1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "jfr/jfrEvents.hpp"
  39 #include "jvm_io.h"
  40 #include "memory/allocation.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "opto/addnode.hpp"
  43 #include "opto/block.hpp"
  44 #include "opto/c2compiler.hpp"
  45 #include "opto/callGenerator.hpp"
  46 #include "opto/callnode.hpp"
  47 #include "opto/castnode.hpp"
  48 #include "opto/cfgnode.hpp"
  49 #include "opto/chaitin.hpp"
  50 #include "opto/compile.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/convertnode.hpp"
  53 #include "opto/divnode.hpp"
  54 #include "opto/escape.hpp"
  55 #include "opto/idealGraphPrinter.hpp"
  56 #include "opto/loopnode.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/macro.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/mathexactnode.hpp"
  61 #include "opto/memnode.hpp"
  62 #include "opto/mulnode.hpp"
  63 #include "opto/narrowptrnode.hpp"
  64 #include "opto/node.hpp"
  65 #include "opto/opcodes.hpp"
  66 #include "opto/output.hpp"
  67 #include "opto/parse.hpp"
  68 #include "opto/phaseX.hpp"
  69 #include "opto/rootnode.hpp"
  70 #include "opto/runtime.hpp"
  71 #include "opto/stringopts.hpp"
  72 #include "opto/type.hpp"
  73 #include "opto/vector.hpp"
  74 #include "opto/vectornode.hpp"
  75 #include "runtime/globals_extension.hpp"
  76 #include "runtime/sharedRuntime.hpp"
  77 #include "runtime/signature.hpp"
  78 #include "runtime/stubRoutines.hpp"
  79 #include "runtime/timer.hpp"
  80 #include "utilities/align.hpp"
  81 #include "utilities/copy.hpp"
  82 #include "utilities/macros.hpp"
  83 #include "utilities/resourceHash.hpp"
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == nullptr) {
  89     _mach_constant_base_node = new MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 class IntrinsicDescPair {
 101  private:
 102   ciMethod* _m;
 103   bool _is_virtual;
 104  public:
 105   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 106   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 107     ciMethod* m= elt->method();
 108     ciMethod* key_m = key->_m;
 109     if (key_m < m)      return -1;
 110     else if (key_m > m) return 1;
 111     else {
 112       bool is_virtual = elt->is_virtual();
 113       bool key_virtual = key->_is_virtual;
 114       if (key_virtual < is_virtual)      return -1;
 115       else if (key_virtual > is_virtual) return 1;
 116       else                               return 0;
 117     }
 118   }
 119 };
 120 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 121 #ifdef ASSERT
 122   for (int i = 1; i < _intrinsics.length(); i++) {
 123     CallGenerator* cg1 = _intrinsics.at(i-1);
 124     CallGenerator* cg2 = _intrinsics.at(i);
 125     assert(cg1->method() != cg2->method()
 126            ? cg1->method()     < cg2->method()
 127            : cg1->is_virtual() < cg2->is_virtual(),
 128            "compiler intrinsics list must stay sorted");
 129   }
 130 #endif
 131   IntrinsicDescPair pair(m, is_virtual);
 132   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   bool found = false;
 137   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 138   assert(!found, "registering twice");
 139   _intrinsics.insert_before(index, cg);
 140   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 141 }
 142 
 143 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 144   assert(m->is_loaded(), "don't try this on unloaded methods");
 145   if (_intrinsics.length() > 0) {
 146     bool found = false;
 147     int index = intrinsic_insertion_index(m, is_virtual, found);
 148      if (found) {
 149       return _intrinsics.at(index);
 150     }
 151   }
 152   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 153   if (m->intrinsic_id() != vmIntrinsics::_none &&
 154       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 155     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 156     if (cg != nullptr) {
 157       // Save it for next time:
 158       register_intrinsic(cg);
 159       return cg;
 160     } else {
 161       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 162     }
 163   }
 164   return nullptr;
 165 }
 166 
 167 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 168 
 169 #ifndef PRODUCT
 170 // statistics gathering...
 171 
 172 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 173 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 174 
 175 inline int as_int(vmIntrinsics::ID id) {
 176   return vmIntrinsics::as_int(id);
 177 }
 178 
 179 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 180   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 181   int oflags = _intrinsic_hist_flags[as_int(id)];
 182   assert(flags != 0, "what happened?");
 183   if (is_virtual) {
 184     flags |= _intrinsic_virtual;
 185   }
 186   bool changed = (flags != oflags);
 187   if ((flags & _intrinsic_worked) != 0) {
 188     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 189     if (count == 1) {
 190       changed = true;           // first time
 191     }
 192     // increment the overall count also:
 193     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 194   }
 195   if (changed) {
 196     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 197       // Something changed about the intrinsic's virtuality.
 198       if ((flags & _intrinsic_virtual) != 0) {
 199         // This is the first use of this intrinsic as a virtual call.
 200         if (oflags != 0) {
 201           // We already saw it as a non-virtual, so note both cases.
 202           flags |= _intrinsic_both;
 203         }
 204       } else if ((oflags & _intrinsic_both) == 0) {
 205         // This is the first use of this intrinsic as a non-virtual
 206         flags |= _intrinsic_both;
 207       }
 208     }
 209     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 210   }
 211   // update the overall flags also:
 212   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 213   return changed;
 214 }
 215 
 216 static char* format_flags(int flags, char* buf) {
 217   buf[0] = 0;
 218   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 219   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 220   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 221   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 222   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 223   if (buf[0] == 0)  strcat(buf, ",");
 224   assert(buf[0] == ',', "must be");
 225   return &buf[1];
 226 }
 227 
 228 void Compile::print_intrinsic_statistics() {
 229   char flagsbuf[100];
 230   ttyLocker ttyl;
 231   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 232   tty->print_cr("Compiler intrinsic usage:");
 233   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 234   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 235   #define PRINT_STAT_LINE(name, c, f) \
 236     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 237   for (auto id : EnumRange<vmIntrinsicID>{}) {
 238     int   flags = _intrinsic_hist_flags[as_int(id)];
 239     juint count = _intrinsic_hist_count[as_int(id)];
 240     if ((flags | count) != 0) {
 241       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 242     }
 243   }
 244   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 245   if (xtty != nullptr)  xtty->tail("statistics");
 246 }
 247 
 248 void Compile::print_statistics() {
 249   { ttyLocker ttyl;
 250     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 251     Parse::print_statistics();
 252     PhaseStringOpts::print_statistics();
 253     PhaseCCP::print_statistics();
 254     PhaseRegAlloc::print_statistics();
 255     PhaseOutput::print_statistics();
 256     PhasePeephole::print_statistics();
 257     PhaseIdealLoop::print_statistics();
 258     ConnectionGraph::print_statistics();
 259     PhaseMacroExpand::print_statistics();
 260     if (xtty != nullptr)  xtty->tail("statistics");
 261   }
 262   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 263     // put this under its own <statistics> element.
 264     print_intrinsic_statistics();
 265   }
 266 }
 267 #endif //PRODUCT
 268 
 269 void Compile::gvn_replace_by(Node* n, Node* nn) {
 270   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 271     Node* use = n->last_out(i);
 272     bool is_in_table = initial_gvn()->hash_delete(use);
 273     uint uses_found = 0;
 274     for (uint j = 0; j < use->len(); j++) {
 275       if (use->in(j) == n) {
 276         if (j < use->req())
 277           use->set_req(j, nn);
 278         else
 279           use->set_prec(j, nn);
 280         uses_found++;
 281       }
 282     }
 283     if (is_in_table) {
 284       // reinsert into table
 285       initial_gvn()->hash_find_insert(use);
 286     }
 287     record_for_igvn(use);
 288     i -= uses_found;    // we deleted 1 or more copies of this edge
 289   }
 290 }
 291 
 292 
 293 // Identify all nodes that are reachable from below, useful.
 294 // Use breadth-first pass that records state in a Unique_Node_List,
 295 // recursive traversal is slower.
 296 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 297   int estimated_worklist_size = live_nodes();
 298   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 299 
 300   // Initialize worklist
 301   if (root() != nullptr)  { useful.push(root()); }
 302   // If 'top' is cached, declare it useful to preserve cached node
 303   if (cached_top_node())  { useful.push(cached_top_node()); }
 304 
 305   // Push all useful nodes onto the list, breadthfirst
 306   for( uint next = 0; next < useful.size(); ++next ) {
 307     assert( next < unique(), "Unique useful nodes < total nodes");
 308     Node *n  = useful.at(next);
 309     uint max = n->len();
 310     for( uint i = 0; i < max; ++i ) {
 311       Node *m = n->in(i);
 312       if (not_a_node(m))  continue;
 313       useful.push(m);
 314     }
 315   }
 316 }
 317 
 318 // Update dead_node_list with any missing dead nodes using useful
 319 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 320 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 321   uint max_idx = unique();
 322   VectorSet& useful_node_set = useful.member_set();
 323 
 324   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 325     // If node with index node_idx is not in useful set,
 326     // mark it as dead in dead node list.
 327     if (!useful_node_set.test(node_idx)) {
 328       record_dead_node(node_idx);
 329     }
 330   }
 331 }
 332 
 333 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 334   int shift = 0;
 335   for (int i = 0; i < inlines->length(); i++) {
 336     CallGenerator* cg = inlines->at(i);
 337     if (useful.member(cg->call_node())) {
 338       if (shift > 0) {
 339         inlines->at_put(i - shift, cg);
 340       }
 341     } else {
 342       shift++; // skip over the dead element
 343     }
 344   }
 345   if (shift > 0) {
 346     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 347   }
 348 }
 349 
 350 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 351   assert(dead != nullptr && dead->is_Call(), "sanity");
 352   int found = 0;
 353   for (int i = 0; i < inlines->length(); i++) {
 354     if (inlines->at(i)->call_node() == dead) {
 355       inlines->remove_at(i);
 356       found++;
 357       NOT_DEBUG( break; ) // elements are unique, so exit early
 358     }
 359   }
 360   assert(found <= 1, "not unique");
 361 }
 362 
 363 void Compile::remove_useless_nodes(GrowableArray<Node*>& node_list, Unique_Node_List& useful) {
 364   for (int i = node_list.length() - 1; i >= 0; i--) {
 365     Node* n = node_list.at(i);
 366     if (!useful.member(n)) {
 367       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 368     }
 369   }
 370 }
 371 
 372 void Compile::remove_useless_node(Node* dead) {
 373   remove_modified_node(dead);
 374 
 375   // Constant node that has no out-edges and has only one in-edge from
 376   // root is usually dead. However, sometimes reshaping walk makes
 377   // it reachable by adding use edges. So, we will NOT count Con nodes
 378   // as dead to be conservative about the dead node count at any
 379   // given time.
 380   if (!dead->is_Con()) {
 381     record_dead_node(dead->_idx);
 382   }
 383   if (dead->is_macro()) {
 384     remove_macro_node(dead);
 385   }
 386   if (dead->is_expensive()) {
 387     remove_expensive_node(dead);
 388   }
 389   if (dead->Opcode() == Op_Opaque4) {
 390     remove_template_assertion_predicate_opaq(dead);
 391   }
 392   if (dead->for_post_loop_opts_igvn()) {
 393     remove_from_post_loop_opts_igvn(dead);
 394   }
 395   if (dead->is_Call()) {
 396     remove_useless_late_inlines(                &_late_inlines, dead);
 397     remove_useless_late_inlines(         &_string_late_inlines, dead);
 398     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 399     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 400 
 401     if (dead->is_CallStaticJava()) {
 402       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 403     }
 404   }
 405   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 406   bs->unregister_potential_barrier_node(dead);
 407 }
 408 
 409 // Disconnect all useless nodes by disconnecting those at the boundary.
 410 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) {
 411   uint next = 0;
 412   while (next < useful.size()) {
 413     Node *n = useful.at(next++);
 414     if (n->is_SafePoint()) {
 415       // We're done with a parsing phase. Replaced nodes are not valid
 416       // beyond that point.
 417       n->as_SafePoint()->delete_replaced_nodes();
 418     }
 419     // Use raw traversal of out edges since this code removes out edges
 420     int max = n->outcnt();
 421     for (int j = 0; j < max; ++j) {
 422       Node* child = n->raw_out(j);
 423       if (!useful.member(child)) {
 424         assert(!child->is_top() || child != top(),
 425                "If top is cached in Compile object it is in useful list");
 426         // Only need to remove this out-edge to the useless node
 427         n->raw_del_out(j);
 428         --j;
 429         --max;
 430       }
 431     }
 432     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 433       assert(useful.member(n->unique_out()), "do not push a useless node");
 434       worklist.push(n->unique_out());
 435     }
 436   }
 437 
 438   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 439   remove_useless_nodes(_parse_predicate_opaqs, useful); // remove useless Parse Predicate opaque nodes
 440   remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes
 441   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 442   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 443   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 444   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 445 #ifdef ASSERT
 446   if (_modified_nodes != nullptr) {
 447     _modified_nodes->remove_useless_nodes(useful.member_set());
 448   }
 449 #endif
 450 
 451   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 452   bs->eliminate_useless_gc_barriers(useful, this);
 453   // clean up the late inline lists
 454   remove_useless_late_inlines(                &_late_inlines, useful);
 455   remove_useless_late_inlines(         &_string_late_inlines, useful);
 456   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 457   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 458   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 459 }
 460 
 461 // ============================================================================
 462 //------------------------------CompileWrapper---------------------------------
 463 class CompileWrapper : public StackObj {
 464   Compile *const _compile;
 465  public:
 466   CompileWrapper(Compile* compile);
 467 
 468   ~CompileWrapper();
 469 };
 470 
 471 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 472   // the Compile* pointer is stored in the current ciEnv:
 473   ciEnv* env = compile->env();
 474   assert(env == ciEnv::current(), "must already be a ciEnv active");
 475   assert(env->compiler_data() == nullptr, "compile already active?");
 476   env->set_compiler_data(compile);
 477   assert(compile == Compile::current(), "sanity");
 478 
 479   compile->set_type_dict(nullptr);
 480   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 481   compile->clone_map().set_clone_idx(0);
 482   compile->set_type_last_size(0);
 483   compile->set_last_tf(nullptr, nullptr);
 484   compile->set_indexSet_arena(nullptr);
 485   compile->set_indexSet_free_block_list(nullptr);
 486   compile->init_type_arena();
 487   Type::Initialize(compile);
 488   _compile->begin_method();
 489   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 490 }
 491 CompileWrapper::~CompileWrapper() {
 492   // simulate crash during compilation
 493   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 494 
 495   _compile->end_method();
 496   _compile->env()->set_compiler_data(nullptr);
 497 }
 498 
 499 
 500 //----------------------------print_compile_messages---------------------------
 501 void Compile::print_compile_messages() {
 502 #ifndef PRODUCT
 503   // Check if recompiling
 504   if (!subsume_loads() && PrintOpto) {
 505     // Recompiling without allowing machine instructions to subsume loads
 506     tty->print_cr("*********************************************************");
 507     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 508     tty->print_cr("*********************************************************");
 509   }
 510   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 511     // Recompiling without escape analysis
 512     tty->print_cr("*********************************************************");
 513     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 514     tty->print_cr("*********************************************************");
 515   }
 516   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 517     // Recompiling without iterative escape analysis
 518     tty->print_cr("*********************************************************");
 519     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 520     tty->print_cr("*********************************************************");
 521   }
 522   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 523     // Recompiling without boxing elimination
 524     tty->print_cr("*********************************************************");
 525     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 526     tty->print_cr("*********************************************************");
 527   }
 528   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 529     // Recompiling without locks coarsening
 530     tty->print_cr("*********************************************************");
 531     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 532     tty->print_cr("*********************************************************");
 533   }
 534   if (env()->break_at_compile()) {
 535     // Open the debugger when compiling this method.
 536     tty->print("### Breaking when compiling: ");
 537     method()->print_short_name();
 538     tty->cr();
 539     BREAKPOINT;
 540   }
 541 
 542   if( PrintOpto ) {
 543     if (is_osr_compilation()) {
 544       tty->print("[OSR]%3d", _compile_id);
 545     } else {
 546       tty->print("%3d", _compile_id);
 547     }
 548   }
 549 #endif
 550 }
 551 
 552 #ifndef PRODUCT
 553 void Compile::print_ideal_ir(const char* phase_name) {
 554   // keep the following output all in one block
 555   // This output goes directly to the tty, not the compiler log.
 556   // To enable tools to match it up with the compilation activity,
 557   // be sure to tag this tty output with the compile ID.
 558 
 559   // Node dumping can cause a safepoint, which can break the tty lock.
 560   // Buffer all node dumps, so that all safepoints happen before we lock.
 561   ResourceMark rm;
 562   stringStream ss;
 563 
 564   if (_output == nullptr) {
 565     ss.print_cr("AFTER: %s", phase_name);
 566     // Print out all nodes in ascending order of index.
 567     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 568   } else {
 569     // Dump the node blockwise if we have a scheduling
 570     _output->print_scheduling(&ss);
 571   }
 572 
 573   // Check that the lock is not broken by a safepoint.
 574   NoSafepointVerifier nsv;
 575   ttyLocker ttyl;
 576   if (xtty != nullptr) {
 577     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 578                compile_id(),
 579                is_osr_compilation() ? " compile_kind='osr'" : "",
 580                phase_name);
 581     xtty->print("%s", ss.as_string()); // print to tty would use xml escape encoding
 582     xtty->tail("ideal");
 583   } else {
 584     tty->print("%s", ss.as_string());
 585   }
 586 }
 587 #endif
 588 
 589 // ============================================================================
 590 //------------------------------Compile standard-------------------------------
 591 
 592 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 593 // the continuation bci for on stack replacement.
 594 
 595 
 596 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
 597                   Options options, DirectiveSet* directive)
 598                 : Phase(Compiler),
 599                   _compile_id(ci_env->compile_id()),
 600                   _options(options),
 601                   _method(target),
 602                   _entry_bci(osr_bci),
 603                   _ilt(nullptr),
 604                   _stub_function(nullptr),
 605                   _stub_name(nullptr),
 606                   _stub_entry_point(nullptr),
 607                   _max_node_limit(MaxNodeLimit),
 608                   _post_loop_opts_phase(false),
 609                   _inlining_progress(false),
 610                   _inlining_incrementally(false),
 611                   _do_cleanup(false),
 612                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 613 #ifndef PRODUCT
 614                   _igv_idx(0),
 615                   _trace_opto_output(directive->TraceOptoOutputOption),
 616 #endif
 617                   _has_method_handle_invokes(false),
 618                   _clinit_barrier_on_entry(false),
 619                   _stress_seed(0),
 620                   _comp_arena(mtCompiler),
 621                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 622                   _env(ci_env),
 623                   _directive(directive),
 624                   _log(ci_env->log()),
 625                   _failure_reason(nullptr),
 626                   _intrinsics        (comp_arena(), 0, 0, nullptr),
 627                   _macro_nodes       (comp_arena(), 8, 0, nullptr),
 628                   _parse_predicate_opaqs (comp_arena(), 8, 0, nullptr),
 629                   _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr),
 630                   _expensive_nodes   (comp_arena(), 8, 0, nullptr),
 631                   _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 632                   _unstable_if_traps (comp_arena(), 8, 0, nullptr),
 633                   _coarsened_locks   (comp_arena(), 8, 0, nullptr),
 634                   _congraph(nullptr),
 635                   NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 636                   _dead_node_list(comp_arena()),
 637                   _dead_node_count(0),
 638                   _node_arena(mtCompiler),
 639                   _old_arena(mtCompiler),
 640                   _mach_constant_base_node(nullptr),
 641                   _Compile_types(mtCompiler),
 642                   _initial_gvn(nullptr),
 643                   _igvn_worklist(nullptr),
 644                   _types(nullptr),
 645                   _node_hash(nullptr),
 646                   _late_inlines(comp_arena(), 2, 0, nullptr),
 647                   _string_late_inlines(comp_arena(), 2, 0, nullptr),
 648                   _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 649                   _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 650                   _late_inlines_pos(0),
 651                   _number_of_mh_late_inlines(0),
 652                   _print_inlining_stream(new (mtCompiler) stringStream()),
 653                   _print_inlining_list(nullptr),
 654                   _print_inlining_idx(0),
 655                   _print_inlining_output(nullptr),
 656                   _replay_inline_data(nullptr),
 657                   _java_calls(0),
 658                   _inner_loops(0),
 659                   _interpreter_frame_size(0),
 660                   _output(nullptr)
 661 #ifndef PRODUCT
 662                   , _in_dump_cnt(0)
 663 #endif
 664 {
 665   C = this;
 666   CompileWrapper cw(this);
 667 
 668   if (CITimeVerbose) {
 669     tty->print(" ");
 670     target->holder()->name()->print();
 671     tty->print(".");
 672     target->print_short_name();
 673     tty->print("  ");
 674   }
 675   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 676   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 677 
 678 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 679   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 680   // We can always print a disassembly, either abstract (hex dump) or
 681   // with the help of a suitable hsdis library. Thus, we should not
 682   // couple print_assembly and print_opto_assembly controls.
 683   // But: always print opto and regular assembly on compile command 'print'.
 684   bool print_assembly = directive->PrintAssemblyOption;
 685   set_print_assembly(print_opto_assembly || print_assembly);
 686 #else
 687   set_print_assembly(false); // must initialize.
 688 #endif
 689 
 690 #ifndef PRODUCT
 691   set_parsed_irreducible_loop(false);
 692 #endif
 693 
 694   if (directive->ReplayInlineOption) {
 695     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 696   }
 697   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 698   set_print_intrinsics(directive->PrintIntrinsicsOption);
 699   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 700 
 701   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 702     // Make sure the method being compiled gets its own MDO,
 703     // so we can at least track the decompile_count().
 704     // Need MDO to record RTM code generation state.
 705     method()->ensure_method_data();
 706   }
 707 
 708   Init(/*do_aliasing=*/ true);
 709 
 710   print_compile_messages();
 711 
 712   _ilt = InlineTree::build_inline_tree_root();
 713 
 714   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 715   assert(num_alias_types() >= AliasIdxRaw, "");
 716 
 717 #define MINIMUM_NODE_HASH  1023
 718 
 719   // GVN that will be run immediately on new nodes
 720   uint estimated_size = method()->code_size()*4+64;
 721   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 722   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 723   _types = new (comp_arena()) Type_Array(comp_arena());
 724   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 725   PhaseGVN gvn;
 726   set_initial_gvn(&gvn);
 727 
 728   print_inlining_init();
 729   { // Scope for timing the parser
 730     TracePhase tp("parse", &timers[_t_parser]);
 731 
 732     // Put top into the hash table ASAP.
 733     initial_gvn()->transform_no_reclaim(top());
 734 
 735     // Set up tf(), start(), and find a CallGenerator.
 736     CallGenerator* cg = nullptr;
 737     if (is_osr_compilation()) {
 738       const TypeTuple *domain = StartOSRNode::osr_domain();
 739       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 740       init_tf(TypeFunc::make(domain, range));
 741       StartNode* s = new StartOSRNode(root(), domain);
 742       initial_gvn()->set_type_bottom(s);
 743       init_start(s);
 744       cg = CallGenerator::for_osr(method(), entry_bci());
 745     } else {
 746       // Normal case.
 747       init_tf(TypeFunc::make(method()));
 748       StartNode* s = new StartNode(root(), tf()->domain());
 749       initial_gvn()->set_type_bottom(s);
 750       init_start(s);
 751       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 752         // With java.lang.ref.reference.get() we must go through the
 753         // intrinsic - even when get() is the root
 754         // method of the compile - so that, if necessary, the value in
 755         // the referent field of the reference object gets recorded by
 756         // the pre-barrier code.
 757         cg = find_intrinsic(method(), false);
 758       }
 759       if (cg == nullptr) {
 760         float past_uses = method()->interpreter_invocation_count();
 761         float expected_uses = past_uses;
 762         cg = CallGenerator::for_inline(method(), expected_uses);
 763       }
 764     }
 765     if (failing())  return;
 766     if (cg == nullptr) {
 767       const char* reason = InlineTree::check_can_parse(method());
 768       assert(reason != nullptr, "expect reason for parse failure");
 769       stringStream ss;
 770       ss.print("cannot parse method: %s", reason);
 771       record_method_not_compilable(ss.as_string());
 772       return;
 773     }
 774 
 775     gvn.set_type(root(), root()->bottom_type());
 776 
 777     JVMState* jvms = build_start_state(start(), tf());
 778     if ((jvms = cg->generate(jvms)) == nullptr) {
 779       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 780         assert(failure_reason() != nullptr, "expect reason for parse failure");
 781         stringStream ss;
 782         ss.print("method parse failed: %s", failure_reason());
 783         record_method_not_compilable(ss.as_string());
 784       }
 785       return;
 786     }
 787     GraphKit kit(jvms);
 788 
 789     if (!kit.stopped()) {
 790       // Accept return values, and transfer control we know not where.
 791       // This is done by a special, unique ReturnNode bound to root.
 792       return_values(kit.jvms());
 793     }
 794 
 795     if (kit.has_exceptions()) {
 796       // Any exceptions that escape from this call must be rethrown
 797       // to whatever caller is dynamically above us on the stack.
 798       // This is done by a special, unique RethrowNode bound to root.
 799       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 800     }
 801 
 802     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 803 
 804     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 805       inline_string_calls(true);
 806     }
 807 
 808     if (failing())  return;
 809 
 810     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 811 
 812     // Remove clutter produced by parsing.
 813     if (!failing()) {
 814       ResourceMark rm;
 815       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 816     }
 817   }
 818 
 819   // Note:  Large methods are capped off in do_one_bytecode().
 820   if (failing())  return;
 821 
 822   // After parsing, node notes are no longer automagic.
 823   // They must be propagated by register_new_node_with_optimizer(),
 824   // clone(), or the like.
 825   set_default_node_notes(nullptr);
 826 
 827 #ifndef PRODUCT
 828   if (should_print_igv(1)) {
 829     _igv_printer->print_inlining();
 830   }
 831 #endif
 832 
 833   if (failing())  return;
 834   NOT_PRODUCT( verify_graph_edges(); )
 835 
 836   // If any phase is randomized for stress testing, seed random number
 837   // generation and log the seed for repeatability.
 838   if (StressLCM || StressGCM || StressIGVN || StressCCP || StressIncrementalInlining) {
 839     if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
 840       _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
 841       FLAG_SET_ERGO(StressSeed, _stress_seed);
 842     } else {
 843       _stress_seed = StressSeed;
 844     }
 845     if (_log != nullptr) {
 846       _log->elem("stress_test seed='%u'", _stress_seed);
 847     }
 848   }
 849 
 850   // Now optimize
 851   Optimize();
 852   if (failing())  return;
 853   NOT_PRODUCT( verify_graph_edges(); )
 854 
 855 #ifndef PRODUCT
 856   if (should_print_ideal()) {
 857     print_ideal_ir("print_ideal");
 858   }
 859 #endif
 860 
 861 #ifdef ASSERT
 862   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 863   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 864 #endif
 865 
 866   // Dump compilation data to replay it.
 867   if (directive->DumpReplayOption) {
 868     env()->dump_replay_data(_compile_id);
 869   }
 870   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 871     env()->dump_inline_data(_compile_id);
 872   }
 873 
 874   // Now that we know the size of all the monitors we can add a fixed slot
 875   // for the original deopt pc.
 876   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 877   set_fixed_slots(next_slot);
 878 
 879   // Compute when to use implicit null checks. Used by matching trap based
 880   // nodes and NullCheck optimization.
 881   set_allowed_deopt_reasons();
 882 
 883   // Now generate code
 884   Code_Gen();
 885 }
 886 
 887 //------------------------------Compile----------------------------------------
 888 // Compile a runtime stub
 889 Compile::Compile( ciEnv* ci_env,
 890                   TypeFunc_generator generator,
 891                   address stub_function,
 892                   const char *stub_name,
 893                   int is_fancy_jump,
 894                   bool pass_tls,
 895                   bool return_pc,
 896                   DirectiveSet* directive)
 897   : Phase(Compiler),
 898     _compile_id(0),
 899     _options(Options::for_runtime_stub()),
 900     _method(nullptr),
 901     _entry_bci(InvocationEntryBci),
 902     _stub_function(stub_function),
 903     _stub_name(stub_name),
 904     _stub_entry_point(nullptr),
 905     _max_node_limit(MaxNodeLimit),
 906     _post_loop_opts_phase(false),
 907     _inlining_progress(false),
 908     _inlining_incrementally(false),
 909     _has_reserved_stack_access(false),
 910 #ifndef PRODUCT
 911     _igv_idx(0),
 912     _trace_opto_output(directive->TraceOptoOutputOption),
 913 #endif
 914     _has_method_handle_invokes(false),
 915     _clinit_barrier_on_entry(false),
 916     _stress_seed(0),
 917     _comp_arena(mtCompiler),
 918     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 919     _env(ci_env),
 920     _directive(directive),
 921     _log(ci_env->log()),
 922     _failure_reason(nullptr),
 923     _congraph(nullptr),
 924     NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 925     _dead_node_list(comp_arena()),
 926     _dead_node_count(0),
 927     _node_arena(mtCompiler),
 928     _old_arena(mtCompiler),
 929     _mach_constant_base_node(nullptr),
 930     _Compile_types(mtCompiler),
 931     _initial_gvn(nullptr),
 932     _igvn_worklist(nullptr),
 933     _types(nullptr),
 934     _node_hash(nullptr),
 935     _number_of_mh_late_inlines(0),
 936     _print_inlining_stream(new (mtCompiler) stringStream()),
 937     _print_inlining_list(nullptr),
 938     _print_inlining_idx(0),
 939     _print_inlining_output(nullptr),
 940     _replay_inline_data(nullptr),
 941     _java_calls(0),
 942     _inner_loops(0),
 943     _interpreter_frame_size(0),
 944     _output(nullptr),
 945 #ifndef PRODUCT
 946     _in_dump_cnt(0),
 947 #endif
 948     _allowed_reasons(0) {
 949   C = this;
 950 
 951   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 952   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 953 
 954 #ifndef PRODUCT
 955   set_print_assembly(PrintFrameConverterAssembly);
 956   set_parsed_irreducible_loop(false);
 957 #else
 958   set_print_assembly(false); // Must initialize.
 959 #endif
 960   set_has_irreducible_loop(false); // no loops
 961 
 962   CompileWrapper cw(this);
 963   Init(/*do_aliasing=*/ false);
 964   init_tf((*generator)());
 965 
 966   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 967   _types = new (comp_arena()) Type_Array(comp_arena());
 968   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
 969   {
 970     PhaseGVN gvn;
 971     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 972     gvn.transform_no_reclaim(top());
 973 
 974     GraphKit kit;
 975     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 976   }
 977 
 978   NOT_PRODUCT( verify_graph_edges(); )
 979 
 980   Code_Gen();
 981 }
 982 
 983 //------------------------------Init-------------------------------------------
 984 // Prepare for a single compilation
 985 void Compile::Init(bool aliasing) {
 986   _do_aliasing = aliasing;
 987   _unique  = 0;
 988   _regalloc = nullptr;
 989 
 990   _tf      = nullptr;  // filled in later
 991   _top     = nullptr;  // cached later
 992   _matcher = nullptr;  // filled in later
 993   _cfg     = nullptr;  // filled in later
 994 
 995   IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
 996 
 997   _node_note_array = nullptr;
 998   _default_node_notes = nullptr;
 999   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1000 
1001   _immutable_memory = nullptr; // filled in at first inquiry
1002 
1003 #ifdef ASSERT
1004   _phase_optimize_finished = false;
1005   _exception_backedge = false;
1006   _type_verify = nullptr;
1007 #endif
1008 
1009   // Globally visible Nodes
1010   // First set TOP to null to give safe behavior during creation of RootNode
1011   set_cached_top_node(nullptr);
1012   set_root(new RootNode());
1013   // Now that you have a Root to point to, create the real TOP
1014   set_cached_top_node( new ConNode(Type::TOP) );
1015   set_recent_alloc(nullptr, nullptr);
1016 
1017   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1018   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1019   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1020   env()->set_dependencies(new Dependencies(env()));
1021 
1022   _fixed_slots = 0;
1023   set_has_split_ifs(false);
1024   set_has_loops(false); // first approximation
1025   set_has_stringbuilder(false);
1026   set_has_boxed_value(false);
1027   _trap_can_recompile = false;  // no traps emitted yet
1028   _major_progress = true; // start out assuming good things will happen
1029   set_has_unsafe_access(false);
1030   set_max_vector_size(0);
1031   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1032   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1033   set_decompile_count(0);
1034 
1035   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1036   _loop_opts_cnt = LoopOptsCount;
1037   set_do_inlining(Inline);
1038   set_max_inline_size(MaxInlineSize);
1039   set_freq_inline_size(FreqInlineSize);
1040   set_do_scheduling(OptoScheduling);
1041 
1042   set_do_vector_loop(false);
1043   set_has_monitors(false);
1044 
1045   if (AllowVectorizeOnDemand) {
1046     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1047       set_do_vector_loop(true);
1048       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1049     } else if (has_method() && method()->name() != 0 &&
1050                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1051       set_do_vector_loop(true);
1052     }
1053   }
1054   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1055   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1056 
1057   set_rtm_state(NoRTM); // No RTM lock eliding by default
1058   _max_node_limit = _directive->MaxNodeLimitOption;
1059 
1060 #if INCLUDE_RTM_OPT
1061   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != nullptr)) {
1062     int rtm_state = method()->method_data()->rtm_state();
1063     if (method_has_option(CompileCommand::NoRTMLockEliding) || ((rtm_state & NoRTM) != 0)) {
1064       // Don't generate RTM lock eliding code.
1065       set_rtm_state(NoRTM);
1066     } else if (method_has_option(CompileCommand::UseRTMLockEliding) || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1067       // Generate RTM lock eliding code without abort ratio calculation code.
1068       set_rtm_state(UseRTM);
1069     } else if (UseRTMDeopt) {
1070       // Generate RTM lock eliding code and include abort ratio calculation
1071       // code if UseRTMDeopt is on.
1072       set_rtm_state(ProfileRTM);
1073     }
1074   }
1075 #endif
1076   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1077     set_clinit_barrier_on_entry(true);
1078   }
1079   if (debug_info()->recording_non_safepoints()) {
1080     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1081                         (comp_arena(), 8, 0, nullptr));
1082     set_default_node_notes(Node_Notes::make(this));
1083   }
1084 
1085   const int grow_ats = 16;
1086   _max_alias_types = grow_ats;
1087   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1088   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1089   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1090   {
1091     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1092   }
1093   // Initialize the first few types.
1094   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1095   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1096   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1097   _num_alias_types = AliasIdxRaw+1;
1098   // Zero out the alias type cache.
1099   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1100   // A null adr_type hits in the cache right away.  Preload the right answer.
1101   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1102 }
1103 
1104 //---------------------------init_start----------------------------------------
1105 // Install the StartNode on this compile object.
1106 void Compile::init_start(StartNode* s) {
1107   if (failing())
1108     return; // already failing
1109   assert(s == start(), "");
1110 }
1111 
1112 /**
1113  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1114  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1115  * the ideal graph.
1116  */
1117 StartNode* Compile::start() const {
1118   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1119   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1120     Node* start = root()->fast_out(i);
1121     if (start->is_Start()) {
1122       return start->as_Start();
1123     }
1124   }
1125   fatal("Did not find Start node!");
1126   return nullptr;
1127 }
1128 
1129 //-------------------------------immutable_memory-------------------------------------
1130 // Access immutable memory
1131 Node* Compile::immutable_memory() {
1132   if (_immutable_memory != nullptr) {
1133     return _immutable_memory;
1134   }
1135   StartNode* s = start();
1136   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1137     Node *p = s->fast_out(i);
1138     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1139       _immutable_memory = p;
1140       return _immutable_memory;
1141     }
1142   }
1143   ShouldNotReachHere();
1144   return nullptr;
1145 }
1146 
1147 //----------------------set_cached_top_node------------------------------------
1148 // Install the cached top node, and make sure Node::is_top works correctly.
1149 void Compile::set_cached_top_node(Node* tn) {
1150   if (tn != nullptr)  verify_top(tn);
1151   Node* old_top = _top;
1152   _top = tn;
1153   // Calling Node::setup_is_top allows the nodes the chance to adjust
1154   // their _out arrays.
1155   if (_top != nullptr)     _top->setup_is_top();
1156   if (old_top != nullptr)  old_top->setup_is_top();
1157   assert(_top == nullptr || top()->is_top(), "");
1158 }
1159 
1160 #ifdef ASSERT
1161 uint Compile::count_live_nodes_by_graph_walk() {
1162   Unique_Node_List useful(comp_arena());
1163   // Get useful node list by walking the graph.
1164   identify_useful_nodes(useful);
1165   return useful.size();
1166 }
1167 
1168 void Compile::print_missing_nodes() {
1169 
1170   // Return if CompileLog is null and PrintIdealNodeCount is false.
1171   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1172     return;
1173   }
1174 
1175   // This is an expensive function. It is executed only when the user
1176   // specifies VerifyIdealNodeCount option or otherwise knows the
1177   // additional work that needs to be done to identify reachable nodes
1178   // by walking the flow graph and find the missing ones using
1179   // _dead_node_list.
1180 
1181   Unique_Node_List useful(comp_arena());
1182   // Get useful node list by walking the graph.
1183   identify_useful_nodes(useful);
1184 
1185   uint l_nodes = C->live_nodes();
1186   uint l_nodes_by_walk = useful.size();
1187 
1188   if (l_nodes != l_nodes_by_walk) {
1189     if (_log != nullptr) {
1190       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1191       _log->stamp();
1192       _log->end_head();
1193     }
1194     VectorSet& useful_member_set = useful.member_set();
1195     int last_idx = l_nodes_by_walk;
1196     for (int i = 0; i < last_idx; i++) {
1197       if (useful_member_set.test(i)) {
1198         if (_dead_node_list.test(i)) {
1199           if (_log != nullptr) {
1200             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1201           }
1202           if (PrintIdealNodeCount) {
1203             // Print the log message to tty
1204               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1205               useful.at(i)->dump();
1206           }
1207         }
1208       }
1209       else if (! _dead_node_list.test(i)) {
1210         if (_log != nullptr) {
1211           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1212         }
1213         if (PrintIdealNodeCount) {
1214           // Print the log message to tty
1215           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1216         }
1217       }
1218     }
1219     if (_log != nullptr) {
1220       _log->tail("mismatched_nodes");
1221     }
1222   }
1223 }
1224 void Compile::record_modified_node(Node* n) {
1225   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1226     _modified_nodes->push(n);
1227   }
1228 }
1229 
1230 void Compile::remove_modified_node(Node* n) {
1231   if (_modified_nodes != nullptr) {
1232     _modified_nodes->remove(n);
1233   }
1234 }
1235 #endif
1236 
1237 #ifndef PRODUCT
1238 void Compile::verify_top(Node* tn) const {
1239   if (tn != nullptr) {
1240     assert(tn->is_Con(), "top node must be a constant");
1241     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1242     assert(tn->in(0) != nullptr, "must have live top node");
1243   }
1244 }
1245 #endif
1246 
1247 
1248 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1249 
1250 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1251   guarantee(arr != nullptr, "");
1252   int num_blocks = arr->length();
1253   if (grow_by < num_blocks)  grow_by = num_blocks;
1254   int num_notes = grow_by * _node_notes_block_size;
1255   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1256   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1257   while (num_notes > 0) {
1258     arr->append(notes);
1259     notes     += _node_notes_block_size;
1260     num_notes -= _node_notes_block_size;
1261   }
1262   assert(num_notes == 0, "exact multiple, please");
1263 }
1264 
1265 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1266   if (source == nullptr || dest == nullptr)  return false;
1267 
1268   if (dest->is_Con())
1269     return false;               // Do not push debug info onto constants.
1270 
1271 #ifdef ASSERT
1272   // Leave a bread crumb trail pointing to the original node:
1273   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1274     dest->set_debug_orig(source);
1275   }
1276 #endif
1277 
1278   if (node_note_array() == nullptr)
1279     return false;               // Not collecting any notes now.
1280 
1281   // This is a copy onto a pre-existing node, which may already have notes.
1282   // If both nodes have notes, do not overwrite any pre-existing notes.
1283   Node_Notes* source_notes = node_notes_at(source->_idx);
1284   if (source_notes == nullptr || source_notes->is_clear())  return false;
1285   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1286   if (dest_notes == nullptr || dest_notes->is_clear()) {
1287     return set_node_notes_at(dest->_idx, source_notes);
1288   }
1289 
1290   Node_Notes merged_notes = (*source_notes);
1291   // The order of operations here ensures that dest notes will win...
1292   merged_notes.update_from(dest_notes);
1293   return set_node_notes_at(dest->_idx, &merged_notes);
1294 }
1295 
1296 
1297 //--------------------------allow_range_check_smearing-------------------------
1298 // Gating condition for coalescing similar range checks.
1299 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1300 // single covering check that is at least as strong as any of them.
1301 // If the optimization succeeds, the simplified (strengthened) range check
1302 // will always succeed.  If it fails, we will deopt, and then give up
1303 // on the optimization.
1304 bool Compile::allow_range_check_smearing() const {
1305   // If this method has already thrown a range-check,
1306   // assume it was because we already tried range smearing
1307   // and it failed.
1308   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1309   return !already_trapped;
1310 }
1311 
1312 
1313 //------------------------------flatten_alias_type-----------------------------
1314 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1315   assert(do_aliasing(), "Aliasing should be enabled");
1316   int offset = tj->offset();
1317   TypePtr::PTR ptr = tj->ptr();
1318 
1319   // Known instance (scalarizable allocation) alias only with itself.
1320   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1321                        tj->is_oopptr()->is_known_instance();
1322 
1323   // Process weird unsafe references.
1324   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1325     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1326     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1327     tj = TypeOopPtr::BOTTOM;
1328     ptr = tj->ptr();
1329     offset = tj->offset();
1330   }
1331 
1332   // Array pointers need some flattening
1333   const TypeAryPtr* ta = tj->isa_aryptr();
1334   if (ta && ta->is_stable()) {
1335     // Erase stability property for alias analysis.
1336     tj = ta = ta->cast_to_stable(false);
1337   }
1338   if( ta && is_known_inst ) {
1339     if ( offset != Type::OffsetBot &&
1340          offset > arrayOopDesc::length_offset_in_bytes() ) {
1341       offset = Type::OffsetBot; // Flatten constant access into array body only
1342       tj = ta = ta->
1343               remove_speculative()->
1344               cast_to_ptr_type(ptr)->
1345               with_offset(offset);
1346     }
1347   } else if (ta) {
1348     // For arrays indexed by constant indices, we flatten the alias
1349     // space to include all of the array body.  Only the header, klass
1350     // and array length can be accessed un-aliased.
1351     if( offset != Type::OffsetBot ) {
1352       if( ta->const_oop() ) { // MethodData* or Method*
1353         offset = Type::OffsetBot;   // Flatten constant access into array body
1354         tj = ta = ta->
1355                 remove_speculative()->
1356                 cast_to_ptr_type(ptr)->
1357                 cast_to_exactness(false)->
1358                 with_offset(offset);
1359       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1360         // range is OK as-is.
1361         tj = ta = TypeAryPtr::RANGE;
1362       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1363         tj = TypeInstPtr::KLASS; // all klass loads look alike
1364         ta = TypeAryPtr::RANGE; // generic ignored junk
1365         ptr = TypePtr::BotPTR;
1366       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1367         tj = TypeInstPtr::MARK;
1368         ta = TypeAryPtr::RANGE; // generic ignored junk
1369         ptr = TypePtr::BotPTR;
1370       } else {                  // Random constant offset into array body
1371         offset = Type::OffsetBot;   // Flatten constant access into array body
1372         tj = ta = ta->
1373                 remove_speculative()->
1374                 cast_to_ptr_type(ptr)->
1375                 cast_to_exactness(false)->
1376                 with_offset(offset);
1377       }
1378     }
1379     // Arrays of fixed size alias with arrays of unknown size.
1380     if (ta->size() != TypeInt::POS) {
1381       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1382       tj = ta = ta->
1383               remove_speculative()->
1384               cast_to_ptr_type(ptr)->
1385               with_ary(tary)->
1386               cast_to_exactness(false);
1387     }
1388     // Arrays of known objects become arrays of unknown objects.
1389     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1390       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1391       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1392     }
1393     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1394       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1395       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1396     }
1397     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1398     // cannot be distinguished by bytecode alone.
1399     if (ta->elem() == TypeInt::BOOL) {
1400       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1401       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1402       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1403     }
1404     // During the 2nd round of IterGVN, NotNull castings are removed.
1405     // Make sure the Bottom and NotNull variants alias the same.
1406     // Also, make sure exact and non-exact variants alias the same.
1407     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1408       tj = ta = ta->
1409               remove_speculative()->
1410               cast_to_ptr_type(TypePtr::BotPTR)->
1411               cast_to_exactness(false)->
1412               with_offset(offset);
1413     }
1414   }
1415 
1416   // Oop pointers need some flattening
1417   const TypeInstPtr *to = tj->isa_instptr();
1418   if (to && to != TypeOopPtr::BOTTOM) {
1419     ciInstanceKlass* ik = to->instance_klass();
1420     if( ptr == TypePtr::Constant ) {
1421       if (ik != ciEnv::current()->Class_klass() ||
1422           offset < ik->layout_helper_size_in_bytes()) {
1423         // No constant oop pointers (such as Strings); they alias with
1424         // unknown strings.
1425         assert(!is_known_inst, "not scalarizable allocation");
1426         tj = to = to->
1427                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1428                 remove_speculative()->
1429                 cast_to_ptr_type(TypePtr::BotPTR)->
1430                 cast_to_exactness(false);
1431       }
1432     } else if( is_known_inst ) {
1433       tj = to; // Keep NotNull and klass_is_exact for instance type
1434     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1435       // During the 2nd round of IterGVN, NotNull castings are removed.
1436       // Make sure the Bottom and NotNull variants alias the same.
1437       // Also, make sure exact and non-exact variants alias the same.
1438       tj = to = to->
1439               remove_speculative()->
1440               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1441               cast_to_ptr_type(TypePtr::BotPTR)->
1442               cast_to_exactness(false);
1443     }
1444     if (to->speculative() != nullptr) {
1445       tj = to = to->remove_speculative();
1446     }
1447     // Canonicalize the holder of this field
1448     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1449       // First handle header references such as a LoadKlassNode, even if the
1450       // object's klass is unloaded at compile time (4965979).
1451       if (!is_known_inst) { // Do it only for non-instance types
1452         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1453       }
1454     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1455       // Static fields are in the space above the normal instance
1456       // fields in the java.lang.Class instance.
1457       if (ik != ciEnv::current()->Class_klass()) {
1458         to = nullptr;
1459         tj = TypeOopPtr::BOTTOM;
1460         offset = tj->offset();
1461       }
1462     } else {
1463       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1464       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1465       if (!ik->equals(canonical_holder) || tj->offset() != offset) {
1466         if( is_known_inst ) {
1467           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, nullptr, offset, to->instance_id());
1468         } else {
1469           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, nullptr, offset);
1470         }
1471       }
1472     }
1473   }
1474 
1475   // Klass pointers to object array klasses need some flattening
1476   const TypeKlassPtr *tk = tj->isa_klassptr();
1477   if( tk ) {
1478     // If we are referencing a field within a Klass, we need
1479     // to assume the worst case of an Object.  Both exact and
1480     // inexact types must flatten to the same alias class so
1481     // use NotNull as the PTR.
1482     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1483       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1484                                        env()->Object_klass(),
1485                                        offset);
1486     }
1487 
1488     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1489       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1490       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1491         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1492       } else {
1493         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1494       }
1495     }
1496 
1497     // Check for precise loads from the primary supertype array and force them
1498     // to the supertype cache alias index.  Check for generic array loads from
1499     // the primary supertype array and also force them to the supertype cache
1500     // alias index.  Since the same load can reach both, we need to merge
1501     // these 2 disparate memories into the same alias class.  Since the
1502     // primary supertype array is read-only, there's no chance of confusion
1503     // where we bypass an array load and an array store.
1504     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1505     if (offset == Type::OffsetBot ||
1506         (offset >= primary_supers_offset &&
1507          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1508         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1509       offset = in_bytes(Klass::secondary_super_cache_offset());
1510       tj = tk = tk->with_offset(offset);
1511     }
1512   }
1513 
1514   // Flatten all Raw pointers together.
1515   if (tj->base() == Type::RawPtr)
1516     tj = TypeRawPtr::BOTTOM;
1517 
1518   if (tj->base() == Type::AnyPtr)
1519     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1520 
1521   offset = tj->offset();
1522   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1523 
1524   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1525           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1526           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1527           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1528           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1529           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1530           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1531           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1532   assert( tj->ptr() != TypePtr::TopPTR &&
1533           tj->ptr() != TypePtr::AnyNull &&
1534           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1535 //    assert( tj->ptr() != TypePtr::Constant ||
1536 //            tj->base() == Type::RawPtr ||
1537 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1538 
1539   return tj;
1540 }
1541 
1542 void Compile::AliasType::Init(int i, const TypePtr* at) {
1543   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1544   _index = i;
1545   _adr_type = at;
1546   _field = nullptr;
1547   _element = nullptr;
1548   _is_rewritable = true; // default
1549   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1550   if (atoop != nullptr && atoop->is_known_instance()) {
1551     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1552     _general_index = Compile::current()->get_alias_index(gt);
1553   } else {
1554     _general_index = 0;
1555   }
1556 }
1557 
1558 BasicType Compile::AliasType::basic_type() const {
1559   if (element() != nullptr) {
1560     const Type* element = adr_type()->is_aryptr()->elem();
1561     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1562   } if (field() != nullptr) {
1563     return field()->layout_type();
1564   } else {
1565     return T_ILLEGAL; // unknown
1566   }
1567 }
1568 
1569 //---------------------------------print_on------------------------------------
1570 #ifndef PRODUCT
1571 void Compile::AliasType::print_on(outputStream* st) {
1572   if (index() < 10)
1573         st->print("@ <%d> ", index());
1574   else  st->print("@ <%d>",  index());
1575   st->print(is_rewritable() ? "   " : " RO");
1576   int offset = adr_type()->offset();
1577   if (offset == Type::OffsetBot)
1578         st->print(" +any");
1579   else  st->print(" +%-3d", offset);
1580   st->print(" in ");
1581   adr_type()->dump_on(st);
1582   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1583   if (field() != nullptr && tjp) {
1584     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1585         tjp->offset() != field()->offset_in_bytes()) {
1586       st->print(" != ");
1587       field()->print();
1588       st->print(" ***");
1589     }
1590   }
1591 }
1592 
1593 void print_alias_types() {
1594   Compile* C = Compile::current();
1595   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1596   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1597     C->alias_type(idx)->print_on(tty);
1598     tty->cr();
1599   }
1600 }
1601 #endif
1602 
1603 
1604 //----------------------------probe_alias_cache--------------------------------
1605 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1606   intptr_t key = (intptr_t) adr_type;
1607   key ^= key >> logAliasCacheSize;
1608   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1609 }
1610 
1611 
1612 //-----------------------------grow_alias_types--------------------------------
1613 void Compile::grow_alias_types() {
1614   const int old_ats  = _max_alias_types; // how many before?
1615   const int new_ats  = old_ats;          // how many more?
1616   const int grow_ats = old_ats+new_ats;  // how many now?
1617   _max_alias_types = grow_ats;
1618   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1619   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1620   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1621   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1622 }
1623 
1624 
1625 //--------------------------------find_alias_type------------------------------
1626 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1627   if (!do_aliasing()) {
1628     return alias_type(AliasIdxBot);
1629   }
1630 
1631   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1632   if (ace->_adr_type == adr_type) {
1633     return alias_type(ace->_index);
1634   }
1635 
1636   // Handle special cases.
1637   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1638   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1639 
1640   // Do it the slow way.
1641   const TypePtr* flat = flatten_alias_type(adr_type);
1642 
1643 #ifdef ASSERT
1644   {
1645     ResourceMark rm;
1646     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1647            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1648     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1649            Type::str(adr_type));
1650     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1651       const TypeOopPtr* foop = flat->is_oopptr();
1652       // Scalarizable allocations have exact klass always.
1653       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1654       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1655       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1656              Type::str(foop), Type::str(xoop));
1657     }
1658   }
1659 #endif
1660 
1661   int idx = AliasIdxTop;
1662   for (int i = 0; i < num_alias_types(); i++) {
1663     if (alias_type(i)->adr_type() == flat) {
1664       idx = i;
1665       break;
1666     }
1667   }
1668 
1669   if (idx == AliasIdxTop) {
1670     if (no_create)  return nullptr;
1671     // Grow the array if necessary.
1672     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1673     // Add a new alias type.
1674     idx = _num_alias_types++;
1675     _alias_types[idx]->Init(idx, flat);
1676     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1677     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1678     if (flat->isa_instptr()) {
1679       if (flat->offset() == java_lang_Class::klass_offset()
1680           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1681         alias_type(idx)->set_rewritable(false);
1682     }
1683     if (flat->isa_aryptr()) {
1684 #ifdef ASSERT
1685       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1686       // (T_BYTE has the weakest alignment and size restrictions...)
1687       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1688 #endif
1689       if (flat->offset() == TypePtr::OffsetBot) {
1690         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1691       }
1692     }
1693     if (flat->isa_klassptr()) {
1694       if (UseCompactObjectHeaders) {
1695         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1696           alias_type(idx)->set_rewritable(false);
1697       }
1698       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1699         alias_type(idx)->set_rewritable(false);
1700       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1701         alias_type(idx)->set_rewritable(false);
1702       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1703         alias_type(idx)->set_rewritable(false);
1704       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1705         alias_type(idx)->set_rewritable(false);
1706       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1707         alias_type(idx)->set_rewritable(false);
1708     }
1709     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1710     // but the base pointer type is not distinctive enough to identify
1711     // references into JavaThread.)
1712 
1713     // Check for final fields.
1714     const TypeInstPtr* tinst = flat->isa_instptr();
1715     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1716       ciField* field;
1717       if (tinst->const_oop() != nullptr &&
1718           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1719           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1720         // static field
1721         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1722         field = k->get_field_by_offset(tinst->offset(), true);
1723       } else {
1724         ciInstanceKlass *k = tinst->instance_klass();
1725         field = k->get_field_by_offset(tinst->offset(), false);
1726       }
1727       assert(field == nullptr ||
1728              original_field == nullptr ||
1729              (field->holder() == original_field->holder() &&
1730               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1731               field->is_static() == original_field->is_static()), "wrong field?");
1732       // Set field() and is_rewritable() attributes.
1733       if (field != nullptr)  alias_type(idx)->set_field(field);
1734     }
1735   }
1736 
1737   // Fill the cache for next time.
1738   ace->_adr_type = adr_type;
1739   ace->_index    = idx;
1740   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1741 
1742   // Might as well try to fill the cache for the flattened version, too.
1743   AliasCacheEntry* face = probe_alias_cache(flat);
1744   if (face->_adr_type == nullptr) {
1745     face->_adr_type = flat;
1746     face->_index    = idx;
1747     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1748   }
1749 
1750   return alias_type(idx);
1751 }
1752 
1753 
1754 Compile::AliasType* Compile::alias_type(ciField* field) {
1755   const TypeOopPtr* t;
1756   if (field->is_static())
1757     t = TypeInstPtr::make(field->holder()->java_mirror());
1758   else
1759     t = TypeOopPtr::make_from_klass_raw(field->holder());
1760   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1761   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1762   return atp;
1763 }
1764 
1765 
1766 //------------------------------have_alias_type--------------------------------
1767 bool Compile::have_alias_type(const TypePtr* adr_type) {
1768   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1769   if (ace->_adr_type == adr_type) {
1770     return true;
1771   }
1772 
1773   // Handle special cases.
1774   if (adr_type == nullptr)             return true;
1775   if (adr_type == TypePtr::BOTTOM)  return true;
1776 
1777   return find_alias_type(adr_type, true, nullptr) != nullptr;
1778 }
1779 
1780 //-----------------------------must_alias--------------------------------------
1781 // True if all values of the given address type are in the given alias category.
1782 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1783   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1784   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1785   if (alias_idx == AliasIdxTop)         return false; // the empty category
1786   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1787 
1788   // the only remaining possible overlap is identity
1789   int adr_idx = get_alias_index(adr_type);
1790   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1791   assert(adr_idx == alias_idx ||
1792          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1793           && adr_type                       != TypeOopPtr::BOTTOM),
1794          "should not be testing for overlap with an unsafe pointer");
1795   return adr_idx == alias_idx;
1796 }
1797 
1798 //------------------------------can_alias--------------------------------------
1799 // True if any values of the given address type are in the given alias category.
1800 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1801   if (alias_idx == AliasIdxTop)         return false; // the empty category
1802   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1803   // Known instance doesn't alias with bottom memory
1804   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1805   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1806 
1807   // the only remaining possible overlap is identity
1808   int adr_idx = get_alias_index(adr_type);
1809   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1810   return adr_idx == alias_idx;
1811 }
1812 
1813 // Remove the opaque nodes that protect the Parse Predicates so that all unused
1814 // checks and uncommon_traps will be eliminated from the ideal graph.
1815 void Compile::cleanup_parse_predicates(PhaseIterGVN& igvn) const {
1816   if (parse_predicate_count() == 0) {
1817     return;
1818   }
1819   for (int i = parse_predicate_count(); i > 0; i--) {
1820     Node* n = parse_predicate_opaque1_node(i - 1);
1821     assert(n->Opcode() == Op_Opaque1, "must be");
1822     igvn.replace_node(n, n->in(1));
1823   }
1824   assert(parse_predicate_count() == 0, "should be clean!");
1825 }
1826 
1827 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1828   if (!n->for_post_loop_opts_igvn()) {
1829     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1830     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1831     _for_post_loop_igvn.append(n);
1832   }
1833 }
1834 
1835 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1836   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1837   _for_post_loop_igvn.remove(n);
1838 }
1839 
1840 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1841   // Verify that all previous optimizations produced a valid graph
1842   // at least to this point, even if no loop optimizations were done.
1843   PhaseIdealLoop::verify(igvn);
1844 
1845   C->set_post_loop_opts_phase(); // no more loop opts allowed
1846 
1847   assert(!C->major_progress(), "not cleared");
1848 
1849   if (_for_post_loop_igvn.length() > 0) {
1850     while (_for_post_loop_igvn.length() > 0) {
1851       Node* n = _for_post_loop_igvn.pop();
1852       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1853       igvn._worklist.push(n);
1854     }
1855     igvn.optimize();
1856     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1857 
1858     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1859     if (C->major_progress()) {
1860       C->clear_major_progress(); // ensure that major progress is now clear
1861     }
1862   }
1863 }
1864 
1865 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1866   if (OptimizeUnstableIf) {
1867     _unstable_if_traps.append(trap);
1868   }
1869 }
1870 
1871 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1872   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1873     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1874     Node* n = trap->uncommon_trap();
1875     if (!useful.member(n)) {
1876       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1877     }
1878   }
1879 }
1880 
1881 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1882 // or fold-compares case. Return true if succeed or not found.
1883 //
1884 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1885 // false and ask fold-compares to yield.
1886 //
1887 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1888 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1889 // when deoptimization does happen.
1890 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1891   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1892     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1893     if (trap->uncommon_trap() == unc) {
1894       if (yield && trap->modified()) {
1895         return false;
1896       }
1897       _unstable_if_traps.delete_at(i);
1898       break;
1899     }
1900   }
1901   return true;
1902 }
1903 
1904 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1905 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1906 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1907   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1908     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1909     CallStaticJavaNode* unc = trap->uncommon_trap();
1910     int next_bci = trap->next_bci();
1911     bool modified = trap->modified();
1912 
1913     if (next_bci != -1 && !modified) {
1914       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1915       JVMState* jvms = unc->jvms();
1916       ciMethod* method = jvms->method();
1917       ciBytecodeStream iter(method);
1918 
1919       iter.force_bci(jvms->bci());
1920       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1921       Bytecodes::Code c = iter.cur_bc();
1922       Node* lhs = nullptr;
1923       Node* rhs = nullptr;
1924       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1925         lhs = unc->peek_operand(0);
1926         rhs = unc->peek_operand(1);
1927       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
1928         lhs = unc->peek_operand(0);
1929       }
1930 
1931       ResourceMark rm;
1932       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
1933       assert(live_locals.is_valid(), "broken liveness info");
1934       int len = (int)live_locals.size();
1935 
1936       for (int i = 0; i < len; i++) {
1937         Node* local = unc->local(jvms, i);
1938         // kill local using the liveness of next_bci.
1939         // give up when the local looks like an operand to secure reexecution.
1940         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
1941           uint idx = jvms->locoff() + i;
1942 #ifdef ASSERT
1943           if (Verbose) {
1944             tty->print("[unstable_if] kill local#%d: ", idx);
1945             local->dump();
1946             tty->cr();
1947           }
1948 #endif
1949           igvn.replace_input_of(unc, idx, top());
1950           modified = true;
1951         }
1952       }
1953     }
1954 
1955     // keep the mondified trap for late query
1956     if (modified) {
1957       trap->set_modified();
1958     } else {
1959       _unstable_if_traps.delete_at(i);
1960     }
1961   }
1962   igvn.optimize();
1963 }
1964 
1965 // StringOpts and late inlining of string methods
1966 void Compile::inline_string_calls(bool parse_time) {
1967   {
1968     // remove useless nodes to make the usage analysis simpler
1969     ResourceMark rm;
1970     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
1971   }
1972 
1973   {
1974     ResourceMark rm;
1975     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1976     PhaseStringOpts pso(initial_gvn());
1977     print_method(PHASE_AFTER_STRINGOPTS, 3);
1978   }
1979 
1980   // now inline anything that we skipped the first time around
1981   if (!parse_time) {
1982     _late_inlines_pos = _late_inlines.length();
1983   }
1984 
1985   while (_string_late_inlines.length() > 0) {
1986     CallGenerator* cg = _string_late_inlines.pop();
1987     cg->do_late_inline();
1988     if (failing())  return;
1989   }
1990   _string_late_inlines.trunc_to(0);
1991 }
1992 
1993 // Late inlining of boxing methods
1994 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1995   if (_boxing_late_inlines.length() > 0) {
1996     assert(has_boxed_value(), "inconsistent");
1997 
1998     PhaseGVN* gvn = initial_gvn();
1999     set_inlining_incrementally(true);
2000 
2001     igvn_worklist()->ensure_empty(); // should be done with igvn
2002 
2003     _late_inlines_pos = _late_inlines.length();
2004 
2005     while (_boxing_late_inlines.length() > 0) {
2006       CallGenerator* cg = _boxing_late_inlines.pop();
2007       cg->do_late_inline();
2008       if (failing())  return;
2009     }
2010     _boxing_late_inlines.trunc_to(0);
2011 
2012     inline_incrementally_cleanup(igvn);
2013 
2014     set_inlining_incrementally(false);
2015   }
2016 }
2017 
2018 bool Compile::inline_incrementally_one() {
2019   assert(IncrementalInline, "incremental inlining should be on");
2020 
2021   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2022 
2023   set_inlining_progress(false);
2024   set_do_cleanup(false);
2025 
2026   for (int i = 0; i < _late_inlines.length(); i++) {
2027     _late_inlines_pos = i+1;
2028     CallGenerator* cg = _late_inlines.at(i);
2029     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2030     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2031       cg->do_late_inline();
2032       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2033       if (failing()) {
2034         return false;
2035       } else if (inlining_progress()) {
2036         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2037         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2038         break; // process one call site at a time
2039       }
2040     } else {
2041       // Ignore late inline direct calls when inlining is not allowed.
2042       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2043     }
2044   }
2045   // Remove processed elements.
2046   _late_inlines.remove_till(_late_inlines_pos);
2047   _late_inlines_pos = 0;
2048 
2049   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2050 
2051   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2052 
2053   set_inlining_progress(false);
2054   set_do_cleanup(false);
2055 
2056   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2057   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2058 }
2059 
2060 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2061   {
2062     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2063     ResourceMark rm;
2064     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2065   }
2066   {
2067     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2068     igvn.reset_from_gvn(initial_gvn());
2069     igvn.optimize();
2070   }
2071   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2072 }
2073 
2074 // Perform incremental inlining until bound on number of live nodes is reached
2075 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2076   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2077 
2078   set_inlining_incrementally(true);
2079   uint low_live_nodes = 0;
2080 
2081   while (_late_inlines.length() > 0) {
2082     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2083       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2084         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2085         // PhaseIdealLoop is expensive so we only try it once we are
2086         // out of live nodes and we only try it again if the previous
2087         // helped got the number of nodes down significantly
2088         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2089         if (failing())  return;
2090         low_live_nodes = live_nodes();
2091         _major_progress = true;
2092       }
2093 
2094       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2095         bool do_print_inlining = print_inlining() || print_intrinsics();
2096         if (do_print_inlining || log() != nullptr) {
2097           // Print inlining message for candidates that we couldn't inline for lack of space.
2098           for (int i = 0; i < _late_inlines.length(); i++) {
2099             CallGenerator* cg = _late_inlines.at(i);
2100             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2101             if (do_print_inlining) {
2102               cg->print_inlining_late(msg);
2103             }
2104             log_late_inline_failure(cg, msg);
2105           }
2106         }
2107         break; // finish
2108       }
2109     }
2110 
2111     igvn_worklist()->ensure_empty(); // should be done with igvn
2112 
2113     while (inline_incrementally_one()) {
2114       assert(!failing(), "inconsistent");
2115     }
2116     if (failing())  return;
2117 
2118     inline_incrementally_cleanup(igvn);
2119 
2120     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2121 
2122     if (failing())  return;
2123 
2124     if (_late_inlines.length() == 0) {
2125       break; // no more progress
2126     }
2127   }
2128 
2129   igvn_worklist()->ensure_empty(); // should be done with igvn
2130 
2131   if (_string_late_inlines.length() > 0) {
2132     assert(has_stringbuilder(), "inconsistent");
2133 
2134     inline_string_calls(false);
2135 
2136     if (failing())  return;
2137 
2138     inline_incrementally_cleanup(igvn);
2139   }
2140 
2141   set_inlining_incrementally(false);
2142 }
2143 
2144 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2145   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2146   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2147   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2148   // as if "inlining_incrementally() == true" were set.
2149   assert(inlining_incrementally() == false, "not allowed");
2150   assert(_modified_nodes == nullptr, "not allowed");
2151   assert(_late_inlines.length() > 0, "sanity");
2152 
2153   while (_late_inlines.length() > 0) {
2154     igvn_worklist()->ensure_empty(); // should be done with igvn
2155 
2156     while (inline_incrementally_one()) {
2157       assert(!failing(), "inconsistent");
2158     }
2159     if (failing())  return;
2160 
2161     inline_incrementally_cleanup(igvn);
2162   }
2163 }
2164 
2165 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2166   if (_loop_opts_cnt > 0) {
2167     while (major_progress() && (_loop_opts_cnt > 0)) {
2168       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2169       PhaseIdealLoop::optimize(igvn, mode);
2170       _loop_opts_cnt--;
2171       if (failing())  return false;
2172       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2173     }
2174   }
2175   return true;
2176 }
2177 
2178 // Remove edges from "root" to each SafePoint at a backward branch.
2179 // They were inserted during parsing (see add_safepoint()) to make
2180 // infinite loops without calls or exceptions visible to root, i.e.,
2181 // useful.
2182 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2183   Node *r = root();
2184   if (r != nullptr) {
2185     for (uint i = r->req(); i < r->len(); ++i) {
2186       Node *n = r->in(i);
2187       if (n != nullptr && n->is_SafePoint()) {
2188         r->rm_prec(i);
2189         if (n->outcnt() == 0) {
2190           igvn.remove_dead_node(n);
2191         }
2192         --i;
2193       }
2194     }
2195     // Parsing may have added top inputs to the root node (Path
2196     // leading to the Halt node proven dead). Make sure we get a
2197     // chance to clean them up.
2198     igvn._worklist.push(r);
2199     igvn.optimize();
2200   }
2201 }
2202 
2203 //------------------------------Optimize---------------------------------------
2204 // Given a graph, optimize it.
2205 void Compile::Optimize() {
2206   TracePhase tp("optimizer", &timers[_t_optimizer]);
2207 
2208 #ifndef PRODUCT
2209   if (env()->break_at_compile()) {
2210     BREAKPOINT;
2211   }
2212 
2213 #endif
2214 
2215   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2216 #ifdef ASSERT
2217   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2218 #endif
2219 
2220   ResourceMark rm;
2221 
2222   print_inlining_reinit();
2223 
2224   NOT_PRODUCT( verify_graph_edges(); )
2225 
2226   print_method(PHASE_AFTER_PARSING, 1);
2227 
2228  {
2229   // Iterative Global Value Numbering, including ideal transforms
2230   // Initialize IterGVN with types and values from parse-time GVN
2231   PhaseIterGVN igvn(initial_gvn());
2232 #ifdef ASSERT
2233   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2234 #endif
2235   {
2236     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2237     igvn.optimize();
2238   }
2239 
2240   if (failing())  return;
2241 
2242   print_method(PHASE_ITER_GVN1, 2);
2243 
2244   process_for_unstable_if_traps(igvn);
2245 
2246   if (failing())  return;
2247 
2248   inline_incrementally(igvn);
2249 
2250   print_method(PHASE_INCREMENTAL_INLINE, 2);
2251 
2252   if (failing())  return;
2253 
2254   if (eliminate_boxing()) {
2255     // Inline valueOf() methods now.
2256     inline_boxing_calls(igvn);
2257 
2258     if (failing())  return;
2259 
2260     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2261       inline_incrementally(igvn);
2262     }
2263 
2264     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2265 
2266     if (failing())  return;
2267   }
2268 
2269   // Remove the speculative part of types and clean up the graph from
2270   // the extra CastPP nodes whose only purpose is to carry them. Do
2271   // that early so that optimizations are not disrupted by the extra
2272   // CastPP nodes.
2273   remove_speculative_types(igvn);
2274 
2275   if (failing())  return;
2276 
2277   // No more new expensive nodes will be added to the list from here
2278   // so keep only the actual candidates for optimizations.
2279   cleanup_expensive_nodes(igvn);
2280 
2281   if (failing())  return;
2282 
2283   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2284   if (EnableVectorSupport && has_vbox_nodes()) {
2285     TracePhase tp("", &timers[_t_vector]);
2286     PhaseVector pv(igvn);
2287     pv.optimize_vector_boxes();
2288     if (failing())  return;
2289     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2290   }
2291   assert(!has_vbox_nodes(), "sanity");
2292 
2293   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2294     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2295     igvn_worklist()->ensure_empty(); // should be done with igvn
2296     {
2297       ResourceMark rm;
2298       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2299     }
2300     igvn.reset_from_gvn(initial_gvn());
2301     igvn.optimize();
2302   }
2303 
2304   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2305   // safepoints
2306   remove_root_to_sfpts_edges(igvn);
2307 
2308   if (failing())  return;
2309 
2310   // Perform escape analysis
2311   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2312     if (has_loops()) {
2313       // Cleanup graph (remove dead nodes).
2314       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2315       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2316       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2317       if (failing())  return;
2318     }
2319     bool progress;
2320     do {
2321       ConnectionGraph::do_analysis(this, &igvn);
2322 
2323       if (failing())  return;
2324 
2325       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2326 
2327       // Optimize out fields loads from scalar replaceable allocations.
2328       igvn.optimize();
2329       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2330 
2331       if (failing())  return;
2332 
2333       if (congraph() != nullptr && macro_count() > 0) {
2334         TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2335         PhaseMacroExpand mexp(igvn);
2336         mexp.eliminate_macro_nodes();
2337         igvn.set_delay_transform(false);
2338 
2339         igvn.optimize();
2340         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2341 
2342         if (failing())  return;
2343       }
2344       progress = do_iterative_escape_analysis() &&
2345                  (macro_count() < mcount) &&
2346                  ConnectionGraph::has_candidates(this);
2347       // Try again if candidates exist and made progress
2348       // by removing some allocations and/or locks.
2349     } while (progress);
2350   }
2351 
2352   // Loop transforms on the ideal graph.  Range Check Elimination,
2353   // peeling, unrolling, etc.
2354 
2355   // Set loop opts counter
2356   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2357     {
2358       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2359       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2360       _loop_opts_cnt--;
2361       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2362       if (failing())  return;
2363     }
2364     // Loop opts pass if partial peeling occurred in previous pass
2365     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2366       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2367       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2368       _loop_opts_cnt--;
2369       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2370       if (failing())  return;
2371     }
2372     // Loop opts pass for loop-unrolling before CCP
2373     if(major_progress() && (_loop_opts_cnt > 0)) {
2374       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2375       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2376       _loop_opts_cnt--;
2377       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2378     }
2379     if (!failing()) {
2380       // Verify that last round of loop opts produced a valid graph
2381       PhaseIdealLoop::verify(igvn);
2382     }
2383   }
2384   if (failing())  return;
2385 
2386   // Conditional Constant Propagation;
2387   PhaseCCP ccp( &igvn );
2388   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2389   {
2390     TracePhase tp("ccp", &timers[_t_ccp]);
2391     ccp.do_transform();
2392   }
2393   print_method(PHASE_CCP1, 2);
2394 
2395   assert( true, "Break here to ccp.dump_old2new_map()");
2396 
2397   // Iterative Global Value Numbering, including ideal transforms
2398   {
2399     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2400     igvn.reset_from_igvn(&ccp);
2401     igvn.optimize();
2402   }
2403   print_method(PHASE_ITER_GVN2, 2);
2404 
2405   if (failing())  return;
2406 
2407   // Loop transforms on the ideal graph.  Range Check Elimination,
2408   // peeling, unrolling, etc.
2409   if (!optimize_loops(igvn, LoopOptsDefault)) {
2410     return;
2411   }
2412 
2413   if (failing())  return;
2414 
2415   C->clear_major_progress(); // ensure that major progress is now clear
2416 
2417   process_for_post_loop_opts_igvn(igvn);
2418 
2419   if (failing())  return;
2420 
2421 #ifdef ASSERT
2422   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2423 #endif
2424 
2425   {
2426     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2427     PhaseMacroExpand  mex(igvn);
2428     if (mex.expand_macro_nodes()) {
2429       assert(failing(), "must bail out w/ explicit message");
2430       return;
2431     }
2432     print_method(PHASE_MACRO_EXPANSION, 2);
2433   }
2434 
2435   {
2436     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2437     if (bs->expand_barriers(this, igvn)) {
2438       assert(failing(), "must bail out w/ explicit message");
2439       return;
2440     }
2441     print_method(PHASE_BARRIER_EXPANSION, 2);
2442   }
2443 
2444   if (C->max_vector_size() > 0) {
2445     C->optimize_logic_cones(igvn);
2446     igvn.optimize();
2447   }
2448 
2449   DEBUG_ONLY( _modified_nodes = nullptr; )
2450 
2451   assert(igvn._worklist.size() == 0, "not empty");
2452 
2453   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2454 
2455   if (_late_inlines.length() > 0) {
2456     // More opportunities to optimize virtual and MH calls.
2457     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2458     process_late_inline_calls_no_inline(igvn);
2459     if (failing())  return;
2460   }
2461  } // (End scope of igvn; run destructor if necessary for asserts.)
2462 
2463  check_no_dead_use();
2464 
2465  process_print_inlining();
2466 
2467  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2468  // to remove hashes to unlock nodes for modifications.
2469  C->node_hash()->clear();
2470 
2471  // A method with only infinite loops has no edges entering loops from root
2472  {
2473    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2474    if (final_graph_reshaping()) {
2475      assert(failing(), "must bail out w/ explicit message");
2476      return;
2477    }
2478  }
2479 
2480  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2481  DEBUG_ONLY(set_phase_optimize_finished();)
2482 }
2483 
2484 #ifdef ASSERT
2485 void Compile::check_no_dead_use() const {
2486   ResourceMark rm;
2487   Unique_Node_List wq;
2488   wq.push(root());
2489   for (uint i = 0; i < wq.size(); ++i) {
2490     Node* n = wq.at(i);
2491     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2492       Node* u = n->fast_out(j);
2493       if (u->outcnt() == 0 && !u->is_Con()) {
2494         u->dump();
2495         fatal("no reachable node should have no use");
2496       }
2497       wq.push(u);
2498     }
2499   }
2500 }
2501 #endif
2502 
2503 void Compile::inline_vector_reboxing_calls() {
2504   if (C->_vector_reboxing_late_inlines.length() > 0) {
2505     _late_inlines_pos = C->_late_inlines.length();
2506     while (_vector_reboxing_late_inlines.length() > 0) {
2507       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2508       cg->do_late_inline();
2509       if (failing())  return;
2510       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2511     }
2512     _vector_reboxing_late_inlines.trunc_to(0);
2513   }
2514 }
2515 
2516 bool Compile::has_vbox_nodes() {
2517   if (C->_vector_reboxing_late_inlines.length() > 0) {
2518     return true;
2519   }
2520   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2521     Node * n = C->macro_node(macro_idx);
2522     assert(n->is_macro(), "only macro nodes expected here");
2523     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2524       return true;
2525     }
2526   }
2527   return false;
2528 }
2529 
2530 //---------------------------- Bitwise operation packing optimization ---------------------------
2531 
2532 static bool is_vector_unary_bitwise_op(Node* n) {
2533   return n->Opcode() == Op_XorV &&
2534          VectorNode::is_vector_bitwise_not_pattern(n);
2535 }
2536 
2537 static bool is_vector_binary_bitwise_op(Node* n) {
2538   switch (n->Opcode()) {
2539     case Op_AndV:
2540     case Op_OrV:
2541       return true;
2542 
2543     case Op_XorV:
2544       return !is_vector_unary_bitwise_op(n);
2545 
2546     default:
2547       return false;
2548   }
2549 }
2550 
2551 static bool is_vector_ternary_bitwise_op(Node* n) {
2552   return n->Opcode() == Op_MacroLogicV;
2553 }
2554 
2555 static bool is_vector_bitwise_op(Node* n) {
2556   return is_vector_unary_bitwise_op(n)  ||
2557          is_vector_binary_bitwise_op(n) ||
2558          is_vector_ternary_bitwise_op(n);
2559 }
2560 
2561 static bool is_vector_bitwise_cone_root(Node* n) {
2562   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2563     return false;
2564   }
2565   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2566     if (is_vector_bitwise_op(n->fast_out(i))) {
2567       return false;
2568     }
2569   }
2570   return true;
2571 }
2572 
2573 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2574   uint cnt = 0;
2575   if (is_vector_bitwise_op(n)) {
2576     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2577     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2578       for (uint i = 1; i < inp_cnt; i++) {
2579         Node* in = n->in(i);
2580         bool skip = VectorNode::is_all_ones_vector(in);
2581         if (!skip && !inputs.member(in)) {
2582           inputs.push(in);
2583           cnt++;
2584         }
2585       }
2586       assert(cnt <= 1, "not unary");
2587     } else {
2588       uint last_req = inp_cnt;
2589       if (is_vector_ternary_bitwise_op(n)) {
2590         last_req = inp_cnt - 1; // skip last input
2591       }
2592       for (uint i = 1; i < last_req; i++) {
2593         Node* def = n->in(i);
2594         if (!inputs.member(def)) {
2595           inputs.push(def);
2596           cnt++;
2597         }
2598       }
2599     }
2600   } else { // not a bitwise operations
2601     if (!inputs.member(n)) {
2602       inputs.push(n);
2603       cnt++;
2604     }
2605   }
2606   return cnt;
2607 }
2608 
2609 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2610   Unique_Node_List useful_nodes;
2611   C->identify_useful_nodes(useful_nodes);
2612 
2613   for (uint i = 0; i < useful_nodes.size(); i++) {
2614     Node* n = useful_nodes.at(i);
2615     if (is_vector_bitwise_cone_root(n)) {
2616       list.push(n);
2617     }
2618   }
2619 }
2620 
2621 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2622                                     const TypeVect* vt,
2623                                     Unique_Node_List& partition,
2624                                     Unique_Node_List& inputs) {
2625   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2626   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2627   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2628 
2629   Node* in1 = inputs.at(0);
2630   Node* in2 = inputs.at(1);
2631   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2632 
2633   uint func = compute_truth_table(partition, inputs);
2634 
2635   Node* pn = partition.at(partition.size() - 1);
2636   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2637   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2638 }
2639 
2640 static uint extract_bit(uint func, uint pos) {
2641   return (func & (1 << pos)) >> pos;
2642 }
2643 
2644 //
2645 //  A macro logic node represents a truth table. It has 4 inputs,
2646 //  First three inputs corresponds to 3 columns of a truth table
2647 //  and fourth input captures the logic function.
2648 //
2649 //  eg.  fn = (in1 AND in2) OR in3;
2650 //
2651 //      MacroNode(in1,in2,in3,fn)
2652 //
2653 //  -----------------
2654 //  in1 in2 in3  fn
2655 //  -----------------
2656 //  0    0   0    0
2657 //  0    0   1    1
2658 //  0    1   0    0
2659 //  0    1   1    1
2660 //  1    0   0    0
2661 //  1    0   1    1
2662 //  1    1   0    1
2663 //  1    1   1    1
2664 //
2665 
2666 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2667   int res = 0;
2668   for (int i = 0; i < 8; i++) {
2669     int bit1 = extract_bit(in1, i);
2670     int bit2 = extract_bit(in2, i);
2671     int bit3 = extract_bit(in3, i);
2672 
2673     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2674     int func_bit = extract_bit(func, func_bit_pos);
2675 
2676     res |= func_bit << i;
2677   }
2678   return res;
2679 }
2680 
2681 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2682   assert(n != nullptr, "");
2683   assert(eval_map.contains(n), "absent");
2684   return *(eval_map.get(n));
2685 }
2686 
2687 static void eval_operands(Node* n,
2688                           uint& func1, uint& func2, uint& func3,
2689                           ResourceHashtable<Node*,uint>& eval_map) {
2690   assert(is_vector_bitwise_op(n), "");
2691 
2692   if (is_vector_unary_bitwise_op(n)) {
2693     Node* opnd = n->in(1);
2694     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2695       opnd = n->in(2);
2696     }
2697     func1 = eval_operand(opnd, eval_map);
2698   } else if (is_vector_binary_bitwise_op(n)) {
2699     func1 = eval_operand(n->in(1), eval_map);
2700     func2 = eval_operand(n->in(2), eval_map);
2701   } else {
2702     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2703     func1 = eval_operand(n->in(1), eval_map);
2704     func2 = eval_operand(n->in(2), eval_map);
2705     func3 = eval_operand(n->in(3), eval_map);
2706   }
2707 }
2708 
2709 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2710   assert(inputs.size() <= 3, "sanity");
2711   ResourceMark rm;
2712   uint res = 0;
2713   ResourceHashtable<Node*,uint> eval_map;
2714 
2715   // Populate precomputed functions for inputs.
2716   // Each input corresponds to one column of 3 input truth-table.
2717   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2718                          0xCC,   // (_, b, _) -> b
2719                          0xF0 }; // (a, _, _) -> a
2720   for (uint i = 0; i < inputs.size(); i++) {
2721     eval_map.put(inputs.at(i), input_funcs[2-i]);
2722   }
2723 
2724   for (uint i = 0; i < partition.size(); i++) {
2725     Node* n = partition.at(i);
2726 
2727     uint func1 = 0, func2 = 0, func3 = 0;
2728     eval_operands(n, func1, func2, func3, eval_map);
2729 
2730     switch (n->Opcode()) {
2731       case Op_OrV:
2732         assert(func3 == 0, "not binary");
2733         res = func1 | func2;
2734         break;
2735       case Op_AndV:
2736         assert(func3 == 0, "not binary");
2737         res = func1 & func2;
2738         break;
2739       case Op_XorV:
2740         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2741           assert(func2 == 0 && func3 == 0, "not unary");
2742           res = (~func1) & 0xFF;
2743         } else {
2744           assert(func3 == 0, "not binary");
2745           res = func1 ^ func2;
2746         }
2747         break;
2748       case Op_MacroLogicV:
2749         // Ordering of inputs may change during evaluation of sub-tree
2750         // containing MacroLogic node as a child node, thus a re-evaluation
2751         // makes sure that function is evaluated in context of current
2752         // inputs.
2753         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2754         break;
2755 
2756       default: assert(false, "not supported: %s", n->Name());
2757     }
2758     assert(res <= 0xFF, "invalid");
2759     eval_map.put(n, res);
2760   }
2761   return res;
2762 }
2763 
2764 // Criteria under which nodes gets packed into a macro logic node:-
2765 //  1) Parent and both child nodes are all unmasked or masked with
2766 //     same predicates.
2767 //  2) Masked parent can be packed with left child if it is predicated
2768 //     and both have same predicates.
2769 //  3) Masked parent can be packed with right child if its un-predicated
2770 //     or has matching predication condition.
2771 //  4) An unmasked parent can be packed with an unmasked child.
2772 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2773   assert(partition.size() == 0, "not empty");
2774   assert(inputs.size() == 0, "not empty");
2775   if (is_vector_ternary_bitwise_op(n)) {
2776     return false;
2777   }
2778 
2779   bool is_unary_op = is_vector_unary_bitwise_op(n);
2780   if (is_unary_op) {
2781     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2782     return false; // too few inputs
2783   }
2784 
2785   bool pack_left_child = true;
2786   bool pack_right_child = true;
2787 
2788   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2789   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2790 
2791   int left_child_input_cnt = 0;
2792   int right_child_input_cnt = 0;
2793 
2794   bool parent_is_predicated = n->is_predicated_vector();
2795   bool left_child_predicated = n->in(1)->is_predicated_vector();
2796   bool right_child_predicated = n->in(2)->is_predicated_vector();
2797 
2798   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2799   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2800   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2801 
2802   do {
2803     if (pack_left_child && left_child_LOP &&
2804         ((!parent_is_predicated && !left_child_predicated) ||
2805         ((parent_is_predicated && left_child_predicated &&
2806           parent_pred == left_child_pred)))) {
2807        partition.push(n->in(1));
2808        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2809     } else {
2810        inputs.push(n->in(1));
2811        left_child_input_cnt = 1;
2812     }
2813 
2814     if (pack_right_child && right_child_LOP &&
2815         (!right_child_predicated ||
2816          (right_child_predicated && parent_is_predicated &&
2817           parent_pred == right_child_pred))) {
2818        partition.push(n->in(2));
2819        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2820     } else {
2821        inputs.push(n->in(2));
2822        right_child_input_cnt = 1;
2823     }
2824 
2825     if (inputs.size() > 3) {
2826       assert(partition.size() > 0, "");
2827       inputs.clear();
2828       partition.clear();
2829       if (left_child_input_cnt > right_child_input_cnt) {
2830         pack_left_child = false;
2831       } else {
2832         pack_right_child = false;
2833       }
2834     } else {
2835       break;
2836     }
2837   } while(true);
2838 
2839   if(partition.size()) {
2840     partition.push(n);
2841   }
2842 
2843   return (partition.size() == 2 || partition.size() == 3) &&
2844          (inputs.size()    == 2 || inputs.size()    == 3);
2845 }
2846 
2847 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2848   assert(is_vector_bitwise_op(n), "not a root");
2849 
2850   visited.set(n->_idx);
2851 
2852   // 1) Do a DFS walk over the logic cone.
2853   for (uint i = 1; i < n->req(); i++) {
2854     Node* in = n->in(i);
2855     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2856       process_logic_cone_root(igvn, in, visited);
2857     }
2858   }
2859 
2860   // 2) Bottom up traversal: Merge node[s] with
2861   // the parent to form macro logic node.
2862   Unique_Node_List partition;
2863   Unique_Node_List inputs;
2864   if (compute_logic_cone(n, partition, inputs)) {
2865     const TypeVect* vt = n->bottom_type()->is_vect();
2866     Node* pn = partition.at(partition.size() - 1);
2867     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2868     if (mask == nullptr ||
2869         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2870       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2871       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2872       igvn.replace_node(n, macro_logic);
2873     }
2874   }
2875 }
2876 
2877 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2878   ResourceMark rm;
2879   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2880     Unique_Node_List list;
2881     collect_logic_cone_roots(list);
2882 
2883     while (list.size() > 0) {
2884       Node* n = list.pop();
2885       const TypeVect* vt = n->bottom_type()->is_vect();
2886       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2887       if (supported) {
2888         VectorSet visited(comp_arena());
2889         process_logic_cone_root(igvn, n, visited);
2890       }
2891     }
2892   }
2893 }
2894 
2895 //------------------------------Code_Gen---------------------------------------
2896 // Given a graph, generate code for it
2897 void Compile::Code_Gen() {
2898   if (failing()) {
2899     return;
2900   }
2901 
2902   // Perform instruction selection.  You might think we could reclaim Matcher
2903   // memory PDQ, but actually the Matcher is used in generating spill code.
2904   // Internals of the Matcher (including some VectorSets) must remain live
2905   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2906   // set a bit in reclaimed memory.
2907 
2908   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2909   // nodes.  Mapping is only valid at the root of each matched subtree.
2910   NOT_PRODUCT( verify_graph_edges(); )
2911 
2912   Matcher matcher;
2913   _matcher = &matcher;
2914   {
2915     TracePhase tp("matcher", &timers[_t_matcher]);
2916     matcher.match();
2917     if (failing()) {
2918       return;
2919     }
2920   }
2921   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2922   // nodes.  Mapping is only valid at the root of each matched subtree.
2923   NOT_PRODUCT( verify_graph_edges(); )
2924 
2925   // If you have too many nodes, or if matching has failed, bail out
2926   check_node_count(0, "out of nodes matching instructions");
2927   if (failing()) {
2928     return;
2929   }
2930 
2931   print_method(PHASE_MATCHING, 2);
2932 
2933   // Build a proper-looking CFG
2934   PhaseCFG cfg(node_arena(), root(), matcher);
2935   _cfg = &cfg;
2936   {
2937     TracePhase tp("scheduler", &timers[_t_scheduler]);
2938     bool success = cfg.do_global_code_motion();
2939     if (!success) {
2940       return;
2941     }
2942 
2943     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2944     NOT_PRODUCT( verify_graph_edges(); )
2945     cfg.verify();
2946   }
2947 
2948   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2949   _regalloc = &regalloc;
2950   {
2951     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2952     // Perform register allocation.  After Chaitin, use-def chains are
2953     // no longer accurate (at spill code) and so must be ignored.
2954     // Node->LRG->reg mappings are still accurate.
2955     _regalloc->Register_Allocate();
2956 
2957     // Bail out if the allocator builds too many nodes
2958     if (failing()) {
2959       return;
2960     }
2961   }
2962 
2963   // Prior to register allocation we kept empty basic blocks in case the
2964   // the allocator needed a place to spill.  After register allocation we
2965   // are not adding any new instructions.  If any basic block is empty, we
2966   // can now safely remove it.
2967   {
2968     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2969     cfg.remove_empty_blocks();
2970     if (do_freq_based_layout()) {
2971       PhaseBlockLayout layout(cfg);
2972     } else {
2973       cfg.set_loop_alignment();
2974     }
2975     cfg.fixup_flow();
2976     cfg.remove_unreachable_blocks();
2977     cfg.verify_dominator_tree();
2978   }
2979 
2980   // Apply peephole optimizations
2981   if( OptoPeephole ) {
2982     TracePhase tp("peephole", &timers[_t_peephole]);
2983     PhasePeephole peep( _regalloc, cfg);
2984     peep.do_transform();
2985   }
2986 
2987   // Do late expand if CPU requires this.
2988   if (Matcher::require_postalloc_expand) {
2989     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2990     cfg.postalloc_expand(_regalloc);
2991   }
2992 
2993   // Convert Nodes to instruction bits in a buffer
2994   {
2995     TracePhase tp("output", &timers[_t_output]);
2996     PhaseOutput output;
2997     output.Output();
2998     if (failing())  return;
2999     output.install();
3000   }
3001 
3002   print_method(PHASE_FINAL_CODE, 1);
3003 
3004   // He's dead, Jim.
3005   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3006   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3007 }
3008 
3009 //------------------------------Final_Reshape_Counts---------------------------
3010 // This class defines counters to help identify when a method
3011 // may/must be executed using hardware with only 24-bit precision.
3012 struct Final_Reshape_Counts : public StackObj {
3013   int  _call_count;             // count non-inlined 'common' calls
3014   int  _float_count;            // count float ops requiring 24-bit precision
3015   int  _double_count;           // count double ops requiring more precision
3016   int  _java_call_count;        // count non-inlined 'java' calls
3017   int  _inner_loop_count;       // count loops which need alignment
3018   VectorSet _visited;           // Visitation flags
3019   Node_List _tests;             // Set of IfNodes & PCTableNodes
3020 
3021   Final_Reshape_Counts() :
3022     _call_count(0), _float_count(0), _double_count(0),
3023     _java_call_count(0), _inner_loop_count(0) { }
3024 
3025   void inc_call_count  () { _call_count  ++; }
3026   void inc_float_count () { _float_count ++; }
3027   void inc_double_count() { _double_count++; }
3028   void inc_java_call_count() { _java_call_count++; }
3029   void inc_inner_loop_count() { _inner_loop_count++; }
3030 
3031   int  get_call_count  () const { return _call_count  ; }
3032   int  get_float_count () const { return _float_count ; }
3033   int  get_double_count() const { return _double_count; }
3034   int  get_java_call_count() const { return _java_call_count; }
3035   int  get_inner_loop_count() const { return _inner_loop_count; }
3036 };
3037 
3038 // Eliminate trivially redundant StoreCMs and accumulate their
3039 // precedence edges.
3040 void Compile::eliminate_redundant_card_marks(Node* n) {
3041   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
3042   if (n->in(MemNode::Address)->outcnt() > 1) {
3043     // There are multiple users of the same address so it might be
3044     // possible to eliminate some of the StoreCMs
3045     Node* mem = n->in(MemNode::Memory);
3046     Node* adr = n->in(MemNode::Address);
3047     Node* val = n->in(MemNode::ValueIn);
3048     Node* prev = n;
3049     bool done = false;
3050     // Walk the chain of StoreCMs eliminating ones that match.  As
3051     // long as it's a chain of single users then the optimization is
3052     // safe.  Eliminating partially redundant StoreCMs would require
3053     // cloning copies down the other paths.
3054     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
3055       if (adr == mem->in(MemNode::Address) &&
3056           val == mem->in(MemNode::ValueIn)) {
3057         // redundant StoreCM
3058         if (mem->req() > MemNode::OopStore) {
3059           // Hasn't been processed by this code yet.
3060           n->add_prec(mem->in(MemNode::OopStore));
3061         } else {
3062           // Already converted to precedence edge
3063           for (uint i = mem->req(); i < mem->len(); i++) {
3064             // Accumulate any precedence edges
3065             if (mem->in(i) != nullptr) {
3066               n->add_prec(mem->in(i));
3067             }
3068           }
3069           // Everything above this point has been processed.
3070           done = true;
3071         }
3072         // Eliminate the previous StoreCM
3073         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
3074         assert(mem->outcnt() == 0, "should be dead");
3075         mem->disconnect_inputs(this);
3076       } else {
3077         prev = mem;
3078       }
3079       mem = prev->in(MemNode::Memory);
3080     }
3081   }
3082 }
3083 
3084 //------------------------------final_graph_reshaping_impl----------------------
3085 // Implement items 1-5 from final_graph_reshaping below.
3086 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3087 
3088   if ( n->outcnt() == 0 ) return; // dead node
3089   uint nop = n->Opcode();
3090 
3091   // Check for 2-input instruction with "last use" on right input.
3092   // Swap to left input.  Implements item (2).
3093   if( n->req() == 3 &&          // two-input instruction
3094       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3095       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3096       n->in(2)->outcnt() == 1 &&// right use IS a last use
3097       !n->in(2)->is_Con() ) {   // right use is not a constant
3098     // Check for commutative opcode
3099     switch( nop ) {
3100     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3101     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3102     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3103     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3104     case Op_AndL:  case Op_XorL:  case Op_OrL:
3105     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3106       // Move "last use" input to left by swapping inputs
3107       n->swap_edges(1, 2);
3108       break;
3109     }
3110     default:
3111       break;
3112     }
3113   }
3114 
3115 #ifdef ASSERT
3116   if( n->is_Mem() ) {
3117     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3118     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3119             // oop will be recorded in oop map if load crosses safepoint
3120             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3121                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
3122             "raw memory operations should have control edge");
3123   }
3124   if (n->is_MemBar()) {
3125     MemBarNode* mb = n->as_MemBar();
3126     if (mb->trailing_store() || mb->trailing_load_store()) {
3127       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3128       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3129       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3130              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3131     } else if (mb->leading()) {
3132       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3133     }
3134   }
3135 #endif
3136   // Count FPU ops and common calls, implements item (3)
3137   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3138   if (!gc_handled) {
3139     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3140   }
3141 
3142   // Collect CFG split points
3143   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3144     frc._tests.push(n);
3145   }
3146 }
3147 
3148 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3149   switch( nop ) {
3150   // Count all float operations that may use FPU
3151   case Op_AddF:
3152   case Op_SubF:
3153   case Op_MulF:
3154   case Op_DivF:
3155   case Op_NegF:
3156   case Op_ModF:
3157   case Op_ConvI2F:
3158   case Op_ConF:
3159   case Op_CmpF:
3160   case Op_CmpF3:
3161   case Op_StoreF:
3162   case Op_LoadF:
3163   // case Op_ConvL2F: // longs are split into 32-bit halves
3164     frc.inc_float_count();
3165     break;
3166 
3167   case Op_ConvF2D:
3168   case Op_ConvD2F:
3169     frc.inc_float_count();
3170     frc.inc_double_count();
3171     break;
3172 
3173   // Count all double operations that may use FPU
3174   case Op_AddD:
3175   case Op_SubD:
3176   case Op_MulD:
3177   case Op_DivD:
3178   case Op_NegD:
3179   case Op_ModD:
3180   case Op_ConvI2D:
3181   case Op_ConvD2I:
3182   // case Op_ConvL2D: // handled by leaf call
3183   // case Op_ConvD2L: // handled by leaf call
3184   case Op_ConD:
3185   case Op_CmpD:
3186   case Op_CmpD3:
3187   case Op_StoreD:
3188   case Op_LoadD:
3189   case Op_LoadD_unaligned:
3190     frc.inc_double_count();
3191     break;
3192   case Op_Opaque1:              // Remove Opaque Nodes before matching
3193   case Op_Opaque3:
3194     n->subsume_by(n->in(1), this);
3195     break;
3196   case Op_CallStaticJava:
3197   case Op_CallJava:
3198   case Op_CallDynamicJava:
3199     frc.inc_java_call_count(); // Count java call site;
3200   case Op_CallRuntime:
3201   case Op_CallLeaf:
3202   case Op_CallLeafVector:
3203   case Op_CallLeafNoFP: {
3204     assert (n->is_Call(), "");
3205     CallNode *call = n->as_Call();
3206     // Count call sites where the FP mode bit would have to be flipped.
3207     // Do not count uncommon runtime calls:
3208     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3209     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3210     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3211       frc.inc_call_count();   // Count the call site
3212     } else {                  // See if uncommon argument is shared
3213       Node *n = call->in(TypeFunc::Parms);
3214       int nop = n->Opcode();
3215       // Clone shared simple arguments to uncommon calls, item (1).
3216       if (n->outcnt() > 1 &&
3217           !n->is_Proj() &&
3218           nop != Op_CreateEx &&
3219           nop != Op_CheckCastPP &&
3220           nop != Op_DecodeN &&
3221           nop != Op_DecodeNKlass &&
3222           !n->is_Mem() &&
3223           !n->is_Phi()) {
3224         Node *x = n->clone();
3225         call->set_req(TypeFunc::Parms, x);
3226       }
3227     }
3228     break;
3229   }
3230 
3231   case Op_StoreCM:
3232     {
3233       // Convert OopStore dependence into precedence edge
3234       Node* prec = n->in(MemNode::OopStore);
3235       n->del_req(MemNode::OopStore);
3236       n->add_prec(prec);
3237       eliminate_redundant_card_marks(n);
3238     }
3239 
3240     // fall through
3241 
3242   case Op_StoreB:
3243   case Op_StoreC:
3244   case Op_StoreI:
3245   case Op_StoreL:
3246   case Op_CompareAndSwapB:
3247   case Op_CompareAndSwapS:
3248   case Op_CompareAndSwapI:
3249   case Op_CompareAndSwapL:
3250   case Op_CompareAndSwapP:
3251   case Op_CompareAndSwapN:
3252   case Op_WeakCompareAndSwapB:
3253   case Op_WeakCompareAndSwapS:
3254   case Op_WeakCompareAndSwapI:
3255   case Op_WeakCompareAndSwapL:
3256   case Op_WeakCompareAndSwapP:
3257   case Op_WeakCompareAndSwapN:
3258   case Op_CompareAndExchangeB:
3259   case Op_CompareAndExchangeS:
3260   case Op_CompareAndExchangeI:
3261   case Op_CompareAndExchangeL:
3262   case Op_CompareAndExchangeP:
3263   case Op_CompareAndExchangeN:
3264   case Op_GetAndAddS:
3265   case Op_GetAndAddB:
3266   case Op_GetAndAddI:
3267   case Op_GetAndAddL:
3268   case Op_GetAndSetS:
3269   case Op_GetAndSetB:
3270   case Op_GetAndSetI:
3271   case Op_GetAndSetL:
3272   case Op_GetAndSetP:
3273   case Op_GetAndSetN:
3274   case Op_StoreP:
3275   case Op_StoreN:
3276   case Op_StoreNKlass:
3277   case Op_LoadB:
3278   case Op_LoadUB:
3279   case Op_LoadUS:
3280   case Op_LoadI:
3281   case Op_LoadKlass:
3282   case Op_LoadNKlass:
3283   case Op_LoadL:
3284   case Op_LoadL_unaligned:
3285   case Op_LoadP:
3286   case Op_LoadN:
3287   case Op_LoadRange:
3288   case Op_LoadS:
3289     break;
3290 
3291   case Op_AddP: {               // Assert sane base pointers
3292     Node *addp = n->in(AddPNode::Address);
3293     assert( !addp->is_AddP() ||
3294             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3295             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3296             "Base pointers must match (addp %u)", addp->_idx );
3297 #ifdef _LP64
3298     if ((UseCompressedOops || UseCompressedClassPointers) &&
3299         addp->Opcode() == Op_ConP &&
3300         addp == n->in(AddPNode::Base) &&
3301         n->in(AddPNode::Offset)->is_Con()) {
3302       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3303       // on the platform and on the compressed oops mode.
3304       // Use addressing with narrow klass to load with offset on x86.
3305       // Some platforms can use the constant pool to load ConP.
3306       // Do this transformation here since IGVN will convert ConN back to ConP.
3307       const Type* t = addp->bottom_type();
3308       bool is_oop   = t->isa_oopptr() != nullptr;
3309       bool is_klass = t->isa_klassptr() != nullptr;
3310 
3311       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3312           (is_klass && Matcher::const_klass_prefer_decode())) {
3313         Node* nn = nullptr;
3314 
3315         int op = is_oop ? Op_ConN : Op_ConNKlass;
3316 
3317         // Look for existing ConN node of the same exact type.
3318         Node* r  = root();
3319         uint cnt = r->outcnt();
3320         for (uint i = 0; i < cnt; i++) {
3321           Node* m = r->raw_out(i);
3322           if (m!= nullptr && m->Opcode() == op &&
3323               m->bottom_type()->make_ptr() == t) {
3324             nn = m;
3325             break;
3326           }
3327         }
3328         if (nn != nullptr) {
3329           // Decode a narrow oop to match address
3330           // [R12 + narrow_oop_reg<<3 + offset]
3331           if (is_oop) {
3332             nn = new DecodeNNode(nn, t);
3333           } else {
3334             nn = new DecodeNKlassNode(nn, t);
3335           }
3336           // Check for succeeding AddP which uses the same Base.
3337           // Otherwise we will run into the assertion above when visiting that guy.
3338           for (uint i = 0; i < n->outcnt(); ++i) {
3339             Node *out_i = n->raw_out(i);
3340             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3341               out_i->set_req(AddPNode::Base, nn);
3342 #ifdef ASSERT
3343               for (uint j = 0; j < out_i->outcnt(); ++j) {
3344                 Node *out_j = out_i->raw_out(j);
3345                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3346                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3347               }
3348 #endif
3349             }
3350           }
3351           n->set_req(AddPNode::Base, nn);
3352           n->set_req(AddPNode::Address, nn);
3353           if (addp->outcnt() == 0) {
3354             addp->disconnect_inputs(this);
3355           }
3356         }
3357       }
3358     }
3359 #endif
3360     break;
3361   }
3362 
3363   case Op_CastPP: {
3364     // Remove CastPP nodes to gain more freedom during scheduling but
3365     // keep the dependency they encode as control or precedence edges
3366     // (if control is set already) on memory operations. Some CastPP
3367     // nodes don't have a control (don't carry a dependency): skip
3368     // those.
3369     if (n->in(0) != nullptr) {
3370       ResourceMark rm;
3371       Unique_Node_List wq;
3372       wq.push(n);
3373       for (uint next = 0; next < wq.size(); ++next) {
3374         Node *m = wq.at(next);
3375         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3376           Node* use = m->fast_out(i);
3377           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3378             use->ensure_control_or_add_prec(n->in(0));
3379           } else {
3380             switch(use->Opcode()) {
3381             case Op_AddP:
3382             case Op_DecodeN:
3383             case Op_DecodeNKlass:
3384             case Op_CheckCastPP:
3385             case Op_CastPP:
3386               wq.push(use);
3387               break;
3388             }
3389           }
3390         }
3391       }
3392     }
3393     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3394     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3395       Node* in1 = n->in(1);
3396       const Type* t = n->bottom_type();
3397       Node* new_in1 = in1->clone();
3398       new_in1->as_DecodeN()->set_type(t);
3399 
3400       if (!Matcher::narrow_oop_use_complex_address()) {
3401         //
3402         // x86, ARM and friends can handle 2 adds in addressing mode
3403         // and Matcher can fold a DecodeN node into address by using
3404         // a narrow oop directly and do implicit null check in address:
3405         //
3406         // [R12 + narrow_oop_reg<<3 + offset]
3407         // NullCheck narrow_oop_reg
3408         //
3409         // On other platforms (Sparc) we have to keep new DecodeN node and
3410         // use it to do implicit null check in address:
3411         //
3412         // decode_not_null narrow_oop_reg, base_reg
3413         // [base_reg + offset]
3414         // NullCheck base_reg
3415         //
3416         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3417         // to keep the information to which null check the new DecodeN node
3418         // corresponds to use it as value in implicit_null_check().
3419         //
3420         new_in1->set_req(0, n->in(0));
3421       }
3422 
3423       n->subsume_by(new_in1, this);
3424       if (in1->outcnt() == 0) {
3425         in1->disconnect_inputs(this);
3426       }
3427     } else {
3428       n->subsume_by(n->in(1), this);
3429       if (n->outcnt() == 0) {
3430         n->disconnect_inputs(this);
3431       }
3432     }
3433     break;
3434   }
3435 #ifdef _LP64
3436   case Op_CmpP:
3437     // Do this transformation here to preserve CmpPNode::sub() and
3438     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3439     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3440       Node* in1 = n->in(1);
3441       Node* in2 = n->in(2);
3442       if (!in1->is_DecodeNarrowPtr()) {
3443         in2 = in1;
3444         in1 = n->in(2);
3445       }
3446       assert(in1->is_DecodeNarrowPtr(), "sanity");
3447 
3448       Node* new_in2 = nullptr;
3449       if (in2->is_DecodeNarrowPtr()) {
3450         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3451         new_in2 = in2->in(1);
3452       } else if (in2->Opcode() == Op_ConP) {
3453         const Type* t = in2->bottom_type();
3454         if (t == TypePtr::NULL_PTR) {
3455           assert(in1->is_DecodeN(), "compare klass to null?");
3456           // Don't convert CmpP null check into CmpN if compressed
3457           // oops implicit null check is not generated.
3458           // This will allow to generate normal oop implicit null check.
3459           if (Matcher::gen_narrow_oop_implicit_null_checks())
3460             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3461           //
3462           // This transformation together with CastPP transformation above
3463           // will generated code for implicit null checks for compressed oops.
3464           //
3465           // The original code after Optimize()
3466           //
3467           //    LoadN memory, narrow_oop_reg
3468           //    decode narrow_oop_reg, base_reg
3469           //    CmpP base_reg, nullptr
3470           //    CastPP base_reg // NotNull
3471           //    Load [base_reg + offset], val_reg
3472           //
3473           // after these transformations will be
3474           //
3475           //    LoadN memory, narrow_oop_reg
3476           //    CmpN narrow_oop_reg, nullptr
3477           //    decode_not_null narrow_oop_reg, base_reg
3478           //    Load [base_reg + offset], val_reg
3479           //
3480           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3481           // since narrow oops can be used in debug info now (see the code in
3482           // final_graph_reshaping_walk()).
3483           //
3484           // At the end the code will be matched to
3485           // on x86:
3486           //
3487           //    Load_narrow_oop memory, narrow_oop_reg
3488           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3489           //    NullCheck narrow_oop_reg
3490           //
3491           // and on sparc:
3492           //
3493           //    Load_narrow_oop memory, narrow_oop_reg
3494           //    decode_not_null narrow_oop_reg, base_reg
3495           //    Load [base_reg + offset], val_reg
3496           //    NullCheck base_reg
3497           //
3498         } else if (t->isa_oopptr()) {
3499           new_in2 = ConNode::make(t->make_narrowoop());
3500         } else if (t->isa_klassptr()) {
3501           new_in2 = ConNode::make(t->make_narrowklass());
3502         }
3503       }
3504       if (new_in2 != nullptr) {
3505         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3506         n->subsume_by(cmpN, this);
3507         if (in1->outcnt() == 0) {
3508           in1->disconnect_inputs(this);
3509         }
3510         if (in2->outcnt() == 0) {
3511           in2->disconnect_inputs(this);
3512         }
3513       }
3514     }
3515     break;
3516 
3517   case Op_DecodeN:
3518   case Op_DecodeNKlass:
3519     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3520     // DecodeN could be pinned when it can't be fold into
3521     // an address expression, see the code for Op_CastPP above.
3522     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3523     break;
3524 
3525   case Op_EncodeP:
3526   case Op_EncodePKlass: {
3527     Node* in1 = n->in(1);
3528     if (in1->is_DecodeNarrowPtr()) {
3529       n->subsume_by(in1->in(1), this);
3530     } else if (in1->Opcode() == Op_ConP) {
3531       const Type* t = in1->bottom_type();
3532       if (t == TypePtr::NULL_PTR) {
3533         assert(t->isa_oopptr(), "null klass?");
3534         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3535       } else if (t->isa_oopptr()) {
3536         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3537       } else if (t->isa_klassptr()) {
3538         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3539       }
3540     }
3541     if (in1->outcnt() == 0) {
3542       in1->disconnect_inputs(this);
3543     }
3544     break;
3545   }
3546 
3547   case Op_Proj: {
3548     if (OptimizeStringConcat || IncrementalInline) {
3549       ProjNode* proj = n->as_Proj();
3550       if (proj->_is_io_use) {
3551         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3552         // Separate projections were used for the exception path which
3553         // are normally removed by a late inline.  If it wasn't inlined
3554         // then they will hang around and should just be replaced with
3555         // the original one. Merge them.
3556         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3557         if (non_io_proj  != nullptr) {
3558           proj->subsume_by(non_io_proj , this);
3559         }
3560       }
3561     }
3562     break;
3563   }
3564 
3565   case Op_Phi:
3566     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3567       // The EncodeP optimization may create Phi with the same edges
3568       // for all paths. It is not handled well by Register Allocator.
3569       Node* unique_in = n->in(1);
3570       assert(unique_in != nullptr, "");
3571       uint cnt = n->req();
3572       for (uint i = 2; i < cnt; i++) {
3573         Node* m = n->in(i);
3574         assert(m != nullptr, "");
3575         if (unique_in != m)
3576           unique_in = nullptr;
3577       }
3578       if (unique_in != nullptr) {
3579         n->subsume_by(unique_in, this);
3580       }
3581     }
3582     break;
3583 
3584 #endif
3585 
3586 #ifdef ASSERT
3587   case Op_CastII:
3588     // Verify that all range check dependent CastII nodes were removed.
3589     if (n->isa_CastII()->has_range_check()) {
3590       n->dump(3);
3591       assert(false, "Range check dependent CastII node was not removed");
3592     }
3593     break;
3594 #endif
3595 
3596   case Op_ModI:
3597     if (UseDivMod) {
3598       // Check if a%b and a/b both exist
3599       Node* d = n->find_similar(Op_DivI);
3600       if (d) {
3601         // Replace them with a fused divmod if supported
3602         if (Matcher::has_match_rule(Op_DivModI)) {
3603           DivModINode* divmod = DivModINode::make(n);
3604           d->subsume_by(divmod->div_proj(), this);
3605           n->subsume_by(divmod->mod_proj(), this);
3606         } else {
3607           // replace a%b with a-((a/b)*b)
3608           Node* mult = new MulINode(d, d->in(2));
3609           Node* sub  = new SubINode(d->in(1), mult);
3610           n->subsume_by(sub, this);
3611         }
3612       }
3613     }
3614     break;
3615 
3616   case Op_ModL:
3617     if (UseDivMod) {
3618       // Check if a%b and a/b both exist
3619       Node* d = n->find_similar(Op_DivL);
3620       if (d) {
3621         // Replace them with a fused divmod if supported
3622         if (Matcher::has_match_rule(Op_DivModL)) {
3623           DivModLNode* divmod = DivModLNode::make(n);
3624           d->subsume_by(divmod->div_proj(), this);
3625           n->subsume_by(divmod->mod_proj(), this);
3626         } else {
3627           // replace a%b with a-((a/b)*b)
3628           Node* mult = new MulLNode(d, d->in(2));
3629           Node* sub  = new SubLNode(d->in(1), mult);
3630           n->subsume_by(sub, this);
3631         }
3632       }
3633     }
3634     break;
3635 
3636   case Op_UModI:
3637     if (UseDivMod) {
3638       // Check if a%b and a/b both exist
3639       Node* d = n->find_similar(Op_UDivI);
3640       if (d) {
3641         // Replace them with a fused unsigned divmod if supported
3642         if (Matcher::has_match_rule(Op_UDivModI)) {
3643           UDivModINode* divmod = UDivModINode::make(n);
3644           d->subsume_by(divmod->div_proj(), this);
3645           n->subsume_by(divmod->mod_proj(), this);
3646         } else {
3647           // replace a%b with a-((a/b)*b)
3648           Node* mult = new MulINode(d, d->in(2));
3649           Node* sub  = new SubINode(d->in(1), mult);
3650           n->subsume_by(sub, this);
3651         }
3652       }
3653     }
3654     break;
3655 
3656   case Op_UModL:
3657     if (UseDivMod) {
3658       // Check if a%b and a/b both exist
3659       Node* d = n->find_similar(Op_UDivL);
3660       if (d) {
3661         // Replace them with a fused unsigned divmod if supported
3662         if (Matcher::has_match_rule(Op_UDivModL)) {
3663           UDivModLNode* divmod = UDivModLNode::make(n);
3664           d->subsume_by(divmod->div_proj(), this);
3665           n->subsume_by(divmod->mod_proj(), this);
3666         } else {
3667           // replace a%b with a-((a/b)*b)
3668           Node* mult = new MulLNode(d, d->in(2));
3669           Node* sub  = new SubLNode(d->in(1), mult);
3670           n->subsume_by(sub, this);
3671         }
3672       }
3673     }
3674     break;
3675 
3676   case Op_LoadVector:
3677   case Op_StoreVector:
3678   case Op_LoadVectorGather:
3679   case Op_StoreVectorScatter:
3680   case Op_LoadVectorGatherMasked:
3681   case Op_StoreVectorScatterMasked:
3682   case Op_VectorCmpMasked:
3683   case Op_VectorMaskGen:
3684   case Op_LoadVectorMasked:
3685   case Op_StoreVectorMasked:
3686     break;
3687 
3688   case Op_AddReductionVI:
3689   case Op_AddReductionVL:
3690   case Op_AddReductionVF:
3691   case Op_AddReductionVD:
3692   case Op_MulReductionVI:
3693   case Op_MulReductionVL:
3694   case Op_MulReductionVF:
3695   case Op_MulReductionVD:
3696   case Op_MinReductionV:
3697   case Op_MaxReductionV:
3698   case Op_AndReductionV:
3699   case Op_OrReductionV:
3700   case Op_XorReductionV:
3701     break;
3702 
3703   case Op_PackB:
3704   case Op_PackS:
3705   case Op_PackI:
3706   case Op_PackF:
3707   case Op_PackL:
3708   case Op_PackD:
3709     if (n->req()-1 > 2) {
3710       // Replace many operand PackNodes with a binary tree for matching
3711       PackNode* p = (PackNode*) n;
3712       Node* btp = p->binary_tree_pack(1, n->req());
3713       n->subsume_by(btp, this);
3714     }
3715     break;
3716   case Op_Loop:
3717     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3718   case Op_CountedLoop:
3719   case Op_LongCountedLoop:
3720   case Op_OuterStripMinedLoop:
3721     if (n->as_Loop()->is_inner_loop()) {
3722       frc.inc_inner_loop_count();
3723     }
3724     n->as_Loop()->verify_strip_mined(0);
3725     break;
3726   case Op_LShiftI:
3727   case Op_RShiftI:
3728   case Op_URShiftI:
3729   case Op_LShiftL:
3730   case Op_RShiftL:
3731   case Op_URShiftL:
3732     if (Matcher::need_masked_shift_count) {
3733       // The cpu's shift instructions don't restrict the count to the
3734       // lower 5/6 bits. We need to do the masking ourselves.
3735       Node* in2 = n->in(2);
3736       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3737       const TypeInt* t = in2->find_int_type();
3738       if (t != nullptr && t->is_con()) {
3739         juint shift = t->get_con();
3740         if (shift > mask) { // Unsigned cmp
3741           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3742         }
3743       } else {
3744         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3745           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3746           n->set_req(2, shift);
3747         }
3748       }
3749       if (in2->outcnt() == 0) { // Remove dead node
3750         in2->disconnect_inputs(this);
3751       }
3752     }
3753     break;
3754   case Op_MemBarStoreStore:
3755   case Op_MemBarRelease:
3756     // Break the link with AllocateNode: it is no longer useful and
3757     // confuses register allocation.
3758     if (n->req() > MemBarNode::Precedent) {
3759       n->set_req(MemBarNode::Precedent, top());
3760     }
3761     break;
3762   case Op_MemBarAcquire: {
3763     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3764       // At parse time, the trailing MemBarAcquire for a volatile load
3765       // is created with an edge to the load. After optimizations,
3766       // that input may be a chain of Phis. If those phis have no
3767       // other use, then the MemBarAcquire keeps them alive and
3768       // register allocation can be confused.
3769       dead_nodes.push(n->in(MemBarNode::Precedent));
3770       n->set_req(MemBarNode::Precedent, top());
3771     }
3772     break;
3773   }
3774   case Op_Blackhole:
3775     break;
3776   case Op_RangeCheck: {
3777     RangeCheckNode* rc = n->as_RangeCheck();
3778     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3779     n->subsume_by(iff, this);
3780     frc._tests.push(iff);
3781     break;
3782   }
3783   case Op_ConvI2L: {
3784     if (!Matcher::convi2l_type_required) {
3785       // Code generation on some platforms doesn't need accurate
3786       // ConvI2L types. Widening the type can help remove redundant
3787       // address computations.
3788       n->as_Type()->set_type(TypeLong::INT);
3789       ResourceMark rm;
3790       Unique_Node_List wq;
3791       wq.push(n);
3792       for (uint next = 0; next < wq.size(); next++) {
3793         Node *m = wq.at(next);
3794 
3795         for(;;) {
3796           // Loop over all nodes with identical inputs edges as m
3797           Node* k = m->find_similar(m->Opcode());
3798           if (k == nullptr) {
3799             break;
3800           }
3801           // Push their uses so we get a chance to remove node made
3802           // redundant
3803           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3804             Node* u = k->fast_out(i);
3805             if (u->Opcode() == Op_LShiftL ||
3806                 u->Opcode() == Op_AddL ||
3807                 u->Opcode() == Op_SubL ||
3808                 u->Opcode() == Op_AddP) {
3809               wq.push(u);
3810             }
3811           }
3812           // Replace all nodes with identical edges as m with m
3813           k->subsume_by(m, this);
3814         }
3815       }
3816     }
3817     break;
3818   }
3819   case Op_CmpUL: {
3820     if (!Matcher::has_match_rule(Op_CmpUL)) {
3821       // No support for unsigned long comparisons
3822       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3823       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3824       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3825       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3826       Node* andl = new AndLNode(orl, remove_sign_mask);
3827       Node* cmp = new CmpLNode(andl, n->in(2));
3828       n->subsume_by(cmp, this);
3829     }
3830     break;
3831   }
3832   default:
3833     assert(!n->is_Call(), "");
3834     assert(!n->is_Mem(), "");
3835     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3836     break;
3837   }
3838 }
3839 
3840 //------------------------------final_graph_reshaping_walk---------------------
3841 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3842 // requires that the walk visits a node's inputs before visiting the node.
3843 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3844   Unique_Node_List sfpt;
3845 
3846   frc._visited.set(root->_idx); // first, mark node as visited
3847   uint cnt = root->req();
3848   Node *n = root;
3849   uint  i = 0;
3850   while (true) {
3851     if (i < cnt) {
3852       // Place all non-visited non-null inputs onto stack
3853       Node* m = n->in(i);
3854       ++i;
3855       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3856         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3857           // compute worst case interpreter size in case of a deoptimization
3858           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3859 
3860           sfpt.push(m);
3861         }
3862         cnt = m->req();
3863         nstack.push(n, i); // put on stack parent and next input's index
3864         n = m;
3865         i = 0;
3866       }
3867     } else {
3868       // Now do post-visit work
3869       final_graph_reshaping_impl(n, frc, dead_nodes);
3870       if (nstack.is_empty())
3871         break;             // finished
3872       n = nstack.node();   // Get node from stack
3873       cnt = n->req();
3874       i = nstack.index();
3875       nstack.pop();        // Shift to the next node on stack
3876     }
3877   }
3878 
3879   // Skip next transformation if compressed oops are not used.
3880   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3881       (!UseCompressedOops && !UseCompressedClassPointers))
3882     return;
3883 
3884   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3885   // It could be done for an uncommon traps or any safepoints/calls
3886   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3887   while (sfpt.size() > 0) {
3888     n = sfpt.pop();
3889     JVMState *jvms = n->as_SafePoint()->jvms();
3890     assert(jvms != nullptr, "sanity");
3891     int start = jvms->debug_start();
3892     int end   = n->req();
3893     bool is_uncommon = (n->is_CallStaticJava() &&
3894                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3895     for (int j = start; j < end; j++) {
3896       Node* in = n->in(j);
3897       if (in->is_DecodeNarrowPtr()) {
3898         bool safe_to_skip = true;
3899         if (!is_uncommon ) {
3900           // Is it safe to skip?
3901           for (uint i = 0; i < in->outcnt(); i++) {
3902             Node* u = in->raw_out(i);
3903             if (!u->is_SafePoint() ||
3904                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3905               safe_to_skip = false;
3906             }
3907           }
3908         }
3909         if (safe_to_skip) {
3910           n->set_req(j, in->in(1));
3911         }
3912         if (in->outcnt() == 0) {
3913           in->disconnect_inputs(this);
3914         }
3915       }
3916     }
3917   }
3918 }
3919 
3920 //------------------------------final_graph_reshaping--------------------------
3921 // Final Graph Reshaping.
3922 //
3923 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3924 //     and not commoned up and forced early.  Must come after regular
3925 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3926 //     inputs to Loop Phis; these will be split by the allocator anyways.
3927 //     Remove Opaque nodes.
3928 // (2) Move last-uses by commutative operations to the left input to encourage
3929 //     Intel update-in-place two-address operations and better register usage
3930 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3931 //     calls canonicalizing them back.
3932 // (3) Count the number of double-precision FP ops, single-precision FP ops
3933 //     and call sites.  On Intel, we can get correct rounding either by
3934 //     forcing singles to memory (requires extra stores and loads after each
3935 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3936 //     clearing the mode bit around call sites).  The mode bit is only used
3937 //     if the relative frequency of single FP ops to calls is low enough.
3938 //     This is a key transform for SPEC mpeg_audio.
3939 // (4) Detect infinite loops; blobs of code reachable from above but not
3940 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3941 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3942 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3943 //     Detection is by looking for IfNodes where only 1 projection is
3944 //     reachable from below or CatchNodes missing some targets.
3945 // (5) Assert for insane oop offsets in debug mode.
3946 
3947 bool Compile::final_graph_reshaping() {
3948   // an infinite loop may have been eliminated by the optimizer,
3949   // in which case the graph will be empty.
3950   if (root()->req() == 1) {
3951     // Do not compile method that is only a trivial infinite loop,
3952     // since the content of the loop may have been eliminated.
3953     record_method_not_compilable("trivial infinite loop");
3954     return true;
3955   }
3956 
3957   // Expensive nodes have their control input set to prevent the GVN
3958   // from freely commoning them. There's no GVN beyond this point so
3959   // no need to keep the control input. We want the expensive nodes to
3960   // be freely moved to the least frequent code path by gcm.
3961   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3962   for (int i = 0; i < expensive_count(); i++) {
3963     _expensive_nodes.at(i)->set_req(0, nullptr);
3964   }
3965 
3966   Final_Reshape_Counts frc;
3967 
3968   // Visit everybody reachable!
3969   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3970   Node_Stack nstack(live_nodes() >> 1);
3971   Unique_Node_List dead_nodes;
3972   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
3973 
3974   // Check for unreachable (from below) code (i.e., infinite loops).
3975   for( uint i = 0; i < frc._tests.size(); i++ ) {
3976     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3977     // Get number of CFG targets.
3978     // Note that PCTables include exception targets after calls.
3979     uint required_outcnt = n->required_outcnt();
3980     if (n->outcnt() != required_outcnt) {
3981       // Check for a few special cases.  Rethrow Nodes never take the
3982       // 'fall-thru' path, so expected kids is 1 less.
3983       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3984         if (n->in(0)->in(0)->is_Call()) {
3985           CallNode* call = n->in(0)->in(0)->as_Call();
3986           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3987             required_outcnt--;      // Rethrow always has 1 less kid
3988           } else if (call->req() > TypeFunc::Parms &&
3989                      call->is_CallDynamicJava()) {
3990             // Check for null receiver. In such case, the optimizer has
3991             // detected that the virtual call will always result in a null
3992             // pointer exception. The fall-through projection of this CatchNode
3993             // will not be populated.
3994             Node* arg0 = call->in(TypeFunc::Parms);
3995             if (arg0->is_Type() &&
3996                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3997               required_outcnt--;
3998             }
3999           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
4000                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4001             // Check for illegal array length. In such case, the optimizer has
4002             // detected that the allocation attempt will always result in an
4003             // exception. There is no fall-through projection of this CatchNode .
4004             assert(call->is_CallStaticJava(), "static call expected");
4005             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4006             uint valid_length_test_input = call->req() - 1;
4007             Node* valid_length_test = call->in(valid_length_test_input);
4008             call->del_req(valid_length_test_input);
4009             if (valid_length_test->find_int_con(1) == 0) {
4010               required_outcnt--;
4011             }
4012             dead_nodes.push(valid_length_test);
4013             assert(n->outcnt() == required_outcnt, "malformed control flow");
4014             continue;
4015           }
4016         }
4017       }
4018 
4019       // Recheck with a better notion of 'required_outcnt'
4020       if (n->outcnt() != required_outcnt) {
4021         record_method_not_compilable("malformed control flow");
4022         return true;            // Not all targets reachable!
4023       }
4024     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
4025       CallNode* call = n->in(0)->in(0)->as_Call();
4026       if (call->entry_point() == OptoRuntime::new_array_Java() ||
4027           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4028         assert(call->is_CallStaticJava(), "static call expected");
4029         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4030         uint valid_length_test_input = call->req() - 1;
4031         dead_nodes.push(call->in(valid_length_test_input));
4032         call->del_req(valid_length_test_input); // valid length test useless now
4033       }
4034     }
4035     // Check that I actually visited all kids.  Unreached kids
4036     // must be infinite loops.
4037     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4038       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4039         record_method_not_compilable("infinite loop");
4040         return true;            // Found unvisited kid; must be unreach
4041       }
4042 
4043     // Here so verification code in final_graph_reshaping_walk()
4044     // always see an OuterStripMinedLoopEnd
4045     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4046       IfNode* init_iff = n->as_If();
4047       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4048       n->subsume_by(iff, this);
4049     }
4050   }
4051 
4052   while (dead_nodes.size() > 0) {
4053     Node* m = dead_nodes.pop();
4054     if (m->outcnt() == 0 && m != top()) {
4055       for (uint j = 0; j < m->req(); j++) {
4056         Node* in = m->in(j);
4057         if (in != nullptr) {
4058           dead_nodes.push(in);
4059         }
4060       }
4061       m->disconnect_inputs(this);
4062     }
4063   }
4064 
4065 #ifdef IA32
4066   // If original bytecodes contained a mixture of floats and doubles
4067   // check if the optimizer has made it homogeneous, item (3).
4068   if (UseSSE == 0 &&
4069       frc.get_float_count() > 32 &&
4070       frc.get_double_count() == 0 &&
4071       (10 * frc.get_call_count() < frc.get_float_count()) ) {
4072     set_24_bit_selection_and_mode(false, true);
4073   }
4074 #endif // IA32
4075 
4076   set_java_calls(frc.get_java_call_count());
4077   set_inner_loops(frc.get_inner_loop_count());
4078 
4079   // No infinite loops, no reason to bail out.
4080   return false;
4081 }
4082 
4083 //-----------------------------too_many_traps----------------------------------
4084 // Report if there are too many traps at the current method and bci.
4085 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4086 bool Compile::too_many_traps(ciMethod* method,
4087                              int bci,
4088                              Deoptimization::DeoptReason reason) {
4089   ciMethodData* md = method->method_data();
4090   if (md->is_empty()) {
4091     // Assume the trap has not occurred, or that it occurred only
4092     // because of a transient condition during start-up in the interpreter.
4093     return false;
4094   }
4095   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4096   if (md->has_trap_at(bci, m, reason) != 0) {
4097     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4098     // Also, if there are multiple reasons, or if there is no per-BCI record,
4099     // assume the worst.
4100     if (log())
4101       log()->elem("observe trap='%s' count='%d'",
4102                   Deoptimization::trap_reason_name(reason),
4103                   md->trap_count(reason));
4104     return true;
4105   } else {
4106     // Ignore method/bci and see if there have been too many globally.
4107     return too_many_traps(reason, md);
4108   }
4109 }
4110 
4111 // Less-accurate variant which does not require a method and bci.
4112 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4113                              ciMethodData* logmd) {
4114   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4115     // Too many traps globally.
4116     // Note that we use cumulative trap_count, not just md->trap_count.
4117     if (log()) {
4118       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4119       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4120                   Deoptimization::trap_reason_name(reason),
4121                   mcount, trap_count(reason));
4122     }
4123     return true;
4124   } else {
4125     // The coast is clear.
4126     return false;
4127   }
4128 }
4129 
4130 //--------------------------too_many_recompiles--------------------------------
4131 // Report if there are too many recompiles at the current method and bci.
4132 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4133 // Is not eager to return true, since this will cause the compiler to use
4134 // Action_none for a trap point, to avoid too many recompilations.
4135 bool Compile::too_many_recompiles(ciMethod* method,
4136                                   int bci,
4137                                   Deoptimization::DeoptReason reason) {
4138   ciMethodData* md = method->method_data();
4139   if (md->is_empty()) {
4140     // Assume the trap has not occurred, or that it occurred only
4141     // because of a transient condition during start-up in the interpreter.
4142     return false;
4143   }
4144   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4145   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4146   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4147   Deoptimization::DeoptReason per_bc_reason
4148     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4149   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4150   if ((per_bc_reason == Deoptimization::Reason_none
4151        || md->has_trap_at(bci, m, reason) != 0)
4152       // The trap frequency measure we care about is the recompile count:
4153       && md->trap_recompiled_at(bci, m)
4154       && md->overflow_recompile_count() >= bc_cutoff) {
4155     // Do not emit a trap here if it has already caused recompilations.
4156     // Also, if there are multiple reasons, or if there is no per-BCI record,
4157     // assume the worst.
4158     if (log())
4159       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4160                   Deoptimization::trap_reason_name(reason),
4161                   md->trap_count(reason),
4162                   md->overflow_recompile_count());
4163     return true;
4164   } else if (trap_count(reason) != 0
4165              && decompile_count() >= m_cutoff) {
4166     // Too many recompiles globally, and we have seen this sort of trap.
4167     // Use cumulative decompile_count, not just md->decompile_count.
4168     if (log())
4169       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4170                   Deoptimization::trap_reason_name(reason),
4171                   md->trap_count(reason), trap_count(reason),
4172                   md->decompile_count(), decompile_count());
4173     return true;
4174   } else {
4175     // The coast is clear.
4176     return false;
4177   }
4178 }
4179 
4180 // Compute when not to trap. Used by matching trap based nodes and
4181 // NullCheck optimization.
4182 void Compile::set_allowed_deopt_reasons() {
4183   _allowed_reasons = 0;
4184   if (is_method_compilation()) {
4185     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4186       assert(rs < BitsPerInt, "recode bit map");
4187       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4188         _allowed_reasons |= nth_bit(rs);
4189       }
4190     }
4191   }
4192 }
4193 
4194 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4195   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4196 }
4197 
4198 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4199   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4200 }
4201 
4202 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4203   if (holder->is_initialized()) {
4204     return false;
4205   }
4206   if (holder->is_being_initialized()) {
4207     if (accessing_method->holder() == holder) {
4208       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4209       // <init>, or a static method. In all those cases, there was an initialization
4210       // barrier on the holder klass passed.
4211       if (accessing_method->is_static_initializer() ||
4212           accessing_method->is_object_initializer() ||
4213           accessing_method->is_static()) {
4214         return false;
4215       }
4216     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4217       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4218       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4219       // child class can become fully initialized while its parent class is still being initialized.
4220       if (accessing_method->is_static_initializer()) {
4221         return false;
4222       }
4223     }
4224     ciMethod* root = method(); // the root method of compilation
4225     if (root != accessing_method) {
4226       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4227     }
4228   }
4229   return true;
4230 }
4231 
4232 #ifndef PRODUCT
4233 //------------------------------verify_bidirectional_edges---------------------
4234 // For each input edge to a node (ie - for each Use-Def edge), verify that
4235 // there is a corresponding Def-Use edge.
4236 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) {
4237   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4238   uint stack_size = live_nodes() >> 4;
4239   Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize));
4240   nstack.push(_root);
4241 
4242   while (nstack.size() > 0) {
4243     Node* n = nstack.pop();
4244     if (visited.member(n)) {
4245       continue;
4246     }
4247     visited.push(n);
4248 
4249     // Walk over all input edges, checking for correspondence
4250     uint length = n->len();
4251     for (uint i = 0; i < length; i++) {
4252       Node* in = n->in(i);
4253       if (in != nullptr && !visited.member(in)) {
4254         nstack.push(in); // Put it on stack
4255       }
4256       if (in != nullptr && !in->is_top()) {
4257         // Count instances of `next`
4258         int cnt = 0;
4259         for (uint idx = 0; idx < in->_outcnt; idx++) {
4260           if (in->_out[idx] == n) {
4261             cnt++;
4262           }
4263         }
4264         assert(cnt > 0, "Failed to find Def-Use edge.");
4265         // Check for duplicate edges
4266         // walk the input array downcounting the input edges to n
4267         for (uint j = 0; j < length; j++) {
4268           if (n->in(j) == in) {
4269             cnt--;
4270           }
4271         }
4272         assert(cnt == 0, "Mismatched edge count.");
4273       } else if (in == nullptr) {
4274         assert(i == 0 || i >= n->req() ||
4275                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4276                (n->is_Unlock() && i == (n->req() - 1)) ||
4277                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4278               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4279       } else {
4280         assert(in->is_top(), "sanity");
4281         // Nothing to check.
4282       }
4283     }
4284   }
4285 }
4286 
4287 //------------------------------verify_graph_edges---------------------------
4288 // Walk the Graph and verify that there is a one-to-one correspondence
4289 // between Use-Def edges and Def-Use edges in the graph.
4290 void Compile::verify_graph_edges(bool no_dead_code) {
4291   if (VerifyGraphEdges) {
4292     Unique_Node_List visited;
4293 
4294     // Call graph walk to check edges
4295     verify_bidirectional_edges(visited);
4296     if (no_dead_code) {
4297       // Now make sure that no visited node is used by an unvisited node.
4298       bool dead_nodes = false;
4299       Unique_Node_List checked;
4300       while (visited.size() > 0) {
4301         Node* n = visited.pop();
4302         checked.push(n);
4303         for (uint i = 0; i < n->outcnt(); i++) {
4304           Node* use = n->raw_out(i);
4305           if (checked.member(use))  continue;  // already checked
4306           if (visited.member(use))  continue;  // already in the graph
4307           if (use->is_Con())        continue;  // a dead ConNode is OK
4308           // At this point, we have found a dead node which is DU-reachable.
4309           if (!dead_nodes) {
4310             tty->print_cr("*** Dead nodes reachable via DU edges:");
4311             dead_nodes = true;
4312           }
4313           use->dump(2);
4314           tty->print_cr("---");
4315           checked.push(use);  // No repeats; pretend it is now checked.
4316         }
4317       }
4318       assert(!dead_nodes, "using nodes must be reachable from root");
4319     }
4320   }
4321 }
4322 #endif
4323 
4324 // The Compile object keeps track of failure reasons separately from the ciEnv.
4325 // This is required because there is not quite a 1-1 relation between the
4326 // ciEnv and its compilation task and the Compile object.  Note that one
4327 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4328 // to backtrack and retry without subsuming loads.  Other than this backtracking
4329 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4330 // by the logic in C2Compiler.
4331 void Compile::record_failure(const char* reason) {
4332   if (log() != nullptr) {
4333     log()->elem("failure reason='%s' phase='compile'", reason);
4334   }
4335   if (_failure_reason == nullptr) {
4336     // Record the first failure reason.
4337     _failure_reason = reason;
4338   }
4339 
4340   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4341     C->print_method(PHASE_FAILURE, 1);
4342   }
4343   _root = nullptr;  // flush the graph, too
4344 }
4345 
4346 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
4347   : TraceTime(name, accumulator, CITime, CITimeVerbose),
4348     _phase_name(name), _dolog(CITimeVerbose)
4349 {
4350   if (_dolog) {
4351     C = Compile::current();
4352     _log = C->log();
4353   } else {
4354     C = nullptr;
4355     _log = nullptr;
4356   }
4357   if (_log != nullptr) {
4358     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4359     _log->stamp();
4360     _log->end_head();
4361   }
4362 }
4363 
4364 Compile::TracePhase::~TracePhase() {
4365 
4366   C = Compile::current();
4367   if (_dolog) {
4368     _log = C->log();
4369   } else {
4370     _log = nullptr;
4371   }
4372 
4373 #ifdef ASSERT
4374   if (PrintIdealNodeCount) {
4375     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4376                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
4377   }
4378 
4379   if (VerifyIdealNodeCount) {
4380     Compile::current()->print_missing_nodes();
4381   }
4382 #endif
4383 
4384   if (_log != nullptr) {
4385     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4386   }
4387 }
4388 
4389 //----------------------------static_subtype_check-----------------------------
4390 // Shortcut important common cases when superklass is exact:
4391 // (0) superklass is java.lang.Object (can occur in reflective code)
4392 // (1) subklass is already limited to a subtype of superklass => always ok
4393 // (2) subklass does not overlap with superklass => always fail
4394 // (3) superklass has NO subtypes and we can check with a simple compare.
4395 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4396   if (skip) {
4397     return SSC_full_test;       // Let caller generate the general case.
4398   }
4399 
4400   if (subk->is_java_subtype_of(superk)) {
4401     return SSC_always_true; // (0) and (1)  this test cannot fail
4402   }
4403 
4404   if (!subk->maybe_java_subtype_of(superk)) {
4405     return SSC_always_false; // (2) true path dead; no dynamic test needed
4406   }
4407 
4408   const Type* superelem = superk;
4409   if (superk->isa_aryklassptr()) {
4410     int ignored;
4411     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4412   }
4413 
4414   if (superelem->isa_instklassptr()) {
4415     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4416     if (!ik->has_subklass()) {
4417       if (!ik->is_final()) {
4418         // Add a dependency if there is a chance of a later subclass.
4419         dependencies()->assert_leaf_type(ik);
4420       }
4421       if (!superk->maybe_java_subtype_of(subk)) {
4422         return SSC_always_false;
4423       }
4424       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4425     }
4426   } else {
4427     // A primitive array type has no subtypes.
4428     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4429   }
4430 
4431   return SSC_full_test;
4432 }
4433 
4434 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4435 #ifdef _LP64
4436   // The scaled index operand to AddP must be a clean 64-bit value.
4437   // Java allows a 32-bit int to be incremented to a negative
4438   // value, which appears in a 64-bit register as a large
4439   // positive number.  Using that large positive number as an
4440   // operand in pointer arithmetic has bad consequences.
4441   // On the other hand, 32-bit overflow is rare, and the possibility
4442   // can often be excluded, if we annotate the ConvI2L node with
4443   // a type assertion that its value is known to be a small positive
4444   // number.  (The prior range check has ensured this.)
4445   // This assertion is used by ConvI2LNode::Ideal.
4446   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4447   if (sizetype != nullptr) index_max = sizetype->_hi - 1;
4448   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4449   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4450 #endif
4451   return idx;
4452 }
4453 
4454 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4455 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4456   if (ctrl != nullptr) {
4457     // Express control dependency by a CastII node with a narrow type.
4458     value = new CastIINode(value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4459     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4460     // node from floating above the range check during loop optimizations. Otherwise, the
4461     // ConvI2L node may be eliminated independently of the range check, causing the data path
4462     // to become TOP while the control path is still there (although it's unreachable).
4463     value->set_req(0, ctrl);
4464     value = phase->transform(value);
4465   }
4466   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4467   return phase->transform(new ConvI2LNode(value, ltype));
4468 }
4469 
4470 // The message about the current inlining is accumulated in
4471 // _print_inlining_stream and transferred into the _print_inlining_list
4472 // once we know whether inlining succeeds or not. For regular
4473 // inlining, messages are appended to the buffer pointed by
4474 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4475 // a new buffer is added after _print_inlining_idx in the list. This
4476 // way we can update the inlining message for late inlining call site
4477 // when the inlining is attempted again.
4478 void Compile::print_inlining_init() {
4479   if (print_inlining() || print_intrinsics()) {
4480     // print_inlining_init is actually called several times.
4481     print_inlining_reset();
4482     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer());
4483   }
4484 }
4485 
4486 void Compile::print_inlining_reinit() {
4487   if (print_inlining() || print_intrinsics()) {
4488     print_inlining_reset();
4489   }
4490 }
4491 
4492 void Compile::print_inlining_reset() {
4493   _print_inlining_stream->reset();
4494 }
4495 
4496 void Compile::print_inlining_commit() {
4497   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4498   // Transfer the message from _print_inlining_stream to the current
4499   // _print_inlining_list buffer and clear _print_inlining_stream.
4500   _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4501   print_inlining_reset();
4502 }
4503 
4504 void Compile::print_inlining_push() {
4505   // Add new buffer to the _print_inlining_list at current position
4506   _print_inlining_idx++;
4507   _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer());
4508 }
4509 
4510 Compile::PrintInliningBuffer* Compile::print_inlining_current() {
4511   return _print_inlining_list->at(_print_inlining_idx);
4512 }
4513 
4514 void Compile::print_inlining_update(CallGenerator* cg) {
4515   if (print_inlining() || print_intrinsics()) {
4516     if (cg->is_late_inline()) {
4517       if (print_inlining_current()->cg() != cg &&
4518           (print_inlining_current()->cg() != nullptr ||
4519            print_inlining_current()->ss()->size() != 0)) {
4520         print_inlining_push();
4521       }
4522       print_inlining_commit();
4523       print_inlining_current()->set_cg(cg);
4524     } else {
4525       if (print_inlining_current()->cg() != nullptr) {
4526         print_inlining_push();
4527       }
4528       print_inlining_commit();
4529     }
4530   }
4531 }
4532 
4533 void Compile::print_inlining_move_to(CallGenerator* cg) {
4534   // We resume inlining at a late inlining call site. Locate the
4535   // corresponding inlining buffer so that we can update it.
4536   if (print_inlining() || print_intrinsics()) {
4537     for (int i = 0; i < _print_inlining_list->length(); i++) {
4538       if (_print_inlining_list->at(i)->cg() == cg) {
4539         _print_inlining_idx = i;
4540         return;
4541       }
4542     }
4543     ShouldNotReachHere();
4544   }
4545 }
4546 
4547 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4548   if (print_inlining() || print_intrinsics()) {
4549     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4550     assert(print_inlining_current()->cg() == cg, "wrong entry");
4551     // replace message with new message
4552     _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer());
4553     print_inlining_commit();
4554     print_inlining_current()->set_cg(cg);
4555   }
4556 }
4557 
4558 void Compile::print_inlining_assert_ready() {
4559   assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data");
4560 }
4561 
4562 void Compile::process_print_inlining() {
4563   assert(_late_inlines.length() == 0, "not drained yet");
4564   if (print_inlining() || print_intrinsics()) {
4565     ResourceMark rm;
4566     stringStream ss;
4567     assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once.");
4568     for (int i = 0; i < _print_inlining_list->length(); i++) {
4569       PrintInliningBuffer* pib = _print_inlining_list->at(i);
4570       ss.print("%s", pib->ss()->freeze());
4571       delete pib;
4572       DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr));
4573     }
4574     // Reset _print_inlining_list, it only contains destructed objects.
4575     // It is on the arena, so it will be freed when the arena is reset.
4576     _print_inlining_list = nullptr;
4577     // _print_inlining_stream won't be used anymore, either.
4578     print_inlining_reset();
4579     size_t end = ss.size();
4580     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4581     strncpy(_print_inlining_output, ss.freeze(), end+1);
4582     _print_inlining_output[end] = 0;
4583   }
4584 }
4585 
4586 void Compile::dump_print_inlining() {
4587   if (_print_inlining_output != nullptr) {
4588     tty->print_raw(_print_inlining_output);
4589   }
4590 }
4591 
4592 void Compile::log_late_inline(CallGenerator* cg) {
4593   if (log() != nullptr) {
4594     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4595                 cg->unique_id());
4596     JVMState* p = cg->call_node()->jvms();
4597     while (p != nullptr) {
4598       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4599       p = p->caller();
4600     }
4601     log()->tail("late_inline");
4602   }
4603 }
4604 
4605 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4606   log_late_inline(cg);
4607   if (log() != nullptr) {
4608     log()->inline_fail(msg);
4609   }
4610 }
4611 
4612 void Compile::log_inline_id(CallGenerator* cg) {
4613   if (log() != nullptr) {
4614     // The LogCompilation tool needs a unique way to identify late
4615     // inline call sites. This id must be unique for this call site in
4616     // this compilation. Try to have it unique across compilations as
4617     // well because it can be convenient when grepping through the log
4618     // file.
4619     // Distinguish OSR compilations from others in case CICountOSR is
4620     // on.
4621     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4622     cg->set_unique_id(id);
4623     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4624   }
4625 }
4626 
4627 void Compile::log_inline_failure(const char* msg) {
4628   if (C->log() != nullptr) {
4629     C->log()->inline_fail(msg);
4630   }
4631 }
4632 
4633 
4634 // Dump inlining replay data to the stream.
4635 // Don't change thread state and acquire any locks.
4636 void Compile::dump_inline_data(outputStream* out) {
4637   InlineTree* inl_tree = ilt();
4638   if (inl_tree != nullptr) {
4639     out->print(" inline %d", inl_tree->count());
4640     inl_tree->dump_replay_data(out);
4641   }
4642 }
4643 
4644 void Compile::dump_inline_data_reduced(outputStream* out) {
4645   assert(ReplayReduce, "");
4646 
4647   InlineTree* inl_tree = ilt();
4648   if (inl_tree == nullptr) {
4649     return;
4650   }
4651   // Enable iterative replay file reduction
4652   // Output "compile" lines for depth 1 subtrees,
4653   // simulating that those trees were compiled
4654   // instead of inlined.
4655   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4656     InlineTree* sub = inl_tree->subtrees().at(i);
4657     if (sub->inline_level() != 1) {
4658       continue;
4659     }
4660 
4661     ciMethod* method = sub->method();
4662     int entry_bci = -1;
4663     int comp_level = env()->task()->comp_level();
4664     out->print("compile ");
4665     method->dump_name_as_ascii(out);
4666     out->print(" %d %d", entry_bci, comp_level);
4667     out->print(" inline %d", sub->count());
4668     sub->dump_replay_data(out, -1);
4669     out->cr();
4670   }
4671 }
4672 
4673 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4674   if (n1->Opcode() < n2->Opcode())      return -1;
4675   else if (n1->Opcode() > n2->Opcode()) return 1;
4676 
4677   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4678   for (uint i = 1; i < n1->req(); i++) {
4679     if (n1->in(i) < n2->in(i))      return -1;
4680     else if (n1->in(i) > n2->in(i)) return 1;
4681   }
4682 
4683   return 0;
4684 }
4685 
4686 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4687   Node* n1 = *n1p;
4688   Node* n2 = *n2p;
4689 
4690   return cmp_expensive_nodes(n1, n2);
4691 }
4692 
4693 void Compile::sort_expensive_nodes() {
4694   if (!expensive_nodes_sorted()) {
4695     _expensive_nodes.sort(cmp_expensive_nodes);
4696   }
4697 }
4698 
4699 bool Compile::expensive_nodes_sorted() const {
4700   for (int i = 1; i < _expensive_nodes.length(); i++) {
4701     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4702       return false;
4703     }
4704   }
4705   return true;
4706 }
4707 
4708 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4709   if (_expensive_nodes.length() == 0) {
4710     return false;
4711   }
4712 
4713   assert(OptimizeExpensiveOps, "optimization off?");
4714 
4715   // Take this opportunity to remove dead nodes from the list
4716   int j = 0;
4717   for (int i = 0; i < _expensive_nodes.length(); i++) {
4718     Node* n = _expensive_nodes.at(i);
4719     if (!n->is_unreachable(igvn)) {
4720       assert(n->is_expensive(), "should be expensive");
4721       _expensive_nodes.at_put(j, n);
4722       j++;
4723     }
4724   }
4725   _expensive_nodes.trunc_to(j);
4726 
4727   // Then sort the list so that similar nodes are next to each other
4728   // and check for at least two nodes of identical kind with same data
4729   // inputs.
4730   sort_expensive_nodes();
4731 
4732   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4733     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4734       return true;
4735     }
4736   }
4737 
4738   return false;
4739 }
4740 
4741 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4742   if (_expensive_nodes.length() == 0) {
4743     return;
4744   }
4745 
4746   assert(OptimizeExpensiveOps, "optimization off?");
4747 
4748   // Sort to bring similar nodes next to each other and clear the
4749   // control input of nodes for which there's only a single copy.
4750   sort_expensive_nodes();
4751 
4752   int j = 0;
4753   int identical = 0;
4754   int i = 0;
4755   bool modified = false;
4756   for (; i < _expensive_nodes.length()-1; i++) {
4757     assert(j <= i, "can't write beyond current index");
4758     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4759       identical++;
4760       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4761       continue;
4762     }
4763     if (identical > 0) {
4764       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4765       identical = 0;
4766     } else {
4767       Node* n = _expensive_nodes.at(i);
4768       igvn.replace_input_of(n, 0, nullptr);
4769       igvn.hash_insert(n);
4770       modified = true;
4771     }
4772   }
4773   if (identical > 0) {
4774     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4775   } else if (_expensive_nodes.length() >= 1) {
4776     Node* n = _expensive_nodes.at(i);
4777     igvn.replace_input_of(n, 0, nullptr);
4778     igvn.hash_insert(n);
4779     modified = true;
4780   }
4781   _expensive_nodes.trunc_to(j);
4782   if (modified) {
4783     igvn.optimize();
4784   }
4785 }
4786 
4787 void Compile::add_expensive_node(Node * n) {
4788   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4789   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4790   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4791   if (OptimizeExpensiveOps) {
4792     _expensive_nodes.append(n);
4793   } else {
4794     // Clear control input and let IGVN optimize expensive nodes if
4795     // OptimizeExpensiveOps is off.
4796     n->set_req(0, nullptr);
4797   }
4798 }
4799 
4800 /**
4801  * Track coarsened Lock and Unlock nodes.
4802  */
4803 
4804 class Lock_List : public Node_List {
4805   uint _origin_cnt;
4806 public:
4807   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4808   uint origin_cnt() const { return _origin_cnt; }
4809 };
4810 
4811 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4812   int length = locks.length();
4813   if (length > 0) {
4814     // Have to keep this list until locks elimination during Macro nodes elimination.
4815     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4816     for (int i = 0; i < length; i++) {
4817       AbstractLockNode* lock = locks.at(i);
4818       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4819       locks_list->push(lock);
4820     }
4821     _coarsened_locks.append(locks_list);
4822   }
4823 }
4824 
4825 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4826   int count = coarsened_count();
4827   for (int i = 0; i < count; i++) {
4828     Node_List* locks_list = _coarsened_locks.at(i);
4829     for (uint j = 0; j < locks_list->size(); j++) {
4830       Node* lock = locks_list->at(j);
4831       assert(lock->is_AbstractLock(), "sanity");
4832       if (!useful.member(lock)) {
4833         locks_list->yank(lock);
4834       }
4835     }
4836   }
4837 }
4838 
4839 void Compile::remove_coarsened_lock(Node* n) {
4840   if (n->is_AbstractLock()) {
4841     int count = coarsened_count();
4842     for (int i = 0; i < count; i++) {
4843       Node_List* locks_list = _coarsened_locks.at(i);
4844       locks_list->yank(n);
4845     }
4846   }
4847 }
4848 
4849 bool Compile::coarsened_locks_consistent() {
4850   int count = coarsened_count();
4851   for (int i = 0; i < count; i++) {
4852     bool unbalanced = false;
4853     bool modified = false; // track locks kind modifications
4854     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4855     uint size = locks_list->size();
4856     if (size == 0) {
4857       unbalanced = false; // All locks were eliminated - good
4858     } else if (size != locks_list->origin_cnt()) {
4859       unbalanced = true; // Some locks were removed from list
4860     } else {
4861       for (uint j = 0; j < size; j++) {
4862         Node* lock = locks_list->at(j);
4863         // All nodes in group should have the same state (modified or not)
4864         if (!lock->as_AbstractLock()->is_coarsened()) {
4865           if (j == 0) {
4866             // first on list was modified, the rest should be too for consistency
4867             modified = true;
4868           } else if (!modified) {
4869             // this lock was modified but previous locks on the list were not
4870             unbalanced = true;
4871             break;
4872           }
4873         } else if (modified) {
4874           // previous locks on list were modified but not this lock
4875           unbalanced = true;
4876           break;
4877         }
4878       }
4879     }
4880     if (unbalanced) {
4881       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4882 #ifdef ASSERT
4883       if (PrintEliminateLocks) {
4884         tty->print_cr("=== unbalanced coarsened locks ===");
4885         for (uint l = 0; l < size; l++) {
4886           locks_list->at(l)->dump();
4887         }
4888       }
4889 #endif
4890       record_failure(C2Compiler::retry_no_locks_coarsening());
4891       return false;
4892     }
4893   }
4894   return true;
4895 }
4896 
4897 /**
4898  * Remove the speculative part of types and clean up the graph
4899  */
4900 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4901   if (UseTypeSpeculation) {
4902     Unique_Node_List worklist;
4903     worklist.push(root());
4904     int modified = 0;
4905     // Go over all type nodes that carry a speculative type, drop the
4906     // speculative part of the type and enqueue the node for an igvn
4907     // which may optimize it out.
4908     for (uint next = 0; next < worklist.size(); ++next) {
4909       Node *n  = worklist.at(next);
4910       if (n->is_Type()) {
4911         TypeNode* tn = n->as_Type();
4912         const Type* t = tn->type();
4913         const Type* t_no_spec = t->remove_speculative();
4914         if (t_no_spec != t) {
4915           bool in_hash = igvn.hash_delete(n);
4916           assert(in_hash, "node should be in igvn hash table");
4917           tn->set_type(t_no_spec);
4918           igvn.hash_insert(n);
4919           igvn._worklist.push(n); // give it a chance to go away
4920           modified++;
4921         }
4922       }
4923       // Iterate over outs - endless loops is unreachable from below
4924       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4925         Node *m = n->fast_out(i);
4926         if (not_a_node(m)) {
4927           continue;
4928         }
4929         worklist.push(m);
4930       }
4931     }
4932     // Drop the speculative part of all types in the igvn's type table
4933     igvn.remove_speculative_types();
4934     if (modified > 0) {
4935       igvn.optimize();
4936       if (failing())  return;
4937     }
4938 #ifdef ASSERT
4939     // Verify that after the IGVN is over no speculative type has resurfaced
4940     worklist.clear();
4941     worklist.push(root());
4942     for (uint next = 0; next < worklist.size(); ++next) {
4943       Node *n  = worklist.at(next);
4944       const Type* t = igvn.type_or_null(n);
4945       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
4946       if (n->is_Type()) {
4947         t = n->as_Type()->type();
4948         assert(t == t->remove_speculative(), "no more speculative types");
4949       }
4950       // Iterate over outs - endless loops is unreachable from below
4951       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4952         Node *m = n->fast_out(i);
4953         if (not_a_node(m)) {
4954           continue;
4955         }
4956         worklist.push(m);
4957       }
4958     }
4959     igvn.check_no_speculative_types();
4960 #endif
4961   }
4962 }
4963 
4964 // Auxiliary methods to support randomized stressing/fuzzing.
4965 
4966 int Compile::random() {
4967   _stress_seed = os::next_random(_stress_seed);
4968   return static_cast<int>(_stress_seed);
4969 }
4970 
4971 // This method can be called the arbitrary number of times, with current count
4972 // as the argument. The logic allows selecting a single candidate from the
4973 // running list of candidates as follows:
4974 //    int count = 0;
4975 //    Cand* selected = null;
4976 //    while(cand = cand->next()) {
4977 //      if (randomized_select(++count)) {
4978 //        selected = cand;
4979 //      }
4980 //    }
4981 //
4982 // Including count equalizes the chances any candidate is "selected".
4983 // This is useful when we don't have the complete list of candidates to choose
4984 // from uniformly. In this case, we need to adjust the randomicity of the
4985 // selection, or else we will end up biasing the selection towards the latter
4986 // candidates.
4987 //
4988 // Quick back-envelope calculation shows that for the list of n candidates
4989 // the equal probability for the candidate to persist as "best" can be
4990 // achieved by replacing it with "next" k-th candidate with the probability
4991 // of 1/k. It can be easily shown that by the end of the run, the
4992 // probability for any candidate is converged to 1/n, thus giving the
4993 // uniform distribution among all the candidates.
4994 //
4995 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4996 #define RANDOMIZED_DOMAIN_POW 29
4997 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4998 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4999 bool Compile::randomized_select(int count) {
5000   assert(count > 0, "only positive");
5001   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5002 }
5003 
5004 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5005 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5006 
5007 void NodeCloneInfo::dump_on(outputStream* st) const {
5008   st->print(" {%d:%d} ", idx(), gen());
5009 }
5010 
5011 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5012   uint64_t val = value(old->_idx);
5013   NodeCloneInfo cio(val);
5014   assert(val != 0, "old node should be in the map");
5015   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5016   insert(nnn->_idx, cin.get());
5017 #ifndef PRODUCT
5018   if (is_debug()) {
5019     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5020   }
5021 #endif
5022 }
5023 
5024 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5025   NodeCloneInfo cio(value(old->_idx));
5026   if (cio.get() == 0) {
5027     cio.set(old->_idx, 0);
5028     insert(old->_idx, cio.get());
5029 #ifndef PRODUCT
5030     if (is_debug()) {
5031       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5032     }
5033 #endif
5034   }
5035   clone(old, nnn, gen);
5036 }
5037 
5038 int CloneMap::max_gen() const {
5039   int g = 0;
5040   DictI di(_dict);
5041   for(; di.test(); ++di) {
5042     int t = gen(di._key);
5043     if (g < t) {
5044       g = t;
5045 #ifndef PRODUCT
5046       if (is_debug()) {
5047         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5048       }
5049 #endif
5050     }
5051   }
5052   return g;
5053 }
5054 
5055 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5056   uint64_t val = value(key);
5057   if (val != 0) {
5058     NodeCloneInfo ni(val);
5059     ni.dump_on(st);
5060   }
5061 }
5062 
5063 // Move Allocate nodes to the start of the list
5064 void Compile::sort_macro_nodes() {
5065   int count = macro_count();
5066   int allocates = 0;
5067   for (int i = 0; i < count; i++) {
5068     Node* n = macro_node(i);
5069     if (n->is_Allocate()) {
5070       if (i != allocates) {
5071         Node* tmp = macro_node(allocates);
5072         _macro_nodes.at_put(allocates, n);
5073         _macro_nodes.at_put(i, tmp);
5074       }
5075       allocates++;
5076     }
5077   }
5078 }
5079 
5080 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5081   EventCompilerPhase event;
5082   if (event.should_commit()) {
5083     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5084   }
5085 #ifndef PRODUCT
5086   ResourceMark rm;
5087   stringStream ss;
5088   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5089   if (n != nullptr) {
5090     ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]);
5091   }
5092 
5093   const char* name = ss.as_string();
5094   if (should_print_igv(level)) {
5095     _igv_printer->print_method(name, level);
5096   }
5097   if (should_print_phase(cpt)) {
5098     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5099   }
5100 #endif
5101   C->_latest_stage_start_counter.stamp();
5102 }
5103 
5104 // Only used from CompileWrapper
5105 void Compile::begin_method() {
5106 #ifndef PRODUCT
5107   if (_method != nullptr && should_print_igv(1)) {
5108     _igv_printer->begin_method();
5109   }
5110 #endif
5111   C->_latest_stage_start_counter.stamp();
5112 }
5113 
5114 // Only used from CompileWrapper
5115 void Compile::end_method() {
5116   EventCompilerPhase event;
5117   if (event.should_commit()) {
5118     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5119   }
5120 
5121 #ifndef PRODUCT
5122   if (_method != nullptr && should_print_igv(1)) {
5123     _igv_printer->end_method();
5124   }
5125 #endif
5126 }
5127 
5128 bool Compile::should_print_phase(CompilerPhaseType cpt) {
5129 #ifndef PRODUCT
5130   if ((_directive->ideal_phase_mask() & CompilerPhaseTypeHelper::to_bitmask(cpt)) != 0) {
5131     return true;
5132   }
5133 #endif
5134   return false;
5135 }
5136 
5137 bool Compile::should_print_igv(int level) {
5138 #ifndef PRODUCT
5139   if (PrintIdealGraphLevel < 0) { // disabled by the user
5140     return false;
5141   }
5142 
5143   bool need = directive()->IGVPrintLevelOption >= level;
5144   if (need && !_igv_printer) {
5145     _igv_printer = IdealGraphPrinter::printer();
5146     _igv_printer->set_compile(this);
5147   }
5148   return need;
5149 #else
5150   return false;
5151 #endif
5152 }
5153 
5154 #ifndef PRODUCT
5155 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5156 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5157 
5158 // Called from debugger. Prints method to the default file with the default phase name.
5159 // This works regardless of any Ideal Graph Visualizer flags set or not.
5160 void igv_print() {
5161   Compile::current()->igv_print_method_to_file();
5162 }
5163 
5164 // Same as igv_print() above but with a specified phase name.
5165 void igv_print(const char* phase_name) {
5166   Compile::current()->igv_print_method_to_file(phase_name);
5167 }
5168 
5169 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5170 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5171 // This works regardless of any Ideal Graph Visualizer flags set or not.
5172 void igv_print(bool network) {
5173   if (network) {
5174     Compile::current()->igv_print_method_to_network();
5175   } else {
5176     Compile::current()->igv_print_method_to_file();
5177   }
5178 }
5179 
5180 // Same as igv_print(bool network) above but with a specified phase name.
5181 void igv_print(bool network, const char* phase_name) {
5182   if (network) {
5183     Compile::current()->igv_print_method_to_network(phase_name);
5184   } else {
5185     Compile::current()->igv_print_method_to_file(phase_name);
5186   }
5187 }
5188 
5189 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5190 void igv_print_default() {
5191   Compile::current()->print_method(PHASE_DEBUG, 0);
5192 }
5193 
5194 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5195 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5196 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5197 void igv_append() {
5198   Compile::current()->igv_print_method_to_file("Debug", true);
5199 }
5200 
5201 // Same as igv_append() above but with a specified phase name.
5202 void igv_append(const char* phase_name) {
5203   Compile::current()->igv_print_method_to_file(phase_name, true);
5204 }
5205 
5206 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
5207   const char* file_name = "custom_debug.xml";
5208   if (_debug_file_printer == nullptr) {
5209     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5210   } else {
5211     _debug_file_printer->update_compiled_method(C->method());
5212   }
5213   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5214   _debug_file_printer->print(phase_name, (Node*)C->root());
5215 }
5216 
5217 void Compile::igv_print_method_to_network(const char* phase_name) {
5218   if (_debug_network_printer == nullptr) {
5219     _debug_network_printer = new IdealGraphPrinter(C);
5220   } else {
5221     _debug_network_printer->update_compiled_method(C->method());
5222   }
5223   tty->print_cr("Method printed over network stream to IGV");
5224   _debug_network_printer->print(phase_name, (Node*)C->root());
5225 }
5226 #endif
5227 
5228 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5229   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5230     return value;
5231   }
5232   Node* result = nullptr;
5233   if (bt == T_BYTE) {
5234     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5235     result = new RShiftINode(result, phase->intcon(24));
5236   } else if (bt == T_BOOLEAN) {
5237     result = new AndINode(value, phase->intcon(0xFF));
5238   } else if (bt == T_CHAR) {
5239     result = new AndINode(value,phase->intcon(0xFFFF));
5240   } else {
5241     assert(bt == T_SHORT, "unexpected narrow type");
5242     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5243     result = new RShiftINode(result, phase->intcon(16));
5244   }
5245   if (transform_res) {
5246     result = phase->transform(result);
5247   }
5248   return result;
5249 }
5250