarrierStubC2Aarch64::create"));
231   ZLoadBarrierStubC2* const stub = new (Compile::current()->comp_arena()) ZLoadBarrierStubC2(node, ref_addr, ref);
232   register_stub(stub);
233 
234   return stub;
235 }
236 
237 ZLoadBarrierStubC2::ZLoadBarrierStubC2(const MachNode* node, Address ref_addr, Register ref)
238   : ZBarrierStubC2(node),
239     _ref_addr(ref_addr),
240     _ref(ref) {
241   assert_different_registers(ref, ref_addr.base());
242   assert_different_registers(ref, ref_addr.index());
243 }
244 
245 Address ZLoadBarrierStubC2::ref_addr() const {
246   return _ref_addr;
247 }
248 
249 Register ZLoadBarrierStubC2::ref() const {
250   return _ref;
251 }
252 
253 Register ZLoadBarrierStubC2::result() const {
254   return ref();
255 }
256 
257 address ZLoadBarrierStubC2::slow_path() const {
258   const uint8_t barrier_data = _node->barrier_data();
259   DecoratorSet decorators = DECORATORS_NONE;
260   if (barrier_data & ZBarrierStrong) {
261     decorators |= ON_STRONG_OOP_REF;
262   }
263   if (barrier_data & ZBarrierWeak) {
264     decorators |= ON_WEAK_OOP_REF;
265   }
266   if (barrier_data & ZBarrierPhantom) {
267     decorators |= ON_PHANTOM_OOP_REF;
268   }
269   if (barrier_data & ZBarrierNoKeepalive) {
270     decorators |= AS_NO_KEEPALIVE;
271   }
272   return ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr(decorators);
273 }
274 
275 void ZLoadBarrierStubC2::emit_code(MacroAssembler& masm) {
276   ZBarrierSet::assembler()->generate_c2_load_barrier_stub(&masm, static_cast<ZLoadBarrierStubC2*>(this));
277 }
278 
279 ZStoreBarrierStubC2* ZStoreBarrierStubC2::create(const MachNode* node, Address ref_addr, Register new_zaddress, Register new_zpointer, bool is_native, bool is_atomic) {
280   AARCH64_ONLY(fatal("Should use ZStoreBarrierStubC2Aarch64::create"));
281   ZStoreBarrierStubC2* const stub = new (Compile::current()->comp_arena()) ZStoreBarrierStubC2(node, ref_addr, new_zaddress, new_zpointer, is_native, is_atomic);
282   register_stub(stub);
283 
284   return stub;
285 }
286 
287 ZStoreBarrierStubC2::ZStoreBarrierStubC2(const MachNode* node, Address ref_addr, Register new_zaddress, Register new_zpointer, bool is_native, bool is_atomic)
288   : ZBarrierStubC2(node),
289     _ref_addr(ref_addr),
290     _new_zaddress(new_zaddress),
291     _new_zpointer(new_zpointer),
292     _is_native(is_native),
293     _is_atomic(is_atomic) {}
294 
295 Address ZStoreBarrierStubC2::ref_addr() const {
296   return _ref_addr;
297 }
298 
299 Register ZStoreBarrierStubC2::new_zaddress() const {
300   return _new_zaddress;
301 }
302 
303 Register ZStoreBarrierStubC2::new_zpointer() const {
304   return _new_zpointer;
305 }
306 
307 bool ZStoreBarrierStubC2::is_native() const {
308   return _is_native;
309 }
310 
311 bool ZStoreBarrierStubC2::is_atomic() const {
312   return _is_atomic;
313 }
314 
315 Register ZStoreBarrierStubC2::result() const {
316   return noreg;
317 }
318 
319 void ZStoreBarrierStubC2::emit_code(MacroAssembler& masm) {
320   ZBarrierSet::assembler()->generate_c2_store_barrier_stub(&masm, static_cast<ZStoreBarrierStubC2*>(this));
321 }
322 
323 void* ZBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
324   return new (comp_arena) ZBarrierSetC2State(comp_arena);
325 }
326 
327 void ZBarrierSetC2::late_barrier_analysis() const {
328   compute_liveness_at_stubs();
329   analyze_dominating_barriers();
330 }
331 
332 void ZBarrierSetC2::emit_stubs(CodeBuffer& cb) const {
333   MacroAssembler masm(&cb);
334   GrowableArray<ZBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
335   barrier_set_state()->set_stubs_start_offset(masm.offset());
336 
337   for (int i = 0; i < stubs->length(); i++) {
338     // Make sure there is enough space in the code buffer
339     if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == nullptr) {
340       ciEnv::current()->record_failure("CodeCache is full");
341       return;
342     }
343 
344     stubs->at(i)->emit_code(masm);
345   }
346 
347   masm.flush();
348 }
349 
350 int ZBarrierSetC2::estimate_stub_size() const {
351   Compile* const C = Compile::current();
352   BufferBlob* const blob = C->output()->scratch_buffer_blob();
353   GrowableArray<ZBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
354   int size = 0;
355 
356   for (int i = 0; i < stubs->length(); i++) {
357     CodeBuffer cb(blob->content_begin(), (address)C->output()->scratch_locs_memory() - blob->content_begin());
358     MacroAssembler masm(&cb);
359     stubs->at(i)->emit_code(masm);
360     size += cb.insts_size();
361   }
362 
363   return size;
364 }
365 
366 static void set_barrier_data(C2Access& access) {
367   if (!ZBarrierSet::barrier_needed(access.decorators(), access.type())) {
368     return;
369   }
370 
371   if (access.decorators() & C2_TIGHTLY_COUPLED_ALLOC) {
372     access.set_barrier_data(ZBarrierElided);
373     return;
374   }
375 
376   uint8_t barrier_data = 0;
377 
378   if (access.decorators() & ON_PHANTOM_OOP_REF) {
379     barrier_data |= ZBarrierPhantom;
380   } else if (access.decorators() & ON_WEAK_OOP_REF) {
381     barrier_data |= ZBarrierWeak;
382   } else {
383     barrier_data |= ZBarrierStrong;
384   }
385 
386   if (access.decorators() & IN_NATIVE) {
387     barrier_data |= ZBarrierNative;
388   }
389 
390   if (access.decorators() & AS_NO_KEEPALIVE) {
391     barrier_data |= ZBarrierNoKeepalive;
392   }
393 
394   access.set_barrier_data(barrier_data);
395 }
396 
397 Node* ZBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
398   set_barrier_data(access);
399   return BarrierSetC2::store_at_resolved(access, val);
400 }
401 
402 Node* ZBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
403   set_barrier_data(access);
404   return BarrierSetC2::load_at_resolved(access, val_type);
405 }
406 
407 Node* ZBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
408                                                     Node* new_val, const Type* val_type) const {
409   set_barrier_data(access);
410   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, val_type);
411 }
412 
413 Node* ZBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
414                                                      Node* new_val, const Type* value_type) const {
415   set_barrier_data(access);
416   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
417 }
418 
419 Node* ZBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* val_type) const {
420   set_barrier_data(access);
421   return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, val_type);
422 }
423 
424 bool ZBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type,
425                                                     bool is_clone, bool is_clone_instance,
426                                                     ArrayCopyPhase phase) const {
427   if (phase == ArrayCopyPhase::Parsing) {
428     return false;
429   }
430   if (phase == ArrayCopyPhase::Optimization) {
431     return is_clone_instance;
432   }
433   // else ArrayCopyPhase::Expansion
434   return type == T_OBJECT || type == T_ARRAY;
435 }
436 
437 // This TypeFunc assumes a 64bit system
438 static const TypeFunc* clone_type() {
439   // Create input type (domain)
440   const Type** const domain_fields = TypeTuple::fields(4);
441   domain_fields[TypeFunc::Parms + 0] = TypeInstPtr::NOTNULL;  // src
442   domain_fields[TypeFunc::Parms + 1] = TypeInstPtr::NOTNULL;  // dst
443   domain_fields[TypeFunc::Parms + 2] = TypeLong::LONG;        // size lower
444   domain_fields[TypeFunc::Parms + 3] = Type::HALF;            // size upper
445   const TypeTuple* const domain = TypeTuple::make(TypeFunc::Parms + 4, domain_fields);
446 
447   // Create result type (range)
448   const Type** const range_fields = TypeTuple::fields(0);
449   const TypeTuple* const range = TypeTuple::make(TypeFunc::Parms + 0, range_fields);
450 
451   return TypeFunc::make(domain, range);
452 }
453 
454 #define XTOP LP64_ONLY(COMMA phase->top())
455 
456 void ZBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
457   Node* const src = ac->in(ArrayCopyNode::Src);
458   const TypeAryPtr* const ary_ptr = src->get_ptr_type()->isa_aryptr();
459 
460   if (ac->is_clone_array() && ary_ptr != nullptr) {
461     BasicType bt = ary_ptr->elem()->array_element_basic_type();
462     if (is_reference_type(bt)) {
463       // Clone object array
464       bt = T_OBJECT;
465     } else {
466       // Clone primitive array
467       bt = T_LONG;
468     }
469 
470     Node* const ctrl = ac->in(TypeFunc::Control);
471     Node* const mem = ac->in(TypeFunc::Memory);
472     Node* const src = ac->in(ArrayCopyNode::Src);
473     Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
474     Node* const dest = ac->in(ArrayCopyNode::Dest);
475     Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
476     Node* length = ac->in(ArrayCopyNode::Length);
477 
478     if (bt == T_OBJECT) {
479       // BarrierSetC2::clone sets the offsets via BarrierSetC2::arraycopy_payload_base_offset
480       // which 8-byte aligns them to allow for word size copies. Make sure the offsets point
481       // to the first element in the array when cloning object arrays. Otherwise, load
482       // barriers are applied to parts of the header. Also adjust the length accordingly.
483       assert(src_offset == dest_offset, "should be equal");
484       const jlong offset = src_offset->get_long();
485       if (offset != arrayOopDesc::base_offset_in_bytes(T_OBJECT)) {
486         assert(!UseCompressedClassPointers, "should only happen without compressed class pointers");
487         assert((arrayOopDesc::base_offset_in_bytes(T_OBJECT) - offset) == BytesPerLong, "unexpected offset");
488         length = phase->transform_later(new SubLNode(length, phase->longcon(1))); // Size is in longs
489         src_offset = phase->longcon(arrayOopDesc::base_offset_in_bytes(T_OBJECT));
490         dest_offset = src_offset;
491       }
492     }
493     Node* const payload_src = phase->basic_plus_adr(src, src_offset);
494     Node* const payload_dst = phase->basic_plus_adr(dest, dest_offset);
495 
496     const char*   copyfunc_name = "arraycopy";
497     const address copyfunc_addr = phase->basictype2arraycopy(bt, nullptr, nullptr, true, copyfunc_name, true);
498 
499     const TypePtr* const raw_adr_type = TypeRawPtr::BOTTOM;
500     const TypeFunc* const call_type = OptoRuntime::fast_arraycopy_Type();
501 
502     Node* const call = phase->make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, payload_src, payload_dst, length XTOP);
503     phase->transform_later(call);
504 
505     phase->igvn().replace_node(ac, call);
506     return;
507   }
508 
509   // Clone instance
510   Node* const ctrl       = ac->in(TypeFunc::Control);
511   Node* const mem        = ac->in(TypeFunc::Memory);
512   Node* const dst        = ac->in(ArrayCopyNode::Dest);
513   Node* const size       = ac->in(ArrayCopyNode::Length);
514 
515   assert(size->bottom_type()->is_long(), "Should be long");
516 
517   // The native clone we are calling here expects the instance size in words
518   // Add header/offset size to payload size to get instance size.
519   Node* const base_offset = phase->longcon(arraycopy_payload_base_offset(ac->is_clone_array()) >> LogBytesPerLong);
520   Node* const full_size = phase->transform_later(new AddLNode(size, base_offset));
521 
522   Node* const call = phase->make_leaf_call(ctrl,
523                                            mem,
524                                            clone_type(),
525                                            ZBarrierSetRuntime::clone_addr(),
526                                            "ZBarrierSetRuntime::clone",
527                                            TypeRawPtr::BOTTOM,
528                                            src,
529                                            dst,
530                                            full_size,
531                                            phase->top());
532   phase->transform_later(call);
533   phase->igvn().replace_node(ac, call);
534 }
535 
536 #undef XTOP
537 
538 // == Dominating barrier elision ==
539 
540 static bool block_has_safepoint(const Block* block, uint from, uint to) {
541   for (uint i = from; i < to; i++) {
542     if (block->get_node(i)->is_MachSafePoint()) {
543       // Safepoint found
544       return true;
545     }
546   }
547 
548   // Safepoint not found
549   return false;
550 }
551 
552 static bool block_has_safepoint(const Block* block) {
553   return block_has_safepoint(block, 0, block->number_of_nodes());
554 }
555 
556 static uint block_index(const Block* block, const Node* node) {
557   for (uint j = 0; j < block->number_of_nodes(); ++j) {
558     if (block->get_node(j) == node) {
559       return j;
560     }
561   }
562   ShouldNotReachHere();
563   return 0;
564 }
565 
566 // Look through various node aliases
567 static const Node* look_through_node(const Node* node) {
568   while (node != nullptr) {
569     const Node* new_node = node;
570     if (node->is_Mach()) {
571       const MachNode* const node_mach = node->as_Mach();
572       if (node_mach->ideal_Opcode() == Op_CheckCastPP) {
573         new_node = node->in(1);
574       }
575       if (node_mach->is_SpillCopy()) {
576         new_node = node->in(1);
577       }
578     }
579     if (new_node == node || new_node == nullptr) {
580       break;
581     } else {
582       node = new_node;
583     }
584   }
585 
586   return node;
587 }
588 
589 // Whether the given offset is undefined.
590 static bool is_undefined(intptr_t offset) {
591   return offset == Type::OffsetTop;
592 }
593 
594 // Whether the given offset is unknown.
595 static bool is_unknown(intptr_t offset) {
596   return offset == Type::OffsetBot;
597 }
598 
599 // Whether the given offset is concrete (defined and compile-time known).
600 static bool is_concrete(intptr_t offset) {
601   return !is_undefined(offset) && !is_unknown(offset);
602 }
603 
604 // Compute base + offset components of the memory address accessed by mach.
605 // Return a node representing the base address, or null if the base cannot be
606 // found or the offset is undefined or a concrete negative value. If a non-null
607 // base is returned, the offset is a concrete, nonnegative value or unknown.
608 static const Node* get_base_and_offset(const MachNode* mach, intptr_t& offset) {
609   const TypePtr* adr_type = nullptr;
610   offset = 0;
611   const Node* base = mach->get_base_and_disp(offset, adr_type);
612 
613   if (base == nullptr || base == NodeSentinel) {
614     return nullptr;
615   }
616 
617   if (offset == 0 && base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_AddP) {
618     // The memory address is computed by 'base' and fed to 'mach' via an
619     // indirect memory operand (indicated by offset == 0). The ultimate base and
620     // offset can be fetched directly from the inputs and Ideal type of 'base'.
621     offset = base->bottom_type()->isa_oopptr()->offset();
622     // Even if 'base' is not an Ideal AddP node anymore, Matcher::ReduceInst()
623     // guarantees that the base address is still available at the same slot.
624     base = base->in(AddPNode::Base);
625     assert(base != nullptr, "");
626   }
627 
628   if (is_undefined(offset) || (is_concrete(offset) && offset < 0)) {
629     return nullptr;
630   }
631 
632   return look_through_node(base);
633 }
634 
635 // Whether a phi node corresponds to an array allocation.
636 // This test is incomplete: in some edge cases, it might return false even
637 // though the node does correspond to an array allocation.
638 static bool is_array_allocation(const Node* phi) {
639   precond(phi->is_Phi());
640   // Check whether phi has a successor cast (CheckCastPP) to Java array pointer,
641   // possibly below spill copies and other cast nodes. Limit the exploration to
642   // a single path from the phi node consisting of these node types.
643   const Node* current = phi;
644   while (true) {
645     const Node* next = nullptr;
646     for (DUIterator_Fast imax, i = current->fast_outs(imax); i < imax; i++) {
647       if (!current->fast_out(i)->isa_Mach()) {
648         continue;
649       }
650       const MachNode* succ = current->fast_out(i)->as_Mach();
651       if (succ->ideal_Opcode() == Op_CheckCastPP) {
652         if (succ->get_ptr_type()->isa_aryptr()) {
653           // Cast to Java array pointer: phi corresponds to an array allocation.
654           return true;
655         }
656         // Other cast: record as candidate for further exploration.
657         next = succ;
658       } else if (succ->is_SpillCopy() && next == nullptr) {
659         // Spill copy, and no better candidate found: record as candidate.
660         next = succ;
661       }
662     }
663     if (next == nullptr) {
664       // No evidence found that phi corresponds to an array allocation, and no
665       // candidates available to continue exploring.
666       return false;
667     }
668     // Continue exploring from the best candidate found.
669     current = next;
670   }
671   ShouldNotReachHere();
672 }
673 
674 // Match the phi node that connects a TLAB allocation fast path with its slowpath
675 static bool is_allocation(const Node* node) {
676   if (node->req() != 3) {
677     return false;
678   }
679   const Node* const fast_node = node->in(2);
680   if (!fast_node->is_Mach()) {
681     return false;
682   }
683   const MachNode* const fast_mach = fast_node->as_Mach();
684   if (fast_mach->ideal_Opcode() != Op_LoadP) {
685     return false;
686   }
687   const TypePtr* const adr_type = nullptr;
688   intptr_t offset;
689   const Node* const base = get_base_and_offset(fast_mach, offset);
690   if (base == nullptr || !base->is_Mach() || !is_concrete(offset)) {
691     return false;
692   }
693   const MachNode* const base_mach = base->as_Mach();
694   if (base_mach->ideal_Opcode() != Op_ThreadLocal) {
695     return false;
696   }
697   return offset == in_bytes(Thread::tlab_top_offset());
698 }
699 
700 static void elide_mach_barrier(MachNode* mach) {
701   mach->set_barrier_data(ZBarrierElided);
702 }
703 
704 void ZBarrierSetC2::analyze_dominating_barriers_impl(Node_List& accesses, Node_List& access_dominators) const {
705   Compile* const C = Compile::current();
706   PhaseCFG* const cfg = C->cfg();
707 
708   for (uint i = 0; i < accesses.size(); i++) {
709     MachNode* const access = accesses.at(i)->as_Mach();
710     intptr_t access_offset;
711     const Node* const access_obj = get_base_and_offset(access, access_offset);
712     Block* const access_block = cfg->get_block_for_node(access);
713     const uint access_index = block_index(access_block, access);
714 
715     if (access_obj == nullptr) {
716       // No information available
717       continue;
718     }
719 
720     for (uint j = 0; j < access_dominators.size(); j++) {
721      const  Node* const mem = access_dominators.at(j);
722       if (mem->is_Phi()) {
723         // Allocation node
724         if (mem != access_obj) {
725           continue;
726         }
727         if (is_unknown(access_offset) && !is_array_allocation(mem)) {
728           // The accessed address has an unknown offset, but the allocated
729           // object cannot be determined to be an array. Avoid eliding in this
730           // case, to be on the safe side.
731           continue;
732         }
733         assert((is_concrete(access_offset) && access_offset >= 0) || (is_unknown(access_offset) && is_array_allocation(mem)),
734                "candidate allocation-dominated access offsets must be either concrete and nonnegative, or unknown (for array allocations only)");
735       } else {
736         // Access node
737         const MachNode* const mem_mach = mem->as_Mach();
738         intptr_t mem_offset;
739         const Node* const mem_obj = get_base_and_offset(mem_mach, mem_offset);
740 
741         if (mem_obj == nullptr ||
742             !is_concrete(access_offset) ||
743             !is_concrete(mem_offset)) {
744           // No information available
745           continue;
746         }
747 
748         if (mem_obj != access_obj || mem_offset != access_offset) {
749           // Not the same addresses, not a candidate
750           continue;
751         }
752         assert(is_concrete(access_offset) && access_offset >= 0,
753                "candidate non-allocation-dominated access offsets must be concrete and nonnegative");
754       }
755 
756       Block* mem_block = cfg->get_block_for_node(mem);
757       const uint mem_index = block_index(mem_block, mem);
758 
759       if (access_block == mem_block) {
760         // Earlier accesses in the same block
761         if (mem_index < access_index && !block_has_safepoint(mem_block, mem_index + 1, access_index)) {
762           elide_mach_barrier(access);
763         }
764       } else if (mem_block->dominates(access_block)) {
765         // Dominating block? Look around for safepoints
766         ResourceMark rm;
767         Block_List stack;
768         VectorSet visited;
769         stack.push(access_block);
770         bool safepoint_found = block_has_safepoint(access_block);
771         while (!safepoint_found && stack.size() > 0) {
772           const Block* const block = stack.pop();
773           if (visited.test_set(block->_pre_order)) {
774             continue;
775           }
776           if (block_has_safepoint(block)) {
777             safepoint_found = true;
778             break;
779           }
780           if (block == mem_block) {
781             continue;
782           }
783 
784           // Push predecessor blocks
785           for (uint p = 1; p < block->num_preds(); ++p) {
786             Block* const pred = cfg->get_block_for_node(block->pred(p));
787             stack.push(pred);
788           }
789         }
790 
791         if (!safepoint_found) {
792           elide_mach_barrier(access);
793         }
794       }
795     }
796   }
797 }
798 
799 void ZBarrierSetC2::analyze_dominating_barriers() const {
800   ResourceMark rm;
801   Compile* const C = Compile::current();
802   PhaseCFG* const cfg = C->cfg();
803 
804   Node_List loads;
805   Node_List load_dominators;
806 
807   Node_List stores;
808   Node_List store_dominators;
809 
810   Node_List atomics;
811   Node_List atomic_dominators;
812 
813   // Step 1 - Find accesses and allocations, and track them in lists
814   for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
815     const Block* const block = cfg->get_block(i);
816     for (uint j = 0; j < block->number_of_nodes(); ++j) {
817       Node* const node = block->get_node(j);
818       if (node->is_Phi()) {
819         if (is_allocation(node)) {
820           load_dominators.push(node);
821           store_dominators.push(node);
822           // An allocation can't be considered to "dominate" an atomic operation.
823           // For example a CAS requires the memory location to be store-good.
824           // When you have a dominating store or atomic instruction, that is
825           // indeed ensured to be the case. However, as for allocations, the
826           // initialized memory location could be raw null, which isn't store-good.
827         }
828         continue;
829       } else if (!node->is_Mach()) {
830         continue;
831       }
832 
833       MachNode* const mach = node->as_Mach();
834       switch (mach->ideal_Opcode()) {
835       case Op_LoadP:
836         if ((mach->barrier_data() & ZBarrierStrong) != 0 &&
837             (mach->barrier_data() & ZBarrierNoKeepalive) == 0) {
838           loads.push(mach);
839           load_dominators.push(mach);
840         }
841         break;
842       case Op_StoreP:
843         if (mach->barrier_data() != 0) {
844           stores.push(mach);
845           load_dominators.push(mach);
846           store_dominators.push(mach);
847           atomic_dominators.push(mach);
848         }
849         break;
850       case Op_CompareAndExchangeP:
851       case Op_CompareAndSwapP:
852       case Op_GetAndSetP:
853         if (mach->barrier_data() != 0) {
854           atomics.push(mach);
855           load_dominators.push(mach);
856           store_dominators.push(mach);
857           atomic_dominators.push(mach);
858         }
859         break;
860 
861       default:
862         break;
863       }
864     }
865   }
866 
867   // Step 2 - Find dominating accesses or allocations for each access
868   analyze_dominating_barriers_impl(loads, load_dominators);
869   analyze_dominating_barriers_impl(stores, store_dominators);
870   analyze_dominating_barriers_impl(atomics, atomic_dominators);
871 }
872 
873 // == Reduced spilling optimization ==
874 
875 void ZBarrierSetC2::compute_liveness_at_stubs() const {
876   ResourceMark rm;
877   Compile* const C = Compile::current();
878   Arena* const A = Thread::current()->resource_area();
879   PhaseCFG* const cfg = C->cfg();
880   PhaseRegAlloc* const regalloc = C->regalloc();
881   RegMask* const live = NEW_ARENA_ARRAY(A, RegMask, cfg->number_of_blocks() * sizeof(RegMask));
882   ZBarrierSetAssembler* const bs = ZBarrierSet::assembler();
883   Block_List worklist;
884 
885   for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
886     new ((void*)(live + i)) RegMask();
887     worklist.push(cfg->get_block(i));
888   }
889 
890   while (worklist.size() > 0) {
891     const Block* const block = worklist.pop();
892     RegMask& old_live = live[block->_pre_order];
893     RegMask new_live;
894 
895     // Initialize to union of successors
896     for (uint i = 0; i < block->_num_succs; i++) {
897       const uint succ_id = block->_succs[i]->_pre_order;
898       new_live.OR(live[succ_id]);
899     }
900 
901     // Walk block backwards, computing liveness
902     for (int i = block->number_of_nodes() - 1; i >= 0; --i) {
903       const Node* const node = block->get_node(i);
904 
905       // Remove def bits
906       const OptoReg::Name first = bs->refine_register(node, regalloc->get_reg_first(node));
907       const OptoReg::Name second = bs->refine_register(node, regalloc->get_reg_second(node));
908       if (first != OptoReg::Bad) {
909         new_live.Remove(first);
910       }
911       if (second != OptoReg::Bad) {
912         new_live.Remove(second);
913       }
914 
915       // Add use bits
916       for (uint j = 1; j < node->req(); ++j) {
917         const Node* const use = node->in(j);
918         const OptoReg::Name first = bs->refine_register(use, regalloc->get_reg_first(use));
919         const OptoReg::Name second = bs->refine_register(use, regalloc->get_reg_second(use));
920         if (first != OptoReg::Bad) {
921           new_live.Insert(first);
922         }
923         if (second != OptoReg::Bad) {
924           new_live.Insert(second);
925         }
926       }
927 
928       // If this node tracks liveness, update it
929       RegMask* const regs = barrier_set_state()->live(node);
930       if (regs != nullptr) {
931         regs->OR(new_live);
932       }
933     }
934 
935     // Now at block top, see if we have any changes
936     new_live.SUBTRACT(old_live);
937     if (new_live.is_NotEmpty()) {
938       // Liveness has refined, update and propagate to prior blocks
939       old_live.OR(new_live);
940       for (uint i = 1; i < block->num_preds(); ++i) {
941         Block* const pred = cfg->get_block_for_node(block->pred(i));
942         worklist.push(pred);
943       }
944     }
945   }
946 }
947 
948 void ZBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
949   eliminate_gc_barrier_data(node);
950 }
951 
952 void ZBarrierSetC2::eliminate_gc_barrier_data(Node* node) const {
953   if (node->is_LoadStore()) {
954     LoadStoreNode* loadstore = node->as_LoadStore();
955     loadstore->set_barrier_data(ZBarrierElided);
956   } else if (node->is_Mem()) {
957     MemNode* mem = node->as_Mem();
958     mem->set_barrier_data(ZBarrierElided);
959   }
960 }
961 
962 #ifndef PRODUCT
963 void ZBarrierSetC2::dump_barrier_data(const MachNode* mach, outputStream* st) const {
964   if ((mach->barrier_data() & ZBarrierStrong) != 0) {
965     st->print("strong ");
966   }
967   if ((mach->barrier_data() & ZBarrierWeak) != 0) {
968     st->print("weak ");
969   }
970   if ((mach->barrier_data() & ZBarrierPhantom) != 0) {
971     st->print("phantom ");
972   }
973   if ((mach->barrier_data() & ZBarrierNoKeepalive) != 0) {
974     st->print("nokeepalive ");
975   }
976   if ((mach->barrier_data() & ZBarrierNative) != 0) {
977     st->print("native ");
978   }
979   if ((mach->barrier_data() & ZBarrierElided) != 0) {
980     st->print("elided ");
981   }
982 }
983 #endif // !PRODUCT