1 /*
2 * Copyright (c) 2002, 2024, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 // no precompiled headers
26 #include "classfile/javaClasses.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "gc/shared/collectedHeap.hpp"
29 #include "gc/shared/threadLocalAllocBuffer.inline.hpp"
30 #include "gc/shared/tlab_globals.hpp"
31 #include "interpreter/bytecodeHistogram.hpp"
32 #include "interpreter/zero/bytecodeInterpreter.inline.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "interpreter/interpreterRuntime.hpp"
35 #include "jvm_io.h"
36 #include "logging/log.hpp"
37 #include "memory/resourceArea.hpp"
38 #include "memory/universe.hpp"
39 #include "oops/constantPool.inline.hpp"
40 #include "oops/cpCache.inline.hpp"
41 #include "oops/instanceKlass.inline.hpp"
42 #include "oops/klass.inline.hpp"
43 #include "oops/method.inline.hpp"
44 #include "oops/methodCounters.hpp"
45 #include "oops/objArrayKlass.hpp"
46 #include "oops/objArrayOop.inline.hpp"
47 #include "oops/oop.inline.hpp"
48 #include "oops/typeArrayOop.inline.hpp"
49 #include "prims/jvmtiExport.hpp"
50 #include "prims/jvmtiThreadState.hpp"
51 #include "runtime/arguments.hpp"
52 #include "runtime/atomic.hpp"
53 #include "runtime/frame.inline.hpp"
54 #include "runtime/handles.inline.hpp"
55 #include "runtime/interfaceSupport.inline.hpp"
56 #include "runtime/orderAccess.hpp"
57 #include "runtime/sharedRuntime.hpp"
58 #include "runtime/threadCritical.hpp"
59 #include "utilities/debug.hpp"
60 #include "utilities/exceptions.hpp"
61 #include "utilities/macros.hpp"
62
63 /*
64 * USELABELS - If using GCC, then use labels for the opcode dispatching
65 * rather -then a switch statement. This improves performance because it
66 * gives us the opportunity to have the instructions that calculate the
67 * next opcode to jump to be intermixed with the rest of the instructions
68 * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
69 */
70 #undef USELABELS
71 #ifdef __GNUC__
72 /*
73 ASSERT signifies debugging. It is much easier to step thru bytecodes if we
74 don't use the computed goto approach.
75 */
76 #ifndef ASSERT
77 #define USELABELS
78 #endif
79 #endif
80
81 #undef CASE
82 #ifdef USELABELS
83 #define CASE(opcode) opc ## opcode
84 #define DEFAULT opc_default
85 #else
86 #define CASE(opcode) case Bytecodes:: opcode
87 #define DEFAULT default
88 #endif
89
90 /*
91 * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
92 * opcode before going back to the top of the while loop, rather then having
93 * the top of the while loop handle it. This provides a better opportunity
94 * for instruction scheduling. Some compilers just do this prefetch
95 * automatically. Some actually end up with worse performance if you
96 * force the prefetch. Solaris gcc seems to do better, but cc does worse.
97 */
98 #undef PREFETCH_OPCCODE
99 #define PREFETCH_OPCCODE
100
101 JRT_ENTRY(void, at_safepoint(JavaThread* current)) {}
102 JRT_END
103
104 /*
105 Interpreter safepoint: it is expected that the interpreter will have no live
106 handles of its own creation live at an interpreter safepoint. Therefore we
107 run a HandleMarkCleaner and trash all handles allocated in the call chain
108 since the JavaCalls::call_helper invocation that initiated the chain.
109 There really shouldn't be any handles remaining to trash but this is cheap
110 in relation to a safepoint.
111 */
112 #define RETURN_SAFEPOINT \
113 if (SafepointMechanism::should_process(THREAD)) { \
114 CALL_VM(at_safepoint(THREAD), handle_exception); \
115 }
116
117 /*
118 * VM_JAVA_ERROR - Macro for throwing a java exception from
119 * the interpreter loop. Should really be a CALL_VM but there
120 * is no entry point to do the transition to vm so we just
121 * do it by hand here.
122 */
123 #define VM_JAVA_ERROR_NO_JUMP(name, msg) \
124 DECACHE_STATE(); \
125 SET_LAST_JAVA_FRAME(); \
126 { \
127 ThreadInVMfromJava trans(THREAD); \
128 Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg); \
129 } \
130 RESET_LAST_JAVA_FRAME(); \
131 CACHE_STATE();
132
133 // Normal throw of a java error.
134 #define VM_JAVA_ERROR(name, msg) \
135 VM_JAVA_ERROR_NO_JUMP(name, msg) \
136 goto handle_exception;
137
138 #ifdef PRODUCT
139 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
140 #else
141 #define DO_UPDATE_INSTRUCTION_COUNT(opcode) \
142 { \
143 if (PrintBytecodeHistogram) { \
144 BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++; \
145 } \
146 if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) { \
147 BytecodeCounter::_counter_value++; \
148 if (StopInterpreterAt == BytecodeCounter::_counter_value) { \
149 os::breakpoint(); \
150 } \
151 if (TraceBytecodes) { \
152 CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0, \
153 topOfStack[Interpreter::expr_index_at(1)], \
154 topOfStack[Interpreter::expr_index_at(2)]), \
155 handle_exception); \
156 } \
157 } \
158 }
159 #endif
160
161 #undef DEBUGGER_SINGLE_STEP_NOTIFY
162 #if INCLUDE_JVMTI
163 /* NOTE: (kbr) This macro must be called AFTER the PC has been
164 incremented. JvmtiExport::at_single_stepping_point() may cause a
165 breakpoint opcode to get inserted at the current PC to allow the
166 debugger to coalesce single-step events.
167
168 As a result if we call at_single_stepping_point() we refetch opcode
169 to get the current opcode. This will override any other prefetching
170 that might have occurred.
171 */
172 #define DEBUGGER_SINGLE_STEP_NOTIFY() \
173 { \
174 if (JVMTI_ENABLED && JvmtiExport::should_post_single_step()) { \
175 DECACHE_STATE(); \
176 SET_LAST_JAVA_FRAME(); \
177 ThreadInVMfromJava trans(THREAD); \
178 JvmtiExport::at_single_stepping_point(THREAD, \
179 istate->method(), \
180 pc); \
181 RESET_LAST_JAVA_FRAME(); \
182 CACHE_STATE(); \
183 if (THREAD->has_pending_popframe() && \
184 !THREAD->pop_frame_in_process()) { \
185 goto handle_Pop_Frame; \
186 } \
187 if (THREAD->jvmti_thread_state() && \
188 THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
189 goto handle_Early_Return; \
190 } \
191 opcode = *pc; \
192 } \
193 }
194 #else
195 #define DEBUGGER_SINGLE_STEP_NOTIFY()
196 #endif // INCLUDE_JVMTI
197
198 /*
199 * CONTINUE - Macro for executing the next opcode.
200 */
201 #undef CONTINUE
202 #ifdef USELABELS
203 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
204 // initialization (which is is the initialization of the table pointer...)
205 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
206 #define CONTINUE { \
207 opcode = *pc; \
208 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
209 DEBUGGER_SINGLE_STEP_NOTIFY(); \
210 DISPATCH(opcode); \
211 }
212 #else
213 #ifdef PREFETCH_OPCCODE
214 #define CONTINUE { \
215 opcode = *pc; \
216 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
217 DEBUGGER_SINGLE_STEP_NOTIFY(); \
218 continue; \
219 }
220 #else
221 #define CONTINUE { \
222 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
223 DEBUGGER_SINGLE_STEP_NOTIFY(); \
224 continue; \
225 }
226 #endif
227 #endif
228
229
230 #define UPDATE_PC(opsize) {pc += opsize; }
231 /*
232 * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
233 */
234 #undef UPDATE_PC_AND_TOS
235 #define UPDATE_PC_AND_TOS(opsize, stack) \
236 {pc += opsize; MORE_STACK(stack); }
237
238 /*
239 * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
240 * and executing the next opcode. It's somewhat similar to the combination
241 * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
242 */
243 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
244 #ifdef USELABELS
245 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
246 pc += opsize; opcode = *pc; MORE_STACK(stack); \
247 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
248 DEBUGGER_SINGLE_STEP_NOTIFY(); \
249 DISPATCH(opcode); \
250 }
251
252 #define UPDATE_PC_AND_CONTINUE(opsize) { \
253 pc += opsize; opcode = *pc; \
254 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
255 DEBUGGER_SINGLE_STEP_NOTIFY(); \
256 DISPATCH(opcode); \
257 }
258 #else
259 #ifdef PREFETCH_OPCCODE
260 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
261 pc += opsize; opcode = *pc; MORE_STACK(stack); \
262 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
263 DEBUGGER_SINGLE_STEP_NOTIFY(); \
264 goto do_continue; \
265 }
266
267 #define UPDATE_PC_AND_CONTINUE(opsize) { \
268 pc += opsize; opcode = *pc; \
269 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
270 DEBUGGER_SINGLE_STEP_NOTIFY(); \
271 goto do_continue; \
272 }
273 #else
274 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
275 pc += opsize; MORE_STACK(stack); \
276 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
277 DEBUGGER_SINGLE_STEP_NOTIFY(); \
278 goto do_continue; \
279 }
280
281 #define UPDATE_PC_AND_CONTINUE(opsize) { \
282 pc += opsize; \
283 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
284 DEBUGGER_SINGLE_STEP_NOTIFY(); \
285 goto do_continue; \
286 }
287 #endif /* PREFETCH_OPCCODE */
288 #endif /* USELABELS */
289
290 // About to call a new method, update the save the adjusted pc and return to frame manager
291 #define UPDATE_PC_AND_RETURN(opsize) \
292 DECACHE_TOS(); \
293 istate->set_bcp(pc+opsize); \
294 return;
295
296 #define REWRITE_AT_PC(val) \
297 *pc = val;
298
299 #define METHOD istate->method()
300 #define GET_METHOD_COUNTERS(res)
301 #define DO_BACKEDGE_CHECKS(skip, branch_pc)
302
303 /*
304 * For those opcodes that need to have a GC point on a backwards branch
305 */
306
307 /*
308 * Macros for caching and flushing the interpreter state. Some local
309 * variables need to be flushed out to the frame before we do certain
310 * things (like pushing frames or becoming gc safe) and some need to
311 * be recached later (like after popping a frame). We could use one
312 * macro to cache or decache everything, but this would be less then
313 * optimal because we don't always need to cache or decache everything
314 * because some things we know are already cached or decached.
315 */
316 #undef DECACHE_TOS
317 #undef CACHE_TOS
318 #undef CACHE_PREV_TOS
319 #define DECACHE_TOS() istate->set_stack(topOfStack);
320
321 #define CACHE_TOS() topOfStack = (intptr_t *)istate->stack();
322
323 #undef DECACHE_PC
324 #undef CACHE_PC
325 #define DECACHE_PC() istate->set_bcp(pc);
326 #define CACHE_PC() pc = istate->bcp();
327 #define CACHE_CP() cp = istate->constants();
328 #define CACHE_LOCALS() locals = istate->locals();
329 #undef CACHE_FRAME
330 #define CACHE_FRAME()
331
332 // BCI() returns the current bytecode-index.
333 #undef BCI
334 #define BCI() ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
335
336 /*
337 * CHECK_NULL - Macro for throwing a NullPointerException if the object
338 * passed is a null ref.
339 * On some architectures/platforms it should be possible to do this implicitly
340 */
341 #undef CHECK_NULL
342 #define CHECK_NULL(obj_) \
343 if ((obj_) == nullptr) { \
344 VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), nullptr); \
345 } \
346 VERIFY_OOP(obj_)
347
348 #define VMdoubleConstZero() 0.0
349 #define VMdoubleConstOne() 1.0
350 #define VMlongConstZero() (max_jlong-max_jlong)
351 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
352
353 /*
354 * Alignment
355 */
356 #define VMalignWordUp(val) (((uintptr_t)(val) + 3) & ~3)
357
358 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
359 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
360
361 // Reload interpreter state after calling the VM or a possible GC
362 #define CACHE_STATE() \
363 CACHE_TOS(); \
364 CACHE_PC(); \
365 CACHE_CP(); \
366 CACHE_LOCALS();
367
368 // Call the VM with last java frame only.
369 #define CALL_VM_NAKED_LJF(func) \
370 DECACHE_STATE(); \
371 SET_LAST_JAVA_FRAME(); \
372 func; \
373 RESET_LAST_JAVA_FRAME(); \
374 CACHE_STATE();
375
376 // Call the VM. Don't check for pending exceptions.
377 #define CALL_VM_NOCHECK(func) \
378 CALL_VM_NAKED_LJF(func) \
379 if (THREAD->has_pending_popframe() && \
380 !THREAD->pop_frame_in_process()) { \
381 goto handle_Pop_Frame; \
382 } \
383 if (THREAD->jvmti_thread_state() && \
384 THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
385 goto handle_Early_Return; \
386 }
387
388 // Call the VM and check for pending exceptions
389 #define CALL_VM(func, label) { \
390 CALL_VM_NOCHECK(func); \
391 if (THREAD->has_pending_exception()) goto label; \
392 }
393
394 #define MAYBE_POST_FIELD_ACCESS(obj) { \
395 if (JVMTI_ENABLED) { \
396 int* count_addr; \
397 /* Check to see if a field modification watch has been set */ \
398 /* before we take the time to call into the VM. */ \
399 count_addr = (int*)JvmtiExport::get_field_access_count_addr(); \
400 if (*count_addr > 0) { \
401 oop target; \
402 if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) { \
403 target = nullptr; \
404 } else { \
405 target = obj; \
406 } \
407 CALL_VM(InterpreterRuntime::post_field_access(THREAD, \
408 target, cache), \
409 handle_exception); \
410 } \
411 } \
412 }
413
414 #define MAYBE_POST_FIELD_MODIFICATION(obj) { \
415 if (JVMTI_ENABLED) { \
416 int* count_addr; \
417 /* Check to see if a field modification watch has been set */ \
418 /* before we take the time to call into the VM. */ \
419 count_addr = (int*)JvmtiExport::get_field_modification_count_addr(); \
420 if (*count_addr > 0) { \
421 oop target; \
422 if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) { \
423 target = nullptr; \
424 } else { \
425 target = obj; \
426 } \
427 CALL_VM(InterpreterRuntime::post_field_modification(THREAD, \
428 target, cache, \
429 (jvalue*)STACK_SLOT(-1)), \
430 handle_exception); \
431 } \
432 } \
433 }
434
435 static inline int fast_get_type(TosState tos) {
436 switch (tos) {
437 case ztos:
438 case btos: return Bytecodes::_fast_bgetfield;
439 case ctos: return Bytecodes::_fast_cgetfield;
440 case stos: return Bytecodes::_fast_sgetfield;
441 case itos: return Bytecodes::_fast_igetfield;
442 case ltos: return Bytecodes::_fast_lgetfield;
443 case ftos: return Bytecodes::_fast_fgetfield;
444 case dtos: return Bytecodes::_fast_dgetfield;
445 case atos: return Bytecodes::_fast_agetfield;
446 default:
447 ShouldNotReachHere();
448 return -1;
449 }
450 }
451
452 static inline int fast_put_type(TosState tos) {
453 switch (tos) {
454 case ztos: return Bytecodes::_fast_zputfield;
455 case btos: return Bytecodes::_fast_bputfield;
456 case ctos: return Bytecodes::_fast_cputfield;
457 case stos: return Bytecodes::_fast_sputfield;
458 case itos: return Bytecodes::_fast_iputfield;
459 case ltos: return Bytecodes::_fast_lputfield;
460 case ftos: return Bytecodes::_fast_fputfield;
461 case dtos: return Bytecodes::_fast_dputfield;
462 case atos: return Bytecodes::_fast_aputfield;
463 default:
464 ShouldNotReachHere();
465 return -1;
466 }
467 }
468
469 /*
470 * BytecodeInterpreter::run(interpreterState istate)
471 *
472 * The real deal. This is where byte codes actually get interpreted.
473 * Basically it's a big while loop that iterates until we return from
474 * the method passed in.
475 */
476
477 // Instantiate variants of the method for future linking.
478 template void BytecodeInterpreter::run<false, false>(interpreterState istate);
479 template void BytecodeInterpreter::run<false, true>(interpreterState istate);
480 template void BytecodeInterpreter::run< true, false>(interpreterState istate);
481 template void BytecodeInterpreter::run< true, true>(interpreterState istate);
482
483 template<bool JVMTI_ENABLED, bool REWRITE_BYTECODES>
484 void BytecodeInterpreter::run(interpreterState istate) {
485 intptr_t* topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
486 address pc = istate->bcp();
487 jubyte opcode;
488 intptr_t* locals = istate->locals();
489 ConstantPoolCache* cp = istate->constants(); // method()->constants()->cache()
490 #ifdef LOTS_OF_REGS
491 JavaThread* THREAD = istate->thread();
492 #else
493 #undef THREAD
494 #define THREAD istate->thread()
495 #endif
496
497 #ifdef ASSERT
498 assert(labs(istate->stack_base() - istate->stack_limit()) == (istate->method()->max_stack() + 1),
499 "Bad stack limit");
500 /* QQQ this should be a stack method so we don't know actual direction */
501 assert(topOfStack >= istate->stack_limit() && topOfStack < istate->stack_base(),
502 "Stack top out of range");
503
504 // Verify linkages.
505 interpreterState l = istate;
506 do {
507 assert(l == l->_self_link, "bad link");
508 l = l->_prev_link;
509 } while (l != nullptr);
510 // Screwups with stack management usually cause us to overwrite istate
511 // save a copy so we can verify it.
512 interpreterState orig = istate;
513 #endif
514
515 #ifdef USELABELS
516 const static void* const opclabels_data[256] = {
517 /* 0x00 */ &&opc_nop, &&opc_aconst_null, &&opc_iconst_m1, &&opc_iconst_0,
518 /* 0x04 */ &&opc_iconst_1, &&opc_iconst_2, &&opc_iconst_3, &&opc_iconst_4,
519 /* 0x08 */ &&opc_iconst_5, &&opc_lconst_0, &&opc_lconst_1, &&opc_fconst_0,
520 /* 0x0C */ &&opc_fconst_1, &&opc_fconst_2, &&opc_dconst_0, &&opc_dconst_1,
521
522 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc, &&opc_ldc_w,
523 /* 0x14 */ &&opc_ldc2_w, &&opc_iload, &&opc_lload, &&opc_fload,
524 /* 0x18 */ &&opc_dload, &&opc_aload, &&opc_iload_0, &&opc_iload_1,
525 /* 0x1C */ &&opc_iload_2, &&opc_iload_3, &&opc_lload_0, &&opc_lload_1,
526
527 /* 0x20 */ &&opc_lload_2, &&opc_lload_3, &&opc_fload_0, &&opc_fload_1,
528 /* 0x24 */ &&opc_fload_2, &&opc_fload_3, &&opc_dload_0, &&opc_dload_1,
529 /* 0x28 */ &&opc_dload_2, &&opc_dload_3, &&opc_aload_0, &&opc_aload_1,
530 /* 0x2C */ &&opc_aload_2, &&opc_aload_3, &&opc_iaload, &&opc_laload,
531
532 /* 0x30 */ &&opc_faload, &&opc_daload, &&opc_aaload, &&opc_baload,
533 /* 0x34 */ &&opc_caload, &&opc_saload, &&opc_istore, &&opc_lstore,
534 /* 0x38 */ &&opc_fstore, &&opc_dstore, &&opc_astore, &&opc_istore_0,
535 /* 0x3C */ &&opc_istore_1, &&opc_istore_2, &&opc_istore_3, &&opc_lstore_0,
536
537 /* 0x40 */ &&opc_lstore_1, &&opc_lstore_2, &&opc_lstore_3, &&opc_fstore_0,
538 /* 0x44 */ &&opc_fstore_1, &&opc_fstore_2, &&opc_fstore_3, &&opc_dstore_0,
539 /* 0x48 */ &&opc_dstore_1, &&opc_dstore_2, &&opc_dstore_3, &&opc_astore_0,
540 /* 0x4C */ &&opc_astore_1, &&opc_astore_2, &&opc_astore_3, &&opc_iastore,
541
542 /* 0x50 */ &&opc_lastore, &&opc_fastore, &&opc_dastore, &&opc_aastore,
543 /* 0x54 */ &&opc_bastore, &&opc_castore, &&opc_sastore, &&opc_pop,
544 /* 0x58 */ &&opc_pop2, &&opc_dup, &&opc_dup_x1, &&opc_dup_x2,
545 /* 0x5C */ &&opc_dup2, &&opc_dup2_x1, &&opc_dup2_x2, &&opc_swap,
546
547 /* 0x60 */ &&opc_iadd, &&opc_ladd, &&opc_fadd, &&opc_dadd,
548 /* 0x64 */ &&opc_isub, &&opc_lsub, &&opc_fsub, &&opc_dsub,
549 /* 0x68 */ &&opc_imul, &&opc_lmul, &&opc_fmul, &&opc_dmul,
550 /* 0x6C */ &&opc_idiv, &&opc_ldiv, &&opc_fdiv, &&opc_ddiv,
551
552 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem, &&opc_drem,
553 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg, &&opc_dneg,
554 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr, &&opc_lshr,
555 /* 0x7C */ &&opc_iushr, &&opc_lushr, &&opc_iand, &&opc_land,
556
557 /* 0x80 */ &&opc_ior, &&opc_lor, &&opc_ixor, &&opc_lxor,
558 /* 0x84 */ &&opc_iinc, &&opc_i2l, &&opc_i2f, &&opc_i2d,
559 /* 0x88 */ &&opc_l2i, &&opc_l2f, &&opc_l2d, &&opc_f2i,
560 /* 0x8C */ &&opc_f2l, &&opc_f2d, &&opc_d2i, &&opc_d2l,
561
562 /* 0x90 */ &&opc_d2f, &&opc_i2b, &&opc_i2c, &&opc_i2s,
563 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl, &&opc_fcmpg, &&opc_dcmpl,
564 /* 0x98 */ &&opc_dcmpg, &&opc_ifeq, &&opc_ifne, &&opc_iflt,
565 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
566
567 /* 0xA0 */ &&opc_if_icmpne, &&opc_if_icmplt, &&opc_if_icmpge, &&opc_if_icmpgt,
568 /* 0xA4 */ &&opc_if_icmple, &&opc_if_acmpeq, &&opc_if_acmpne, &&opc_goto,
569 /* 0xA8 */ &&opc_jsr, &&opc_ret, &&opc_tableswitch, &&opc_lookupswitch,
570 /* 0xAC */ &&opc_ireturn, &&opc_lreturn, &&opc_freturn, &&opc_dreturn,
571
572 /* 0xB0 */ &&opc_areturn, &&opc_return, &&opc_getstatic, &&opc_putstatic,
573 /* 0xB4 */ &&opc_getfield, &&opc_putfield, &&opc_invokevirtual, &&opc_invokespecial,
574 /* 0xB8 */ &&opc_invokestatic, &&opc_invokeinterface, &&opc_invokedynamic, &&opc_new,
575 /* 0xBC */ &&opc_newarray, &&opc_anewarray, &&opc_arraylength, &&opc_athrow,
576
577 /* 0xC0 */ &&opc_checkcast, &&opc_instanceof, &&opc_monitorenter, &&opc_monitorexit,
578 /* 0xC4 */ &&opc_wide, &&opc_multianewarray, &&opc_ifnull, &&opc_ifnonnull,
579 /* 0xC8 */ &&opc_goto_w, &&opc_jsr_w, &&opc_breakpoint, &&opc_fast_agetfield,
580 /* 0xCC */ &&opc_fast_bgetfield,&&opc_fast_cgetfield, &&opc_fast_dgetfield, &&opc_fast_fgetfield,
581
582 /* 0xD0 */ &&opc_fast_igetfield,&&opc_fast_lgetfield, &&opc_fast_sgetfield, &&opc_fast_aputfield,
583 /* 0xD4 */ &&opc_fast_bputfield,&&opc_fast_zputfield, &&opc_fast_cputfield, &&opc_fast_dputfield,
584 /* 0xD8 */ &&opc_fast_fputfield,&&opc_fast_iputfield, &&opc_fast_lputfield, &&opc_fast_sputfield,
585 /* 0xDC */ &&opc_fast_aload_0, &&opc_fast_iaccess_0, &&opc_fast_aaccess_0, &&opc_fast_faccess_0,
586
587 /* 0xE0 */ &&opc_fast_iload, &&opc_fast_iload2, &&opc_fast_icaload, &&opc_fast_invokevfinal,
588 /* 0xE4 */ &&opc_default, &&opc_default, &&opc_fast_aldc, &&opc_fast_aldc_w,
589 /* 0xE8 */ &&opc_return_register_finalizer,
590 &&opc_invokehandle, &&opc_nofast_getfield,&&opc_nofast_putfield,
591 /* 0xEC */ &&opc_nofast_aload_0,&&opc_nofast_iload, &&opc_default, &&opc_default,
592
593 /* 0xF0 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
594 /* 0xF4 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
595 /* 0xF8 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
596 /* 0xFC */ &&opc_default, &&opc_default, &&opc_default, &&opc_default
597 };
598 uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
599 #endif /* USELABELS */
600
601 switch (istate->msg()) {
602 case initialize: {
603 ShouldNotCallThis();
604 return;
605 }
606 case method_entry: {
607 THREAD->set_do_not_unlock_if_synchronized(true);
608
609 // Lock method if synchronized.
610 if (METHOD->is_synchronized()) {
611 // oop rcvr = locals[0].j.r;
612 oop rcvr;
613 if (METHOD->is_static()) {
614 rcvr = METHOD->constants()->pool_holder()->java_mirror();
615 } else {
616 rcvr = LOCALS_OBJECT(0);
617 VERIFY_OOP(rcvr);
618 }
619
620 // The initial monitor is ours for the taking.
621 BasicObjectLock* mon = &istate->monitor_base()[-1];
622 mon->set_obj(rcvr);
623
624 // Traditional lightweight locking.
625 markWord displaced = rcvr->mark().set_unlocked();
626 mon->lock()->set_displaced_header(displaced);
627 bool call_vm = (LockingMode == LM_MONITOR);
628 bool inc_monitor_count = true;
629 if (call_vm || rcvr->cas_set_mark(markWord::from_pointer(mon), displaced) != displaced) {
630 // Is it simple recursive case?
631 if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) {
632 mon->lock()->set_displaced_header(markWord::from_pointer(nullptr));
633 } else {
634 inc_monitor_count = false;
635 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
636 }
637 }
638 if (inc_monitor_count) {
639 THREAD->inc_held_monitor_count();
640 }
641 }
642 THREAD->set_do_not_unlock_if_synchronized(false);
643
644 // Notify jvmti.
645 // Whenever JVMTI puts a thread in interp_only_mode, method
646 // entry/exit events are sent for that thread to track stack depth.
647 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
648 CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
649 handle_exception);
650 }
651
652 goto run;
653 }
654
655 case popping_frame: {
656 // returned from a java call to pop the frame, restart the call
657 // clear the message so we don't confuse ourselves later
658 assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
659 istate->set_msg(no_request);
660 THREAD->clr_pop_frame_in_process();
661 goto run;
662 }
663
664 case method_resume: {
665 if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
666 // resume
667 os::breakpoint();
668 }
669 // returned from a java call, continue executing.
670 if (THREAD->has_pending_popframe() && !THREAD->pop_frame_in_process()) {
671 goto handle_Pop_Frame;
672 }
673 if (THREAD->jvmti_thread_state() &&
674 THREAD->jvmti_thread_state()->is_earlyret_pending()) {
675 goto handle_Early_Return;
676 }
677
678 if (THREAD->has_pending_exception()) goto handle_exception;
679 // Update the pc by the saved amount of the invoke bytecode size
680 UPDATE_PC(istate->bcp_advance());
681 goto run;
682 }
683
684 case deopt_resume2: {
685 // Returned from an opcode that will reexecute. Deopt was
686 // a result of a PopFrame request.
687 //
688 goto run;
689 }
690
691 case deopt_resume: {
692 // Returned from an opcode that has completed. The stack has
693 // the result all we need to do is skip across the bytecode
694 // and continue (assuming there is no exception pending)
695 //
696 // compute continuation length
697 //
698 // Note: it is possible to deopt at a return_register_finalizer opcode
699 // because this requires entering the vm to do the registering. While the
700 // opcode is complete we can't advance because there are no more opcodes
701 // much like trying to deopt at a poll return. In that has we simply
702 // get out of here
703 //
704 if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
705 // this will do the right thing even if an exception is pending.
706 goto handle_return;
707 }
708 UPDATE_PC(Bytecodes::length_at(METHOD, pc));
709 if (THREAD->has_pending_exception()) goto handle_exception;
710 goto run;
711 }
712 case got_monitors: {
713 // continue locking now that we have a monitor to use
714 // we expect to find newly allocated monitor at the "top" of the monitor stack.
715 oop lockee = STACK_OBJECT(-1);
716 VERIFY_OOP(lockee);
717 // derefing's lockee ought to provoke implicit null check
718 // find a free monitor
719 BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
720 assert(entry->obj() == nullptr, "Frame manager didn't allocate the monitor");
721 entry->set_obj(lockee);
722
723 // traditional lightweight locking
724 markWord displaced = lockee->mark().set_unlocked();
725 entry->lock()->set_displaced_header(displaced);
726 bool call_vm = (LockingMode == LM_MONITOR);
727 bool inc_monitor_count = true;
728 if (call_vm || lockee->cas_set_mark(markWord::from_pointer(entry), displaced) != displaced) {
729 // Is it simple recursive case?
730 if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) {
731 entry->lock()->set_displaced_header(markWord::from_pointer(nullptr));
732 } else {
733 inc_monitor_count = false;
734 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
735 }
736 }
737 if (inc_monitor_count) {
738 THREAD->inc_held_monitor_count();
739 }
740 UPDATE_PC_AND_TOS(1, -1);
741 goto run;
742 }
743 default: {
744 fatal("Unexpected message from frame manager");
745 }
746 }
747
748 run:
749
750 DO_UPDATE_INSTRUCTION_COUNT(*pc)
751 DEBUGGER_SINGLE_STEP_NOTIFY();
752 #ifdef PREFETCH_OPCCODE
753 opcode = *pc; /* prefetch first opcode */
754 #endif
755
756 #ifndef USELABELS
757 while (1)
758 #endif
759 {
760 #ifndef PREFETCH_OPCCODE
761 opcode = *pc;
762 #endif
763 // Seems like this happens twice per opcode. At worst this is only
764 // need at entry to the loop.
765 // DEBUGGER_SINGLE_STEP_NOTIFY();
766 /* Using this labels avoids double breakpoints when quickening and
767 * when returning from transition frames.
768 */
769 opcode_switch:
770 assert(istate == orig, "Corrupted istate");
771 /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
772 assert(topOfStack >= istate->stack_limit(), "Stack overrun");
773 assert(topOfStack < istate->stack_base(), "Stack underrun");
774
775 #ifdef USELABELS
776 DISPATCH(opcode);
777 #else
778 switch (opcode)
779 #endif
780 {
781 CASE(_nop):
782 UPDATE_PC_AND_CONTINUE(1);
783
784 /* Push miscellaneous constants onto the stack. */
785
786 CASE(_aconst_null):
787 SET_STACK_OBJECT(nullptr, 0);
788 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
789
790 #undef OPC_CONST_n
791 #define OPC_CONST_n(opcode, const_type, value) \
792 CASE(opcode): \
793 SET_STACK_ ## const_type(value, 0); \
794 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
795
796 OPC_CONST_n(_iconst_m1, INT, -1);
797 OPC_CONST_n(_iconst_0, INT, 0);
798 OPC_CONST_n(_iconst_1, INT, 1);
799 OPC_CONST_n(_iconst_2, INT, 2);
800 OPC_CONST_n(_iconst_3, INT, 3);
801 OPC_CONST_n(_iconst_4, INT, 4);
802 OPC_CONST_n(_iconst_5, INT, 5);
803 OPC_CONST_n(_fconst_0, FLOAT, 0.0);
804 OPC_CONST_n(_fconst_1, FLOAT, 1.0);
805 OPC_CONST_n(_fconst_2, FLOAT, 2.0);
806
807 #undef OPC_CONST2_n
808 #define OPC_CONST2_n(opcname, value, key, kind) \
809 CASE(_##opcname): \
810 { \
811 SET_STACK_ ## kind(VM##key##Const##value(), 1); \
812 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); \
813 }
814 OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
815 OPC_CONST2_n(dconst_1, One, double, DOUBLE);
816 OPC_CONST2_n(lconst_0, Zero, long, LONG);
817 OPC_CONST2_n(lconst_1, One, long, LONG);
818
819 /* Load constant from constant pool: */
820
821 /* Push a 1-byte signed integer value onto the stack. */
822 CASE(_bipush):
823 SET_STACK_INT((jbyte)(pc[1]), 0);
824 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
825
826 /* Push a 2-byte signed integer constant onto the stack. */
827 CASE(_sipush):
828 SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
829 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
830
831 /* load from local variable */
832
833 CASE(_aload):
834 VERIFY_OOP(LOCALS_OBJECT(pc[1]));
835 SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
836 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
837
838 CASE(_iload):
839 {
840 if (REWRITE_BYTECODES) {
841 // Attempt to rewrite iload, iload -> fast_iload2
842 // iload, caload -> fast_icaload
843 // Normal iloads will be rewritten to fast_iload to avoid checking again.
844 switch (*(pc + 2)) {
845 case Bytecodes::_fast_iload:
846 REWRITE_AT_PC(Bytecodes::_fast_iload2);
847 break;
848 case Bytecodes::_caload:
849 REWRITE_AT_PC(Bytecodes::_fast_icaload);
850 break;
851 case Bytecodes::_iload:
852 // Wait until rewritten to _fast_iload.
853 break;
854 default:
855 // Last iload in a (potential) series, don't check again.
856 REWRITE_AT_PC(Bytecodes::_fast_iload);
857 }
858 }
859 // Normal iload handling.
860 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
861 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
862 }
863
864 CASE(_nofast_iload):
865 {
866 // Normal, non-rewritable iload handling.
867 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
868 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
869 }
870
871 CASE(_fast_iload):
872 CASE(_fload):
873 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
874 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
875
876 CASE(_fast_iload2):
877 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
878 SET_STACK_SLOT(LOCALS_SLOT(pc[3]), 1);
879 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
880
881 CASE(_lload):
882 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
883 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
884
885 CASE(_dload):
886 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
887 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
888
889 #undef OPC_LOAD_n
890 #define OPC_LOAD_n(num) \
891 CASE(_iload_##num): \
892 CASE(_fload_##num): \
893 SET_STACK_SLOT(LOCALS_SLOT(num), 0); \
894 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); \
895 \
896 CASE(_lload_##num): \
897 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1); \
898 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); \
899 CASE(_dload_##num): \
900 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1); \
901 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
902
903 OPC_LOAD_n(0);
904 OPC_LOAD_n(1);
905 OPC_LOAD_n(2);
906 OPC_LOAD_n(3);
907
908 #undef OPC_ALOAD_n
909 #define OPC_ALOAD_n(num) \
910 CASE(_aload_##num): { \
911 oop obj = LOCALS_OBJECT(num); \
912 VERIFY_OOP(obj); \
913 SET_STACK_OBJECT(obj, 0); \
914 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); \
915 }
916
917 CASE(_aload_0):
918 {
919 /* Maybe rewrite if following bytecode is one of the supported _fast_Xgetfield bytecodes. */
920 if (REWRITE_BYTECODES) {
921 switch (*(pc + 1)) {
922 case Bytecodes::_fast_agetfield:
923 REWRITE_AT_PC(Bytecodes::_fast_aaccess_0);
924 break;
925 case Bytecodes::_fast_fgetfield:
926 REWRITE_AT_PC(Bytecodes::_fast_faccess_0);
927 break;
928 case Bytecodes::_fast_igetfield:
929 REWRITE_AT_PC(Bytecodes::_fast_iaccess_0);
930 break;
931 case Bytecodes::_getfield:
932 case Bytecodes::_nofast_getfield: {
933 /* Otherwise, do nothing here, wait until/if it gets rewritten to _fast_Xgetfield.
934 * Unfortunately, this punishes volatile field access, because it never gets
935 * rewritten. */
936 break;
937 }
938 default:
939 REWRITE_AT_PC(Bytecodes::_fast_aload_0);
940 break;
941 }
942 }
943 // Normal aload_0 handling.
944 VERIFY_OOP(LOCALS_OBJECT(0));
945 SET_STACK_OBJECT(LOCALS_OBJECT(0), 0);
946 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
947 }
948
949 CASE(_nofast_aload_0):
950 {
951 // Normal, non-rewritable aload_0 handling.
952 VERIFY_OOP(LOCALS_OBJECT(0));
953 SET_STACK_OBJECT(LOCALS_OBJECT(0), 0);
954 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
955 }
956
957 OPC_ALOAD_n(1);
958 OPC_ALOAD_n(2);
959 OPC_ALOAD_n(3);
960
961 /* store to a local variable */
962
963 CASE(_astore):
964 astore(topOfStack, -1, locals, pc[1]);
965 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
966
967 CASE(_istore):
968 CASE(_fstore):
969 SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
970 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
971
972 CASE(_lstore):
973 SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
974 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
975
976 CASE(_dstore):
977 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
978 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
979
980 CASE(_wide): {
981 uint16_t reg = Bytes::get_Java_u2(pc + 2);
982
983 opcode = pc[1];
984
985 // Wide and it's sub-bytecode are counted as separate instructions. If we
986 // don't account for this here, the bytecode trace skips the next bytecode.
987 DO_UPDATE_INSTRUCTION_COUNT(opcode);
988
989 switch(opcode) {
990 case Bytecodes::_aload:
991 VERIFY_OOP(LOCALS_OBJECT(reg));
992 SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
993 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
994
995 case Bytecodes::_iload:
996 case Bytecodes::_fload:
997 SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
998 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
999
1000 case Bytecodes::_lload:
1001 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1002 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1003
1004 case Bytecodes::_dload:
1005 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1006 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1007
1008 case Bytecodes::_astore:
1009 astore(topOfStack, -1, locals, reg);
1010 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1011
1012 case Bytecodes::_istore:
1013 case Bytecodes::_fstore:
1014 SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1015 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1016
1017 case Bytecodes::_lstore:
1018 SET_LOCALS_LONG(STACK_LONG(-1), reg);
1019 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1020
1021 case Bytecodes::_dstore:
1022 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1023 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1024
1025 case Bytecodes::_iinc: {
1026 int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1027 // Be nice to see what this generates.... QQQ
1028 SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1029 UPDATE_PC_AND_CONTINUE(6);
1030 }
1031 case Bytecodes::_ret:
1032 pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1033 UPDATE_PC_AND_CONTINUE(0);
1034 default:
1035 VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1036 }
1037 }
1038
1039
1040 #undef OPC_STORE_n
1041 #define OPC_STORE_n(num) \
1042 CASE(_astore_##num): \
1043 astore(topOfStack, -1, locals, num); \
1044 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1045 CASE(_istore_##num): \
1046 CASE(_fstore_##num): \
1047 SET_LOCALS_SLOT(STACK_SLOT(-1), num); \
1048 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1049
1050 OPC_STORE_n(0);
1051 OPC_STORE_n(1);
1052 OPC_STORE_n(2);
1053 OPC_STORE_n(3);
1054
1055 #undef OPC_DSTORE_n
1056 #define OPC_DSTORE_n(num) \
1057 CASE(_dstore_##num): \
1058 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num); \
1059 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \
1060 CASE(_lstore_##num): \
1061 SET_LOCALS_LONG(STACK_LONG(-1), num); \
1062 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1063
1064 OPC_DSTORE_n(0);
1065 OPC_DSTORE_n(1);
1066 OPC_DSTORE_n(2);
1067 OPC_DSTORE_n(3);
1068
1069 /* stack pop, dup, and insert opcodes */
1070
1071
1072 CASE(_pop): /* Discard the top item on the stack */
1073 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1074
1075
1076 CASE(_pop2): /* Discard the top 2 items on the stack */
1077 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1078
1079
1080 CASE(_dup): /* Duplicate the top item on the stack */
1081 dup(topOfStack);
1082 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1083
1084 CASE(_dup2): /* Duplicate the top 2 items on the stack */
1085 dup2(topOfStack);
1086 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1087
1088 CASE(_dup_x1): /* insert top word two down */
1089 dup_x1(topOfStack);
1090 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1091
1092 CASE(_dup_x2): /* insert top word three down */
1093 dup_x2(topOfStack);
1094 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1095
1096 CASE(_dup2_x1): /* insert top 2 slots three down */
1097 dup2_x1(topOfStack);
1098 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1099
1100 CASE(_dup2_x2): /* insert top 2 slots four down */
1101 dup2_x2(topOfStack);
1102 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1103
1104 CASE(_swap): { /* swap top two elements on the stack */
1105 swap(topOfStack);
1106 UPDATE_PC_AND_CONTINUE(1);
1107 }
1108
1109 /* Perform various binary integer operations */
1110
1111 #undef OPC_INT_BINARY
1112 #define OPC_INT_BINARY(opcname, opname, test) \
1113 CASE(_i##opcname): \
1114 if (test && (STACK_INT(-1) == 0)) { \
1115 VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1116 "/ by zero"); \
1117 } \
1118 SET_STACK_INT(VMint##opname(STACK_INT(-2), \
1119 STACK_INT(-1)), \
1120 -2); \
1121 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1122 CASE(_l##opcname): \
1123 { \
1124 if (test) { \
1125 jlong l1 = STACK_LONG(-1); \
1126 if (VMlongEqz(l1)) { \
1127 VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1128 "/ by long zero"); \
1129 } \
1130 } \
1131 /* First long at (-1,-2) next long at (-3,-4) */ \
1132 SET_STACK_LONG(VMlong##opname(STACK_LONG(-3), \
1133 STACK_LONG(-1)), \
1134 -3); \
1135 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \
1136 }
1137
1138 OPC_INT_BINARY(add, Add, 0);
1139 OPC_INT_BINARY(sub, Sub, 0);
1140 OPC_INT_BINARY(mul, Mul, 0);
1141 OPC_INT_BINARY(and, And, 0);
1142 OPC_INT_BINARY(or, Or, 0);
1143 OPC_INT_BINARY(xor, Xor, 0);
1144 OPC_INT_BINARY(div, Div, 1);
1145 OPC_INT_BINARY(rem, Rem, 1);
1146
1147
1148 /* Perform various binary floating number operations */
1149 /* On some machine/platforms/compilers div zero check can be implicit */
1150
1151 #undef OPC_FLOAT_BINARY
1152 #define OPC_FLOAT_BINARY(opcname, opname) \
1153 CASE(_d##opcname): { \
1154 SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3), \
1155 STACK_DOUBLE(-1)), \
1156 -3); \
1157 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \
1158 } \
1159 CASE(_f##opcname): \
1160 SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2), \
1161 STACK_FLOAT(-1)), \
1162 -2); \
1163 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1164
1165
1166 OPC_FLOAT_BINARY(add, Add);
1167 OPC_FLOAT_BINARY(sub, Sub);
1168 OPC_FLOAT_BINARY(mul, Mul);
1169 OPC_FLOAT_BINARY(div, Div);
1170 OPC_FLOAT_BINARY(rem, Rem);
1171
1172 /* Shift operations
1173 * Shift left int and long: ishl, lshl
1174 * Logical shift right int and long w/zero extension: iushr, lushr
1175 * Arithmetic shift right int and long w/sign extension: ishr, lshr
1176 */
1177
1178 #undef OPC_SHIFT_BINARY
1179 #define OPC_SHIFT_BINARY(opcname, opname) \
1180 CASE(_i##opcname): \
1181 SET_STACK_INT(VMint##opname(STACK_INT(-2), \
1182 STACK_INT(-1)), \
1183 -2); \
1184 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1185 CASE(_l##opcname): \
1186 { \
1187 SET_STACK_LONG(VMlong##opname(STACK_LONG(-2), \
1188 STACK_INT(-1)), \
1189 -2); \
1190 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1191 }
1192
1193 OPC_SHIFT_BINARY(shl, Shl);
1194 OPC_SHIFT_BINARY(shr, Shr);
1195 OPC_SHIFT_BINARY(ushr, Ushr);
1196
1197 /* Increment local variable by constant */
1198 CASE(_iinc):
1199 {
1200 // locals[pc[1]].j.i += (jbyte)(pc[2]);
1201 SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1202 UPDATE_PC_AND_CONTINUE(3);
1203 }
1204
1205 /* negate the value on the top of the stack */
1206
1207 CASE(_ineg):
1208 SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1209 UPDATE_PC_AND_CONTINUE(1);
1210
1211 CASE(_fneg):
1212 SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1213 UPDATE_PC_AND_CONTINUE(1);
1214
1215 CASE(_lneg):
1216 {
1217 SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1218 UPDATE_PC_AND_CONTINUE(1);
1219 }
1220
1221 CASE(_dneg):
1222 {
1223 SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1224 UPDATE_PC_AND_CONTINUE(1);
1225 }
1226
1227 /* Conversion operations */
1228
1229 CASE(_i2f): /* convert top of stack int to float */
1230 SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1231 UPDATE_PC_AND_CONTINUE(1);
1232
1233 CASE(_i2l): /* convert top of stack int to long */
1234 {
1235 // this is ugly QQQ
1236 jlong r = VMint2Long(STACK_INT(-1));
1237 MORE_STACK(-1); // Pop
1238 SET_STACK_LONG(r, 1);
1239
1240 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1241 }
1242
1243 CASE(_i2d): /* convert top of stack int to double */
1244 {
1245 // this is ugly QQQ (why cast to jlong?? )
1246 jdouble r = (jlong)STACK_INT(-1);
1247 MORE_STACK(-1); // Pop
1248 SET_STACK_DOUBLE(r, 1);
1249
1250 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1251 }
1252
1253 CASE(_l2i): /* convert top of stack long to int */
1254 {
1255 jint r = VMlong2Int(STACK_LONG(-1));
1256 MORE_STACK(-2); // Pop
1257 SET_STACK_INT(r, 0);
1258 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1259 }
1260
1261 CASE(_l2f): /* convert top of stack long to float */
1262 {
1263 jlong r = STACK_LONG(-1);
1264 MORE_STACK(-2); // Pop
1265 SET_STACK_FLOAT(VMlong2Float(r), 0);
1266 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1267 }
1268
1269 CASE(_l2d): /* convert top of stack long to double */
1270 {
1271 jlong r = STACK_LONG(-1);
1272 MORE_STACK(-2); // Pop
1273 SET_STACK_DOUBLE(VMlong2Double(r), 1);
1274 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1275 }
1276
1277 CASE(_f2i): /* Convert top of stack float to int */
1278 SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1279 UPDATE_PC_AND_CONTINUE(1);
1280
1281 CASE(_f2l): /* convert top of stack float to long */
1282 {
1283 jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1284 MORE_STACK(-1); // POP
1285 SET_STACK_LONG(r, 1);
1286 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1287 }
1288
1289 CASE(_f2d): /* convert top of stack float to double */
1290 {
1291 jfloat f;
1292 jdouble r;
1293 f = STACK_FLOAT(-1);
1294 r = (jdouble) f;
1295 MORE_STACK(-1); // POP
1296 SET_STACK_DOUBLE(r, 1);
1297 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1298 }
1299
1300 CASE(_d2i): /* convert top of stack double to int */
1301 {
1302 jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1303 MORE_STACK(-2);
1304 SET_STACK_INT(r1, 0);
1305 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1306 }
1307
1308 CASE(_d2f): /* convert top of stack double to float */
1309 {
1310 jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1311 MORE_STACK(-2);
1312 SET_STACK_FLOAT(r1, 0);
1313 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1314 }
1315
1316 CASE(_d2l): /* convert top of stack double to long */
1317 {
1318 jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1319 MORE_STACK(-2);
1320 SET_STACK_LONG(r1, 1);
1321 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1322 }
1323
1324 CASE(_i2b):
1325 SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1326 UPDATE_PC_AND_CONTINUE(1);
1327
1328 CASE(_i2c):
1329 SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1330 UPDATE_PC_AND_CONTINUE(1);
1331
1332 CASE(_i2s):
1333 SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1334 UPDATE_PC_AND_CONTINUE(1);
1335
1336 /* comparison operators */
1337
1338
1339 #define COMPARISON_OP(name, comparison) \
1340 CASE(_if_icmp##name): { \
1341 int skip = (STACK_INT(-2) comparison STACK_INT(-1)) \
1342 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1343 address branch_pc = pc; \
1344 UPDATE_PC_AND_TOS(skip, -2); \
1345 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1346 CONTINUE; \
1347 } \
1348 CASE(_if##name): { \
1349 int skip = (STACK_INT(-1) comparison 0) \
1350 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1351 address branch_pc = pc; \
1352 UPDATE_PC_AND_TOS(skip, -1); \
1353 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1354 CONTINUE; \
1355 }
1356
1357 #define COMPARISON_OP2(name, comparison) \
1358 COMPARISON_OP(name, comparison) \
1359 CASE(_if_acmp##name): { \
1360 int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1)) \
1361 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1362 address branch_pc = pc; \
1363 UPDATE_PC_AND_TOS(skip, -2); \
1364 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1365 CONTINUE; \
1366 }
1367
1368 #define NULL_COMPARISON_NOT_OP(name) \
1369 CASE(_if##name): { \
1370 int skip = (!(STACK_OBJECT(-1) == nullptr)) \
1371 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1372 address branch_pc = pc; \
1373 UPDATE_PC_AND_TOS(skip, -1); \
1374 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1375 CONTINUE; \
1376 }
1377
1378 #define NULL_COMPARISON_OP(name) \
1379 CASE(_if##name): { \
1380 int skip = ((STACK_OBJECT(-1) == nullptr)) \
1381 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1382 address branch_pc = pc; \
1383 UPDATE_PC_AND_TOS(skip, -1); \
1384 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1385 CONTINUE; \
1386 }
1387 COMPARISON_OP(lt, <);
1388 COMPARISON_OP(gt, >);
1389 COMPARISON_OP(le, <=);
1390 COMPARISON_OP(ge, >=);
1391 COMPARISON_OP2(eq, ==); /* include ref comparison */
1392 COMPARISON_OP2(ne, !=); /* include ref comparison */
1393 NULL_COMPARISON_OP(null);
1394 NULL_COMPARISON_NOT_OP(nonnull);
1395
1396 /* Goto pc at specified offset in switch table. */
1397
1398 CASE(_tableswitch): {
1399 jint* lpc = (jint*)VMalignWordUp(pc+1);
1400 int32_t key = STACK_INT(-1);
1401 int32_t low = Bytes::get_Java_u4((address)&lpc[1]);
1402 int32_t high = Bytes::get_Java_u4((address)&lpc[2]);
1403 int32_t skip;
1404 key -= low;
1405 if (((uint32_t) key > (uint32_t)(high - low))) {
1406 skip = Bytes::get_Java_u4((address)&lpc[0]);
1407 } else {
1408 skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1409 }
1410 // Does this really need a full backedge check (osr)?
1411 address branch_pc = pc;
1412 UPDATE_PC_AND_TOS(skip, -1);
1413 DO_BACKEDGE_CHECKS(skip, branch_pc);
1414 CONTINUE;
1415 }
1416
1417 /* Goto pc whose table entry matches specified key. */
1418
1419 CASE(_lookupswitch): {
1420 jint* lpc = (jint*)VMalignWordUp(pc+1);
1421 int32_t key = STACK_INT(-1);
1422 int32_t skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1423 int32_t npairs = Bytes::get_Java_u4((address) &lpc[1]);
1424 while (--npairs >= 0) {
1425 lpc += 2;
1426 if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1427 skip = Bytes::get_Java_u4((address)&lpc[1]);
1428 break;
1429 }
1430 }
1431 address branch_pc = pc;
1432 UPDATE_PC_AND_TOS(skip, -1);
1433 DO_BACKEDGE_CHECKS(skip, branch_pc);
1434 CONTINUE;
1435 }
1436
1437 CASE(_fcmpl):
1438 CASE(_fcmpg):
1439 {
1440 SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1441 STACK_FLOAT(-1),
1442 (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1443 -2);
1444 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1445 }
1446
1447 CASE(_dcmpl):
1448 CASE(_dcmpg):
1449 {
1450 int r = VMdoubleCompare(STACK_DOUBLE(-3),
1451 STACK_DOUBLE(-1),
1452 (opcode == Bytecodes::_dcmpl ? -1 : 1));
1453 MORE_STACK(-4); // Pop
1454 SET_STACK_INT(r, 0);
1455 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1456 }
1457
1458 CASE(_lcmp):
1459 {
1460 int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1461 MORE_STACK(-4);
1462 SET_STACK_INT(r, 0);
1463 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1464 }
1465
1466
1467 /* Return from a method */
1468
1469 CASE(_areturn):
1470 CASE(_ireturn):
1471 CASE(_freturn):
1472 CASE(_lreturn):
1473 CASE(_dreturn):
1474 CASE(_return): {
1475 // Allow a safepoint before returning to frame manager.
1476 RETURN_SAFEPOINT;
1477 goto handle_return;
1478 }
1479
1480 CASE(_return_register_finalizer): {
1481 oop rcvr = LOCALS_OBJECT(0);
1482 VERIFY_OOP(rcvr);
1483 if (rcvr->klass()->has_finalizer()) {
1484 CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1485 }
1486 goto handle_return;
1487 }
1488
1489 /* Array access byte-codes */
1490
1491 #define ARRAY_INDEX_CHECK(arrObj, index) \
1492 /* Two integers, the additional message, and the null-terminator */ \
1493 char message[2 * jintAsStringSize + 33]; \
1494 CHECK_NULL(arrObj); \
1495 if ((uint32_t)index >= (uint32_t)arrObj->length()) { \
1496 jio_snprintf(message, sizeof(message), \
1497 "Index %d out of bounds for length %d", \
1498 index, arrObj->length()); \
1499 VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1500 message); \
1501 }
1502
1503 /* Every array access byte-code starts out like this */
1504 // arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1505 #define ARRAY_INTRO(arrayOff) \
1506 arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff); \
1507 jint index = STACK_INT(arrayOff + 1); \
1508 ARRAY_INDEX_CHECK(arrObj, index)
1509
1510 /* 32-bit loads. These handle conversion from < 32-bit types */
1511 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra) \
1512 { \
1513 ARRAY_INTRO(-2); \
1514 (void)extra; \
1515 SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1516 -2); \
1517 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1518 }
1519
1520 /* 64-bit loads */
1521 #define ARRAY_LOADTO64(T,T2, stackRes, extra) \
1522 { \
1523 ARRAY_INTRO(-2); \
1524 SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1525 (void)extra; \
1526 UPDATE_PC_AND_CONTINUE(1); \
1527 }
1528
1529 CASE(_iaload):
1530 ARRAY_LOADTO32(T_INT, jint, "%d", STACK_INT, 0);
1531 CASE(_faload):
1532 ARRAY_LOADTO32(T_FLOAT, jfloat, "%f", STACK_FLOAT, 0);
1533 CASE(_aaload): {
1534 ARRAY_INTRO(-2);
1535 SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1536 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1537 }
1538 CASE(_baload):
1539 ARRAY_LOADTO32(T_BYTE, jbyte, "%d", STACK_INT, 0);
1540 CASE(_caload):
1541 ARRAY_LOADTO32(T_CHAR, jchar, "%d", STACK_INT, 0);
1542 CASE(_saload):
1543 ARRAY_LOADTO32(T_SHORT, jshort, "%d", STACK_INT, 0);
1544 CASE(_laload):
1545 ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1546 CASE(_daload):
1547 ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1548
1549 CASE(_fast_icaload): {
1550 // Custom fast access for iload,caload pair.
1551 arrayOop arrObj = (arrayOop) STACK_OBJECT(-1);
1552 jint index = LOCALS_INT(pc[1]);
1553 ARRAY_INDEX_CHECK(arrObj, index);
1554 SET_STACK_INT(*(jchar *)(((address) arrObj->base(T_CHAR)) + index * sizeof(jchar)), -1);
1555 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 0);
1556 }
1557
1558 /* 32-bit stores. These handle conversion to < 32-bit types */
1559 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra) \
1560 { \
1561 ARRAY_INTRO(-3); \
1562 (void)extra; \
1563 *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1564 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3); \
1565 }
1566
1567 /* 64-bit stores */
1568 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra) \
1569 { \
1570 ARRAY_INTRO(-4); \
1571 (void)extra; \
1572 *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1573 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4); \
1574 }
1575
1576 CASE(_iastore):
1577 ARRAY_STOREFROM32(T_INT, jint, "%d", STACK_INT, 0);
1578 CASE(_fastore):
1579 ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f", STACK_FLOAT, 0);
1580 /*
1581 * This one looks different because of the assignability check
1582 */
1583 CASE(_aastore): {
1584 oop rhsObject = STACK_OBJECT(-1);
1585 VERIFY_OOP(rhsObject);
1586 ARRAY_INTRO( -3);
1587 // arrObj, index are set
1588 if (rhsObject != nullptr) {
1589 /* Check assignability of rhsObject into arrObj */
1590 Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1591 Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1592 //
1593 // Check for compatibility. This check must not GC!!
1594 // Seems way more expensive now that we must dispatch
1595 //
1596 if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1597 VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1598 }
1599 }
1600 ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1601 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1602 }
1603 CASE(_bastore): {
1604 ARRAY_INTRO(-3);
1605 int item = STACK_INT(-1);
1606 // if it is a T_BOOLEAN array, mask the stored value to 0/1
1607 if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1608 item &= 1;
1609 } else {
1610 assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1611 "should be byte array otherwise");
1612 }
1613 ((typeArrayOop)arrObj)->byte_at_put(index, item);
1614 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1615 }
1616 CASE(_castore):
1617 ARRAY_STOREFROM32(T_CHAR, jchar, "%d", STACK_INT, 0);
1618 CASE(_sastore):
1619 ARRAY_STOREFROM32(T_SHORT, jshort, "%d", STACK_INT, 0);
1620 CASE(_lastore):
1621 ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1622 CASE(_dastore):
1623 ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1624
1625 CASE(_arraylength):
1626 {
1627 arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1628 CHECK_NULL(ary);
1629 SET_STACK_INT(ary->length(), -1);
1630 UPDATE_PC_AND_CONTINUE(1);
1631 }
1632
1633 /* monitorenter and monitorexit for locking/unlocking an object */
1634
1635 CASE(_monitorenter): {
1636 oop lockee = STACK_OBJECT(-1);
1637 // derefing's lockee ought to provoke implicit null check
1638 CHECK_NULL(lockee);
1639 // find a free monitor or one already allocated for this object
1640 // if we find a matching object then we need a new monitor
1641 // since this is recursive enter
1642 BasicObjectLock* limit = istate->monitor_base();
1643 BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1644 BasicObjectLock* entry = nullptr;
1645 while (most_recent != limit ) {
1646 if (most_recent->obj() == nullptr) entry = most_recent;
1647 else if (most_recent->obj() == lockee) break;
1648 most_recent++;
1649 }
1650 if (entry != nullptr) {
1651 entry->set_obj(lockee);
1652
1653 // traditional lightweight locking
1654 markWord displaced = lockee->mark().set_unlocked();
1655 entry->lock()->set_displaced_header(displaced);
1656 bool call_vm = (LockingMode == LM_MONITOR);
1657 bool inc_monitor_count = true;
1658 if (call_vm || lockee->cas_set_mark(markWord::from_pointer(entry), displaced) != displaced) {
1659 // Is it simple recursive case?
1660 if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) {
1661 entry->lock()->set_displaced_header(markWord::from_pointer(nullptr));
1662 } else {
1663 inc_monitor_count = false;
1664 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1665 }
1666 }
1667 if (inc_monitor_count) {
1668 THREAD->inc_held_monitor_count();
1669 }
1670 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1671 } else {
1672 istate->set_msg(more_monitors);
1673 UPDATE_PC_AND_RETURN(0); // Re-execute
1674 }
1675 }
1676
1677 CASE(_monitorexit): {
1678 oop lockee = STACK_OBJECT(-1);
1679 CHECK_NULL(lockee);
1680 // derefing's lockee ought to provoke implicit null check
1681 // find our monitor slot
1682 BasicObjectLock* limit = istate->monitor_base();
1683 BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1684 while (most_recent != limit ) {
1685 if ((most_recent)->obj() == lockee) {
1686 BasicLock* lock = most_recent->lock();
1687 markWord header = lock->displaced_header();
1688 most_recent->set_obj(nullptr);
1689
1690 // If it isn't recursive we either must swap old header or call the runtime
1691 bool dec_monitor_count = true;
1692 bool call_vm = (LockingMode == LM_MONITOR);
1693 if (header.to_pointer() != nullptr || call_vm) {
1694 markWord old_header = markWord::encode(lock);
1695 if (call_vm || lockee->cas_set_mark(header, old_header) != old_header) {
1696 // restore object for the slow case
1697 most_recent->set_obj(lockee);
1698 dec_monitor_count = false;
1699 InterpreterRuntime::monitorexit(most_recent);
1700 }
1701 }
1702 if (dec_monitor_count) {
1703 THREAD->dec_held_monitor_count();
1704 }
1705 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1706 }
1707 most_recent++;
1708 }
1709 // Need to throw illegal monitor state exception
1710 CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1711 ShouldNotReachHere();
1712 }
1713
1714 /* All of the non-quick opcodes. */
1715
1716 /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1717 * constant pool index in the instruction.
1718 */
1719 CASE(_getfield):
1720 CASE(_nofast_getfield):
1721 CASE(_getstatic):
1722 {
1723 u2 index;
1724 ConstantPoolCacheEntry* cache;
1725 index = Bytes::get_native_u2(pc+1);
1726
1727 // QQQ Need to make this as inlined as possible. Probably need to
1728 // split all the bytecode cases out so c++ compiler has a chance
1729 // for constant prop to fold everything possible away.
1730
1731 // Interpreter runtime does not expect "nofast" opcodes,
1732 // prepare the vanilla opcode for it.
1733 Bytecodes::Code code = (Bytecodes::Code)opcode;
1734 if (code == Bytecodes::_nofast_getfield) {
1735 code = Bytecodes::_getfield;
1736 }
1737
1738 cache = cp->entry_at(index);
1739 if (!cache->is_resolved(code)) {
1740 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, code),
1741 handle_exception);
1742 cache = cp->entry_at(index);
1743 }
1744
1745 oop obj;
1746 if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1747 Klass* k = cache->f1_as_klass();
1748 obj = k->java_mirror();
1749 MORE_STACK(1); // Assume single slot push
1750 } else {
1751 obj = STACK_OBJECT(-1);
1752 CHECK_NULL(obj);
1753 // Check if we can rewrite non-volatile _getfield to one of the _fast_Xgetfield.
1754 if (REWRITE_BYTECODES && !cache->is_volatile() &&
1755 ((Bytecodes::Code)opcode != Bytecodes::_nofast_getfield)) {
1756 // Rewrite current BC to _fast_Xgetfield.
1757 REWRITE_AT_PC(fast_get_type(cache->flag_state()));
1758 }
1759 }
1760
1761 MAYBE_POST_FIELD_ACCESS(obj);
1762
1763 //
1764 // Now store the result on the stack
1765 //
1766 TosState tos_type = cache->flag_state();
1767 int field_offset = cache->f2_as_index();
1768 if (cache->is_volatile()) {
1769 if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1770 OrderAccess::fence();
1771 }
1772 switch (tos_type) {
1773 case btos:
1774 case ztos:
1775 SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1776 break;
1777 case ctos:
1778 SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1779 break;
1780 case stos:
1781 SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1782 break;
1783 case itos:
1784 SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1785 break;
1786 case ftos:
1787 SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1788 break;
1789 case ltos:
1790 SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1791 MORE_STACK(1);
1792 break;
1793 case dtos:
1794 SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1795 MORE_STACK(1);
1796 break;
1797 case atos: {
1798 oop val = obj->obj_field_acquire(field_offset);
1799 VERIFY_OOP(val);
1800 SET_STACK_OBJECT(val, -1);
1801 break;
1802 }
1803 default:
1804 ShouldNotReachHere();
1805 }
1806 } else {
1807 switch (tos_type) {
1808 case btos:
1809 case ztos:
1810 SET_STACK_INT(obj->byte_field(field_offset), -1);
1811 break;
1812 case ctos:
1813 SET_STACK_INT(obj->char_field(field_offset), -1);
1814 break;
1815 case stos:
1816 SET_STACK_INT(obj->short_field(field_offset), -1);
1817 break;
1818 case itos:
1819 SET_STACK_INT(obj->int_field(field_offset), -1);
1820 break;
1821 case ftos:
1822 SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1823 break;
1824 case ltos:
1825 SET_STACK_LONG(obj->long_field(field_offset), 0);
1826 MORE_STACK(1);
1827 break;
1828 case dtos:
1829 SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1830 MORE_STACK(1);
1831 break;
1832 case atos: {
1833 oop val = obj->obj_field(field_offset);
1834 VERIFY_OOP(val);
1835 SET_STACK_OBJECT(val, -1);
1836 break;
1837 }
1838 default:
1839 ShouldNotReachHere();
1840 }
1841 }
1842
1843 UPDATE_PC_AND_CONTINUE(3);
1844 }
1845
1846 CASE(_putfield):
1847 CASE(_nofast_putfield):
1848 CASE(_putstatic):
1849 {
1850 u2 index = Bytes::get_native_u2(pc+1);
1851 ConstantPoolCacheEntry* cache = cp->entry_at(index);
1852
1853 // Interpreter runtime does not expect "nofast" opcodes,
1854 // prepare the vanilla opcode for it.
1855 Bytecodes::Code code = (Bytecodes::Code)opcode;
1856 if (code == Bytecodes::_nofast_putfield) {
1857 code = Bytecodes::_putfield;
1858 }
1859
1860 if (!cache->is_resolved(code)) {
1861 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, code),
1862 handle_exception);
1863 cache = cp->entry_at(index);
1864 }
1865
1866 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1867 // out so c++ compiler has a chance for constant prop to fold everything possible away.
1868
1869 oop obj;
1870 int count;
1871 TosState tos_type = cache->flag_state();
1872
1873 count = -1;
1874 if (tos_type == ltos || tos_type == dtos) {
1875 --count;
1876 }
1877 if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1878 Klass* k = cache->f1_as_klass();
1879 obj = k->java_mirror();
1880 } else {
1881 --count;
1882 obj = STACK_OBJECT(count);
1883 CHECK_NULL(obj);
1884
1885 // Check if we can rewrite non-volatile _putfield to one of the _fast_Xputfield.
1886 if (REWRITE_BYTECODES && !cache->is_volatile() &&
1887 ((Bytecodes::Code)opcode != Bytecodes::_nofast_putfield)) {
1888 // Rewrite current BC to _fast_Xputfield.
1889 REWRITE_AT_PC(fast_put_type(cache->flag_state()));
1890 }
1891 }
1892
1893 MAYBE_POST_FIELD_MODIFICATION(obj);
1894
1895 //
1896 // Now store the result
1897 //
1898 int field_offset = cache->f2_as_index();
1899 if (cache->is_volatile()) {
1900 switch (tos_type) {
1901 case ztos:
1902 obj->release_byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB
1903 break;
1904 case btos:
1905 obj->release_byte_field_put(field_offset, STACK_INT(-1));
1906 break;
1907 case ctos:
1908 obj->release_char_field_put(field_offset, STACK_INT(-1));
1909 break;
1910 case stos:
1911 obj->release_short_field_put(field_offset, STACK_INT(-1));
1912 break;
1913 case itos:
1914 obj->release_int_field_put(field_offset, STACK_INT(-1));
1915 break;
1916 case ftos:
1917 obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1918 break;
1919 case ltos:
1920 obj->release_long_field_put(field_offset, STACK_LONG(-1));
1921 break;
1922 case dtos:
1923 obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1924 break;
1925 case atos: {
1926 oop val = STACK_OBJECT(-1);
1927 VERIFY_OOP(val);
1928 obj->release_obj_field_put(field_offset, val);
1929 break;
1930 }
1931 default:
1932 ShouldNotReachHere();
1933 }
1934 OrderAccess::storeload();
1935 } else {
1936 switch (tos_type) {
1937 case ztos:
1938 obj->byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB
1939 break;
1940 case btos:
1941 obj->byte_field_put(field_offset, STACK_INT(-1));
1942 break;
1943 case ctos:
1944 obj->char_field_put(field_offset, STACK_INT(-1));
1945 break;
1946 case stos:
1947 obj->short_field_put(field_offset, STACK_INT(-1));
1948 break;
1949 case itos:
1950 obj->int_field_put(field_offset, STACK_INT(-1));
1951 break;
1952 case ftos:
1953 obj->float_field_put(field_offset, STACK_FLOAT(-1));
1954 break;
1955 case ltos:
1956 obj->long_field_put(field_offset, STACK_LONG(-1));
1957 break;
1958 case dtos:
1959 obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1960 break;
1961 case atos: {
1962 oop val = STACK_OBJECT(-1);
1963 VERIFY_OOP(val);
1964 obj->obj_field_put(field_offset, val);
1965 break;
1966 }
1967 default:
1968 ShouldNotReachHere();
1969 }
1970 }
1971
1972 UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1973 }
1974
1975 CASE(_new): {
1976 u2 index = Bytes::get_Java_u2(pc+1);
1977
1978 // Attempt TLAB allocation first.
1979 //
1980 // To do this, we need to make sure:
1981 // - klass is initialized
1982 // - klass can be fastpath allocated (e.g. does not have finalizer)
1983 // - TLAB accepts the allocation
1984 ConstantPool* constants = istate->method()->constants();
1985 if (UseTLAB && !constants->tag_at(index).is_unresolved_klass()) {
1986 Klass* entry = constants->resolved_klass_at(index);
1987 InstanceKlass* ik = InstanceKlass::cast(entry);
1988 if (ik->is_initialized() && ik->can_be_fastpath_allocated()) {
1989 size_t obj_size = ik->size_helper();
1990 HeapWord* result = THREAD->tlab().allocate(obj_size);
1991 if (result != nullptr) {
1992 // Initialize object field block.
1993 if (!ZeroTLAB) {
1994 // The TLAB was not pre-zeroed, we need to clear the memory here.
1995 size_t hdr_size = oopDesc::header_size();
1996 Copy::fill_to_words(result + hdr_size, obj_size - hdr_size, 0);
1997 }
1998
1999 // Initialize header, mirrors MemAllocator.
2000 oopDesc::set_mark(result, markWord::prototype());
2001 oopDesc::set_klass_gap(result, 0);
2002 oopDesc::release_set_klass(result, ik);
2003
2004 oop obj = cast_to_oop(result);
2005
2006 // Must prevent reordering of stores for object initialization
2007 // with stores that publish the new object.
2008 OrderAccess::storestore();
2009 SET_STACK_OBJECT(obj, 0);
2010 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2011 }
2012 }
2013 }
2014 // Slow case allocation
2015 CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2016 handle_exception);
2017 // Must prevent reordering of stores for object initialization
2018 // with stores that publish the new object.
2019 OrderAccess::storestore();
2020 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2021 THREAD->set_vm_result(nullptr);
2022 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2023 }
2024 CASE(_anewarray): {
2025 u2 index = Bytes::get_Java_u2(pc+1);
2026 jint size = STACK_INT(-1);
2027 CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2028 handle_exception);
2029 // Must prevent reordering of stores for object initialization
2030 // with stores that publish the new object.
2031 OrderAccess::storestore();
2032 SET_STACK_OBJECT(THREAD->vm_result(), -1);
2033 THREAD->set_vm_result(nullptr);
2034 UPDATE_PC_AND_CONTINUE(3);
2035 }
2036 CASE(_multianewarray): {
2037 jint dims = *(pc+3);
2038 jint size = STACK_INT(-1);
2039 // stack grows down, dimensions are up!
2040 jint *dimarray =
2041 (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2042 Interpreter::stackElementWords-1];
2043 //adjust pointer to start of stack element
2044 CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2045 handle_exception);
2046 // Must prevent reordering of stores for object initialization
2047 // with stores that publish the new object.
2048 OrderAccess::storestore();
2049 SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2050 THREAD->set_vm_result(nullptr);
2051 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2052 }
2053 CASE(_checkcast):
2054 if (STACK_OBJECT(-1) != nullptr) {
2055 VERIFY_OOP(STACK_OBJECT(-1));
2056 u2 index = Bytes::get_Java_u2(pc+1);
2057 // Constant pool may have actual klass or unresolved klass. If it is
2058 // unresolved we must resolve it.
2059 if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2060 CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2061 }
2062 Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2063 Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2064 //
2065 // Check for compatibility. This check must not GC!!
2066 // Seems way more expensive now that we must dispatch.
2067 //
2068 if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2069 ResourceMark rm(THREAD);
2070 char* message = SharedRuntime::generate_class_cast_message(
2071 objKlass, klassOf);
2072 VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2073 }
2074 }
2075 UPDATE_PC_AND_CONTINUE(3);
2076
2077 CASE(_instanceof):
2078 if (STACK_OBJECT(-1) == nullptr) {
2079 SET_STACK_INT(0, -1);
2080 } else {
2081 VERIFY_OOP(STACK_OBJECT(-1));
2082 u2 index = Bytes::get_Java_u2(pc+1);
2083 // Constant pool may have actual klass or unresolved klass. If it is
2084 // unresolved we must resolve it.
2085 if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2086 CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2087 }
2088 Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2089 Klass* objKlass = STACK_OBJECT(-1)->klass();
2090 //
2091 // Check for compatibility. This check must not GC!!
2092 // Seems way more expensive now that we must dispatch.
2093 //
2094 if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2095 SET_STACK_INT(1, -1);
2096 } else {
2097 SET_STACK_INT(0, -1);
2098 }
2099 }
2100 UPDATE_PC_AND_CONTINUE(3);
2101
2102 CASE(_ldc_w):
2103 CASE(_ldc):
2104 {
2105 u2 index;
2106 bool wide = false;
2107 int incr = 2; // frequent case
2108 if (opcode == Bytecodes::_ldc) {
2109 index = pc[1];
2110 } else {
2111 index = Bytes::get_Java_u2(pc+1);
2112 incr = 3;
2113 wide = true;
2114 }
2115
2116 ConstantPool* constants = METHOD->constants();
2117 switch (constants->tag_at(index).value()) {
2118 case JVM_CONSTANT_Integer:
2119 SET_STACK_INT(constants->int_at(index), 0);
2120 break;
2121
2122 case JVM_CONSTANT_Float:
2123 SET_STACK_FLOAT(constants->float_at(index), 0);
2124 break;
2125
2126 case JVM_CONSTANT_String:
2127 {
2128 oop result = constants->resolved_reference_at(index);
2129 if (result == nullptr) {
2130 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2131 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2132 THREAD->set_vm_result(nullptr);
2133 } else {
2134 VERIFY_OOP(result);
2135 SET_STACK_OBJECT(result, 0);
2136 }
2137 break;
2138 }
2139
2140 case JVM_CONSTANT_Class:
2141 VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2142 SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2143 break;
2144
2145 case JVM_CONSTANT_UnresolvedClass:
2146 case JVM_CONSTANT_UnresolvedClassInError:
2147 CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2148 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2149 THREAD->set_vm_result(nullptr);
2150 break;
2151
2152 case JVM_CONSTANT_Dynamic:
2153 case JVM_CONSTANT_DynamicInError:
2154 {
2155 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2156 oop result = THREAD->vm_result();
2157 VERIFY_OOP(result);
2158
2159 jvalue value;
2160 BasicType type = java_lang_boxing_object::get_value(result, &value);
2161 switch (type) {
2162 case T_FLOAT: SET_STACK_FLOAT(value.f, 0); break;
2163 case T_INT: SET_STACK_INT(value.i, 0); break;
2164 case T_SHORT: SET_STACK_INT(value.s, 0); break;
2165 case T_BYTE: SET_STACK_INT(value.b, 0); break;
2166 case T_CHAR: SET_STACK_INT(value.c, 0); break;
2167 case T_BOOLEAN: SET_STACK_INT(value.z, 0); break;
2168 default: ShouldNotReachHere();
2169 }
2170
2171 break;
2172 }
2173
2174 default: ShouldNotReachHere();
2175 }
2176 UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2177 }
2178
2179 CASE(_ldc2_w):
2180 {
2181 u2 index = Bytes::get_Java_u2(pc+1);
2182
2183 ConstantPool* constants = METHOD->constants();
2184 switch (constants->tag_at(index).value()) {
2185
2186 case JVM_CONSTANT_Long:
2187 SET_STACK_LONG(constants->long_at(index), 1);
2188 break;
2189
2190 case JVM_CONSTANT_Double:
2191 SET_STACK_DOUBLE(constants->double_at(index), 1);
2192 break;
2193
2194 case JVM_CONSTANT_Dynamic:
2195 case JVM_CONSTANT_DynamicInError:
2196 {
2197 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2198 oop result = THREAD->vm_result();
2199 VERIFY_OOP(result);
2200
2201 jvalue value;
2202 BasicType type = java_lang_boxing_object::get_value(result, &value);
2203 switch (type) {
2204 case T_DOUBLE: SET_STACK_DOUBLE(value.d, 1); break;
2205 case T_LONG: SET_STACK_LONG(value.j, 1); break;
2206 default: ShouldNotReachHere();
2207 }
2208
2209 break;
2210 }
2211
2212 default: ShouldNotReachHere();
2213 }
2214 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2215 }
2216
2217 CASE(_fast_aldc_w):
2218 CASE(_fast_aldc): {
2219 u2 index;
2220 int incr;
2221 if (opcode == Bytecodes::_fast_aldc) {
2222 index = pc[1];
2223 incr = 2;
2224 } else {
2225 index = Bytes::get_native_u2(pc+1);
2226 incr = 3;
2227 }
2228
2229 // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2230 // This kind of CP cache entry does not need to match the flags byte, because
2231 // there is a 1-1 relation between bytecode type and CP entry type.
2232 ConstantPool* constants = METHOD->constants();
2233 oop result = constants->resolved_reference_at(index);
2234 if (result == nullptr) {
2235 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2236 handle_exception);
2237 result = THREAD->vm_result();
2238 }
2239 if (result == Universe::the_null_sentinel())
2240 result = nullptr;
2241
2242 VERIFY_OOP(result);
2243 SET_STACK_OBJECT(result, 0);
2244 UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2245 }
2246
2247 CASE(_invokedynamic): {
2248 u4 index = cp->constant_pool()->decode_invokedynamic_index(Bytes::get_native_u4(pc+1)); // index is originally negative
2249 ResolvedIndyEntry* indy_info = cp->resolved_indy_entry_at(index);
2250 if (!indy_info->is_resolved()) {
2251 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2252 handle_exception);
2253 indy_info = cp->resolved_indy_entry_at(index); // get resolved entry
2254 }
2255 Method* method = indy_info->method();
2256 if (VerifyOops) method->verify();
2257
2258 if (indy_info->has_appendix()) {
2259 constantPoolHandle cp(THREAD, METHOD->constants());
2260 SET_STACK_OBJECT(cp->resolved_reference_from_indy(index), 0);
2261 MORE_STACK(1);
2262 }
2263
2264 istate->set_msg(call_method);
2265 istate->set_callee(method);
2266 istate->set_callee_entry_point(method->from_interpreted_entry());
2267 istate->set_bcp_advance(5);
2268
2269 UPDATE_PC_AND_RETURN(0); // I'll be back...
2270 }
2271
2272 CASE(_invokehandle): {
2273
2274 u2 index = Bytes::get_native_u2(pc+1);
2275 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2276
2277 if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2278 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2279 handle_exception);
2280 cache = cp->entry_at(index);
2281 }
2282
2283 Method* method = cache->f1_as_method();
2284 if (VerifyOops) method->verify();
2285
2286 if (cache->has_appendix()) {
2287 constantPoolHandle cp(THREAD, METHOD->constants());
2288 SET_STACK_OBJECT(cache->appendix_if_resolved(cp), 0);
2289 MORE_STACK(1);
2290 }
2291
2292 istate->set_msg(call_method);
2293 istate->set_callee(method);
2294 istate->set_callee_entry_point(method->from_interpreted_entry());
2295 istate->set_bcp_advance(3);
2296
2297 UPDATE_PC_AND_RETURN(0); // I'll be back...
2298 }
2299
2300 CASE(_invokeinterface): {
2301 u2 index = Bytes::get_native_u2(pc+1);
2302
2303 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2304 // out so c++ compiler has a chance for constant prop to fold everything possible away.
2305
2306 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2307 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2308 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2309 handle_exception);
2310 cache = cp->entry_at(index);
2311 }
2312
2313 istate->set_msg(call_method);
2314
2315 // Special case of invokeinterface called for virtual method of
2316 // java.lang.Object. See cpCache.cpp for details.
2317 Method* callee = nullptr;
2318 if (cache->is_forced_virtual()) {
2319 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2320 if (cache->is_vfinal()) {
2321 callee = cache->f2_as_vfinal_method();
2322 } else {
2323 // Get receiver.
2324 int parms = cache->parameter_size();
2325 // Same comments as invokevirtual apply here.
2326 oop rcvr = STACK_OBJECT(-parms);
2327 VERIFY_OOP(rcvr);
2328 Klass* rcvrKlass = rcvr->klass();
2329 callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2330 }
2331 } else if (cache->is_vfinal()) {
2332 // private interface method invocations
2333 //
2334 // Ensure receiver class actually implements
2335 // the resolved interface class. The link resolver
2336 // does this, but only for the first time this
2337 // interface is being called.
2338 int parms = cache->parameter_size();
2339 oop rcvr = STACK_OBJECT(-parms);
2340 CHECK_NULL(rcvr);
2341 Klass* recv_klass = rcvr->klass();
2342 Klass* resolved_klass = cache->f1_as_klass();
2343 if (!recv_klass->is_subtype_of(resolved_klass)) {
2344 ResourceMark rm(THREAD);
2345 char buf[200];
2346 jio_snprintf(buf, sizeof(buf), "Class %s does not implement the requested interface %s",
2347 recv_klass->external_name(),
2348 resolved_klass->external_name());
2349 VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
2350 }
2351 callee = cache->f2_as_vfinal_method();
2352 }
2353 if (callee != nullptr) {
2354 istate->set_callee(callee);
2355 istate->set_callee_entry_point(callee->from_interpreted_entry());
2356 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2357 istate->set_callee_entry_point(callee->interpreter_entry());
2358 }
2359 istate->set_bcp_advance(5);
2360 UPDATE_PC_AND_RETURN(0); // I'll be back...
2361 }
2362
2363 // this could definitely be cleaned up QQQ
2364 Method *interface_method = cache->f2_as_interface_method();
2365 InstanceKlass* iclass = interface_method->method_holder();
2366
2367 // get receiver
2368 int parms = cache->parameter_size();
2369 oop rcvr = STACK_OBJECT(-parms);
2370 CHECK_NULL(rcvr);
2371 InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2372
2373 // Receiver subtype check against resolved interface klass (REFC).
2374 {
2375 Klass* refc = cache->f1_as_klass();
2376 itableOffsetEntry* scan;
2377 for (scan = (itableOffsetEntry*) int2->start_of_itable();
2378 scan->interface_klass() != nullptr;
2379 scan++) {
2380 if (scan->interface_klass() == refc) {
2381 break;
2382 }
2383 }
2384 // Check that the entry is non-null. A null entry means
2385 // that the receiver class doesn't implement the
2386 // interface, and wasn't the same as when the caller was
2387 // compiled.
2388 if (scan->interface_klass() == nullptr) {
2389 VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2390 }
2391 }
2392
2393 itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2394 int i;
2395 for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2396 if (ki->interface_klass() == iclass) break;
2397 }
2398 // If the interface isn't found, this class doesn't implement this
2399 // interface. The link resolver checks this but only for the first
2400 // time this interface is called.
2401 if (i == int2->itable_length()) {
2402 CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(THREAD, rcvr->klass(), iclass),
2403 handle_exception);
2404 }
2405 int mindex = interface_method->itable_index();
2406
2407 itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2408 callee = im[mindex].method();
2409 if (callee == nullptr) {
2410 CALL_VM(InterpreterRuntime::throw_AbstractMethodErrorVerbose(THREAD, rcvr->klass(), interface_method),
2411 handle_exception);
2412 }
2413
2414 istate->set_callee(callee);
2415 istate->set_callee_entry_point(callee->from_interpreted_entry());
2416 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2417 istate->set_callee_entry_point(callee->interpreter_entry());
2418 }
2419 istate->set_bcp_advance(5);
2420 UPDATE_PC_AND_RETURN(0); // I'll be back...
2421 }
2422
2423 CASE(_invokevirtual):
2424 CASE(_invokespecial):
2425 CASE(_invokestatic): {
2426 u2 index = Bytes::get_native_u2(pc+1);
2427
2428 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2429 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2430 // out so c++ compiler has a chance for constant prop to fold everything possible away.
2431
2432 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2433 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2434 handle_exception);
2435 cache = cp->entry_at(index);
2436 }
2437
2438 istate->set_msg(call_method);
2439 {
2440 Method* callee;
2441 if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2442 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2443 if (cache->is_vfinal()) {
2444 callee = cache->f2_as_vfinal_method();
2445 if (REWRITE_BYTECODES && !UseSharedSpaces && !Arguments::is_dumping_archive()) {
2446 // Rewrite to _fast_invokevfinal.
2447 REWRITE_AT_PC(Bytecodes::_fast_invokevfinal);
2448 }
2449 } else {
2450 // get receiver
2451 int parms = cache->parameter_size();
2452 // this works but needs a resourcemark and seems to create a vtable on every call:
2453 // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2454 //
2455 // this fails with an assert
2456 // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2457 // but this works
2458 oop rcvr = STACK_OBJECT(-parms);
2459 VERIFY_OOP(rcvr);
2460 Klass* rcvrKlass = rcvr->klass();
2461 /*
2462 Executing this code in java.lang.String:
2463 public String(char value[]) {
2464 this.count = value.length;
2465 this.value = (char[])value.clone();
2466 }
2467
2468 a find on rcvr->klass() reports:
2469 {type array char}{type array class}
2470 - klass: {other class}
2471
2472 but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2473 because rcvr->klass()->is_instance_klass() == 0
2474 However it seems to have a vtable in the right location. Huh?
2475 Because vtables have the same offset for ArrayKlass and InstanceKlass.
2476 */
2477 callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2478 }
2479 } else {
2480 if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2481 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2482 }
2483 callee = cache->f1_as_method();
2484 }
2485
2486 istate->set_callee(callee);
2487 istate->set_callee_entry_point(callee->from_interpreted_entry());
2488 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2489 istate->set_callee_entry_point(callee->interpreter_entry());
2490 }
2491 istate->set_bcp_advance(3);
2492 UPDATE_PC_AND_RETURN(0); // I'll be back...
2493 }
2494 }
2495
2496 /* Allocate memory for a new java object. */
2497
2498 CASE(_newarray): {
2499 BasicType atype = (BasicType) *(pc+1);
2500 jint size = STACK_INT(-1);
2501 CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2502 handle_exception);
2503 // Must prevent reordering of stores for object initialization
2504 // with stores that publish the new object.
2505 OrderAccess::storestore();
2506 SET_STACK_OBJECT(THREAD->vm_result(), -1);
2507 THREAD->set_vm_result(nullptr);
2508
2509 UPDATE_PC_AND_CONTINUE(2);
2510 }
2511
2512 /* Throw an exception. */
2513
2514 CASE(_athrow): {
2515 oop except_oop = STACK_OBJECT(-1);
2516 CHECK_NULL(except_oop);
2517 // set pending_exception so we use common code
2518 THREAD->set_pending_exception(except_oop, nullptr, 0);
2519 goto handle_exception;
2520 }
2521
2522 /* goto and jsr. They are exactly the same except jsr pushes
2523 * the address of the next instruction first.
2524 */
2525
2526 CASE(_jsr): {
2527 /* push bytecode index on stack */
2528 SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2529 MORE_STACK(1);
2530 /* FALL THROUGH */
2531 }
2532
2533 CASE(_goto):
2534 {
2535 int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2536 address branch_pc = pc;
2537 UPDATE_PC(offset);
2538 DO_BACKEDGE_CHECKS(offset, branch_pc);
2539 CONTINUE;
2540 }
2541
2542 CASE(_jsr_w): {
2543 /* push return address on the stack */
2544 SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2545 MORE_STACK(1);
2546 /* FALL THROUGH */
2547 }
2548
2549 CASE(_goto_w):
2550 {
2551 int32_t offset = Bytes::get_Java_u4(pc + 1);
2552 address branch_pc = pc;
2553 UPDATE_PC(offset);
2554 DO_BACKEDGE_CHECKS(offset, branch_pc);
2555 CONTINUE;
2556 }
2557
2558 /* return from a jsr or jsr_w */
2559
2560 CASE(_ret): {
2561 pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2562 UPDATE_PC_AND_CONTINUE(0);
2563 }
2564
2565 /* debugger breakpoint */
2566
2567 CASE(_breakpoint): {
2568 Bytecodes::Code original_bytecode;
2569 DECACHE_STATE();
2570 SET_LAST_JAVA_FRAME();
2571 original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2572 METHOD, pc);
2573 RESET_LAST_JAVA_FRAME();
2574 CACHE_STATE();
2575 if (THREAD->has_pending_exception()) goto handle_exception;
2576 CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2577 handle_exception);
2578
2579 opcode = (jubyte)original_bytecode;
2580 goto opcode_switch;
2581 }
2582
2583 CASE(_fast_agetfield): {
2584 u2 index = Bytes::get_native_u2(pc+1);
2585 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2586 int field_offset = cache->f2_as_index();
2587
2588 oop obj = STACK_OBJECT(-1);
2589 CHECK_NULL(obj);
2590
2591 MAYBE_POST_FIELD_ACCESS(obj);
2592
2593 VERIFY_OOP(obj->obj_field(field_offset));
2594 SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2595 UPDATE_PC_AND_CONTINUE(3);
2596 }
2597
2598 CASE(_fast_bgetfield): {
2599 u2 index = Bytes::get_native_u2(pc+1);
2600 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2601 int field_offset = cache->f2_as_index();
2602
2603 oop obj = STACK_OBJECT(-1);
2604 CHECK_NULL(obj);
2605
2606 MAYBE_POST_FIELD_ACCESS(obj);
2607
2608 SET_STACK_INT(obj->byte_field(field_offset), -1);
2609 UPDATE_PC_AND_CONTINUE(3);
2610 }
2611
2612 CASE(_fast_cgetfield): {
2613 u2 index = Bytes::get_native_u2(pc+1);
2614 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2615 int field_offset = cache->f2_as_index();
2616
2617 oop obj = STACK_OBJECT(-1);
2618 CHECK_NULL(obj);
2619
2620 MAYBE_POST_FIELD_ACCESS(obj);
2621
2622 SET_STACK_INT(obj->char_field(field_offset), -1);
2623 UPDATE_PC_AND_CONTINUE(3);
2624 }
2625
2626 CASE(_fast_dgetfield): {
2627 u2 index = Bytes::get_native_u2(pc+1);
2628 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2629 int field_offset = cache->f2_as_index();
2630
2631 oop obj = STACK_OBJECT(-1);
2632 CHECK_NULL(obj);
2633
2634 MAYBE_POST_FIELD_ACCESS(obj);
2635
2636 SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2637 MORE_STACK(1);
2638 UPDATE_PC_AND_CONTINUE(3);
2639 }
2640
2641 CASE(_fast_fgetfield): {
2642 u2 index = Bytes::get_native_u2(pc+1);
2643 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2644 int field_offset = cache->f2_as_index();
2645
2646 oop obj = STACK_OBJECT(-1);
2647 CHECK_NULL(obj);
2648
2649 MAYBE_POST_FIELD_ACCESS(obj);
2650
2651 SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2652 UPDATE_PC_AND_CONTINUE(3);
2653 }
2654
2655 CASE(_fast_igetfield): {
2656 u2 index = Bytes::get_native_u2(pc+1);
2657 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2658 int field_offset = cache->f2_as_index();
2659
2660 oop obj = STACK_OBJECT(-1);
2661 CHECK_NULL(obj);
2662
2663 MAYBE_POST_FIELD_ACCESS(obj);
2664
2665 SET_STACK_INT(obj->int_field(field_offset), -1);
2666 UPDATE_PC_AND_CONTINUE(3);
2667 }
2668
2669 CASE(_fast_lgetfield): {
2670 u2 index = Bytes::get_native_u2(pc+1);
2671 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2672 int field_offset = cache->f2_as_index();
2673
2674 oop obj = STACK_OBJECT(-1);
2675 CHECK_NULL(obj);
2676
2677 MAYBE_POST_FIELD_ACCESS(obj);
2678
2679 SET_STACK_LONG(obj->long_field(field_offset), 0);
2680 MORE_STACK(1);
2681 UPDATE_PC_AND_CONTINUE(3);
2682 }
2683
2684 CASE(_fast_sgetfield): {
2685 u2 index = Bytes::get_native_u2(pc+1);
2686 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2687 int field_offset = cache->f2_as_index();
2688
2689 oop obj = STACK_OBJECT(-1);
2690 CHECK_NULL(obj);
2691
2692 MAYBE_POST_FIELD_ACCESS(obj);
2693
2694 SET_STACK_INT(obj->short_field(field_offset), -1);
2695 UPDATE_PC_AND_CONTINUE(3);
2696 }
2697
2698 CASE(_fast_aputfield): {
2699 u2 index = Bytes::get_native_u2(pc+1);
2700 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2701
2702 oop obj = STACK_OBJECT(-2);
2703 CHECK_NULL(obj);
2704
2705 MAYBE_POST_FIELD_MODIFICATION(obj);
2706
2707 int field_offset = cache->f2_as_index();
2708 obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2709
2710 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2711 }
2712
2713 CASE(_fast_bputfield): {
2714 u2 index = Bytes::get_native_u2(pc+1);
2715 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2716
2717 oop obj = STACK_OBJECT(-2);
2718 CHECK_NULL(obj);
2719
2720 MAYBE_POST_FIELD_MODIFICATION(obj);
2721
2722 int field_offset = cache->f2_as_index();
2723 obj->byte_field_put(field_offset, STACK_INT(-1));
2724
2725 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2726 }
2727
2728 CASE(_fast_zputfield): {
2729 u2 index = Bytes::get_native_u2(pc+1);
2730 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2731
2732 oop obj = STACK_OBJECT(-2);
2733 CHECK_NULL(obj);
2734
2735 MAYBE_POST_FIELD_MODIFICATION(obj);
2736
2737 int field_offset = cache->f2_as_index();
2738 obj->byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB
2739
2740 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2741 }
2742
2743 CASE(_fast_cputfield): {
2744 u2 index = Bytes::get_native_u2(pc+1);
2745 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2746
2747 oop obj = STACK_OBJECT(-2);
2748 CHECK_NULL(obj);
2749
2750 MAYBE_POST_FIELD_MODIFICATION(obj);
2751
2752 int field_offset = cache->f2_as_index();
2753 obj->char_field_put(field_offset, STACK_INT(-1));
2754
2755 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2756 }
2757
2758 CASE(_fast_dputfield): {
2759 u2 index = Bytes::get_native_u2(pc+1);
2760 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2761
2762 oop obj = STACK_OBJECT(-3);
2763 CHECK_NULL(obj);
2764
2765 MAYBE_POST_FIELD_MODIFICATION(obj);
2766
2767 int field_offset = cache->f2_as_index();
2768 obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2769
2770 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3);
2771 }
2772
2773 CASE(_fast_fputfield): {
2774 u2 index = Bytes::get_native_u2(pc+1);
2775 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2776
2777 oop obj = STACK_OBJECT(-2);
2778 CHECK_NULL(obj);
2779
2780 MAYBE_POST_FIELD_MODIFICATION(obj);
2781
2782 int field_offset = cache->f2_as_index();
2783 obj->float_field_put(field_offset, STACK_FLOAT(-1));
2784
2785 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2786 }
2787
2788 CASE(_fast_iputfield): {
2789 u2 index = Bytes::get_native_u2(pc+1);
2790 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2791
2792 oop obj = STACK_OBJECT(-2);
2793 CHECK_NULL(obj);
2794
2795 MAYBE_POST_FIELD_MODIFICATION(obj);
2796
2797 int field_offset = cache->f2_as_index();
2798 obj->int_field_put(field_offset, STACK_INT(-1));
2799
2800 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2801 }
2802
2803 CASE(_fast_lputfield): {
2804 u2 index = Bytes::get_native_u2(pc+1);
2805 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2806
2807 oop obj = STACK_OBJECT(-3);
2808 CHECK_NULL(obj);
2809
2810 MAYBE_POST_FIELD_MODIFICATION(obj);
2811
2812 int field_offset = cache->f2_as_index();
2813 obj->long_field_put(field_offset, STACK_LONG(-1));
2814
2815 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3);
2816 }
2817
2818 CASE(_fast_sputfield): {
2819 u2 index = Bytes::get_native_u2(pc+1);
2820 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2821
2822 oop obj = STACK_OBJECT(-2);
2823 CHECK_NULL(obj);
2824
2825 MAYBE_POST_FIELD_MODIFICATION(obj);
2826
2827 int field_offset = cache->f2_as_index();
2828 obj->short_field_put(field_offset, STACK_INT(-1));
2829
2830 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2831 }
2832
2833 CASE(_fast_aload_0): {
2834 oop obj = LOCALS_OBJECT(0);
2835 VERIFY_OOP(obj);
2836 SET_STACK_OBJECT(obj, 0);
2837 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
2838 }
2839
2840 CASE(_fast_aaccess_0): {
2841 u2 index = Bytes::get_native_u2(pc+2);
2842 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2843 int field_offset = cache->f2_as_index();
2844
2845 oop obj = LOCALS_OBJECT(0);
2846 CHECK_NULL(obj);
2847 VERIFY_OOP(obj);
2848
2849 MAYBE_POST_FIELD_ACCESS(obj);
2850
2851 VERIFY_OOP(obj->obj_field(field_offset));
2852 SET_STACK_OBJECT(obj->obj_field(field_offset), 0);
2853 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2854 }
2855
2856 CASE(_fast_iaccess_0): {
2857 u2 index = Bytes::get_native_u2(pc+2);
2858 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2859 int field_offset = cache->f2_as_index();
2860
2861 oop obj = LOCALS_OBJECT(0);
2862 CHECK_NULL(obj);
2863 VERIFY_OOP(obj);
2864
2865 MAYBE_POST_FIELD_ACCESS(obj);
2866
2867 SET_STACK_INT(obj->int_field(field_offset), 0);
2868 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2869 }
2870
2871 CASE(_fast_faccess_0): {
2872 u2 index = Bytes::get_native_u2(pc+2);
2873 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2874 int field_offset = cache->f2_as_index();
2875
2876 oop obj = LOCALS_OBJECT(0);
2877 CHECK_NULL(obj);
2878 VERIFY_OOP(obj);
2879
2880 MAYBE_POST_FIELD_ACCESS(obj);
2881
2882 SET_STACK_FLOAT(obj->float_field(field_offset), 0);
2883 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2884 }
2885
2886 CASE(_fast_invokevfinal): {
2887 u2 index = Bytes::get_native_u2(pc+1);
2888 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2889
2890 assert(cache->is_resolved(Bytecodes::_invokevirtual), "Should be resolved before rewriting");
2891
2892 istate->set_msg(call_method);
2893
2894 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2895 Method* callee = cache->f2_as_vfinal_method();
2896 istate->set_callee(callee);
2897 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2898 istate->set_callee_entry_point(callee->interpreter_entry());
2899 } else {
2900 istate->set_callee_entry_point(callee->from_interpreted_entry());
2901 }
2902 istate->set_bcp_advance(3);
2903 UPDATE_PC_AND_RETURN(0);
2904 }
2905
2906 DEFAULT:
2907 fatal("Unimplemented opcode %d = %s", opcode,
2908 Bytecodes::name((Bytecodes::Code)opcode));
2909 goto finish;
2910
2911 } /* switch(opc) */
2912
2913
2914 #ifdef USELABELS
2915 check_for_exception:
2916 #endif
2917 {
2918 if (!THREAD->has_pending_exception()) {
2919 CONTINUE;
2920 }
2921 /* We will be gcsafe soon, so flush our state. */
2922 DECACHE_PC();
2923 goto handle_exception;
2924 }
2925 do_continue: ;
2926
2927 } /* while (1) interpreter loop */
2928
2929
2930 // An exception exists in the thread state see whether this activation can handle it
2931 handle_exception: {
2932
2933 HandleMarkCleaner __hmc(THREAD);
2934 Handle except_oop(THREAD, THREAD->pending_exception());
2935 // Prevent any subsequent HandleMarkCleaner in the VM
2936 // from freeing the except_oop handle.
2937 HandleMark __hm(THREAD);
2938
2939 THREAD->clear_pending_exception();
2940 assert(except_oop() != nullptr, "No exception to process");
2941 intptr_t continuation_bci;
2942 // expression stack is emptied
2943 topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2944 CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2945 handle_exception);
2946
2947 except_oop = Handle(THREAD, THREAD->vm_result());
2948 THREAD->set_vm_result(nullptr);
2949 if (continuation_bci >= 0) {
2950 // Place exception on top of stack
2951 SET_STACK_OBJECT(except_oop(), 0);
2952 MORE_STACK(1);
2953 pc = METHOD->code_base() + continuation_bci;
2954 if (log_is_enabled(Info, exceptions)) {
2955 ResourceMark rm(THREAD);
2956 stringStream tempst;
2957 tempst.print("interpreter method <%s>\n"
2958 " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2959 METHOD->print_value_string(),
2960 (int)(istate->bcp() - METHOD->code_base()),
2961 (int)continuation_bci, p2i(THREAD));
2962 Exceptions::log_exception(except_oop, tempst.as_string());
2963 }
2964 // for AbortVMOnException flag
2965 Exceptions::debug_check_abort(except_oop);
2966 goto run;
2967 }
2968 if (log_is_enabled(Info, exceptions)) {
2969 ResourceMark rm;
2970 stringStream tempst;
2971 tempst.print("interpreter method <%s>\n"
2972 " at bci %d, unwinding for thread " INTPTR_FORMAT,
2973 METHOD->print_value_string(),
2974 (int)(istate->bcp() - METHOD->code_base()),
2975 p2i(THREAD));
2976 Exceptions::log_exception(except_oop, tempst.as_string());
2977 }
2978 // for AbortVMOnException flag
2979 Exceptions::debug_check_abort(except_oop);
2980
2981 // No handler in this activation, unwind and try again
2982 THREAD->set_pending_exception(except_oop(), nullptr, 0);
2983 goto handle_return;
2984 } // handle_exception:
2985
2986 // Return from an interpreter invocation with the result of the interpretation
2987 // on the top of the Java Stack (or a pending exception)
2988
2989 handle_Pop_Frame: {
2990
2991 // We don't really do anything special here except we must be aware
2992 // that we can get here without ever locking the method (if sync).
2993 // Also we skip the notification of the exit.
2994
2995 istate->set_msg(popping_frame);
2996 // Clear pending so while the pop is in process
2997 // we don't start another one if a call_vm is done.
2998 THREAD->clear_popframe_condition();
2999 // Let interpreter (only) see the we're in the process of popping a frame
3000 THREAD->set_pop_frame_in_process();
3001
3002 goto handle_return;
3003
3004 } // handle_Pop_Frame
3005
3006 // ForceEarlyReturn ends a method, and returns to the caller with a return value
3007 // given by the invoker of the early return.
3008 handle_Early_Return: {
3009
3010 istate->set_msg(early_return);
3011
3012 // Clear expression stack.
3013 topOfStack = istate->stack_base() - Interpreter::stackElementWords;
3014
3015 JvmtiThreadState *ts = THREAD->jvmti_thread_state();
3016
3017 // Push the value to be returned.
3018 switch (istate->method()->result_type()) {
3019 case T_BOOLEAN:
3020 case T_SHORT:
3021 case T_BYTE:
3022 case T_CHAR:
3023 case T_INT:
3024 SET_STACK_INT(ts->earlyret_value().i, 0);
3025 MORE_STACK(1);
3026 break;
3027 case T_LONG:
3028 SET_STACK_LONG(ts->earlyret_value().j, 1);
3029 MORE_STACK(2);
3030 break;
3031 case T_FLOAT:
3032 SET_STACK_FLOAT(ts->earlyret_value().f, 0);
3033 MORE_STACK(1);
3034 break;
3035 case T_DOUBLE:
3036 SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
3037 MORE_STACK(2);
3038 break;
3039 case T_ARRAY:
3040 case T_OBJECT:
3041 SET_STACK_OBJECT(ts->earlyret_oop(), 0);
3042 MORE_STACK(1);
3043 break;
3044 default:
3045 ShouldNotReachHere();
3046 }
3047
3048 ts->clr_earlyret_value();
3049 ts->set_earlyret_oop(nullptr);
3050 ts->clr_earlyret_pending();
3051
3052 // Fall through to handle_return.
3053
3054 } // handle_Early_Return
3055
3056 handle_return: {
3057 // A storestore barrier is required to order initialization of
3058 // final fields with publishing the reference to the object that
3059 // holds the field. Without the barrier the value of final fields
3060 // can be observed to change.
3061 OrderAccess::storestore();
3062
3063 DECACHE_STATE();
3064
3065 bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
3066 bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
3067 Handle original_exception(THREAD, THREAD->pending_exception());
3068 Handle illegal_state_oop(THREAD, nullptr);
3069
3070 // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
3071 // in any following VM entries from freeing our live handles, but illegal_state_oop
3072 // isn't really allocated yet and so doesn't become live until later and
3073 // in unpredictable places. Instead we must protect the places where we enter the
3074 // VM. It would be much simpler (and safer) if we could allocate a real handle with
3075 // a null oop in it and then overwrite the oop later as needed. This isn't
3076 // unfortunately isn't possible.
3077
3078 if (THREAD->has_pending_exception()) {
3079 THREAD->clear_pending_exception();
3080 }
3081
3082 //
3083 // As far as we are concerned we have returned. If we have a pending exception
3084 // that will be returned as this invocation's result. However if we get any
3085 // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
3086 // will be our final result (i.e. monitor exception trumps a pending exception).
3087 //
3088
3089 // If we never locked the method (or really passed the point where we would have),
3090 // there is no need to unlock it (or look for other monitors), since that
3091 // could not have happened.
3092
3093 if (THREAD->do_not_unlock_if_synchronized()) {
3094
3095 // Never locked, reset the flag now because obviously any caller must
3096 // have passed their point of locking for us to have gotten here.
3097
3098 THREAD->set_do_not_unlock_if_synchronized(false);
3099 } else {
3100 // At this point we consider that we have returned. We now check that the
3101 // locks were properly block structured. If we find that they were not
3102 // used properly we will return with an illegal monitor exception.
3103 // The exception is checked by the caller not the callee since this
3104 // checking is considered to be part of the invocation and therefore
3105 // in the callers scope (JVM spec 8.13).
3106 //
3107 // Another weird thing to watch for is if the method was locked
3108 // recursively and then not exited properly. This means we must
3109 // examine all the entries in reverse time(and stack) order and
3110 // unlock as we find them. If we find the method monitor before
3111 // we are at the initial entry then we should throw an exception.
3112 // It is not clear the template based interpreter does this
3113 // correctly
3114
3115 BasicObjectLock* base = istate->monitor_base();
3116 BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
3117 bool method_unlock_needed = METHOD->is_synchronized();
3118 // We know the initial monitor was used for the method don't check that
3119 // slot in the loop
3120 if (method_unlock_needed) base--;
3121
3122 // Check all the monitors to see they are unlocked. Install exception if found to be locked.
3123 while (end < base) {
3124 oop lockee = end->obj();
3125 if (lockee != nullptr) {
3126 BasicLock* lock = end->lock();
3127 markWord header = lock->displaced_header();
3128 end->set_obj(nullptr);
3129
3130 // If it isn't recursive we either must swap old header or call the runtime
3131 bool dec_monitor_count = true;
3132 if (header.to_pointer() != nullptr) {
3133 markWord old_header = markWord::encode(lock);
3134 if (lockee->cas_set_mark(header, old_header) != old_header) {
3135 // restore object for the slow case
3136 end->set_obj(lockee);
3137 dec_monitor_count = false;
3138 InterpreterRuntime::monitorexit(end);
3139 }
3140 }
3141 if (dec_monitor_count) {
3142 THREAD->dec_held_monitor_count();
3143 }
3144
3145 // One error is plenty
3146 if (illegal_state_oop() == nullptr && !suppress_error) {
3147 {
3148 // Prevent any HandleMarkCleaner from freeing our live handles
3149 HandleMark __hm(THREAD);
3150 CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3151 }
3152 assert(THREAD->has_pending_exception(), "Lost our exception!");
3153 illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3154 THREAD->clear_pending_exception();
3155 }
3156 }
3157 end++;
3158 }
3159 // Unlock the method if needed
3160 if (method_unlock_needed) {
3161 if (base->obj() == nullptr) {
3162 // The method is already unlocked this is not good.
3163 if (illegal_state_oop() == nullptr && !suppress_error) {
3164 {
3165 // Prevent any HandleMarkCleaner from freeing our live handles
3166 HandleMark __hm(THREAD);
3167 CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3168 }
3169 assert(THREAD->has_pending_exception(), "Lost our exception!");
3170 illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3171 THREAD->clear_pending_exception();
3172 }
3173 } else {
3174 //
3175 // The initial monitor is always used for the method
3176 // However if that slot is no longer the oop for the method it was unlocked
3177 // and reused by something that wasn't unlocked!
3178 //
3179 // deopt can come in with rcvr dead because c2 knows
3180 // its value is preserved in the monitor. So we can't use locals[0] at all
3181 // and must use first monitor slot.
3182 //
3183 oop rcvr = base->obj();
3184 if (rcvr == nullptr) {
3185 if (!suppress_error) {
3186 VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
3187 illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3188 THREAD->clear_pending_exception();
3189 }
3190 } else if (LockingMode == LM_MONITOR) {
3191 InterpreterRuntime::monitorexit(base);
3192 if (THREAD->has_pending_exception()) {
3193 if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3194 THREAD->clear_pending_exception();
3195 }
3196 } else {
3197 BasicLock* lock = base->lock();
3198 markWord header = lock->displaced_header();
3199 base->set_obj(nullptr);
3200
3201 // If it isn't recursive we either must swap old header or call the runtime
3202 bool dec_monitor_count = true;
3203 if (header.to_pointer() != nullptr) {
3204 markWord old_header = markWord::encode(lock);
3205 if (rcvr->cas_set_mark(header, old_header) != old_header) {
3206 // restore object for the slow case
3207 base->set_obj(rcvr);
3208 dec_monitor_count = false;
3209 InterpreterRuntime::monitorexit(base);
3210 if (THREAD->has_pending_exception()) {
3211 if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3212 THREAD->clear_pending_exception();
3213 }
3214 }
3215 }
3216 if (dec_monitor_count) {
3217 THREAD->dec_held_monitor_count();
3218 }
3219 }
3220 }
3221 }
3222 }
3223 // Clear the do_not_unlock flag now.
3224 THREAD->set_do_not_unlock_if_synchronized(false);
3225
3226 //
3227 // Notify jvmti/jvmdi
3228 //
3229 // NOTE: we do not notify a method_exit if we have a pending exception,
3230 // including an exception we generate for unlocking checks. In the former
3231 // case, JVMDI has already been notified by our call for the exception handler
3232 // and in both cases as far as JVMDI is concerned we have already returned.
3233 // If we notify it again JVMDI will be all confused about how many frames
3234 // are still on the stack (4340444).
3235 //
3236 // NOTE Further! It turns out the JVMTI spec in fact expects to see
3237 // method_exit events whenever we leave an activation unless it was done
3238 // for popframe. This is nothing like jvmdi. However we are passing the
3239 // tests at the moment (apparently because they are jvmdi based) so rather
3240 // than change this code and possibly fail tests we will leave it alone
3241 // (with this note) in anticipation of changing the vm and the tests
3242 // simultaneously.
3243
3244 suppress_exit_event = suppress_exit_event || illegal_state_oop() != nullptr;
3245
3246 // Whenever JVMTI puts a thread in interp_only_mode, method
3247 // entry/exit events are sent for that thread to track stack depth.
3248
3249 if (JVMTI_ENABLED && !suppress_exit_event && THREAD->is_interp_only_mode()) {
3250 // Prevent any HandleMarkCleaner from freeing our live handles
3251 HandleMark __hm(THREAD);
3252 CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3253 }
3254
3255 //
3256 // See if we are returning any exception
3257 // A pending exception that was pending prior to a possible popping frame
3258 // overrides the popping frame.
3259 //
3260 assert(!suppress_error || (suppress_error && illegal_state_oop() == nullptr), "Error was not suppressed");
3261 if (illegal_state_oop() != nullptr || original_exception() != nullptr) {
3262 // Inform the frame manager we have no result.
3263 istate->set_msg(throwing_exception);
3264 if (illegal_state_oop() != nullptr)
3265 THREAD->set_pending_exception(illegal_state_oop(), nullptr, 0);
3266 else
3267 THREAD->set_pending_exception(original_exception(), nullptr, 0);
3268 UPDATE_PC_AND_RETURN(0);
3269 }
3270
3271 if (istate->msg() == popping_frame) {
3272 // Make it simpler on the assembly code and set the message for the frame pop.
3273 // returns
3274 if (istate->prev() == nullptr) {
3275 // We must be returning to a deoptimized frame (because popframe only happens between
3276 // two interpreted frames). We need to save the current arguments in C heap so that
3277 // the deoptimized frame when it restarts can copy the arguments to its expression
3278 // stack and re-execute the call. We also have to notify deoptimization that this
3279 // has occurred and to pick the preserved args copy them to the deoptimized frame's
3280 // java expression stack. Yuck.
3281 //
3282 THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3283 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3284 THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3285 }
3286 } else {
3287 istate->set_msg(return_from_method);
3288 }
3289
3290 // Normal return
3291 // Advance the pc and return to frame manager
3292 UPDATE_PC_AND_RETURN(1);
3293 } /* handle_return: */
3294
3295 // This is really a fatal error return
3296
3297 finish:
3298 DECACHE_TOS();
3299 DECACHE_PC();
3300
3301 return;
3302 }
3303
3304 // This constructor should only be used to construct the object to signal
3305 // interpreter initialization. All other instances should be created by
3306 // the frame manager.
3307 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3308 if (msg != initialize) ShouldNotReachHere();
3309 _msg = msg;
3310 _self_link = this;
3311 _prev_link = nullptr;
3312 }
3313
3314 void BytecodeInterpreter::astore(intptr_t* tos, int stack_offset,
3315 intptr_t* locals, int locals_offset) {
3316 intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3317 locals[Interpreter::local_index_at(-locals_offset)] = value;
3318 }
3319
3320 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3321 int to_offset) {
3322 tos[Interpreter::expr_index_at(-to_offset)] =
3323 (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3324 }
3325
3326 void BytecodeInterpreter::dup(intptr_t *tos) {
3327 copy_stack_slot(tos, -1, 0);
3328 }
3329
3330 void BytecodeInterpreter::dup2(intptr_t *tos) {
3331 copy_stack_slot(tos, -2, 0);
3332 copy_stack_slot(tos, -1, 1);
3333 }
3334
3335 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3336 /* insert top word two down */
3337 copy_stack_slot(tos, -1, 0);
3338 copy_stack_slot(tos, -2, -1);
3339 copy_stack_slot(tos, 0, -2);
3340 }
3341
3342 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3343 /* insert top word three down */
3344 copy_stack_slot(tos, -1, 0);
3345 copy_stack_slot(tos, -2, -1);
3346 copy_stack_slot(tos, -3, -2);
3347 copy_stack_slot(tos, 0, -3);
3348 }
3349 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3350 /* insert top 2 slots three down */
3351 copy_stack_slot(tos, -1, 1);
3352 copy_stack_slot(tos, -2, 0);
3353 copy_stack_slot(tos, -3, -1);
3354 copy_stack_slot(tos, 1, -2);
3355 copy_stack_slot(tos, 0, -3);
3356 }
3357 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3358 /* insert top 2 slots four down */
3359 copy_stack_slot(tos, -1, 1);
3360 copy_stack_slot(tos, -2, 0);
3361 copy_stack_slot(tos, -3, -1);
3362 copy_stack_slot(tos, -4, -2);
3363 copy_stack_slot(tos, 1, -3);
3364 copy_stack_slot(tos, 0, -4);
3365 }
3366
3367
3368 void BytecodeInterpreter::swap(intptr_t *tos) {
3369 // swap top two elements
3370 intptr_t val = tos[Interpreter::expr_index_at(1)];
3371 // Copy -2 entry to -1
3372 copy_stack_slot(tos, -2, -1);
3373 // Store saved -1 entry into -2
3374 tos[Interpreter::expr_index_at(2)] = val;
3375 }
3376 // --------------------------------------------------------------------------------
3377 // Non-product code
3378 #ifndef PRODUCT
3379
3380 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3381 switch (msg) {
3382 case BytecodeInterpreter::no_request: return("no_request");
3383 case BytecodeInterpreter::initialize: return("initialize");
3384 // status message to C++ interpreter
3385 case BytecodeInterpreter::method_entry: return("method_entry");
3386 case BytecodeInterpreter::method_resume: return("method_resume");
3387 case BytecodeInterpreter::got_monitors: return("got_monitors");
3388 case BytecodeInterpreter::rethrow_exception: return("rethrow_exception");
3389 // requests to frame manager from C++ interpreter
3390 case BytecodeInterpreter::call_method: return("call_method");
3391 case BytecodeInterpreter::return_from_method: return("return_from_method");
3392 case BytecodeInterpreter::more_monitors: return("more_monitors");
3393 case BytecodeInterpreter::throwing_exception: return("throwing_exception");
3394 case BytecodeInterpreter::popping_frame: return("popping_frame");
3395 case BytecodeInterpreter::do_osr: return("do_osr");
3396 // deopt
3397 case BytecodeInterpreter::deopt_resume: return("deopt_resume");
3398 case BytecodeInterpreter::deopt_resume2: return("deopt_resume2");
3399 default: return("BAD MSG");
3400 }
3401 }
3402 void
3403 BytecodeInterpreter::print() {
3404 tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3405 tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3406 tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3407 tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3408 {
3409 ResourceMark rm;
3410 char *method_name = _method->name_and_sig_as_C_string();
3411 tty->print_cr("method: " INTPTR_FORMAT "[ %s ]", (uintptr_t) this->_method, method_name);
3412 }
3413 tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3414 tty->print_cr("msg: %s", C_msg(this->_msg));
3415 tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3416 tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3417 tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3418 tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3419 tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3420 tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3421 tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3422 tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3423 tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3424 tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3425 tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3426 }
3427
3428 extern "C" {
3429 void PI(uintptr_t arg) {
3430 ((BytecodeInterpreter*)arg)->print();
3431 }
3432 }
3433 #endif // PRODUCT