1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "ci/bcEscapeAnalyzer.hpp" 28 #include "compiler/oopMap.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/c2/barrierSetC2.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "opto/callGenerator.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/convertnode.hpp" 36 #include "opto/escape.hpp" 37 #include "opto/locknode.hpp" 38 #include "opto/machnode.hpp" 39 #include "opto/matcher.hpp" 40 #include "opto/parse.hpp" 41 #include "opto/regalloc.hpp" 42 #include "opto/regmask.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/runtime.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "code/vmreg.hpp" 48 49 // Portions of code courtesy of Clifford Click 50 51 // Optimization - Graph Style 52 53 //============================================================================= 54 uint StartNode::size_of() const { return sizeof(*this); } 55 bool StartNode::cmp( const Node &n ) const 56 { return _domain == ((StartNode&)n)._domain; } 57 const Type *StartNode::bottom_type() const { return _domain; } 58 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; } 59 #ifndef PRODUCT 60 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);} 61 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ } 62 #endif 63 64 //------------------------------Ideal------------------------------------------ 65 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){ 66 return remove_dead_region(phase, can_reshape) ? this : nullptr; 67 } 68 69 //------------------------------calling_convention----------------------------- 70 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 71 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt); 72 } 73 74 //------------------------------Registers-------------------------------------- 75 const RegMask &StartNode::in_RegMask(uint) const { 76 return RegMask::Empty; 77 } 78 79 //------------------------------match------------------------------------------ 80 // Construct projections for incoming parameters, and their RegMask info 81 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) { 82 switch (proj->_con) { 83 case TypeFunc::Control: 84 case TypeFunc::I_O: 85 case TypeFunc::Memory: 86 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 87 case TypeFunc::FramePtr: 88 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP); 89 case TypeFunc::ReturnAdr: 90 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP); 91 case TypeFunc::Parms: 92 default: { 93 uint parm_num = proj->_con - TypeFunc::Parms; 94 const Type *t = _domain->field_at(proj->_con); 95 if (t->base() == Type::Half) // 2nd half of Longs and Doubles 96 return new ConNode(Type::TOP); 97 uint ideal_reg = t->ideal_reg(); 98 RegMask &rm = match->_calling_convention_mask[parm_num]; 99 return new MachProjNode(this,proj->_con,rm,ideal_reg); 100 } 101 } 102 return nullptr; 103 } 104 105 //------------------------------StartOSRNode---------------------------------- 106 // The method start node for an on stack replacement adapter 107 108 //------------------------------osr_domain----------------------------- 109 const TypeTuple *StartOSRNode::osr_domain() { 110 const Type **fields = TypeTuple::fields(2); 111 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer 112 113 return TypeTuple::make(TypeFunc::Parms+1, fields); 114 } 115 116 //============================================================================= 117 const char * const ParmNode::names[TypeFunc::Parms+1] = { 118 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms" 119 }; 120 121 #ifndef PRODUCT 122 void ParmNode::dump_spec(outputStream *st) const { 123 if( _con < TypeFunc::Parms ) { 124 st->print("%s", names[_con]); 125 } else { 126 st->print("Parm%d: ",_con-TypeFunc::Parms); 127 // Verbose and WizardMode dump bottom_type for all nodes 128 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st); 129 } 130 } 131 132 void ParmNode::dump_compact_spec(outputStream *st) const { 133 if (_con < TypeFunc::Parms) { 134 st->print("%s", names[_con]); 135 } else { 136 st->print("%d:", _con-TypeFunc::Parms); 137 // unconditionally dump bottom_type 138 bottom_type()->dump_on(st); 139 } 140 } 141 #endif 142 143 uint ParmNode::ideal_reg() const { 144 switch( _con ) { 145 case TypeFunc::Control : // fall through 146 case TypeFunc::I_O : // fall through 147 case TypeFunc::Memory : return 0; 148 case TypeFunc::FramePtr : // fall through 149 case TypeFunc::ReturnAdr: return Op_RegP; 150 default : assert( _con > TypeFunc::Parms, "" ); 151 // fall through 152 case TypeFunc::Parms : { 153 // Type of argument being passed 154 const Type *t = in(0)->as_Start()->_domain->field_at(_con); 155 return t->ideal_reg(); 156 } 157 } 158 ShouldNotReachHere(); 159 return 0; 160 } 161 162 //============================================================================= 163 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) { 164 init_req(TypeFunc::Control,cntrl); 165 init_req(TypeFunc::I_O,i_o); 166 init_req(TypeFunc::Memory,memory); 167 init_req(TypeFunc::FramePtr,frameptr); 168 init_req(TypeFunc::ReturnAdr,retadr); 169 } 170 171 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){ 172 return remove_dead_region(phase, can_reshape) ? this : nullptr; 173 } 174 175 const Type* ReturnNode::Value(PhaseGVN* phase) const { 176 return ( phase->type(in(TypeFunc::Control)) == Type::TOP) 177 ? Type::TOP 178 : Type::BOTTOM; 179 } 180 181 // Do we Match on this edge index or not? No edges on return nodes 182 uint ReturnNode::match_edge(uint idx) const { 183 return 0; 184 } 185 186 187 #ifndef PRODUCT 188 void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const { 189 // Dump the required inputs, after printing "returns" 190 uint i; // Exit value of loop 191 for (i = 0; i < req(); i++) { // For all required inputs 192 if (i == TypeFunc::Parms) st->print("returns "); 193 Node* p = in(i); 194 if (p != nullptr) { 195 p->dump_idx(false, st, dc); 196 st->print(" "); 197 } else { 198 st->print("_ "); 199 } 200 } 201 } 202 #endif 203 204 //============================================================================= 205 RethrowNode::RethrowNode( 206 Node* cntrl, 207 Node* i_o, 208 Node* memory, 209 Node* frameptr, 210 Node* ret_adr, 211 Node* exception 212 ) : Node(TypeFunc::Parms + 1) { 213 init_req(TypeFunc::Control , cntrl ); 214 init_req(TypeFunc::I_O , i_o ); 215 init_req(TypeFunc::Memory , memory ); 216 init_req(TypeFunc::FramePtr , frameptr ); 217 init_req(TypeFunc::ReturnAdr, ret_adr); 218 init_req(TypeFunc::Parms , exception); 219 } 220 221 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){ 222 return remove_dead_region(phase, can_reshape) ? this : nullptr; 223 } 224 225 const Type* RethrowNode::Value(PhaseGVN* phase) const { 226 return (phase->type(in(TypeFunc::Control)) == Type::TOP) 227 ? Type::TOP 228 : Type::BOTTOM; 229 } 230 231 uint RethrowNode::match_edge(uint idx) const { 232 return 0; 233 } 234 235 #ifndef PRODUCT 236 void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const { 237 // Dump the required inputs, after printing "exception" 238 uint i; // Exit value of loop 239 for (i = 0; i < req(); i++) { // For all required inputs 240 if (i == TypeFunc::Parms) st->print("exception "); 241 Node* p = in(i); 242 if (p != nullptr) { 243 p->dump_idx(false, st, dc); 244 st->print(" "); 245 } else { 246 st->print("_ "); 247 } 248 } 249 } 250 #endif 251 252 //============================================================================= 253 // Do we Match on this edge index or not? Match only target address & method 254 uint TailCallNode::match_edge(uint idx) const { 255 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 256 } 257 258 //============================================================================= 259 // Do we Match on this edge index or not? Match only target address & oop 260 uint TailJumpNode::match_edge(uint idx) const { 261 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 262 } 263 264 //============================================================================= 265 JVMState::JVMState(ciMethod* method, JVMState* caller) : 266 _method(method) { 267 assert(method != nullptr, "must be valid call site"); 268 _bci = InvocationEntryBci; 269 _reexecute = Reexecute_Undefined; 270 debug_only(_bci = -99); // random garbage value 271 debug_only(_map = (SafePointNode*)-1); 272 _caller = caller; 273 _depth = 1 + (caller == nullptr ? 0 : caller->depth()); 274 _locoff = TypeFunc::Parms; 275 _stkoff = _locoff + _method->max_locals(); 276 _monoff = _stkoff + _method->max_stack(); 277 _scloff = _monoff; 278 _endoff = _monoff; 279 _sp = 0; 280 } 281 JVMState::JVMState(int stack_size) : 282 _method(nullptr) { 283 _bci = InvocationEntryBci; 284 _reexecute = Reexecute_Undefined; 285 debug_only(_map = (SafePointNode*)-1); 286 _caller = nullptr; 287 _depth = 1; 288 _locoff = TypeFunc::Parms; 289 _stkoff = _locoff; 290 _monoff = _stkoff + stack_size; 291 _scloff = _monoff; 292 _endoff = _monoff; 293 _sp = 0; 294 } 295 296 //--------------------------------of_depth------------------------------------- 297 JVMState* JVMState::of_depth(int d) const { 298 const JVMState* jvmp = this; 299 assert(0 < d && (uint)d <= depth(), "oob"); 300 for (int skip = depth() - d; skip > 0; skip--) { 301 jvmp = jvmp->caller(); 302 } 303 assert(jvmp->depth() == (uint)d, "found the right one"); 304 return (JVMState*)jvmp; 305 } 306 307 //-----------------------------same_calls_as----------------------------------- 308 bool JVMState::same_calls_as(const JVMState* that) const { 309 if (this == that) return true; 310 if (this->depth() != that->depth()) return false; 311 const JVMState* p = this; 312 const JVMState* q = that; 313 for (;;) { 314 if (p->_method != q->_method) return false; 315 if (p->_method == nullptr) return true; // bci is irrelevant 316 if (p->_bci != q->_bci) return false; 317 if (p->_reexecute != q->_reexecute) return false; 318 p = p->caller(); 319 q = q->caller(); 320 if (p == q) return true; 321 assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end"); 322 } 323 } 324 325 //------------------------------debug_start------------------------------------ 326 uint JVMState::debug_start() const { 327 debug_only(JVMState* jvmroot = of_depth(1)); 328 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last"); 329 return of_depth(1)->locoff(); 330 } 331 332 //-------------------------------debug_end------------------------------------- 333 uint JVMState::debug_end() const { 334 debug_only(JVMState* jvmroot = of_depth(1)); 335 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last"); 336 return endoff(); 337 } 338 339 //------------------------------debug_depth------------------------------------ 340 uint JVMState::debug_depth() const { 341 uint total = 0; 342 for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) { 343 total += jvmp->debug_size(); 344 } 345 return total; 346 } 347 348 #ifndef PRODUCT 349 350 //------------------------------format_helper---------------------------------- 351 // Given an allocation (a Chaitin object) and a Node decide if the Node carries 352 // any defined value or not. If it does, print out the register or constant. 353 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) { 354 if (n == nullptr) { st->print(" null"); return; } 355 if (n->is_SafePointScalarObject()) { 356 // Scalar replacement. 357 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject(); 358 scobjs->append_if_missing(spobj); 359 int sco_n = scobjs->find(spobj); 360 assert(sco_n >= 0, ""); 361 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n); 362 return; 363 } 364 if (regalloc->node_regs_max_index() > 0 && 365 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined 366 char buf[50]; 367 regalloc->dump_register(n,buf,sizeof(buf)); 368 st->print(" %s%d]=%s",msg,i,buf); 369 } else { // No register, but might be constant 370 const Type *t = n->bottom_type(); 371 switch (t->base()) { 372 case Type::Int: 373 st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con()); 374 break; 375 case Type::AnyPtr: 376 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" ); 377 st->print(" %s%d]=#null",msg,i); 378 break; 379 case Type::AryPtr: 380 case Type::InstPtr: 381 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop())); 382 break; 383 case Type::KlassPtr: 384 case Type::AryKlassPtr: 385 case Type::InstKlassPtr: 386 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass())); 387 break; 388 case Type::MetadataPtr: 389 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata())); 390 break; 391 case Type::NarrowOop: 392 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop())); 393 break; 394 case Type::RawPtr: 395 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr())); 396 break; 397 case Type::DoubleCon: 398 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d); 399 break; 400 case Type::FloatCon: 401 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f); 402 break; 403 case Type::Long: 404 st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con())); 405 break; 406 case Type::Half: 407 case Type::Top: 408 st->print(" %s%d]=_",msg,i); 409 break; 410 default: ShouldNotReachHere(); 411 } 412 } 413 } 414 415 //---------------------print_method_with_lineno-------------------------------- 416 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const { 417 if (show_name) _method->print_short_name(st); 418 419 int lineno = _method->line_number_from_bci(_bci); 420 if (lineno != -1) { 421 st->print(" @ bci:%d (line %d)", _bci, lineno); 422 } else { 423 st->print(" @ bci:%d", _bci); 424 } 425 } 426 427 //------------------------------format----------------------------------------- 428 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const { 429 st->print(" #"); 430 if (_method) { 431 print_method_with_lineno(st, true); 432 } else { 433 st->print_cr(" runtime stub "); 434 return; 435 } 436 if (n->is_MachSafePoint()) { 437 GrowableArray<SafePointScalarObjectNode*> scobjs; 438 MachSafePointNode *mcall = n->as_MachSafePoint(); 439 uint i; 440 // Print locals 441 for (i = 0; i < (uint)loc_size(); i++) 442 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs); 443 // Print stack 444 for (i = 0; i < (uint)stk_size(); i++) { 445 if ((uint)(_stkoff + i) >= mcall->len()) 446 st->print(" oob "); 447 else 448 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs); 449 } 450 for (i = 0; (int)i < nof_monitors(); i++) { 451 Node *box = mcall->monitor_box(this, i); 452 Node *obj = mcall->monitor_obj(this, i); 453 if (regalloc->node_regs_max_index() > 0 && 454 OptoReg::is_valid(regalloc->get_reg_first(box))) { 455 box = BoxLockNode::box_node(box); 456 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs); 457 } else { 458 OptoReg::Name box_reg = BoxLockNode::reg(box); 459 st->print(" MON-BOX%d=%s+%d", 460 i, 461 OptoReg::regname(OptoReg::c_frame_pointer), 462 regalloc->reg2offset(box_reg)); 463 } 464 const char* obj_msg = "MON-OBJ["; 465 if (EliminateLocks) { 466 if (BoxLockNode::box_node(box)->is_eliminated()) 467 obj_msg = "MON-OBJ(LOCK ELIMINATED)["; 468 } 469 format_helper(regalloc, st, obj, obj_msg, i, &scobjs); 470 } 471 472 for (i = 0; i < (uint)scobjs.length(); i++) { 473 // Scalar replaced objects. 474 st->cr(); 475 st->print(" # ScObj" INT32_FORMAT " ", i); 476 SafePointScalarObjectNode* spobj = scobjs.at(i); 477 ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass(); 478 assert(cik->is_instance_klass() || 479 cik->is_array_klass(), "Not supported allocation."); 480 ciInstanceKlass *iklass = nullptr; 481 if (cik->is_instance_klass()) { 482 cik->print_name_on(st); 483 iklass = cik->as_instance_klass(); 484 } else if (cik->is_type_array_klass()) { 485 cik->as_array_klass()->base_element_type()->print_name_on(st); 486 st->print("[%d]", spobj->n_fields()); 487 } else if (cik->is_obj_array_klass()) { 488 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass(); 489 if (cie->is_instance_klass()) { 490 cie->print_name_on(st); 491 } else if (cie->is_type_array_klass()) { 492 cie->as_array_klass()->base_element_type()->print_name_on(st); 493 } else { 494 ShouldNotReachHere(); 495 } 496 st->print("[%d]", spobj->n_fields()); 497 int ndim = cik->as_array_klass()->dimension() - 1; 498 while (ndim-- > 0) { 499 st->print("[]"); 500 } 501 } 502 st->print("={"); 503 uint nf = spobj->n_fields(); 504 if (nf > 0) { 505 uint first_ind = spobj->first_index(mcall->jvms()); 506 Node* fld_node = mcall->in(first_ind); 507 ciField* cifield; 508 if (iklass != nullptr) { 509 st->print(" ["); 510 cifield = iklass->nonstatic_field_at(0); 511 cifield->print_name_on(st); 512 format_helper(regalloc, st, fld_node, ":", 0, &scobjs); 513 } else { 514 format_helper(regalloc, st, fld_node, "[", 0, &scobjs); 515 } 516 for (uint j = 1; j < nf; j++) { 517 fld_node = mcall->in(first_ind+j); 518 if (iklass != nullptr) { 519 st->print(", ["); 520 cifield = iklass->nonstatic_field_at(j); 521 cifield->print_name_on(st); 522 format_helper(regalloc, st, fld_node, ":", j, &scobjs); 523 } else { 524 format_helper(regalloc, st, fld_node, ", [", j, &scobjs); 525 } 526 } 527 } 528 st->print(" }"); 529 } 530 } 531 st->cr(); 532 if (caller() != nullptr) caller()->format(regalloc, n, st); 533 } 534 535 536 void JVMState::dump_spec(outputStream *st) const { 537 if (_method != nullptr) { 538 bool printed = false; 539 if (!Verbose) { 540 // The JVMS dumps make really, really long lines. 541 // Take out the most boring parts, which are the package prefixes. 542 char buf[500]; 543 stringStream namest(buf, sizeof(buf)); 544 _method->print_short_name(&namest); 545 if (namest.count() < sizeof(buf)) { 546 const char* name = namest.base(); 547 if (name[0] == ' ') ++name; 548 const char* endcn = strchr(name, ':'); // end of class name 549 if (endcn == nullptr) endcn = strchr(name, '('); 550 if (endcn == nullptr) endcn = name + strlen(name); 551 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/') 552 --endcn; 553 st->print(" %s", endcn); 554 printed = true; 555 } 556 } 557 print_method_with_lineno(st, !printed); 558 if(_reexecute == Reexecute_True) 559 st->print(" reexecute"); 560 } else { 561 st->print(" runtime stub"); 562 } 563 if (caller() != nullptr) caller()->dump_spec(st); 564 } 565 566 567 void JVMState::dump_on(outputStream* st) const { 568 bool print_map = _map && !((uintptr_t)_map & 1) && 569 ((caller() == nullptr) || (caller()->map() != _map)); 570 if (print_map) { 571 if (_map->len() > _map->req()) { // _map->has_exceptions() 572 Node* ex = _map->in(_map->req()); // _map->next_exception() 573 // skip the first one; it's already being printed 574 while (ex != nullptr && ex->len() > ex->req()) { 575 ex = ex->in(ex->req()); // ex->next_exception() 576 ex->dump(1); 577 } 578 } 579 _map->dump(Verbose ? 2 : 1); 580 } 581 if (caller() != nullptr) { 582 caller()->dump_on(st); 583 } 584 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=", 585 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false"); 586 if (_method == nullptr) { 587 st->print_cr("(none)"); 588 } else { 589 _method->print_name(st); 590 st->cr(); 591 if (bci() >= 0 && bci() < _method->code_size()) { 592 st->print(" bc: "); 593 _method->print_codes_on(bci(), bci()+1, st); 594 } 595 } 596 } 597 598 // Extra way to dump a jvms from the debugger, 599 // to avoid a bug with C++ member function calls. 600 void dump_jvms(JVMState* jvms) { 601 jvms->dump(); 602 } 603 #endif 604 605 //--------------------------clone_shallow-------------------------------------- 606 JVMState* JVMState::clone_shallow(Compile* C) const { 607 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0); 608 n->set_bci(_bci); 609 n->_reexecute = _reexecute; 610 n->set_locoff(_locoff); 611 n->set_stkoff(_stkoff); 612 n->set_monoff(_monoff); 613 n->set_scloff(_scloff); 614 n->set_endoff(_endoff); 615 n->set_sp(_sp); 616 n->set_map(_map); 617 return n; 618 } 619 620 //---------------------------clone_deep---------------------------------------- 621 JVMState* JVMState::clone_deep(Compile* C) const { 622 JVMState* n = clone_shallow(C); 623 for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) { 624 p->_caller = p->_caller->clone_shallow(C); 625 } 626 assert(n->depth() == depth(), "sanity"); 627 assert(n->debug_depth() == debug_depth(), "sanity"); 628 return n; 629 } 630 631 /** 632 * Reset map for all callers 633 */ 634 void JVMState::set_map_deep(SafePointNode* map) { 635 for (JVMState* p = this; p != nullptr; p = p->_caller) { 636 p->set_map(map); 637 } 638 } 639 640 // unlike set_map(), this is two-way setting. 641 void JVMState::bind_map(SafePointNode* map) { 642 set_map(map); 643 _map->set_jvms(this); 644 } 645 646 // Adapt offsets in in-array after adding or removing an edge. 647 // Prerequisite is that the JVMState is used by only one node. 648 void JVMState::adapt_position(int delta) { 649 for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) { 650 jvms->set_locoff(jvms->locoff() + delta); 651 jvms->set_stkoff(jvms->stkoff() + delta); 652 jvms->set_monoff(jvms->monoff() + delta); 653 jvms->set_scloff(jvms->scloff() + delta); 654 jvms->set_endoff(jvms->endoff() + delta); 655 } 656 } 657 658 // Mirror the stack size calculation in the deopt code 659 // How much stack space would we need at this point in the program in 660 // case of deoptimization? 661 int JVMState::interpreter_frame_size() const { 662 const JVMState* jvms = this; 663 int size = 0; 664 int callee_parameters = 0; 665 int callee_locals = 0; 666 int extra_args = method()->max_stack() - stk_size(); 667 668 while (jvms != nullptr) { 669 int locks = jvms->nof_monitors(); 670 int temps = jvms->stk_size(); 671 bool is_top_frame = (jvms == this); 672 ciMethod* method = jvms->method(); 673 674 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), 675 temps + callee_parameters, 676 extra_args, 677 locks, 678 callee_parameters, 679 callee_locals, 680 is_top_frame); 681 size += frame_size; 682 683 callee_parameters = method->size_of_parameters(); 684 callee_locals = method->max_locals(); 685 extra_args = 0; 686 jvms = jvms->caller(); 687 } 688 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; 689 } 690 691 //============================================================================= 692 bool CallNode::cmp( const Node &n ) const 693 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; } 694 #ifndef PRODUCT 695 void CallNode::dump_req(outputStream *st, DumpConfig* dc) const { 696 // Dump the required inputs, enclosed in '(' and ')' 697 uint i; // Exit value of loop 698 for (i = 0; i < req(); i++) { // For all required inputs 699 if (i == TypeFunc::Parms) st->print("("); 700 Node* p = in(i); 701 if (p != nullptr) { 702 p->dump_idx(false, st, dc); 703 st->print(" "); 704 } else { 705 st->print("_ "); 706 } 707 } 708 st->print(")"); 709 } 710 711 void CallNode::dump_spec(outputStream *st) const { 712 st->print(" "); 713 if (tf() != nullptr) tf()->dump_on(st); 714 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); 715 if (jvms() != nullptr) jvms()->dump_spec(st); 716 } 717 #endif 718 719 const Type *CallNode::bottom_type() const { return tf()->range(); } 720 const Type* CallNode::Value(PhaseGVN* phase) const { 721 if (phase->type(in(0)) == Type::TOP) return Type::TOP; 722 return tf()->range(); 723 } 724 725 //------------------------------calling_convention----------------------------- 726 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 727 // Use the standard compiler calling convention 728 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt); 729 } 730 731 732 //------------------------------match------------------------------------------ 733 // Construct projections for control, I/O, memory-fields, ..., and 734 // return result(s) along with their RegMask info 735 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) { 736 switch (proj->_con) { 737 case TypeFunc::Control: 738 case TypeFunc::I_O: 739 case TypeFunc::Memory: 740 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 741 742 case TypeFunc::Parms+1: // For LONG & DOUBLE returns 743 assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, ""); 744 // 2nd half of doubles and longs 745 return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad); 746 747 case TypeFunc::Parms: { // Normal returns 748 uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg(); 749 OptoRegPair regs = Opcode() == Op_CallLeafVector 750 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine 751 : is_CallRuntime() 752 ? match->c_return_value(ideal_reg) // Calls into C runtime 753 : match-> return_value(ideal_reg); // Calls into compiled Java code 754 RegMask rm = RegMask(regs.first()); 755 756 if (Opcode() == Op_CallLeafVector) { 757 // If the return is in vector, compute appropriate regmask taking into account the whole range 758 if(ideal_reg >= Op_VecS && ideal_reg <= Op_VecZ) { 759 if(OptoReg::is_valid(regs.second())) { 760 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) { 761 rm.Insert(r); 762 } 763 } 764 } 765 } 766 767 if( OptoReg::is_valid(regs.second()) ) 768 rm.Insert( regs.second() ); 769 return new MachProjNode(this,proj->_con,rm,ideal_reg); 770 } 771 772 case TypeFunc::ReturnAdr: 773 case TypeFunc::FramePtr: 774 default: 775 ShouldNotReachHere(); 776 } 777 return nullptr; 778 } 779 780 // Do we Match on this edge index or not? Match no edges 781 uint CallNode::match_edge(uint idx) const { 782 return 0; 783 } 784 785 // 786 // Determine whether the call could modify the field of the specified 787 // instance at the specified offset. 788 // 789 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { 790 assert((t_oop != nullptr), "sanity"); 791 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) { 792 const TypeTuple* args = _tf->domain(); 793 Node* dest = nullptr; 794 // Stubs that can be called once an ArrayCopyNode is expanded have 795 // different signatures. Look for the second pointer argument, 796 // that is the destination of the copy. 797 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) { 798 if (args->field_at(i)->isa_ptr()) { 799 j++; 800 if (j == 2) { 801 dest = in(i); 802 break; 803 } 804 } 805 } 806 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!"); 807 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) { 808 return true; 809 } 810 return false; 811 } 812 if (t_oop->is_known_instance()) { 813 // The instance_id is set only for scalar-replaceable allocations which 814 // are not passed as arguments according to Escape Analysis. 815 return false; 816 } 817 if (t_oop->is_ptr_to_boxed_value()) { 818 ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass(); 819 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) { 820 // Skip unrelated boxing methods. 821 Node* proj = proj_out_or_null(TypeFunc::Parms); 822 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) { 823 return false; 824 } 825 } 826 if (is_CallJava() && as_CallJava()->method() != nullptr) { 827 ciMethod* meth = as_CallJava()->method(); 828 if (meth->is_getter()) { 829 return false; 830 } 831 // May modify (by reflection) if an boxing object is passed 832 // as argument or returned. 833 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr; 834 if (proj != nullptr) { 835 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr(); 836 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() || 837 (inst_t->instance_klass() == boxing_klass))) { 838 return true; 839 } 840 } 841 const TypeTuple* d = tf()->domain(); 842 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 843 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr(); 844 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() || 845 (inst_t->instance_klass() == boxing_klass))) { 846 return true; 847 } 848 } 849 return false; 850 } 851 } 852 return true; 853 } 854 855 // Does this call have a direct reference to n other than debug information? 856 bool CallNode::has_non_debug_use(Node *n) { 857 const TypeTuple * d = tf()->domain(); 858 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 859 Node *arg = in(i); 860 if (arg == n) { 861 return true; 862 } 863 } 864 return false; 865 } 866 867 // Returns the unique CheckCastPP of a call 868 // or 'this' if there are several CheckCastPP or unexpected uses 869 // or returns null if there is no one. 870 Node *CallNode::result_cast() { 871 Node *cast = nullptr; 872 873 Node *p = proj_out_or_null(TypeFunc::Parms); 874 if (p == nullptr) 875 return nullptr; 876 877 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) { 878 Node *use = p->fast_out(i); 879 if (use->is_CheckCastPP()) { 880 if (cast != nullptr) { 881 return this; // more than 1 CheckCastPP 882 } 883 cast = use; 884 } else if (!use->is_Initialize() && 885 !use->is_AddP() && 886 use->Opcode() != Op_MemBarStoreStore) { 887 // Expected uses are restricted to a CheckCastPP, an Initialize 888 // node, a MemBarStoreStore (clone) and AddP nodes. If we 889 // encounter any other use (a Phi node can be seen in rare 890 // cases) return this to prevent incorrect optimizations. 891 return this; 892 } 893 } 894 return cast; 895 } 896 897 898 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) { 899 projs->fallthrough_proj = nullptr; 900 projs->fallthrough_catchproj = nullptr; 901 projs->fallthrough_ioproj = nullptr; 902 projs->catchall_ioproj = nullptr; 903 projs->catchall_catchproj = nullptr; 904 projs->fallthrough_memproj = nullptr; 905 projs->catchall_memproj = nullptr; 906 projs->resproj = nullptr; 907 projs->exobj = nullptr; 908 909 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 910 ProjNode *pn = fast_out(i)->as_Proj(); 911 if (pn->outcnt() == 0) continue; 912 switch (pn->_con) { 913 case TypeFunc::Control: 914 { 915 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj 916 projs->fallthrough_proj = pn; 917 const Node* cn = pn->unique_ctrl_out_or_null(); 918 if (cn != nullptr && cn->is_Catch()) { 919 ProjNode *cpn = nullptr; 920 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { 921 cpn = cn->fast_out(k)->as_Proj(); 922 assert(cpn->is_CatchProj(), "must be a CatchProjNode"); 923 if (cpn->_con == CatchProjNode::fall_through_index) 924 projs->fallthrough_catchproj = cpn; 925 else { 926 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); 927 projs->catchall_catchproj = cpn; 928 } 929 } 930 } 931 break; 932 } 933 case TypeFunc::I_O: 934 if (pn->_is_io_use) 935 projs->catchall_ioproj = pn; 936 else 937 projs->fallthrough_ioproj = pn; 938 for (DUIterator j = pn->outs(); pn->has_out(j); j++) { 939 Node* e = pn->out(j); 940 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) { 941 assert(projs->exobj == nullptr, "only one"); 942 projs->exobj = e; 943 } 944 } 945 break; 946 case TypeFunc::Memory: 947 if (pn->_is_io_use) 948 projs->catchall_memproj = pn; 949 else 950 projs->fallthrough_memproj = pn; 951 break; 952 case TypeFunc::Parms: 953 projs->resproj = pn; 954 break; 955 default: 956 assert(false, "unexpected projection from allocation node."); 957 } 958 } 959 960 // The resproj may not exist because the result could be ignored 961 // and the exception object may not exist if an exception handler 962 // swallows the exception but all the other must exist and be found. 963 assert(projs->fallthrough_proj != nullptr, "must be found"); 964 do_asserts = do_asserts && !Compile::current()->inlining_incrementally(); 965 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found"); 966 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found"); 967 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found"); 968 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found"); 969 if (separate_io_proj) { 970 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found"); 971 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found"); 972 } 973 } 974 975 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) { 976 #ifdef ASSERT 977 // Validate attached generator 978 CallGenerator* cg = generator(); 979 if (cg != nullptr) { 980 assert(is_CallStaticJava() && cg->is_mh_late_inline() || 981 is_CallDynamicJava() && cg->is_virtual_late_inline(), "mismatch"); 982 } 983 #endif // ASSERT 984 return SafePointNode::Ideal(phase, can_reshape); 985 } 986 987 bool CallNode::is_call_to_arraycopystub() const { 988 if (_name != nullptr && strstr(_name, "arraycopy") != 0) { 989 return true; 990 } 991 return false; 992 } 993 994 //============================================================================= 995 uint CallJavaNode::size_of() const { return sizeof(*this); } 996 bool CallJavaNode::cmp( const Node &n ) const { 997 CallJavaNode &call = (CallJavaNode&)n; 998 return CallNode::cmp(call) && _method == call._method && 999 _override_symbolic_info == call._override_symbolic_info; 1000 } 1001 1002 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) { 1003 // Copy debug information and adjust JVMState information 1004 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1; 1005 uint new_dbg_start = tf()->domain()->cnt(); 1006 int jvms_adj = new_dbg_start - old_dbg_start; 1007 assert (new_dbg_start == req(), "argument count mismatch"); 1008 Compile* C = phase->C; 1009 1010 // SafePointScalarObject node could be referenced several times in debug info. 1011 // Use Dict to record cloned nodes. 1012 Dict* sosn_map = new Dict(cmpkey,hashkey); 1013 for (uint i = old_dbg_start; i < sfpt->req(); i++) { 1014 Node* old_in = sfpt->in(i); 1015 // Clone old SafePointScalarObjectNodes, adjusting their field contents. 1016 if (old_in != nullptr && old_in->is_SafePointScalarObject()) { 1017 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject(); 1018 bool new_node; 1019 Node* new_in = old_sosn->clone(sosn_map, new_node); 1020 if (new_node) { // New node? 1021 new_in->set_req(0, C->root()); // reset control edge 1022 new_in = phase->transform(new_in); // Register new node. 1023 } 1024 old_in = new_in; 1025 } 1026 add_req(old_in); 1027 } 1028 1029 // JVMS may be shared so clone it before we modify it 1030 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr); 1031 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1032 jvms->set_map(this); 1033 jvms->set_locoff(jvms->locoff()+jvms_adj); 1034 jvms->set_stkoff(jvms->stkoff()+jvms_adj); 1035 jvms->set_monoff(jvms->monoff()+jvms_adj); 1036 jvms->set_scloff(jvms->scloff()+jvms_adj); 1037 jvms->set_endoff(jvms->endoff()+jvms_adj); 1038 } 1039 } 1040 1041 #ifdef ASSERT 1042 bool CallJavaNode::validate_symbolic_info() const { 1043 if (method() == nullptr) { 1044 return true; // call into runtime or uncommon trap 1045 } 1046 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci()); 1047 ciMethod* callee = method(); 1048 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) { 1049 assert(override_symbolic_info(), "should be set"); 1050 } 1051 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info"); 1052 return true; 1053 } 1054 #endif 1055 1056 #ifndef PRODUCT 1057 void CallJavaNode::dump_spec(outputStream* st) const { 1058 if( _method ) _method->print_short_name(st); 1059 CallNode::dump_spec(st); 1060 } 1061 1062 void CallJavaNode::dump_compact_spec(outputStream* st) const { 1063 if (_method) { 1064 _method->print_short_name(st); 1065 } else { 1066 st->print("<?>"); 1067 } 1068 } 1069 #endif 1070 1071 //============================================================================= 1072 uint CallStaticJavaNode::size_of() const { return sizeof(*this); } 1073 bool CallStaticJavaNode::cmp( const Node &n ) const { 1074 CallStaticJavaNode &call = (CallStaticJavaNode&)n; 1075 return CallJavaNode::cmp(call); 1076 } 1077 1078 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1079 CallGenerator* cg = generator(); 1080 if (can_reshape && cg != nullptr) { 1081 assert(IncrementalInlineMH, "required"); 1082 assert(cg->call_node() == this, "mismatch"); 1083 assert(cg->is_mh_late_inline(), "not virtual"); 1084 1085 // Check whether this MH handle call becomes a candidate for inlining. 1086 ciMethod* callee = cg->method(); 1087 vmIntrinsics::ID iid = callee->intrinsic_id(); 1088 if (iid == vmIntrinsics::_invokeBasic) { 1089 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) { 1090 phase->C->prepend_late_inline(cg); 1091 set_generator(nullptr); 1092 } 1093 } else if (iid == vmIntrinsics::_linkToNative) { 1094 // never retry 1095 } else { 1096 assert(callee->has_member_arg(), "wrong type of call?"); 1097 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) { 1098 phase->C->prepend_late_inline(cg); 1099 set_generator(nullptr); 1100 } 1101 } 1102 } 1103 return CallNode::Ideal(phase, can_reshape); 1104 } 1105 1106 //----------------------------uncommon_trap_request---------------------------- 1107 // If this is an uncommon trap, return the request code, else zero. 1108 int CallStaticJavaNode::uncommon_trap_request() const { 1109 if (_name != nullptr && !strcmp(_name, "uncommon_trap")) { 1110 return extract_uncommon_trap_request(this); 1111 } 1112 return 0; 1113 } 1114 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) { 1115 #ifndef PRODUCT 1116 if (!(call->req() > TypeFunc::Parms && 1117 call->in(TypeFunc::Parms) != nullptr && 1118 call->in(TypeFunc::Parms)->is_Con() && 1119 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) { 1120 assert(in_dump() != 0, "OK if dumping"); 1121 tty->print("[bad uncommon trap]"); 1122 return 0; 1123 } 1124 #endif 1125 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con(); 1126 } 1127 1128 #ifndef PRODUCT 1129 void CallStaticJavaNode::dump_spec(outputStream *st) const { 1130 st->print("# Static "); 1131 if (_name != nullptr) { 1132 st->print("%s", _name); 1133 int trap_req = uncommon_trap_request(); 1134 if (trap_req != 0) { 1135 char buf[100]; 1136 st->print("(%s)", 1137 Deoptimization::format_trap_request(buf, sizeof(buf), 1138 trap_req)); 1139 } 1140 st->print(" "); 1141 } 1142 CallJavaNode::dump_spec(st); 1143 } 1144 1145 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const { 1146 if (_method) { 1147 _method->print_short_name(st); 1148 } else if (_name) { 1149 st->print("%s", _name); 1150 } else { 1151 st->print("<?>"); 1152 } 1153 } 1154 #endif 1155 1156 //============================================================================= 1157 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); } 1158 bool CallDynamicJavaNode::cmp( const Node &n ) const { 1159 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n; 1160 return CallJavaNode::cmp(call); 1161 } 1162 1163 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1164 CallGenerator* cg = generator(); 1165 if (can_reshape && cg != nullptr) { 1166 assert(IncrementalInlineVirtual, "required"); 1167 assert(cg->call_node() == this, "mismatch"); 1168 assert(cg->is_virtual_late_inline(), "not virtual"); 1169 1170 // Recover symbolic info for method resolution. 1171 ciMethod* caller = jvms()->method(); 1172 ciBytecodeStream iter(caller); 1173 iter.force_bci(jvms()->bci()); 1174 1175 bool not_used1; 1176 ciSignature* not_used2; 1177 ciMethod* orig_callee = iter.get_method(not_used1, ¬_used2); // callee in the bytecode 1178 ciKlass* holder = iter.get_declared_method_holder(); 1179 if (orig_callee->is_method_handle_intrinsic()) { 1180 assert(_override_symbolic_info, "required"); 1181 orig_callee = method(); 1182 holder = method()->holder(); 1183 } 1184 1185 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); 1186 1187 Node* receiver_node = in(TypeFunc::Parms); 1188 const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr(); 1189 1190 int not_used3; 1191 bool call_does_dispatch; 1192 ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/, 1193 call_does_dispatch, not_used3); // out-parameters 1194 if (!call_does_dispatch) { 1195 // Register for late inlining. 1196 cg->set_callee_method(callee); 1197 phase->C->prepend_late_inline(cg); // MH late inlining prepends to the list, so do the same 1198 set_generator(nullptr); 1199 } 1200 } 1201 return CallNode::Ideal(phase, can_reshape); 1202 } 1203 1204 #ifndef PRODUCT 1205 void CallDynamicJavaNode::dump_spec(outputStream *st) const { 1206 st->print("# Dynamic "); 1207 CallJavaNode::dump_spec(st); 1208 } 1209 #endif 1210 1211 //============================================================================= 1212 uint CallRuntimeNode::size_of() const { return sizeof(*this); } 1213 bool CallRuntimeNode::cmp( const Node &n ) const { 1214 CallRuntimeNode &call = (CallRuntimeNode&)n; 1215 return CallNode::cmp(call) && !strcmp(_name,call._name); 1216 } 1217 #ifndef PRODUCT 1218 void CallRuntimeNode::dump_spec(outputStream *st) const { 1219 st->print("# "); 1220 st->print("%s", _name); 1221 CallNode::dump_spec(st); 1222 } 1223 #endif 1224 uint CallLeafVectorNode::size_of() const { return sizeof(*this); } 1225 bool CallLeafVectorNode::cmp( const Node &n ) const { 1226 CallLeafVectorNode &call = (CallLeafVectorNode&)n; 1227 return CallLeafNode::cmp(call) && _num_bits == call._num_bits; 1228 } 1229 1230 //------------------------------calling_convention----------------------------- 1231 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 1232 SharedRuntime::c_calling_convention(sig_bt, parm_regs, /*regs2=*/nullptr, argcnt); 1233 } 1234 1235 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 1236 #ifdef ASSERT 1237 assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits, 1238 "return vector size must match"); 1239 const TypeTuple* d = tf()->domain(); 1240 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1241 Node* arg = in(i); 1242 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits, 1243 "vector argument size must match"); 1244 } 1245 #endif 1246 1247 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt); 1248 } 1249 1250 //============================================================================= 1251 //------------------------------calling_convention----------------------------- 1252 1253 1254 //============================================================================= 1255 #ifndef PRODUCT 1256 void CallLeafNode::dump_spec(outputStream *st) const { 1257 st->print("# "); 1258 st->print("%s", _name); 1259 CallNode::dump_spec(st); 1260 } 1261 #endif 1262 1263 //============================================================================= 1264 1265 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) { 1266 assert(verify_jvms(jvms), "jvms must match"); 1267 int loc = jvms->locoff() + idx; 1268 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) { 1269 // If current local idx is top then local idx - 1 could 1270 // be a long/double that needs to be killed since top could 1271 // represent the 2nd half of the long/double. 1272 uint ideal = in(loc -1)->ideal_reg(); 1273 if (ideal == Op_RegD || ideal == Op_RegL) { 1274 // set other (low index) half to top 1275 set_req(loc - 1, in(loc)); 1276 } 1277 } 1278 set_req(loc, c); 1279 } 1280 1281 uint SafePointNode::size_of() const { return sizeof(*this); } 1282 bool SafePointNode::cmp( const Node &n ) const { 1283 return (&n == this); // Always fail except on self 1284 } 1285 1286 //-------------------------set_next_exception---------------------------------- 1287 void SafePointNode::set_next_exception(SafePointNode* n) { 1288 assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception"); 1289 if (len() == req()) { 1290 if (n != nullptr) add_prec(n); 1291 } else { 1292 set_prec(req(), n); 1293 } 1294 } 1295 1296 1297 //----------------------------next_exception----------------------------------- 1298 SafePointNode* SafePointNode::next_exception() const { 1299 if (len() == req()) { 1300 return nullptr; 1301 } else { 1302 Node* n = in(req()); 1303 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges"); 1304 return (SafePointNode*) n; 1305 } 1306 } 1307 1308 1309 //------------------------------Ideal------------------------------------------ 1310 // Skip over any collapsed Regions 1311 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1312 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState"); 1313 return remove_dead_region(phase, can_reshape) ? this : nullptr; 1314 } 1315 1316 //------------------------------Identity--------------------------------------- 1317 // Remove obviously duplicate safepoints 1318 Node* SafePointNode::Identity(PhaseGVN* phase) { 1319 1320 // If you have back to back safepoints, remove one 1321 if (in(TypeFunc::Control)->is_SafePoint()) { 1322 Node* out_c = unique_ctrl_out_or_null(); 1323 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the 1324 // outer loop's safepoint could confuse removal of the outer loop. 1325 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) { 1326 return in(TypeFunc::Control); 1327 } 1328 } 1329 1330 // Transforming long counted loops requires a safepoint node. Do not 1331 // eliminate a safepoint until loop opts are over. 1332 if (in(0)->is_Proj() && !phase->C->major_progress()) { 1333 Node *n0 = in(0)->in(0); 1334 // Check if he is a call projection (except Leaf Call) 1335 if( n0->is_Catch() ) { 1336 n0 = n0->in(0)->in(0); 1337 assert( n0->is_Call(), "expect a call here" ); 1338 } 1339 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) { 1340 // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode. 1341 // If the loop dies, they will be removed together. 1342 if (has_out_with(Op_OuterStripMinedLoopEnd)) { 1343 return this; 1344 } 1345 // Useless Safepoint, so remove it 1346 return in(TypeFunc::Control); 1347 } 1348 } 1349 1350 return this; 1351 } 1352 1353 //------------------------------Value------------------------------------------ 1354 const Type* SafePointNode::Value(PhaseGVN* phase) const { 1355 if (phase->type(in(0)) == Type::TOP) { 1356 return Type::TOP; 1357 } 1358 if (in(0) == this) { 1359 return Type::TOP; // Dead infinite loop 1360 } 1361 return Type::CONTROL; 1362 } 1363 1364 #ifndef PRODUCT 1365 void SafePointNode::dump_spec(outputStream *st) const { 1366 st->print(" SafePoint "); 1367 _replaced_nodes.dump(st); 1368 } 1369 #endif 1370 1371 const RegMask &SafePointNode::in_RegMask(uint idx) const { 1372 if( idx < TypeFunc::Parms ) return RegMask::Empty; 1373 // Values outside the domain represent debug info 1374 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1375 } 1376 const RegMask &SafePointNode::out_RegMask() const { 1377 return RegMask::Empty; 1378 } 1379 1380 1381 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) { 1382 assert((int)grow_by > 0, "sanity"); 1383 int monoff = jvms->monoff(); 1384 int scloff = jvms->scloff(); 1385 int endoff = jvms->endoff(); 1386 assert(endoff == (int)req(), "no other states or debug info after me"); 1387 Node* top = Compile::current()->top(); 1388 for (uint i = 0; i < grow_by; i++) { 1389 ins_req(monoff, top); 1390 } 1391 jvms->set_monoff(monoff + grow_by); 1392 jvms->set_scloff(scloff + grow_by); 1393 jvms->set_endoff(endoff + grow_by); 1394 } 1395 1396 void SafePointNode::push_monitor(const FastLockNode *lock) { 1397 // Add a LockNode, which points to both the original BoxLockNode (the 1398 // stack space for the monitor) and the Object being locked. 1399 const int MonitorEdges = 2; 1400 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1401 assert(req() == jvms()->endoff(), "correct sizing"); 1402 int nextmon = jvms()->scloff(); 1403 if (GenerateSynchronizationCode) { 1404 ins_req(nextmon, lock->box_node()); 1405 ins_req(nextmon+1, lock->obj_node()); 1406 } else { 1407 Node* top = Compile::current()->top(); 1408 ins_req(nextmon, top); 1409 ins_req(nextmon, top); 1410 } 1411 jvms()->set_scloff(nextmon + MonitorEdges); 1412 jvms()->set_endoff(req()); 1413 } 1414 1415 void SafePointNode::pop_monitor() { 1416 // Delete last monitor from debug info 1417 debug_only(int num_before_pop = jvms()->nof_monitors()); 1418 const int MonitorEdges = 2; 1419 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1420 int scloff = jvms()->scloff(); 1421 int endoff = jvms()->endoff(); 1422 int new_scloff = scloff - MonitorEdges; 1423 int new_endoff = endoff - MonitorEdges; 1424 jvms()->set_scloff(new_scloff); 1425 jvms()->set_endoff(new_endoff); 1426 while (scloff > new_scloff) del_req_ordered(--scloff); 1427 assert(jvms()->nof_monitors() == num_before_pop-1, ""); 1428 } 1429 1430 Node *SafePointNode::peek_monitor_box() const { 1431 int mon = jvms()->nof_monitors() - 1; 1432 assert(mon >= 0, "must have a monitor"); 1433 return monitor_box(jvms(), mon); 1434 } 1435 1436 Node *SafePointNode::peek_monitor_obj() const { 1437 int mon = jvms()->nof_monitors() - 1; 1438 assert(mon >= 0, "must have a monitor"); 1439 return monitor_obj(jvms(), mon); 1440 } 1441 1442 Node* SafePointNode::peek_operand(uint off) const { 1443 assert(jvms()->sp() > 0, "must have an operand"); 1444 assert(off < jvms()->sp(), "off is out-of-range"); 1445 return stack(jvms(), jvms()->sp() - off - 1); 1446 } 1447 1448 // Do we Match on this edge index or not? Match no edges 1449 uint SafePointNode::match_edge(uint idx) const { 1450 return (TypeFunc::Parms == idx); 1451 } 1452 1453 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) { 1454 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops"); 1455 int nb = igvn->C->root()->find_prec_edge(this); 1456 if (nb != -1) { 1457 igvn->delete_precedence_of(igvn->C->root(), nb); 1458 } 1459 } 1460 1461 //============== SafePointScalarObjectNode ============== 1462 1463 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, 1464 #ifdef ASSERT 1465 Node* alloc, 1466 #endif 1467 uint first_index, 1468 uint depth, 1469 uint n_fields) : 1470 TypeNode(tp, 1), // 1 control input -- seems required. Get from root. 1471 _first_index(first_index), 1472 _depth(depth), 1473 _n_fields(n_fields) 1474 #ifdef ASSERT 1475 , _alloc(alloc) 1476 #endif 1477 { 1478 #ifdef ASSERT 1479 if (!alloc->is_Allocate() 1480 && !(alloc->Opcode() == Op_VectorBox)) { 1481 alloc->dump(); 1482 assert(false, "unexpected call node"); 1483 } 1484 #endif 1485 init_class_id(Class_SafePointScalarObject); 1486 } 1487 1488 // Do not allow value-numbering for SafePointScalarObject node. 1489 uint SafePointScalarObjectNode::hash() const { return NO_HASH; } 1490 bool SafePointScalarObjectNode::cmp( const Node &n ) const { 1491 return (&n == this); // Always fail except on self 1492 } 1493 1494 uint SafePointScalarObjectNode::ideal_reg() const { 1495 return 0; // No matching to machine instruction 1496 } 1497 1498 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const { 1499 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1500 } 1501 1502 const RegMask &SafePointScalarObjectNode::out_RegMask() const { 1503 return RegMask::Empty; 1504 } 1505 1506 uint SafePointScalarObjectNode::match_edge(uint idx) const { 1507 return 0; 1508 } 1509 1510 SafePointScalarObjectNode* 1511 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const { 1512 void* cached = (*sosn_map)[(void*)this]; 1513 if (cached != nullptr) { 1514 new_node = false; 1515 return (SafePointScalarObjectNode*)cached; 1516 } 1517 new_node = true; 1518 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone(); 1519 sosn_map->Insert((void*)this, (void*)res); 1520 return res; 1521 } 1522 1523 1524 #ifndef PRODUCT 1525 void SafePointScalarObjectNode::dump_spec(outputStream *st) const { 1526 st->print(" # fields@[%d..%d]", first_index(), 1527 first_index() + n_fields() - 1); 1528 } 1529 1530 #endif 1531 1532 //============================================================================= 1533 uint AllocateNode::size_of() const { return sizeof(*this); } 1534 1535 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype, 1536 Node *ctrl, Node *mem, Node *abio, 1537 Node *size, Node *klass_node, Node *initial_test) 1538 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM) 1539 { 1540 init_class_id(Class_Allocate); 1541 init_flags(Flag_is_macro); 1542 _is_scalar_replaceable = false; 1543 _is_non_escaping = false; 1544 _is_allocation_MemBar_redundant = false; 1545 Node *topnode = C->top(); 1546 1547 init_req( TypeFunc::Control , ctrl ); 1548 init_req( TypeFunc::I_O , abio ); 1549 init_req( TypeFunc::Memory , mem ); 1550 init_req( TypeFunc::ReturnAdr, topnode ); 1551 init_req( TypeFunc::FramePtr , topnode ); 1552 init_req( AllocSize , size); 1553 init_req( KlassNode , klass_node); 1554 init_req( InitialTest , initial_test); 1555 init_req( ALength , topnode); 1556 init_req( ValidLengthTest , topnode); 1557 C->add_macro_node(this); 1558 } 1559 1560 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer) 1561 { 1562 assert(initializer != nullptr && 1563 initializer->is_initializer() && 1564 !initializer->is_static(), 1565 "unexpected initializer method"); 1566 BCEscapeAnalyzer* analyzer = initializer->get_bcea(); 1567 if (analyzer == nullptr) { 1568 return; 1569 } 1570 1571 // Allocation node is first parameter in its initializer 1572 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) { 1573 _is_allocation_MemBar_redundant = true; 1574 } 1575 } 1576 Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) { 1577 Node* mark_node = nullptr; 1578 // For now only enable fast locking for non-array types 1579 mark_node = phase->MakeConX(markWord::prototype().value()); 1580 return mark_node; 1581 } 1582 1583 // Retrieve the length from the AllocateArrayNode. Narrow the type with a 1584 // CastII, if appropriate. If we are not allowed to create new nodes, and 1585 // a CastII is appropriate, return null. 1586 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) { 1587 Node *length = in(AllocateNode::ALength); 1588 assert(length != nullptr, "length is not null"); 1589 1590 const TypeInt* length_type = phase->find_int_type(length); 1591 const TypeAryPtr* ary_type = oop_type->isa_aryptr(); 1592 1593 if (ary_type != nullptr && length_type != nullptr) { 1594 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type); 1595 if (narrow_length_type != length_type) { 1596 // Assert one of: 1597 // - the narrow_length is 0 1598 // - the narrow_length is not wider than length 1599 assert(narrow_length_type == TypeInt::ZERO || 1600 length_type->is_con() && narrow_length_type->is_con() && 1601 (narrow_length_type->_hi <= length_type->_lo) || 1602 (narrow_length_type->_hi <= length_type->_hi && 1603 narrow_length_type->_lo >= length_type->_lo), 1604 "narrow type must be narrower than length type"); 1605 1606 // Return null if new nodes are not allowed 1607 if (!allow_new_nodes) { 1608 return nullptr; 1609 } 1610 // Create a cast which is control dependent on the initialization to 1611 // propagate the fact that the array length must be positive. 1612 InitializeNode* init = initialization(); 1613 if (init != nullptr) { 1614 length = new CastIINode(length, narrow_length_type); 1615 length->set_req(TypeFunc::Control, init->proj_out_or_null(TypeFunc::Control)); 1616 } 1617 } 1618 } 1619 1620 return length; 1621 } 1622 1623 //============================================================================= 1624 uint LockNode::size_of() const { return sizeof(*this); } 1625 1626 // Redundant lock elimination 1627 // 1628 // There are various patterns of locking where we release and 1629 // immediately reacquire a lock in a piece of code where no operations 1630 // occur in between that would be observable. In those cases we can 1631 // skip releasing and reacquiring the lock without violating any 1632 // fairness requirements. Doing this around a loop could cause a lock 1633 // to be held for a very long time so we concentrate on non-looping 1634 // control flow. We also require that the operations are fully 1635 // redundant meaning that we don't introduce new lock operations on 1636 // some paths so to be able to eliminate it on others ala PRE. This 1637 // would probably require some more extensive graph manipulation to 1638 // guarantee that the memory edges were all handled correctly. 1639 // 1640 // Assuming p is a simple predicate which can't trap in any way and s 1641 // is a synchronized method consider this code: 1642 // 1643 // s(); 1644 // if (p) 1645 // s(); 1646 // else 1647 // s(); 1648 // s(); 1649 // 1650 // 1. The unlocks of the first call to s can be eliminated if the 1651 // locks inside the then and else branches are eliminated. 1652 // 1653 // 2. The unlocks of the then and else branches can be eliminated if 1654 // the lock of the final call to s is eliminated. 1655 // 1656 // Either of these cases subsumes the simple case of sequential control flow 1657 // 1658 // Additionally we can eliminate versions without the else case: 1659 // 1660 // s(); 1661 // if (p) 1662 // s(); 1663 // s(); 1664 // 1665 // 3. In this case we eliminate the unlock of the first s, the lock 1666 // and unlock in the then case and the lock in the final s. 1667 // 1668 // Note also that in all these cases the then/else pieces don't have 1669 // to be trivial as long as they begin and end with synchronization 1670 // operations. 1671 // 1672 // s(); 1673 // if (p) 1674 // s(); 1675 // f(); 1676 // s(); 1677 // s(); 1678 // 1679 // The code will work properly for this case, leaving in the unlock 1680 // before the call to f and the relock after it. 1681 // 1682 // A potentially interesting case which isn't handled here is when the 1683 // locking is partially redundant. 1684 // 1685 // s(); 1686 // if (p) 1687 // s(); 1688 // 1689 // This could be eliminated putting unlocking on the else case and 1690 // eliminating the first unlock and the lock in the then side. 1691 // Alternatively the unlock could be moved out of the then side so it 1692 // was after the merge and the first unlock and second lock 1693 // eliminated. This might require less manipulation of the memory 1694 // state to get correct. 1695 // 1696 // Additionally we might allow work between a unlock and lock before 1697 // giving up eliminating the locks. The current code disallows any 1698 // conditional control flow between these operations. A formulation 1699 // similar to partial redundancy elimination computing the 1700 // availability of unlocking and the anticipatability of locking at a 1701 // program point would allow detection of fully redundant locking with 1702 // some amount of work in between. I'm not sure how often I really 1703 // think that would occur though. Most of the cases I've seen 1704 // indicate it's likely non-trivial work would occur in between. 1705 // There may be other more complicated constructs where we could 1706 // eliminate locking but I haven't seen any others appear as hot or 1707 // interesting. 1708 // 1709 // Locking and unlocking have a canonical form in ideal that looks 1710 // roughly like this: 1711 // 1712 // <obj> 1713 // | \\------+ 1714 // | \ \ 1715 // | BoxLock \ 1716 // | | | \ 1717 // | | \ \ 1718 // | | FastLock 1719 // | | / 1720 // | | / 1721 // | | | 1722 // 1723 // Lock 1724 // | 1725 // Proj #0 1726 // | 1727 // MembarAcquire 1728 // | 1729 // Proj #0 1730 // 1731 // MembarRelease 1732 // | 1733 // Proj #0 1734 // | 1735 // Unlock 1736 // | 1737 // Proj #0 1738 // 1739 // 1740 // This code proceeds by processing Lock nodes during PhaseIterGVN 1741 // and searching back through its control for the proper code 1742 // patterns. Once it finds a set of lock and unlock operations to 1743 // eliminate they are marked as eliminatable which causes the 1744 // expansion of the Lock and Unlock macro nodes to make the operation a NOP 1745 // 1746 //============================================================================= 1747 1748 // 1749 // Utility function to skip over uninteresting control nodes. Nodes skipped are: 1750 // - copy regions. (These may not have been optimized away yet.) 1751 // - eliminated locking nodes 1752 // 1753 static Node *next_control(Node *ctrl) { 1754 if (ctrl == nullptr) 1755 return nullptr; 1756 while (1) { 1757 if (ctrl->is_Region()) { 1758 RegionNode *r = ctrl->as_Region(); 1759 Node *n = r->is_copy(); 1760 if (n == nullptr) 1761 break; // hit a region, return it 1762 else 1763 ctrl = n; 1764 } else if (ctrl->is_Proj()) { 1765 Node *in0 = ctrl->in(0); 1766 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) { 1767 ctrl = in0->in(0); 1768 } else { 1769 break; 1770 } 1771 } else { 1772 break; // found an interesting control 1773 } 1774 } 1775 return ctrl; 1776 } 1777 // 1778 // Given a control, see if it's the control projection of an Unlock which 1779 // operating on the same object as lock. 1780 // 1781 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock, 1782 GrowableArray<AbstractLockNode*> &lock_ops) { 1783 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr; 1784 if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) { 1785 Node *n = ctrl_proj->in(0); 1786 if (n != nullptr && n->is_Unlock()) { 1787 UnlockNode *unlock = n->as_Unlock(); 1788 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1789 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 1790 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); 1791 if (lock_obj->eqv_uncast(unlock_obj) && 1792 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) && 1793 !unlock->is_eliminated()) { 1794 lock_ops.append(unlock); 1795 return true; 1796 } 1797 } 1798 } 1799 return false; 1800 } 1801 1802 // 1803 // Find the lock matching an unlock. Returns null if a safepoint 1804 // or complicated control is encountered first. 1805 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) { 1806 LockNode *lock_result = nullptr; 1807 // find the matching lock, or an intervening safepoint 1808 Node *ctrl = next_control(unlock->in(0)); 1809 while (1) { 1810 assert(ctrl != nullptr, "invalid control graph"); 1811 assert(!ctrl->is_Start(), "missing lock for unlock"); 1812 if (ctrl->is_top()) break; // dead control path 1813 if (ctrl->is_Proj()) ctrl = ctrl->in(0); 1814 if (ctrl->is_SafePoint()) { 1815 break; // found a safepoint (may be the lock we are searching for) 1816 } else if (ctrl->is_Region()) { 1817 // Check for a simple diamond pattern. Punt on anything more complicated 1818 if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) { 1819 Node *in1 = next_control(ctrl->in(1)); 1820 Node *in2 = next_control(ctrl->in(2)); 1821 if (((in1->is_IfTrue() && in2->is_IfFalse()) || 1822 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) { 1823 ctrl = next_control(in1->in(0)->in(0)); 1824 } else { 1825 break; 1826 } 1827 } else { 1828 break; 1829 } 1830 } else { 1831 ctrl = next_control(ctrl->in(0)); // keep searching 1832 } 1833 } 1834 if (ctrl->is_Lock()) { 1835 LockNode *lock = ctrl->as_Lock(); 1836 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1837 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 1838 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); 1839 if (lock_obj->eqv_uncast(unlock_obj) && 1840 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) { 1841 lock_result = lock; 1842 } 1843 } 1844 return lock_result; 1845 } 1846 1847 // This code corresponds to case 3 above. 1848 1849 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock, 1850 GrowableArray<AbstractLockNode*> &lock_ops) { 1851 Node* if_node = node->in(0); 1852 bool if_true = node->is_IfTrue(); 1853 1854 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) { 1855 Node *lock_ctrl = next_control(if_node->in(0)); 1856 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) { 1857 Node* lock1_node = nullptr; 1858 ProjNode* proj = if_node->as_If()->proj_out(!if_true); 1859 if (if_true) { 1860 if (proj->is_IfFalse() && proj->outcnt() == 1) { 1861 lock1_node = proj->unique_out(); 1862 } 1863 } else { 1864 if (proj->is_IfTrue() && proj->outcnt() == 1) { 1865 lock1_node = proj->unique_out(); 1866 } 1867 } 1868 if (lock1_node != nullptr && lock1_node->is_Lock()) { 1869 LockNode *lock1 = lock1_node->as_Lock(); 1870 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1871 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 1872 Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node()); 1873 if (lock_obj->eqv_uncast(lock1_obj) && 1874 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) && 1875 !lock1->is_eliminated()) { 1876 lock_ops.append(lock1); 1877 return true; 1878 } 1879 } 1880 } 1881 } 1882 1883 lock_ops.trunc_to(0); 1884 return false; 1885 } 1886 1887 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock, 1888 GrowableArray<AbstractLockNode*> &lock_ops) { 1889 // check each control merging at this point for a matching unlock. 1890 // in(0) should be self edge so skip it. 1891 for (int i = 1; i < (int)region->req(); i++) { 1892 Node *in_node = next_control(region->in(i)); 1893 if (in_node != nullptr) { 1894 if (find_matching_unlock(in_node, lock, lock_ops)) { 1895 // found a match so keep on checking. 1896 continue; 1897 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) { 1898 continue; 1899 } 1900 1901 // If we fall through to here then it was some kind of node we 1902 // don't understand or there wasn't a matching unlock, so give 1903 // up trying to merge locks. 1904 lock_ops.trunc_to(0); 1905 return false; 1906 } 1907 } 1908 return true; 1909 1910 } 1911 1912 // Check that all locks/unlocks associated with object come from balanced regions. 1913 bool AbstractLockNode::is_balanced() { 1914 Node* obj = obj_node(); 1915 for (uint j = 0; j < obj->outcnt(); j++) { 1916 Node* n = obj->raw_out(j); 1917 if (n->is_AbstractLock() && 1918 n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 1919 BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock(); 1920 if (n_box->is_unbalanced()) { 1921 return false; 1922 } 1923 } 1924 } 1925 return true; 1926 } 1927 1928 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"}; 1929 1930 const char * AbstractLockNode::kind_as_string() const { 1931 return _kind_names[_kind]; 1932 } 1933 1934 #ifndef PRODUCT 1935 // 1936 // Create a counter which counts the number of times this lock is acquired 1937 // 1938 void AbstractLockNode::create_lock_counter(JVMState* state) { 1939 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter); 1940 } 1941 1942 void AbstractLockNode::set_eliminated_lock_counter() { 1943 if (_counter) { 1944 // Update the counter to indicate that this lock was eliminated. 1945 // The counter update code will stay around even though the 1946 // optimizer will eliminate the lock operation itself. 1947 _counter->set_tag(NamedCounter::EliminatedLockCounter); 1948 } 1949 } 1950 1951 void AbstractLockNode::dump_spec(outputStream* st) const { 1952 st->print("%s ", _kind_names[_kind]); 1953 CallNode::dump_spec(st); 1954 } 1955 1956 void AbstractLockNode::dump_compact_spec(outputStream* st) const { 1957 st->print("%s", _kind_names[_kind]); 1958 } 1959 #endif 1960 1961 //============================================================================= 1962 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1963 1964 // perform any generic optimizations first (returns 'this' or null) 1965 Node *result = SafePointNode::Ideal(phase, can_reshape); 1966 if (result != nullptr) return result; 1967 // Don't bother trying to transform a dead node 1968 if (in(0) && in(0)->is_top()) return nullptr; 1969 1970 // Now see if we can optimize away this lock. We don't actually 1971 // remove the locking here, we simply set the _eliminate flag which 1972 // prevents macro expansion from expanding the lock. Since we don't 1973 // modify the graph, the value returned from this function is the 1974 // one computed above. 1975 if (can_reshape && EliminateLocks && !is_non_esc_obj()) { 1976 // 1977 // If we are locking an non-escaped object, the lock/unlock is unnecessary 1978 // 1979 ConnectionGraph *cgr = phase->C->congraph(); 1980 if (cgr != nullptr && cgr->can_eliminate_lock(this)) { 1981 assert(!is_eliminated() || is_coarsened(), "sanity"); 1982 // The lock could be marked eliminated by lock coarsening 1983 // code during first IGVN before EA. Replace coarsened flag 1984 // to eliminate all associated locks/unlocks. 1985 #ifdef ASSERT 1986 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1"); 1987 #endif 1988 this->set_non_esc_obj(); 1989 return result; 1990 } 1991 1992 if (!phase->C->do_locks_coarsening()) { 1993 return result; // Compiling without locks coarsening 1994 } 1995 // 1996 // Try lock coarsening 1997 // 1998 PhaseIterGVN* iter = phase->is_IterGVN(); 1999 if (iter != nullptr && !is_eliminated()) { 2000 2001 GrowableArray<AbstractLockNode*> lock_ops; 2002 2003 Node *ctrl = next_control(in(0)); 2004 2005 // now search back for a matching Unlock 2006 if (find_matching_unlock(ctrl, this, lock_ops)) { 2007 // found an unlock directly preceding this lock. This is the 2008 // case of single unlock directly control dependent on a 2009 // single lock which is the trivial version of case 1 or 2. 2010 } else if (ctrl->is_Region() ) { 2011 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) { 2012 // found lock preceded by multiple unlocks along all paths 2013 // joining at this point which is case 3 in description above. 2014 } 2015 } else { 2016 // see if this lock comes from either half of an if and the 2017 // predecessors merges unlocks and the other half of the if 2018 // performs a lock. 2019 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) { 2020 // found unlock splitting to an if with locks on both branches. 2021 } 2022 } 2023 2024 if (lock_ops.length() > 0) { 2025 // add ourselves to the list of locks to be eliminated. 2026 lock_ops.append(this); 2027 2028 #ifndef PRODUCT 2029 if (PrintEliminateLocks) { 2030 int locks = 0; 2031 int unlocks = 0; 2032 if (Verbose) { 2033 tty->print_cr("=== Locks coarsening ==="); 2034 tty->print("Obj: "); 2035 obj_node()->dump(); 2036 } 2037 for (int i = 0; i < lock_ops.length(); i++) { 2038 AbstractLockNode* lock = lock_ops.at(i); 2039 if (lock->Opcode() == Op_Lock) 2040 locks++; 2041 else 2042 unlocks++; 2043 if (Verbose) { 2044 tty->print("Box %d: ", i); 2045 box_node()->dump(); 2046 tty->print(" %d: ", i); 2047 lock->dump(); 2048 } 2049 } 2050 tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks); 2051 } 2052 #endif 2053 2054 // for each of the identified locks, mark them 2055 // as eliminatable 2056 for (int i = 0; i < lock_ops.length(); i++) { 2057 AbstractLockNode* lock = lock_ops.at(i); 2058 2059 // Mark it eliminated by coarsening and update any counters 2060 #ifdef ASSERT 2061 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened"); 2062 #endif 2063 lock->set_coarsened(); 2064 } 2065 // Record this coarsened group. 2066 phase->C->add_coarsened_locks(lock_ops); 2067 } else if (ctrl->is_Region() && 2068 iter->_worklist.member(ctrl)) { 2069 // We weren't able to find any opportunities but the region this 2070 // lock is control dependent on hasn't been processed yet so put 2071 // this lock back on the worklist so we can check again once any 2072 // region simplification has occurred. 2073 iter->_worklist.push(this); 2074 } 2075 } 2076 } 2077 2078 return result; 2079 } 2080 2081 //============================================================================= 2082 bool LockNode::is_nested_lock_region() { 2083 return is_nested_lock_region(nullptr); 2084 } 2085 2086 // p is used for access to compilation log; no logging if null 2087 bool LockNode::is_nested_lock_region(Compile * c) { 2088 BoxLockNode* box = box_node()->as_BoxLock(); 2089 int stk_slot = box->stack_slot(); 2090 if (stk_slot <= 0) { 2091 #ifdef ASSERT 2092 this->log_lock_optimization(c, "eliminate_lock_INLR_1"); 2093 #endif 2094 return false; // External lock or it is not Box (Phi node). 2095 } 2096 2097 // Ignore complex cases: merged locks or multiple locks. 2098 Node* obj = obj_node(); 2099 LockNode* unique_lock = nullptr; 2100 Node* bad_lock = nullptr; 2101 if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) { 2102 #ifdef ASSERT 2103 this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock); 2104 #endif 2105 return false; 2106 } 2107 if (unique_lock != this) { 2108 #ifdef ASSERT 2109 this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock)); 2110 if (PrintEliminateLocks && Verbose) { 2111 tty->print_cr("=============== unique_lock != this ============"); 2112 tty->print(" this: "); 2113 this->dump(); 2114 tty->print(" box: "); 2115 box->dump(); 2116 tty->print(" obj: "); 2117 obj->dump(); 2118 if (unique_lock != nullptr) { 2119 tty->print(" unique_lock: "); 2120 unique_lock->dump(); 2121 } 2122 if (bad_lock != nullptr) { 2123 tty->print(" bad_lock: "); 2124 bad_lock->dump(); 2125 } 2126 tty->print_cr("==============="); 2127 } 2128 #endif 2129 return false; 2130 } 2131 2132 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2133 obj = bs->step_over_gc_barrier(obj); 2134 // Look for external lock for the same object. 2135 SafePointNode* sfn = this->as_SafePoint(); 2136 JVMState* youngest_jvms = sfn->jvms(); 2137 int max_depth = youngest_jvms->depth(); 2138 for (int depth = 1; depth <= max_depth; depth++) { 2139 JVMState* jvms = youngest_jvms->of_depth(depth); 2140 int num_mon = jvms->nof_monitors(); 2141 // Loop over monitors 2142 for (int idx = 0; idx < num_mon; idx++) { 2143 Node* obj_node = sfn->monitor_obj(jvms, idx); 2144 obj_node = bs->step_over_gc_barrier(obj_node); 2145 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock(); 2146 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) { 2147 box->set_nested(); 2148 return true; 2149 } 2150 } 2151 } 2152 #ifdef ASSERT 2153 this->log_lock_optimization(c, "eliminate_lock_INLR_3"); 2154 #endif 2155 return false; 2156 } 2157 2158 //============================================================================= 2159 uint UnlockNode::size_of() const { return sizeof(*this); } 2160 2161 //============================================================================= 2162 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2163 2164 // perform any generic optimizations first (returns 'this' or null) 2165 Node *result = SafePointNode::Ideal(phase, can_reshape); 2166 if (result != nullptr) return result; 2167 // Don't bother trying to transform a dead node 2168 if (in(0) && in(0)->is_top()) return nullptr; 2169 2170 // Now see if we can optimize away this unlock. We don't actually 2171 // remove the unlocking here, we simply set the _eliminate flag which 2172 // prevents macro expansion from expanding the unlock. Since we don't 2173 // modify the graph, the value returned from this function is the 2174 // one computed above. 2175 // Escape state is defined after Parse phase. 2176 if (can_reshape && EliminateLocks && !is_non_esc_obj()) { 2177 // 2178 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary. 2179 // 2180 ConnectionGraph *cgr = phase->C->congraph(); 2181 if (cgr != nullptr && cgr->can_eliminate_lock(this)) { 2182 assert(!is_eliminated() || is_coarsened(), "sanity"); 2183 // The lock could be marked eliminated by lock coarsening 2184 // code during first IGVN before EA. Replace coarsened flag 2185 // to eliminate all associated locks/unlocks. 2186 #ifdef ASSERT 2187 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2"); 2188 #endif 2189 this->set_non_esc_obj(); 2190 } 2191 } 2192 return result; 2193 } 2194 2195 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const { 2196 if (C == nullptr) { 2197 return; 2198 } 2199 CompileLog* log = C->log(); 2200 if (log != nullptr) { 2201 Node* box = box_node(); 2202 Node* obj = obj_node(); 2203 int box_id = box != nullptr ? box->_idx : -1; 2204 int obj_id = obj != nullptr ? obj->_idx : -1; 2205 2206 log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'", 2207 tag, C->compile_id(), this->_idx, 2208 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?", 2209 kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1)); 2210 log->stamp(); 2211 log->end_head(); 2212 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms(); 2213 while (p != nullptr) { 2214 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 2215 p = p->caller(); 2216 } 2217 log->tail(tag); 2218 } 2219 } 2220 2221 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) { 2222 if (dest_t->is_known_instance() && t_oop->is_known_instance()) { 2223 return dest_t->instance_id() == t_oop->instance_id(); 2224 } 2225 2226 if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) { 2227 // clone 2228 if (t_oop->isa_aryptr()) { 2229 return false; 2230 } 2231 if (!t_oop->isa_instptr()) { 2232 return true; 2233 } 2234 if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) { 2235 return true; 2236 } 2237 // unrelated 2238 return false; 2239 } 2240 2241 if (dest_t->isa_aryptr()) { 2242 // arraycopy or array clone 2243 if (t_oop->isa_instptr()) { 2244 return false; 2245 } 2246 if (!t_oop->isa_aryptr()) { 2247 return true; 2248 } 2249 2250 const Type* elem = dest_t->is_aryptr()->elem(); 2251 if (elem == Type::BOTTOM) { 2252 // An array but we don't know what elements are 2253 return true; 2254 } 2255 2256 dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr(); 2257 uint dest_alias = phase->C->get_alias_index(dest_t); 2258 uint t_oop_alias = phase->C->get_alias_index(t_oop); 2259 2260 return dest_alias == t_oop_alias; 2261 } 2262 2263 return true; 2264 }