1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSet.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "jfr/jfrEvents.hpp" 39 #include "jvm_io.h" 40 #include "memory/allocation.hpp" 41 #include "memory/resourceArea.hpp" 42 #include "opto/addnode.hpp" 43 #include "opto/block.hpp" 44 #include "opto/c2compiler.hpp" 45 #include "opto/callGenerator.hpp" 46 #include "opto/callnode.hpp" 47 #include "opto/castnode.hpp" 48 #include "opto/cfgnode.hpp" 49 #include "opto/chaitin.hpp" 50 #include "opto/compile.hpp" 51 #include "opto/connode.hpp" 52 #include "opto/convertnode.hpp" 53 #include "opto/divnode.hpp" 54 #include "opto/escape.hpp" 55 #include "opto/idealGraphPrinter.hpp" 56 #include "opto/locknode.hpp" 57 #include "opto/loopnode.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/macro.hpp" 60 #include "opto/matcher.hpp" 61 #include "opto/mathexactnode.hpp" 62 #include "opto/memnode.hpp" 63 #include "opto/mulnode.hpp" 64 #include "opto/narrowptrnode.hpp" 65 #include "opto/node.hpp" 66 #include "opto/opcodes.hpp" 67 #include "opto/output.hpp" 68 #include "opto/parse.hpp" 69 #include "opto/phaseX.hpp" 70 #include "opto/rootnode.hpp" 71 #include "opto/runtime.hpp" 72 #include "opto/stringopts.hpp" 73 #include "opto/type.hpp" 74 #include "opto/vector.hpp" 75 #include "opto/vectornode.hpp" 76 #include "runtime/globals_extension.hpp" 77 #include "runtime/sharedRuntime.hpp" 78 #include "runtime/signature.hpp" 79 #include "runtime/stubRoutines.hpp" 80 #include "runtime/timer.hpp" 81 #include "utilities/align.hpp" 82 #include "utilities/copy.hpp" 83 #include "utilities/macros.hpp" 84 #include "utilities/resourceHash.hpp" 85 86 // -------------------- Compile::mach_constant_base_node ----------------------- 87 // Constant table base node singleton. 88 MachConstantBaseNode* Compile::mach_constant_base_node() { 89 if (_mach_constant_base_node == nullptr) { 90 _mach_constant_base_node = new MachConstantBaseNode(); 91 _mach_constant_base_node->add_req(C->root()); 92 } 93 return _mach_constant_base_node; 94 } 95 96 97 /// Support for intrinsics. 98 99 // Return the index at which m must be inserted (or already exists). 100 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 101 class IntrinsicDescPair { 102 private: 103 ciMethod* _m; 104 bool _is_virtual; 105 public: 106 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 107 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 108 ciMethod* m= elt->method(); 109 ciMethod* key_m = key->_m; 110 if (key_m < m) return -1; 111 else if (key_m > m) return 1; 112 else { 113 bool is_virtual = elt->is_virtual(); 114 bool key_virtual = key->_is_virtual; 115 if (key_virtual < is_virtual) return -1; 116 else if (key_virtual > is_virtual) return 1; 117 else return 0; 118 } 119 } 120 }; 121 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 122 #ifdef ASSERT 123 for (int i = 1; i < _intrinsics.length(); i++) { 124 CallGenerator* cg1 = _intrinsics.at(i-1); 125 CallGenerator* cg2 = _intrinsics.at(i); 126 assert(cg1->method() != cg2->method() 127 ? cg1->method() < cg2->method() 128 : cg1->is_virtual() < cg2->is_virtual(), 129 "compiler intrinsics list must stay sorted"); 130 } 131 #endif 132 IntrinsicDescPair pair(m, is_virtual); 133 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 134 } 135 136 void Compile::register_intrinsic(CallGenerator* cg) { 137 bool found = false; 138 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 139 assert(!found, "registering twice"); 140 _intrinsics.insert_before(index, cg); 141 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 142 } 143 144 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 145 assert(m->is_loaded(), "don't try this on unloaded methods"); 146 if (_intrinsics.length() > 0) { 147 bool found = false; 148 int index = intrinsic_insertion_index(m, is_virtual, found); 149 if (found) { 150 return _intrinsics.at(index); 151 } 152 } 153 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 154 if (m->intrinsic_id() != vmIntrinsics::_none && 155 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 156 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 157 if (cg != nullptr) { 158 // Save it for next time: 159 register_intrinsic(cg); 160 return cg; 161 } else { 162 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 163 } 164 } 165 return nullptr; 166 } 167 168 // Compile::make_vm_intrinsic is defined in library_call.cpp. 169 170 #ifndef PRODUCT 171 // statistics gathering... 172 173 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 174 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 175 176 inline int as_int(vmIntrinsics::ID id) { 177 return vmIntrinsics::as_int(id); 178 } 179 180 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 181 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 182 int oflags = _intrinsic_hist_flags[as_int(id)]; 183 assert(flags != 0, "what happened?"); 184 if (is_virtual) { 185 flags |= _intrinsic_virtual; 186 } 187 bool changed = (flags != oflags); 188 if ((flags & _intrinsic_worked) != 0) { 189 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 190 if (count == 1) { 191 changed = true; // first time 192 } 193 // increment the overall count also: 194 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 195 } 196 if (changed) { 197 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 198 // Something changed about the intrinsic's virtuality. 199 if ((flags & _intrinsic_virtual) != 0) { 200 // This is the first use of this intrinsic as a virtual call. 201 if (oflags != 0) { 202 // We already saw it as a non-virtual, so note both cases. 203 flags |= _intrinsic_both; 204 } 205 } else if ((oflags & _intrinsic_both) == 0) { 206 // This is the first use of this intrinsic as a non-virtual 207 flags |= _intrinsic_both; 208 } 209 } 210 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 211 } 212 // update the overall flags also: 213 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 214 return changed; 215 } 216 217 static char* format_flags(int flags, char* buf) { 218 buf[0] = 0; 219 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 220 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 221 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 222 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 223 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 224 if (buf[0] == 0) strcat(buf, ","); 225 assert(buf[0] == ',', "must be"); 226 return &buf[1]; 227 } 228 229 void Compile::print_intrinsic_statistics() { 230 char flagsbuf[100]; 231 ttyLocker ttyl; 232 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 233 tty->print_cr("Compiler intrinsic usage:"); 234 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 235 if (total == 0) total = 1; // avoid div0 in case of no successes 236 #define PRINT_STAT_LINE(name, c, f) \ 237 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 238 for (auto id : EnumRange<vmIntrinsicID>{}) { 239 int flags = _intrinsic_hist_flags[as_int(id)]; 240 juint count = _intrinsic_hist_count[as_int(id)]; 241 if ((flags | count) != 0) { 242 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 243 } 244 } 245 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 246 if (xtty != nullptr) xtty->tail("statistics"); 247 } 248 249 void Compile::print_statistics() { 250 { ttyLocker ttyl; 251 if (xtty != nullptr) xtty->head("statistics type='opto'"); 252 Parse::print_statistics(); 253 PhaseStringOpts::print_statistics(); 254 PhaseCCP::print_statistics(); 255 PhaseRegAlloc::print_statistics(); 256 PhaseOutput::print_statistics(); 257 PhasePeephole::print_statistics(); 258 PhaseIdealLoop::print_statistics(); 259 ConnectionGraph::print_statistics(); 260 PhaseMacroExpand::print_statistics(); 261 if (xtty != nullptr) xtty->tail("statistics"); 262 } 263 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 264 // put this under its own <statistics> element. 265 print_intrinsic_statistics(); 266 } 267 } 268 #endif //PRODUCT 269 270 void Compile::gvn_replace_by(Node* n, Node* nn) { 271 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 272 Node* use = n->last_out(i); 273 bool is_in_table = initial_gvn()->hash_delete(use); 274 uint uses_found = 0; 275 for (uint j = 0; j < use->len(); j++) { 276 if (use->in(j) == n) { 277 if (j < use->req()) 278 use->set_req(j, nn); 279 else 280 use->set_prec(j, nn); 281 uses_found++; 282 } 283 } 284 if (is_in_table) { 285 // reinsert into table 286 initial_gvn()->hash_find_insert(use); 287 } 288 record_for_igvn(use); 289 i -= uses_found; // we deleted 1 or more copies of this edge 290 } 291 } 292 293 294 // Identify all nodes that are reachable from below, useful. 295 // Use breadth-first pass that records state in a Unique_Node_List, 296 // recursive traversal is slower. 297 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 298 int estimated_worklist_size = live_nodes(); 299 useful.map( estimated_worklist_size, nullptr ); // preallocate space 300 301 // Initialize worklist 302 if (root() != nullptr) { useful.push(root()); } 303 // If 'top' is cached, declare it useful to preserve cached node 304 if (cached_top_node()) { useful.push(cached_top_node()); } 305 306 // Push all useful nodes onto the list, breadthfirst 307 for( uint next = 0; next < useful.size(); ++next ) { 308 assert( next < unique(), "Unique useful nodes < total nodes"); 309 Node *n = useful.at(next); 310 uint max = n->len(); 311 for( uint i = 0; i < max; ++i ) { 312 Node *m = n->in(i); 313 if (not_a_node(m)) continue; 314 useful.push(m); 315 } 316 } 317 } 318 319 // Update dead_node_list with any missing dead nodes using useful 320 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 321 void Compile::update_dead_node_list(Unique_Node_List &useful) { 322 uint max_idx = unique(); 323 VectorSet& useful_node_set = useful.member_set(); 324 325 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 326 // If node with index node_idx is not in useful set, 327 // mark it as dead in dead node list. 328 if (!useful_node_set.test(node_idx)) { 329 record_dead_node(node_idx); 330 } 331 } 332 } 333 334 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 335 int shift = 0; 336 for (int i = 0; i < inlines->length(); i++) { 337 CallGenerator* cg = inlines->at(i); 338 if (useful.member(cg->call_node())) { 339 if (shift > 0) { 340 inlines->at_put(i - shift, cg); 341 } 342 } else { 343 shift++; // skip over the dead element 344 } 345 } 346 if (shift > 0) { 347 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 348 } 349 } 350 351 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 352 assert(dead != nullptr && dead->is_Call(), "sanity"); 353 int found = 0; 354 for (int i = 0; i < inlines->length(); i++) { 355 if (inlines->at(i)->call_node() == dead) { 356 inlines->remove_at(i); 357 found++; 358 NOT_DEBUG( break; ) // elements are unique, so exit early 359 } 360 } 361 assert(found <= 1, "not unique"); 362 } 363 364 void Compile::remove_useless_nodes(GrowableArray<Node*>& node_list, Unique_Node_List& useful) { 365 for (int i = node_list.length() - 1; i >= 0; i--) { 366 Node* n = node_list.at(i); 367 if (!useful.member(n)) { 368 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 369 } 370 } 371 } 372 373 void Compile::remove_useless_node(Node* dead) { 374 remove_modified_node(dead); 375 376 // Constant node that has no out-edges and has only one in-edge from 377 // root is usually dead. However, sometimes reshaping walk makes 378 // it reachable by adding use edges. So, we will NOT count Con nodes 379 // as dead to be conservative about the dead node count at any 380 // given time. 381 if (!dead->is_Con()) { 382 record_dead_node(dead->_idx); 383 } 384 if (dead->is_macro()) { 385 remove_macro_node(dead); 386 } 387 if (dead->is_expensive()) { 388 remove_expensive_node(dead); 389 } 390 if (dead->Opcode() == Op_Opaque4) { 391 remove_template_assertion_predicate_opaq(dead); 392 } 393 if (dead->for_post_loop_opts_igvn()) { 394 remove_from_post_loop_opts_igvn(dead); 395 } 396 if (dead->is_Call()) { 397 remove_useless_late_inlines( &_late_inlines, dead); 398 remove_useless_late_inlines( &_string_late_inlines, dead); 399 remove_useless_late_inlines( &_boxing_late_inlines, dead); 400 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 401 402 if (dead->is_CallStaticJava()) { 403 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 404 } 405 } 406 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 407 bs->unregister_potential_barrier_node(dead); 408 } 409 410 // Disconnect all useless nodes by disconnecting those at the boundary. 411 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 412 uint next = 0; 413 while (next < useful.size()) { 414 Node *n = useful.at(next++); 415 if (n->is_SafePoint()) { 416 // We're done with a parsing phase. Replaced nodes are not valid 417 // beyond that point. 418 n->as_SafePoint()->delete_replaced_nodes(); 419 } 420 // Use raw traversal of out edges since this code removes out edges 421 int max = n->outcnt(); 422 for (int j = 0; j < max; ++j) { 423 Node* child = n->raw_out(j); 424 if (!useful.member(child)) { 425 assert(!child->is_top() || child != top(), 426 "If top is cached in Compile object it is in useful list"); 427 // Only need to remove this out-edge to the useless node 428 n->raw_del_out(j); 429 --j; 430 --max; 431 } 432 } 433 if (n->outcnt() == 1 && n->has_special_unique_user()) { 434 assert(useful.member(n->unique_out()), "do not push a useless node"); 435 worklist.push(n->unique_out()); 436 } 437 } 438 439 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 440 remove_useless_nodes(_parse_predicate_opaqs, useful); // remove useless Parse Predicate opaque nodes 441 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 442 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 443 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 444 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 445 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 446 #ifdef ASSERT 447 if (_modified_nodes != nullptr) { 448 _modified_nodes->remove_useless_nodes(useful.member_set()); 449 } 450 #endif 451 452 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 453 bs->eliminate_useless_gc_barriers(useful, this); 454 // clean up the late inline lists 455 remove_useless_late_inlines( &_late_inlines, useful); 456 remove_useless_late_inlines( &_string_late_inlines, useful); 457 remove_useless_late_inlines( &_boxing_late_inlines, useful); 458 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 459 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 460 } 461 462 // ============================================================================ 463 //------------------------------CompileWrapper--------------------------------- 464 class CompileWrapper : public StackObj { 465 Compile *const _compile; 466 public: 467 CompileWrapper(Compile* compile); 468 469 ~CompileWrapper(); 470 }; 471 472 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 473 // the Compile* pointer is stored in the current ciEnv: 474 ciEnv* env = compile->env(); 475 assert(env == ciEnv::current(), "must already be a ciEnv active"); 476 assert(env->compiler_data() == nullptr, "compile already active?"); 477 env->set_compiler_data(compile); 478 assert(compile == Compile::current(), "sanity"); 479 480 compile->set_type_dict(nullptr); 481 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 482 compile->clone_map().set_clone_idx(0); 483 compile->set_type_last_size(0); 484 compile->set_last_tf(nullptr, nullptr); 485 compile->set_indexSet_arena(nullptr); 486 compile->set_indexSet_free_block_list(nullptr); 487 compile->init_type_arena(); 488 Type::Initialize(compile); 489 _compile->begin_method(); 490 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 491 } 492 CompileWrapper::~CompileWrapper() { 493 // simulate crash during compilation 494 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 495 496 _compile->end_method(); 497 _compile->env()->set_compiler_data(nullptr); 498 } 499 500 501 //----------------------------print_compile_messages--------------------------- 502 void Compile::print_compile_messages() { 503 #ifndef PRODUCT 504 // Check if recompiling 505 if (!subsume_loads() && PrintOpto) { 506 // Recompiling without allowing machine instructions to subsume loads 507 tty->print_cr("*********************************************************"); 508 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 509 tty->print_cr("*********************************************************"); 510 } 511 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 512 // Recompiling without escape analysis 513 tty->print_cr("*********************************************************"); 514 tty->print_cr("** Bailout: Recompile without escape analysis **"); 515 tty->print_cr("*********************************************************"); 516 } 517 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 518 // Recompiling without iterative escape analysis 519 tty->print_cr("*********************************************************"); 520 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 521 tty->print_cr("*********************************************************"); 522 } 523 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 524 // Recompiling without boxing elimination 525 tty->print_cr("*********************************************************"); 526 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 527 tty->print_cr("*********************************************************"); 528 } 529 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 530 // Recompiling without locks coarsening 531 tty->print_cr("*********************************************************"); 532 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 533 tty->print_cr("*********************************************************"); 534 } 535 if (env()->break_at_compile()) { 536 // Open the debugger when compiling this method. 537 tty->print("### Breaking when compiling: "); 538 method()->print_short_name(); 539 tty->cr(); 540 BREAKPOINT; 541 } 542 543 if( PrintOpto ) { 544 if (is_osr_compilation()) { 545 tty->print("[OSR]%3d", _compile_id); 546 } else { 547 tty->print("%3d", _compile_id); 548 } 549 } 550 #endif 551 } 552 553 #ifndef PRODUCT 554 void Compile::print_ideal_ir(const char* phase_name) { 555 // keep the following output all in one block 556 // This output goes directly to the tty, not the compiler log. 557 // To enable tools to match it up with the compilation activity, 558 // be sure to tag this tty output with the compile ID. 559 560 // Node dumping can cause a safepoint, which can break the tty lock. 561 // Buffer all node dumps, so that all safepoints happen before we lock. 562 ResourceMark rm; 563 stringStream ss; 564 565 if (_output == nullptr) { 566 ss.print_cr("AFTER: %s", phase_name); 567 // Print out all nodes in ascending order of index. 568 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 569 } else { 570 // Dump the node blockwise if we have a scheduling 571 _output->print_scheduling(&ss); 572 } 573 574 // Check that the lock is not broken by a safepoint. 575 NoSafepointVerifier nsv; 576 ttyLocker ttyl; 577 if (xtty != nullptr) { 578 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 579 compile_id(), 580 is_osr_compilation() ? " compile_kind='osr'" : "", 581 phase_name); 582 xtty->print("%s", ss.as_string()); // print to tty would use xml escape encoding 583 xtty->tail("ideal"); 584 } else { 585 tty->print("%s", ss.as_string()); 586 } 587 } 588 #endif 589 590 // ============================================================================ 591 //------------------------------Compile standard------------------------------- 592 593 // Compile a method. entry_bci is -1 for normal compilations and indicates 594 // the continuation bci for on stack replacement. 595 596 597 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 598 Options options, DirectiveSet* directive) 599 : Phase(Compiler), 600 _compile_id(ci_env->compile_id()), 601 _options(options), 602 _method(target), 603 _entry_bci(osr_bci), 604 _ilt(nullptr), 605 _stub_function(nullptr), 606 _stub_name(nullptr), 607 _stub_entry_point(nullptr), 608 _max_node_limit(MaxNodeLimit), 609 _post_loop_opts_phase(false), 610 _inlining_progress(false), 611 _inlining_incrementally(false), 612 _do_cleanup(false), 613 _has_reserved_stack_access(target->has_reserved_stack_access()), 614 #ifndef PRODUCT 615 _igv_idx(0), 616 _trace_opto_output(directive->TraceOptoOutputOption), 617 #endif 618 _has_method_handle_invokes(false), 619 _clinit_barrier_on_entry(false), 620 _stress_seed(0), 621 _comp_arena(mtCompiler), 622 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 623 _env(ci_env), 624 _directive(directive), 625 _log(ci_env->log()), 626 _intrinsics (comp_arena(), 0, 0, nullptr), 627 _macro_nodes (comp_arena(), 8, 0, nullptr), 628 _parse_predicate_opaqs (comp_arena(), 8, 0, nullptr), 629 _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr), 630 _expensive_nodes (comp_arena(), 8, 0, nullptr), 631 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 632 _unstable_if_traps (comp_arena(), 8, 0, nullptr), 633 _coarsened_locks (comp_arena(), 8, 0, nullptr), 634 _congraph(nullptr), 635 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 636 _dead_node_list(comp_arena()), 637 _dead_node_count(0), 638 _node_arena(mtCompiler), 639 _old_arena(mtCompiler), 640 _mach_constant_base_node(nullptr), 641 _Compile_types(mtCompiler), 642 _initial_gvn(nullptr), 643 _igvn_worklist(nullptr), 644 _types(nullptr), 645 _node_hash(nullptr), 646 _late_inlines(comp_arena(), 2, 0, nullptr), 647 _string_late_inlines(comp_arena(), 2, 0, nullptr), 648 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 649 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 650 _late_inlines_pos(0), 651 _number_of_mh_late_inlines(0), 652 _print_inlining_stream(new (mtCompiler) stringStream()), 653 _print_inlining_list(nullptr), 654 _print_inlining_idx(0), 655 _print_inlining_output(nullptr), 656 _replay_inline_data(nullptr), 657 _java_calls(0), 658 _inner_loops(0), 659 _interpreter_frame_size(0), 660 _output(nullptr) 661 #ifndef PRODUCT 662 , _in_dump_cnt(0) 663 #endif 664 { 665 C = this; 666 CompileWrapper cw(this); 667 668 if (CITimeVerbose) { 669 tty->print(" "); 670 target->holder()->name()->print(); 671 tty->print("."); 672 target->print_short_name(); 673 tty->print(" "); 674 } 675 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 676 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 677 678 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 679 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 680 // We can always print a disassembly, either abstract (hex dump) or 681 // with the help of a suitable hsdis library. Thus, we should not 682 // couple print_assembly and print_opto_assembly controls. 683 // But: always print opto and regular assembly on compile command 'print'. 684 bool print_assembly = directive->PrintAssemblyOption; 685 set_print_assembly(print_opto_assembly || print_assembly); 686 #else 687 set_print_assembly(false); // must initialize. 688 #endif 689 690 #ifndef PRODUCT 691 set_parsed_irreducible_loop(false); 692 #endif 693 694 if (directive->ReplayInlineOption) { 695 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 696 } 697 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 698 set_print_intrinsics(directive->PrintIntrinsicsOption); 699 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 700 701 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 702 // Make sure the method being compiled gets its own MDO, 703 // so we can at least track the decompile_count(). 704 // Need MDO to record RTM code generation state. 705 method()->ensure_method_data(); 706 } 707 708 Init(/*do_aliasing=*/ true); 709 710 print_compile_messages(); 711 712 _ilt = InlineTree::build_inline_tree_root(); 713 714 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 715 assert(num_alias_types() >= AliasIdxRaw, ""); 716 717 #define MINIMUM_NODE_HASH 1023 718 719 // GVN that will be run immediately on new nodes 720 uint estimated_size = method()->code_size()*4+64; 721 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 722 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 723 _types = new (comp_arena()) Type_Array(comp_arena()); 724 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 725 PhaseGVN gvn; 726 set_initial_gvn(&gvn); 727 728 print_inlining_init(); 729 { // Scope for timing the parser 730 TracePhase tp("parse", &timers[_t_parser]); 731 732 // Put top into the hash table ASAP. 733 initial_gvn()->transform_no_reclaim(top()); 734 735 // Set up tf(), start(), and find a CallGenerator. 736 CallGenerator* cg = nullptr; 737 if (is_osr_compilation()) { 738 const TypeTuple *domain = StartOSRNode::osr_domain(); 739 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 740 init_tf(TypeFunc::make(domain, range)); 741 StartNode* s = new StartOSRNode(root(), domain); 742 initial_gvn()->set_type_bottom(s); 743 init_start(s); 744 cg = CallGenerator::for_osr(method(), entry_bci()); 745 } else { 746 // Normal case. 747 init_tf(TypeFunc::make(method())); 748 StartNode* s = new StartNode(root(), tf()->domain()); 749 initial_gvn()->set_type_bottom(s); 750 init_start(s); 751 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 752 // With java.lang.ref.reference.get() we must go through the 753 // intrinsic - even when get() is the root 754 // method of the compile - so that, if necessary, the value in 755 // the referent field of the reference object gets recorded by 756 // the pre-barrier code. 757 cg = find_intrinsic(method(), false); 758 } 759 if (cg == nullptr) { 760 float past_uses = method()->interpreter_invocation_count(); 761 float expected_uses = past_uses; 762 cg = CallGenerator::for_inline(method(), expected_uses); 763 } 764 } 765 if (failing()) return; 766 if (cg == nullptr) { 767 const char* reason = InlineTree::check_can_parse(method()); 768 assert(reason != nullptr, "expect reason for parse failure"); 769 stringStream ss; 770 ss.print("cannot parse method: %s", reason); 771 record_method_not_compilable(ss.as_string()); 772 return; 773 } 774 775 gvn.set_type(root(), root()->bottom_type()); 776 777 JVMState* jvms = build_start_state(start(), tf()); 778 if ((jvms = cg->generate(jvms)) == nullptr) { 779 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 780 assert(failure_reason() != nullptr, "expect reason for parse failure"); 781 stringStream ss; 782 ss.print("method parse failed: %s", failure_reason()); 783 record_method_not_compilable(ss.as_string()); 784 } 785 return; 786 } 787 GraphKit kit(jvms); 788 789 if (!kit.stopped()) { 790 // Accept return values, and transfer control we know not where. 791 // This is done by a special, unique ReturnNode bound to root. 792 return_values(kit.jvms()); 793 } 794 795 if (kit.has_exceptions()) { 796 // Any exceptions that escape from this call must be rethrown 797 // to whatever caller is dynamically above us on the stack. 798 // This is done by a special, unique RethrowNode bound to root. 799 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 800 } 801 802 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 803 804 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 805 inline_string_calls(true); 806 } 807 808 if (failing()) return; 809 810 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 811 812 // Remove clutter produced by parsing. 813 if (!failing()) { 814 ResourceMark rm; 815 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 816 } 817 } 818 819 // Note: Large methods are capped off in do_one_bytecode(). 820 if (failing()) return; 821 822 // After parsing, node notes are no longer automagic. 823 // They must be propagated by register_new_node_with_optimizer(), 824 // clone(), or the like. 825 set_default_node_notes(nullptr); 826 827 #ifndef PRODUCT 828 if (should_print_igv(1)) { 829 _igv_printer->print_inlining(); 830 } 831 #endif 832 833 if (failing()) return; 834 NOT_PRODUCT( verify_graph_edges(); ) 835 836 // If any phase is randomized for stress testing, seed random number 837 // generation and log the seed for repeatability. 838 if (StressLCM || StressGCM || StressIGVN || StressCCP || StressIncrementalInlining) { 839 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 840 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 841 FLAG_SET_ERGO(StressSeed, _stress_seed); 842 } else { 843 _stress_seed = StressSeed; 844 } 845 if (_log != nullptr) { 846 _log->elem("stress_test seed='%u'", _stress_seed); 847 } 848 } 849 850 // Now optimize 851 Optimize(); 852 if (failing()) return; 853 NOT_PRODUCT( verify_graph_edges(); ) 854 855 #ifndef PRODUCT 856 if (should_print_ideal()) { 857 print_ideal_ir("print_ideal"); 858 } 859 #endif 860 861 #ifdef ASSERT 862 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 863 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 864 #endif 865 866 // Dump compilation data to replay it. 867 if (directive->DumpReplayOption) { 868 env()->dump_replay_data(_compile_id); 869 } 870 if (directive->DumpInlineOption && (ilt() != nullptr)) { 871 env()->dump_inline_data(_compile_id); 872 } 873 874 // Now that we know the size of all the monitors we can add a fixed slot 875 // for the original deopt pc. 876 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 877 set_fixed_slots(next_slot); 878 879 // Compute when to use implicit null checks. Used by matching trap based 880 // nodes and NullCheck optimization. 881 set_allowed_deopt_reasons(); 882 883 // Now generate code 884 Code_Gen(); 885 } 886 887 //------------------------------Compile---------------------------------------- 888 // Compile a runtime stub 889 Compile::Compile( ciEnv* ci_env, 890 TypeFunc_generator generator, 891 address stub_function, 892 const char *stub_name, 893 int is_fancy_jump, 894 bool pass_tls, 895 bool return_pc, 896 DirectiveSet* directive) 897 : Phase(Compiler), 898 _compile_id(0), 899 _options(Options::for_runtime_stub()), 900 _method(nullptr), 901 _entry_bci(InvocationEntryBci), 902 _stub_function(stub_function), 903 _stub_name(stub_name), 904 _stub_entry_point(nullptr), 905 _max_node_limit(MaxNodeLimit), 906 _post_loop_opts_phase(false), 907 _inlining_progress(false), 908 _inlining_incrementally(false), 909 _has_reserved_stack_access(false), 910 #ifndef PRODUCT 911 _igv_idx(0), 912 _trace_opto_output(directive->TraceOptoOutputOption), 913 #endif 914 _has_method_handle_invokes(false), 915 _clinit_barrier_on_entry(false), 916 _stress_seed(0), 917 _comp_arena(mtCompiler), 918 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 919 _env(ci_env), 920 _directive(directive), 921 _log(ci_env->log()), 922 _congraph(nullptr), 923 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 924 _dead_node_list(comp_arena()), 925 _dead_node_count(0), 926 _node_arena(mtCompiler), 927 _old_arena(mtCompiler), 928 _mach_constant_base_node(nullptr), 929 _Compile_types(mtCompiler), 930 _initial_gvn(nullptr), 931 _igvn_worklist(nullptr), 932 _types(nullptr), 933 _node_hash(nullptr), 934 _number_of_mh_late_inlines(0), 935 _print_inlining_stream(new (mtCompiler) stringStream()), 936 _print_inlining_list(nullptr), 937 _print_inlining_idx(0), 938 _print_inlining_output(nullptr), 939 _replay_inline_data(nullptr), 940 _java_calls(0), 941 _inner_loops(0), 942 _interpreter_frame_size(0), 943 _output(nullptr), 944 #ifndef PRODUCT 945 _in_dump_cnt(0), 946 #endif 947 _allowed_reasons(0) { 948 C = this; 949 950 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 951 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 952 953 #ifndef PRODUCT 954 set_print_assembly(PrintFrameConverterAssembly); 955 set_parsed_irreducible_loop(false); 956 #else 957 set_print_assembly(false); // Must initialize. 958 #endif 959 set_has_irreducible_loop(false); // no loops 960 961 CompileWrapper cw(this); 962 Init(/*do_aliasing=*/ false); 963 init_tf((*generator)()); 964 965 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 966 _types = new (comp_arena()) Type_Array(comp_arena()); 967 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 968 { 969 PhaseGVN gvn; 970 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 971 gvn.transform_no_reclaim(top()); 972 973 GraphKit kit; 974 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 975 } 976 977 NOT_PRODUCT( verify_graph_edges(); ) 978 979 Code_Gen(); 980 } 981 982 //------------------------------Init------------------------------------------- 983 // Prepare for a single compilation 984 void Compile::Init(bool aliasing) { 985 _do_aliasing = aliasing; 986 _unique = 0; 987 _regalloc = nullptr; 988 989 _tf = nullptr; // filled in later 990 _top = nullptr; // cached later 991 _matcher = nullptr; // filled in later 992 _cfg = nullptr; // filled in later 993 994 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 995 996 _node_note_array = nullptr; 997 _default_node_notes = nullptr; 998 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 999 1000 _immutable_memory = nullptr; // filled in at first inquiry 1001 1002 #ifdef ASSERT 1003 _phase_optimize_finished = false; 1004 _exception_backedge = false; 1005 _type_verify = nullptr; 1006 #endif 1007 1008 // Globally visible Nodes 1009 // First set TOP to null to give safe behavior during creation of RootNode 1010 set_cached_top_node(nullptr); 1011 set_root(new RootNode()); 1012 // Now that you have a Root to point to, create the real TOP 1013 set_cached_top_node( new ConNode(Type::TOP) ); 1014 set_recent_alloc(nullptr, nullptr); 1015 1016 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1017 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1018 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1019 env()->set_dependencies(new Dependencies(env())); 1020 1021 _fixed_slots = 0; 1022 set_has_split_ifs(false); 1023 set_has_loops(false); // first approximation 1024 set_has_stringbuilder(false); 1025 set_has_boxed_value(false); 1026 _trap_can_recompile = false; // no traps emitted yet 1027 _major_progress = true; // start out assuming good things will happen 1028 set_has_unsafe_access(false); 1029 set_max_vector_size(0); 1030 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1031 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1032 set_decompile_count(0); 1033 1034 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1035 _loop_opts_cnt = LoopOptsCount; 1036 set_do_inlining(Inline); 1037 set_max_inline_size(MaxInlineSize); 1038 set_freq_inline_size(FreqInlineSize); 1039 set_do_scheduling(OptoScheduling); 1040 1041 set_do_vector_loop(false); 1042 set_has_monitors(false); 1043 1044 if (AllowVectorizeOnDemand) { 1045 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) { 1046 set_do_vector_loop(true); 1047 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1048 } else if (has_method() && method()->name() != 0 && 1049 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1050 set_do_vector_loop(true); 1051 } 1052 } 1053 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1054 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1055 1056 set_rtm_state(NoRTM); // No RTM lock eliding by default 1057 _max_node_limit = _directive->MaxNodeLimitOption; 1058 1059 #if INCLUDE_RTM_OPT 1060 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != nullptr)) { 1061 int rtm_state = method()->method_data()->rtm_state(); 1062 if (method_has_option(CompileCommand::NoRTMLockEliding) || ((rtm_state & NoRTM) != 0)) { 1063 // Don't generate RTM lock eliding code. 1064 set_rtm_state(NoRTM); 1065 } else if (method_has_option(CompileCommand::UseRTMLockEliding) || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 1066 // Generate RTM lock eliding code without abort ratio calculation code. 1067 set_rtm_state(UseRTM); 1068 } else if (UseRTMDeopt) { 1069 // Generate RTM lock eliding code and include abort ratio calculation 1070 // code if UseRTMDeopt is on. 1071 set_rtm_state(ProfileRTM); 1072 } 1073 } 1074 #endif 1075 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1076 set_clinit_barrier_on_entry(true); 1077 } 1078 if (debug_info()->recording_non_safepoints()) { 1079 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1080 (comp_arena(), 8, 0, nullptr)); 1081 set_default_node_notes(Node_Notes::make(this)); 1082 } 1083 1084 const int grow_ats = 16; 1085 _max_alias_types = grow_ats; 1086 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1087 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1088 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1089 { 1090 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1091 } 1092 // Initialize the first few types. 1093 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1094 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1095 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1096 _num_alias_types = AliasIdxRaw+1; 1097 // Zero out the alias type cache. 1098 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1099 // A null adr_type hits in the cache right away. Preload the right answer. 1100 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1101 } 1102 1103 //---------------------------init_start---------------------------------------- 1104 // Install the StartNode on this compile object. 1105 void Compile::init_start(StartNode* s) { 1106 if (failing()) 1107 return; // already failing 1108 assert(s == start(), ""); 1109 } 1110 1111 /** 1112 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1113 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1114 * the ideal graph. 1115 */ 1116 StartNode* Compile::start() const { 1117 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1118 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1119 Node* start = root()->fast_out(i); 1120 if (start->is_Start()) { 1121 return start->as_Start(); 1122 } 1123 } 1124 fatal("Did not find Start node!"); 1125 return nullptr; 1126 } 1127 1128 //-------------------------------immutable_memory------------------------------------- 1129 // Access immutable memory 1130 Node* Compile::immutable_memory() { 1131 if (_immutable_memory != nullptr) { 1132 return _immutable_memory; 1133 } 1134 StartNode* s = start(); 1135 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1136 Node *p = s->fast_out(i); 1137 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1138 _immutable_memory = p; 1139 return _immutable_memory; 1140 } 1141 } 1142 ShouldNotReachHere(); 1143 return nullptr; 1144 } 1145 1146 //----------------------set_cached_top_node------------------------------------ 1147 // Install the cached top node, and make sure Node::is_top works correctly. 1148 void Compile::set_cached_top_node(Node* tn) { 1149 if (tn != nullptr) verify_top(tn); 1150 Node* old_top = _top; 1151 _top = tn; 1152 // Calling Node::setup_is_top allows the nodes the chance to adjust 1153 // their _out arrays. 1154 if (_top != nullptr) _top->setup_is_top(); 1155 if (old_top != nullptr) old_top->setup_is_top(); 1156 assert(_top == nullptr || top()->is_top(), ""); 1157 } 1158 1159 #ifdef ASSERT 1160 uint Compile::count_live_nodes_by_graph_walk() { 1161 Unique_Node_List useful(comp_arena()); 1162 // Get useful node list by walking the graph. 1163 identify_useful_nodes(useful); 1164 return useful.size(); 1165 } 1166 1167 void Compile::print_missing_nodes() { 1168 1169 // Return if CompileLog is null and PrintIdealNodeCount is false. 1170 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1171 return; 1172 } 1173 1174 // This is an expensive function. It is executed only when the user 1175 // specifies VerifyIdealNodeCount option or otherwise knows the 1176 // additional work that needs to be done to identify reachable nodes 1177 // by walking the flow graph and find the missing ones using 1178 // _dead_node_list. 1179 1180 Unique_Node_List useful(comp_arena()); 1181 // Get useful node list by walking the graph. 1182 identify_useful_nodes(useful); 1183 1184 uint l_nodes = C->live_nodes(); 1185 uint l_nodes_by_walk = useful.size(); 1186 1187 if (l_nodes != l_nodes_by_walk) { 1188 if (_log != nullptr) { 1189 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1190 _log->stamp(); 1191 _log->end_head(); 1192 } 1193 VectorSet& useful_member_set = useful.member_set(); 1194 int last_idx = l_nodes_by_walk; 1195 for (int i = 0; i < last_idx; i++) { 1196 if (useful_member_set.test(i)) { 1197 if (_dead_node_list.test(i)) { 1198 if (_log != nullptr) { 1199 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1200 } 1201 if (PrintIdealNodeCount) { 1202 // Print the log message to tty 1203 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1204 useful.at(i)->dump(); 1205 } 1206 } 1207 } 1208 else if (! _dead_node_list.test(i)) { 1209 if (_log != nullptr) { 1210 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1211 } 1212 if (PrintIdealNodeCount) { 1213 // Print the log message to tty 1214 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1215 } 1216 } 1217 } 1218 if (_log != nullptr) { 1219 _log->tail("mismatched_nodes"); 1220 } 1221 } 1222 } 1223 void Compile::record_modified_node(Node* n) { 1224 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1225 _modified_nodes->push(n); 1226 } 1227 } 1228 1229 void Compile::remove_modified_node(Node* n) { 1230 if (_modified_nodes != nullptr) { 1231 _modified_nodes->remove(n); 1232 } 1233 } 1234 #endif 1235 1236 #ifndef PRODUCT 1237 void Compile::verify_top(Node* tn) const { 1238 if (tn != nullptr) { 1239 assert(tn->is_Con(), "top node must be a constant"); 1240 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1241 assert(tn->in(0) != nullptr, "must have live top node"); 1242 } 1243 } 1244 #endif 1245 1246 1247 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1248 1249 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1250 guarantee(arr != nullptr, ""); 1251 int num_blocks = arr->length(); 1252 if (grow_by < num_blocks) grow_by = num_blocks; 1253 int num_notes = grow_by * _node_notes_block_size; 1254 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1255 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1256 while (num_notes > 0) { 1257 arr->append(notes); 1258 notes += _node_notes_block_size; 1259 num_notes -= _node_notes_block_size; 1260 } 1261 assert(num_notes == 0, "exact multiple, please"); 1262 } 1263 1264 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1265 if (source == nullptr || dest == nullptr) return false; 1266 1267 if (dest->is_Con()) 1268 return false; // Do not push debug info onto constants. 1269 1270 #ifdef ASSERT 1271 // Leave a bread crumb trail pointing to the original node: 1272 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1273 dest->set_debug_orig(source); 1274 } 1275 #endif 1276 1277 if (node_note_array() == nullptr) 1278 return false; // Not collecting any notes now. 1279 1280 // This is a copy onto a pre-existing node, which may already have notes. 1281 // If both nodes have notes, do not overwrite any pre-existing notes. 1282 Node_Notes* source_notes = node_notes_at(source->_idx); 1283 if (source_notes == nullptr || source_notes->is_clear()) return false; 1284 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1285 if (dest_notes == nullptr || dest_notes->is_clear()) { 1286 return set_node_notes_at(dest->_idx, source_notes); 1287 } 1288 1289 Node_Notes merged_notes = (*source_notes); 1290 // The order of operations here ensures that dest notes will win... 1291 merged_notes.update_from(dest_notes); 1292 return set_node_notes_at(dest->_idx, &merged_notes); 1293 } 1294 1295 1296 //--------------------------allow_range_check_smearing------------------------- 1297 // Gating condition for coalescing similar range checks. 1298 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1299 // single covering check that is at least as strong as any of them. 1300 // If the optimization succeeds, the simplified (strengthened) range check 1301 // will always succeed. If it fails, we will deopt, and then give up 1302 // on the optimization. 1303 bool Compile::allow_range_check_smearing() const { 1304 // If this method has already thrown a range-check, 1305 // assume it was because we already tried range smearing 1306 // and it failed. 1307 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1308 return !already_trapped; 1309 } 1310 1311 1312 //------------------------------flatten_alias_type----------------------------- 1313 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1314 assert(do_aliasing(), "Aliasing should be enabled"); 1315 int offset = tj->offset(); 1316 TypePtr::PTR ptr = tj->ptr(); 1317 1318 // Known instance (scalarizable allocation) alias only with itself. 1319 bool is_known_inst = tj->isa_oopptr() != nullptr && 1320 tj->is_oopptr()->is_known_instance(); 1321 1322 // Process weird unsafe references. 1323 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1324 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1325 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1326 tj = TypeOopPtr::BOTTOM; 1327 ptr = tj->ptr(); 1328 offset = tj->offset(); 1329 } 1330 1331 // Array pointers need some flattening 1332 const TypeAryPtr* ta = tj->isa_aryptr(); 1333 if (ta && ta->is_stable()) { 1334 // Erase stability property for alias analysis. 1335 tj = ta = ta->cast_to_stable(false); 1336 } 1337 if( ta && is_known_inst ) { 1338 if ( offset != Type::OffsetBot && 1339 offset > arrayOopDesc::length_offset_in_bytes() ) { 1340 offset = Type::OffsetBot; // Flatten constant access into array body only 1341 tj = ta = ta-> 1342 remove_speculative()-> 1343 cast_to_ptr_type(ptr)-> 1344 with_offset(offset); 1345 } 1346 } else if (ta) { 1347 // For arrays indexed by constant indices, we flatten the alias 1348 // space to include all of the array body. Only the header, klass 1349 // and array length can be accessed un-aliased. 1350 if( offset != Type::OffsetBot ) { 1351 if( ta->const_oop() ) { // MethodData* or Method* 1352 offset = Type::OffsetBot; // Flatten constant access into array body 1353 tj = ta = ta-> 1354 remove_speculative()-> 1355 cast_to_ptr_type(ptr)-> 1356 cast_to_exactness(false)-> 1357 with_offset(offset); 1358 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1359 // range is OK as-is. 1360 tj = ta = TypeAryPtr::RANGE; 1361 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1362 tj = TypeInstPtr::KLASS; // all klass loads look alike 1363 ta = TypeAryPtr::RANGE; // generic ignored junk 1364 ptr = TypePtr::BotPTR; 1365 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1366 tj = TypeInstPtr::MARK; 1367 ta = TypeAryPtr::RANGE; // generic ignored junk 1368 ptr = TypePtr::BotPTR; 1369 } else { // Random constant offset into array body 1370 offset = Type::OffsetBot; // Flatten constant access into array body 1371 tj = ta = ta-> 1372 remove_speculative()-> 1373 cast_to_ptr_type(ptr)-> 1374 cast_to_exactness(false)-> 1375 with_offset(offset); 1376 } 1377 } 1378 // Arrays of fixed size alias with arrays of unknown size. 1379 if (ta->size() != TypeInt::POS) { 1380 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1381 tj = ta = ta-> 1382 remove_speculative()-> 1383 cast_to_ptr_type(ptr)-> 1384 with_ary(tary)-> 1385 cast_to_exactness(false); 1386 } 1387 // Arrays of known objects become arrays of unknown objects. 1388 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1389 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1390 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1391 } 1392 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1393 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1394 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1395 } 1396 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1397 // cannot be distinguished by bytecode alone. 1398 if (ta->elem() == TypeInt::BOOL) { 1399 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1400 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1401 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1402 } 1403 // During the 2nd round of IterGVN, NotNull castings are removed. 1404 // Make sure the Bottom and NotNull variants alias the same. 1405 // Also, make sure exact and non-exact variants alias the same. 1406 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1407 tj = ta = ta-> 1408 remove_speculative()-> 1409 cast_to_ptr_type(TypePtr::BotPTR)-> 1410 cast_to_exactness(false)-> 1411 with_offset(offset); 1412 } 1413 } 1414 1415 // Oop pointers need some flattening 1416 const TypeInstPtr *to = tj->isa_instptr(); 1417 if (to && to != TypeOopPtr::BOTTOM) { 1418 ciInstanceKlass* ik = to->instance_klass(); 1419 if( ptr == TypePtr::Constant ) { 1420 if (ik != ciEnv::current()->Class_klass() || 1421 offset < ik->layout_helper_size_in_bytes()) { 1422 // No constant oop pointers (such as Strings); they alias with 1423 // unknown strings. 1424 assert(!is_known_inst, "not scalarizable allocation"); 1425 tj = to = to-> 1426 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1427 remove_speculative()-> 1428 cast_to_ptr_type(TypePtr::BotPTR)-> 1429 cast_to_exactness(false); 1430 } 1431 } else if( is_known_inst ) { 1432 tj = to; // Keep NotNull and klass_is_exact for instance type 1433 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1434 // During the 2nd round of IterGVN, NotNull castings are removed. 1435 // Make sure the Bottom and NotNull variants alias the same. 1436 // Also, make sure exact and non-exact variants alias the same. 1437 tj = to = to-> 1438 remove_speculative()-> 1439 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1440 cast_to_ptr_type(TypePtr::BotPTR)-> 1441 cast_to_exactness(false); 1442 } 1443 if (to->speculative() != nullptr) { 1444 tj = to = to->remove_speculative(); 1445 } 1446 // Canonicalize the holder of this field 1447 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1448 // First handle header references such as a LoadKlassNode, even if the 1449 // object's klass is unloaded at compile time (4965979). 1450 if (!is_known_inst) { // Do it only for non-instance types 1451 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1452 } 1453 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1454 // Static fields are in the space above the normal instance 1455 // fields in the java.lang.Class instance. 1456 if (ik != ciEnv::current()->Class_klass()) { 1457 to = nullptr; 1458 tj = TypeOopPtr::BOTTOM; 1459 offset = tj->offset(); 1460 } 1461 } else { 1462 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1463 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1464 if (!ik->equals(canonical_holder) || tj->offset() != offset) { 1465 if( is_known_inst ) { 1466 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, nullptr, offset, to->instance_id()); 1467 } else { 1468 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, nullptr, offset); 1469 } 1470 } 1471 } 1472 } 1473 1474 // Klass pointers to object array klasses need some flattening 1475 const TypeKlassPtr *tk = tj->isa_klassptr(); 1476 if( tk ) { 1477 // If we are referencing a field within a Klass, we need 1478 // to assume the worst case of an Object. Both exact and 1479 // inexact types must flatten to the same alias class so 1480 // use NotNull as the PTR. 1481 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1482 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1483 env()->Object_klass(), 1484 offset); 1485 } 1486 1487 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1488 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1489 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1490 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1491 } else { 1492 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1493 } 1494 } 1495 1496 // Check for precise loads from the primary supertype array and force them 1497 // to the supertype cache alias index. Check for generic array loads from 1498 // the primary supertype array and also force them to the supertype cache 1499 // alias index. Since the same load can reach both, we need to merge 1500 // these 2 disparate memories into the same alias class. Since the 1501 // primary supertype array is read-only, there's no chance of confusion 1502 // where we bypass an array load and an array store. 1503 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1504 if (offset == Type::OffsetBot || 1505 (offset >= primary_supers_offset && 1506 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1507 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1508 offset = in_bytes(Klass::secondary_super_cache_offset()); 1509 tj = tk = tk->with_offset(offset); 1510 } 1511 } 1512 1513 // Flatten all Raw pointers together. 1514 if (tj->base() == Type::RawPtr) 1515 tj = TypeRawPtr::BOTTOM; 1516 1517 if (tj->base() == Type::AnyPtr) 1518 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1519 1520 offset = tj->offset(); 1521 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1522 1523 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1524 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1525 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1526 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1527 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1528 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1529 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1530 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1531 assert( tj->ptr() != TypePtr::TopPTR && 1532 tj->ptr() != TypePtr::AnyNull && 1533 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1534 // assert( tj->ptr() != TypePtr::Constant || 1535 // tj->base() == Type::RawPtr || 1536 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1537 1538 return tj; 1539 } 1540 1541 void Compile::AliasType::Init(int i, const TypePtr* at) { 1542 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1543 _index = i; 1544 _adr_type = at; 1545 _field = nullptr; 1546 _element = nullptr; 1547 _is_rewritable = true; // default 1548 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1549 if (atoop != nullptr && atoop->is_known_instance()) { 1550 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1551 _general_index = Compile::current()->get_alias_index(gt); 1552 } else { 1553 _general_index = 0; 1554 } 1555 } 1556 1557 BasicType Compile::AliasType::basic_type() const { 1558 if (element() != nullptr) { 1559 const Type* element = adr_type()->is_aryptr()->elem(); 1560 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1561 } if (field() != nullptr) { 1562 return field()->layout_type(); 1563 } else { 1564 return T_ILLEGAL; // unknown 1565 } 1566 } 1567 1568 //---------------------------------print_on------------------------------------ 1569 #ifndef PRODUCT 1570 void Compile::AliasType::print_on(outputStream* st) { 1571 if (index() < 10) 1572 st->print("@ <%d> ", index()); 1573 else st->print("@ <%d>", index()); 1574 st->print(is_rewritable() ? " " : " RO"); 1575 int offset = adr_type()->offset(); 1576 if (offset == Type::OffsetBot) 1577 st->print(" +any"); 1578 else st->print(" +%-3d", offset); 1579 st->print(" in "); 1580 adr_type()->dump_on(st); 1581 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1582 if (field() != nullptr && tjp) { 1583 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1584 tjp->offset() != field()->offset_in_bytes()) { 1585 st->print(" != "); 1586 field()->print(); 1587 st->print(" ***"); 1588 } 1589 } 1590 } 1591 1592 void print_alias_types() { 1593 Compile* C = Compile::current(); 1594 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1595 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1596 C->alias_type(idx)->print_on(tty); 1597 tty->cr(); 1598 } 1599 } 1600 #endif 1601 1602 1603 //----------------------------probe_alias_cache-------------------------------- 1604 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1605 intptr_t key = (intptr_t) adr_type; 1606 key ^= key >> logAliasCacheSize; 1607 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1608 } 1609 1610 1611 //-----------------------------grow_alias_types-------------------------------- 1612 void Compile::grow_alias_types() { 1613 const int old_ats = _max_alias_types; // how many before? 1614 const int new_ats = old_ats; // how many more? 1615 const int grow_ats = old_ats+new_ats; // how many now? 1616 _max_alias_types = grow_ats; 1617 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1618 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1619 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1620 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1621 } 1622 1623 1624 //--------------------------------find_alias_type------------------------------ 1625 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1626 if (!do_aliasing()) { 1627 return alias_type(AliasIdxBot); 1628 } 1629 1630 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1631 if (ace->_adr_type == adr_type) { 1632 return alias_type(ace->_index); 1633 } 1634 1635 // Handle special cases. 1636 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1637 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1638 1639 // Do it the slow way. 1640 const TypePtr* flat = flatten_alias_type(adr_type); 1641 1642 #ifdef ASSERT 1643 { 1644 ResourceMark rm; 1645 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1646 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1647 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1648 Type::str(adr_type)); 1649 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1650 const TypeOopPtr* foop = flat->is_oopptr(); 1651 // Scalarizable allocations have exact klass always. 1652 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1653 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1654 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1655 Type::str(foop), Type::str(xoop)); 1656 } 1657 } 1658 #endif 1659 1660 int idx = AliasIdxTop; 1661 for (int i = 0; i < num_alias_types(); i++) { 1662 if (alias_type(i)->adr_type() == flat) { 1663 idx = i; 1664 break; 1665 } 1666 } 1667 1668 if (idx == AliasIdxTop) { 1669 if (no_create) return nullptr; 1670 // Grow the array if necessary. 1671 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1672 // Add a new alias type. 1673 idx = _num_alias_types++; 1674 _alias_types[idx]->Init(idx, flat); 1675 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1676 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1677 if (flat->isa_instptr()) { 1678 if (flat->offset() == java_lang_Class::klass_offset() 1679 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1680 alias_type(idx)->set_rewritable(false); 1681 } 1682 if (flat->isa_aryptr()) { 1683 #ifdef ASSERT 1684 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1685 // (T_BYTE has the weakest alignment and size restrictions...) 1686 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1687 #endif 1688 if (flat->offset() == TypePtr::OffsetBot) { 1689 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1690 } 1691 } 1692 if (flat->isa_klassptr()) { 1693 if (UseCompactObjectHeaders) { 1694 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1695 alias_type(idx)->set_rewritable(false); 1696 } 1697 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1698 alias_type(idx)->set_rewritable(false); 1699 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1700 alias_type(idx)->set_rewritable(false); 1701 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1702 alias_type(idx)->set_rewritable(false); 1703 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1704 alias_type(idx)->set_rewritable(false); 1705 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1706 alias_type(idx)->set_rewritable(false); 1707 } 1708 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1709 // but the base pointer type is not distinctive enough to identify 1710 // references into JavaThread.) 1711 1712 // Check for final fields. 1713 const TypeInstPtr* tinst = flat->isa_instptr(); 1714 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1715 ciField* field; 1716 if (tinst->const_oop() != nullptr && 1717 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1718 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1719 // static field 1720 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1721 field = k->get_field_by_offset(tinst->offset(), true); 1722 } else { 1723 ciInstanceKlass *k = tinst->instance_klass(); 1724 field = k->get_field_by_offset(tinst->offset(), false); 1725 } 1726 assert(field == nullptr || 1727 original_field == nullptr || 1728 (field->holder() == original_field->holder() && 1729 field->offset_in_bytes() == original_field->offset_in_bytes() && 1730 field->is_static() == original_field->is_static()), "wrong field?"); 1731 // Set field() and is_rewritable() attributes. 1732 if (field != nullptr) alias_type(idx)->set_field(field); 1733 } 1734 } 1735 1736 // Fill the cache for next time. 1737 ace->_adr_type = adr_type; 1738 ace->_index = idx; 1739 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1740 1741 // Might as well try to fill the cache for the flattened version, too. 1742 AliasCacheEntry* face = probe_alias_cache(flat); 1743 if (face->_adr_type == nullptr) { 1744 face->_adr_type = flat; 1745 face->_index = idx; 1746 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1747 } 1748 1749 return alias_type(idx); 1750 } 1751 1752 1753 Compile::AliasType* Compile::alias_type(ciField* field) { 1754 const TypeOopPtr* t; 1755 if (field->is_static()) 1756 t = TypeInstPtr::make(field->holder()->java_mirror()); 1757 else 1758 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1759 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1760 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1761 return atp; 1762 } 1763 1764 1765 //------------------------------have_alias_type-------------------------------- 1766 bool Compile::have_alias_type(const TypePtr* adr_type) { 1767 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1768 if (ace->_adr_type == adr_type) { 1769 return true; 1770 } 1771 1772 // Handle special cases. 1773 if (adr_type == nullptr) return true; 1774 if (adr_type == TypePtr::BOTTOM) return true; 1775 1776 return find_alias_type(adr_type, true, nullptr) != nullptr; 1777 } 1778 1779 //-----------------------------must_alias-------------------------------------- 1780 // True if all values of the given address type are in the given alias category. 1781 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1782 if (alias_idx == AliasIdxBot) return true; // the universal category 1783 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1784 if (alias_idx == AliasIdxTop) return false; // the empty category 1785 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1786 1787 // the only remaining possible overlap is identity 1788 int adr_idx = get_alias_index(adr_type); 1789 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1790 assert(adr_idx == alias_idx || 1791 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1792 && adr_type != TypeOopPtr::BOTTOM), 1793 "should not be testing for overlap with an unsafe pointer"); 1794 return adr_idx == alias_idx; 1795 } 1796 1797 //------------------------------can_alias-------------------------------------- 1798 // True if any values of the given address type are in the given alias category. 1799 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1800 if (alias_idx == AliasIdxTop) return false; // the empty category 1801 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1802 // Known instance doesn't alias with bottom memory 1803 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1804 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1805 1806 // the only remaining possible overlap is identity 1807 int adr_idx = get_alias_index(adr_type); 1808 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1809 return adr_idx == alias_idx; 1810 } 1811 1812 // Remove the opaque nodes that protect the Parse Predicates so that all unused 1813 // checks and uncommon_traps will be eliminated from the ideal graph. 1814 void Compile::cleanup_parse_predicates(PhaseIterGVN& igvn) const { 1815 if (parse_predicate_count() == 0) { 1816 return; 1817 } 1818 for (int i = parse_predicate_count(); i > 0; i--) { 1819 Node* n = parse_predicate_opaque1_node(i - 1); 1820 assert(n->Opcode() == Op_Opaque1, "must be"); 1821 igvn.replace_node(n, n->in(1)); 1822 } 1823 assert(parse_predicate_count() == 0, "should be clean!"); 1824 } 1825 1826 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1827 if (!n->for_post_loop_opts_igvn()) { 1828 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1829 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1830 _for_post_loop_igvn.append(n); 1831 } 1832 } 1833 1834 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1835 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1836 _for_post_loop_igvn.remove(n); 1837 } 1838 1839 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1840 // Verify that all previous optimizations produced a valid graph 1841 // at least to this point, even if no loop optimizations were done. 1842 PhaseIdealLoop::verify(igvn); 1843 1844 C->set_post_loop_opts_phase(); // no more loop opts allowed 1845 1846 assert(!C->major_progress(), "not cleared"); 1847 1848 if (_for_post_loop_igvn.length() > 0) { 1849 while (_for_post_loop_igvn.length() > 0) { 1850 Node* n = _for_post_loop_igvn.pop(); 1851 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1852 igvn._worklist.push(n); 1853 } 1854 igvn.optimize(); 1855 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1856 1857 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1858 if (C->major_progress()) { 1859 C->clear_major_progress(); // ensure that major progress is now clear 1860 } 1861 } 1862 } 1863 1864 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1865 if (OptimizeUnstableIf) { 1866 _unstable_if_traps.append(trap); 1867 } 1868 } 1869 1870 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1871 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1872 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1873 Node* n = trap->uncommon_trap(); 1874 if (!useful.member(n)) { 1875 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1876 } 1877 } 1878 } 1879 1880 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1881 // or fold-compares case. Return true if succeed or not found. 1882 // 1883 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1884 // false and ask fold-compares to yield. 1885 // 1886 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1887 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1888 // when deoptimization does happen. 1889 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1890 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1891 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1892 if (trap->uncommon_trap() == unc) { 1893 if (yield && trap->modified()) { 1894 return false; 1895 } 1896 _unstable_if_traps.delete_at(i); 1897 break; 1898 } 1899 } 1900 return true; 1901 } 1902 1903 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1904 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1905 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1906 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1907 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1908 CallStaticJavaNode* unc = trap->uncommon_trap(); 1909 int next_bci = trap->next_bci(); 1910 bool modified = trap->modified(); 1911 1912 if (next_bci != -1 && !modified) { 1913 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1914 JVMState* jvms = unc->jvms(); 1915 ciMethod* method = jvms->method(); 1916 ciBytecodeStream iter(method); 1917 1918 iter.force_bci(jvms->bci()); 1919 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1920 Bytecodes::Code c = iter.cur_bc(); 1921 Node* lhs = nullptr; 1922 Node* rhs = nullptr; 1923 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1924 lhs = unc->peek_operand(0); 1925 rhs = unc->peek_operand(1); 1926 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1927 lhs = unc->peek_operand(0); 1928 } 1929 1930 ResourceMark rm; 1931 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1932 assert(live_locals.is_valid(), "broken liveness info"); 1933 int len = (int)live_locals.size(); 1934 1935 for (int i = 0; i < len; i++) { 1936 Node* local = unc->local(jvms, i); 1937 // kill local using the liveness of next_bci. 1938 // give up when the local looks like an operand to secure reexecution. 1939 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 1940 uint idx = jvms->locoff() + i; 1941 #ifdef ASSERT 1942 if (PrintOpto && Verbose) { 1943 tty->print("[unstable_if] kill local#%d: ", idx); 1944 local->dump(); 1945 tty->cr(); 1946 } 1947 #endif 1948 igvn.replace_input_of(unc, idx, top()); 1949 modified = true; 1950 } 1951 } 1952 } 1953 1954 // keep the mondified trap for late query 1955 if (modified) { 1956 trap->set_modified(); 1957 } else { 1958 _unstable_if_traps.delete_at(i); 1959 } 1960 } 1961 igvn.optimize(); 1962 } 1963 1964 // StringOpts and late inlining of string methods 1965 void Compile::inline_string_calls(bool parse_time) { 1966 { 1967 // remove useless nodes to make the usage analysis simpler 1968 ResourceMark rm; 1969 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 1970 } 1971 1972 { 1973 ResourceMark rm; 1974 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1975 PhaseStringOpts pso(initial_gvn()); 1976 print_method(PHASE_AFTER_STRINGOPTS, 3); 1977 } 1978 1979 // now inline anything that we skipped the first time around 1980 if (!parse_time) { 1981 _late_inlines_pos = _late_inlines.length(); 1982 } 1983 1984 while (_string_late_inlines.length() > 0) { 1985 CallGenerator* cg = _string_late_inlines.pop(); 1986 cg->do_late_inline(); 1987 if (failing()) return; 1988 } 1989 _string_late_inlines.trunc_to(0); 1990 } 1991 1992 // Late inlining of boxing methods 1993 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 1994 if (_boxing_late_inlines.length() > 0) { 1995 assert(has_boxed_value(), "inconsistent"); 1996 1997 PhaseGVN* gvn = initial_gvn(); 1998 set_inlining_incrementally(true); 1999 2000 igvn_worklist()->ensure_empty(); // should be done with igvn 2001 2002 _late_inlines_pos = _late_inlines.length(); 2003 2004 while (_boxing_late_inlines.length() > 0) { 2005 CallGenerator* cg = _boxing_late_inlines.pop(); 2006 cg->do_late_inline(); 2007 if (failing()) return; 2008 } 2009 _boxing_late_inlines.trunc_to(0); 2010 2011 inline_incrementally_cleanup(igvn); 2012 2013 set_inlining_incrementally(false); 2014 } 2015 } 2016 2017 bool Compile::inline_incrementally_one() { 2018 assert(IncrementalInline, "incremental inlining should be on"); 2019 2020 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 2021 2022 set_inlining_progress(false); 2023 set_do_cleanup(false); 2024 2025 for (int i = 0; i < _late_inlines.length(); i++) { 2026 _late_inlines_pos = i+1; 2027 CallGenerator* cg = _late_inlines.at(i); 2028 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2029 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2030 cg->do_late_inline(); 2031 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2032 if (failing()) { 2033 return false; 2034 } else if (inlining_progress()) { 2035 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2036 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2037 break; // process one call site at a time 2038 } 2039 } else { 2040 // Ignore late inline direct calls when inlining is not allowed. 2041 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2042 } 2043 } 2044 // Remove processed elements. 2045 _late_inlines.remove_till(_late_inlines_pos); 2046 _late_inlines_pos = 0; 2047 2048 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2049 2050 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2051 2052 set_inlining_progress(false); 2053 set_do_cleanup(false); 2054 2055 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2056 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2057 } 2058 2059 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2060 { 2061 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2062 ResourceMark rm; 2063 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2064 } 2065 { 2066 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2067 igvn.reset_from_gvn(initial_gvn()); 2068 igvn.optimize(); 2069 } 2070 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2071 } 2072 2073 // Perform incremental inlining until bound on number of live nodes is reached 2074 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2075 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 2076 2077 set_inlining_incrementally(true); 2078 uint low_live_nodes = 0; 2079 2080 while (_late_inlines.length() > 0) { 2081 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2082 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2083 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 2084 // PhaseIdealLoop is expensive so we only try it once we are 2085 // out of live nodes and we only try it again if the previous 2086 // helped got the number of nodes down significantly 2087 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2088 if (failing()) return; 2089 low_live_nodes = live_nodes(); 2090 _major_progress = true; 2091 } 2092 2093 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2094 bool do_print_inlining = print_inlining() || print_intrinsics(); 2095 if (do_print_inlining || log() != nullptr) { 2096 // Print inlining message for candidates that we couldn't inline for lack of space. 2097 for (int i = 0; i < _late_inlines.length(); i++) { 2098 CallGenerator* cg = _late_inlines.at(i); 2099 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2100 if (do_print_inlining) { 2101 cg->print_inlining_late(msg); 2102 } 2103 log_late_inline_failure(cg, msg); 2104 } 2105 } 2106 break; // finish 2107 } 2108 } 2109 2110 igvn_worklist()->ensure_empty(); // should be done with igvn 2111 2112 while (inline_incrementally_one()) { 2113 assert(!failing(), "inconsistent"); 2114 } 2115 if (failing()) return; 2116 2117 inline_incrementally_cleanup(igvn); 2118 2119 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2120 2121 if (failing()) return; 2122 2123 if (_late_inlines.length() == 0) { 2124 break; // no more progress 2125 } 2126 } 2127 2128 igvn_worklist()->ensure_empty(); // should be done with igvn 2129 2130 if (_string_late_inlines.length() > 0) { 2131 assert(has_stringbuilder(), "inconsistent"); 2132 2133 inline_string_calls(false); 2134 2135 if (failing()) return; 2136 2137 inline_incrementally_cleanup(igvn); 2138 } 2139 2140 set_inlining_incrementally(false); 2141 } 2142 2143 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2144 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2145 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2146 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2147 // as if "inlining_incrementally() == true" were set. 2148 assert(inlining_incrementally() == false, "not allowed"); 2149 assert(_modified_nodes == nullptr, "not allowed"); 2150 assert(_late_inlines.length() > 0, "sanity"); 2151 2152 while (_late_inlines.length() > 0) { 2153 igvn_worklist()->ensure_empty(); // should be done with igvn 2154 2155 while (inline_incrementally_one()) { 2156 assert(!failing(), "inconsistent"); 2157 } 2158 if (failing()) return; 2159 2160 inline_incrementally_cleanup(igvn); 2161 } 2162 } 2163 2164 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2165 if (_loop_opts_cnt > 0) { 2166 while (major_progress() && (_loop_opts_cnt > 0)) { 2167 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2168 PhaseIdealLoop::optimize(igvn, mode); 2169 _loop_opts_cnt--; 2170 if (failing()) return false; 2171 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2172 } 2173 } 2174 return true; 2175 } 2176 2177 // Remove edges from "root" to each SafePoint at a backward branch. 2178 // They were inserted during parsing (see add_safepoint()) to make 2179 // infinite loops without calls or exceptions visible to root, i.e., 2180 // useful. 2181 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2182 Node *r = root(); 2183 if (r != nullptr) { 2184 for (uint i = r->req(); i < r->len(); ++i) { 2185 Node *n = r->in(i); 2186 if (n != nullptr && n->is_SafePoint()) { 2187 r->rm_prec(i); 2188 if (n->outcnt() == 0) { 2189 igvn.remove_dead_node(n); 2190 } 2191 --i; 2192 } 2193 } 2194 // Parsing may have added top inputs to the root node (Path 2195 // leading to the Halt node proven dead). Make sure we get a 2196 // chance to clean them up. 2197 igvn._worklist.push(r); 2198 igvn.optimize(); 2199 } 2200 } 2201 2202 //------------------------------Optimize--------------------------------------- 2203 // Given a graph, optimize it. 2204 void Compile::Optimize() { 2205 TracePhase tp("optimizer", &timers[_t_optimizer]); 2206 2207 #ifndef PRODUCT 2208 if (env()->break_at_compile()) { 2209 BREAKPOINT; 2210 } 2211 2212 #endif 2213 2214 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2215 #ifdef ASSERT 2216 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2217 #endif 2218 2219 ResourceMark rm; 2220 2221 print_inlining_reinit(); 2222 2223 NOT_PRODUCT( verify_graph_edges(); ) 2224 2225 print_method(PHASE_AFTER_PARSING, 1); 2226 2227 { 2228 // Iterative Global Value Numbering, including ideal transforms 2229 // Initialize IterGVN with types and values from parse-time GVN 2230 PhaseIterGVN igvn(initial_gvn()); 2231 #ifdef ASSERT 2232 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2233 #endif 2234 { 2235 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2236 igvn.optimize(); 2237 } 2238 2239 if (failing()) return; 2240 2241 print_method(PHASE_ITER_GVN1, 2); 2242 2243 process_for_unstable_if_traps(igvn); 2244 2245 if (failing()) return; 2246 2247 inline_incrementally(igvn); 2248 2249 print_method(PHASE_INCREMENTAL_INLINE, 2); 2250 2251 if (failing()) return; 2252 2253 if (eliminate_boxing()) { 2254 // Inline valueOf() methods now. 2255 inline_boxing_calls(igvn); 2256 2257 if (failing()) return; 2258 2259 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2260 inline_incrementally(igvn); 2261 } 2262 2263 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2264 2265 if (failing()) return; 2266 } 2267 2268 // Remove the speculative part of types and clean up the graph from 2269 // the extra CastPP nodes whose only purpose is to carry them. Do 2270 // that early so that optimizations are not disrupted by the extra 2271 // CastPP nodes. 2272 remove_speculative_types(igvn); 2273 2274 if (failing()) return; 2275 2276 // No more new expensive nodes will be added to the list from here 2277 // so keep only the actual candidates for optimizations. 2278 cleanup_expensive_nodes(igvn); 2279 2280 if (failing()) return; 2281 2282 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2283 if (EnableVectorSupport && has_vbox_nodes()) { 2284 TracePhase tp("", &timers[_t_vector]); 2285 PhaseVector pv(igvn); 2286 pv.optimize_vector_boxes(); 2287 if (failing()) return; 2288 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2289 } 2290 assert(!has_vbox_nodes(), "sanity"); 2291 2292 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2293 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2294 igvn_worklist()->ensure_empty(); // should be done with igvn 2295 { 2296 ResourceMark rm; 2297 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2298 } 2299 igvn.reset_from_gvn(initial_gvn()); 2300 igvn.optimize(); 2301 } 2302 2303 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2304 // safepoints 2305 remove_root_to_sfpts_edges(igvn); 2306 2307 if (failing()) return; 2308 2309 // Perform escape analysis 2310 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2311 if (has_loops()) { 2312 // Cleanup graph (remove dead nodes). 2313 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2314 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2315 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2316 if (failing()) return; 2317 } 2318 bool progress; 2319 do { 2320 ConnectionGraph::do_analysis(this, &igvn); 2321 2322 if (failing()) return; 2323 2324 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2325 2326 // Optimize out fields loads from scalar replaceable allocations. 2327 igvn.optimize(); 2328 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2329 2330 if (failing()) return; 2331 2332 if (congraph() != nullptr && macro_count() > 0) { 2333 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2334 PhaseMacroExpand mexp(igvn); 2335 mexp.eliminate_macro_nodes(); 2336 igvn.set_delay_transform(false); 2337 2338 igvn.optimize(); 2339 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2340 2341 if (failing()) return; 2342 } 2343 progress = do_iterative_escape_analysis() && 2344 (macro_count() < mcount) && 2345 ConnectionGraph::has_candidates(this); 2346 // Try again if candidates exist and made progress 2347 // by removing some allocations and/or locks. 2348 } while (progress); 2349 } 2350 2351 // Loop transforms on the ideal graph. Range Check Elimination, 2352 // peeling, unrolling, etc. 2353 2354 // Set loop opts counter 2355 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2356 { 2357 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2358 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2359 _loop_opts_cnt--; 2360 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2361 if (failing()) return; 2362 } 2363 // Loop opts pass if partial peeling occurred in previous pass 2364 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2365 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2366 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2367 _loop_opts_cnt--; 2368 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2369 if (failing()) return; 2370 } 2371 // Loop opts pass for loop-unrolling before CCP 2372 if(major_progress() && (_loop_opts_cnt > 0)) { 2373 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2374 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2375 _loop_opts_cnt--; 2376 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2377 } 2378 if (!failing()) { 2379 // Verify that last round of loop opts produced a valid graph 2380 PhaseIdealLoop::verify(igvn); 2381 } 2382 } 2383 if (failing()) return; 2384 2385 // Conditional Constant Propagation; 2386 PhaseCCP ccp( &igvn ); 2387 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2388 { 2389 TracePhase tp("ccp", &timers[_t_ccp]); 2390 ccp.do_transform(); 2391 } 2392 print_method(PHASE_CCP1, 2); 2393 2394 assert( true, "Break here to ccp.dump_old2new_map()"); 2395 2396 // Iterative Global Value Numbering, including ideal transforms 2397 { 2398 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2399 igvn.reset_from_igvn(&ccp); 2400 igvn.optimize(); 2401 } 2402 print_method(PHASE_ITER_GVN2, 2); 2403 2404 if (failing()) return; 2405 2406 // Loop transforms on the ideal graph. Range Check Elimination, 2407 // peeling, unrolling, etc. 2408 if (!optimize_loops(igvn, LoopOptsDefault)) { 2409 return; 2410 } 2411 2412 if (failing()) return; 2413 2414 C->clear_major_progress(); // ensure that major progress is now clear 2415 2416 process_for_post_loop_opts_igvn(igvn); 2417 2418 if (failing()) return; 2419 2420 #ifdef ASSERT 2421 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2422 #endif 2423 2424 { 2425 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2426 PhaseMacroExpand mex(igvn); 2427 if (mex.expand_macro_nodes()) { 2428 assert(failing(), "must bail out w/ explicit message"); 2429 return; 2430 } 2431 print_method(PHASE_MACRO_EXPANSION, 2); 2432 } 2433 2434 { 2435 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2436 if (bs->expand_barriers(this, igvn)) { 2437 assert(failing(), "must bail out w/ explicit message"); 2438 return; 2439 } 2440 print_method(PHASE_BARRIER_EXPANSION, 2); 2441 } 2442 2443 if (C->max_vector_size() > 0) { 2444 C->optimize_logic_cones(igvn); 2445 igvn.optimize(); 2446 } 2447 2448 DEBUG_ONLY( _modified_nodes = nullptr; ) 2449 2450 assert(igvn._worklist.size() == 0, "not empty"); 2451 2452 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2453 2454 if (_late_inlines.length() > 0) { 2455 // More opportunities to optimize virtual and MH calls. 2456 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2457 process_late_inline_calls_no_inline(igvn); 2458 if (failing()) return; 2459 } 2460 } // (End scope of igvn; run destructor if necessary for asserts.) 2461 2462 check_no_dead_use(); 2463 2464 process_print_inlining(); 2465 2466 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2467 // to remove hashes to unlock nodes for modifications. 2468 C->node_hash()->clear(); 2469 2470 // A method with only infinite loops has no edges entering loops from root 2471 { 2472 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2473 if (final_graph_reshaping()) { 2474 assert(failing(), "must bail out w/ explicit message"); 2475 return; 2476 } 2477 } 2478 2479 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2480 DEBUG_ONLY(set_phase_optimize_finished();) 2481 } 2482 2483 #ifdef ASSERT 2484 void Compile::check_no_dead_use() const { 2485 ResourceMark rm; 2486 Unique_Node_List wq; 2487 wq.push(root()); 2488 for (uint i = 0; i < wq.size(); ++i) { 2489 Node* n = wq.at(i); 2490 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2491 Node* u = n->fast_out(j); 2492 if (u->outcnt() == 0 && !u->is_Con()) { 2493 u->dump(); 2494 fatal("no reachable node should have no use"); 2495 } 2496 wq.push(u); 2497 } 2498 } 2499 } 2500 #endif 2501 2502 void Compile::inline_vector_reboxing_calls() { 2503 if (C->_vector_reboxing_late_inlines.length() > 0) { 2504 _late_inlines_pos = C->_late_inlines.length(); 2505 while (_vector_reboxing_late_inlines.length() > 0) { 2506 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2507 cg->do_late_inline(); 2508 if (failing()) return; 2509 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2510 } 2511 _vector_reboxing_late_inlines.trunc_to(0); 2512 } 2513 } 2514 2515 bool Compile::has_vbox_nodes() { 2516 if (C->_vector_reboxing_late_inlines.length() > 0) { 2517 return true; 2518 } 2519 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2520 Node * n = C->macro_node(macro_idx); 2521 assert(n->is_macro(), "only macro nodes expected here"); 2522 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2523 return true; 2524 } 2525 } 2526 return false; 2527 } 2528 2529 //---------------------------- Bitwise operation packing optimization --------------------------- 2530 2531 static bool is_vector_unary_bitwise_op(Node* n) { 2532 return n->Opcode() == Op_XorV && 2533 VectorNode::is_vector_bitwise_not_pattern(n); 2534 } 2535 2536 static bool is_vector_binary_bitwise_op(Node* n) { 2537 switch (n->Opcode()) { 2538 case Op_AndV: 2539 case Op_OrV: 2540 return true; 2541 2542 case Op_XorV: 2543 return !is_vector_unary_bitwise_op(n); 2544 2545 default: 2546 return false; 2547 } 2548 } 2549 2550 static bool is_vector_ternary_bitwise_op(Node* n) { 2551 return n->Opcode() == Op_MacroLogicV; 2552 } 2553 2554 static bool is_vector_bitwise_op(Node* n) { 2555 return is_vector_unary_bitwise_op(n) || 2556 is_vector_binary_bitwise_op(n) || 2557 is_vector_ternary_bitwise_op(n); 2558 } 2559 2560 static bool is_vector_bitwise_cone_root(Node* n) { 2561 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2562 return false; 2563 } 2564 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2565 if (is_vector_bitwise_op(n->fast_out(i))) { 2566 return false; 2567 } 2568 } 2569 return true; 2570 } 2571 2572 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2573 uint cnt = 0; 2574 if (is_vector_bitwise_op(n)) { 2575 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2576 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2577 for (uint i = 1; i < inp_cnt; i++) { 2578 Node* in = n->in(i); 2579 bool skip = VectorNode::is_all_ones_vector(in); 2580 if (!skip && !inputs.member(in)) { 2581 inputs.push(in); 2582 cnt++; 2583 } 2584 } 2585 assert(cnt <= 1, "not unary"); 2586 } else { 2587 uint last_req = inp_cnt; 2588 if (is_vector_ternary_bitwise_op(n)) { 2589 last_req = inp_cnt - 1; // skip last input 2590 } 2591 for (uint i = 1; i < last_req; i++) { 2592 Node* def = n->in(i); 2593 if (!inputs.member(def)) { 2594 inputs.push(def); 2595 cnt++; 2596 } 2597 } 2598 } 2599 } else { // not a bitwise operations 2600 if (!inputs.member(n)) { 2601 inputs.push(n); 2602 cnt++; 2603 } 2604 } 2605 return cnt; 2606 } 2607 2608 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2609 Unique_Node_List useful_nodes; 2610 C->identify_useful_nodes(useful_nodes); 2611 2612 for (uint i = 0; i < useful_nodes.size(); i++) { 2613 Node* n = useful_nodes.at(i); 2614 if (is_vector_bitwise_cone_root(n)) { 2615 list.push(n); 2616 } 2617 } 2618 } 2619 2620 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2621 const TypeVect* vt, 2622 Unique_Node_List& partition, 2623 Unique_Node_List& inputs) { 2624 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2625 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2626 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2627 2628 Node* in1 = inputs.at(0); 2629 Node* in2 = inputs.at(1); 2630 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2631 2632 uint func = compute_truth_table(partition, inputs); 2633 2634 Node* pn = partition.at(partition.size() - 1); 2635 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2636 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2637 } 2638 2639 static uint extract_bit(uint func, uint pos) { 2640 return (func & (1 << pos)) >> pos; 2641 } 2642 2643 // 2644 // A macro logic node represents a truth table. It has 4 inputs, 2645 // First three inputs corresponds to 3 columns of a truth table 2646 // and fourth input captures the logic function. 2647 // 2648 // eg. fn = (in1 AND in2) OR in3; 2649 // 2650 // MacroNode(in1,in2,in3,fn) 2651 // 2652 // ----------------- 2653 // in1 in2 in3 fn 2654 // ----------------- 2655 // 0 0 0 0 2656 // 0 0 1 1 2657 // 0 1 0 0 2658 // 0 1 1 1 2659 // 1 0 0 0 2660 // 1 0 1 1 2661 // 1 1 0 1 2662 // 1 1 1 1 2663 // 2664 2665 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2666 int res = 0; 2667 for (int i = 0; i < 8; i++) { 2668 int bit1 = extract_bit(in1, i); 2669 int bit2 = extract_bit(in2, i); 2670 int bit3 = extract_bit(in3, i); 2671 2672 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2673 int func_bit = extract_bit(func, func_bit_pos); 2674 2675 res |= func_bit << i; 2676 } 2677 return res; 2678 } 2679 2680 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2681 assert(n != nullptr, ""); 2682 assert(eval_map.contains(n), "absent"); 2683 return *(eval_map.get(n)); 2684 } 2685 2686 static void eval_operands(Node* n, 2687 uint& func1, uint& func2, uint& func3, 2688 ResourceHashtable<Node*,uint>& eval_map) { 2689 assert(is_vector_bitwise_op(n), ""); 2690 2691 if (is_vector_unary_bitwise_op(n)) { 2692 Node* opnd = n->in(1); 2693 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2694 opnd = n->in(2); 2695 } 2696 func1 = eval_operand(opnd, eval_map); 2697 } else if (is_vector_binary_bitwise_op(n)) { 2698 func1 = eval_operand(n->in(1), eval_map); 2699 func2 = eval_operand(n->in(2), eval_map); 2700 } else { 2701 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2702 func1 = eval_operand(n->in(1), eval_map); 2703 func2 = eval_operand(n->in(2), eval_map); 2704 func3 = eval_operand(n->in(3), eval_map); 2705 } 2706 } 2707 2708 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2709 assert(inputs.size() <= 3, "sanity"); 2710 ResourceMark rm; 2711 uint res = 0; 2712 ResourceHashtable<Node*,uint> eval_map; 2713 2714 // Populate precomputed functions for inputs. 2715 // Each input corresponds to one column of 3 input truth-table. 2716 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2717 0xCC, // (_, b, _) -> b 2718 0xF0 }; // (a, _, _) -> a 2719 for (uint i = 0; i < inputs.size(); i++) { 2720 eval_map.put(inputs.at(i), input_funcs[2-i]); 2721 } 2722 2723 for (uint i = 0; i < partition.size(); i++) { 2724 Node* n = partition.at(i); 2725 2726 uint func1 = 0, func2 = 0, func3 = 0; 2727 eval_operands(n, func1, func2, func3, eval_map); 2728 2729 switch (n->Opcode()) { 2730 case Op_OrV: 2731 assert(func3 == 0, "not binary"); 2732 res = func1 | func2; 2733 break; 2734 case Op_AndV: 2735 assert(func3 == 0, "not binary"); 2736 res = func1 & func2; 2737 break; 2738 case Op_XorV: 2739 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2740 assert(func2 == 0 && func3 == 0, "not unary"); 2741 res = (~func1) & 0xFF; 2742 } else { 2743 assert(func3 == 0, "not binary"); 2744 res = func1 ^ func2; 2745 } 2746 break; 2747 case Op_MacroLogicV: 2748 // Ordering of inputs may change during evaluation of sub-tree 2749 // containing MacroLogic node as a child node, thus a re-evaluation 2750 // makes sure that function is evaluated in context of current 2751 // inputs. 2752 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2753 break; 2754 2755 default: assert(false, "not supported: %s", n->Name()); 2756 } 2757 assert(res <= 0xFF, "invalid"); 2758 eval_map.put(n, res); 2759 } 2760 return res; 2761 } 2762 2763 // Criteria under which nodes gets packed into a macro logic node:- 2764 // 1) Parent and both child nodes are all unmasked or masked with 2765 // same predicates. 2766 // 2) Masked parent can be packed with left child if it is predicated 2767 // and both have same predicates. 2768 // 3) Masked parent can be packed with right child if its un-predicated 2769 // or has matching predication condition. 2770 // 4) An unmasked parent can be packed with an unmasked child. 2771 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2772 assert(partition.size() == 0, "not empty"); 2773 assert(inputs.size() == 0, "not empty"); 2774 if (is_vector_ternary_bitwise_op(n)) { 2775 return false; 2776 } 2777 2778 bool is_unary_op = is_vector_unary_bitwise_op(n); 2779 if (is_unary_op) { 2780 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2781 return false; // too few inputs 2782 } 2783 2784 bool pack_left_child = true; 2785 bool pack_right_child = true; 2786 2787 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2788 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2789 2790 int left_child_input_cnt = 0; 2791 int right_child_input_cnt = 0; 2792 2793 bool parent_is_predicated = n->is_predicated_vector(); 2794 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2795 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2796 2797 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2798 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2799 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2800 2801 do { 2802 if (pack_left_child && left_child_LOP && 2803 ((!parent_is_predicated && !left_child_predicated) || 2804 ((parent_is_predicated && left_child_predicated && 2805 parent_pred == left_child_pred)))) { 2806 partition.push(n->in(1)); 2807 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2808 } else { 2809 inputs.push(n->in(1)); 2810 left_child_input_cnt = 1; 2811 } 2812 2813 if (pack_right_child && right_child_LOP && 2814 (!right_child_predicated || 2815 (right_child_predicated && parent_is_predicated && 2816 parent_pred == right_child_pred))) { 2817 partition.push(n->in(2)); 2818 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2819 } else { 2820 inputs.push(n->in(2)); 2821 right_child_input_cnt = 1; 2822 } 2823 2824 if (inputs.size() > 3) { 2825 assert(partition.size() > 0, ""); 2826 inputs.clear(); 2827 partition.clear(); 2828 if (left_child_input_cnt > right_child_input_cnt) { 2829 pack_left_child = false; 2830 } else { 2831 pack_right_child = false; 2832 } 2833 } else { 2834 break; 2835 } 2836 } while(true); 2837 2838 if(partition.size()) { 2839 partition.push(n); 2840 } 2841 2842 return (partition.size() == 2 || partition.size() == 3) && 2843 (inputs.size() == 2 || inputs.size() == 3); 2844 } 2845 2846 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2847 assert(is_vector_bitwise_op(n), "not a root"); 2848 2849 visited.set(n->_idx); 2850 2851 // 1) Do a DFS walk over the logic cone. 2852 for (uint i = 1; i < n->req(); i++) { 2853 Node* in = n->in(i); 2854 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2855 process_logic_cone_root(igvn, in, visited); 2856 } 2857 } 2858 2859 // 2) Bottom up traversal: Merge node[s] with 2860 // the parent to form macro logic node. 2861 Unique_Node_List partition; 2862 Unique_Node_List inputs; 2863 if (compute_logic_cone(n, partition, inputs)) { 2864 const TypeVect* vt = n->bottom_type()->is_vect(); 2865 Node* pn = partition.at(partition.size() - 1); 2866 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2867 if (mask == nullptr || 2868 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2869 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2870 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2871 igvn.replace_node(n, macro_logic); 2872 } 2873 } 2874 } 2875 2876 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2877 ResourceMark rm; 2878 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2879 Unique_Node_List list; 2880 collect_logic_cone_roots(list); 2881 2882 while (list.size() > 0) { 2883 Node* n = list.pop(); 2884 const TypeVect* vt = n->bottom_type()->is_vect(); 2885 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2886 if (supported) { 2887 VectorSet visited(comp_arena()); 2888 process_logic_cone_root(igvn, n, visited); 2889 } 2890 } 2891 } 2892 } 2893 2894 //------------------------------Code_Gen--------------------------------------- 2895 // Given a graph, generate code for it 2896 void Compile::Code_Gen() { 2897 if (failing()) { 2898 return; 2899 } 2900 2901 // Perform instruction selection. You might think we could reclaim Matcher 2902 // memory PDQ, but actually the Matcher is used in generating spill code. 2903 // Internals of the Matcher (including some VectorSets) must remain live 2904 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2905 // set a bit in reclaimed memory. 2906 2907 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2908 // nodes. Mapping is only valid at the root of each matched subtree. 2909 NOT_PRODUCT( verify_graph_edges(); ) 2910 2911 Matcher matcher; 2912 _matcher = &matcher; 2913 { 2914 TracePhase tp("matcher", &timers[_t_matcher]); 2915 matcher.match(); 2916 if (failing()) { 2917 return; 2918 } 2919 } 2920 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2921 // nodes. Mapping is only valid at the root of each matched subtree. 2922 NOT_PRODUCT( verify_graph_edges(); ) 2923 2924 // If you have too many nodes, or if matching has failed, bail out 2925 check_node_count(0, "out of nodes matching instructions"); 2926 if (failing()) { 2927 return; 2928 } 2929 2930 print_method(PHASE_MATCHING, 2); 2931 2932 // Build a proper-looking CFG 2933 PhaseCFG cfg(node_arena(), root(), matcher); 2934 _cfg = &cfg; 2935 { 2936 TracePhase tp("scheduler", &timers[_t_scheduler]); 2937 bool success = cfg.do_global_code_motion(); 2938 if (!success) { 2939 return; 2940 } 2941 2942 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2943 NOT_PRODUCT( verify_graph_edges(); ) 2944 cfg.verify(); 2945 } 2946 2947 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2948 _regalloc = ®alloc; 2949 { 2950 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2951 // Perform register allocation. After Chaitin, use-def chains are 2952 // no longer accurate (at spill code) and so must be ignored. 2953 // Node->LRG->reg mappings are still accurate. 2954 _regalloc->Register_Allocate(); 2955 2956 // Bail out if the allocator builds too many nodes 2957 if (failing()) { 2958 return; 2959 } 2960 } 2961 2962 // Prior to register allocation we kept empty basic blocks in case the 2963 // the allocator needed a place to spill. After register allocation we 2964 // are not adding any new instructions. If any basic block is empty, we 2965 // can now safely remove it. 2966 { 2967 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2968 cfg.remove_empty_blocks(); 2969 if (do_freq_based_layout()) { 2970 PhaseBlockLayout layout(cfg); 2971 } else { 2972 cfg.set_loop_alignment(); 2973 } 2974 cfg.fixup_flow(); 2975 cfg.remove_unreachable_blocks(); 2976 cfg.verify_dominator_tree(); 2977 } 2978 2979 // Apply peephole optimizations 2980 if( OptoPeephole ) { 2981 TracePhase tp("peephole", &timers[_t_peephole]); 2982 PhasePeephole peep( _regalloc, cfg); 2983 peep.do_transform(); 2984 } 2985 2986 // Do late expand if CPU requires this. 2987 if (Matcher::require_postalloc_expand) { 2988 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 2989 cfg.postalloc_expand(_regalloc); 2990 } 2991 2992 // Convert Nodes to instruction bits in a buffer 2993 { 2994 TracePhase tp("output", &timers[_t_output]); 2995 PhaseOutput output; 2996 output.Output(); 2997 if (failing()) return; 2998 output.install(); 2999 } 3000 3001 print_method(PHASE_FINAL_CODE, 1); 3002 3003 // He's dead, Jim. 3004 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3005 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3006 } 3007 3008 //------------------------------Final_Reshape_Counts--------------------------- 3009 // This class defines counters to help identify when a method 3010 // may/must be executed using hardware with only 24-bit precision. 3011 struct Final_Reshape_Counts : public StackObj { 3012 int _call_count; // count non-inlined 'common' calls 3013 int _float_count; // count float ops requiring 24-bit precision 3014 int _double_count; // count double ops requiring more precision 3015 int _java_call_count; // count non-inlined 'java' calls 3016 int _inner_loop_count; // count loops which need alignment 3017 VectorSet _visited; // Visitation flags 3018 Node_List _tests; // Set of IfNodes & PCTableNodes 3019 3020 Final_Reshape_Counts() : 3021 _call_count(0), _float_count(0), _double_count(0), 3022 _java_call_count(0), _inner_loop_count(0) { } 3023 3024 void inc_call_count () { _call_count ++; } 3025 void inc_float_count () { _float_count ++; } 3026 void inc_double_count() { _double_count++; } 3027 void inc_java_call_count() { _java_call_count++; } 3028 void inc_inner_loop_count() { _inner_loop_count++; } 3029 3030 int get_call_count () const { return _call_count ; } 3031 int get_float_count () const { return _float_count ; } 3032 int get_double_count() const { return _double_count; } 3033 int get_java_call_count() const { return _java_call_count; } 3034 int get_inner_loop_count() const { return _inner_loop_count; } 3035 }; 3036 3037 // Eliminate trivially redundant StoreCMs and accumulate their 3038 // precedence edges. 3039 void Compile::eliminate_redundant_card_marks(Node* n) { 3040 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 3041 if (n->in(MemNode::Address)->outcnt() > 1) { 3042 // There are multiple users of the same address so it might be 3043 // possible to eliminate some of the StoreCMs 3044 Node* mem = n->in(MemNode::Memory); 3045 Node* adr = n->in(MemNode::Address); 3046 Node* val = n->in(MemNode::ValueIn); 3047 Node* prev = n; 3048 bool done = false; 3049 // Walk the chain of StoreCMs eliminating ones that match. As 3050 // long as it's a chain of single users then the optimization is 3051 // safe. Eliminating partially redundant StoreCMs would require 3052 // cloning copies down the other paths. 3053 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 3054 if (adr == mem->in(MemNode::Address) && 3055 val == mem->in(MemNode::ValueIn)) { 3056 // redundant StoreCM 3057 if (mem->req() > MemNode::OopStore) { 3058 // Hasn't been processed by this code yet. 3059 n->add_prec(mem->in(MemNode::OopStore)); 3060 } else { 3061 // Already converted to precedence edge 3062 for (uint i = mem->req(); i < mem->len(); i++) { 3063 // Accumulate any precedence edges 3064 if (mem->in(i) != nullptr) { 3065 n->add_prec(mem->in(i)); 3066 } 3067 } 3068 // Everything above this point has been processed. 3069 done = true; 3070 } 3071 // Eliminate the previous StoreCM 3072 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 3073 assert(mem->outcnt() == 0, "should be dead"); 3074 mem->disconnect_inputs(this); 3075 } else { 3076 prev = mem; 3077 } 3078 mem = prev->in(MemNode::Memory); 3079 } 3080 } 3081 } 3082 3083 //------------------------------final_graph_reshaping_impl---------------------- 3084 // Implement items 1-5 from final_graph_reshaping below. 3085 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3086 3087 if ( n->outcnt() == 0 ) return; // dead node 3088 uint nop = n->Opcode(); 3089 3090 // Check for 2-input instruction with "last use" on right input. 3091 // Swap to left input. Implements item (2). 3092 if( n->req() == 3 && // two-input instruction 3093 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3094 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3095 n->in(2)->outcnt() == 1 &&// right use IS a last use 3096 !n->in(2)->is_Con() ) { // right use is not a constant 3097 // Check for commutative opcode 3098 switch( nop ) { 3099 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3100 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3101 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3102 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3103 case Op_AndL: case Op_XorL: case Op_OrL: 3104 case Op_AndI: case Op_XorI: case Op_OrI: { 3105 // Move "last use" input to left by swapping inputs 3106 n->swap_edges(1, 2); 3107 break; 3108 } 3109 default: 3110 break; 3111 } 3112 } 3113 3114 #ifdef ASSERT 3115 if( n->is_Mem() ) { 3116 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3117 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3118 // oop will be recorded in oop map if load crosses safepoint 3119 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3120 LoadNode::is_immutable_value(n->in(MemNode::Address))), 3121 "raw memory operations should have control edge"); 3122 } 3123 if (n->is_MemBar()) { 3124 MemBarNode* mb = n->as_MemBar(); 3125 if (mb->trailing_store() || mb->trailing_load_store()) { 3126 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3127 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3128 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3129 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3130 } else if (mb->leading()) { 3131 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3132 } 3133 } 3134 #endif 3135 // Count FPU ops and common calls, implements item (3) 3136 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3137 if (!gc_handled) { 3138 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3139 } 3140 3141 // Collect CFG split points 3142 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3143 frc._tests.push(n); 3144 } 3145 } 3146 3147 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3148 switch( nop ) { 3149 // Count all float operations that may use FPU 3150 case Op_AddF: 3151 case Op_SubF: 3152 case Op_MulF: 3153 case Op_DivF: 3154 case Op_NegF: 3155 case Op_ModF: 3156 case Op_ConvI2F: 3157 case Op_ConF: 3158 case Op_CmpF: 3159 case Op_CmpF3: 3160 case Op_StoreF: 3161 case Op_LoadF: 3162 // case Op_ConvL2F: // longs are split into 32-bit halves 3163 frc.inc_float_count(); 3164 break; 3165 3166 case Op_ConvF2D: 3167 case Op_ConvD2F: 3168 frc.inc_float_count(); 3169 frc.inc_double_count(); 3170 break; 3171 3172 // Count all double operations that may use FPU 3173 case Op_AddD: 3174 case Op_SubD: 3175 case Op_MulD: 3176 case Op_DivD: 3177 case Op_NegD: 3178 case Op_ModD: 3179 case Op_ConvI2D: 3180 case Op_ConvD2I: 3181 // case Op_ConvL2D: // handled by leaf call 3182 // case Op_ConvD2L: // handled by leaf call 3183 case Op_ConD: 3184 case Op_CmpD: 3185 case Op_CmpD3: 3186 case Op_StoreD: 3187 case Op_LoadD: 3188 case Op_LoadD_unaligned: 3189 frc.inc_double_count(); 3190 break; 3191 case Op_Opaque1: // Remove Opaque Nodes before matching 3192 case Op_Opaque3: 3193 n->subsume_by(n->in(1), this); 3194 break; 3195 case Op_CallStaticJava: 3196 case Op_CallJava: 3197 case Op_CallDynamicJava: 3198 frc.inc_java_call_count(); // Count java call site; 3199 case Op_CallRuntime: 3200 case Op_CallLeaf: 3201 case Op_CallLeafVector: 3202 case Op_CallLeafNoFP: { 3203 assert (n->is_Call(), ""); 3204 CallNode *call = n->as_Call(); 3205 // Count call sites where the FP mode bit would have to be flipped. 3206 // Do not count uncommon runtime calls: 3207 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3208 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3209 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3210 frc.inc_call_count(); // Count the call site 3211 } else { // See if uncommon argument is shared 3212 Node *n = call->in(TypeFunc::Parms); 3213 int nop = n->Opcode(); 3214 // Clone shared simple arguments to uncommon calls, item (1). 3215 if (n->outcnt() > 1 && 3216 !n->is_Proj() && 3217 nop != Op_CreateEx && 3218 nop != Op_CheckCastPP && 3219 nop != Op_DecodeN && 3220 nop != Op_DecodeNKlass && 3221 !n->is_Mem() && 3222 !n->is_Phi()) { 3223 Node *x = n->clone(); 3224 call->set_req(TypeFunc::Parms, x); 3225 } 3226 } 3227 break; 3228 } 3229 3230 case Op_StoreCM: 3231 { 3232 // Convert OopStore dependence into precedence edge 3233 Node* prec = n->in(MemNode::OopStore); 3234 n->del_req(MemNode::OopStore); 3235 n->add_prec(prec); 3236 eliminate_redundant_card_marks(n); 3237 } 3238 3239 // fall through 3240 3241 case Op_StoreB: 3242 case Op_StoreC: 3243 case Op_StoreI: 3244 case Op_StoreL: 3245 case Op_CompareAndSwapB: 3246 case Op_CompareAndSwapS: 3247 case Op_CompareAndSwapI: 3248 case Op_CompareAndSwapL: 3249 case Op_CompareAndSwapP: 3250 case Op_CompareAndSwapN: 3251 case Op_WeakCompareAndSwapB: 3252 case Op_WeakCompareAndSwapS: 3253 case Op_WeakCompareAndSwapI: 3254 case Op_WeakCompareAndSwapL: 3255 case Op_WeakCompareAndSwapP: 3256 case Op_WeakCompareAndSwapN: 3257 case Op_CompareAndExchangeB: 3258 case Op_CompareAndExchangeS: 3259 case Op_CompareAndExchangeI: 3260 case Op_CompareAndExchangeL: 3261 case Op_CompareAndExchangeP: 3262 case Op_CompareAndExchangeN: 3263 case Op_GetAndAddS: 3264 case Op_GetAndAddB: 3265 case Op_GetAndAddI: 3266 case Op_GetAndAddL: 3267 case Op_GetAndSetS: 3268 case Op_GetAndSetB: 3269 case Op_GetAndSetI: 3270 case Op_GetAndSetL: 3271 case Op_GetAndSetP: 3272 case Op_GetAndSetN: 3273 case Op_StoreP: 3274 case Op_StoreN: 3275 case Op_StoreNKlass: 3276 case Op_LoadB: 3277 case Op_LoadUB: 3278 case Op_LoadUS: 3279 case Op_LoadI: 3280 case Op_LoadKlass: 3281 case Op_LoadNKlass: 3282 case Op_LoadL: 3283 case Op_LoadL_unaligned: 3284 case Op_LoadP: 3285 case Op_LoadN: 3286 case Op_LoadRange: 3287 case Op_LoadS: 3288 break; 3289 3290 case Op_AddP: { // Assert sane base pointers 3291 Node *addp = n->in(AddPNode::Address); 3292 assert( !addp->is_AddP() || 3293 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3294 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3295 "Base pointers must match (addp %u)", addp->_idx ); 3296 #ifdef _LP64 3297 if ((UseCompressedOops || UseCompressedClassPointers) && 3298 addp->Opcode() == Op_ConP && 3299 addp == n->in(AddPNode::Base) && 3300 n->in(AddPNode::Offset)->is_Con()) { 3301 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3302 // on the platform and on the compressed oops mode. 3303 // Use addressing with narrow klass to load with offset on x86. 3304 // Some platforms can use the constant pool to load ConP. 3305 // Do this transformation here since IGVN will convert ConN back to ConP. 3306 const Type* t = addp->bottom_type(); 3307 bool is_oop = t->isa_oopptr() != nullptr; 3308 bool is_klass = t->isa_klassptr() != nullptr; 3309 3310 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 3311 (is_klass && Matcher::const_klass_prefer_decode())) { 3312 Node* nn = nullptr; 3313 3314 int op = is_oop ? Op_ConN : Op_ConNKlass; 3315 3316 // Look for existing ConN node of the same exact type. 3317 Node* r = root(); 3318 uint cnt = r->outcnt(); 3319 for (uint i = 0; i < cnt; i++) { 3320 Node* m = r->raw_out(i); 3321 if (m!= nullptr && m->Opcode() == op && 3322 m->bottom_type()->make_ptr() == t) { 3323 nn = m; 3324 break; 3325 } 3326 } 3327 if (nn != nullptr) { 3328 // Decode a narrow oop to match address 3329 // [R12 + narrow_oop_reg<<3 + offset] 3330 if (is_oop) { 3331 nn = new DecodeNNode(nn, t); 3332 } else { 3333 nn = new DecodeNKlassNode(nn, t); 3334 } 3335 // Check for succeeding AddP which uses the same Base. 3336 // Otherwise we will run into the assertion above when visiting that guy. 3337 for (uint i = 0; i < n->outcnt(); ++i) { 3338 Node *out_i = n->raw_out(i); 3339 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3340 out_i->set_req(AddPNode::Base, nn); 3341 #ifdef ASSERT 3342 for (uint j = 0; j < out_i->outcnt(); ++j) { 3343 Node *out_j = out_i->raw_out(j); 3344 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3345 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3346 } 3347 #endif 3348 } 3349 } 3350 n->set_req(AddPNode::Base, nn); 3351 n->set_req(AddPNode::Address, nn); 3352 if (addp->outcnt() == 0) { 3353 addp->disconnect_inputs(this); 3354 } 3355 } 3356 } 3357 } 3358 #endif 3359 break; 3360 } 3361 3362 case Op_CastPP: { 3363 // Remove CastPP nodes to gain more freedom during scheduling but 3364 // keep the dependency they encode as control or precedence edges 3365 // (if control is set already) on memory operations. Some CastPP 3366 // nodes don't have a control (don't carry a dependency): skip 3367 // those. 3368 if (n->in(0) != nullptr) { 3369 ResourceMark rm; 3370 Unique_Node_List wq; 3371 wq.push(n); 3372 for (uint next = 0; next < wq.size(); ++next) { 3373 Node *m = wq.at(next); 3374 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3375 Node* use = m->fast_out(i); 3376 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3377 use->ensure_control_or_add_prec(n->in(0)); 3378 } else { 3379 switch(use->Opcode()) { 3380 case Op_AddP: 3381 case Op_DecodeN: 3382 case Op_DecodeNKlass: 3383 case Op_CheckCastPP: 3384 case Op_CastPP: 3385 wq.push(use); 3386 break; 3387 } 3388 } 3389 } 3390 } 3391 } 3392 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3393 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3394 Node* in1 = n->in(1); 3395 const Type* t = n->bottom_type(); 3396 Node* new_in1 = in1->clone(); 3397 new_in1->as_DecodeN()->set_type(t); 3398 3399 if (!Matcher::narrow_oop_use_complex_address()) { 3400 // 3401 // x86, ARM and friends can handle 2 adds in addressing mode 3402 // and Matcher can fold a DecodeN node into address by using 3403 // a narrow oop directly and do implicit null check in address: 3404 // 3405 // [R12 + narrow_oop_reg<<3 + offset] 3406 // NullCheck narrow_oop_reg 3407 // 3408 // On other platforms (Sparc) we have to keep new DecodeN node and 3409 // use it to do implicit null check in address: 3410 // 3411 // decode_not_null narrow_oop_reg, base_reg 3412 // [base_reg + offset] 3413 // NullCheck base_reg 3414 // 3415 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3416 // to keep the information to which null check the new DecodeN node 3417 // corresponds to use it as value in implicit_null_check(). 3418 // 3419 new_in1->set_req(0, n->in(0)); 3420 } 3421 3422 n->subsume_by(new_in1, this); 3423 if (in1->outcnt() == 0) { 3424 in1->disconnect_inputs(this); 3425 } 3426 } else { 3427 n->subsume_by(n->in(1), this); 3428 if (n->outcnt() == 0) { 3429 n->disconnect_inputs(this); 3430 } 3431 } 3432 break; 3433 } 3434 #ifdef _LP64 3435 case Op_CmpP: 3436 // Do this transformation here to preserve CmpPNode::sub() and 3437 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3438 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3439 Node* in1 = n->in(1); 3440 Node* in2 = n->in(2); 3441 if (!in1->is_DecodeNarrowPtr()) { 3442 in2 = in1; 3443 in1 = n->in(2); 3444 } 3445 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3446 3447 Node* new_in2 = nullptr; 3448 if (in2->is_DecodeNarrowPtr()) { 3449 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3450 new_in2 = in2->in(1); 3451 } else if (in2->Opcode() == Op_ConP) { 3452 const Type* t = in2->bottom_type(); 3453 if (t == TypePtr::NULL_PTR) { 3454 assert(in1->is_DecodeN(), "compare klass to null?"); 3455 // Don't convert CmpP null check into CmpN if compressed 3456 // oops implicit null check is not generated. 3457 // This will allow to generate normal oop implicit null check. 3458 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3459 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3460 // 3461 // This transformation together with CastPP transformation above 3462 // will generated code for implicit null checks for compressed oops. 3463 // 3464 // The original code after Optimize() 3465 // 3466 // LoadN memory, narrow_oop_reg 3467 // decode narrow_oop_reg, base_reg 3468 // CmpP base_reg, nullptr 3469 // CastPP base_reg // NotNull 3470 // Load [base_reg + offset], val_reg 3471 // 3472 // after these transformations will be 3473 // 3474 // LoadN memory, narrow_oop_reg 3475 // CmpN narrow_oop_reg, nullptr 3476 // decode_not_null narrow_oop_reg, base_reg 3477 // Load [base_reg + offset], val_reg 3478 // 3479 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3480 // since narrow oops can be used in debug info now (see the code in 3481 // final_graph_reshaping_walk()). 3482 // 3483 // At the end the code will be matched to 3484 // on x86: 3485 // 3486 // Load_narrow_oop memory, narrow_oop_reg 3487 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3488 // NullCheck narrow_oop_reg 3489 // 3490 // and on sparc: 3491 // 3492 // Load_narrow_oop memory, narrow_oop_reg 3493 // decode_not_null narrow_oop_reg, base_reg 3494 // Load [base_reg + offset], val_reg 3495 // NullCheck base_reg 3496 // 3497 } else if (t->isa_oopptr()) { 3498 new_in2 = ConNode::make(t->make_narrowoop()); 3499 } else if (t->isa_klassptr()) { 3500 new_in2 = ConNode::make(t->make_narrowklass()); 3501 } 3502 } 3503 if (new_in2 != nullptr) { 3504 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3505 n->subsume_by(cmpN, this); 3506 if (in1->outcnt() == 0) { 3507 in1->disconnect_inputs(this); 3508 } 3509 if (in2->outcnt() == 0) { 3510 in2->disconnect_inputs(this); 3511 } 3512 } 3513 } 3514 break; 3515 3516 case Op_DecodeN: 3517 case Op_DecodeNKlass: 3518 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3519 // DecodeN could be pinned when it can't be fold into 3520 // an address expression, see the code for Op_CastPP above. 3521 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3522 break; 3523 3524 case Op_EncodeP: 3525 case Op_EncodePKlass: { 3526 Node* in1 = n->in(1); 3527 if (in1->is_DecodeNarrowPtr()) { 3528 n->subsume_by(in1->in(1), this); 3529 } else if (in1->Opcode() == Op_ConP) { 3530 const Type* t = in1->bottom_type(); 3531 if (t == TypePtr::NULL_PTR) { 3532 assert(t->isa_oopptr(), "null klass?"); 3533 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3534 } else if (t->isa_oopptr()) { 3535 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3536 } else if (t->isa_klassptr()) { 3537 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3538 } 3539 } 3540 if (in1->outcnt() == 0) { 3541 in1->disconnect_inputs(this); 3542 } 3543 break; 3544 } 3545 3546 case Op_Proj: { 3547 if (OptimizeStringConcat || IncrementalInline) { 3548 ProjNode* proj = n->as_Proj(); 3549 if (proj->_is_io_use) { 3550 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3551 // Separate projections were used for the exception path which 3552 // are normally removed by a late inline. If it wasn't inlined 3553 // then they will hang around and should just be replaced with 3554 // the original one. Merge them. 3555 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3556 if (non_io_proj != nullptr) { 3557 proj->subsume_by(non_io_proj , this); 3558 } 3559 } 3560 } 3561 break; 3562 } 3563 3564 case Op_Phi: 3565 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3566 // The EncodeP optimization may create Phi with the same edges 3567 // for all paths. It is not handled well by Register Allocator. 3568 Node* unique_in = n->in(1); 3569 assert(unique_in != nullptr, ""); 3570 uint cnt = n->req(); 3571 for (uint i = 2; i < cnt; i++) { 3572 Node* m = n->in(i); 3573 assert(m != nullptr, ""); 3574 if (unique_in != m) 3575 unique_in = nullptr; 3576 } 3577 if (unique_in != nullptr) { 3578 n->subsume_by(unique_in, this); 3579 } 3580 } 3581 break; 3582 3583 #endif 3584 3585 #ifdef ASSERT 3586 case Op_CastII: 3587 // Verify that all range check dependent CastII nodes were removed. 3588 if (n->isa_CastII()->has_range_check()) { 3589 n->dump(3); 3590 assert(false, "Range check dependent CastII node was not removed"); 3591 } 3592 break; 3593 #endif 3594 3595 case Op_ModI: 3596 if (UseDivMod) { 3597 // Check if a%b and a/b both exist 3598 Node* d = n->find_similar(Op_DivI); 3599 if (d) { 3600 // Replace them with a fused divmod if supported 3601 if (Matcher::has_match_rule(Op_DivModI)) { 3602 DivModINode* divmod = DivModINode::make(n); 3603 d->subsume_by(divmod->div_proj(), this); 3604 n->subsume_by(divmod->mod_proj(), this); 3605 } else { 3606 // replace a%b with a-((a/b)*b) 3607 Node* mult = new MulINode(d, d->in(2)); 3608 Node* sub = new SubINode(d->in(1), mult); 3609 n->subsume_by(sub, this); 3610 } 3611 } 3612 } 3613 break; 3614 3615 case Op_ModL: 3616 if (UseDivMod) { 3617 // Check if a%b and a/b both exist 3618 Node* d = n->find_similar(Op_DivL); 3619 if (d) { 3620 // Replace them with a fused divmod if supported 3621 if (Matcher::has_match_rule(Op_DivModL)) { 3622 DivModLNode* divmod = DivModLNode::make(n); 3623 d->subsume_by(divmod->div_proj(), this); 3624 n->subsume_by(divmod->mod_proj(), this); 3625 } else { 3626 // replace a%b with a-((a/b)*b) 3627 Node* mult = new MulLNode(d, d->in(2)); 3628 Node* sub = new SubLNode(d->in(1), mult); 3629 n->subsume_by(sub, this); 3630 } 3631 } 3632 } 3633 break; 3634 3635 case Op_UModI: 3636 if (UseDivMod) { 3637 // Check if a%b and a/b both exist 3638 Node* d = n->find_similar(Op_UDivI); 3639 if (d) { 3640 // Replace them with a fused unsigned divmod if supported 3641 if (Matcher::has_match_rule(Op_UDivModI)) { 3642 UDivModINode* divmod = UDivModINode::make(n); 3643 d->subsume_by(divmod->div_proj(), this); 3644 n->subsume_by(divmod->mod_proj(), this); 3645 } else { 3646 // replace a%b with a-((a/b)*b) 3647 Node* mult = new MulINode(d, d->in(2)); 3648 Node* sub = new SubINode(d->in(1), mult); 3649 n->subsume_by(sub, this); 3650 } 3651 } 3652 } 3653 break; 3654 3655 case Op_UModL: 3656 if (UseDivMod) { 3657 // Check if a%b and a/b both exist 3658 Node* d = n->find_similar(Op_UDivL); 3659 if (d) { 3660 // Replace them with a fused unsigned divmod if supported 3661 if (Matcher::has_match_rule(Op_UDivModL)) { 3662 UDivModLNode* divmod = UDivModLNode::make(n); 3663 d->subsume_by(divmod->div_proj(), this); 3664 n->subsume_by(divmod->mod_proj(), this); 3665 } else { 3666 // replace a%b with a-((a/b)*b) 3667 Node* mult = new MulLNode(d, d->in(2)); 3668 Node* sub = new SubLNode(d->in(1), mult); 3669 n->subsume_by(sub, this); 3670 } 3671 } 3672 } 3673 break; 3674 3675 case Op_LoadVector: 3676 case Op_StoreVector: 3677 case Op_LoadVectorGather: 3678 case Op_StoreVectorScatter: 3679 case Op_LoadVectorGatherMasked: 3680 case Op_StoreVectorScatterMasked: 3681 case Op_VectorCmpMasked: 3682 case Op_VectorMaskGen: 3683 case Op_LoadVectorMasked: 3684 case Op_StoreVectorMasked: 3685 break; 3686 3687 case Op_AddReductionVI: 3688 case Op_AddReductionVL: 3689 case Op_AddReductionVF: 3690 case Op_AddReductionVD: 3691 case Op_MulReductionVI: 3692 case Op_MulReductionVL: 3693 case Op_MulReductionVF: 3694 case Op_MulReductionVD: 3695 case Op_MinReductionV: 3696 case Op_MaxReductionV: 3697 case Op_AndReductionV: 3698 case Op_OrReductionV: 3699 case Op_XorReductionV: 3700 break; 3701 3702 case Op_PackB: 3703 case Op_PackS: 3704 case Op_PackI: 3705 case Op_PackF: 3706 case Op_PackL: 3707 case Op_PackD: 3708 if (n->req()-1 > 2) { 3709 // Replace many operand PackNodes with a binary tree for matching 3710 PackNode* p = (PackNode*) n; 3711 Node* btp = p->binary_tree_pack(1, n->req()); 3712 n->subsume_by(btp, this); 3713 } 3714 break; 3715 case Op_Loop: 3716 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3717 case Op_CountedLoop: 3718 case Op_LongCountedLoop: 3719 case Op_OuterStripMinedLoop: 3720 if (n->as_Loop()->is_inner_loop()) { 3721 frc.inc_inner_loop_count(); 3722 } 3723 n->as_Loop()->verify_strip_mined(0); 3724 break; 3725 case Op_LShiftI: 3726 case Op_RShiftI: 3727 case Op_URShiftI: 3728 case Op_LShiftL: 3729 case Op_RShiftL: 3730 case Op_URShiftL: 3731 if (Matcher::need_masked_shift_count) { 3732 // The cpu's shift instructions don't restrict the count to the 3733 // lower 5/6 bits. We need to do the masking ourselves. 3734 Node* in2 = n->in(2); 3735 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3736 const TypeInt* t = in2->find_int_type(); 3737 if (t != nullptr && t->is_con()) { 3738 juint shift = t->get_con(); 3739 if (shift > mask) { // Unsigned cmp 3740 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3741 } 3742 } else { 3743 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3744 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3745 n->set_req(2, shift); 3746 } 3747 } 3748 if (in2->outcnt() == 0) { // Remove dead node 3749 in2->disconnect_inputs(this); 3750 } 3751 } 3752 break; 3753 case Op_MemBarStoreStore: 3754 case Op_MemBarRelease: 3755 // Break the link with AllocateNode: it is no longer useful and 3756 // confuses register allocation. 3757 if (n->req() > MemBarNode::Precedent) { 3758 n->set_req(MemBarNode::Precedent, top()); 3759 } 3760 break; 3761 case Op_MemBarAcquire: { 3762 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3763 // At parse time, the trailing MemBarAcquire for a volatile load 3764 // is created with an edge to the load. After optimizations, 3765 // that input may be a chain of Phis. If those phis have no 3766 // other use, then the MemBarAcquire keeps them alive and 3767 // register allocation can be confused. 3768 dead_nodes.push(n->in(MemBarNode::Precedent)); 3769 n->set_req(MemBarNode::Precedent, top()); 3770 } 3771 break; 3772 } 3773 case Op_Blackhole: 3774 break; 3775 case Op_RangeCheck: { 3776 RangeCheckNode* rc = n->as_RangeCheck(); 3777 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3778 n->subsume_by(iff, this); 3779 frc._tests.push(iff); 3780 break; 3781 } 3782 case Op_ConvI2L: { 3783 if (!Matcher::convi2l_type_required) { 3784 // Code generation on some platforms doesn't need accurate 3785 // ConvI2L types. Widening the type can help remove redundant 3786 // address computations. 3787 n->as_Type()->set_type(TypeLong::INT); 3788 ResourceMark rm; 3789 Unique_Node_List wq; 3790 wq.push(n); 3791 for (uint next = 0; next < wq.size(); next++) { 3792 Node *m = wq.at(next); 3793 3794 for(;;) { 3795 // Loop over all nodes with identical inputs edges as m 3796 Node* k = m->find_similar(m->Opcode()); 3797 if (k == nullptr) { 3798 break; 3799 } 3800 // Push their uses so we get a chance to remove node made 3801 // redundant 3802 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3803 Node* u = k->fast_out(i); 3804 if (u->Opcode() == Op_LShiftL || 3805 u->Opcode() == Op_AddL || 3806 u->Opcode() == Op_SubL || 3807 u->Opcode() == Op_AddP) { 3808 wq.push(u); 3809 } 3810 } 3811 // Replace all nodes with identical edges as m with m 3812 k->subsume_by(m, this); 3813 } 3814 } 3815 } 3816 break; 3817 } 3818 case Op_CmpUL: { 3819 if (!Matcher::has_match_rule(Op_CmpUL)) { 3820 // No support for unsigned long comparisons 3821 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3822 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3823 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3824 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3825 Node* andl = new AndLNode(orl, remove_sign_mask); 3826 Node* cmp = new CmpLNode(andl, n->in(2)); 3827 n->subsume_by(cmp, this); 3828 } 3829 break; 3830 } 3831 default: 3832 assert(!n->is_Call(), ""); 3833 assert(!n->is_Mem(), ""); 3834 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3835 break; 3836 } 3837 } 3838 3839 //------------------------------final_graph_reshaping_walk--------------------- 3840 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3841 // requires that the walk visits a node's inputs before visiting the node. 3842 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3843 Unique_Node_List sfpt; 3844 3845 frc._visited.set(root->_idx); // first, mark node as visited 3846 uint cnt = root->req(); 3847 Node *n = root; 3848 uint i = 0; 3849 while (true) { 3850 if (i < cnt) { 3851 // Place all non-visited non-null inputs onto stack 3852 Node* m = n->in(i); 3853 ++i; 3854 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3855 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3856 // compute worst case interpreter size in case of a deoptimization 3857 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3858 3859 sfpt.push(m); 3860 } 3861 cnt = m->req(); 3862 nstack.push(n, i); // put on stack parent and next input's index 3863 n = m; 3864 i = 0; 3865 } 3866 } else { 3867 // Now do post-visit work 3868 final_graph_reshaping_impl(n, frc, dead_nodes); 3869 if (nstack.is_empty()) 3870 break; // finished 3871 n = nstack.node(); // Get node from stack 3872 cnt = n->req(); 3873 i = nstack.index(); 3874 nstack.pop(); // Shift to the next node on stack 3875 } 3876 } 3877 3878 // Skip next transformation if compressed oops are not used. 3879 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3880 (!UseCompressedOops && !UseCompressedClassPointers)) 3881 return; 3882 3883 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3884 // It could be done for an uncommon traps or any safepoints/calls 3885 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3886 while (sfpt.size() > 0) { 3887 n = sfpt.pop(); 3888 JVMState *jvms = n->as_SafePoint()->jvms(); 3889 assert(jvms != nullptr, "sanity"); 3890 int start = jvms->debug_start(); 3891 int end = n->req(); 3892 bool is_uncommon = (n->is_CallStaticJava() && 3893 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3894 for (int j = start; j < end; j++) { 3895 Node* in = n->in(j); 3896 if (in->is_DecodeNarrowPtr()) { 3897 bool safe_to_skip = true; 3898 if (!is_uncommon ) { 3899 // Is it safe to skip? 3900 for (uint i = 0; i < in->outcnt(); i++) { 3901 Node* u = in->raw_out(i); 3902 if (!u->is_SafePoint() || 3903 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3904 safe_to_skip = false; 3905 } 3906 } 3907 } 3908 if (safe_to_skip) { 3909 n->set_req(j, in->in(1)); 3910 } 3911 if (in->outcnt() == 0) { 3912 in->disconnect_inputs(this); 3913 } 3914 } 3915 } 3916 } 3917 } 3918 3919 //------------------------------final_graph_reshaping-------------------------- 3920 // Final Graph Reshaping. 3921 // 3922 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3923 // and not commoned up and forced early. Must come after regular 3924 // optimizations to avoid GVN undoing the cloning. Clone constant 3925 // inputs to Loop Phis; these will be split by the allocator anyways. 3926 // Remove Opaque nodes. 3927 // (2) Move last-uses by commutative operations to the left input to encourage 3928 // Intel update-in-place two-address operations and better register usage 3929 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3930 // calls canonicalizing them back. 3931 // (3) Count the number of double-precision FP ops, single-precision FP ops 3932 // and call sites. On Intel, we can get correct rounding either by 3933 // forcing singles to memory (requires extra stores and loads after each 3934 // FP bytecode) or we can set a rounding mode bit (requires setting and 3935 // clearing the mode bit around call sites). The mode bit is only used 3936 // if the relative frequency of single FP ops to calls is low enough. 3937 // This is a key transform for SPEC mpeg_audio. 3938 // (4) Detect infinite loops; blobs of code reachable from above but not 3939 // below. Several of the Code_Gen algorithms fail on such code shapes, 3940 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3941 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3942 // Detection is by looking for IfNodes where only 1 projection is 3943 // reachable from below or CatchNodes missing some targets. 3944 // (5) Assert for insane oop offsets in debug mode. 3945 3946 bool Compile::final_graph_reshaping() { 3947 // an infinite loop may have been eliminated by the optimizer, 3948 // in which case the graph will be empty. 3949 if (root()->req() == 1) { 3950 // Do not compile method that is only a trivial infinite loop, 3951 // since the content of the loop may have been eliminated. 3952 record_method_not_compilable("trivial infinite loop"); 3953 return true; 3954 } 3955 3956 // Expensive nodes have their control input set to prevent the GVN 3957 // from freely commoning them. There's no GVN beyond this point so 3958 // no need to keep the control input. We want the expensive nodes to 3959 // be freely moved to the least frequent code path by gcm. 3960 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3961 for (int i = 0; i < expensive_count(); i++) { 3962 _expensive_nodes.at(i)->set_req(0, nullptr); 3963 } 3964 3965 Final_Reshape_Counts frc; 3966 3967 // Visit everybody reachable! 3968 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3969 Node_Stack nstack(live_nodes() >> 1); 3970 Unique_Node_List dead_nodes; 3971 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 3972 3973 // Check for unreachable (from below) code (i.e., infinite loops). 3974 for( uint i = 0; i < frc._tests.size(); i++ ) { 3975 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3976 // Get number of CFG targets. 3977 // Note that PCTables include exception targets after calls. 3978 uint required_outcnt = n->required_outcnt(); 3979 if (n->outcnt() != required_outcnt) { 3980 // Check for a few special cases. Rethrow Nodes never take the 3981 // 'fall-thru' path, so expected kids is 1 less. 3982 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3983 if (n->in(0)->in(0)->is_Call()) { 3984 CallNode* call = n->in(0)->in(0)->as_Call(); 3985 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3986 required_outcnt--; // Rethrow always has 1 less kid 3987 } else if (call->req() > TypeFunc::Parms && 3988 call->is_CallDynamicJava()) { 3989 // Check for null receiver. In such case, the optimizer has 3990 // detected that the virtual call will always result in a null 3991 // pointer exception. The fall-through projection of this CatchNode 3992 // will not be populated. 3993 Node* arg0 = call->in(TypeFunc::Parms); 3994 if (arg0->is_Type() && 3995 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3996 required_outcnt--; 3997 } 3998 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 3999 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4000 // Check for illegal array length. In such case, the optimizer has 4001 // detected that the allocation attempt will always result in an 4002 // exception. There is no fall-through projection of this CatchNode . 4003 assert(call->is_CallStaticJava(), "static call expected"); 4004 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4005 uint valid_length_test_input = call->req() - 1; 4006 Node* valid_length_test = call->in(valid_length_test_input); 4007 call->del_req(valid_length_test_input); 4008 if (valid_length_test->find_int_con(1) == 0) { 4009 required_outcnt--; 4010 } 4011 dead_nodes.push(valid_length_test); 4012 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4013 continue; 4014 } 4015 } 4016 } 4017 4018 // Recheck with a better notion of 'required_outcnt' 4019 if (n->outcnt() != required_outcnt) { 4020 record_method_not_compilable("malformed control flow"); 4021 return true; // Not all targets reachable! 4022 } 4023 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4024 CallNode* call = n->in(0)->in(0)->as_Call(); 4025 if (call->entry_point() == OptoRuntime::new_array_Java() || 4026 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4027 assert(call->is_CallStaticJava(), "static call expected"); 4028 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4029 uint valid_length_test_input = call->req() - 1; 4030 dead_nodes.push(call->in(valid_length_test_input)); 4031 call->del_req(valid_length_test_input); // valid length test useless now 4032 } 4033 } 4034 // Check that I actually visited all kids. Unreached kids 4035 // must be infinite loops. 4036 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4037 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4038 record_method_not_compilable("infinite loop"); 4039 return true; // Found unvisited kid; must be unreach 4040 } 4041 4042 // Here so verification code in final_graph_reshaping_walk() 4043 // always see an OuterStripMinedLoopEnd 4044 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4045 IfNode* init_iff = n->as_If(); 4046 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4047 n->subsume_by(iff, this); 4048 } 4049 } 4050 4051 while (dead_nodes.size() > 0) { 4052 Node* m = dead_nodes.pop(); 4053 if (m->outcnt() == 0 && m != top()) { 4054 for (uint j = 0; j < m->req(); j++) { 4055 Node* in = m->in(j); 4056 if (in != nullptr) { 4057 dead_nodes.push(in); 4058 } 4059 } 4060 m->disconnect_inputs(this); 4061 } 4062 } 4063 4064 #ifdef IA32 4065 // If original bytecodes contained a mixture of floats and doubles 4066 // check if the optimizer has made it homogeneous, item (3). 4067 if (UseSSE == 0 && 4068 frc.get_float_count() > 32 && 4069 frc.get_double_count() == 0 && 4070 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4071 set_24_bit_selection_and_mode(false, true); 4072 } 4073 #endif // IA32 4074 4075 set_java_calls(frc.get_java_call_count()); 4076 set_inner_loops(frc.get_inner_loop_count()); 4077 4078 // No infinite loops, no reason to bail out. 4079 return false; 4080 } 4081 4082 //-----------------------------too_many_traps---------------------------------- 4083 // Report if there are too many traps at the current method and bci. 4084 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4085 bool Compile::too_many_traps(ciMethod* method, 4086 int bci, 4087 Deoptimization::DeoptReason reason) { 4088 ciMethodData* md = method->method_data(); 4089 if (md->is_empty()) { 4090 // Assume the trap has not occurred, or that it occurred only 4091 // because of a transient condition during start-up in the interpreter. 4092 return false; 4093 } 4094 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4095 if (md->has_trap_at(bci, m, reason) != 0) { 4096 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4097 // Also, if there are multiple reasons, or if there is no per-BCI record, 4098 // assume the worst. 4099 if (log()) 4100 log()->elem("observe trap='%s' count='%d'", 4101 Deoptimization::trap_reason_name(reason), 4102 md->trap_count(reason)); 4103 return true; 4104 } else { 4105 // Ignore method/bci and see if there have been too many globally. 4106 return too_many_traps(reason, md); 4107 } 4108 } 4109 4110 // Less-accurate variant which does not require a method and bci. 4111 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4112 ciMethodData* logmd) { 4113 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4114 // Too many traps globally. 4115 // Note that we use cumulative trap_count, not just md->trap_count. 4116 if (log()) { 4117 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4118 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4119 Deoptimization::trap_reason_name(reason), 4120 mcount, trap_count(reason)); 4121 } 4122 return true; 4123 } else { 4124 // The coast is clear. 4125 return false; 4126 } 4127 } 4128 4129 //--------------------------too_many_recompiles-------------------------------- 4130 // Report if there are too many recompiles at the current method and bci. 4131 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4132 // Is not eager to return true, since this will cause the compiler to use 4133 // Action_none for a trap point, to avoid too many recompilations. 4134 bool Compile::too_many_recompiles(ciMethod* method, 4135 int bci, 4136 Deoptimization::DeoptReason reason) { 4137 ciMethodData* md = method->method_data(); 4138 if (md->is_empty()) { 4139 // Assume the trap has not occurred, or that it occurred only 4140 // because of a transient condition during start-up in the interpreter. 4141 return false; 4142 } 4143 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4144 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4145 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4146 Deoptimization::DeoptReason per_bc_reason 4147 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4148 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4149 if ((per_bc_reason == Deoptimization::Reason_none 4150 || md->has_trap_at(bci, m, reason) != 0) 4151 // The trap frequency measure we care about is the recompile count: 4152 && md->trap_recompiled_at(bci, m) 4153 && md->overflow_recompile_count() >= bc_cutoff) { 4154 // Do not emit a trap here if it has already caused recompilations. 4155 // Also, if there are multiple reasons, or if there is no per-BCI record, 4156 // assume the worst. 4157 if (log()) 4158 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4159 Deoptimization::trap_reason_name(reason), 4160 md->trap_count(reason), 4161 md->overflow_recompile_count()); 4162 return true; 4163 } else if (trap_count(reason) != 0 4164 && decompile_count() >= m_cutoff) { 4165 // Too many recompiles globally, and we have seen this sort of trap. 4166 // Use cumulative decompile_count, not just md->decompile_count. 4167 if (log()) 4168 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4169 Deoptimization::trap_reason_name(reason), 4170 md->trap_count(reason), trap_count(reason), 4171 md->decompile_count(), decompile_count()); 4172 return true; 4173 } else { 4174 // The coast is clear. 4175 return false; 4176 } 4177 } 4178 4179 // Compute when not to trap. Used by matching trap based nodes and 4180 // NullCheck optimization. 4181 void Compile::set_allowed_deopt_reasons() { 4182 _allowed_reasons = 0; 4183 if (is_method_compilation()) { 4184 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4185 assert(rs < BitsPerInt, "recode bit map"); 4186 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4187 _allowed_reasons |= nth_bit(rs); 4188 } 4189 } 4190 } 4191 } 4192 4193 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4194 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4195 } 4196 4197 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4198 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4199 } 4200 4201 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4202 if (holder->is_initialized()) { 4203 return false; 4204 } 4205 if (holder->is_being_initialized()) { 4206 if (accessing_method->holder() == holder) { 4207 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4208 // <init>, or a static method. In all those cases, there was an initialization 4209 // barrier on the holder klass passed. 4210 if (accessing_method->is_static_initializer() || 4211 accessing_method->is_object_initializer() || 4212 accessing_method->is_static()) { 4213 return false; 4214 } 4215 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4216 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4217 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4218 // child class can become fully initialized while its parent class is still being initialized. 4219 if (accessing_method->is_static_initializer()) { 4220 return false; 4221 } 4222 } 4223 ciMethod* root = method(); // the root method of compilation 4224 if (root != accessing_method) { 4225 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4226 } 4227 } 4228 return true; 4229 } 4230 4231 #ifndef PRODUCT 4232 //------------------------------verify_bidirectional_edges--------------------- 4233 // For each input edge to a node (ie - for each Use-Def edge), verify that 4234 // there is a corresponding Def-Use edge. 4235 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4236 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4237 uint stack_size = live_nodes() >> 4; 4238 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4239 nstack.push(_root); 4240 4241 while (nstack.size() > 0) { 4242 Node* n = nstack.pop(); 4243 if (visited.member(n)) { 4244 continue; 4245 } 4246 visited.push(n); 4247 4248 // Walk over all input edges, checking for correspondence 4249 uint length = n->len(); 4250 for (uint i = 0; i < length; i++) { 4251 Node* in = n->in(i); 4252 if (in != nullptr && !visited.member(in)) { 4253 nstack.push(in); // Put it on stack 4254 } 4255 if (in != nullptr && !in->is_top()) { 4256 // Count instances of `next` 4257 int cnt = 0; 4258 for (uint idx = 0; idx < in->_outcnt; idx++) { 4259 if (in->_out[idx] == n) { 4260 cnt++; 4261 } 4262 } 4263 assert(cnt > 0, "Failed to find Def-Use edge."); 4264 // Check for duplicate edges 4265 // walk the input array downcounting the input edges to n 4266 for (uint j = 0; j < length; j++) { 4267 if (n->in(j) == in) { 4268 cnt--; 4269 } 4270 } 4271 assert(cnt == 0, "Mismatched edge count."); 4272 } else if (in == nullptr) { 4273 assert(i == 0 || i >= n->req() || 4274 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4275 (n->is_Unlock() && i == (n->req() - 1)) || 4276 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4277 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4278 } else { 4279 assert(in->is_top(), "sanity"); 4280 // Nothing to check. 4281 } 4282 } 4283 } 4284 } 4285 4286 //------------------------------verify_graph_edges--------------------------- 4287 // Walk the Graph and verify that there is a one-to-one correspondence 4288 // between Use-Def edges and Def-Use edges in the graph. 4289 void Compile::verify_graph_edges(bool no_dead_code) { 4290 if (VerifyGraphEdges) { 4291 Unique_Node_List visited; 4292 4293 // Call graph walk to check edges 4294 verify_bidirectional_edges(visited); 4295 if (no_dead_code) { 4296 // Now make sure that no visited node is used by an unvisited node. 4297 bool dead_nodes = false; 4298 Unique_Node_List checked; 4299 while (visited.size() > 0) { 4300 Node* n = visited.pop(); 4301 checked.push(n); 4302 for (uint i = 0; i < n->outcnt(); i++) { 4303 Node* use = n->raw_out(i); 4304 if (checked.member(use)) continue; // already checked 4305 if (visited.member(use)) continue; // already in the graph 4306 if (use->is_Con()) continue; // a dead ConNode is OK 4307 // At this point, we have found a dead node which is DU-reachable. 4308 if (!dead_nodes) { 4309 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4310 dead_nodes = true; 4311 } 4312 use->dump(2); 4313 tty->print_cr("---"); 4314 checked.push(use); // No repeats; pretend it is now checked. 4315 } 4316 } 4317 assert(!dead_nodes, "using nodes must be reachable from root"); 4318 } 4319 } 4320 } 4321 #endif 4322 4323 // The Compile object keeps track of failure reasons separately from the ciEnv. 4324 // This is required because there is not quite a 1-1 relation between the 4325 // ciEnv and its compilation task and the Compile object. Note that one 4326 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4327 // to backtrack and retry without subsuming loads. Other than this backtracking 4328 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4329 // by the logic in C2Compiler. 4330 void Compile::record_failure(const char* reason) { 4331 if (log() != nullptr) { 4332 log()->elem("failure reason='%s' phase='compile'", reason); 4333 } 4334 if (_failure_reason.get() == nullptr) { 4335 // Record the first failure reason. 4336 _failure_reason.set(reason); 4337 } 4338 4339 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4340 C->print_method(PHASE_FAILURE, 1); 4341 } 4342 _root = nullptr; // flush the graph, too 4343 } 4344 4345 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 4346 : TraceTime(name, accumulator, CITime, CITimeVerbose), 4347 _phase_name(name), _dolog(CITimeVerbose) 4348 { 4349 if (_dolog) { 4350 C = Compile::current(); 4351 _log = C->log(); 4352 } else { 4353 C = nullptr; 4354 _log = nullptr; 4355 } 4356 if (_log != nullptr) { 4357 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4358 _log->stamp(); 4359 _log->end_head(); 4360 } 4361 } 4362 4363 Compile::TracePhase::~TracePhase() { 4364 4365 C = Compile::current(); 4366 if (_dolog) { 4367 _log = C->log(); 4368 } else { 4369 _log = nullptr; 4370 } 4371 4372 #ifdef ASSERT 4373 if (PrintIdealNodeCount) { 4374 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4375 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 4376 } 4377 4378 if (VerifyIdealNodeCount) { 4379 Compile::current()->print_missing_nodes(); 4380 } 4381 #endif 4382 4383 if (_log != nullptr) { 4384 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4385 } 4386 } 4387 4388 //----------------------------static_subtype_check----------------------------- 4389 // Shortcut important common cases when superklass is exact: 4390 // (0) superklass is java.lang.Object (can occur in reflective code) 4391 // (1) subklass is already limited to a subtype of superklass => always ok 4392 // (2) subklass does not overlap with superklass => always fail 4393 // (3) superklass has NO subtypes and we can check with a simple compare. 4394 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4395 if (skip) { 4396 return SSC_full_test; // Let caller generate the general case. 4397 } 4398 4399 if (subk->is_java_subtype_of(superk)) { 4400 return SSC_always_true; // (0) and (1) this test cannot fail 4401 } 4402 4403 if (!subk->maybe_java_subtype_of(superk)) { 4404 return SSC_always_false; // (2) true path dead; no dynamic test needed 4405 } 4406 4407 const Type* superelem = superk; 4408 if (superk->isa_aryklassptr()) { 4409 int ignored; 4410 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4411 } 4412 4413 if (superelem->isa_instklassptr()) { 4414 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4415 if (!ik->has_subklass()) { 4416 if (!ik->is_final()) { 4417 // Add a dependency if there is a chance of a later subclass. 4418 dependencies()->assert_leaf_type(ik); 4419 } 4420 if (!superk->maybe_java_subtype_of(subk)) { 4421 return SSC_always_false; 4422 } 4423 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4424 } 4425 } else { 4426 // A primitive array type has no subtypes. 4427 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4428 } 4429 4430 return SSC_full_test; 4431 } 4432 4433 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4434 #ifdef _LP64 4435 // The scaled index operand to AddP must be a clean 64-bit value. 4436 // Java allows a 32-bit int to be incremented to a negative 4437 // value, which appears in a 64-bit register as a large 4438 // positive number. Using that large positive number as an 4439 // operand in pointer arithmetic has bad consequences. 4440 // On the other hand, 32-bit overflow is rare, and the possibility 4441 // can often be excluded, if we annotate the ConvI2L node with 4442 // a type assertion that its value is known to be a small positive 4443 // number. (The prior range check has ensured this.) 4444 // This assertion is used by ConvI2LNode::Ideal. 4445 int index_max = max_jint - 1; // array size is max_jint, index is one less 4446 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4447 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4448 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4449 #endif 4450 return idx; 4451 } 4452 4453 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4454 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4455 if (ctrl != nullptr) { 4456 // Express control dependency by a CastII node with a narrow type. 4457 value = new CastIINode(value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4458 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4459 // node from floating above the range check during loop optimizations. Otherwise, the 4460 // ConvI2L node may be eliminated independently of the range check, causing the data path 4461 // to become TOP while the control path is still there (although it's unreachable). 4462 value->set_req(0, ctrl); 4463 value = phase->transform(value); 4464 } 4465 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4466 return phase->transform(new ConvI2LNode(value, ltype)); 4467 } 4468 4469 // The message about the current inlining is accumulated in 4470 // _print_inlining_stream and transferred into the _print_inlining_list 4471 // once we know whether inlining succeeds or not. For regular 4472 // inlining, messages are appended to the buffer pointed by 4473 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4474 // a new buffer is added after _print_inlining_idx in the list. This 4475 // way we can update the inlining message for late inlining call site 4476 // when the inlining is attempted again. 4477 void Compile::print_inlining_init() { 4478 if (print_inlining() || print_intrinsics()) { 4479 // print_inlining_init is actually called several times. 4480 print_inlining_reset(); 4481 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer()); 4482 } 4483 } 4484 4485 void Compile::print_inlining_reinit() { 4486 if (print_inlining() || print_intrinsics()) { 4487 print_inlining_reset(); 4488 } 4489 } 4490 4491 void Compile::print_inlining_reset() { 4492 _print_inlining_stream->reset(); 4493 } 4494 4495 void Compile::print_inlining_commit() { 4496 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4497 // Transfer the message from _print_inlining_stream to the current 4498 // _print_inlining_list buffer and clear _print_inlining_stream. 4499 _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4500 print_inlining_reset(); 4501 } 4502 4503 void Compile::print_inlining_push() { 4504 // Add new buffer to the _print_inlining_list at current position 4505 _print_inlining_idx++; 4506 _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer()); 4507 } 4508 4509 Compile::PrintInliningBuffer* Compile::print_inlining_current() { 4510 return _print_inlining_list->at(_print_inlining_idx); 4511 } 4512 4513 void Compile::print_inlining_update(CallGenerator* cg) { 4514 if (print_inlining() || print_intrinsics()) { 4515 if (cg->is_late_inline()) { 4516 if (print_inlining_current()->cg() != cg && 4517 (print_inlining_current()->cg() != nullptr || 4518 print_inlining_current()->ss()->size() != 0)) { 4519 print_inlining_push(); 4520 } 4521 print_inlining_commit(); 4522 print_inlining_current()->set_cg(cg); 4523 } else { 4524 if (print_inlining_current()->cg() != nullptr) { 4525 print_inlining_push(); 4526 } 4527 print_inlining_commit(); 4528 } 4529 } 4530 } 4531 4532 void Compile::print_inlining_move_to(CallGenerator* cg) { 4533 // We resume inlining at a late inlining call site. Locate the 4534 // corresponding inlining buffer so that we can update it. 4535 if (print_inlining() || print_intrinsics()) { 4536 for (int i = 0; i < _print_inlining_list->length(); i++) { 4537 if (_print_inlining_list->at(i)->cg() == cg) { 4538 _print_inlining_idx = i; 4539 return; 4540 } 4541 } 4542 ShouldNotReachHere(); 4543 } 4544 } 4545 4546 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4547 if (print_inlining() || print_intrinsics()) { 4548 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4549 assert(print_inlining_current()->cg() == cg, "wrong entry"); 4550 // replace message with new message 4551 _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer()); 4552 print_inlining_commit(); 4553 print_inlining_current()->set_cg(cg); 4554 } 4555 } 4556 4557 void Compile::print_inlining_assert_ready() { 4558 assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data"); 4559 } 4560 4561 void Compile::process_print_inlining() { 4562 assert(_late_inlines.length() == 0, "not drained yet"); 4563 if (print_inlining() || print_intrinsics()) { 4564 ResourceMark rm; 4565 stringStream ss; 4566 assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once."); 4567 for (int i = 0; i < _print_inlining_list->length(); i++) { 4568 PrintInliningBuffer* pib = _print_inlining_list->at(i); 4569 ss.print("%s", pib->ss()->freeze()); 4570 delete pib; 4571 DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr)); 4572 } 4573 // Reset _print_inlining_list, it only contains destructed objects. 4574 // It is on the arena, so it will be freed when the arena is reset. 4575 _print_inlining_list = nullptr; 4576 // _print_inlining_stream won't be used anymore, either. 4577 print_inlining_reset(); 4578 size_t end = ss.size(); 4579 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4580 strncpy(_print_inlining_output, ss.freeze(), end+1); 4581 _print_inlining_output[end] = 0; 4582 } 4583 } 4584 4585 void Compile::dump_print_inlining() { 4586 if (_print_inlining_output != nullptr) { 4587 tty->print_raw(_print_inlining_output); 4588 } 4589 } 4590 4591 void Compile::log_late_inline(CallGenerator* cg) { 4592 if (log() != nullptr) { 4593 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4594 cg->unique_id()); 4595 JVMState* p = cg->call_node()->jvms(); 4596 while (p != nullptr) { 4597 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4598 p = p->caller(); 4599 } 4600 log()->tail("late_inline"); 4601 } 4602 } 4603 4604 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4605 log_late_inline(cg); 4606 if (log() != nullptr) { 4607 log()->inline_fail(msg); 4608 } 4609 } 4610 4611 void Compile::log_inline_id(CallGenerator* cg) { 4612 if (log() != nullptr) { 4613 // The LogCompilation tool needs a unique way to identify late 4614 // inline call sites. This id must be unique for this call site in 4615 // this compilation. Try to have it unique across compilations as 4616 // well because it can be convenient when grepping through the log 4617 // file. 4618 // Distinguish OSR compilations from others in case CICountOSR is 4619 // on. 4620 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4621 cg->set_unique_id(id); 4622 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4623 } 4624 } 4625 4626 void Compile::log_inline_failure(const char* msg) { 4627 if (C->log() != nullptr) { 4628 C->log()->inline_fail(msg); 4629 } 4630 } 4631 4632 4633 // Dump inlining replay data to the stream. 4634 // Don't change thread state and acquire any locks. 4635 void Compile::dump_inline_data(outputStream* out) { 4636 InlineTree* inl_tree = ilt(); 4637 if (inl_tree != nullptr) { 4638 out->print(" inline %d", inl_tree->count()); 4639 inl_tree->dump_replay_data(out); 4640 } 4641 } 4642 4643 void Compile::dump_inline_data_reduced(outputStream* out) { 4644 assert(ReplayReduce, ""); 4645 4646 InlineTree* inl_tree = ilt(); 4647 if (inl_tree == nullptr) { 4648 return; 4649 } 4650 // Enable iterative replay file reduction 4651 // Output "compile" lines for depth 1 subtrees, 4652 // simulating that those trees were compiled 4653 // instead of inlined. 4654 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4655 InlineTree* sub = inl_tree->subtrees().at(i); 4656 if (sub->inline_level() != 1) { 4657 continue; 4658 } 4659 4660 ciMethod* method = sub->method(); 4661 int entry_bci = -1; 4662 int comp_level = env()->task()->comp_level(); 4663 out->print("compile "); 4664 method->dump_name_as_ascii(out); 4665 out->print(" %d %d", entry_bci, comp_level); 4666 out->print(" inline %d", sub->count()); 4667 sub->dump_replay_data(out, -1); 4668 out->cr(); 4669 } 4670 } 4671 4672 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4673 if (n1->Opcode() < n2->Opcode()) return -1; 4674 else if (n1->Opcode() > n2->Opcode()) return 1; 4675 4676 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4677 for (uint i = 1; i < n1->req(); i++) { 4678 if (n1->in(i) < n2->in(i)) return -1; 4679 else if (n1->in(i) > n2->in(i)) return 1; 4680 } 4681 4682 return 0; 4683 } 4684 4685 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4686 Node* n1 = *n1p; 4687 Node* n2 = *n2p; 4688 4689 return cmp_expensive_nodes(n1, n2); 4690 } 4691 4692 void Compile::sort_expensive_nodes() { 4693 if (!expensive_nodes_sorted()) { 4694 _expensive_nodes.sort(cmp_expensive_nodes); 4695 } 4696 } 4697 4698 bool Compile::expensive_nodes_sorted() const { 4699 for (int i = 1; i < _expensive_nodes.length(); i++) { 4700 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4701 return false; 4702 } 4703 } 4704 return true; 4705 } 4706 4707 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4708 if (_expensive_nodes.length() == 0) { 4709 return false; 4710 } 4711 4712 assert(OptimizeExpensiveOps, "optimization off?"); 4713 4714 // Take this opportunity to remove dead nodes from the list 4715 int j = 0; 4716 for (int i = 0; i < _expensive_nodes.length(); i++) { 4717 Node* n = _expensive_nodes.at(i); 4718 if (!n->is_unreachable(igvn)) { 4719 assert(n->is_expensive(), "should be expensive"); 4720 _expensive_nodes.at_put(j, n); 4721 j++; 4722 } 4723 } 4724 _expensive_nodes.trunc_to(j); 4725 4726 // Then sort the list so that similar nodes are next to each other 4727 // and check for at least two nodes of identical kind with same data 4728 // inputs. 4729 sort_expensive_nodes(); 4730 4731 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4732 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4733 return true; 4734 } 4735 } 4736 4737 return false; 4738 } 4739 4740 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4741 if (_expensive_nodes.length() == 0) { 4742 return; 4743 } 4744 4745 assert(OptimizeExpensiveOps, "optimization off?"); 4746 4747 // Sort to bring similar nodes next to each other and clear the 4748 // control input of nodes for which there's only a single copy. 4749 sort_expensive_nodes(); 4750 4751 int j = 0; 4752 int identical = 0; 4753 int i = 0; 4754 bool modified = false; 4755 for (; i < _expensive_nodes.length()-1; i++) { 4756 assert(j <= i, "can't write beyond current index"); 4757 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4758 identical++; 4759 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4760 continue; 4761 } 4762 if (identical > 0) { 4763 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4764 identical = 0; 4765 } else { 4766 Node* n = _expensive_nodes.at(i); 4767 igvn.replace_input_of(n, 0, nullptr); 4768 igvn.hash_insert(n); 4769 modified = true; 4770 } 4771 } 4772 if (identical > 0) { 4773 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4774 } else if (_expensive_nodes.length() >= 1) { 4775 Node* n = _expensive_nodes.at(i); 4776 igvn.replace_input_of(n, 0, nullptr); 4777 igvn.hash_insert(n); 4778 modified = true; 4779 } 4780 _expensive_nodes.trunc_to(j); 4781 if (modified) { 4782 igvn.optimize(); 4783 } 4784 } 4785 4786 void Compile::add_expensive_node(Node * n) { 4787 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4788 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4789 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4790 if (OptimizeExpensiveOps) { 4791 _expensive_nodes.append(n); 4792 } else { 4793 // Clear control input and let IGVN optimize expensive nodes if 4794 // OptimizeExpensiveOps is off. 4795 n->set_req(0, nullptr); 4796 } 4797 } 4798 4799 /** 4800 * Track coarsened Lock and Unlock nodes. 4801 */ 4802 4803 class Lock_List : public Node_List { 4804 uint _origin_cnt; 4805 public: 4806 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4807 uint origin_cnt() const { return _origin_cnt; } 4808 }; 4809 4810 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4811 int length = locks.length(); 4812 if (length > 0) { 4813 // Have to keep this list until locks elimination during Macro nodes elimination. 4814 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4815 AbstractLockNode* alock = locks.at(0); 4816 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4817 for (int i = 0; i < length; i++) { 4818 AbstractLockNode* lock = locks.at(i); 4819 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4820 locks_list->push(lock); 4821 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4822 if (this_box != box) { 4823 // Locking regions (BoxLock) could be Unbalanced here: 4824 // - its coarsened locks were eliminated in earlier 4825 // macro nodes elimination followed by loop unroll 4826 // - it is OSR locking region (no Lock node) 4827 // Preserve Unbalanced status in such cases. 4828 if (!this_box->is_unbalanced()) { 4829 this_box->set_coarsened(); 4830 } 4831 if (!box->is_unbalanced()) { 4832 box->set_coarsened(); 4833 } 4834 } 4835 } 4836 _coarsened_locks.append(locks_list); 4837 } 4838 } 4839 4840 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4841 int count = coarsened_count(); 4842 for (int i = 0; i < count; i++) { 4843 Node_List* locks_list = _coarsened_locks.at(i); 4844 for (uint j = 0; j < locks_list->size(); j++) { 4845 Node* lock = locks_list->at(j); 4846 assert(lock->is_AbstractLock(), "sanity"); 4847 if (!useful.member(lock)) { 4848 locks_list->yank(lock); 4849 } 4850 } 4851 } 4852 } 4853 4854 void Compile::remove_coarsened_lock(Node* n) { 4855 if (n->is_AbstractLock()) { 4856 int count = coarsened_count(); 4857 for (int i = 0; i < count; i++) { 4858 Node_List* locks_list = _coarsened_locks.at(i); 4859 locks_list->yank(n); 4860 } 4861 } 4862 } 4863 4864 bool Compile::coarsened_locks_consistent() { 4865 int count = coarsened_count(); 4866 for (int i = 0; i < count; i++) { 4867 bool unbalanced = false; 4868 bool modified = false; // track locks kind modifications 4869 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4870 uint size = locks_list->size(); 4871 if (size == 0) { 4872 unbalanced = false; // All locks were eliminated - good 4873 } else if (size != locks_list->origin_cnt()) { 4874 unbalanced = true; // Some locks were removed from list 4875 } else { 4876 for (uint j = 0; j < size; j++) { 4877 Node* lock = locks_list->at(j); 4878 // All nodes in group should have the same state (modified or not) 4879 if (!lock->as_AbstractLock()->is_coarsened()) { 4880 if (j == 0) { 4881 // first on list was modified, the rest should be too for consistency 4882 modified = true; 4883 } else if (!modified) { 4884 // this lock was modified but previous locks on the list were not 4885 unbalanced = true; 4886 break; 4887 } 4888 } else if (modified) { 4889 // previous locks on list were modified but not this lock 4890 unbalanced = true; 4891 break; 4892 } 4893 } 4894 } 4895 if (unbalanced) { 4896 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4897 #ifdef ASSERT 4898 if (PrintEliminateLocks) { 4899 tty->print_cr("=== unbalanced coarsened locks ==="); 4900 for (uint l = 0; l < size; l++) { 4901 locks_list->at(l)->dump(); 4902 } 4903 } 4904 #endif 4905 record_failure(C2Compiler::retry_no_locks_coarsening()); 4906 return false; 4907 } 4908 } 4909 return true; 4910 } 4911 4912 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4913 // locks coarsening optimization removed Lock/Unlock nodes from them. 4914 // Such regions become unbalanced because coarsening only removes part 4915 // of Lock/Unlock nodes in region. As result we can't execute other 4916 // locks elimination optimizations which assume all code paths have 4917 // corresponding pair of Lock/Unlock nodes - they are balanced. 4918 void Compile::mark_unbalanced_boxes() const { 4919 int count = coarsened_count(); 4920 for (int i = 0; i < count; i++) { 4921 Node_List* locks_list = _coarsened_locks.at(i); 4922 uint size = locks_list->size(); 4923 if (size > 0) { 4924 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4925 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4926 if (alock->is_coarsened()) { 4927 // coarsened_locks_consistent(), which is called before this method, verifies 4928 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4929 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4930 for (uint j = 1; j < size; j++) { 4931 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4932 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4933 if (box != this_box) { 4934 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4935 box->set_unbalanced(); 4936 this_box->set_unbalanced(); 4937 } 4938 } 4939 } 4940 } 4941 } 4942 } 4943 4944 /** 4945 * Remove the speculative part of types and clean up the graph 4946 */ 4947 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4948 if (UseTypeSpeculation) { 4949 Unique_Node_List worklist; 4950 worklist.push(root()); 4951 int modified = 0; 4952 // Go over all type nodes that carry a speculative type, drop the 4953 // speculative part of the type and enqueue the node for an igvn 4954 // which may optimize it out. 4955 for (uint next = 0; next < worklist.size(); ++next) { 4956 Node *n = worklist.at(next); 4957 if (n->is_Type()) { 4958 TypeNode* tn = n->as_Type(); 4959 const Type* t = tn->type(); 4960 const Type* t_no_spec = t->remove_speculative(); 4961 if (t_no_spec != t) { 4962 bool in_hash = igvn.hash_delete(n); 4963 #ifdef ASSERT 4964 if (!in_hash) { 4965 tty->print_cr("current graph:"); 4966 n->dump_bfs(MaxNodeLimit, nullptr, "S$"); 4967 tty->cr(); 4968 tty->print_cr("erroneous node:"); 4969 n->dump(); 4970 assert(false, "node should be in igvn hash table"); 4971 } 4972 #endif 4973 tn->set_type(t_no_spec); 4974 igvn.hash_insert(n); 4975 igvn._worklist.push(n); // give it a chance to go away 4976 modified++; 4977 } 4978 } 4979 // Iterate over outs - endless loops is unreachable from below 4980 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4981 Node *m = n->fast_out(i); 4982 if (not_a_node(m)) { 4983 continue; 4984 } 4985 worklist.push(m); 4986 } 4987 } 4988 // Drop the speculative part of all types in the igvn's type table 4989 igvn.remove_speculative_types(); 4990 if (modified > 0) { 4991 igvn.optimize(); 4992 if (failing()) return; 4993 } 4994 #ifdef ASSERT 4995 // Verify that after the IGVN is over no speculative type has resurfaced 4996 worklist.clear(); 4997 worklist.push(root()); 4998 for (uint next = 0; next < worklist.size(); ++next) { 4999 Node *n = worklist.at(next); 5000 const Type* t = igvn.type_or_null(n); 5001 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 5002 if (n->is_Type()) { 5003 t = n->as_Type()->type(); 5004 assert(t == t->remove_speculative(), "no more speculative types"); 5005 } 5006 // Iterate over outs - endless loops is unreachable from below 5007 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5008 Node *m = n->fast_out(i); 5009 if (not_a_node(m)) { 5010 continue; 5011 } 5012 worklist.push(m); 5013 } 5014 } 5015 igvn.check_no_speculative_types(); 5016 #endif 5017 } 5018 } 5019 5020 // Auxiliary methods to support randomized stressing/fuzzing. 5021 5022 int Compile::random() { 5023 _stress_seed = os::next_random(_stress_seed); 5024 return static_cast<int>(_stress_seed); 5025 } 5026 5027 // This method can be called the arbitrary number of times, with current count 5028 // as the argument. The logic allows selecting a single candidate from the 5029 // running list of candidates as follows: 5030 // int count = 0; 5031 // Cand* selected = null; 5032 // while(cand = cand->next()) { 5033 // if (randomized_select(++count)) { 5034 // selected = cand; 5035 // } 5036 // } 5037 // 5038 // Including count equalizes the chances any candidate is "selected". 5039 // This is useful when we don't have the complete list of candidates to choose 5040 // from uniformly. In this case, we need to adjust the randomicity of the 5041 // selection, or else we will end up biasing the selection towards the latter 5042 // candidates. 5043 // 5044 // Quick back-envelope calculation shows that for the list of n candidates 5045 // the equal probability for the candidate to persist as "best" can be 5046 // achieved by replacing it with "next" k-th candidate with the probability 5047 // of 1/k. It can be easily shown that by the end of the run, the 5048 // probability for any candidate is converged to 1/n, thus giving the 5049 // uniform distribution among all the candidates. 5050 // 5051 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5052 #define RANDOMIZED_DOMAIN_POW 29 5053 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5054 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5055 bool Compile::randomized_select(int count) { 5056 assert(count > 0, "only positive"); 5057 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5058 } 5059 5060 CloneMap& Compile::clone_map() { return _clone_map; } 5061 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5062 5063 void NodeCloneInfo::dump_on(outputStream* st) const { 5064 st->print(" {%d:%d} ", idx(), gen()); 5065 } 5066 5067 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5068 uint64_t val = value(old->_idx); 5069 NodeCloneInfo cio(val); 5070 assert(val != 0, "old node should be in the map"); 5071 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5072 insert(nnn->_idx, cin.get()); 5073 #ifndef PRODUCT 5074 if (is_debug()) { 5075 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5076 } 5077 #endif 5078 } 5079 5080 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5081 NodeCloneInfo cio(value(old->_idx)); 5082 if (cio.get() == 0) { 5083 cio.set(old->_idx, 0); 5084 insert(old->_idx, cio.get()); 5085 #ifndef PRODUCT 5086 if (is_debug()) { 5087 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5088 } 5089 #endif 5090 } 5091 clone(old, nnn, gen); 5092 } 5093 5094 int CloneMap::max_gen() const { 5095 int g = 0; 5096 DictI di(_dict); 5097 for(; di.test(); ++di) { 5098 int t = gen(di._key); 5099 if (g < t) { 5100 g = t; 5101 #ifndef PRODUCT 5102 if (is_debug()) { 5103 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5104 } 5105 #endif 5106 } 5107 } 5108 return g; 5109 } 5110 5111 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5112 uint64_t val = value(key); 5113 if (val != 0) { 5114 NodeCloneInfo ni(val); 5115 ni.dump_on(st); 5116 } 5117 } 5118 5119 // Move Allocate nodes to the start of the list 5120 void Compile::sort_macro_nodes() { 5121 int count = macro_count(); 5122 int allocates = 0; 5123 for (int i = 0; i < count; i++) { 5124 Node* n = macro_node(i); 5125 if (n->is_Allocate()) { 5126 if (i != allocates) { 5127 Node* tmp = macro_node(allocates); 5128 _macro_nodes.at_put(allocates, n); 5129 _macro_nodes.at_put(i, tmp); 5130 } 5131 allocates++; 5132 } 5133 } 5134 } 5135 5136 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5137 EventCompilerPhase event; 5138 if (event.should_commit()) { 5139 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5140 } 5141 #ifndef PRODUCT 5142 ResourceMark rm; 5143 stringStream ss; 5144 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5145 if (n != nullptr) { 5146 ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]); 5147 } 5148 5149 const char* name = ss.as_string(); 5150 if (should_print_igv(level)) { 5151 _igv_printer->print_method(name, level); 5152 } 5153 if (should_print_phase(cpt)) { 5154 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5155 } 5156 #endif 5157 C->_latest_stage_start_counter.stamp(); 5158 } 5159 5160 // Only used from CompileWrapper 5161 void Compile::begin_method() { 5162 #ifndef PRODUCT 5163 if (_method != nullptr && should_print_igv(1)) { 5164 _igv_printer->begin_method(); 5165 } 5166 #endif 5167 C->_latest_stage_start_counter.stamp(); 5168 } 5169 5170 // Only used from CompileWrapper 5171 void Compile::end_method() { 5172 EventCompilerPhase event; 5173 if (event.should_commit()) { 5174 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5175 } 5176 5177 #ifndef PRODUCT 5178 if (_method != nullptr && should_print_igv(1)) { 5179 _igv_printer->end_method(); 5180 } 5181 #endif 5182 } 5183 5184 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5185 #ifndef PRODUCT 5186 if ((_directive->ideal_phase_mask() & CompilerPhaseTypeHelper::to_bitmask(cpt)) != 0) { 5187 return true; 5188 } 5189 #endif 5190 return false; 5191 } 5192 5193 bool Compile::should_print_igv(int level) { 5194 #ifndef PRODUCT 5195 if (PrintIdealGraphLevel < 0) { // disabled by the user 5196 return false; 5197 } 5198 5199 bool need = directive()->IGVPrintLevelOption >= level; 5200 if (need && !_igv_printer) { 5201 _igv_printer = IdealGraphPrinter::printer(); 5202 _igv_printer->set_compile(this); 5203 } 5204 return need; 5205 #else 5206 return false; 5207 #endif 5208 } 5209 5210 #ifndef PRODUCT 5211 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5212 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5213 5214 // Called from debugger. Prints method to the default file with the default phase name. 5215 // This works regardless of any Ideal Graph Visualizer flags set or not. 5216 void igv_print() { 5217 Compile::current()->igv_print_method_to_file(); 5218 } 5219 5220 // Same as igv_print() above but with a specified phase name. 5221 void igv_print(const char* phase_name) { 5222 Compile::current()->igv_print_method_to_file(phase_name); 5223 } 5224 5225 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5226 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5227 // This works regardless of any Ideal Graph Visualizer flags set or not. 5228 void igv_print(bool network) { 5229 if (network) { 5230 Compile::current()->igv_print_method_to_network(); 5231 } else { 5232 Compile::current()->igv_print_method_to_file(); 5233 } 5234 } 5235 5236 // Same as igv_print(bool network) above but with a specified phase name. 5237 void igv_print(bool network, const char* phase_name) { 5238 if (network) { 5239 Compile::current()->igv_print_method_to_network(phase_name); 5240 } else { 5241 Compile::current()->igv_print_method_to_file(phase_name); 5242 } 5243 } 5244 5245 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5246 void igv_print_default() { 5247 Compile::current()->print_method(PHASE_DEBUG, 0); 5248 } 5249 5250 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5251 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5252 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5253 void igv_append() { 5254 Compile::current()->igv_print_method_to_file("Debug", true); 5255 } 5256 5257 // Same as igv_append() above but with a specified phase name. 5258 void igv_append(const char* phase_name) { 5259 Compile::current()->igv_print_method_to_file(phase_name, true); 5260 } 5261 5262 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5263 const char* file_name = "custom_debug.xml"; 5264 if (_debug_file_printer == nullptr) { 5265 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5266 } else { 5267 _debug_file_printer->update_compiled_method(C->method()); 5268 } 5269 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5270 _debug_file_printer->print(phase_name, (Node*)C->root()); 5271 } 5272 5273 void Compile::igv_print_method_to_network(const char* phase_name) { 5274 if (_debug_network_printer == nullptr) { 5275 _debug_network_printer = new IdealGraphPrinter(C); 5276 } else { 5277 _debug_network_printer->update_compiled_method(C->method()); 5278 } 5279 tty->print_cr("Method printed over network stream to IGV"); 5280 _debug_network_printer->print(phase_name, (Node*)C->root()); 5281 } 5282 #endif 5283 5284 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5285 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5286 return value; 5287 } 5288 Node* result = nullptr; 5289 if (bt == T_BYTE) { 5290 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5291 result = new RShiftINode(result, phase->intcon(24)); 5292 } else if (bt == T_BOOLEAN) { 5293 result = new AndINode(value, phase->intcon(0xFF)); 5294 } else if (bt == T_CHAR) { 5295 result = new AndINode(value,phase->intcon(0xFFFF)); 5296 } else { 5297 assert(bt == T_SHORT, "unexpected narrow type"); 5298 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5299 result = new RShiftINode(result, phase->intcon(16)); 5300 } 5301 if (transform_res) { 5302 result = phase->transform(result); 5303 } 5304 return result; 5305 } 5306