1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "prims/jvmtiThreadState.hpp" 54 #include "prims/unsafe.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/objectMonitor.hpp" 57 #include "runtime/sharedRuntime.hpp" 58 #include "runtime/stubRoutines.hpp" 59 #include "utilities/macros.hpp" 60 #include "utilities/powerOfTwo.hpp" 61 62 //---------------------------make_vm_intrinsic---------------------------- 63 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 64 vmIntrinsicID id = m->intrinsic_id(); 65 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 66 67 if (!m->is_loaded()) { 68 // Do not attempt to inline unloaded methods. 69 return nullptr; 70 } 71 72 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 73 bool is_available = false; 74 75 { 76 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 77 // the compiler must transition to '_thread_in_vm' state because both 78 // methods access VM-internal data. 79 VM_ENTRY_MARK; 80 methodHandle mh(THREAD, m->get_Method()); 81 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 82 if (is_available && is_virtual) { 83 is_available = vmIntrinsics::does_virtual_dispatch(id); 84 } 85 } 86 87 if (is_available) { 88 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 89 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 90 return new LibraryIntrinsic(m, is_virtual, 91 vmIntrinsics::predicates_needed(id), 92 vmIntrinsics::does_virtual_dispatch(id), 93 id); 94 } else { 95 return nullptr; 96 } 97 } 98 99 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 100 LibraryCallKit kit(jvms, this); 101 Compile* C = kit.C; 102 int nodes = C->unique(); 103 #ifndef PRODUCT 104 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 105 char buf[1000]; 106 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 107 tty->print_cr("Intrinsic %s", str); 108 } 109 #endif 110 ciMethod* callee = kit.callee(); 111 const int bci = kit.bci(); 112 #ifdef ASSERT 113 Node* ctrl = kit.control(); 114 #endif 115 // Try to inline the intrinsic. 116 if (callee->check_intrinsic_candidate() && 117 kit.try_to_inline(_last_predicate)) { 118 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 119 : "(intrinsic)"; 120 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 121 if (C->print_intrinsics() || C->print_inlining()) { 122 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 123 } 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 C->print_inlining_update(this); 134 return kit.transfer_exceptions_into_jvms(); 135 } 136 137 // The intrinsic bailed out 138 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 139 if (jvms->has_method()) { 140 // Not a root compile. 141 const char* msg; 142 if (callee->intrinsic_candidate()) { 143 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 144 } else { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 146 : "failed to inline (intrinsic), method not annotated"; 147 } 148 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 149 if (C->print_intrinsics() || C->print_inlining()) { 150 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 151 } 152 } else { 153 // Root compile 154 ResourceMark rm; 155 stringStream msg_stream; 156 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 157 vmIntrinsics::name_at(intrinsic_id()), 158 is_virtual() ? " (virtual)" : "", bci); 159 const char *msg = msg_stream.freeze(); 160 log_debug(jit, inlining)("%s", msg); 161 if (C->print_intrinsics() || C->print_inlining()) { 162 tty->print("%s", msg); 163 } 164 } 165 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 166 C->print_inlining_update(this); 167 168 return nullptr; 169 } 170 171 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 172 LibraryCallKit kit(jvms, this); 173 Compile* C = kit.C; 174 int nodes = C->unique(); 175 _last_predicate = predicate; 176 #ifndef PRODUCT 177 assert(is_predicated() && predicate < predicates_count(), "sanity"); 178 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 179 char buf[1000]; 180 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 181 tty->print_cr("Predicate for intrinsic %s", str); 182 } 183 #endif 184 ciMethod* callee = kit.callee(); 185 const int bci = kit.bci(); 186 187 Node* slow_ctl = kit.try_to_predicate(predicate); 188 if (!kit.failing()) { 189 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 190 : "(intrinsic, predicate)"; 191 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 192 if (C->print_intrinsics() || C->print_inlining()) { 193 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 194 } 195 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 196 if (C->log()) { 197 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 198 vmIntrinsics::name_at(intrinsic_id()), 199 (is_virtual() ? " virtual='1'" : ""), 200 C->unique() - nodes); 201 } 202 return slow_ctl; // Could be null if the check folds. 203 } 204 205 // The intrinsic bailed out 206 if (jvms->has_method()) { 207 // Not a root compile. 208 const char* msg = "failed to generate predicate for intrinsic"; 209 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 210 if (C->print_intrinsics() || C->print_inlining()) { 211 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 212 } 213 } else { 214 // Root compile 215 ResourceMark rm; 216 stringStream msg_stream; 217 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 218 vmIntrinsics::name_at(intrinsic_id()), 219 is_virtual() ? " (virtual)" : "", bci); 220 const char *msg = msg_stream.freeze(); 221 log_debug(jit, inlining)("%s", msg); 222 if (C->print_intrinsics() || C->print_inlining()) { 223 C->print_inlining_stream()->print("%s", msg); 224 } 225 } 226 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 227 return nullptr; 228 } 229 230 bool LibraryCallKit::try_to_inline(int predicate) { 231 // Handle symbolic names for otherwise undistinguished boolean switches: 232 const bool is_store = true; 233 const bool is_compress = true; 234 const bool is_static = true; 235 const bool is_volatile = true; 236 237 if (!jvms()->has_method()) { 238 // Root JVMState has a null method. 239 assert(map()->memory()->Opcode() == Op_Parm, ""); 240 // Insert the memory aliasing node 241 set_all_memory(reset_memory()); 242 } 243 assert(merged_memory(), ""); 244 245 switch (intrinsic_id()) { 246 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 247 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 248 case vmIntrinsics::_getClass: return inline_native_getClass(); 249 250 case vmIntrinsics::_ceil: 251 case vmIntrinsics::_floor: 252 case vmIntrinsics::_rint: 253 case vmIntrinsics::_dsin: 254 case vmIntrinsics::_dcos: 255 case vmIntrinsics::_dtan: 256 case vmIntrinsics::_dabs: 257 case vmIntrinsics::_fabs: 258 case vmIntrinsics::_iabs: 259 case vmIntrinsics::_labs: 260 case vmIntrinsics::_datan2: 261 case vmIntrinsics::_dsqrt: 262 case vmIntrinsics::_dsqrt_strict: 263 case vmIntrinsics::_dexp: 264 case vmIntrinsics::_dlog: 265 case vmIntrinsics::_dlog10: 266 case vmIntrinsics::_dpow: 267 case vmIntrinsics::_dcopySign: 268 case vmIntrinsics::_fcopySign: 269 case vmIntrinsics::_dsignum: 270 case vmIntrinsics::_roundF: 271 case vmIntrinsics::_roundD: 272 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 273 274 case vmIntrinsics::_notify: 275 case vmIntrinsics::_notifyAll: 276 return inline_notify(intrinsic_id()); 277 278 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 279 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 280 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 281 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 282 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 283 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 284 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 285 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 286 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 287 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 288 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 289 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 290 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 291 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 292 293 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 294 295 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 296 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 297 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 298 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 299 300 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 301 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 302 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 303 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 304 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 305 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 306 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 307 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 308 309 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 310 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 311 312 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 313 314 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 315 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 316 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 317 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 318 319 case vmIntrinsics::_compressStringC: 320 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 321 case vmIntrinsics::_inflateStringC: 322 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 323 324 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 325 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 326 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 327 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 328 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 329 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 330 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 331 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 332 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 333 334 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 335 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 336 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 337 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 338 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 339 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 340 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 341 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 342 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 343 344 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 345 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 346 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 347 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 348 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 349 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 350 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 351 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 352 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 353 354 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 355 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 356 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 357 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 358 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 359 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 360 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 361 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 362 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 363 364 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 365 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 366 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 367 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 368 369 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 370 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 371 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 372 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 373 374 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 375 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 376 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 377 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 378 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 379 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 380 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 381 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 382 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 383 384 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 385 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 386 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 387 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 388 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 389 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 390 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 391 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 392 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 393 394 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 395 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 396 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 397 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 398 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 399 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 400 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 401 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 402 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 403 404 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 405 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 406 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 407 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 408 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 409 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 410 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 411 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 412 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 413 414 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 415 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 416 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 417 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 418 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 419 420 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 421 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 422 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 423 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 424 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 425 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 426 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 427 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 428 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 429 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 430 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 431 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 432 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 433 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 434 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 435 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 436 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 437 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 438 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 439 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 440 441 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 442 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 443 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 444 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 445 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 446 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 447 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 450 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 451 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 452 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 453 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 454 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 455 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 456 457 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 458 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 459 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 460 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 461 462 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 463 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 464 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 465 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 466 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 467 468 case vmIntrinsics::_loadFence: 469 case vmIntrinsics::_storeFence: 470 case vmIntrinsics::_storeStoreFence: 471 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 472 473 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 474 475 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 476 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 477 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 478 479 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 480 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 481 482 #if INCLUDE_JVMTI 483 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 484 "notifyJvmtiStart", true, false); 485 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 486 "notifyJvmtiEnd", false, true); 487 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 488 "notifyJvmtiMount", false, false); 489 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 490 "notifyJvmtiUnmount", false, false); 491 case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); 492 #endif 493 494 #ifdef JFR_HAVE_INTRINSICS 495 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 496 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 497 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 498 #endif 499 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 500 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 501 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 502 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 503 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 504 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 505 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 506 case vmIntrinsics::_getLength: return inline_native_getLength(); 507 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 508 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 509 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 510 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 511 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 512 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 513 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 514 515 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 516 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 517 518 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 519 520 case vmIntrinsics::_isInstance: 521 case vmIntrinsics::_getModifiers: 522 case vmIntrinsics::_isInterface: 523 case vmIntrinsics::_isArray: 524 case vmIntrinsics::_isPrimitive: 525 case vmIntrinsics::_isHidden: 526 case vmIntrinsics::_getSuperclass: 527 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 528 529 case vmIntrinsics::_floatToRawIntBits: 530 case vmIntrinsics::_floatToIntBits: 531 case vmIntrinsics::_intBitsToFloat: 532 case vmIntrinsics::_doubleToRawLongBits: 533 case vmIntrinsics::_doubleToLongBits: 534 case vmIntrinsics::_longBitsToDouble: 535 case vmIntrinsics::_floatToFloat16: 536 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 537 538 case vmIntrinsics::_floatIsFinite: 539 case vmIntrinsics::_floatIsInfinite: 540 case vmIntrinsics::_doubleIsFinite: 541 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 542 543 case vmIntrinsics::_numberOfLeadingZeros_i: 544 case vmIntrinsics::_numberOfLeadingZeros_l: 545 case vmIntrinsics::_numberOfTrailingZeros_i: 546 case vmIntrinsics::_numberOfTrailingZeros_l: 547 case vmIntrinsics::_bitCount_i: 548 case vmIntrinsics::_bitCount_l: 549 case vmIntrinsics::_reverse_i: 550 case vmIntrinsics::_reverse_l: 551 case vmIntrinsics::_reverseBytes_i: 552 case vmIntrinsics::_reverseBytes_l: 553 case vmIntrinsics::_reverseBytes_s: 554 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 555 556 case vmIntrinsics::_compress_i: 557 case vmIntrinsics::_compress_l: 558 case vmIntrinsics::_expand_i: 559 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 560 561 case vmIntrinsics::_compareUnsigned_i: 562 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 563 564 case vmIntrinsics::_divideUnsigned_i: 565 case vmIntrinsics::_divideUnsigned_l: 566 case vmIntrinsics::_remainderUnsigned_i: 567 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 568 569 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 570 571 case vmIntrinsics::_Reference_get: return inline_reference_get(); 572 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 573 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 574 575 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 576 577 case vmIntrinsics::_aescrypt_encryptBlock: 578 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 579 580 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 581 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 582 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 583 584 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 585 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 586 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 587 588 case vmIntrinsics::_counterMode_AESCrypt: 589 return inline_counterMode_AESCrypt(intrinsic_id()); 590 591 case vmIntrinsics::_galoisCounterMode_AESCrypt: 592 return inline_galoisCounterMode_AESCrypt(); 593 594 case vmIntrinsics::_md5_implCompress: 595 case vmIntrinsics::_sha_implCompress: 596 case vmIntrinsics::_sha2_implCompress: 597 case vmIntrinsics::_sha5_implCompress: 598 case vmIntrinsics::_sha3_implCompress: 599 return inline_digestBase_implCompress(intrinsic_id()); 600 601 case vmIntrinsics::_digestBase_implCompressMB: 602 return inline_digestBase_implCompressMB(predicate); 603 604 case vmIntrinsics::_multiplyToLen: 605 return inline_multiplyToLen(); 606 607 case vmIntrinsics::_squareToLen: 608 return inline_squareToLen(); 609 610 case vmIntrinsics::_mulAdd: 611 return inline_mulAdd(); 612 613 case vmIntrinsics::_montgomeryMultiply: 614 return inline_montgomeryMultiply(); 615 case vmIntrinsics::_montgomerySquare: 616 return inline_montgomerySquare(); 617 618 case vmIntrinsics::_bigIntegerRightShiftWorker: 619 return inline_bigIntegerShift(true); 620 case vmIntrinsics::_bigIntegerLeftShiftWorker: 621 return inline_bigIntegerShift(false); 622 623 case vmIntrinsics::_vectorizedMismatch: 624 return inline_vectorizedMismatch(); 625 626 case vmIntrinsics::_ghash_processBlocks: 627 return inline_ghash_processBlocks(); 628 case vmIntrinsics::_chacha20Block: 629 return inline_chacha20Block(); 630 case vmIntrinsics::_base64_encodeBlock: 631 return inline_base64_encodeBlock(); 632 case vmIntrinsics::_base64_decodeBlock: 633 return inline_base64_decodeBlock(); 634 case vmIntrinsics::_poly1305_processBlocks: 635 return inline_poly1305_processBlocks(); 636 637 case vmIntrinsics::_encodeISOArray: 638 case vmIntrinsics::_encodeByteISOArray: 639 return inline_encodeISOArray(false); 640 case vmIntrinsics::_encodeAsciiArray: 641 return inline_encodeISOArray(true); 642 643 case vmIntrinsics::_updateCRC32: 644 return inline_updateCRC32(); 645 case vmIntrinsics::_updateBytesCRC32: 646 return inline_updateBytesCRC32(); 647 case vmIntrinsics::_updateByteBufferCRC32: 648 return inline_updateByteBufferCRC32(); 649 650 case vmIntrinsics::_updateBytesCRC32C: 651 return inline_updateBytesCRC32C(); 652 case vmIntrinsics::_updateDirectByteBufferCRC32C: 653 return inline_updateDirectByteBufferCRC32C(); 654 655 case vmIntrinsics::_updateBytesAdler32: 656 return inline_updateBytesAdler32(); 657 case vmIntrinsics::_updateByteBufferAdler32: 658 return inline_updateByteBufferAdler32(); 659 660 case vmIntrinsics::_profileBoolean: 661 return inline_profileBoolean(); 662 case vmIntrinsics::_isCompileConstant: 663 return inline_isCompileConstant(); 664 665 case vmIntrinsics::_countPositives: 666 return inline_countPositives(); 667 668 case vmIntrinsics::_fmaD: 669 case vmIntrinsics::_fmaF: 670 return inline_fma(intrinsic_id()); 671 672 case vmIntrinsics::_isDigit: 673 case vmIntrinsics::_isLowerCase: 674 case vmIntrinsics::_isUpperCase: 675 case vmIntrinsics::_isWhitespace: 676 return inline_character_compare(intrinsic_id()); 677 678 case vmIntrinsics::_min: 679 case vmIntrinsics::_max: 680 case vmIntrinsics::_min_strict: 681 case vmIntrinsics::_max_strict: 682 return inline_min_max(intrinsic_id()); 683 684 case vmIntrinsics::_maxF: 685 case vmIntrinsics::_minF: 686 case vmIntrinsics::_maxD: 687 case vmIntrinsics::_minD: 688 case vmIntrinsics::_maxF_strict: 689 case vmIntrinsics::_minF_strict: 690 case vmIntrinsics::_maxD_strict: 691 case vmIntrinsics::_minD_strict: 692 return inline_fp_min_max(intrinsic_id()); 693 694 case vmIntrinsics::_VectorUnaryOp: 695 return inline_vector_nary_operation(1); 696 case vmIntrinsics::_VectorBinaryOp: 697 return inline_vector_nary_operation(2); 698 case vmIntrinsics::_VectorTernaryOp: 699 return inline_vector_nary_operation(3); 700 case vmIntrinsics::_VectorFromBitsCoerced: 701 return inline_vector_frombits_coerced(); 702 case vmIntrinsics::_VectorShuffleIota: 703 return inline_vector_shuffle_iota(); 704 case vmIntrinsics::_VectorMaskOp: 705 return inline_vector_mask_operation(); 706 case vmIntrinsics::_VectorShuffleToVector: 707 return inline_vector_shuffle_to_vector(); 708 case vmIntrinsics::_VectorLoadOp: 709 return inline_vector_mem_operation(/*is_store=*/false); 710 case vmIntrinsics::_VectorLoadMaskedOp: 711 return inline_vector_mem_masked_operation(/*is_store*/false); 712 case vmIntrinsics::_VectorStoreOp: 713 return inline_vector_mem_operation(/*is_store=*/true); 714 case vmIntrinsics::_VectorStoreMaskedOp: 715 return inline_vector_mem_masked_operation(/*is_store=*/true); 716 case vmIntrinsics::_VectorGatherOp: 717 return inline_vector_gather_scatter(/*is_scatter*/ false); 718 case vmIntrinsics::_VectorScatterOp: 719 return inline_vector_gather_scatter(/*is_scatter*/ true); 720 case vmIntrinsics::_VectorReductionCoerced: 721 return inline_vector_reduction(); 722 case vmIntrinsics::_VectorTest: 723 return inline_vector_test(); 724 case vmIntrinsics::_VectorBlend: 725 return inline_vector_blend(); 726 case vmIntrinsics::_VectorRearrange: 727 return inline_vector_rearrange(); 728 case vmIntrinsics::_VectorCompare: 729 return inline_vector_compare(); 730 case vmIntrinsics::_VectorBroadcastInt: 731 return inline_vector_broadcast_int(); 732 case vmIntrinsics::_VectorConvert: 733 return inline_vector_convert(); 734 case vmIntrinsics::_VectorInsert: 735 return inline_vector_insert(); 736 case vmIntrinsics::_VectorExtract: 737 return inline_vector_extract(); 738 case vmIntrinsics::_VectorCompressExpand: 739 return inline_vector_compress_expand(); 740 case vmIntrinsics::_IndexVector: 741 return inline_index_vector(); 742 case vmIntrinsics::_IndexPartiallyInUpperRange: 743 return inline_index_partially_in_upper_range(); 744 745 case vmIntrinsics::_getObjectSize: 746 return inline_getObjectSize(); 747 748 case vmIntrinsics::_blackhole: 749 return inline_blackhole(); 750 751 default: 752 // If you get here, it may be that someone has added a new intrinsic 753 // to the list in vmIntrinsics.hpp without implementing it here. 754 #ifndef PRODUCT 755 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 756 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 757 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 758 } 759 #endif 760 return false; 761 } 762 } 763 764 Node* LibraryCallKit::try_to_predicate(int predicate) { 765 if (!jvms()->has_method()) { 766 // Root JVMState has a null method. 767 assert(map()->memory()->Opcode() == Op_Parm, ""); 768 // Insert the memory aliasing node 769 set_all_memory(reset_memory()); 770 } 771 assert(merged_memory(), ""); 772 773 switch (intrinsic_id()) { 774 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 775 return inline_cipherBlockChaining_AESCrypt_predicate(false); 776 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 777 return inline_cipherBlockChaining_AESCrypt_predicate(true); 778 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 779 return inline_electronicCodeBook_AESCrypt_predicate(false); 780 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 781 return inline_electronicCodeBook_AESCrypt_predicate(true); 782 case vmIntrinsics::_counterMode_AESCrypt: 783 return inline_counterMode_AESCrypt_predicate(); 784 case vmIntrinsics::_digestBase_implCompressMB: 785 return inline_digestBase_implCompressMB_predicate(predicate); 786 case vmIntrinsics::_galoisCounterMode_AESCrypt: 787 return inline_galoisCounterMode_AESCrypt_predicate(); 788 789 default: 790 // If you get here, it may be that someone has added a new intrinsic 791 // to the list in vmIntrinsics.hpp without implementing it here. 792 #ifndef PRODUCT 793 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 794 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 795 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 796 } 797 #endif 798 Node* slow_ctl = control(); 799 set_control(top()); // No fast path intrinsic 800 return slow_ctl; 801 } 802 } 803 804 //------------------------------set_result------------------------------- 805 // Helper function for finishing intrinsics. 806 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 807 record_for_igvn(region); 808 set_control(_gvn.transform(region)); 809 set_result( _gvn.transform(value)); 810 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 811 } 812 813 //------------------------------generate_guard--------------------------- 814 // Helper function for generating guarded fast-slow graph structures. 815 // The given 'test', if true, guards a slow path. If the test fails 816 // then a fast path can be taken. (We generally hope it fails.) 817 // In all cases, GraphKit::control() is updated to the fast path. 818 // The returned value represents the control for the slow path. 819 // The return value is never 'top'; it is either a valid control 820 // or null if it is obvious that the slow path can never be taken. 821 // Also, if region and the slow control are not null, the slow edge 822 // is appended to the region. 823 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 824 if (stopped()) { 825 // Already short circuited. 826 return nullptr; 827 } 828 829 // Build an if node and its projections. 830 // If test is true we take the slow path, which we assume is uncommon. 831 if (_gvn.type(test) == TypeInt::ZERO) { 832 // The slow branch is never taken. No need to build this guard. 833 return nullptr; 834 } 835 836 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 837 838 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 839 if (if_slow == top()) { 840 // The slow branch is never taken. No need to build this guard. 841 return nullptr; 842 } 843 844 if (region != nullptr) 845 region->add_req(if_slow); 846 847 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 848 set_control(if_fast); 849 850 return if_slow; 851 } 852 853 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 854 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 855 } 856 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 857 return generate_guard(test, region, PROB_FAIR); 858 } 859 860 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 861 Node* *pos_index) { 862 if (stopped()) 863 return nullptr; // already stopped 864 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 865 return nullptr; // index is already adequately typed 866 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 867 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 868 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 869 if (is_neg != nullptr && pos_index != nullptr) { 870 // Emulate effect of Parse::adjust_map_after_if. 871 Node* ccast = new CastIINode(index, TypeInt::POS); 872 ccast->set_req(0, control()); 873 (*pos_index) = _gvn.transform(ccast); 874 } 875 return is_neg; 876 } 877 878 // Make sure that 'position' is a valid limit index, in [0..length]. 879 // There are two equivalent plans for checking this: 880 // A. (offset + copyLength) unsigned<= arrayLength 881 // B. offset <= (arrayLength - copyLength) 882 // We require that all of the values above, except for the sum and 883 // difference, are already known to be non-negative. 884 // Plan A is robust in the face of overflow, if offset and copyLength 885 // are both hugely positive. 886 // 887 // Plan B is less direct and intuitive, but it does not overflow at 888 // all, since the difference of two non-negatives is always 889 // representable. Whenever Java methods must perform the equivalent 890 // check they generally use Plan B instead of Plan A. 891 // For the moment we use Plan A. 892 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 893 Node* subseq_length, 894 Node* array_length, 895 RegionNode* region) { 896 if (stopped()) 897 return nullptr; // already stopped 898 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 899 if (zero_offset && subseq_length->eqv_uncast(array_length)) 900 return nullptr; // common case of whole-array copy 901 Node* last = subseq_length; 902 if (!zero_offset) // last += offset 903 last = _gvn.transform(new AddINode(last, offset)); 904 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 905 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 906 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 907 return is_over; 908 } 909 910 // Emit range checks for the given String.value byte array 911 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 912 if (stopped()) { 913 return; // already stopped 914 } 915 RegionNode* bailout = new RegionNode(1); 916 record_for_igvn(bailout); 917 if (char_count) { 918 // Convert char count to byte count 919 count = _gvn.transform(new LShiftINode(count, intcon(1))); 920 } 921 922 // Offset and count must not be negative 923 generate_negative_guard(offset, bailout); 924 generate_negative_guard(count, bailout); 925 // Offset + count must not exceed length of array 926 generate_limit_guard(offset, count, load_array_length(array), bailout); 927 928 if (bailout->req() > 1) { 929 PreserveJVMState pjvms(this); 930 set_control(_gvn.transform(bailout)); 931 uncommon_trap(Deoptimization::Reason_intrinsic, 932 Deoptimization::Action_maybe_recompile); 933 } 934 } 935 936 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 937 bool is_immutable) { 938 ciKlass* thread_klass = env()->Thread_klass(); 939 const Type* thread_type 940 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 941 942 Node* thread = _gvn.transform(new ThreadLocalNode()); 943 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 944 tls_output = thread; 945 946 Node* thread_obj_handle 947 = (is_immutable 948 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 949 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 950 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 951 thread_obj_handle = _gvn.transform(thread_obj_handle); 952 953 DecoratorSet decorators = IN_NATIVE; 954 if (is_immutable) { 955 decorators |= C2_IMMUTABLE_MEMORY; 956 } 957 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 958 } 959 960 //--------------------------generate_current_thread-------------------- 961 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 962 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 963 /*is_immutable*/false); 964 } 965 966 //--------------------------generate_virtual_thread-------------------- 967 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 968 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 969 !C->method()->changes_current_thread()); 970 } 971 972 //------------------------------make_string_method_node------------------------ 973 // Helper method for String intrinsic functions. This version is called with 974 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 975 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 976 // containing the lengths of str1 and str2. 977 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 978 Node* result = nullptr; 979 switch (opcode) { 980 case Op_StrIndexOf: 981 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 982 str1_start, cnt1, str2_start, cnt2, ae); 983 break; 984 case Op_StrComp: 985 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 986 str1_start, cnt1, str2_start, cnt2, ae); 987 break; 988 case Op_StrEquals: 989 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 990 // Use the constant length if there is one because optimized match rule may exist. 991 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 992 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 993 break; 994 default: 995 ShouldNotReachHere(); 996 return nullptr; 997 } 998 999 // All these intrinsics have checks. 1000 C->set_has_split_ifs(true); // Has chance for split-if optimization 1001 clear_upper_avx(); 1002 1003 return _gvn.transform(result); 1004 } 1005 1006 //------------------------------inline_string_compareTo------------------------ 1007 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1008 Node* arg1 = argument(0); 1009 Node* arg2 = argument(1); 1010 1011 arg1 = must_be_not_null(arg1, true); 1012 arg2 = must_be_not_null(arg2, true); 1013 1014 // Get start addr and length of first argument 1015 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1016 Node* arg1_cnt = load_array_length(arg1); 1017 1018 // Get start addr and length of second argument 1019 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1020 Node* arg2_cnt = load_array_length(arg2); 1021 1022 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1023 set_result(result); 1024 return true; 1025 } 1026 1027 //------------------------------inline_string_equals------------------------ 1028 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1029 Node* arg1 = argument(0); 1030 Node* arg2 = argument(1); 1031 1032 // paths (plus control) merge 1033 RegionNode* region = new RegionNode(3); 1034 Node* phi = new PhiNode(region, TypeInt::BOOL); 1035 1036 if (!stopped()) { 1037 1038 arg1 = must_be_not_null(arg1, true); 1039 arg2 = must_be_not_null(arg2, true); 1040 1041 // Get start addr and length of first argument 1042 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1043 Node* arg1_cnt = load_array_length(arg1); 1044 1045 // Get start addr and length of second argument 1046 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1047 Node* arg2_cnt = load_array_length(arg2); 1048 1049 // Check for arg1_cnt != arg2_cnt 1050 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1051 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1052 Node* if_ne = generate_slow_guard(bol, nullptr); 1053 if (if_ne != nullptr) { 1054 phi->init_req(2, intcon(0)); 1055 region->init_req(2, if_ne); 1056 } 1057 1058 // Check for count == 0 is done by assembler code for StrEquals. 1059 1060 if (!stopped()) { 1061 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1062 phi->init_req(1, equals); 1063 region->init_req(1, control()); 1064 } 1065 } 1066 1067 // post merge 1068 set_control(_gvn.transform(region)); 1069 record_for_igvn(region); 1070 1071 set_result(_gvn.transform(phi)); 1072 return true; 1073 } 1074 1075 //------------------------------inline_array_equals---------------------------- 1076 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1077 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1078 Node* arg1 = argument(0); 1079 Node* arg2 = argument(1); 1080 1081 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1082 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1083 clear_upper_avx(); 1084 1085 return true; 1086 } 1087 1088 1089 //------------------------------inline_countPositives------------------------------ 1090 bool LibraryCallKit::inline_countPositives() { 1091 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1092 return false; 1093 } 1094 1095 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1096 // no receiver since it is static method 1097 Node* ba = argument(0); 1098 Node* offset = argument(1); 1099 Node* len = argument(2); 1100 1101 ba = must_be_not_null(ba, true); 1102 1103 // Range checks 1104 generate_string_range_check(ba, offset, len, false); 1105 if (stopped()) { 1106 return true; 1107 } 1108 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1109 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1110 set_result(_gvn.transform(result)); 1111 clear_upper_avx(); 1112 return true; 1113 } 1114 1115 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1116 Node* index = argument(0); 1117 Node* length = bt == T_INT ? argument(1) : argument(2); 1118 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1119 return false; 1120 } 1121 1122 // check that length is positive 1123 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1124 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1125 1126 { 1127 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1128 uncommon_trap(Deoptimization::Reason_intrinsic, 1129 Deoptimization::Action_make_not_entrant); 1130 } 1131 1132 if (stopped()) { 1133 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1134 return true; 1135 } 1136 1137 // length is now known positive, add a cast node to make this explicit 1138 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1139 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1140 casted_length = _gvn.transform(casted_length); 1141 replace_in_map(length, casted_length); 1142 length = casted_length; 1143 1144 // Use an unsigned comparison for the range check itself 1145 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1146 BoolTest::mask btest = BoolTest::lt; 1147 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1148 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1149 _gvn.set_type(rc, rc->Value(&_gvn)); 1150 if (!rc_bool->is_Con()) { 1151 record_for_igvn(rc); 1152 } 1153 set_control(_gvn.transform(new IfTrueNode(rc))); 1154 { 1155 PreserveJVMState pjvms(this); 1156 set_control(_gvn.transform(new IfFalseNode(rc))); 1157 uncommon_trap(Deoptimization::Reason_range_check, 1158 Deoptimization::Action_make_not_entrant); 1159 } 1160 1161 if (stopped()) { 1162 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1163 return true; 1164 } 1165 1166 // index is now known to be >= 0 and < length, cast it 1167 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1168 result = _gvn.transform(result); 1169 set_result(result); 1170 replace_in_map(index, result); 1171 return true; 1172 } 1173 1174 //------------------------------inline_string_indexOf------------------------ 1175 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1176 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1177 return false; 1178 } 1179 Node* src = argument(0); 1180 Node* tgt = argument(1); 1181 1182 // Make the merge point 1183 RegionNode* result_rgn = new RegionNode(4); 1184 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1185 1186 src = must_be_not_null(src, true); 1187 tgt = must_be_not_null(tgt, true); 1188 1189 // Get start addr and length of source string 1190 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1191 Node* src_count = load_array_length(src); 1192 1193 // Get start addr and length of substring 1194 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1195 Node* tgt_count = load_array_length(tgt); 1196 1197 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1198 // Divide src size by 2 if String is UTF16 encoded 1199 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1200 } 1201 if (ae == StrIntrinsicNode::UU) { 1202 // Divide substring size by 2 if String is UTF16 encoded 1203 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1204 } 1205 1206 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1207 if (result != nullptr) { 1208 result_phi->init_req(3, result); 1209 result_rgn->init_req(3, control()); 1210 } 1211 set_control(_gvn.transform(result_rgn)); 1212 record_for_igvn(result_rgn); 1213 set_result(_gvn.transform(result_phi)); 1214 1215 return true; 1216 } 1217 1218 //-----------------------------inline_string_indexOf----------------------- 1219 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1220 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1221 return false; 1222 } 1223 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1224 return false; 1225 } 1226 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1227 Node* src = argument(0); // byte[] 1228 Node* src_count = argument(1); // char count 1229 Node* tgt = argument(2); // byte[] 1230 Node* tgt_count = argument(3); // char count 1231 Node* from_index = argument(4); // char index 1232 1233 src = must_be_not_null(src, true); 1234 tgt = must_be_not_null(tgt, true); 1235 1236 // Multiply byte array index by 2 if String is UTF16 encoded 1237 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1238 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1239 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1240 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1241 1242 // Range checks 1243 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1244 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1245 if (stopped()) { 1246 return true; 1247 } 1248 1249 RegionNode* region = new RegionNode(5); 1250 Node* phi = new PhiNode(region, TypeInt::INT); 1251 1252 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1253 if (result != nullptr) { 1254 // The result is index relative to from_index if substring was found, -1 otherwise. 1255 // Generate code which will fold into cmove. 1256 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1257 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1258 1259 Node* if_lt = generate_slow_guard(bol, nullptr); 1260 if (if_lt != nullptr) { 1261 // result == -1 1262 phi->init_req(3, result); 1263 region->init_req(3, if_lt); 1264 } 1265 if (!stopped()) { 1266 result = _gvn.transform(new AddINode(result, from_index)); 1267 phi->init_req(4, result); 1268 region->init_req(4, control()); 1269 } 1270 } 1271 1272 set_control(_gvn.transform(region)); 1273 record_for_igvn(region); 1274 set_result(_gvn.transform(phi)); 1275 clear_upper_avx(); 1276 1277 return true; 1278 } 1279 1280 // Create StrIndexOfNode with fast path checks 1281 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1282 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1283 // Check for substr count > string count 1284 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1285 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1286 Node* if_gt = generate_slow_guard(bol, nullptr); 1287 if (if_gt != nullptr) { 1288 phi->init_req(1, intcon(-1)); 1289 region->init_req(1, if_gt); 1290 } 1291 if (!stopped()) { 1292 // Check for substr count == 0 1293 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1294 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1295 Node* if_zero = generate_slow_guard(bol, nullptr); 1296 if (if_zero != nullptr) { 1297 phi->init_req(2, intcon(0)); 1298 region->init_req(2, if_zero); 1299 } 1300 } 1301 if (!stopped()) { 1302 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1303 } 1304 return nullptr; 1305 } 1306 1307 //-----------------------------inline_string_indexOfChar----------------------- 1308 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1309 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1310 return false; 1311 } 1312 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1313 return false; 1314 } 1315 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1316 Node* src = argument(0); // byte[] 1317 Node* int_ch = argument(1); 1318 Node* from_index = argument(2); 1319 Node* max = argument(3); 1320 1321 src = must_be_not_null(src, true); 1322 1323 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1324 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1325 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1326 1327 // Range checks 1328 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1329 1330 // Check for int_ch >= 0 1331 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1332 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1333 { 1334 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1335 uncommon_trap(Deoptimization::Reason_intrinsic, 1336 Deoptimization::Action_maybe_recompile); 1337 } 1338 if (stopped()) { 1339 return true; 1340 } 1341 1342 RegionNode* region = new RegionNode(3); 1343 Node* phi = new PhiNode(region, TypeInt::INT); 1344 1345 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1346 C->set_has_split_ifs(true); // Has chance for split-if optimization 1347 _gvn.transform(result); 1348 1349 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1350 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1351 1352 Node* if_lt = generate_slow_guard(bol, nullptr); 1353 if (if_lt != nullptr) { 1354 // result == -1 1355 phi->init_req(2, result); 1356 region->init_req(2, if_lt); 1357 } 1358 if (!stopped()) { 1359 result = _gvn.transform(new AddINode(result, from_index)); 1360 phi->init_req(1, result); 1361 region->init_req(1, control()); 1362 } 1363 set_control(_gvn.transform(region)); 1364 record_for_igvn(region); 1365 set_result(_gvn.transform(phi)); 1366 clear_upper_avx(); 1367 1368 return true; 1369 } 1370 //---------------------------inline_string_copy--------------------- 1371 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1372 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1373 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1374 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1375 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1376 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1377 bool LibraryCallKit::inline_string_copy(bool compress) { 1378 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1379 return false; 1380 } 1381 int nargs = 5; // 2 oops, 3 ints 1382 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1383 1384 Node* src = argument(0); 1385 Node* src_offset = argument(1); 1386 Node* dst = argument(2); 1387 Node* dst_offset = argument(3); 1388 Node* length = argument(4); 1389 1390 // Check for allocation before we add nodes that would confuse 1391 // tightly_coupled_allocation() 1392 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1393 1394 // Figure out the size and type of the elements we will be copying. 1395 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1396 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1397 if (src_type == nullptr || dst_type == nullptr) { 1398 return false; 1399 } 1400 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1401 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1402 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1403 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1404 "Unsupported array types for inline_string_copy"); 1405 1406 src = must_be_not_null(src, true); 1407 dst = must_be_not_null(dst, true); 1408 1409 // Convert char[] offsets to byte[] offsets 1410 bool convert_src = (compress && src_elem == T_BYTE); 1411 bool convert_dst = (!compress && dst_elem == T_BYTE); 1412 if (convert_src) { 1413 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1414 } else if (convert_dst) { 1415 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1416 } 1417 1418 // Range checks 1419 generate_string_range_check(src, src_offset, length, convert_src); 1420 generate_string_range_check(dst, dst_offset, length, convert_dst); 1421 if (stopped()) { 1422 return true; 1423 } 1424 1425 Node* src_start = array_element_address(src, src_offset, src_elem); 1426 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1427 // 'src_start' points to src array + scaled offset 1428 // 'dst_start' points to dst array + scaled offset 1429 Node* count = nullptr; 1430 if (compress) { 1431 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1432 } else { 1433 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1434 } 1435 1436 if (alloc != nullptr) { 1437 if (alloc->maybe_set_complete(&_gvn)) { 1438 // "You break it, you buy it." 1439 InitializeNode* init = alloc->initialization(); 1440 assert(init->is_complete(), "we just did this"); 1441 init->set_complete_with_arraycopy(); 1442 assert(dst->is_CheckCastPP(), "sanity"); 1443 assert(dst->in(0)->in(0) == init, "dest pinned"); 1444 } 1445 // Do not let stores that initialize this object be reordered with 1446 // a subsequent store that would make this object accessible by 1447 // other threads. 1448 // Record what AllocateNode this StoreStore protects so that 1449 // escape analysis can go from the MemBarStoreStoreNode to the 1450 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1451 // based on the escape status of the AllocateNode. 1452 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1453 } 1454 if (compress) { 1455 set_result(_gvn.transform(count)); 1456 } 1457 clear_upper_avx(); 1458 1459 return true; 1460 } 1461 1462 #ifdef _LP64 1463 #define XTOP ,top() /*additional argument*/ 1464 #else //_LP64 1465 #define XTOP /*no additional argument*/ 1466 #endif //_LP64 1467 1468 //------------------------inline_string_toBytesU-------------------------- 1469 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1470 bool LibraryCallKit::inline_string_toBytesU() { 1471 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1472 return false; 1473 } 1474 // Get the arguments. 1475 Node* value = argument(0); 1476 Node* offset = argument(1); 1477 Node* length = argument(2); 1478 1479 Node* newcopy = nullptr; 1480 1481 // Set the original stack and the reexecute bit for the interpreter to reexecute 1482 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1483 { PreserveReexecuteState preexecs(this); 1484 jvms()->set_should_reexecute(true); 1485 1486 // Check if a null path was taken unconditionally. 1487 value = null_check(value); 1488 1489 RegionNode* bailout = new RegionNode(1); 1490 record_for_igvn(bailout); 1491 1492 // Range checks 1493 generate_negative_guard(offset, bailout); 1494 generate_negative_guard(length, bailout); 1495 generate_limit_guard(offset, length, load_array_length(value), bailout); 1496 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1497 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1498 1499 if (bailout->req() > 1) { 1500 PreserveJVMState pjvms(this); 1501 set_control(_gvn.transform(bailout)); 1502 uncommon_trap(Deoptimization::Reason_intrinsic, 1503 Deoptimization::Action_maybe_recompile); 1504 } 1505 if (stopped()) { 1506 return true; 1507 } 1508 1509 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1510 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1511 newcopy = new_array(klass_node, size, 0); // no arguments to push 1512 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1513 guarantee(alloc != nullptr, "created above"); 1514 1515 // Calculate starting addresses. 1516 Node* src_start = array_element_address(value, offset, T_CHAR); 1517 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1518 1519 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1520 const TypeInt* toffset = gvn().type(offset)->is_int(); 1521 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1522 1523 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1524 const char* copyfunc_name = "arraycopy"; 1525 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1526 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1527 OptoRuntime::fast_arraycopy_Type(), 1528 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1529 src_start, dst_start, ConvI2X(length) XTOP); 1530 // Do not let reads from the cloned object float above the arraycopy. 1531 if (alloc->maybe_set_complete(&_gvn)) { 1532 // "You break it, you buy it." 1533 InitializeNode* init = alloc->initialization(); 1534 assert(init->is_complete(), "we just did this"); 1535 init->set_complete_with_arraycopy(); 1536 assert(newcopy->is_CheckCastPP(), "sanity"); 1537 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1538 } 1539 // Do not let stores that initialize this object be reordered with 1540 // a subsequent store that would make this object accessible by 1541 // other threads. 1542 // Record what AllocateNode this StoreStore protects so that 1543 // escape analysis can go from the MemBarStoreStoreNode to the 1544 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1545 // based on the escape status of the AllocateNode. 1546 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1547 } // original reexecute is set back here 1548 1549 C->set_has_split_ifs(true); // Has chance for split-if optimization 1550 if (!stopped()) { 1551 set_result(newcopy); 1552 } 1553 clear_upper_avx(); 1554 1555 return true; 1556 } 1557 1558 //------------------------inline_string_getCharsU-------------------------- 1559 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1560 bool LibraryCallKit::inline_string_getCharsU() { 1561 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1562 return false; 1563 } 1564 1565 // Get the arguments. 1566 Node* src = argument(0); 1567 Node* src_begin = argument(1); 1568 Node* src_end = argument(2); // exclusive offset (i < src_end) 1569 Node* dst = argument(3); 1570 Node* dst_begin = argument(4); 1571 1572 // Check for allocation before we add nodes that would confuse 1573 // tightly_coupled_allocation() 1574 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1575 1576 // Check if a null path was taken unconditionally. 1577 src = null_check(src); 1578 dst = null_check(dst); 1579 if (stopped()) { 1580 return true; 1581 } 1582 1583 // Get length and convert char[] offset to byte[] offset 1584 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1585 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1586 1587 // Range checks 1588 generate_string_range_check(src, src_begin, length, true); 1589 generate_string_range_check(dst, dst_begin, length, false); 1590 if (stopped()) { 1591 return true; 1592 } 1593 1594 if (!stopped()) { 1595 // Calculate starting addresses. 1596 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1597 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1598 1599 // Check if array addresses are aligned to HeapWordSize 1600 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1601 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1602 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1603 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1604 1605 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1606 const char* copyfunc_name = "arraycopy"; 1607 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1608 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1609 OptoRuntime::fast_arraycopy_Type(), 1610 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1611 src_start, dst_start, ConvI2X(length) XTOP); 1612 // Do not let reads from the cloned object float above the arraycopy. 1613 if (alloc != nullptr) { 1614 if (alloc->maybe_set_complete(&_gvn)) { 1615 // "You break it, you buy it." 1616 InitializeNode* init = alloc->initialization(); 1617 assert(init->is_complete(), "we just did this"); 1618 init->set_complete_with_arraycopy(); 1619 assert(dst->is_CheckCastPP(), "sanity"); 1620 assert(dst->in(0)->in(0) == init, "dest pinned"); 1621 } 1622 // Do not let stores that initialize this object be reordered with 1623 // a subsequent store that would make this object accessible by 1624 // other threads. 1625 // Record what AllocateNode this StoreStore protects so that 1626 // escape analysis can go from the MemBarStoreStoreNode to the 1627 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1628 // based on the escape status of the AllocateNode. 1629 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1630 } else { 1631 insert_mem_bar(Op_MemBarCPUOrder); 1632 } 1633 } 1634 1635 C->set_has_split_ifs(true); // Has chance for split-if optimization 1636 return true; 1637 } 1638 1639 //----------------------inline_string_char_access---------------------------- 1640 // Store/Load char to/from byte[] array. 1641 // static void StringUTF16.putChar(byte[] val, int index, int c) 1642 // static char StringUTF16.getChar(byte[] val, int index) 1643 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1644 Node* value = argument(0); 1645 Node* index = argument(1); 1646 Node* ch = is_store ? argument(2) : nullptr; 1647 1648 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1649 // correctly requires matched array shapes. 1650 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1651 "sanity: byte[] and char[] bases agree"); 1652 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1653 "sanity: byte[] and char[] scales agree"); 1654 1655 // Bail when getChar over constants is requested: constant folding would 1656 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1657 // Java method would constant fold nicely instead. 1658 if (!is_store && value->is_Con() && index->is_Con()) { 1659 return false; 1660 } 1661 1662 // Save state and restore on bailout 1663 uint old_sp = sp(); 1664 SafePointNode* old_map = clone_map(); 1665 1666 value = must_be_not_null(value, true); 1667 1668 Node* adr = array_element_address(value, index, T_CHAR); 1669 if (adr->is_top()) { 1670 set_map(old_map); 1671 set_sp(old_sp); 1672 return false; 1673 } 1674 destruct_map_clone(old_map); 1675 if (is_store) { 1676 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1677 } else { 1678 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1679 set_result(ch); 1680 } 1681 return true; 1682 } 1683 1684 //--------------------------round_double_node-------------------------------- 1685 // Round a double node if necessary. 1686 Node* LibraryCallKit::round_double_node(Node* n) { 1687 if (Matcher::strict_fp_requires_explicit_rounding) { 1688 #ifdef IA32 1689 if (UseSSE < 2) { 1690 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1691 } 1692 #else 1693 Unimplemented(); 1694 #endif // IA32 1695 } 1696 return n; 1697 } 1698 1699 //------------------------------inline_math----------------------------------- 1700 // public static double Math.abs(double) 1701 // public static double Math.sqrt(double) 1702 // public static double Math.log(double) 1703 // public static double Math.log10(double) 1704 // public static double Math.round(double) 1705 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1706 Node* arg = round_double_node(argument(0)); 1707 Node* n = nullptr; 1708 switch (id) { 1709 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1710 case vmIntrinsics::_dsqrt: 1711 case vmIntrinsics::_dsqrt_strict: 1712 n = new SqrtDNode(C, control(), arg); break; 1713 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1714 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1715 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1716 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1717 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1718 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1719 default: fatal_unexpected_iid(id); break; 1720 } 1721 set_result(_gvn.transform(n)); 1722 return true; 1723 } 1724 1725 //------------------------------inline_math----------------------------------- 1726 // public static float Math.abs(float) 1727 // public static int Math.abs(int) 1728 // public static long Math.abs(long) 1729 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1730 Node* arg = argument(0); 1731 Node* n = nullptr; 1732 switch (id) { 1733 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1734 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1735 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1736 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1737 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1738 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1739 default: fatal_unexpected_iid(id); break; 1740 } 1741 set_result(_gvn.transform(n)); 1742 return true; 1743 } 1744 1745 //------------------------------runtime_math----------------------------- 1746 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1747 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1748 "must be (DD)D or (D)D type"); 1749 1750 // Inputs 1751 Node* a = round_double_node(argument(0)); 1752 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1753 1754 const TypePtr* no_memory_effects = nullptr; 1755 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1756 no_memory_effects, 1757 a, top(), b, b ? top() : nullptr); 1758 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1759 #ifdef ASSERT 1760 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1761 assert(value_top == top(), "second value must be top"); 1762 #endif 1763 1764 set_result(value); 1765 return true; 1766 } 1767 1768 //------------------------------inline_math_pow----------------------------- 1769 bool LibraryCallKit::inline_math_pow() { 1770 Node* exp = round_double_node(argument(2)); 1771 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1772 if (d != nullptr) { 1773 if (d->getd() == 2.0) { 1774 // Special case: pow(x, 2.0) => x * x 1775 Node* base = round_double_node(argument(0)); 1776 set_result(_gvn.transform(new MulDNode(base, base))); 1777 return true; 1778 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1779 // Special case: pow(x, 0.5) => sqrt(x) 1780 Node* base = round_double_node(argument(0)); 1781 Node* zero = _gvn.zerocon(T_DOUBLE); 1782 1783 RegionNode* region = new RegionNode(3); 1784 Node* phi = new PhiNode(region, Type::DOUBLE); 1785 1786 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1787 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1788 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1789 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1790 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1791 1792 Node* if_pow = generate_slow_guard(test, nullptr); 1793 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1794 phi->init_req(1, value_sqrt); 1795 region->init_req(1, control()); 1796 1797 if (if_pow != nullptr) { 1798 set_control(if_pow); 1799 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1800 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1801 const TypePtr* no_memory_effects = nullptr; 1802 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1803 no_memory_effects, base, top(), exp, top()); 1804 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1805 #ifdef ASSERT 1806 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1807 assert(value_top == top(), "second value must be top"); 1808 #endif 1809 phi->init_req(2, value_pow); 1810 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1811 } 1812 1813 C->set_has_split_ifs(true); // Has chance for split-if optimization 1814 set_control(_gvn.transform(region)); 1815 record_for_igvn(region); 1816 set_result(_gvn.transform(phi)); 1817 1818 return true; 1819 } 1820 } 1821 1822 return StubRoutines::dpow() != nullptr ? 1823 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1824 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1825 } 1826 1827 //------------------------------inline_math_native----------------------------- 1828 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1829 switch (id) { 1830 case vmIntrinsics::_dsin: 1831 return StubRoutines::dsin() != nullptr ? 1832 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1833 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1834 case vmIntrinsics::_dcos: 1835 return StubRoutines::dcos() != nullptr ? 1836 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1837 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1838 case vmIntrinsics::_dtan: 1839 return StubRoutines::dtan() != nullptr ? 1840 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1841 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1842 case vmIntrinsics::_dexp: 1843 return StubRoutines::dexp() != nullptr ? 1844 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1845 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1846 case vmIntrinsics::_dlog: 1847 return StubRoutines::dlog() != nullptr ? 1848 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1849 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1850 case vmIntrinsics::_dlog10: 1851 return StubRoutines::dlog10() != nullptr ? 1852 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1853 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1854 1855 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1856 case vmIntrinsics::_ceil: 1857 case vmIntrinsics::_floor: 1858 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1859 1860 case vmIntrinsics::_dsqrt: 1861 case vmIntrinsics::_dsqrt_strict: 1862 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1863 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1864 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1865 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1866 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1867 1868 case vmIntrinsics::_dpow: return inline_math_pow(); 1869 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1870 case vmIntrinsics::_fcopySign: return inline_math(id); 1871 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1872 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1873 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1874 1875 // These intrinsics are not yet correctly implemented 1876 case vmIntrinsics::_datan2: 1877 return false; 1878 1879 default: 1880 fatal_unexpected_iid(id); 1881 return false; 1882 } 1883 } 1884 1885 //----------------------------inline_notify-----------------------------------* 1886 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1887 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1888 address func; 1889 if (id == vmIntrinsics::_notify) { 1890 func = OptoRuntime::monitor_notify_Java(); 1891 } else { 1892 func = OptoRuntime::monitor_notifyAll_Java(); 1893 } 1894 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1895 make_slow_call_ex(call, env()->Throwable_klass(), false); 1896 return true; 1897 } 1898 1899 1900 //----------------------------inline_min_max----------------------------------- 1901 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1902 set_result(generate_min_max(id, argument(0), argument(1))); 1903 return true; 1904 } 1905 1906 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1907 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1908 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1909 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1910 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1911 1912 { 1913 PreserveJVMState pjvms(this); 1914 PreserveReexecuteState preexecs(this); 1915 jvms()->set_should_reexecute(true); 1916 1917 set_control(slow_path); 1918 set_i_o(i_o()); 1919 1920 uncommon_trap(Deoptimization::Reason_intrinsic, 1921 Deoptimization::Action_none); 1922 } 1923 1924 set_control(fast_path); 1925 set_result(math); 1926 } 1927 1928 template <typename OverflowOp> 1929 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1930 typedef typename OverflowOp::MathOp MathOp; 1931 1932 MathOp* mathOp = new MathOp(arg1, arg2); 1933 Node* operation = _gvn.transform( mathOp ); 1934 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1935 inline_math_mathExact(operation, ofcheck); 1936 return true; 1937 } 1938 1939 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1940 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1941 } 1942 1943 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1944 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1945 } 1946 1947 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1948 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1949 } 1950 1951 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1952 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1953 } 1954 1955 bool LibraryCallKit::inline_math_negateExactI() { 1956 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1957 } 1958 1959 bool LibraryCallKit::inline_math_negateExactL() { 1960 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1961 } 1962 1963 bool LibraryCallKit::inline_math_multiplyExactI() { 1964 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1965 } 1966 1967 bool LibraryCallKit::inline_math_multiplyExactL() { 1968 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1969 } 1970 1971 bool LibraryCallKit::inline_math_multiplyHigh() { 1972 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1973 return true; 1974 } 1975 1976 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 1977 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 1978 return true; 1979 } 1980 1981 Node* 1982 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1983 Node* result_val = nullptr; 1984 switch (id) { 1985 case vmIntrinsics::_min: 1986 case vmIntrinsics::_min_strict: 1987 result_val = _gvn.transform(new MinINode(x0, y0)); 1988 break; 1989 case vmIntrinsics::_max: 1990 case vmIntrinsics::_max_strict: 1991 result_val = _gvn.transform(new MaxINode(x0, y0)); 1992 break; 1993 default: 1994 fatal_unexpected_iid(id); 1995 break; 1996 } 1997 return result_val; 1998 } 1999 2000 inline int 2001 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2002 const TypePtr* base_type = TypePtr::NULL_PTR; 2003 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2004 if (base_type == nullptr) { 2005 // Unknown type. 2006 return Type::AnyPtr; 2007 } else if (base_type == TypePtr::NULL_PTR) { 2008 // Since this is a null+long form, we have to switch to a rawptr. 2009 base = _gvn.transform(new CastX2PNode(offset)); 2010 offset = MakeConX(0); 2011 return Type::RawPtr; 2012 } else if (base_type->base() == Type::RawPtr) { 2013 return Type::RawPtr; 2014 } else if (base_type->isa_oopptr()) { 2015 // Base is never null => always a heap address. 2016 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2017 return Type::OopPtr; 2018 } 2019 // Offset is small => always a heap address. 2020 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2021 if (offset_type != nullptr && 2022 base_type->offset() == 0 && // (should always be?) 2023 offset_type->_lo >= 0 && 2024 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2025 return Type::OopPtr; 2026 } else if (type == T_OBJECT) { 2027 // off heap access to an oop doesn't make any sense. Has to be on 2028 // heap. 2029 return Type::OopPtr; 2030 } 2031 // Otherwise, it might either be oop+off or null+addr. 2032 return Type::AnyPtr; 2033 } else { 2034 // No information: 2035 return Type::AnyPtr; 2036 } 2037 } 2038 2039 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2040 Node* uncasted_base = base; 2041 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2042 if (kind == Type::RawPtr) { 2043 return basic_plus_adr(top(), uncasted_base, offset); 2044 } else if (kind == Type::AnyPtr) { 2045 assert(base == uncasted_base, "unexpected base change"); 2046 if (can_cast) { 2047 if (!_gvn.type(base)->speculative_maybe_null() && 2048 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2049 // According to profiling, this access is always on 2050 // heap. Casting the base to not null and thus avoiding membars 2051 // around the access should allow better optimizations 2052 Node* null_ctl = top(); 2053 base = null_check_oop(base, &null_ctl, true, true, true); 2054 assert(null_ctl->is_top(), "no null control here"); 2055 return basic_plus_adr(base, offset); 2056 } else if (_gvn.type(base)->speculative_always_null() && 2057 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2058 // According to profiling, this access is always off 2059 // heap. 2060 base = null_assert(base); 2061 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2062 offset = MakeConX(0); 2063 return basic_plus_adr(top(), raw_base, offset); 2064 } 2065 } 2066 // We don't know if it's an on heap or off heap access. Fall back 2067 // to raw memory access. 2068 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2069 return basic_plus_adr(top(), raw, offset); 2070 } else { 2071 assert(base == uncasted_base, "unexpected base change"); 2072 // We know it's an on heap access so base can't be null 2073 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2074 base = must_be_not_null(base, true); 2075 } 2076 return basic_plus_adr(base, offset); 2077 } 2078 } 2079 2080 //--------------------------inline_number_methods----------------------------- 2081 // inline int Integer.numberOfLeadingZeros(int) 2082 // inline int Long.numberOfLeadingZeros(long) 2083 // 2084 // inline int Integer.numberOfTrailingZeros(int) 2085 // inline int Long.numberOfTrailingZeros(long) 2086 // 2087 // inline int Integer.bitCount(int) 2088 // inline int Long.bitCount(long) 2089 // 2090 // inline char Character.reverseBytes(char) 2091 // inline short Short.reverseBytes(short) 2092 // inline int Integer.reverseBytes(int) 2093 // inline long Long.reverseBytes(long) 2094 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2095 Node* arg = argument(0); 2096 Node* n = nullptr; 2097 switch (id) { 2098 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2099 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2100 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2101 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2102 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2103 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2104 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2105 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2106 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2107 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2108 case vmIntrinsics::_reverse_i: n = new ReverseINode(0, arg); break; 2109 case vmIntrinsics::_reverse_l: n = new ReverseLNode(0, arg); break; 2110 default: fatal_unexpected_iid(id); break; 2111 } 2112 set_result(_gvn.transform(n)); 2113 return true; 2114 } 2115 2116 //--------------------------inline_bitshuffle_methods----------------------------- 2117 // inline int Integer.compress(int, int) 2118 // inline int Integer.expand(int, int) 2119 // inline long Long.compress(long, long) 2120 // inline long Long.expand(long, long) 2121 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2122 Node* n = nullptr; 2123 switch (id) { 2124 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2125 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2126 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2127 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2128 default: fatal_unexpected_iid(id); break; 2129 } 2130 set_result(_gvn.transform(n)); 2131 return true; 2132 } 2133 2134 //--------------------------inline_number_methods----------------------------- 2135 // inline int Integer.compareUnsigned(int, int) 2136 // inline int Long.compareUnsigned(long, long) 2137 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2138 Node* arg1 = argument(0); 2139 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2140 Node* n = nullptr; 2141 switch (id) { 2142 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2143 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2144 default: fatal_unexpected_iid(id); break; 2145 } 2146 set_result(_gvn.transform(n)); 2147 return true; 2148 } 2149 2150 //--------------------------inline_unsigned_divmod_methods----------------------------- 2151 // inline int Integer.divideUnsigned(int, int) 2152 // inline int Integer.remainderUnsigned(int, int) 2153 // inline long Long.divideUnsigned(long, long) 2154 // inline long Long.remainderUnsigned(long, long) 2155 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2156 Node* n = nullptr; 2157 switch (id) { 2158 case vmIntrinsics::_divideUnsigned_i: { 2159 zero_check_int(argument(1)); 2160 // Compile-time detect of null-exception 2161 if (stopped()) { 2162 return true; // keep the graph constructed so far 2163 } 2164 n = new UDivINode(control(), argument(0), argument(1)); 2165 break; 2166 } 2167 case vmIntrinsics::_divideUnsigned_l: { 2168 zero_check_long(argument(2)); 2169 // Compile-time detect of null-exception 2170 if (stopped()) { 2171 return true; // keep the graph constructed so far 2172 } 2173 n = new UDivLNode(control(), argument(0), argument(2)); 2174 break; 2175 } 2176 case vmIntrinsics::_remainderUnsigned_i: { 2177 zero_check_int(argument(1)); 2178 // Compile-time detect of null-exception 2179 if (stopped()) { 2180 return true; // keep the graph constructed so far 2181 } 2182 n = new UModINode(control(), argument(0), argument(1)); 2183 break; 2184 } 2185 case vmIntrinsics::_remainderUnsigned_l: { 2186 zero_check_long(argument(2)); 2187 // Compile-time detect of null-exception 2188 if (stopped()) { 2189 return true; // keep the graph constructed so far 2190 } 2191 n = new UModLNode(control(), argument(0), argument(2)); 2192 break; 2193 } 2194 default: fatal_unexpected_iid(id); break; 2195 } 2196 set_result(_gvn.transform(n)); 2197 return true; 2198 } 2199 2200 //----------------------------inline_unsafe_access---------------------------- 2201 2202 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2203 // Attempt to infer a sharper value type from the offset and base type. 2204 ciKlass* sharpened_klass = nullptr; 2205 2206 // See if it is an instance field, with an object type. 2207 if (alias_type->field() != nullptr) { 2208 if (alias_type->field()->type()->is_klass()) { 2209 sharpened_klass = alias_type->field()->type()->as_klass(); 2210 } 2211 } 2212 2213 const TypeOopPtr* result = nullptr; 2214 // See if it is a narrow oop array. 2215 if (adr_type->isa_aryptr()) { 2216 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2217 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2218 if (elem_type != nullptr && elem_type->is_loaded()) { 2219 // Sharpen the value type. 2220 result = elem_type; 2221 } 2222 } 2223 } 2224 2225 // The sharpened class might be unloaded if there is no class loader 2226 // contraint in place. 2227 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2228 // Sharpen the value type. 2229 result = TypeOopPtr::make_from_klass(sharpened_klass); 2230 } 2231 if (result != nullptr) { 2232 #ifndef PRODUCT 2233 if (C->print_intrinsics() || C->print_inlining()) { 2234 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2235 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2236 } 2237 #endif 2238 } 2239 return result; 2240 } 2241 2242 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2243 switch (kind) { 2244 case Relaxed: 2245 return MO_UNORDERED; 2246 case Opaque: 2247 return MO_RELAXED; 2248 case Acquire: 2249 return MO_ACQUIRE; 2250 case Release: 2251 return MO_RELEASE; 2252 case Volatile: 2253 return MO_SEQ_CST; 2254 default: 2255 ShouldNotReachHere(); 2256 return 0; 2257 } 2258 } 2259 2260 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2261 if (callee()->is_static()) return false; // caller must have the capability! 2262 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2263 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2264 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2265 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2266 2267 if (is_reference_type(type)) { 2268 decorators |= ON_UNKNOWN_OOP_REF; 2269 } 2270 2271 if (unaligned) { 2272 decorators |= C2_UNALIGNED; 2273 } 2274 2275 #ifndef PRODUCT 2276 { 2277 ResourceMark rm; 2278 // Check the signatures. 2279 ciSignature* sig = callee()->signature(); 2280 #ifdef ASSERT 2281 if (!is_store) { 2282 // Object getReference(Object base, int/long offset), etc. 2283 BasicType rtype = sig->return_type()->basic_type(); 2284 assert(rtype == type, "getter must return the expected value"); 2285 assert(sig->count() == 2, "oop getter has 2 arguments"); 2286 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2287 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2288 } else { 2289 // void putReference(Object base, int/long offset, Object x), etc. 2290 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2291 assert(sig->count() == 3, "oop putter has 3 arguments"); 2292 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2293 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2294 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2295 assert(vtype == type, "putter must accept the expected value"); 2296 } 2297 #endif // ASSERT 2298 } 2299 #endif //PRODUCT 2300 2301 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2302 2303 Node* receiver = argument(0); // type: oop 2304 2305 // Build address expression. 2306 Node* heap_base_oop = top(); 2307 2308 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2309 Node* base = argument(1); // type: oop 2310 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2311 Node* offset = argument(2); // type: long 2312 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2313 // to be plain byte offsets, which are also the same as those accepted 2314 // by oopDesc::field_addr. 2315 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2316 "fieldOffset must be byte-scaled"); 2317 // 32-bit machines ignore the high half! 2318 offset = ConvL2X(offset); 2319 2320 // Save state and restore on bailout 2321 uint old_sp = sp(); 2322 SafePointNode* old_map = clone_map(); 2323 2324 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2325 2326 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2327 if (type != T_OBJECT) { 2328 decorators |= IN_NATIVE; // off-heap primitive access 2329 } else { 2330 set_map(old_map); 2331 set_sp(old_sp); 2332 return false; // off-heap oop accesses are not supported 2333 } 2334 } else { 2335 heap_base_oop = base; // on-heap or mixed access 2336 } 2337 2338 // Can base be null? Otherwise, always on-heap access. 2339 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2340 2341 if (!can_access_non_heap) { 2342 decorators |= IN_HEAP; 2343 } 2344 2345 Node* val = is_store ? argument(4) : nullptr; 2346 2347 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2348 if (adr_type == TypePtr::NULL_PTR) { 2349 set_map(old_map); 2350 set_sp(old_sp); 2351 return false; // off-heap access with zero address 2352 } 2353 2354 // Try to categorize the address. 2355 Compile::AliasType* alias_type = C->alias_type(adr_type); 2356 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2357 2358 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2359 alias_type->adr_type() == TypeAryPtr::RANGE) { 2360 set_map(old_map); 2361 set_sp(old_sp); 2362 return false; // not supported 2363 } 2364 2365 bool mismatched = false; 2366 BasicType bt = alias_type->basic_type(); 2367 if (bt != T_ILLEGAL) { 2368 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2369 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2370 // Alias type doesn't differentiate between byte[] and boolean[]). 2371 // Use address type to get the element type. 2372 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2373 } 2374 if (is_reference_type(bt, true)) { 2375 // accessing an array field with getReference is not a mismatch 2376 bt = T_OBJECT; 2377 } 2378 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2379 // Don't intrinsify mismatched object accesses 2380 set_map(old_map); 2381 set_sp(old_sp); 2382 return false; 2383 } 2384 mismatched = (bt != type); 2385 } else if (alias_type->adr_type()->isa_oopptr()) { 2386 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2387 } 2388 2389 destruct_map_clone(old_map); 2390 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2391 2392 if (mismatched) { 2393 decorators |= C2_MISMATCHED; 2394 } 2395 2396 // First guess at the value type. 2397 const Type *value_type = Type::get_const_basic_type(type); 2398 2399 // Figure out the memory ordering. 2400 decorators |= mo_decorator_for_access_kind(kind); 2401 2402 if (!is_store && type == T_OBJECT) { 2403 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2404 if (tjp != nullptr) { 2405 value_type = tjp; 2406 } 2407 } 2408 2409 receiver = null_check(receiver); 2410 if (stopped()) { 2411 return true; 2412 } 2413 // Heap pointers get a null-check from the interpreter, 2414 // as a courtesy. However, this is not guaranteed by Unsafe, 2415 // and it is not possible to fully distinguish unintended nulls 2416 // from intended ones in this API. 2417 2418 if (!is_store) { 2419 Node* p = nullptr; 2420 // Try to constant fold a load from a constant field 2421 ciField* field = alias_type->field(); 2422 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2423 // final or stable field 2424 p = make_constant_from_field(field, heap_base_oop); 2425 } 2426 2427 if (p == nullptr) { // Could not constant fold the load 2428 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2429 // Normalize the value returned by getBoolean in the following cases 2430 if (type == T_BOOLEAN && 2431 (mismatched || 2432 heap_base_oop == top() || // - heap_base_oop is null or 2433 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2434 // and the unsafe access is made to large offset 2435 // (i.e., larger than the maximum offset necessary for any 2436 // field access) 2437 ) { 2438 IdealKit ideal = IdealKit(this); 2439 #define __ ideal. 2440 IdealVariable normalized_result(ideal); 2441 __ declarations_done(); 2442 __ set(normalized_result, p); 2443 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2444 __ set(normalized_result, ideal.ConI(1)); 2445 ideal.end_if(); 2446 final_sync(ideal); 2447 p = __ value(normalized_result); 2448 #undef __ 2449 } 2450 } 2451 if (type == T_ADDRESS) { 2452 p = gvn().transform(new CastP2XNode(nullptr, p)); 2453 p = ConvX2UL(p); 2454 } 2455 // The load node has the control of the preceding MemBarCPUOrder. All 2456 // following nodes will have the control of the MemBarCPUOrder inserted at 2457 // the end of this method. So, pushing the load onto the stack at a later 2458 // point is fine. 2459 set_result(p); 2460 } else { 2461 if (bt == T_ADDRESS) { 2462 // Repackage the long as a pointer. 2463 val = ConvL2X(val); 2464 val = gvn().transform(new CastX2PNode(val)); 2465 } 2466 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2467 } 2468 2469 return true; 2470 } 2471 2472 //----------------------------inline_unsafe_load_store---------------------------- 2473 // This method serves a couple of different customers (depending on LoadStoreKind): 2474 // 2475 // LS_cmp_swap: 2476 // 2477 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2478 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2479 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2480 // 2481 // LS_cmp_swap_weak: 2482 // 2483 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2484 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2485 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2486 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2487 // 2488 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2489 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2490 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2491 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2492 // 2493 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2494 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2495 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2496 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2497 // 2498 // LS_cmp_exchange: 2499 // 2500 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2501 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2502 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2503 // 2504 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2505 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2506 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2507 // 2508 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2509 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2510 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2511 // 2512 // LS_get_add: 2513 // 2514 // int getAndAddInt( Object o, long offset, int delta) 2515 // long getAndAddLong(Object o, long offset, long delta) 2516 // 2517 // LS_get_set: 2518 // 2519 // int getAndSet(Object o, long offset, int newValue) 2520 // long getAndSet(Object o, long offset, long newValue) 2521 // Object getAndSet(Object o, long offset, Object newValue) 2522 // 2523 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2524 // This basic scheme here is the same as inline_unsafe_access, but 2525 // differs in enough details that combining them would make the code 2526 // overly confusing. (This is a true fact! I originally combined 2527 // them, but even I was confused by it!) As much code/comments as 2528 // possible are retained from inline_unsafe_access though to make 2529 // the correspondences clearer. - dl 2530 2531 if (callee()->is_static()) return false; // caller must have the capability! 2532 2533 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2534 decorators |= mo_decorator_for_access_kind(access_kind); 2535 2536 #ifndef PRODUCT 2537 BasicType rtype; 2538 { 2539 ResourceMark rm; 2540 // Check the signatures. 2541 ciSignature* sig = callee()->signature(); 2542 rtype = sig->return_type()->basic_type(); 2543 switch(kind) { 2544 case LS_get_add: 2545 case LS_get_set: { 2546 // Check the signatures. 2547 #ifdef ASSERT 2548 assert(rtype == type, "get and set must return the expected type"); 2549 assert(sig->count() == 3, "get and set has 3 arguments"); 2550 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2551 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2552 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2553 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2554 #endif // ASSERT 2555 break; 2556 } 2557 case LS_cmp_swap: 2558 case LS_cmp_swap_weak: { 2559 // Check the signatures. 2560 #ifdef ASSERT 2561 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2562 assert(sig->count() == 4, "CAS has 4 arguments"); 2563 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2564 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2565 #endif // ASSERT 2566 break; 2567 } 2568 case LS_cmp_exchange: { 2569 // Check the signatures. 2570 #ifdef ASSERT 2571 assert(rtype == type, "CAS must return the expected type"); 2572 assert(sig->count() == 4, "CAS has 4 arguments"); 2573 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2574 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2575 #endif // ASSERT 2576 break; 2577 } 2578 default: 2579 ShouldNotReachHere(); 2580 } 2581 } 2582 #endif //PRODUCT 2583 2584 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2585 2586 // Get arguments: 2587 Node* receiver = nullptr; 2588 Node* base = nullptr; 2589 Node* offset = nullptr; 2590 Node* oldval = nullptr; 2591 Node* newval = nullptr; 2592 switch(kind) { 2593 case LS_cmp_swap: 2594 case LS_cmp_swap_weak: 2595 case LS_cmp_exchange: { 2596 const bool two_slot_type = type2size[type] == 2; 2597 receiver = argument(0); // type: oop 2598 base = argument(1); // type: oop 2599 offset = argument(2); // type: long 2600 oldval = argument(4); // type: oop, int, or long 2601 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2602 break; 2603 } 2604 case LS_get_add: 2605 case LS_get_set: { 2606 receiver = argument(0); // type: oop 2607 base = argument(1); // type: oop 2608 offset = argument(2); // type: long 2609 oldval = nullptr; 2610 newval = argument(4); // type: oop, int, or long 2611 break; 2612 } 2613 default: 2614 ShouldNotReachHere(); 2615 } 2616 2617 // Build field offset expression. 2618 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2619 // to be plain byte offsets, which are also the same as those accepted 2620 // by oopDesc::field_addr. 2621 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2622 // 32-bit machines ignore the high half of long offsets 2623 offset = ConvL2X(offset); 2624 // Save state and restore on bailout 2625 uint old_sp = sp(); 2626 SafePointNode* old_map = clone_map(); 2627 Node* adr = make_unsafe_address(base, offset,type, false); 2628 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2629 2630 Compile::AliasType* alias_type = C->alias_type(adr_type); 2631 BasicType bt = alias_type->basic_type(); 2632 if (bt != T_ILLEGAL && 2633 (is_reference_type(bt) != (type == T_OBJECT))) { 2634 // Don't intrinsify mismatched object accesses. 2635 set_map(old_map); 2636 set_sp(old_sp); 2637 return false; 2638 } 2639 2640 destruct_map_clone(old_map); 2641 2642 // For CAS, unlike inline_unsafe_access, there seems no point in 2643 // trying to refine types. Just use the coarse types here. 2644 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2645 const Type *value_type = Type::get_const_basic_type(type); 2646 2647 switch (kind) { 2648 case LS_get_set: 2649 case LS_cmp_exchange: { 2650 if (type == T_OBJECT) { 2651 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2652 if (tjp != nullptr) { 2653 value_type = tjp; 2654 } 2655 } 2656 break; 2657 } 2658 case LS_cmp_swap: 2659 case LS_cmp_swap_weak: 2660 case LS_get_add: 2661 break; 2662 default: 2663 ShouldNotReachHere(); 2664 } 2665 2666 // Null check receiver. 2667 receiver = null_check(receiver); 2668 if (stopped()) { 2669 return true; 2670 } 2671 2672 int alias_idx = C->get_alias_index(adr_type); 2673 2674 if (is_reference_type(type)) { 2675 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2676 2677 // Transformation of a value which could be null pointer (CastPP #null) 2678 // could be delayed during Parse (for example, in adjust_map_after_if()). 2679 // Execute transformation here to avoid barrier generation in such case. 2680 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2681 newval = _gvn.makecon(TypePtr::NULL_PTR); 2682 2683 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2684 // Refine the value to a null constant, when it is known to be null 2685 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2686 } 2687 } 2688 2689 Node* result = nullptr; 2690 switch (kind) { 2691 case LS_cmp_exchange: { 2692 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2693 oldval, newval, value_type, type, decorators); 2694 break; 2695 } 2696 case LS_cmp_swap_weak: 2697 decorators |= C2_WEAK_CMPXCHG; 2698 case LS_cmp_swap: { 2699 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2700 oldval, newval, value_type, type, decorators); 2701 break; 2702 } 2703 case LS_get_set: { 2704 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2705 newval, value_type, type, decorators); 2706 break; 2707 } 2708 case LS_get_add: { 2709 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2710 newval, value_type, type, decorators); 2711 break; 2712 } 2713 default: 2714 ShouldNotReachHere(); 2715 } 2716 2717 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2718 set_result(result); 2719 return true; 2720 } 2721 2722 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2723 // Regardless of form, don't allow previous ld/st to move down, 2724 // then issue acquire, release, or volatile mem_bar. 2725 insert_mem_bar(Op_MemBarCPUOrder); 2726 switch(id) { 2727 case vmIntrinsics::_loadFence: 2728 insert_mem_bar(Op_LoadFence); 2729 return true; 2730 case vmIntrinsics::_storeFence: 2731 insert_mem_bar(Op_StoreFence); 2732 return true; 2733 case vmIntrinsics::_storeStoreFence: 2734 insert_mem_bar(Op_StoreStoreFence); 2735 return true; 2736 case vmIntrinsics::_fullFence: 2737 insert_mem_bar(Op_MemBarVolatile); 2738 return true; 2739 default: 2740 fatal_unexpected_iid(id); 2741 return false; 2742 } 2743 } 2744 2745 bool LibraryCallKit::inline_onspinwait() { 2746 insert_mem_bar(Op_OnSpinWait); 2747 return true; 2748 } 2749 2750 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2751 if (!kls->is_Con()) { 2752 return true; 2753 } 2754 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2755 if (klsptr == nullptr) { 2756 return true; 2757 } 2758 ciInstanceKlass* ik = klsptr->instance_klass(); 2759 // don't need a guard for a klass that is already initialized 2760 return !ik->is_initialized(); 2761 } 2762 2763 //----------------------------inline_unsafe_writeback0------------------------- 2764 // public native void Unsafe.writeback0(long address) 2765 bool LibraryCallKit::inline_unsafe_writeback0() { 2766 if (!Matcher::has_match_rule(Op_CacheWB)) { 2767 return false; 2768 } 2769 #ifndef PRODUCT 2770 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2771 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2772 ciSignature* sig = callee()->signature(); 2773 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2774 #endif 2775 null_check_receiver(); // null-check, then ignore 2776 Node *addr = argument(1); 2777 addr = new CastX2PNode(addr); 2778 addr = _gvn.transform(addr); 2779 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2780 flush = _gvn.transform(flush); 2781 set_memory(flush, TypeRawPtr::BOTTOM); 2782 return true; 2783 } 2784 2785 //----------------------------inline_unsafe_writeback0------------------------- 2786 // public native void Unsafe.writeback0(long address) 2787 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2788 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2789 return false; 2790 } 2791 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2792 return false; 2793 } 2794 #ifndef PRODUCT 2795 assert(Matcher::has_match_rule(Op_CacheWB), 2796 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2797 : "found match rule for CacheWBPostSync but not CacheWB")); 2798 2799 #endif 2800 null_check_receiver(); // null-check, then ignore 2801 Node *sync; 2802 if (is_pre) { 2803 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2804 } else { 2805 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2806 } 2807 sync = _gvn.transform(sync); 2808 set_memory(sync, TypeRawPtr::BOTTOM); 2809 return true; 2810 } 2811 2812 //----------------------------inline_unsafe_allocate--------------------------- 2813 // public native Object Unsafe.allocateInstance(Class<?> cls); 2814 bool LibraryCallKit::inline_unsafe_allocate() { 2815 if (callee()->is_static()) return false; // caller must have the capability! 2816 2817 null_check_receiver(); // null-check, then ignore 2818 Node* cls = null_check(argument(1)); 2819 if (stopped()) return true; 2820 2821 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2822 kls = null_check(kls); 2823 if (stopped()) return true; // argument was like int.class 2824 2825 Node* test = nullptr; 2826 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2827 // Note: The argument might still be an illegal value like 2828 // Serializable.class or Object[].class. The runtime will handle it. 2829 // But we must make an explicit check for initialization. 2830 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2831 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2832 // can generate code to load it as unsigned byte. 2833 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2834 Node* bits = intcon(InstanceKlass::fully_initialized); 2835 test = _gvn.transform(new SubINode(inst, bits)); 2836 // The 'test' is non-zero if we need to take a slow path. 2837 } 2838 2839 Node* obj = new_instance(kls, test); 2840 set_result(obj); 2841 return true; 2842 } 2843 2844 //------------------------inline_native_time_funcs-------------- 2845 // inline code for System.currentTimeMillis() and System.nanoTime() 2846 // these have the same type and signature 2847 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2848 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2849 const TypePtr* no_memory_effects = nullptr; 2850 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2851 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2852 #ifdef ASSERT 2853 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2854 assert(value_top == top(), "second value must be top"); 2855 #endif 2856 set_result(value); 2857 return true; 2858 } 2859 2860 2861 #if INCLUDE_JVMTI 2862 2863 // When notifications are disabled then just update the VTMS transition bit and return. 2864 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2865 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2866 if (!DoJVMTIVirtualThreadTransitions) { 2867 return true; 2868 } 2869 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2870 IdealKit ideal(this); 2871 2872 Node* ONE = ideal.ConI(1); 2873 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2874 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2875 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2876 2877 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2878 sync_kit(ideal); 2879 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2880 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2881 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2882 ideal.sync_kit(this); 2883 } ideal.else_(); { 2884 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 2885 Node* thread = ideal.thread(); 2886 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 2887 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 2888 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2889 2890 sync_kit(ideal); 2891 access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2892 access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2893 2894 ideal.sync_kit(this); 2895 } ideal.end_if(); 2896 final_sync(ideal); 2897 2898 return true; 2899 } 2900 2901 // Always update the temporary VTMS transition bit. 2902 bool LibraryCallKit::inline_native_notify_jvmti_hide() { 2903 if (!DoJVMTIVirtualThreadTransitions) { 2904 return true; 2905 } 2906 IdealKit ideal(this); 2907 2908 { 2909 // unconditionally update the temporary VTMS transition bit in current JavaThread 2910 Node* thread = ideal.thread(); 2911 Node* hide = _gvn.transform(argument(1)); // hide argument for temporary VTMS transition notification 2912 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); 2913 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2914 2915 sync_kit(ideal); 2916 access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2917 ideal.sync_kit(this); 2918 } 2919 final_sync(ideal); 2920 2921 return true; 2922 } 2923 2924 #endif // INCLUDE_JVMTI 2925 2926 #ifdef JFR_HAVE_INTRINSICS 2927 2928 /** 2929 * if oop->klass != null 2930 * // normal class 2931 * epoch = _epoch_state ? 2 : 1 2932 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 2933 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 2934 * } 2935 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 2936 * else 2937 * // primitive class 2938 * if oop->array_klass != null 2939 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 2940 * else 2941 * id = LAST_TYPE_ID + 1 // void class path 2942 * if (!signaled) 2943 * signaled = true 2944 */ 2945 bool LibraryCallKit::inline_native_classID() { 2946 Node* cls = argument(0); 2947 2948 IdealKit ideal(this); 2949 #define __ ideal. 2950 IdealVariable result(ideal); __ declarations_done(); 2951 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 2952 basic_plus_adr(cls, java_lang_Class::klass_offset()), 2953 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2954 2955 2956 __ if_then(kls, BoolTest::ne, null()); { 2957 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2958 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2959 2960 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 2961 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2962 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 2963 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 2964 mask = _gvn.transform(new OrLNode(mask, epoch)); 2965 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 2966 2967 float unlikely = PROB_UNLIKELY(0.999); 2968 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 2969 sync_kit(ideal); 2970 make_runtime_call(RC_LEAF, 2971 OptoRuntime::class_id_load_barrier_Type(), 2972 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 2973 "class id load barrier", 2974 TypePtr::BOTTOM, 2975 kls); 2976 ideal.sync_kit(this); 2977 } __ end_if(); 2978 2979 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 2980 } __ else_(); { 2981 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 2982 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 2983 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2984 __ if_then(array_kls, BoolTest::ne, null()); { 2985 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2986 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2987 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 2988 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 2989 } __ else_(); { 2990 // void class case 2991 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 2992 } __ end_if(); 2993 2994 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 2995 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 2996 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 2997 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 2998 } __ end_if(); 2999 } __ end_if(); 3000 3001 final_sync(ideal); 3002 set_result(ideal.value(result)); 3003 #undef __ 3004 return true; 3005 } 3006 3007 //------------------------inline_native_jvm_commit------------------ 3008 bool LibraryCallKit::inline_native_jvm_commit() { 3009 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3010 3011 // Save input memory and i_o state. 3012 Node* input_memory_state = reset_memory(); 3013 set_all_memory(input_memory_state); 3014 Node* input_io_state = i_o(); 3015 3016 // TLS. 3017 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3018 // Jfr java buffer. 3019 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3020 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3021 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3022 3023 // Load the current value of the notified field in the JfrThreadLocal. 3024 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3025 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3026 3027 // Test for notification. 3028 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3029 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3030 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3031 3032 // True branch, is notified. 3033 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3034 set_control(is_notified); 3035 3036 // Reset notified state. 3037 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered); 3038 3039 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3040 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3041 // Convert the machine-word to a long. 3042 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3043 3044 // False branch, not notified. 3045 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3046 set_control(not_notified); 3047 set_all_memory(input_memory_state); 3048 3049 // Arg is the next position as a long. 3050 Node* arg = argument(0); 3051 // Convert long to machine-word. 3052 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3053 3054 // Store the next_position to the underlying jfr java buffer. 3055 Node* commit_memory; 3056 #ifdef _LP64 3057 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release); 3058 #else 3059 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release); 3060 #endif 3061 3062 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3063 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3064 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3065 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3066 3067 // And flags with lease constant. 3068 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3069 3070 // Branch on lease to conditionalize returning the leased java buffer. 3071 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3072 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3073 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3074 3075 // False branch, not a lease. 3076 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3077 3078 // True branch, is lease. 3079 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3080 set_control(is_lease); 3081 3082 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3083 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3084 OptoRuntime::void_void_Type(), 3085 StubRoutines::jfr_return_lease(), 3086 "return_lease", TypePtr::BOTTOM); 3087 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3088 3089 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3090 record_for_igvn(lease_compare_rgn); 3091 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3092 record_for_igvn(lease_compare_mem); 3093 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3094 record_for_igvn(lease_compare_io); 3095 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3096 record_for_igvn(lease_result_value); 3097 3098 // Update control and phi nodes. 3099 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3100 lease_compare_rgn->init_req(_false_path, not_lease); 3101 3102 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3103 lease_compare_mem->init_req(_false_path, commit_memory); 3104 3105 lease_compare_io->init_req(_true_path, i_o()); 3106 lease_compare_io->init_req(_false_path, input_io_state); 3107 3108 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3109 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3110 3111 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3112 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3113 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3114 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3115 3116 // Update control and phi nodes. 3117 result_rgn->init_req(_true_path, is_notified); 3118 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3119 3120 result_mem->init_req(_true_path, notified_reset_memory); 3121 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3122 3123 result_io->init_req(_true_path, input_io_state); 3124 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3125 3126 result_value->init_req(_true_path, current_pos); 3127 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3128 3129 // Set output state. 3130 set_control(_gvn.transform(result_rgn)); 3131 set_all_memory(_gvn.transform(result_mem)); 3132 set_i_o(_gvn.transform(result_io)); 3133 set_result(result_rgn, result_value); 3134 return true; 3135 } 3136 3137 /* 3138 * The intrinsic is a model of this pseudo-code: 3139 * 3140 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3141 * jobject h_event_writer = tl->java_event_writer(); 3142 * if (h_event_writer == nullptr) { 3143 * return nullptr; 3144 * } 3145 * oop threadObj = Thread::threadObj(); 3146 * oop vthread = java_lang_Thread::vthread(threadObj); 3147 * traceid tid; 3148 * bool excluded; 3149 * if (vthread != threadObj) { // i.e. current thread is virtual 3150 * tid = java_lang_Thread::tid(vthread); 3151 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3152 * excluded = vthread_epoch_raw & excluded_mask; 3153 * if (!excluded) { 3154 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3155 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3156 * if (vthread_epoch != current_epoch) { 3157 * write_checkpoint(); 3158 * } 3159 * } 3160 * } else { 3161 * tid = java_lang_Thread::tid(threadObj); 3162 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3163 * excluded = thread_epoch_raw & excluded_mask; 3164 * } 3165 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3166 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3167 * if (tid_in_event_writer != tid) { 3168 * setField(event_writer, "threadID", tid); 3169 * setField(event_writer, "excluded", excluded); 3170 * } 3171 * return event_writer 3172 */ 3173 bool LibraryCallKit::inline_native_getEventWriter() { 3174 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3175 3176 // Save input memory and i_o state. 3177 Node* input_memory_state = reset_memory(); 3178 set_all_memory(input_memory_state); 3179 Node* input_io_state = i_o(); 3180 3181 Node* excluded_mask = _gvn.intcon(32768); 3182 Node* epoch_mask = _gvn.intcon(32767); 3183 3184 // TLS 3185 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3186 3187 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3188 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3189 3190 // Load the eventwriter jobject handle. 3191 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3192 3193 // Null check the jobject handle. 3194 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3195 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3196 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3197 3198 // False path, jobj is null. 3199 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3200 3201 // True path, jobj is not null. 3202 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3203 3204 set_control(jobj_is_not_null); 3205 3206 // Load the threadObj for the CarrierThread. 3207 Node* threadObj = generate_current_thread(tls_ptr); 3208 3209 // Load the vthread. 3210 Node* vthread = generate_virtual_thread(tls_ptr); 3211 3212 // If vthread != threadObj, this is a virtual thread. 3213 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3214 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3215 IfNode* iff_vthread_not_equal_threadObj = 3216 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3217 3218 // False branch, fallback to threadObj. 3219 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3220 set_control(vthread_equal_threadObj); 3221 3222 // Load the tid field from the vthread object. 3223 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3224 3225 // Load the raw epoch value from the threadObj. 3226 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3227 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3228 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3229 3230 // Mask off the excluded information from the epoch. 3231 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3232 3233 // True branch, this is a virtual thread. 3234 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3235 set_control(vthread_not_equal_threadObj); 3236 3237 // Load the tid field from the vthread object. 3238 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3239 3240 // Load the raw epoch value from the vthread. 3241 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3242 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3243 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3244 3245 // Mask off the excluded information from the epoch. 3246 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3247 3248 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3249 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3250 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3251 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3252 3253 // False branch, vthread is excluded, no need to write epoch info. 3254 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3255 3256 // True branch, vthread is included, update epoch info. 3257 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3258 set_control(included); 3259 3260 // Get epoch value. 3261 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3262 3263 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3264 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3265 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3266 3267 // Compare the epoch in the vthread to the current epoch generation. 3268 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3269 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3270 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3271 3272 // False path, epoch is equal, checkpoint information is valid. 3273 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3274 3275 // True path, epoch is not equal, write a checkpoint for the vthread. 3276 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3277 3278 set_control(epoch_is_not_equal); 3279 3280 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3281 // The call also updates the native thread local thread id and the vthread with the current epoch. 3282 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3283 OptoRuntime::jfr_write_checkpoint_Type(), 3284 StubRoutines::jfr_write_checkpoint(), 3285 "write_checkpoint", TypePtr::BOTTOM); 3286 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3287 3288 // vthread epoch != current epoch 3289 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3290 record_for_igvn(epoch_compare_rgn); 3291 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3292 record_for_igvn(epoch_compare_mem); 3293 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3294 record_for_igvn(epoch_compare_io); 3295 3296 // Update control and phi nodes. 3297 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3298 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3299 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3300 epoch_compare_mem->init_req(_false_path, input_memory_state); 3301 epoch_compare_io->init_req(_true_path, i_o()); 3302 epoch_compare_io->init_req(_false_path, input_io_state); 3303 3304 // excluded != true 3305 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3306 record_for_igvn(exclude_compare_rgn); 3307 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3308 record_for_igvn(exclude_compare_mem); 3309 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3310 record_for_igvn(exclude_compare_io); 3311 3312 // Update control and phi nodes. 3313 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3314 exclude_compare_rgn->init_req(_false_path, excluded); 3315 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3316 exclude_compare_mem->init_req(_false_path, input_memory_state); 3317 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3318 exclude_compare_io->init_req(_false_path, input_io_state); 3319 3320 // vthread != threadObj 3321 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3322 record_for_igvn(vthread_compare_rgn); 3323 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3324 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3325 record_for_igvn(vthread_compare_io); 3326 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3327 record_for_igvn(tid); 3328 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3329 record_for_igvn(exclusion); 3330 3331 // Update control and phi nodes. 3332 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3333 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3334 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3335 vthread_compare_mem->init_req(_false_path, input_memory_state); 3336 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3337 vthread_compare_io->init_req(_false_path, input_io_state); 3338 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3339 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3340 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3341 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3342 3343 // Update branch state. 3344 set_control(_gvn.transform(vthread_compare_rgn)); 3345 set_all_memory(_gvn.transform(vthread_compare_mem)); 3346 set_i_o(_gvn.transform(vthread_compare_io)); 3347 3348 // Load the event writer oop by dereferencing the jobject handle. 3349 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3350 assert(klass_EventWriter->is_loaded(), "invariant"); 3351 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3352 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3353 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3354 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3355 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3356 3357 // Load the current thread id from the event writer object. 3358 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3359 // Get the field offset to, conditionally, store an updated tid value later. 3360 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3361 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3362 // Get the field offset to, conditionally, store an updated exclusion value later. 3363 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3364 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3365 3366 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3367 record_for_igvn(event_writer_tid_compare_rgn); 3368 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3369 record_for_igvn(event_writer_tid_compare_mem); 3370 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3371 record_for_igvn(event_writer_tid_compare_io); 3372 3373 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3374 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3375 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3376 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3377 3378 // False path, tids are the same. 3379 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3380 3381 // True path, tid is not equal, need to update the tid in the event writer. 3382 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3383 record_for_igvn(tid_is_not_equal); 3384 3385 // Store the exclusion state to the event writer. 3386 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3387 3388 // Store the tid to the event writer. 3389 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3390 3391 // Update control and phi nodes. 3392 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3393 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3394 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3395 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3396 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3397 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3398 3399 // Result of top level CFG, Memory, IO and Value. 3400 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3401 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3402 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3403 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3404 3405 // Result control. 3406 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3407 result_rgn->init_req(_false_path, jobj_is_null); 3408 3409 // Result memory. 3410 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3411 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3412 3413 // Result IO. 3414 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3415 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3416 3417 // Result value. 3418 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3419 result_value->init_req(_false_path, null()); // return null 3420 3421 // Set output state. 3422 set_control(_gvn.transform(result_rgn)); 3423 set_all_memory(_gvn.transform(result_mem)); 3424 set_i_o(_gvn.transform(result_io)); 3425 set_result(result_rgn, result_value); 3426 return true; 3427 } 3428 3429 /* 3430 * The intrinsic is a model of this pseudo-code: 3431 * 3432 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3433 * if (carrierThread != thread) { // is virtual thread 3434 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3435 * bool excluded = vthread_epoch_raw & excluded_mask; 3436 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3437 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3438 * if (!excluded) { 3439 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3440 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3441 * } 3442 * Atomic::release_store(&tl->_vthread, true); 3443 * return; 3444 * } 3445 * Atomic::release_store(&tl->_vthread, false); 3446 */ 3447 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3448 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3449 3450 Node* input_memory_state = reset_memory(); 3451 set_all_memory(input_memory_state); 3452 3453 Node* excluded_mask = _gvn.intcon(32768); 3454 Node* epoch_mask = _gvn.intcon(32767); 3455 3456 Node* const carrierThread = generate_current_thread(jt); 3457 // If thread != carrierThread, this is a virtual thread. 3458 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3459 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3460 IfNode* iff_thread_not_equal_carrierThread = 3461 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3462 3463 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3464 3465 // False branch, is carrierThread. 3466 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3467 // Store release 3468 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3469 3470 set_all_memory(input_memory_state); 3471 3472 // True branch, is virtual thread. 3473 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3474 set_control(thread_not_equal_carrierThread); 3475 3476 // Load the raw epoch value from the vthread. 3477 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3478 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3479 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3480 3481 // Mask off the excluded information from the epoch. 3482 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3483 3484 // Load the tid field from the thread. 3485 Node* tid = load_field_from_object(thread, "tid", "J"); 3486 3487 // Store the vthread tid to the jfr thread local. 3488 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3489 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3490 3491 // Branch is_excluded to conditionalize updating the epoch . 3492 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3493 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3494 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3495 3496 // True branch, vthread is excluded, no need to write epoch info. 3497 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3498 set_control(excluded); 3499 Node* vthread_is_excluded = _gvn.intcon(1); 3500 3501 // False branch, vthread is included, update epoch info. 3502 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3503 set_control(included); 3504 Node* vthread_is_included = _gvn.intcon(0); 3505 3506 // Get epoch value. 3507 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3508 3509 // Store the vthread epoch to the jfr thread local. 3510 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3511 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3512 3513 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3514 record_for_igvn(excluded_rgn); 3515 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3516 record_for_igvn(excluded_mem); 3517 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3518 record_for_igvn(exclusion); 3519 3520 // Merge the excluded control and memory. 3521 excluded_rgn->init_req(_true_path, excluded); 3522 excluded_rgn->init_req(_false_path, included); 3523 excluded_mem->init_req(_true_path, tid_memory); 3524 excluded_mem->init_req(_false_path, included_memory); 3525 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3526 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3527 3528 // Set intermediate state. 3529 set_control(_gvn.transform(excluded_rgn)); 3530 set_all_memory(excluded_mem); 3531 3532 // Store the vthread exclusion state to the jfr thread local. 3533 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3534 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3535 3536 // Store release 3537 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3538 3539 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3540 record_for_igvn(thread_compare_rgn); 3541 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3542 record_for_igvn(thread_compare_mem); 3543 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3544 record_for_igvn(vthread); 3545 3546 // Merge the thread_compare control and memory. 3547 thread_compare_rgn->init_req(_true_path, control()); 3548 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3549 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3550 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3551 3552 // Set output state. 3553 set_control(_gvn.transform(thread_compare_rgn)); 3554 set_all_memory(_gvn.transform(thread_compare_mem)); 3555 } 3556 3557 #endif // JFR_HAVE_INTRINSICS 3558 3559 //------------------------inline_native_currentCarrierThread------------------ 3560 bool LibraryCallKit::inline_native_currentCarrierThread() { 3561 Node* junk = nullptr; 3562 set_result(generate_current_thread(junk)); 3563 return true; 3564 } 3565 3566 //------------------------inline_native_currentThread------------------ 3567 bool LibraryCallKit::inline_native_currentThread() { 3568 Node* junk = nullptr; 3569 set_result(generate_virtual_thread(junk)); 3570 return true; 3571 } 3572 3573 //------------------------inline_native_setVthread------------------ 3574 bool LibraryCallKit::inline_native_setCurrentThread() { 3575 assert(C->method()->changes_current_thread(), 3576 "method changes current Thread but is not annotated ChangesCurrentThread"); 3577 Node* arr = argument(1); 3578 Node* thread = _gvn.transform(new ThreadLocalNode()); 3579 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3580 Node* thread_obj_handle 3581 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3582 thread_obj_handle = _gvn.transform(thread_obj_handle); 3583 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3584 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3585 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3586 return true; 3587 } 3588 3589 const Type* LibraryCallKit::scopedValueCache_type() { 3590 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3591 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3592 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3593 3594 // Because we create the scopedValue cache lazily we have to make the 3595 // type of the result BotPTR. 3596 bool xk = etype->klass_is_exact(); 3597 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3598 return objects_type; 3599 } 3600 3601 Node* LibraryCallKit::scopedValueCache_helper() { 3602 Node* thread = _gvn.transform(new ThreadLocalNode()); 3603 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3604 // We cannot use immutable_memory() because we might flip onto a 3605 // different carrier thread, at which point we'll need to use that 3606 // carrier thread's cache. 3607 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3608 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3609 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3610 } 3611 3612 //------------------------inline_native_scopedValueCache------------------ 3613 bool LibraryCallKit::inline_native_scopedValueCache() { 3614 Node* cache_obj_handle = scopedValueCache_helper(); 3615 const Type* objects_type = scopedValueCache_type(); 3616 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3617 3618 return true; 3619 } 3620 3621 //------------------------inline_native_setScopedValueCache------------------ 3622 bool LibraryCallKit::inline_native_setScopedValueCache() { 3623 Node* arr = argument(0); 3624 Node* cache_obj_handle = scopedValueCache_helper(); 3625 const Type* objects_type = scopedValueCache_type(); 3626 3627 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3628 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3629 3630 return true; 3631 } 3632 3633 //---------------------------load_mirror_from_klass---------------------------- 3634 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3635 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3636 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3637 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3638 // mirror = ((OopHandle)mirror)->resolve(); 3639 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3640 } 3641 3642 //-----------------------load_klass_from_mirror_common------------------------- 3643 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3644 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3645 // and branch to the given path on the region. 3646 // If never_see_null, take an uncommon trap on null, so we can optimistically 3647 // compile for the non-null case. 3648 // If the region is null, force never_see_null = true. 3649 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3650 bool never_see_null, 3651 RegionNode* region, 3652 int null_path, 3653 int offset) { 3654 if (region == nullptr) never_see_null = true; 3655 Node* p = basic_plus_adr(mirror, offset); 3656 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3657 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3658 Node* null_ctl = top(); 3659 kls = null_check_oop(kls, &null_ctl, never_see_null); 3660 if (region != nullptr) { 3661 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3662 region->init_req(null_path, null_ctl); 3663 } else { 3664 assert(null_ctl == top(), "no loose ends"); 3665 } 3666 return kls; 3667 } 3668 3669 //--------------------(inline_native_Class_query helpers)--------------------- 3670 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3671 // Fall through if (mods & mask) == bits, take the guard otherwise. 3672 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3673 // Branch around if the given klass has the given modifier bit set. 3674 // Like generate_guard, adds a new path onto the region. 3675 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3676 Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered); 3677 Node* mask = intcon(modifier_mask); 3678 Node* bits = intcon(modifier_bits); 3679 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3680 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3681 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3682 return generate_fair_guard(bol, region); 3683 } 3684 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3685 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3686 } 3687 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3688 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3689 } 3690 3691 //-------------------------inline_native_Class_query------------------- 3692 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3693 const Type* return_type = TypeInt::BOOL; 3694 Node* prim_return_value = top(); // what happens if it's a primitive class? 3695 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3696 bool expect_prim = false; // most of these guys expect to work on refs 3697 3698 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3699 3700 Node* mirror = argument(0); 3701 Node* obj = top(); 3702 3703 switch (id) { 3704 case vmIntrinsics::_isInstance: 3705 // nothing is an instance of a primitive type 3706 prim_return_value = intcon(0); 3707 obj = argument(1); 3708 break; 3709 case vmIntrinsics::_getModifiers: 3710 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3711 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3712 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3713 break; 3714 case vmIntrinsics::_isInterface: 3715 prim_return_value = intcon(0); 3716 break; 3717 case vmIntrinsics::_isArray: 3718 prim_return_value = intcon(0); 3719 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3720 break; 3721 case vmIntrinsics::_isPrimitive: 3722 prim_return_value = intcon(1); 3723 expect_prim = true; // obviously 3724 break; 3725 case vmIntrinsics::_isHidden: 3726 prim_return_value = intcon(0); 3727 break; 3728 case vmIntrinsics::_getSuperclass: 3729 prim_return_value = null(); 3730 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3731 break; 3732 case vmIntrinsics::_getClassAccessFlags: 3733 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3734 return_type = TypeInt::INT; // not bool! 6297094 3735 break; 3736 default: 3737 fatal_unexpected_iid(id); 3738 break; 3739 } 3740 3741 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3742 if (mirror_con == nullptr) return false; // cannot happen? 3743 3744 #ifndef PRODUCT 3745 if (C->print_intrinsics() || C->print_inlining()) { 3746 ciType* k = mirror_con->java_mirror_type(); 3747 if (k) { 3748 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3749 k->print_name(); 3750 tty->cr(); 3751 } 3752 } 3753 #endif 3754 3755 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3756 RegionNode* region = new RegionNode(PATH_LIMIT); 3757 record_for_igvn(region); 3758 PhiNode* phi = new PhiNode(region, return_type); 3759 3760 // The mirror will never be null of Reflection.getClassAccessFlags, however 3761 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3762 // if it is. See bug 4774291. 3763 3764 // For Reflection.getClassAccessFlags(), the null check occurs in 3765 // the wrong place; see inline_unsafe_access(), above, for a similar 3766 // situation. 3767 mirror = null_check(mirror); 3768 // If mirror or obj is dead, only null-path is taken. 3769 if (stopped()) return true; 3770 3771 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3772 3773 // Now load the mirror's klass metaobject, and null-check it. 3774 // Side-effects region with the control path if the klass is null. 3775 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3776 // If kls is null, we have a primitive mirror. 3777 phi->init_req(_prim_path, prim_return_value); 3778 if (stopped()) { set_result(region, phi); return true; } 3779 bool safe_for_replace = (region->in(_prim_path) == top()); 3780 3781 Node* p; // handy temp 3782 Node* null_ctl; 3783 3784 // Now that we have the non-null klass, we can perform the real query. 3785 // For constant classes, the query will constant-fold in LoadNode::Value. 3786 Node* query_value = top(); 3787 switch (id) { 3788 case vmIntrinsics::_isInstance: 3789 // nothing is an instance of a primitive type 3790 query_value = gen_instanceof(obj, kls, safe_for_replace); 3791 break; 3792 3793 case vmIntrinsics::_getModifiers: 3794 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3795 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3796 break; 3797 3798 case vmIntrinsics::_isInterface: 3799 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3800 if (generate_interface_guard(kls, region) != nullptr) 3801 // A guard was added. If the guard is taken, it was an interface. 3802 phi->add_req(intcon(1)); 3803 // If we fall through, it's a plain class. 3804 query_value = intcon(0); 3805 break; 3806 3807 case vmIntrinsics::_isArray: 3808 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3809 if (generate_array_guard(kls, region) != nullptr) 3810 // A guard was added. If the guard is taken, it was an array. 3811 phi->add_req(intcon(1)); 3812 // If we fall through, it's a plain class. 3813 query_value = intcon(0); 3814 break; 3815 3816 case vmIntrinsics::_isPrimitive: 3817 query_value = intcon(0); // "normal" path produces false 3818 break; 3819 3820 case vmIntrinsics::_isHidden: 3821 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3822 if (generate_hidden_class_guard(kls, region) != nullptr) 3823 // A guard was added. If the guard is taken, it was an hidden class. 3824 phi->add_req(intcon(1)); 3825 // If we fall through, it's a plain class. 3826 query_value = intcon(0); 3827 break; 3828 3829 3830 case vmIntrinsics::_getSuperclass: 3831 // The rules here are somewhat unfortunate, but we can still do better 3832 // with random logic than with a JNI call. 3833 // Interfaces store null or Object as _super, but must report null. 3834 // Arrays store an intermediate super as _super, but must report Object. 3835 // Other types can report the actual _super. 3836 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3837 if (generate_interface_guard(kls, region) != nullptr) 3838 // A guard was added. If the guard is taken, it was an interface. 3839 phi->add_req(null()); 3840 if (generate_array_guard(kls, region) != nullptr) 3841 // A guard was added. If the guard is taken, it was an array. 3842 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3843 // If we fall through, it's a plain class. Get its _super. 3844 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3845 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3846 null_ctl = top(); 3847 kls = null_check_oop(kls, &null_ctl); 3848 if (null_ctl != top()) { 3849 // If the guard is taken, Object.superClass is null (both klass and mirror). 3850 region->add_req(null_ctl); 3851 phi ->add_req(null()); 3852 } 3853 if (!stopped()) { 3854 query_value = load_mirror_from_klass(kls); 3855 } 3856 break; 3857 3858 case vmIntrinsics::_getClassAccessFlags: 3859 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3860 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3861 break; 3862 3863 default: 3864 fatal_unexpected_iid(id); 3865 break; 3866 } 3867 3868 // Fall-through is the normal case of a query to a real class. 3869 phi->init_req(1, query_value); 3870 region->init_req(1, control()); 3871 3872 C->set_has_split_ifs(true); // Has chance for split-if optimization 3873 set_result(region, phi); 3874 return true; 3875 } 3876 3877 //-------------------------inline_Class_cast------------------- 3878 bool LibraryCallKit::inline_Class_cast() { 3879 Node* mirror = argument(0); // Class 3880 Node* obj = argument(1); 3881 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3882 if (mirror_con == nullptr) { 3883 return false; // dead path (mirror->is_top()). 3884 } 3885 if (obj == nullptr || obj->is_top()) { 3886 return false; // dead path 3887 } 3888 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3889 3890 // First, see if Class.cast() can be folded statically. 3891 // java_mirror_type() returns non-null for compile-time Class constants. 3892 ciType* tm = mirror_con->java_mirror_type(); 3893 if (tm != nullptr && tm->is_klass() && 3894 tp != nullptr) { 3895 if (!tp->is_loaded()) { 3896 // Don't use intrinsic when class is not loaded. 3897 return false; 3898 } else { 3899 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 3900 if (static_res == Compile::SSC_always_true) { 3901 // isInstance() is true - fold the code. 3902 set_result(obj); 3903 return true; 3904 } else if (static_res == Compile::SSC_always_false) { 3905 // Don't use intrinsic, have to throw ClassCastException. 3906 // If the reference is null, the non-intrinsic bytecode will 3907 // be optimized appropriately. 3908 return false; 3909 } 3910 } 3911 } 3912 3913 // Bailout intrinsic and do normal inlining if exception path is frequent. 3914 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3915 return false; 3916 } 3917 3918 // Generate dynamic checks. 3919 // Class.cast() is java implementation of _checkcast bytecode. 3920 // Do checkcast (Parse::do_checkcast()) optimizations here. 3921 3922 mirror = null_check(mirror); 3923 // If mirror is dead, only null-path is taken. 3924 if (stopped()) { 3925 return true; 3926 } 3927 3928 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 3929 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3930 RegionNode* region = new RegionNode(PATH_LIMIT); 3931 record_for_igvn(region); 3932 3933 // Now load the mirror's klass metaobject, and null-check it. 3934 // If kls is null, we have a primitive mirror and 3935 // nothing is an instance of a primitive type. 3936 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3937 3938 Node* res = top(); 3939 if (!stopped()) { 3940 Node* bad_type_ctrl = top(); 3941 // Do checkcast optimizations. 3942 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3943 region->init_req(_bad_type_path, bad_type_ctrl); 3944 } 3945 if (region->in(_prim_path) != top() || 3946 region->in(_bad_type_path) != top()) { 3947 // Let Interpreter throw ClassCastException. 3948 PreserveJVMState pjvms(this); 3949 set_control(_gvn.transform(region)); 3950 uncommon_trap(Deoptimization::Reason_intrinsic, 3951 Deoptimization::Action_maybe_recompile); 3952 } 3953 if (!stopped()) { 3954 set_result(res); 3955 } 3956 return true; 3957 } 3958 3959 3960 //--------------------------inline_native_subtype_check------------------------ 3961 // This intrinsic takes the JNI calls out of the heart of 3962 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3963 bool LibraryCallKit::inline_native_subtype_check() { 3964 // Pull both arguments off the stack. 3965 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3966 args[0] = argument(0); 3967 args[1] = argument(1); 3968 Node* klasses[2]; // corresponding Klasses: superk, subk 3969 klasses[0] = klasses[1] = top(); 3970 3971 enum { 3972 // A full decision tree on {superc is prim, subc is prim}: 3973 _prim_0_path = 1, // {P,N} => false 3974 // {P,P} & superc!=subc => false 3975 _prim_same_path, // {P,P} & superc==subc => true 3976 _prim_1_path, // {N,P} => false 3977 _ref_subtype_path, // {N,N} & subtype check wins => true 3978 _both_ref_path, // {N,N} & subtype check loses => false 3979 PATH_LIMIT 3980 }; 3981 3982 RegionNode* region = new RegionNode(PATH_LIMIT); 3983 Node* phi = new PhiNode(region, TypeInt::BOOL); 3984 record_for_igvn(region); 3985 3986 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3987 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3988 int class_klass_offset = java_lang_Class::klass_offset(); 3989 3990 // First null-check both mirrors and load each mirror's klass metaobject. 3991 int which_arg; 3992 for (which_arg = 0; which_arg <= 1; which_arg++) { 3993 Node* arg = args[which_arg]; 3994 arg = null_check(arg); 3995 if (stopped()) break; 3996 args[which_arg] = arg; 3997 3998 Node* p = basic_plus_adr(arg, class_klass_offset); 3999 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4000 klasses[which_arg] = _gvn.transform(kls); 4001 } 4002 4003 // Having loaded both klasses, test each for null. 4004 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4005 for (which_arg = 0; which_arg <= 1; which_arg++) { 4006 Node* kls = klasses[which_arg]; 4007 Node* null_ctl = top(); 4008 kls = null_check_oop(kls, &null_ctl, never_see_null); 4009 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4010 region->init_req(prim_path, null_ctl); 4011 if (stopped()) break; 4012 klasses[which_arg] = kls; 4013 } 4014 4015 if (!stopped()) { 4016 // now we have two reference types, in klasses[0..1] 4017 Node* subk = klasses[1]; // the argument to isAssignableFrom 4018 Node* superk = klasses[0]; // the receiver 4019 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4020 // now we have a successful reference subtype check 4021 region->set_req(_ref_subtype_path, control()); 4022 } 4023 4024 // If both operands are primitive (both klasses null), then 4025 // we must return true when they are identical primitives. 4026 // It is convenient to test this after the first null klass check. 4027 set_control(region->in(_prim_0_path)); // go back to first null check 4028 if (!stopped()) { 4029 // Since superc is primitive, make a guard for the superc==subc case. 4030 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4031 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4032 generate_guard(bol_eq, region, PROB_FAIR); 4033 if (region->req() == PATH_LIMIT+1) { 4034 // A guard was added. If the added guard is taken, superc==subc. 4035 region->swap_edges(PATH_LIMIT, _prim_same_path); 4036 region->del_req(PATH_LIMIT); 4037 } 4038 region->set_req(_prim_0_path, control()); // Not equal after all. 4039 } 4040 4041 // these are the only paths that produce 'true': 4042 phi->set_req(_prim_same_path, intcon(1)); 4043 phi->set_req(_ref_subtype_path, intcon(1)); 4044 4045 // pull together the cases: 4046 assert(region->req() == PATH_LIMIT, "sane region"); 4047 for (uint i = 1; i < region->req(); i++) { 4048 Node* ctl = region->in(i); 4049 if (ctl == nullptr || ctl == top()) { 4050 region->set_req(i, top()); 4051 phi ->set_req(i, top()); 4052 } else if (phi->in(i) == nullptr) { 4053 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4054 } 4055 } 4056 4057 set_control(_gvn.transform(region)); 4058 set_result(_gvn.transform(phi)); 4059 return true; 4060 } 4061 4062 //---------------------generate_array_guard_common------------------------ 4063 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4064 bool obj_array, bool not_array) { 4065 4066 if (stopped()) { 4067 return nullptr; 4068 } 4069 4070 // If obj_array/non_array==false/false: 4071 // Branch around if the given klass is in fact an array (either obj or prim). 4072 // If obj_array/non_array==false/true: 4073 // Branch around if the given klass is not an array klass of any kind. 4074 // If obj_array/non_array==true/true: 4075 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4076 // If obj_array/non_array==true/false: 4077 // Branch around if the kls is an oop array (Object[] or subtype) 4078 // 4079 // Like generate_guard, adds a new path onto the region. 4080 jint layout_con = 0; 4081 Node* layout_val = get_layout_helper(kls, layout_con); 4082 if (layout_val == nullptr) { 4083 bool query = (obj_array 4084 ? Klass::layout_helper_is_objArray(layout_con) 4085 : Klass::layout_helper_is_array(layout_con)); 4086 if (query == not_array) { 4087 return nullptr; // never a branch 4088 } else { // always a branch 4089 Node* always_branch = control(); 4090 if (region != nullptr) 4091 region->add_req(always_branch); 4092 set_control(top()); 4093 return always_branch; 4094 } 4095 } 4096 // Now test the correct condition. 4097 jint nval = (obj_array 4098 ? (jint)(Klass::_lh_array_tag_type_value 4099 << Klass::_lh_array_tag_shift) 4100 : Klass::_lh_neutral_value); 4101 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4102 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4103 // invert the test if we are looking for a non-array 4104 if (not_array) btest = BoolTest(btest).negate(); 4105 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4106 return generate_fair_guard(bol, region); 4107 } 4108 4109 4110 //-----------------------inline_native_newArray-------------------------- 4111 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4112 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4113 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4114 Node* mirror; 4115 Node* count_val; 4116 if (uninitialized) { 4117 mirror = argument(1); 4118 count_val = argument(2); 4119 } else { 4120 mirror = argument(0); 4121 count_val = argument(1); 4122 } 4123 4124 mirror = null_check(mirror); 4125 // If mirror or obj is dead, only null-path is taken. 4126 if (stopped()) return true; 4127 4128 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4129 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4130 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4131 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4132 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4133 4134 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4135 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4136 result_reg, _slow_path); 4137 Node* normal_ctl = control(); 4138 Node* no_array_ctl = result_reg->in(_slow_path); 4139 4140 // Generate code for the slow case. We make a call to newArray(). 4141 set_control(no_array_ctl); 4142 if (!stopped()) { 4143 // Either the input type is void.class, or else the 4144 // array klass has not yet been cached. Either the 4145 // ensuing call will throw an exception, or else it 4146 // will cache the array klass for next time. 4147 PreserveJVMState pjvms(this); 4148 CallJavaNode* slow_call = nullptr; 4149 if (uninitialized) { 4150 // Generate optimized virtual call (holder class 'Unsafe' is final) 4151 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4152 } else { 4153 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4154 } 4155 Node* slow_result = set_results_for_java_call(slow_call); 4156 // this->control() comes from set_results_for_java_call 4157 result_reg->set_req(_slow_path, control()); 4158 result_val->set_req(_slow_path, slow_result); 4159 result_io ->set_req(_slow_path, i_o()); 4160 result_mem->set_req(_slow_path, reset_memory()); 4161 } 4162 4163 set_control(normal_ctl); 4164 if (!stopped()) { 4165 // Normal case: The array type has been cached in the java.lang.Class. 4166 // The following call works fine even if the array type is polymorphic. 4167 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4168 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4169 result_reg->init_req(_normal_path, control()); 4170 result_val->init_req(_normal_path, obj); 4171 result_io ->init_req(_normal_path, i_o()); 4172 result_mem->init_req(_normal_path, reset_memory()); 4173 4174 if (uninitialized) { 4175 // Mark the allocation so that zeroing is skipped 4176 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 4177 alloc->maybe_set_complete(&_gvn); 4178 } 4179 } 4180 4181 // Return the combined state. 4182 set_i_o( _gvn.transform(result_io) ); 4183 set_all_memory( _gvn.transform(result_mem)); 4184 4185 C->set_has_split_ifs(true); // Has chance for split-if optimization 4186 set_result(result_reg, result_val); 4187 return true; 4188 } 4189 4190 //----------------------inline_native_getLength-------------------------- 4191 // public static native int java.lang.reflect.Array.getLength(Object array); 4192 bool LibraryCallKit::inline_native_getLength() { 4193 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4194 4195 Node* array = null_check(argument(0)); 4196 // If array is dead, only null-path is taken. 4197 if (stopped()) return true; 4198 4199 // Deoptimize if it is a non-array. 4200 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4201 4202 if (non_array != nullptr) { 4203 PreserveJVMState pjvms(this); 4204 set_control(non_array); 4205 uncommon_trap(Deoptimization::Reason_intrinsic, 4206 Deoptimization::Action_maybe_recompile); 4207 } 4208 4209 // If control is dead, only non-array-path is taken. 4210 if (stopped()) return true; 4211 4212 // The works fine even if the array type is polymorphic. 4213 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4214 Node* result = load_array_length(array); 4215 4216 C->set_has_split_ifs(true); // Has chance for split-if optimization 4217 set_result(result); 4218 return true; 4219 } 4220 4221 //------------------------inline_array_copyOf---------------------------- 4222 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4223 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4224 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4225 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4226 4227 // Get the arguments. 4228 Node* original = argument(0); 4229 Node* start = is_copyOfRange? argument(1): intcon(0); 4230 Node* end = is_copyOfRange? argument(2): argument(1); 4231 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4232 4233 Node* newcopy = nullptr; 4234 4235 // Set the original stack and the reexecute bit for the interpreter to reexecute 4236 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4237 { PreserveReexecuteState preexecs(this); 4238 jvms()->set_should_reexecute(true); 4239 4240 array_type_mirror = null_check(array_type_mirror); 4241 original = null_check(original); 4242 4243 // Check if a null path was taken unconditionally. 4244 if (stopped()) return true; 4245 4246 Node* orig_length = load_array_length(original); 4247 4248 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4249 klass_node = null_check(klass_node); 4250 4251 RegionNode* bailout = new RegionNode(1); 4252 record_for_igvn(bailout); 4253 4254 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4255 // Bail out if that is so. 4256 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4257 if (not_objArray != nullptr) { 4258 // Improve the klass node's type from the new optimistic assumption: 4259 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4260 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4261 Node* cast = new CastPPNode(klass_node, akls); 4262 cast->init_req(0, control()); 4263 klass_node = _gvn.transform(cast); 4264 } 4265 4266 // Bail out if either start or end is negative. 4267 generate_negative_guard(start, bailout, &start); 4268 generate_negative_guard(end, bailout, &end); 4269 4270 Node* length = end; 4271 if (_gvn.type(start) != TypeInt::ZERO) { 4272 length = _gvn.transform(new SubINode(end, start)); 4273 } 4274 4275 // Bail out if length is negative. 4276 // Without this the new_array would throw 4277 // NegativeArraySizeException but IllegalArgumentException is what 4278 // should be thrown 4279 generate_negative_guard(length, bailout, &length); 4280 4281 if (bailout->req() > 1) { 4282 PreserveJVMState pjvms(this); 4283 set_control(_gvn.transform(bailout)); 4284 uncommon_trap(Deoptimization::Reason_intrinsic, 4285 Deoptimization::Action_maybe_recompile); 4286 } 4287 4288 if (!stopped()) { 4289 // How many elements will we copy from the original? 4290 // The answer is MinI(orig_length - start, length). 4291 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4292 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4293 4294 // Generate a direct call to the right arraycopy function(s). 4295 // We know the copy is disjoint but we might not know if the 4296 // oop stores need checking. 4297 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4298 // This will fail a store-check if x contains any non-nulls. 4299 4300 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4301 // loads/stores but it is legal only if we're sure the 4302 // Arrays.copyOf would succeed. So we need all input arguments 4303 // to the copyOf to be validated, including that the copy to the 4304 // new array won't trigger an ArrayStoreException. That subtype 4305 // check can be optimized if we know something on the type of 4306 // the input array from type speculation. 4307 if (_gvn.type(klass_node)->singleton()) { 4308 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4309 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4310 4311 int test = C->static_subtype_check(superk, subk); 4312 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4313 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4314 if (t_original->speculative_type() != nullptr) { 4315 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4316 } 4317 } 4318 } 4319 4320 bool validated = false; 4321 // Reason_class_check rather than Reason_intrinsic because we 4322 // want to intrinsify even if this traps. 4323 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4324 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4325 4326 if (not_subtype_ctrl != top()) { 4327 PreserveJVMState pjvms(this); 4328 set_control(not_subtype_ctrl); 4329 uncommon_trap(Deoptimization::Reason_class_check, 4330 Deoptimization::Action_make_not_entrant); 4331 assert(stopped(), "Should be stopped"); 4332 } 4333 validated = true; 4334 } 4335 4336 if (!stopped()) { 4337 newcopy = new_array(klass_node, length, 0); // no arguments to push 4338 4339 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 4340 load_object_klass(original), klass_node); 4341 if (!is_copyOfRange) { 4342 ac->set_copyof(validated); 4343 } else { 4344 ac->set_copyofrange(validated); 4345 } 4346 Node* n = _gvn.transform(ac); 4347 if (n == ac) { 4348 ac->connect_outputs(this); 4349 } else { 4350 assert(validated, "shouldn't transform if all arguments not validated"); 4351 set_all_memory(n); 4352 } 4353 } 4354 } 4355 } // original reexecute is set back here 4356 4357 C->set_has_split_ifs(true); // Has chance for split-if optimization 4358 if (!stopped()) { 4359 set_result(newcopy); 4360 } 4361 return true; 4362 } 4363 4364 4365 //----------------------generate_virtual_guard--------------------------- 4366 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4367 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4368 RegionNode* slow_region) { 4369 ciMethod* method = callee(); 4370 int vtable_index = method->vtable_index(); 4371 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4372 "bad index %d", vtable_index); 4373 // Get the Method* out of the appropriate vtable entry. 4374 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4375 vtable_index*vtableEntry::size_in_bytes() + 4376 in_bytes(vtableEntry::method_offset()); 4377 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4378 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4379 4380 // Compare the target method with the expected method (e.g., Object.hashCode). 4381 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4382 4383 Node* native_call = makecon(native_call_addr); 4384 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4385 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4386 4387 return generate_slow_guard(test_native, slow_region); 4388 } 4389 4390 //-----------------------generate_method_call---------------------------- 4391 // Use generate_method_call to make a slow-call to the real 4392 // method if the fast path fails. An alternative would be to 4393 // use a stub like OptoRuntime::slow_arraycopy_Java. 4394 // This only works for expanding the current library call, 4395 // not another intrinsic. (E.g., don't use this for making an 4396 // arraycopy call inside of the copyOf intrinsic.) 4397 CallJavaNode* 4398 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4399 // When compiling the intrinsic method itself, do not use this technique. 4400 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4401 4402 ciMethod* method = callee(); 4403 // ensure the JVMS we have will be correct for this call 4404 guarantee(method_id == method->intrinsic_id(), "must match"); 4405 4406 const TypeFunc* tf = TypeFunc::make(method); 4407 if (res_not_null) { 4408 assert(tf->return_type() == T_OBJECT, ""); 4409 const TypeTuple* range = tf->range(); 4410 const Type** fields = TypeTuple::fields(range->cnt()); 4411 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4412 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4413 tf = TypeFunc::make(tf->domain(), new_range); 4414 } 4415 CallJavaNode* slow_call; 4416 if (is_static) { 4417 assert(!is_virtual, ""); 4418 slow_call = new CallStaticJavaNode(C, tf, 4419 SharedRuntime::get_resolve_static_call_stub(), method); 4420 } else if (is_virtual) { 4421 null_check_receiver(); 4422 int vtable_index = Method::invalid_vtable_index; 4423 if (UseInlineCaches) { 4424 // Suppress the vtable call 4425 } else { 4426 // hashCode and clone are not a miranda methods, 4427 // so the vtable index is fixed. 4428 // No need to use the linkResolver to get it. 4429 vtable_index = method->vtable_index(); 4430 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4431 "bad index %d", vtable_index); 4432 } 4433 slow_call = new CallDynamicJavaNode(tf, 4434 SharedRuntime::get_resolve_virtual_call_stub(), 4435 method, vtable_index); 4436 } else { // neither virtual nor static: opt_virtual 4437 null_check_receiver(); 4438 slow_call = new CallStaticJavaNode(C, tf, 4439 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4440 slow_call->set_optimized_virtual(true); 4441 } 4442 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4443 // To be able to issue a direct call (optimized virtual or virtual) 4444 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4445 // about the method being invoked should be attached to the call site to 4446 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4447 slow_call->set_override_symbolic_info(true); 4448 } 4449 set_arguments_for_java_call(slow_call); 4450 set_edges_for_java_call(slow_call); 4451 return slow_call; 4452 } 4453 4454 4455 /** 4456 * Build special case code for calls to hashCode on an object. This call may 4457 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4458 * slightly different code. 4459 */ 4460 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4461 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4462 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4463 4464 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4465 4466 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4467 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4468 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4469 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4470 Node* obj = nullptr; 4471 if (!is_static) { 4472 // Check for hashing null object 4473 obj = null_check_receiver(); 4474 if (stopped()) return true; // unconditionally null 4475 result_reg->init_req(_null_path, top()); 4476 result_val->init_req(_null_path, top()); 4477 } else { 4478 // Do a null check, and return zero if null. 4479 // System.identityHashCode(null) == 0 4480 obj = argument(0); 4481 Node* null_ctl = top(); 4482 obj = null_check_oop(obj, &null_ctl); 4483 result_reg->init_req(_null_path, null_ctl); 4484 result_val->init_req(_null_path, _gvn.intcon(0)); 4485 } 4486 4487 // Unconditionally null? Then return right away. 4488 if (stopped()) { 4489 set_control( result_reg->in(_null_path)); 4490 if (!stopped()) 4491 set_result(result_val->in(_null_path)); 4492 return true; 4493 } 4494 4495 // We only go to the fast case code if we pass a number of guards. The 4496 // paths which do not pass are accumulated in the slow_region. 4497 RegionNode* slow_region = new RegionNode(1); 4498 record_for_igvn(slow_region); 4499 4500 // If this is a virtual call, we generate a funny guard. We pull out 4501 // the vtable entry corresponding to hashCode() from the target object. 4502 // If the target method which we are calling happens to be the native 4503 // Object hashCode() method, we pass the guard. We do not need this 4504 // guard for non-virtual calls -- the caller is known to be the native 4505 // Object hashCode(). 4506 if (is_virtual) { 4507 // After null check, get the object's klass. 4508 Node* obj_klass = load_object_klass(obj); 4509 generate_virtual_guard(obj_klass, slow_region); 4510 } 4511 4512 // Get the header out of the object, use LoadMarkNode when available 4513 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4514 // The control of the load must be null. Otherwise, the load can move before 4515 // the null check after castPP removal. 4516 Node* no_ctrl = nullptr; 4517 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4518 4519 // Test the header to see if it is unlocked. 4520 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4521 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4522 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4523 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 4524 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 4525 4526 generate_slow_guard(test_unlocked, slow_region); 4527 4528 // Get the hash value and check to see that it has been properly assigned. 4529 // We depend on hash_mask being at most 32 bits and avoid the use of 4530 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4531 // vm: see markWord.hpp. 4532 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4533 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4534 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4535 // This hack lets the hash bits live anywhere in the mark object now, as long 4536 // as the shift drops the relevant bits into the low 32 bits. Note that 4537 // Java spec says that HashCode is an int so there's no point in capturing 4538 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4539 hshifted_header = ConvX2I(hshifted_header); 4540 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4541 4542 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4543 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4544 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4545 4546 generate_slow_guard(test_assigned, slow_region); 4547 4548 Node* init_mem = reset_memory(); 4549 // fill in the rest of the null path: 4550 result_io ->init_req(_null_path, i_o()); 4551 result_mem->init_req(_null_path, init_mem); 4552 4553 result_val->init_req(_fast_path, hash_val); 4554 result_reg->init_req(_fast_path, control()); 4555 result_io ->init_req(_fast_path, i_o()); 4556 result_mem->init_req(_fast_path, init_mem); 4557 4558 // Generate code for the slow case. We make a call to hashCode(). 4559 set_control(_gvn.transform(slow_region)); 4560 if (!stopped()) { 4561 // No need for PreserveJVMState, because we're using up the present state. 4562 set_all_memory(init_mem); 4563 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4564 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4565 Node* slow_result = set_results_for_java_call(slow_call); 4566 // this->control() comes from set_results_for_java_call 4567 result_reg->init_req(_slow_path, control()); 4568 result_val->init_req(_slow_path, slow_result); 4569 result_io ->set_req(_slow_path, i_o()); 4570 result_mem ->set_req(_slow_path, reset_memory()); 4571 } 4572 4573 // Return the combined state. 4574 set_i_o( _gvn.transform(result_io) ); 4575 set_all_memory( _gvn.transform(result_mem)); 4576 4577 set_result(result_reg, result_val); 4578 return true; 4579 } 4580 4581 //---------------------------inline_native_getClass---------------------------- 4582 // public final native Class<?> java.lang.Object.getClass(); 4583 // 4584 // Build special case code for calls to getClass on an object. 4585 bool LibraryCallKit::inline_native_getClass() { 4586 Node* obj = null_check_receiver(); 4587 if (stopped()) return true; 4588 set_result(load_mirror_from_klass(load_object_klass(obj))); 4589 return true; 4590 } 4591 4592 //-----------------inline_native_Reflection_getCallerClass--------------------- 4593 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4594 // 4595 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4596 // 4597 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4598 // in that it must skip particular security frames and checks for 4599 // caller sensitive methods. 4600 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4601 #ifndef PRODUCT 4602 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4603 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4604 } 4605 #endif 4606 4607 if (!jvms()->has_method()) { 4608 #ifndef PRODUCT 4609 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4610 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4611 } 4612 #endif 4613 return false; 4614 } 4615 4616 // Walk back up the JVM state to find the caller at the required 4617 // depth. 4618 JVMState* caller_jvms = jvms(); 4619 4620 // Cf. JVM_GetCallerClass 4621 // NOTE: Start the loop at depth 1 because the current JVM state does 4622 // not include the Reflection.getCallerClass() frame. 4623 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4624 ciMethod* m = caller_jvms->method(); 4625 switch (n) { 4626 case 0: 4627 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4628 break; 4629 case 1: 4630 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4631 if (!m->caller_sensitive()) { 4632 #ifndef PRODUCT 4633 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4634 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4635 } 4636 #endif 4637 return false; // bail-out; let JVM_GetCallerClass do the work 4638 } 4639 break; 4640 default: 4641 if (!m->is_ignored_by_security_stack_walk()) { 4642 // We have reached the desired frame; return the holder class. 4643 // Acquire method holder as java.lang.Class and push as constant. 4644 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4645 ciInstance* caller_mirror = caller_klass->java_mirror(); 4646 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4647 4648 #ifndef PRODUCT 4649 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4650 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4651 tty->print_cr(" JVM state at this point:"); 4652 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4653 ciMethod* m = jvms()->of_depth(i)->method(); 4654 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4655 } 4656 } 4657 #endif 4658 return true; 4659 } 4660 break; 4661 } 4662 } 4663 4664 #ifndef PRODUCT 4665 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4666 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4667 tty->print_cr(" JVM state at this point:"); 4668 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4669 ciMethod* m = jvms()->of_depth(i)->method(); 4670 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4671 } 4672 } 4673 #endif 4674 4675 return false; // bail-out; let JVM_GetCallerClass do the work 4676 } 4677 4678 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4679 Node* arg = argument(0); 4680 Node* result = nullptr; 4681 4682 switch (id) { 4683 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4684 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4685 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4686 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4687 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4688 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4689 4690 case vmIntrinsics::_doubleToLongBits: { 4691 // two paths (plus control) merge in a wood 4692 RegionNode *r = new RegionNode(3); 4693 Node *phi = new PhiNode(r, TypeLong::LONG); 4694 4695 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4696 // Build the boolean node 4697 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4698 4699 // Branch either way. 4700 // NaN case is less traveled, which makes all the difference. 4701 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4702 Node *opt_isnan = _gvn.transform(ifisnan); 4703 assert( opt_isnan->is_If(), "Expect an IfNode"); 4704 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4705 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4706 4707 set_control(iftrue); 4708 4709 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4710 Node *slow_result = longcon(nan_bits); // return NaN 4711 phi->init_req(1, _gvn.transform( slow_result )); 4712 r->init_req(1, iftrue); 4713 4714 // Else fall through 4715 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4716 set_control(iffalse); 4717 4718 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4719 r->init_req(2, iffalse); 4720 4721 // Post merge 4722 set_control(_gvn.transform(r)); 4723 record_for_igvn(r); 4724 4725 C->set_has_split_ifs(true); // Has chance for split-if optimization 4726 result = phi; 4727 assert(result->bottom_type()->isa_long(), "must be"); 4728 break; 4729 } 4730 4731 case vmIntrinsics::_floatToIntBits: { 4732 // two paths (plus control) merge in a wood 4733 RegionNode *r = new RegionNode(3); 4734 Node *phi = new PhiNode(r, TypeInt::INT); 4735 4736 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4737 // Build the boolean node 4738 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4739 4740 // Branch either way. 4741 // NaN case is less traveled, which makes all the difference. 4742 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4743 Node *opt_isnan = _gvn.transform(ifisnan); 4744 assert( opt_isnan->is_If(), "Expect an IfNode"); 4745 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4746 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4747 4748 set_control(iftrue); 4749 4750 static const jint nan_bits = 0x7fc00000; 4751 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4752 phi->init_req(1, _gvn.transform( slow_result )); 4753 r->init_req(1, iftrue); 4754 4755 // Else fall through 4756 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4757 set_control(iffalse); 4758 4759 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4760 r->init_req(2, iffalse); 4761 4762 // Post merge 4763 set_control(_gvn.transform(r)); 4764 record_for_igvn(r); 4765 4766 C->set_has_split_ifs(true); // Has chance for split-if optimization 4767 result = phi; 4768 assert(result->bottom_type()->isa_int(), "must be"); 4769 break; 4770 } 4771 4772 default: 4773 fatal_unexpected_iid(id); 4774 break; 4775 } 4776 set_result(_gvn.transform(result)); 4777 return true; 4778 } 4779 4780 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4781 Node* arg = argument(0); 4782 Node* result = nullptr; 4783 4784 switch (id) { 4785 case vmIntrinsics::_floatIsInfinite: 4786 result = new IsInfiniteFNode(arg); 4787 break; 4788 case vmIntrinsics::_floatIsFinite: 4789 result = new IsFiniteFNode(arg); 4790 break; 4791 case vmIntrinsics::_doubleIsInfinite: 4792 result = new IsInfiniteDNode(arg); 4793 break; 4794 case vmIntrinsics::_doubleIsFinite: 4795 result = new IsFiniteDNode(arg); 4796 break; 4797 default: 4798 fatal_unexpected_iid(id); 4799 break; 4800 } 4801 set_result(_gvn.transform(result)); 4802 return true; 4803 } 4804 4805 //----------------------inline_unsafe_copyMemory------------------------- 4806 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4807 4808 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 4809 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 4810 const Type* base_t = gvn.type(base); 4811 4812 bool in_native = (base_t == TypePtr::NULL_PTR); 4813 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 4814 bool is_mixed = !in_heap && !in_native; 4815 4816 if (is_mixed) { 4817 return true; // mixed accesses can touch both on-heap and off-heap memory 4818 } 4819 if (in_heap) { 4820 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 4821 if (!is_prim_array) { 4822 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 4823 // there's not enough type information available to determine proper memory slice for it. 4824 return true; 4825 } 4826 } 4827 return false; 4828 } 4829 4830 bool LibraryCallKit::inline_unsafe_copyMemory() { 4831 if (callee()->is_static()) return false; // caller must have the capability! 4832 null_check_receiver(); // null-check receiver 4833 if (stopped()) return true; 4834 4835 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4836 4837 Node* src_base = argument(1); // type: oop 4838 Node* src_off = ConvL2X(argument(2)); // type: long 4839 Node* dst_base = argument(4); // type: oop 4840 Node* dst_off = ConvL2X(argument(5)); // type: long 4841 Node* size = ConvL2X(argument(7)); // type: long 4842 4843 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4844 "fieldOffset must be byte-scaled"); 4845 4846 Node* src_addr = make_unsafe_address(src_base, src_off); 4847 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 4848 4849 Node* thread = _gvn.transform(new ThreadLocalNode()); 4850 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4851 BasicType doing_unsafe_access_bt = T_BYTE; 4852 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4853 4854 // update volatile field 4855 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4856 4857 int flags = RC_LEAF | RC_NO_FP; 4858 4859 const TypePtr* dst_type = TypePtr::BOTTOM; 4860 4861 // Adjust memory effects of the runtime call based on input values. 4862 if (!has_wide_mem(_gvn, src_addr, src_base) && 4863 !has_wide_mem(_gvn, dst_addr, dst_base)) { 4864 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 4865 4866 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 4867 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 4868 flags |= RC_NARROW_MEM; // narrow in memory 4869 } 4870 } 4871 4872 // Call it. Note that the length argument is not scaled. 4873 make_runtime_call(flags, 4874 OptoRuntime::fast_arraycopy_Type(), 4875 StubRoutines::unsafe_arraycopy(), 4876 "unsafe_arraycopy", 4877 dst_type, 4878 src_addr, dst_addr, size XTOP); 4879 4880 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4881 4882 return true; 4883 } 4884 4885 #undef XTOP 4886 4887 //------------------------clone_coping----------------------------------- 4888 // Helper function for inline_native_clone. 4889 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4890 assert(obj_size != nullptr, ""); 4891 Node* raw_obj = alloc_obj->in(1); 4892 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4893 4894 AllocateNode* alloc = nullptr; 4895 if (ReduceBulkZeroing) { 4896 // We will be completely responsible for initializing this object - 4897 // mark Initialize node as complete. 4898 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4899 // The object was just allocated - there should be no any stores! 4900 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 4901 // Mark as complete_with_arraycopy so that on AllocateNode 4902 // expansion, we know this AllocateNode is initialized by an array 4903 // copy and a StoreStore barrier exists after the array copy. 4904 alloc->initialization()->set_complete_with_arraycopy(); 4905 } 4906 4907 Node* size = _gvn.transform(obj_size); 4908 access_clone(obj, alloc_obj, size, is_array); 4909 4910 // Do not let reads from the cloned object float above the arraycopy. 4911 if (alloc != nullptr) { 4912 // Do not let stores that initialize this object be reordered with 4913 // a subsequent store that would make this object accessible by 4914 // other threads. 4915 // Record what AllocateNode this StoreStore protects so that 4916 // escape analysis can go from the MemBarStoreStoreNode to the 4917 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4918 // based on the escape status of the AllocateNode. 4919 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4920 } else { 4921 insert_mem_bar(Op_MemBarCPUOrder); 4922 } 4923 } 4924 4925 //------------------------inline_native_clone---------------------------- 4926 // protected native Object java.lang.Object.clone(); 4927 // 4928 // Here are the simple edge cases: 4929 // null receiver => normal trap 4930 // virtual and clone was overridden => slow path to out-of-line clone 4931 // not cloneable or finalizer => slow path to out-of-line Object.clone 4932 // 4933 // The general case has two steps, allocation and copying. 4934 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4935 // 4936 // Copying also has two cases, oop arrays and everything else. 4937 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4938 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4939 // 4940 // These steps fold up nicely if and when the cloned object's klass 4941 // can be sharply typed as an object array, a type array, or an instance. 4942 // 4943 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4944 PhiNode* result_val; 4945 4946 // Set the reexecute bit for the interpreter to reexecute 4947 // the bytecode that invokes Object.clone if deoptimization happens. 4948 { PreserveReexecuteState preexecs(this); 4949 jvms()->set_should_reexecute(true); 4950 4951 Node* obj = null_check_receiver(); 4952 if (stopped()) return true; 4953 4954 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4955 4956 // If we are going to clone an instance, we need its exact type to 4957 // know the number and types of fields to convert the clone to 4958 // loads/stores. Maybe a speculative type can help us. 4959 if (!obj_type->klass_is_exact() && 4960 obj_type->speculative_type() != nullptr && 4961 obj_type->speculative_type()->is_instance_klass()) { 4962 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4963 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4964 !spec_ik->has_injected_fields()) { 4965 if (!obj_type->isa_instptr() || 4966 obj_type->is_instptr()->instance_klass()->has_subklass()) { 4967 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4968 } 4969 } 4970 } 4971 4972 // Conservatively insert a memory barrier on all memory slices. 4973 // Do not let writes into the original float below the clone. 4974 insert_mem_bar(Op_MemBarCPUOrder); 4975 4976 // paths into result_reg: 4977 enum { 4978 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4979 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4980 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4981 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4982 PATH_LIMIT 4983 }; 4984 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4985 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4986 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4987 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4988 record_for_igvn(result_reg); 4989 4990 Node* obj_klass = load_object_klass(obj); 4991 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 4992 if (array_ctl != nullptr) { 4993 // It's an array. 4994 PreserveJVMState pjvms(this); 4995 set_control(array_ctl); 4996 Node* obj_length = load_array_length(obj); 4997 Node* array_size = nullptr; // Size of the array without object alignment padding. 4998 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 4999 5000 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5001 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5002 // If it is an oop array, it requires very special treatment, 5003 // because gc barriers are required when accessing the array. 5004 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5005 if (is_obja != nullptr) { 5006 PreserveJVMState pjvms2(this); 5007 set_control(is_obja); 5008 // Generate a direct call to the right arraycopy function(s). 5009 // Clones are always tightly coupled. 5010 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5011 ac->set_clone_oop_array(); 5012 Node* n = _gvn.transform(ac); 5013 assert(n == ac, "cannot disappear"); 5014 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5015 5016 result_reg->init_req(_objArray_path, control()); 5017 result_val->init_req(_objArray_path, alloc_obj); 5018 result_i_o ->set_req(_objArray_path, i_o()); 5019 result_mem ->set_req(_objArray_path, reset_memory()); 5020 } 5021 } 5022 // Otherwise, there are no barriers to worry about. 5023 // (We can dispense with card marks if we know the allocation 5024 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5025 // causes the non-eden paths to take compensating steps to 5026 // simulate a fresh allocation, so that no further 5027 // card marks are required in compiled code to initialize 5028 // the object.) 5029 5030 if (!stopped()) { 5031 copy_to_clone(obj, alloc_obj, array_size, true); 5032 5033 // Present the results of the copy. 5034 result_reg->init_req(_array_path, control()); 5035 result_val->init_req(_array_path, alloc_obj); 5036 result_i_o ->set_req(_array_path, i_o()); 5037 result_mem ->set_req(_array_path, reset_memory()); 5038 } 5039 } 5040 5041 // We only go to the instance fast case code if we pass a number of guards. 5042 // The paths which do not pass are accumulated in the slow_region. 5043 RegionNode* slow_region = new RegionNode(1); 5044 record_for_igvn(slow_region); 5045 if (!stopped()) { 5046 // It's an instance (we did array above). Make the slow-path tests. 5047 // If this is a virtual call, we generate a funny guard. We grab 5048 // the vtable entry corresponding to clone() from the target object. 5049 // If the target method which we are calling happens to be the 5050 // Object clone() method, we pass the guard. We do not need this 5051 // guard for non-virtual calls; the caller is known to be the native 5052 // Object clone(). 5053 if (is_virtual) { 5054 generate_virtual_guard(obj_klass, slow_region); 5055 } 5056 5057 // The object must be easily cloneable and must not have a finalizer. 5058 // Both of these conditions may be checked in a single test. 5059 // We could optimize the test further, but we don't care. 5060 generate_access_flags_guard(obj_klass, 5061 // Test both conditions: 5062 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 5063 // Must be cloneable but not finalizer: 5064 JVM_ACC_IS_CLONEABLE_FAST, 5065 slow_region); 5066 } 5067 5068 if (!stopped()) { 5069 // It's an instance, and it passed the slow-path tests. 5070 PreserveJVMState pjvms(this); 5071 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5072 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5073 // is reexecuted if deoptimization occurs and there could be problems when merging 5074 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5075 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5076 5077 copy_to_clone(obj, alloc_obj, obj_size, false); 5078 5079 // Present the results of the slow call. 5080 result_reg->init_req(_instance_path, control()); 5081 result_val->init_req(_instance_path, alloc_obj); 5082 result_i_o ->set_req(_instance_path, i_o()); 5083 result_mem ->set_req(_instance_path, reset_memory()); 5084 } 5085 5086 // Generate code for the slow case. We make a call to clone(). 5087 set_control(_gvn.transform(slow_region)); 5088 if (!stopped()) { 5089 PreserveJVMState pjvms(this); 5090 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5091 // We need to deoptimize on exception (see comment above) 5092 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5093 // this->control() comes from set_results_for_java_call 5094 result_reg->init_req(_slow_path, control()); 5095 result_val->init_req(_slow_path, slow_result); 5096 result_i_o ->set_req(_slow_path, i_o()); 5097 result_mem ->set_req(_slow_path, reset_memory()); 5098 } 5099 5100 // Return the combined state. 5101 set_control( _gvn.transform(result_reg)); 5102 set_i_o( _gvn.transform(result_i_o)); 5103 set_all_memory( _gvn.transform(result_mem)); 5104 } // original reexecute is set back here 5105 5106 set_result(_gvn.transform(result_val)); 5107 return true; 5108 } 5109 5110 // If we have a tightly coupled allocation, the arraycopy may take care 5111 // of the array initialization. If one of the guards we insert between 5112 // the allocation and the arraycopy causes a deoptimization, an 5113 // uninitialized array will escape the compiled method. To prevent that 5114 // we set the JVM state for uncommon traps between the allocation and 5115 // the arraycopy to the state before the allocation so, in case of 5116 // deoptimization, we'll reexecute the allocation and the 5117 // initialization. 5118 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5119 if (alloc != nullptr) { 5120 ciMethod* trap_method = alloc->jvms()->method(); 5121 int trap_bci = alloc->jvms()->bci(); 5122 5123 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5124 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5125 // Make sure there's no store between the allocation and the 5126 // arraycopy otherwise visible side effects could be rexecuted 5127 // in case of deoptimization and cause incorrect execution. 5128 bool no_interfering_store = true; 5129 Node* mem = alloc->in(TypeFunc::Memory); 5130 if (mem->is_MergeMem()) { 5131 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5132 Node* n = mms.memory(); 5133 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5134 assert(n->is_Store(), "what else?"); 5135 no_interfering_store = false; 5136 break; 5137 } 5138 } 5139 } else { 5140 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5141 Node* n = mms.memory(); 5142 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5143 assert(n->is_Store(), "what else?"); 5144 no_interfering_store = false; 5145 break; 5146 } 5147 } 5148 } 5149 5150 if (no_interfering_store) { 5151 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5152 5153 JVMState* saved_jvms = jvms(); 5154 saved_reexecute_sp = _reexecute_sp; 5155 5156 set_jvms(sfpt->jvms()); 5157 _reexecute_sp = jvms()->sp(); 5158 5159 return saved_jvms; 5160 } 5161 } 5162 } 5163 return nullptr; 5164 } 5165 5166 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5167 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5168 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5169 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5170 uint size = alloc->req(); 5171 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5172 old_jvms->set_map(sfpt); 5173 for (uint i = 0; i < size; i++) { 5174 sfpt->init_req(i, alloc->in(i)); 5175 } 5176 // re-push array length for deoptimization 5177 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5178 old_jvms->set_sp(old_jvms->sp()+1); 5179 old_jvms->set_monoff(old_jvms->monoff()+1); 5180 old_jvms->set_scloff(old_jvms->scloff()+1); 5181 old_jvms->set_endoff(old_jvms->endoff()+1); 5182 old_jvms->set_should_reexecute(true); 5183 5184 sfpt->set_i_o(map()->i_o()); 5185 sfpt->set_memory(map()->memory()); 5186 sfpt->set_control(map()->control()); 5187 return sfpt; 5188 } 5189 5190 // In case of a deoptimization, we restart execution at the 5191 // allocation, allocating a new array. We would leave an uninitialized 5192 // array in the heap that GCs wouldn't expect. Move the allocation 5193 // after the traps so we don't allocate the array if we 5194 // deoptimize. This is possible because tightly_coupled_allocation() 5195 // guarantees there's no observer of the allocated array at this point 5196 // and the control flow is simple enough. 5197 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5198 int saved_reexecute_sp, uint new_idx) { 5199 if (saved_jvms_before_guards != nullptr && !stopped()) { 5200 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5201 5202 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5203 // restore JVM state to the state at the arraycopy 5204 saved_jvms_before_guards->map()->set_control(map()->control()); 5205 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5206 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5207 // If we've improved the types of some nodes (null check) while 5208 // emitting the guards, propagate them to the current state 5209 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5210 set_jvms(saved_jvms_before_guards); 5211 _reexecute_sp = saved_reexecute_sp; 5212 5213 // Remove the allocation from above the guards 5214 CallProjections callprojs; 5215 alloc->extract_projections(&callprojs, true); 5216 InitializeNode* init = alloc->initialization(); 5217 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5218 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5219 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5220 5221 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5222 // the allocation (i.e. is only valid if the allocation succeeds): 5223 // 1) replace CastIINode with AllocateArrayNode's length here 5224 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5225 // 5226 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5227 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5228 Node* init_control = init->proj_out(TypeFunc::Control); 5229 Node* alloc_length = alloc->Ideal_length(); 5230 #ifdef ASSERT 5231 Node* prev_cast = nullptr; 5232 #endif 5233 for (uint i = 0; i < init_control->outcnt(); i++) { 5234 Node* init_out = init_control->raw_out(i); 5235 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5236 #ifdef ASSERT 5237 if (prev_cast == nullptr) { 5238 prev_cast = init_out; 5239 } else { 5240 if (prev_cast->cmp(*init_out) == false) { 5241 prev_cast->dump(); 5242 init_out->dump(); 5243 assert(false, "not equal CastIINode"); 5244 } 5245 } 5246 #endif 5247 C->gvn_replace_by(init_out, alloc_length); 5248 } 5249 } 5250 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5251 5252 // move the allocation here (after the guards) 5253 _gvn.hash_delete(alloc); 5254 alloc->set_req(TypeFunc::Control, control()); 5255 alloc->set_req(TypeFunc::I_O, i_o()); 5256 Node *mem = reset_memory(); 5257 set_all_memory(mem); 5258 alloc->set_req(TypeFunc::Memory, mem); 5259 set_control(init->proj_out_or_null(TypeFunc::Control)); 5260 set_i_o(callprojs.fallthrough_ioproj); 5261 5262 // Update memory as done in GraphKit::set_output_for_allocation() 5263 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5264 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5265 if (ary_type->isa_aryptr() && length_type != nullptr) { 5266 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5267 } 5268 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5269 int elemidx = C->get_alias_index(telemref); 5270 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5271 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5272 5273 Node* allocx = _gvn.transform(alloc); 5274 assert(allocx == alloc, "where has the allocation gone?"); 5275 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5276 5277 _gvn.hash_delete(dest); 5278 dest->set_req(0, control()); 5279 Node* destx = _gvn.transform(dest); 5280 assert(destx == dest, "where has the allocation result gone?"); 5281 5282 array_ideal_length(alloc, ary_type, true); 5283 } 5284 } 5285 5286 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5287 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5288 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5289 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5290 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5291 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5292 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5293 JVMState* saved_jvms_before_guards) { 5294 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5295 // There is at least one unrelated uncommon trap which needs to be replaced. 5296 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5297 5298 JVMState* saved_jvms = jvms(); 5299 const int saved_reexecute_sp = _reexecute_sp; 5300 set_jvms(sfpt->jvms()); 5301 _reexecute_sp = jvms()->sp(); 5302 5303 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5304 5305 // Restore state 5306 set_jvms(saved_jvms); 5307 _reexecute_sp = saved_reexecute_sp; 5308 } 5309 } 5310 5311 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5312 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5313 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5314 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5315 while (if_proj->is_IfProj()) { 5316 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5317 if (uncommon_trap != nullptr) { 5318 create_new_uncommon_trap(uncommon_trap); 5319 } 5320 assert(if_proj->in(0)->is_If(), "must be If"); 5321 if_proj = if_proj->in(0)->in(0); 5322 } 5323 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5324 "must have reached control projection of init node"); 5325 } 5326 5327 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5328 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5329 assert(trap_request != 0, "no valid UCT trap request"); 5330 PreserveJVMState pjvms(this); 5331 set_control(uncommon_trap_call->in(0)); 5332 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5333 Deoptimization::trap_request_action(trap_request)); 5334 assert(stopped(), "Should be stopped"); 5335 _gvn.hash_delete(uncommon_trap_call); 5336 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5337 } 5338 5339 //------------------------------inline_arraycopy----------------------- 5340 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5341 // Object dest, int destPos, 5342 // int length); 5343 bool LibraryCallKit::inline_arraycopy() { 5344 // Get the arguments. 5345 Node* src = argument(0); // type: oop 5346 Node* src_offset = argument(1); // type: int 5347 Node* dest = argument(2); // type: oop 5348 Node* dest_offset = argument(3); // type: int 5349 Node* length = argument(4); // type: int 5350 5351 uint new_idx = C->unique(); 5352 5353 // Check for allocation before we add nodes that would confuse 5354 // tightly_coupled_allocation() 5355 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5356 5357 int saved_reexecute_sp = -1; 5358 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5359 // See arraycopy_restore_alloc_state() comment 5360 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5361 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5362 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5363 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5364 5365 // The following tests must be performed 5366 // (1) src and dest are arrays. 5367 // (2) src and dest arrays must have elements of the same BasicType 5368 // (3) src and dest must not be null. 5369 // (4) src_offset must not be negative. 5370 // (5) dest_offset must not be negative. 5371 // (6) length must not be negative. 5372 // (7) src_offset + length must not exceed length of src. 5373 // (8) dest_offset + length must not exceed length of dest. 5374 // (9) each element of an oop array must be assignable 5375 5376 // (3) src and dest must not be null. 5377 // always do this here because we need the JVM state for uncommon traps 5378 Node* null_ctl = top(); 5379 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5380 assert(null_ctl->is_top(), "no null control here"); 5381 dest = null_check(dest, T_ARRAY); 5382 5383 if (!can_emit_guards) { 5384 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5385 // guards but the arraycopy node could still take advantage of a 5386 // tightly allocated allocation. tightly_coupled_allocation() is 5387 // called again to make sure it takes the null check above into 5388 // account: the null check is mandatory and if it caused an 5389 // uncommon trap to be emitted then the allocation can't be 5390 // considered tightly coupled in this context. 5391 alloc = tightly_coupled_allocation(dest); 5392 } 5393 5394 bool validated = false; 5395 5396 const Type* src_type = _gvn.type(src); 5397 const Type* dest_type = _gvn.type(dest); 5398 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5399 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5400 5401 // Do we have the type of src? 5402 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5403 // Do we have the type of dest? 5404 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5405 // Is the type for src from speculation? 5406 bool src_spec = false; 5407 // Is the type for dest from speculation? 5408 bool dest_spec = false; 5409 5410 if ((!has_src || !has_dest) && can_emit_guards) { 5411 // We don't have sufficient type information, let's see if 5412 // speculative types can help. We need to have types for both src 5413 // and dest so that it pays off. 5414 5415 // Do we already have or could we have type information for src 5416 bool could_have_src = has_src; 5417 // Do we already have or could we have type information for dest 5418 bool could_have_dest = has_dest; 5419 5420 ciKlass* src_k = nullptr; 5421 if (!has_src) { 5422 src_k = src_type->speculative_type_not_null(); 5423 if (src_k != nullptr && src_k->is_array_klass()) { 5424 could_have_src = true; 5425 } 5426 } 5427 5428 ciKlass* dest_k = nullptr; 5429 if (!has_dest) { 5430 dest_k = dest_type->speculative_type_not_null(); 5431 if (dest_k != nullptr && dest_k->is_array_klass()) { 5432 could_have_dest = true; 5433 } 5434 } 5435 5436 if (could_have_src && could_have_dest) { 5437 // This is going to pay off so emit the required guards 5438 if (!has_src) { 5439 src = maybe_cast_profiled_obj(src, src_k, true); 5440 src_type = _gvn.type(src); 5441 top_src = src_type->isa_aryptr(); 5442 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5443 src_spec = true; 5444 } 5445 if (!has_dest) { 5446 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5447 dest_type = _gvn.type(dest); 5448 top_dest = dest_type->isa_aryptr(); 5449 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5450 dest_spec = true; 5451 } 5452 } 5453 } 5454 5455 if (has_src && has_dest && can_emit_guards) { 5456 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5457 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5458 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5459 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5460 5461 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5462 // If both arrays are object arrays then having the exact types 5463 // for both will remove the need for a subtype check at runtime 5464 // before the call and may make it possible to pick a faster copy 5465 // routine (without a subtype check on every element) 5466 // Do we have the exact type of src? 5467 bool could_have_src = src_spec; 5468 // Do we have the exact type of dest? 5469 bool could_have_dest = dest_spec; 5470 ciKlass* src_k = nullptr; 5471 ciKlass* dest_k = nullptr; 5472 if (!src_spec) { 5473 src_k = src_type->speculative_type_not_null(); 5474 if (src_k != nullptr && src_k->is_array_klass()) { 5475 could_have_src = true; 5476 } 5477 } 5478 if (!dest_spec) { 5479 dest_k = dest_type->speculative_type_not_null(); 5480 if (dest_k != nullptr && dest_k->is_array_klass()) { 5481 could_have_dest = true; 5482 } 5483 } 5484 if (could_have_src && could_have_dest) { 5485 // If we can have both exact types, emit the missing guards 5486 if (could_have_src && !src_spec) { 5487 src = maybe_cast_profiled_obj(src, src_k, true); 5488 } 5489 if (could_have_dest && !dest_spec) { 5490 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5491 } 5492 } 5493 } 5494 } 5495 5496 ciMethod* trap_method = method(); 5497 int trap_bci = bci(); 5498 if (saved_jvms_before_guards != nullptr) { 5499 trap_method = alloc->jvms()->method(); 5500 trap_bci = alloc->jvms()->bci(); 5501 } 5502 5503 bool negative_length_guard_generated = false; 5504 5505 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5506 can_emit_guards && 5507 !src->is_top() && !dest->is_top()) { 5508 // validate arguments: enables transformation the ArrayCopyNode 5509 validated = true; 5510 5511 RegionNode* slow_region = new RegionNode(1); 5512 record_for_igvn(slow_region); 5513 5514 // (1) src and dest are arrays. 5515 generate_non_array_guard(load_object_klass(src), slow_region); 5516 generate_non_array_guard(load_object_klass(dest), slow_region); 5517 5518 // (2) src and dest arrays must have elements of the same BasicType 5519 // done at macro expansion or at Ideal transformation time 5520 5521 // (4) src_offset must not be negative. 5522 generate_negative_guard(src_offset, slow_region); 5523 5524 // (5) dest_offset must not be negative. 5525 generate_negative_guard(dest_offset, slow_region); 5526 5527 // (7) src_offset + length must not exceed length of src. 5528 generate_limit_guard(src_offset, length, 5529 load_array_length(src), 5530 slow_region); 5531 5532 // (8) dest_offset + length must not exceed length of dest. 5533 generate_limit_guard(dest_offset, length, 5534 load_array_length(dest), 5535 slow_region); 5536 5537 // (6) length must not be negative. 5538 // This is also checked in generate_arraycopy() during macro expansion, but 5539 // we also have to check it here for the case where the ArrayCopyNode will 5540 // be eliminated by Escape Analysis. 5541 if (EliminateAllocations) { 5542 generate_negative_guard(length, slow_region); 5543 negative_length_guard_generated = true; 5544 } 5545 5546 // (9) each element of an oop array must be assignable 5547 Node* dest_klass = load_object_klass(dest); 5548 if (src != dest) { 5549 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5550 5551 if (not_subtype_ctrl != top()) { 5552 PreserveJVMState pjvms(this); 5553 set_control(not_subtype_ctrl); 5554 uncommon_trap(Deoptimization::Reason_intrinsic, 5555 Deoptimization::Action_make_not_entrant); 5556 assert(stopped(), "Should be stopped"); 5557 } 5558 } 5559 { 5560 PreserveJVMState pjvms(this); 5561 set_control(_gvn.transform(slow_region)); 5562 uncommon_trap(Deoptimization::Reason_intrinsic, 5563 Deoptimization::Action_make_not_entrant); 5564 assert(stopped(), "Should be stopped"); 5565 } 5566 5567 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5568 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5569 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5570 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5571 } 5572 5573 if (stopped()) { 5574 return true; 5575 } 5576 5577 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5578 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5579 // so the compiler has a chance to eliminate them: during macro expansion, 5580 // we have to set their control (CastPP nodes are eliminated). 5581 load_object_klass(src), load_object_klass(dest), 5582 load_array_length(src), load_array_length(dest)); 5583 5584 ac->set_arraycopy(validated); 5585 5586 Node* n = _gvn.transform(ac); 5587 if (n == ac) { 5588 ac->connect_outputs(this); 5589 } else { 5590 assert(validated, "shouldn't transform if all arguments not validated"); 5591 set_all_memory(n); 5592 } 5593 clear_upper_avx(); 5594 5595 5596 return true; 5597 } 5598 5599 5600 // Helper function which determines if an arraycopy immediately follows 5601 // an allocation, with no intervening tests or other escapes for the object. 5602 AllocateArrayNode* 5603 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 5604 if (stopped()) return nullptr; // no fast path 5605 if (!C->do_aliasing()) return nullptr; // no MergeMems around 5606 5607 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 5608 if (alloc == nullptr) return nullptr; 5609 5610 Node* rawmem = memory(Compile::AliasIdxRaw); 5611 // Is the allocation's memory state untouched? 5612 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 5613 // Bail out if there have been raw-memory effects since the allocation. 5614 // (Example: There might have been a call or safepoint.) 5615 return nullptr; 5616 } 5617 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 5618 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 5619 return nullptr; 5620 } 5621 5622 // There must be no unexpected observers of this allocation. 5623 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 5624 Node* obs = ptr->fast_out(i); 5625 if (obs != this->map()) { 5626 return nullptr; 5627 } 5628 } 5629 5630 // This arraycopy must unconditionally follow the allocation of the ptr. 5631 Node* alloc_ctl = ptr->in(0); 5632 Node* ctl = control(); 5633 while (ctl != alloc_ctl) { 5634 // There may be guards which feed into the slow_region. 5635 // Any other control flow means that we might not get a chance 5636 // to finish initializing the allocated object. 5637 // Various low-level checks bottom out in uncommon traps. These 5638 // are considered safe since we've already checked above that 5639 // there is no unexpected observer of this allocation. 5640 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 5641 assert(ctl->in(0)->is_If(), "must be If"); 5642 ctl = ctl->in(0)->in(0); 5643 } else { 5644 return nullptr; 5645 } 5646 } 5647 5648 // If we get this far, we have an allocation which immediately 5649 // precedes the arraycopy, and we can take over zeroing the new object. 5650 // The arraycopy will finish the initialization, and provide 5651 // a new control state to which we will anchor the destination pointer. 5652 5653 return alloc; 5654 } 5655 5656 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 5657 if (node->is_IfProj()) { 5658 Node* other_proj = node->as_IfProj()->other_if_proj(); 5659 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 5660 Node* obs = other_proj->fast_out(j); 5661 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 5662 (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 5663 return obs->as_CallStaticJava(); 5664 } 5665 } 5666 } 5667 return nullptr; 5668 } 5669 5670 //-------------inline_encodeISOArray----------------------------------- 5671 // encode char[] to byte[] in ISO_8859_1 or ASCII 5672 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 5673 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 5674 // no receiver since it is static method 5675 Node *src = argument(0); 5676 Node *src_offset = argument(1); 5677 Node *dst = argument(2); 5678 Node *dst_offset = argument(3); 5679 Node *length = argument(4); 5680 5681 src = must_be_not_null(src, true); 5682 dst = must_be_not_null(dst, true); 5683 5684 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 5685 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 5686 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 5687 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 5688 // failed array check 5689 return false; 5690 } 5691 5692 // Figure out the size and type of the elements we will be copying. 5693 BasicType src_elem = src_type->elem()->array_element_basic_type(); 5694 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 5695 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 5696 return false; 5697 } 5698 5699 Node* src_start = array_element_address(src, src_offset, T_CHAR); 5700 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 5701 // 'src_start' points to src array + scaled offset 5702 // 'dst_start' points to dst array + scaled offset 5703 5704 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 5705 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 5706 enc = _gvn.transform(enc); 5707 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 5708 set_memory(res_mem, mtype); 5709 set_result(enc); 5710 clear_upper_avx(); 5711 5712 return true; 5713 } 5714 5715 //-------------inline_multiplyToLen----------------------------------- 5716 bool LibraryCallKit::inline_multiplyToLen() { 5717 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 5718 5719 address stubAddr = StubRoutines::multiplyToLen(); 5720 if (stubAddr == nullptr) { 5721 return false; // Intrinsic's stub is not implemented on this platform 5722 } 5723 const char* stubName = "multiplyToLen"; 5724 5725 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 5726 5727 // no receiver because it is a static method 5728 Node* x = argument(0); 5729 Node* xlen = argument(1); 5730 Node* y = argument(2); 5731 Node* ylen = argument(3); 5732 Node* z = argument(4); 5733 5734 x = must_be_not_null(x, true); 5735 y = must_be_not_null(y, true); 5736 5737 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5738 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 5739 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5740 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 5741 // failed array check 5742 return false; 5743 } 5744 5745 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5746 BasicType y_elem = y_type->elem()->array_element_basic_type(); 5747 if (x_elem != T_INT || y_elem != T_INT) { 5748 return false; 5749 } 5750 5751 // Set the original stack and the reexecute bit for the interpreter to reexecute 5752 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5753 // on the return from z array allocation in runtime. 5754 { PreserveReexecuteState preexecs(this); 5755 jvms()->set_should_reexecute(true); 5756 5757 Node* x_start = array_element_address(x, intcon(0), x_elem); 5758 Node* y_start = array_element_address(y, intcon(0), y_elem); 5759 // 'x_start' points to x array + scaled xlen 5760 // 'y_start' points to y array + scaled ylen 5761 5762 // Allocate the result array 5763 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5764 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5765 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5766 5767 IdealKit ideal(this); 5768 5769 #define __ ideal. 5770 Node* one = __ ConI(1); 5771 Node* zero = __ ConI(0); 5772 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5773 __ set(need_alloc, zero); 5774 __ set(z_alloc, z); 5775 __ if_then(z, BoolTest::eq, null()); { 5776 __ increment (need_alloc, one); 5777 } __ else_(); { 5778 // Update graphKit memory and control from IdealKit. 5779 sync_kit(ideal); 5780 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5781 cast->init_req(0, control()); 5782 _gvn.set_type(cast, cast->bottom_type()); 5783 C->record_for_igvn(cast); 5784 5785 Node* zlen_arg = load_array_length(cast); 5786 // Update IdealKit memory and control from graphKit. 5787 __ sync_kit(this); 5788 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5789 __ increment (need_alloc, one); 5790 } __ end_if(); 5791 } __ end_if(); 5792 5793 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5794 // Update graphKit memory and control from IdealKit. 5795 sync_kit(ideal); 5796 Node * narr = new_array(klass_node, zlen, 1); 5797 // Update IdealKit memory and control from graphKit. 5798 __ sync_kit(this); 5799 __ set(z_alloc, narr); 5800 } __ end_if(); 5801 5802 sync_kit(ideal); 5803 z = __ value(z_alloc); 5804 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5805 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5806 // Final sync IdealKit and GraphKit. 5807 final_sync(ideal); 5808 #undef __ 5809 5810 Node* z_start = array_element_address(z, intcon(0), T_INT); 5811 5812 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5813 OptoRuntime::multiplyToLen_Type(), 5814 stubAddr, stubName, TypePtr::BOTTOM, 5815 x_start, xlen, y_start, ylen, z_start, zlen); 5816 } // original reexecute is set back here 5817 5818 C->set_has_split_ifs(true); // Has chance for split-if optimization 5819 set_result(z); 5820 return true; 5821 } 5822 5823 //-------------inline_squareToLen------------------------------------ 5824 bool LibraryCallKit::inline_squareToLen() { 5825 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5826 5827 address stubAddr = StubRoutines::squareToLen(); 5828 if (stubAddr == nullptr) { 5829 return false; // Intrinsic's stub is not implemented on this platform 5830 } 5831 const char* stubName = "squareToLen"; 5832 5833 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5834 5835 Node* x = argument(0); 5836 Node* len = argument(1); 5837 Node* z = argument(2); 5838 Node* zlen = argument(3); 5839 5840 x = must_be_not_null(x, true); 5841 z = must_be_not_null(z, true); 5842 5843 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5844 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 5845 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5846 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 5847 // failed array check 5848 return false; 5849 } 5850 5851 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5852 BasicType z_elem = z_type->elem()->array_element_basic_type(); 5853 if (x_elem != T_INT || z_elem != T_INT) { 5854 return false; 5855 } 5856 5857 5858 Node* x_start = array_element_address(x, intcon(0), x_elem); 5859 Node* z_start = array_element_address(z, intcon(0), z_elem); 5860 5861 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5862 OptoRuntime::squareToLen_Type(), 5863 stubAddr, stubName, TypePtr::BOTTOM, 5864 x_start, len, z_start, zlen); 5865 5866 set_result(z); 5867 return true; 5868 } 5869 5870 //-------------inline_mulAdd------------------------------------------ 5871 bool LibraryCallKit::inline_mulAdd() { 5872 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5873 5874 address stubAddr = StubRoutines::mulAdd(); 5875 if (stubAddr == nullptr) { 5876 return false; // Intrinsic's stub is not implemented on this platform 5877 } 5878 const char* stubName = "mulAdd"; 5879 5880 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5881 5882 Node* out = argument(0); 5883 Node* in = argument(1); 5884 Node* offset = argument(2); 5885 Node* len = argument(3); 5886 Node* k = argument(4); 5887 5888 in = must_be_not_null(in, true); 5889 out = must_be_not_null(out, true); 5890 5891 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 5892 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 5893 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 5894 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 5895 // failed array check 5896 return false; 5897 } 5898 5899 BasicType out_elem = out_type->elem()->array_element_basic_type(); 5900 BasicType in_elem = in_type->elem()->array_element_basic_type(); 5901 if (out_elem != T_INT || in_elem != T_INT) { 5902 return false; 5903 } 5904 5905 Node* outlen = load_array_length(out); 5906 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5907 Node* out_start = array_element_address(out, intcon(0), out_elem); 5908 Node* in_start = array_element_address(in, intcon(0), in_elem); 5909 5910 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5911 OptoRuntime::mulAdd_Type(), 5912 stubAddr, stubName, TypePtr::BOTTOM, 5913 out_start,in_start, new_offset, len, k); 5914 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5915 set_result(result); 5916 return true; 5917 } 5918 5919 //-------------inline_montgomeryMultiply----------------------------------- 5920 bool LibraryCallKit::inline_montgomeryMultiply() { 5921 address stubAddr = StubRoutines::montgomeryMultiply(); 5922 if (stubAddr == nullptr) { 5923 return false; // Intrinsic's stub is not implemented on this platform 5924 } 5925 5926 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5927 const char* stubName = "montgomery_multiply"; 5928 5929 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5930 5931 Node* a = argument(0); 5932 Node* b = argument(1); 5933 Node* n = argument(2); 5934 Node* len = argument(3); 5935 Node* inv = argument(4); 5936 Node* m = argument(6); 5937 5938 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 5939 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 5940 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 5941 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 5942 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 5943 b_type == nullptr || b_type->elem() == Type::BOTTOM || 5944 n_type == nullptr || n_type->elem() == Type::BOTTOM || 5945 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 5946 // failed array check 5947 return false; 5948 } 5949 5950 BasicType a_elem = a_type->elem()->array_element_basic_type(); 5951 BasicType b_elem = b_type->elem()->array_element_basic_type(); 5952 BasicType n_elem = n_type->elem()->array_element_basic_type(); 5953 BasicType m_elem = m_type->elem()->array_element_basic_type(); 5954 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5955 return false; 5956 } 5957 5958 // Make the call 5959 { 5960 Node* a_start = array_element_address(a, intcon(0), a_elem); 5961 Node* b_start = array_element_address(b, intcon(0), b_elem); 5962 Node* n_start = array_element_address(n, intcon(0), n_elem); 5963 Node* m_start = array_element_address(m, intcon(0), m_elem); 5964 5965 Node* call = make_runtime_call(RC_LEAF, 5966 OptoRuntime::montgomeryMultiply_Type(), 5967 stubAddr, stubName, TypePtr::BOTTOM, 5968 a_start, b_start, n_start, len, inv, top(), 5969 m_start); 5970 set_result(m); 5971 } 5972 5973 return true; 5974 } 5975 5976 bool LibraryCallKit::inline_montgomerySquare() { 5977 address stubAddr = StubRoutines::montgomerySquare(); 5978 if (stubAddr == nullptr) { 5979 return false; // Intrinsic's stub is not implemented on this platform 5980 } 5981 5982 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5983 const char* stubName = "montgomery_square"; 5984 5985 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5986 5987 Node* a = argument(0); 5988 Node* n = argument(1); 5989 Node* len = argument(2); 5990 Node* inv = argument(3); 5991 Node* m = argument(5); 5992 5993 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 5994 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 5995 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 5996 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 5997 n_type == nullptr || n_type->elem() == Type::BOTTOM || 5998 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 5999 // failed array check 6000 return false; 6001 } 6002 6003 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6004 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6005 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6006 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6007 return false; 6008 } 6009 6010 // Make the call 6011 { 6012 Node* a_start = array_element_address(a, intcon(0), a_elem); 6013 Node* n_start = array_element_address(n, intcon(0), n_elem); 6014 Node* m_start = array_element_address(m, intcon(0), m_elem); 6015 6016 Node* call = make_runtime_call(RC_LEAF, 6017 OptoRuntime::montgomerySquare_Type(), 6018 stubAddr, stubName, TypePtr::BOTTOM, 6019 a_start, n_start, len, inv, top(), 6020 m_start); 6021 set_result(m); 6022 } 6023 6024 return true; 6025 } 6026 6027 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6028 address stubAddr = nullptr; 6029 const char* stubName = nullptr; 6030 6031 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6032 if (stubAddr == nullptr) { 6033 return false; // Intrinsic's stub is not implemented on this platform 6034 } 6035 6036 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6037 6038 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6039 6040 Node* newArr = argument(0); 6041 Node* oldArr = argument(1); 6042 Node* newIdx = argument(2); 6043 Node* shiftCount = argument(3); 6044 Node* numIter = argument(4); 6045 6046 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6047 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6048 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6049 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6050 return false; 6051 } 6052 6053 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6054 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6055 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6056 return false; 6057 } 6058 6059 // Make the call 6060 { 6061 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6062 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6063 6064 Node* call = make_runtime_call(RC_LEAF, 6065 OptoRuntime::bigIntegerShift_Type(), 6066 stubAddr, 6067 stubName, 6068 TypePtr::BOTTOM, 6069 newArr_start, 6070 oldArr_start, 6071 newIdx, 6072 shiftCount, 6073 numIter); 6074 } 6075 6076 return true; 6077 } 6078 6079 //-------------inline_vectorizedMismatch------------------------------ 6080 bool LibraryCallKit::inline_vectorizedMismatch() { 6081 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6082 6083 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6084 Node* obja = argument(0); // Object 6085 Node* aoffset = argument(1); // long 6086 Node* objb = argument(3); // Object 6087 Node* boffset = argument(4); // long 6088 Node* length = argument(6); // int 6089 Node* scale = argument(7); // int 6090 6091 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6092 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6093 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6094 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6095 scale == top()) { 6096 return false; // failed input validation 6097 } 6098 6099 Node* obja_adr = make_unsafe_address(obja, aoffset); 6100 Node* objb_adr = make_unsafe_address(objb, boffset); 6101 6102 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6103 // 6104 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6105 // if (length <= inline_limit) { 6106 // inline_path: 6107 // vmask = VectorMaskGen length 6108 // vload1 = LoadVectorMasked obja, vmask 6109 // vload2 = LoadVectorMasked objb, vmask 6110 // result1 = VectorCmpMasked vload1, vload2, vmask 6111 // } else { 6112 // call_stub_path: 6113 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6114 // } 6115 // exit_block: 6116 // return Phi(result1, result2); 6117 // 6118 enum { inline_path = 1, // input is small enough to process it all at once 6119 stub_path = 2, // input is too large; call into the VM 6120 PATH_LIMIT = 3 6121 }; 6122 6123 Node* exit_block = new RegionNode(PATH_LIMIT); 6124 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6125 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6126 6127 Node* call_stub_path = control(); 6128 6129 BasicType elem_bt = T_ILLEGAL; 6130 6131 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6132 if (scale_t->is_con()) { 6133 switch (scale_t->get_con()) { 6134 case 0: elem_bt = T_BYTE; break; 6135 case 1: elem_bt = T_SHORT; break; 6136 case 2: elem_bt = T_INT; break; 6137 case 3: elem_bt = T_LONG; break; 6138 6139 default: elem_bt = T_ILLEGAL; break; // not supported 6140 } 6141 } 6142 6143 int inline_limit = 0; 6144 bool do_partial_inline = false; 6145 6146 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6147 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6148 do_partial_inline = inline_limit >= 16; 6149 } 6150 6151 if (do_partial_inline) { 6152 assert(elem_bt != T_ILLEGAL, "sanity"); 6153 6154 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6155 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6156 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6157 6158 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6159 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6160 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6161 6162 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6163 6164 if (!stopped()) { 6165 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6166 6167 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6168 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6169 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6170 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6171 6172 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6173 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6174 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6175 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6176 6177 exit_block->init_req(inline_path, control()); 6178 memory_phi->init_req(inline_path, map()->memory()); 6179 result_phi->init_req(inline_path, result); 6180 6181 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6182 clear_upper_avx(); 6183 } 6184 } 6185 } 6186 6187 if (call_stub_path != nullptr) { 6188 set_control(call_stub_path); 6189 6190 Node* call = make_runtime_call(RC_LEAF, 6191 OptoRuntime::vectorizedMismatch_Type(), 6192 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6193 obja_adr, objb_adr, length, scale); 6194 6195 exit_block->init_req(stub_path, control()); 6196 memory_phi->init_req(stub_path, map()->memory()); 6197 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6198 } 6199 6200 exit_block = _gvn.transform(exit_block); 6201 memory_phi = _gvn.transform(memory_phi); 6202 result_phi = _gvn.transform(result_phi); 6203 6204 set_control(exit_block); 6205 set_all_memory(memory_phi); 6206 set_result(result_phi); 6207 6208 return true; 6209 } 6210 6211 //------------------------------inline_vectorizedHashcode---------------------------- 6212 bool LibraryCallKit::inline_vectorizedHashCode() { 6213 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6214 6215 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6216 Node* array = argument(0); 6217 Node* offset = argument(1); 6218 Node* length = argument(2); 6219 Node* initialValue = argument(3); 6220 Node* basic_type = argument(4); 6221 6222 if (basic_type == top()) { 6223 return false; // failed input validation 6224 } 6225 6226 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6227 if (!basic_type_t->is_con()) { 6228 return false; // Only intrinsify if mode argument is constant 6229 } 6230 6231 array = must_be_not_null(array, true); 6232 6233 BasicType bt = (BasicType)basic_type_t->get_con(); 6234 6235 // Resolve address of first element 6236 Node* array_start = array_element_address(array, offset, bt); 6237 6238 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6239 array_start, length, initialValue, basic_type))); 6240 clear_upper_avx(); 6241 6242 return true; 6243 } 6244 6245 /** 6246 * Calculate CRC32 for byte. 6247 * int java.util.zip.CRC32.update(int crc, int b) 6248 */ 6249 bool LibraryCallKit::inline_updateCRC32() { 6250 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6251 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6252 // no receiver since it is static method 6253 Node* crc = argument(0); // type: int 6254 Node* b = argument(1); // type: int 6255 6256 /* 6257 * int c = ~ crc; 6258 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6259 * b = b ^ (c >>> 8); 6260 * crc = ~b; 6261 */ 6262 6263 Node* M1 = intcon(-1); 6264 crc = _gvn.transform(new XorINode(crc, M1)); 6265 Node* result = _gvn.transform(new XorINode(crc, b)); 6266 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6267 6268 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6269 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6270 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6271 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6272 6273 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6274 result = _gvn.transform(new XorINode(crc, result)); 6275 result = _gvn.transform(new XorINode(result, M1)); 6276 set_result(result); 6277 return true; 6278 } 6279 6280 /** 6281 * Calculate CRC32 for byte[] array. 6282 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6283 */ 6284 bool LibraryCallKit::inline_updateBytesCRC32() { 6285 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6286 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6287 // no receiver since it is static method 6288 Node* crc = argument(0); // type: int 6289 Node* src = argument(1); // type: oop 6290 Node* offset = argument(2); // type: int 6291 Node* length = argument(3); // type: int 6292 6293 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6294 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6295 // failed array check 6296 return false; 6297 } 6298 6299 // Figure out the size and type of the elements we will be copying. 6300 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6301 if (src_elem != T_BYTE) { 6302 return false; 6303 } 6304 6305 // 'src_start' points to src array + scaled offset 6306 src = must_be_not_null(src, true); 6307 Node* src_start = array_element_address(src, offset, src_elem); 6308 6309 // We assume that range check is done by caller. 6310 // TODO: generate range check (offset+length < src.length) in debug VM. 6311 6312 // Call the stub. 6313 address stubAddr = StubRoutines::updateBytesCRC32(); 6314 const char *stubName = "updateBytesCRC32"; 6315 6316 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6317 stubAddr, stubName, TypePtr::BOTTOM, 6318 crc, src_start, length); 6319 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6320 set_result(result); 6321 return true; 6322 } 6323 6324 /** 6325 * Calculate CRC32 for ByteBuffer. 6326 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6327 */ 6328 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6329 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6330 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6331 // no receiver since it is static method 6332 Node* crc = argument(0); // type: int 6333 Node* src = argument(1); // type: long 6334 Node* offset = argument(3); // type: int 6335 Node* length = argument(4); // type: int 6336 6337 src = ConvL2X(src); // adjust Java long to machine word 6338 Node* base = _gvn.transform(new CastX2PNode(src)); 6339 offset = ConvI2X(offset); 6340 6341 // 'src_start' points to src array + scaled offset 6342 Node* src_start = basic_plus_adr(top(), base, offset); 6343 6344 // Call the stub. 6345 address stubAddr = StubRoutines::updateBytesCRC32(); 6346 const char *stubName = "updateBytesCRC32"; 6347 6348 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6349 stubAddr, stubName, TypePtr::BOTTOM, 6350 crc, src_start, length); 6351 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6352 set_result(result); 6353 return true; 6354 } 6355 6356 //------------------------------get_table_from_crc32c_class----------------------- 6357 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6358 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6359 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6360 6361 return table; 6362 } 6363 6364 //------------------------------inline_updateBytesCRC32C----------------------- 6365 // 6366 // Calculate CRC32C for byte[] array. 6367 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6368 // 6369 bool LibraryCallKit::inline_updateBytesCRC32C() { 6370 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6371 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6372 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6373 // no receiver since it is a static method 6374 Node* crc = argument(0); // type: int 6375 Node* src = argument(1); // type: oop 6376 Node* offset = argument(2); // type: int 6377 Node* end = argument(3); // type: int 6378 6379 Node* length = _gvn.transform(new SubINode(end, offset)); 6380 6381 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6382 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6383 // failed array check 6384 return false; 6385 } 6386 6387 // Figure out the size and type of the elements we will be copying. 6388 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6389 if (src_elem != T_BYTE) { 6390 return false; 6391 } 6392 6393 // 'src_start' points to src array + scaled offset 6394 src = must_be_not_null(src, true); 6395 Node* src_start = array_element_address(src, offset, src_elem); 6396 6397 // static final int[] byteTable in class CRC32C 6398 Node* table = get_table_from_crc32c_class(callee()->holder()); 6399 table = must_be_not_null(table, true); 6400 Node* table_start = array_element_address(table, intcon(0), T_INT); 6401 6402 // We assume that range check is done by caller. 6403 // TODO: generate range check (offset+length < src.length) in debug VM. 6404 6405 // Call the stub. 6406 address stubAddr = StubRoutines::updateBytesCRC32C(); 6407 const char *stubName = "updateBytesCRC32C"; 6408 6409 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6410 stubAddr, stubName, TypePtr::BOTTOM, 6411 crc, src_start, length, table_start); 6412 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6413 set_result(result); 6414 return true; 6415 } 6416 6417 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6418 // 6419 // Calculate CRC32C for DirectByteBuffer. 6420 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6421 // 6422 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6423 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6424 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6425 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6426 // no receiver since it is a static method 6427 Node* crc = argument(0); // type: int 6428 Node* src = argument(1); // type: long 6429 Node* offset = argument(3); // type: int 6430 Node* end = argument(4); // type: int 6431 6432 Node* length = _gvn.transform(new SubINode(end, offset)); 6433 6434 src = ConvL2X(src); // adjust Java long to machine word 6435 Node* base = _gvn.transform(new CastX2PNode(src)); 6436 offset = ConvI2X(offset); 6437 6438 // 'src_start' points to src array + scaled offset 6439 Node* src_start = basic_plus_adr(top(), base, offset); 6440 6441 // static final int[] byteTable in class CRC32C 6442 Node* table = get_table_from_crc32c_class(callee()->holder()); 6443 table = must_be_not_null(table, true); 6444 Node* table_start = array_element_address(table, intcon(0), T_INT); 6445 6446 // Call the stub. 6447 address stubAddr = StubRoutines::updateBytesCRC32C(); 6448 const char *stubName = "updateBytesCRC32C"; 6449 6450 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6451 stubAddr, stubName, TypePtr::BOTTOM, 6452 crc, src_start, length, table_start); 6453 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6454 set_result(result); 6455 return true; 6456 } 6457 6458 //------------------------------inline_updateBytesAdler32---------------------- 6459 // 6460 // Calculate Adler32 checksum for byte[] array. 6461 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6462 // 6463 bool LibraryCallKit::inline_updateBytesAdler32() { 6464 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6465 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6466 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6467 // no receiver since it is static method 6468 Node* crc = argument(0); // type: int 6469 Node* src = argument(1); // type: oop 6470 Node* offset = argument(2); // type: int 6471 Node* length = argument(3); // type: int 6472 6473 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6474 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6475 // failed array check 6476 return false; 6477 } 6478 6479 // Figure out the size and type of the elements we will be copying. 6480 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6481 if (src_elem != T_BYTE) { 6482 return false; 6483 } 6484 6485 // 'src_start' points to src array + scaled offset 6486 Node* src_start = array_element_address(src, offset, src_elem); 6487 6488 // We assume that range check is done by caller. 6489 // TODO: generate range check (offset+length < src.length) in debug VM. 6490 6491 // Call the stub. 6492 address stubAddr = StubRoutines::updateBytesAdler32(); 6493 const char *stubName = "updateBytesAdler32"; 6494 6495 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6496 stubAddr, stubName, TypePtr::BOTTOM, 6497 crc, src_start, length); 6498 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6499 set_result(result); 6500 return true; 6501 } 6502 6503 //------------------------------inline_updateByteBufferAdler32--------------- 6504 // 6505 // Calculate Adler32 checksum for DirectByteBuffer. 6506 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6507 // 6508 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6509 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6510 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6511 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6512 // no receiver since it is static method 6513 Node* crc = argument(0); // type: int 6514 Node* src = argument(1); // type: long 6515 Node* offset = argument(3); // type: int 6516 Node* length = argument(4); // type: int 6517 6518 src = ConvL2X(src); // adjust Java long to machine word 6519 Node* base = _gvn.transform(new CastX2PNode(src)); 6520 offset = ConvI2X(offset); 6521 6522 // 'src_start' points to src array + scaled offset 6523 Node* src_start = basic_plus_adr(top(), base, offset); 6524 6525 // Call the stub. 6526 address stubAddr = StubRoutines::updateBytesAdler32(); 6527 const char *stubName = "updateBytesAdler32"; 6528 6529 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6530 stubAddr, stubName, TypePtr::BOTTOM, 6531 crc, src_start, length); 6532 6533 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6534 set_result(result); 6535 return true; 6536 } 6537 6538 //----------------------------inline_reference_get---------------------------- 6539 // public T java.lang.ref.Reference.get(); 6540 bool LibraryCallKit::inline_reference_get() { 6541 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6542 6543 // Get the argument: 6544 Node* reference_obj = null_check_receiver(); 6545 if (stopped()) return true; 6546 6547 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6548 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6549 decorators, /*is_static*/ false, nullptr); 6550 if (result == nullptr) return false; 6551 6552 // Add memory barrier to prevent commoning reads from this field 6553 // across safepoint since GC can change its value. 6554 insert_mem_bar(Op_MemBarCPUOrder); 6555 6556 set_result(result); 6557 return true; 6558 } 6559 6560 //----------------------------inline_reference_refersTo0---------------------------- 6561 // bool java.lang.ref.Reference.refersTo0(); 6562 // bool java.lang.ref.PhantomReference.refersTo0(); 6563 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6564 // Get arguments: 6565 Node* reference_obj = null_check_receiver(); 6566 Node* other_obj = argument(1); 6567 if (stopped()) return true; 6568 6569 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6570 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6571 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6572 decorators, /*is_static*/ false, nullptr); 6573 if (referent == nullptr) return false; 6574 6575 // Add memory barrier to prevent commoning reads from this field 6576 // across safepoint since GC can change its value. 6577 insert_mem_bar(Op_MemBarCPUOrder); 6578 6579 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6580 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6581 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6582 6583 RegionNode* region = new RegionNode(3); 6584 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6585 6586 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6587 region->init_req(1, if_true); 6588 phi->init_req(1, intcon(1)); 6589 6590 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6591 region->init_req(2, if_false); 6592 phi->init_req(2, intcon(0)); 6593 6594 set_control(_gvn.transform(region)); 6595 record_for_igvn(region); 6596 set_result(_gvn.transform(phi)); 6597 return true; 6598 } 6599 6600 6601 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6602 DecoratorSet decorators, bool is_static, 6603 ciInstanceKlass* fromKls) { 6604 if (fromKls == nullptr) { 6605 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6606 assert(tinst != nullptr, "obj is null"); 6607 assert(tinst->is_loaded(), "obj is not loaded"); 6608 fromKls = tinst->instance_klass(); 6609 } else { 6610 assert(is_static, "only for static field access"); 6611 } 6612 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6613 ciSymbol::make(fieldTypeString), 6614 is_static); 6615 6616 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 6617 if (field == nullptr) return (Node *) nullptr; 6618 6619 if (is_static) { 6620 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6621 fromObj = makecon(tip); 6622 } 6623 6624 // Next code copied from Parse::do_get_xxx(): 6625 6626 // Compute address and memory type. 6627 int offset = field->offset_in_bytes(); 6628 bool is_vol = field->is_volatile(); 6629 ciType* field_klass = field->type(); 6630 assert(field_klass->is_loaded(), "should be loaded"); 6631 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 6632 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6633 BasicType bt = field->layout_type(); 6634 6635 // Build the resultant type of the load 6636 const Type *type; 6637 if (bt == T_OBJECT) { 6638 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 6639 } else { 6640 type = Type::get_const_basic_type(bt); 6641 } 6642 6643 if (is_vol) { 6644 decorators |= MO_SEQ_CST; 6645 } 6646 6647 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 6648 } 6649 6650 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 6651 bool is_exact /* true */, bool is_static /* false */, 6652 ciInstanceKlass * fromKls /* nullptr */) { 6653 if (fromKls == nullptr) { 6654 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6655 assert(tinst != nullptr, "obj is null"); 6656 assert(tinst->is_loaded(), "obj is not loaded"); 6657 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 6658 fromKls = tinst->instance_klass(); 6659 } 6660 else { 6661 assert(is_static, "only for static field access"); 6662 } 6663 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6664 ciSymbol::make(fieldTypeString), 6665 is_static); 6666 6667 assert(field != nullptr, "undefined field"); 6668 assert(!field->is_volatile(), "not defined for volatile fields"); 6669 6670 if (is_static) { 6671 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6672 fromObj = makecon(tip); 6673 } 6674 6675 // Next code copied from Parse::do_get_xxx(): 6676 6677 // Compute address and memory type. 6678 int offset = field->offset_in_bytes(); 6679 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6680 6681 return adr; 6682 } 6683 6684 //------------------------------inline_aescrypt_Block----------------------- 6685 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 6686 address stubAddr = nullptr; 6687 const char *stubName; 6688 assert(UseAES, "need AES instruction support"); 6689 6690 switch(id) { 6691 case vmIntrinsics::_aescrypt_encryptBlock: 6692 stubAddr = StubRoutines::aescrypt_encryptBlock(); 6693 stubName = "aescrypt_encryptBlock"; 6694 break; 6695 case vmIntrinsics::_aescrypt_decryptBlock: 6696 stubAddr = StubRoutines::aescrypt_decryptBlock(); 6697 stubName = "aescrypt_decryptBlock"; 6698 break; 6699 default: 6700 break; 6701 } 6702 if (stubAddr == nullptr) return false; 6703 6704 Node* aescrypt_object = argument(0); 6705 Node* src = argument(1); 6706 Node* src_offset = argument(2); 6707 Node* dest = argument(3); 6708 Node* dest_offset = argument(4); 6709 6710 src = must_be_not_null(src, true); 6711 dest = must_be_not_null(dest, true); 6712 6713 // (1) src and dest are arrays. 6714 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6715 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6716 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6717 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6718 6719 // for the quick and dirty code we will skip all the checks. 6720 // we are just trying to get the call to be generated. 6721 Node* src_start = src; 6722 Node* dest_start = dest; 6723 if (src_offset != nullptr || dest_offset != nullptr) { 6724 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6725 src_start = array_element_address(src, src_offset, T_BYTE); 6726 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6727 } 6728 6729 // now need to get the start of its expanded key array 6730 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6731 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6732 if (k_start == nullptr) return false; 6733 6734 // Call the stub. 6735 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 6736 stubAddr, stubName, TypePtr::BOTTOM, 6737 src_start, dest_start, k_start); 6738 6739 return true; 6740 } 6741 6742 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 6743 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 6744 address stubAddr = nullptr; 6745 const char *stubName = nullptr; 6746 6747 assert(UseAES, "need AES instruction support"); 6748 6749 switch(id) { 6750 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 6751 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 6752 stubName = "cipherBlockChaining_encryptAESCrypt"; 6753 break; 6754 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 6755 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 6756 stubName = "cipherBlockChaining_decryptAESCrypt"; 6757 break; 6758 default: 6759 break; 6760 } 6761 if (stubAddr == nullptr) return false; 6762 6763 Node* cipherBlockChaining_object = argument(0); 6764 Node* src = argument(1); 6765 Node* src_offset = argument(2); 6766 Node* len = argument(3); 6767 Node* dest = argument(4); 6768 Node* dest_offset = argument(5); 6769 6770 src = must_be_not_null(src, false); 6771 dest = must_be_not_null(dest, false); 6772 6773 // (1) src and dest are arrays. 6774 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6775 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6776 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6777 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6778 6779 // checks are the responsibility of the caller 6780 Node* src_start = src; 6781 Node* dest_start = dest; 6782 if (src_offset != nullptr || dest_offset != nullptr) { 6783 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6784 src_start = array_element_address(src, src_offset, T_BYTE); 6785 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6786 } 6787 6788 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6789 // (because of the predicated logic executed earlier). 6790 // so we cast it here safely. 6791 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6792 6793 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6794 if (embeddedCipherObj == nullptr) return false; 6795 6796 // cast it to what we know it will be at runtime 6797 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 6798 assert(tinst != nullptr, "CBC obj is null"); 6799 assert(tinst->is_loaded(), "CBC obj is not loaded"); 6800 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6801 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6802 6803 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6804 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6805 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6806 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6807 aescrypt_object = _gvn.transform(aescrypt_object); 6808 6809 // we need to get the start of the aescrypt_object's expanded key array 6810 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6811 if (k_start == nullptr) return false; 6812 6813 // similarly, get the start address of the r vector 6814 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 6815 if (objRvec == nullptr) return false; 6816 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 6817 6818 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6819 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6820 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6821 stubAddr, stubName, TypePtr::BOTTOM, 6822 src_start, dest_start, k_start, r_start, len); 6823 6824 // return cipher length (int) 6825 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 6826 set_result(retvalue); 6827 return true; 6828 } 6829 6830 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 6831 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 6832 address stubAddr = nullptr; 6833 const char *stubName = nullptr; 6834 6835 assert(UseAES, "need AES instruction support"); 6836 6837 switch (id) { 6838 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6839 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6840 stubName = "electronicCodeBook_encryptAESCrypt"; 6841 break; 6842 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6843 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6844 stubName = "electronicCodeBook_decryptAESCrypt"; 6845 break; 6846 default: 6847 break; 6848 } 6849 6850 if (stubAddr == nullptr) return false; 6851 6852 Node* electronicCodeBook_object = argument(0); 6853 Node* src = argument(1); 6854 Node* src_offset = argument(2); 6855 Node* len = argument(3); 6856 Node* dest = argument(4); 6857 Node* dest_offset = argument(5); 6858 6859 // (1) src and dest are arrays. 6860 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6861 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6862 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6863 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6864 6865 // checks are the responsibility of the caller 6866 Node* src_start = src; 6867 Node* dest_start = dest; 6868 if (src_offset != nullptr || dest_offset != nullptr) { 6869 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6870 src_start = array_element_address(src, src_offset, T_BYTE); 6871 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6872 } 6873 6874 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6875 // (because of the predicated logic executed earlier). 6876 // so we cast it here safely. 6877 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6878 6879 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6880 if (embeddedCipherObj == nullptr) return false; 6881 6882 // cast it to what we know it will be at runtime 6883 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6884 assert(tinst != nullptr, "ECB obj is null"); 6885 assert(tinst->is_loaded(), "ECB obj is not loaded"); 6886 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6887 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6888 6889 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6890 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6891 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6892 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6893 aescrypt_object = _gvn.transform(aescrypt_object); 6894 6895 // we need to get the start of the aescrypt_object's expanded key array 6896 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6897 if (k_start == nullptr) return false; 6898 6899 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6900 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6901 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6902 stubAddr, stubName, TypePtr::BOTTOM, 6903 src_start, dest_start, k_start, len); 6904 6905 // return cipher length (int) 6906 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6907 set_result(retvalue); 6908 return true; 6909 } 6910 6911 //------------------------------inline_counterMode_AESCrypt----------------------- 6912 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6913 assert(UseAES, "need AES instruction support"); 6914 if (!UseAESCTRIntrinsics) return false; 6915 6916 address stubAddr = nullptr; 6917 const char *stubName = nullptr; 6918 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6919 stubAddr = StubRoutines::counterMode_AESCrypt(); 6920 stubName = "counterMode_AESCrypt"; 6921 } 6922 if (stubAddr == nullptr) return false; 6923 6924 Node* counterMode_object = argument(0); 6925 Node* src = argument(1); 6926 Node* src_offset = argument(2); 6927 Node* len = argument(3); 6928 Node* dest = argument(4); 6929 Node* dest_offset = argument(5); 6930 6931 // (1) src and dest are arrays. 6932 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6933 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6934 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6935 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6936 6937 // checks are the responsibility of the caller 6938 Node* src_start = src; 6939 Node* dest_start = dest; 6940 if (src_offset != nullptr || dest_offset != nullptr) { 6941 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6942 src_start = array_element_address(src, src_offset, T_BYTE); 6943 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6944 } 6945 6946 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6947 // (because of the predicated logic executed earlier). 6948 // so we cast it here safely. 6949 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6950 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6951 if (embeddedCipherObj == nullptr) return false; 6952 // cast it to what we know it will be at runtime 6953 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6954 assert(tinst != nullptr, "CTR obj is null"); 6955 assert(tinst->is_loaded(), "CTR obj is not loaded"); 6956 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6957 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6958 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6959 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6960 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6961 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6962 aescrypt_object = _gvn.transform(aescrypt_object); 6963 // we need to get the start of the aescrypt_object's expanded key array 6964 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6965 if (k_start == nullptr) return false; 6966 // similarly, get the start address of the r vector 6967 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 6968 if (obj_counter == nullptr) return false; 6969 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6970 6971 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 6972 if (saved_encCounter == nullptr) return false; 6973 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 6974 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 6975 6976 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6977 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6978 OptoRuntime::counterMode_aescrypt_Type(), 6979 stubAddr, stubName, TypePtr::BOTTOM, 6980 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 6981 6982 // return cipher length (int) 6983 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 6984 set_result(retvalue); 6985 return true; 6986 } 6987 6988 //------------------------------get_key_start_from_aescrypt_object----------------------- 6989 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 6990 #if defined(PPC64) || defined(S390) 6991 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 6992 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 6993 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 6994 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 6995 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 6996 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 6997 if (objSessionK == nullptr) { 6998 return (Node *) nullptr; 6999 } 7000 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7001 #else 7002 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7003 #endif // PPC64 7004 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7005 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7006 7007 // now have the array, need to get the start address of the K array 7008 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7009 return k_start; 7010 } 7011 7012 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7013 // Return node representing slow path of predicate check. 7014 // the pseudo code we want to emulate with this predicate is: 7015 // for encryption: 7016 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7017 // for decryption: 7018 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7019 // note cipher==plain is more conservative than the original java code but that's OK 7020 // 7021 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7022 // The receiver was checked for null already. 7023 Node* objCBC = argument(0); 7024 7025 Node* src = argument(1); 7026 Node* dest = argument(4); 7027 7028 // Load embeddedCipher field of CipherBlockChaining object. 7029 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7030 7031 // get AESCrypt klass for instanceOf check 7032 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7033 // will have same classloader as CipherBlockChaining object 7034 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7035 assert(tinst != nullptr, "CBCobj is null"); 7036 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7037 7038 // we want to do an instanceof comparison against the AESCrypt class 7039 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7040 if (!klass_AESCrypt->is_loaded()) { 7041 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7042 Node* ctrl = control(); 7043 set_control(top()); // no regular fast path 7044 return ctrl; 7045 } 7046 7047 src = must_be_not_null(src, true); 7048 dest = must_be_not_null(dest, true); 7049 7050 // Resolve oops to stable for CmpP below. 7051 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7052 7053 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7054 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7055 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7056 7057 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7058 7059 // for encryption, we are done 7060 if (!decrypting) 7061 return instof_false; // even if it is null 7062 7063 // for decryption, we need to add a further check to avoid 7064 // taking the intrinsic path when cipher and plain are the same 7065 // see the original java code for why. 7066 RegionNode* region = new RegionNode(3); 7067 region->init_req(1, instof_false); 7068 7069 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7070 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7071 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7072 region->init_req(2, src_dest_conjoint); 7073 7074 record_for_igvn(region); 7075 return _gvn.transform(region); 7076 } 7077 7078 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7079 // Return node representing slow path of predicate check. 7080 // the pseudo code we want to emulate with this predicate is: 7081 // for encryption: 7082 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7083 // for decryption: 7084 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7085 // note cipher==plain is more conservative than the original java code but that's OK 7086 // 7087 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7088 // The receiver was checked for null already. 7089 Node* objECB = argument(0); 7090 7091 // Load embeddedCipher field of ElectronicCodeBook object. 7092 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7093 7094 // get AESCrypt klass for instanceOf check 7095 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7096 // will have same classloader as ElectronicCodeBook object 7097 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7098 assert(tinst != nullptr, "ECBobj is null"); 7099 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7100 7101 // we want to do an instanceof comparison against the AESCrypt class 7102 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7103 if (!klass_AESCrypt->is_loaded()) { 7104 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7105 Node* ctrl = control(); 7106 set_control(top()); // no regular fast path 7107 return ctrl; 7108 } 7109 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7110 7111 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7112 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7113 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7114 7115 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7116 7117 // for encryption, we are done 7118 if (!decrypting) 7119 return instof_false; // even if it is null 7120 7121 // for decryption, we need to add a further check to avoid 7122 // taking the intrinsic path when cipher and plain are the same 7123 // see the original java code for why. 7124 RegionNode* region = new RegionNode(3); 7125 region->init_req(1, instof_false); 7126 Node* src = argument(1); 7127 Node* dest = argument(4); 7128 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7129 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7130 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7131 region->init_req(2, src_dest_conjoint); 7132 7133 record_for_igvn(region); 7134 return _gvn.transform(region); 7135 } 7136 7137 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7138 // Return node representing slow path of predicate check. 7139 // the pseudo code we want to emulate with this predicate is: 7140 // for encryption: 7141 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7142 // for decryption: 7143 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7144 // note cipher==plain is more conservative than the original java code but that's OK 7145 // 7146 7147 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7148 // The receiver was checked for null already. 7149 Node* objCTR = argument(0); 7150 7151 // Load embeddedCipher field of CipherBlockChaining object. 7152 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7153 7154 // get AESCrypt klass for instanceOf check 7155 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7156 // will have same classloader as CipherBlockChaining object 7157 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7158 assert(tinst != nullptr, "CTRobj is null"); 7159 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7160 7161 // we want to do an instanceof comparison against the AESCrypt class 7162 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7163 if (!klass_AESCrypt->is_loaded()) { 7164 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7165 Node* ctrl = control(); 7166 set_control(top()); // no regular fast path 7167 return ctrl; 7168 } 7169 7170 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7171 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7172 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7173 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7174 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7175 7176 return instof_false; // even if it is null 7177 } 7178 7179 //------------------------------inline_ghash_processBlocks 7180 bool LibraryCallKit::inline_ghash_processBlocks() { 7181 address stubAddr; 7182 const char *stubName; 7183 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7184 7185 stubAddr = StubRoutines::ghash_processBlocks(); 7186 stubName = "ghash_processBlocks"; 7187 7188 Node* data = argument(0); 7189 Node* offset = argument(1); 7190 Node* len = argument(2); 7191 Node* state = argument(3); 7192 Node* subkeyH = argument(4); 7193 7194 state = must_be_not_null(state, true); 7195 subkeyH = must_be_not_null(subkeyH, true); 7196 data = must_be_not_null(data, true); 7197 7198 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7199 assert(state_start, "state is null"); 7200 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7201 assert(subkeyH_start, "subkeyH is null"); 7202 Node* data_start = array_element_address(data, offset, T_BYTE); 7203 assert(data_start, "data is null"); 7204 7205 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7206 OptoRuntime::ghash_processBlocks_Type(), 7207 stubAddr, stubName, TypePtr::BOTTOM, 7208 state_start, subkeyH_start, data_start, len); 7209 return true; 7210 } 7211 7212 //------------------------------inline_chacha20Block 7213 bool LibraryCallKit::inline_chacha20Block() { 7214 address stubAddr; 7215 const char *stubName; 7216 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7217 7218 stubAddr = StubRoutines::chacha20Block(); 7219 stubName = "chacha20Block"; 7220 7221 Node* state = argument(0); 7222 Node* result = argument(1); 7223 7224 state = must_be_not_null(state, true); 7225 result = must_be_not_null(result, true); 7226 7227 Node* state_start = array_element_address(state, intcon(0), T_INT); 7228 assert(state_start, "state is null"); 7229 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7230 assert(result_start, "result is null"); 7231 7232 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7233 OptoRuntime::chacha20Block_Type(), 7234 stubAddr, stubName, TypePtr::BOTTOM, 7235 state_start, result_start); 7236 // return key stream length (int) 7237 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7238 set_result(retvalue); 7239 return true; 7240 } 7241 7242 bool LibraryCallKit::inline_base64_encodeBlock() { 7243 address stubAddr; 7244 const char *stubName; 7245 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7246 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7247 stubAddr = StubRoutines::base64_encodeBlock(); 7248 stubName = "encodeBlock"; 7249 7250 if (!stubAddr) return false; 7251 Node* base64obj = argument(0); 7252 Node* src = argument(1); 7253 Node* offset = argument(2); 7254 Node* len = argument(3); 7255 Node* dest = argument(4); 7256 Node* dp = argument(5); 7257 Node* isURL = argument(6); 7258 7259 src = must_be_not_null(src, true); 7260 dest = must_be_not_null(dest, true); 7261 7262 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7263 assert(src_start, "source array is null"); 7264 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7265 assert(dest_start, "destination array is null"); 7266 7267 Node* base64 = make_runtime_call(RC_LEAF, 7268 OptoRuntime::base64_encodeBlock_Type(), 7269 stubAddr, stubName, TypePtr::BOTTOM, 7270 src_start, offset, len, dest_start, dp, isURL); 7271 return true; 7272 } 7273 7274 bool LibraryCallKit::inline_base64_decodeBlock() { 7275 address stubAddr; 7276 const char *stubName; 7277 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7278 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7279 stubAddr = StubRoutines::base64_decodeBlock(); 7280 stubName = "decodeBlock"; 7281 7282 if (!stubAddr) return false; 7283 Node* base64obj = argument(0); 7284 Node* src = argument(1); 7285 Node* src_offset = argument(2); 7286 Node* len = argument(3); 7287 Node* dest = argument(4); 7288 Node* dest_offset = argument(5); 7289 Node* isURL = argument(6); 7290 Node* isMIME = argument(7); 7291 7292 src = must_be_not_null(src, true); 7293 dest = must_be_not_null(dest, true); 7294 7295 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7296 assert(src_start, "source array is null"); 7297 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7298 assert(dest_start, "destination array is null"); 7299 7300 Node* call = make_runtime_call(RC_LEAF, 7301 OptoRuntime::base64_decodeBlock_Type(), 7302 stubAddr, stubName, TypePtr::BOTTOM, 7303 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7304 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7305 set_result(result); 7306 return true; 7307 } 7308 7309 bool LibraryCallKit::inline_poly1305_processBlocks() { 7310 address stubAddr; 7311 const char *stubName; 7312 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7313 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7314 stubAddr = StubRoutines::poly1305_processBlocks(); 7315 stubName = "poly1305_processBlocks"; 7316 7317 if (!stubAddr) return false; 7318 null_check_receiver(); // null-check receiver 7319 if (stopped()) return true; 7320 7321 Node* input = argument(1); 7322 Node* input_offset = argument(2); 7323 Node* len = argument(3); 7324 Node* alimbs = argument(4); 7325 Node* rlimbs = argument(5); 7326 7327 input = must_be_not_null(input, true); 7328 alimbs = must_be_not_null(alimbs, true); 7329 rlimbs = must_be_not_null(rlimbs, true); 7330 7331 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7332 assert(input_start, "input array is null"); 7333 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7334 assert(acc_start, "acc array is null"); 7335 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7336 assert(r_start, "r array is null"); 7337 7338 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7339 OptoRuntime::poly1305_processBlocks_Type(), 7340 stubAddr, stubName, TypePtr::BOTTOM, 7341 input_start, len, acc_start, r_start); 7342 return true; 7343 } 7344 7345 //------------------------------inline_digestBase_implCompress----------------------- 7346 // 7347 // Calculate MD5 for single-block byte[] array. 7348 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7349 // 7350 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7351 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7352 // 7353 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7354 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7355 // 7356 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7357 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7358 // 7359 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7360 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7361 // 7362 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7363 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7364 7365 Node* digestBase_obj = argument(0); 7366 Node* src = argument(1); // type oop 7367 Node* ofs = argument(2); // type int 7368 7369 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7370 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7371 // failed array check 7372 return false; 7373 } 7374 // Figure out the size and type of the elements we will be copying. 7375 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7376 if (src_elem != T_BYTE) { 7377 return false; 7378 } 7379 // 'src_start' points to src array + offset 7380 src = must_be_not_null(src, true); 7381 Node* src_start = array_element_address(src, ofs, src_elem); 7382 Node* state = nullptr; 7383 Node* block_size = nullptr; 7384 address stubAddr; 7385 const char *stubName; 7386 7387 switch(id) { 7388 case vmIntrinsics::_md5_implCompress: 7389 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7390 state = get_state_from_digest_object(digestBase_obj, T_INT); 7391 stubAddr = StubRoutines::md5_implCompress(); 7392 stubName = "md5_implCompress"; 7393 break; 7394 case vmIntrinsics::_sha_implCompress: 7395 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7396 state = get_state_from_digest_object(digestBase_obj, T_INT); 7397 stubAddr = StubRoutines::sha1_implCompress(); 7398 stubName = "sha1_implCompress"; 7399 break; 7400 case vmIntrinsics::_sha2_implCompress: 7401 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7402 state = get_state_from_digest_object(digestBase_obj, T_INT); 7403 stubAddr = StubRoutines::sha256_implCompress(); 7404 stubName = "sha256_implCompress"; 7405 break; 7406 case vmIntrinsics::_sha5_implCompress: 7407 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7408 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7409 stubAddr = StubRoutines::sha512_implCompress(); 7410 stubName = "sha512_implCompress"; 7411 break; 7412 case vmIntrinsics::_sha3_implCompress: 7413 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7414 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 7415 stubAddr = StubRoutines::sha3_implCompress(); 7416 stubName = "sha3_implCompress"; 7417 block_size = get_block_size_from_digest_object(digestBase_obj); 7418 if (block_size == nullptr) return false; 7419 break; 7420 default: 7421 fatal_unexpected_iid(id); 7422 return false; 7423 } 7424 if (state == nullptr) return false; 7425 7426 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7427 if (stubAddr == nullptr) return false; 7428 7429 // Call the stub. 7430 Node* call; 7431 if (block_size == nullptr) { 7432 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7433 stubAddr, stubName, TypePtr::BOTTOM, 7434 src_start, state); 7435 } else { 7436 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7437 stubAddr, stubName, TypePtr::BOTTOM, 7438 src_start, state, block_size); 7439 } 7440 7441 return true; 7442 } 7443 7444 //------------------------------inline_digestBase_implCompressMB----------------------- 7445 // 7446 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7447 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7448 // 7449 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7450 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7451 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7452 assert((uint)predicate < 5, "sanity"); 7453 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7454 7455 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7456 Node* src = argument(1); // byte[] array 7457 Node* ofs = argument(2); // type int 7458 Node* limit = argument(3); // type int 7459 7460 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7461 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7462 // failed array check 7463 return false; 7464 } 7465 // Figure out the size and type of the elements we will be copying. 7466 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7467 if (src_elem != T_BYTE) { 7468 return false; 7469 } 7470 // 'src_start' points to src array + offset 7471 src = must_be_not_null(src, false); 7472 Node* src_start = array_element_address(src, ofs, src_elem); 7473 7474 const char* klass_digestBase_name = nullptr; 7475 const char* stub_name = nullptr; 7476 address stub_addr = nullptr; 7477 BasicType elem_type = T_INT; 7478 7479 switch (predicate) { 7480 case 0: 7481 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7482 klass_digestBase_name = "sun/security/provider/MD5"; 7483 stub_name = "md5_implCompressMB"; 7484 stub_addr = StubRoutines::md5_implCompressMB(); 7485 } 7486 break; 7487 case 1: 7488 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7489 klass_digestBase_name = "sun/security/provider/SHA"; 7490 stub_name = "sha1_implCompressMB"; 7491 stub_addr = StubRoutines::sha1_implCompressMB(); 7492 } 7493 break; 7494 case 2: 7495 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7496 klass_digestBase_name = "sun/security/provider/SHA2"; 7497 stub_name = "sha256_implCompressMB"; 7498 stub_addr = StubRoutines::sha256_implCompressMB(); 7499 } 7500 break; 7501 case 3: 7502 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7503 klass_digestBase_name = "sun/security/provider/SHA5"; 7504 stub_name = "sha512_implCompressMB"; 7505 stub_addr = StubRoutines::sha512_implCompressMB(); 7506 elem_type = T_LONG; 7507 } 7508 break; 7509 case 4: 7510 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7511 klass_digestBase_name = "sun/security/provider/SHA3"; 7512 stub_name = "sha3_implCompressMB"; 7513 stub_addr = StubRoutines::sha3_implCompressMB(); 7514 elem_type = T_BYTE; 7515 } 7516 break; 7517 default: 7518 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7519 } 7520 if (klass_digestBase_name != nullptr) { 7521 assert(stub_addr != nullptr, "Stub is generated"); 7522 if (stub_addr == nullptr) return false; 7523 7524 // get DigestBase klass to lookup for SHA klass 7525 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7526 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7527 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7528 7529 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7530 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7531 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7532 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7533 } 7534 return false; 7535 } 7536 7537 //------------------------------inline_digestBase_implCompressMB----------------------- 7538 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7539 BasicType elem_type, address stubAddr, const char *stubName, 7540 Node* src_start, Node* ofs, Node* limit) { 7541 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7542 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7543 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7544 digest_obj = _gvn.transform(digest_obj); 7545 7546 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7547 if (state == nullptr) return false; 7548 7549 Node* block_size = nullptr; 7550 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7551 block_size = get_block_size_from_digest_object(digest_obj); 7552 if (block_size == nullptr) return false; 7553 } 7554 7555 // Call the stub. 7556 Node* call; 7557 if (block_size == nullptr) { 7558 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7559 OptoRuntime::digestBase_implCompressMB_Type(false), 7560 stubAddr, stubName, TypePtr::BOTTOM, 7561 src_start, state, ofs, limit); 7562 } else { 7563 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7564 OptoRuntime::digestBase_implCompressMB_Type(true), 7565 stubAddr, stubName, TypePtr::BOTTOM, 7566 src_start, state, block_size, ofs, limit); 7567 } 7568 7569 // return ofs (int) 7570 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7571 set_result(result); 7572 7573 return true; 7574 } 7575 7576 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 7577 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 7578 assert(UseAES, "need AES instruction support"); 7579 address stubAddr = nullptr; 7580 const char *stubName = nullptr; 7581 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 7582 stubName = "galoisCounterMode_AESCrypt"; 7583 7584 if (stubAddr == nullptr) return false; 7585 7586 Node* in = argument(0); 7587 Node* inOfs = argument(1); 7588 Node* len = argument(2); 7589 Node* ct = argument(3); 7590 Node* ctOfs = argument(4); 7591 Node* out = argument(5); 7592 Node* outOfs = argument(6); 7593 Node* gctr_object = argument(7); 7594 Node* ghash_object = argument(8); 7595 7596 // (1) in, ct and out are arrays. 7597 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 7598 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 7599 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 7600 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 7601 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 7602 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 7603 7604 // checks are the responsibility of the caller 7605 Node* in_start = in; 7606 Node* ct_start = ct; 7607 Node* out_start = out; 7608 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 7609 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 7610 in_start = array_element_address(in, inOfs, T_BYTE); 7611 ct_start = array_element_address(ct, ctOfs, T_BYTE); 7612 out_start = array_element_address(out, outOfs, T_BYTE); 7613 } 7614 7615 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7616 // (because of the predicated logic executed earlier). 7617 // so we cast it here safely. 7618 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7619 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7620 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 7621 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 7622 Node* state = load_field_from_object(ghash_object, "state", "[J"); 7623 7624 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 7625 return false; 7626 } 7627 // cast it to what we know it will be at runtime 7628 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 7629 assert(tinst != nullptr, "GCTR obj is null"); 7630 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7631 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7632 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7633 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7634 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7635 const TypeOopPtr* xtype = aklass->as_instance_type(); 7636 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7637 aescrypt_object = _gvn.transform(aescrypt_object); 7638 // we need to get the start of the aescrypt_object's expanded key array 7639 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7640 if (k_start == nullptr) return false; 7641 // similarly, get the start address of the r vector 7642 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 7643 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7644 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 7645 7646 7647 // Call the stub, passing params 7648 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7649 OptoRuntime::galoisCounterMode_aescrypt_Type(), 7650 stubAddr, stubName, TypePtr::BOTTOM, 7651 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 7652 7653 // return cipher length (int) 7654 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 7655 set_result(retvalue); 7656 7657 return true; 7658 } 7659 7660 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 7661 // Return node representing slow path of predicate check. 7662 // the pseudo code we want to emulate with this predicate is: 7663 // for encryption: 7664 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7665 // for decryption: 7666 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7667 // note cipher==plain is more conservative than the original java code but that's OK 7668 // 7669 7670 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 7671 // The receiver was checked for null already. 7672 Node* objGCTR = argument(7); 7673 // Load embeddedCipher field of GCTR object. 7674 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7675 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 7676 7677 // get AESCrypt klass for instanceOf check 7678 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7679 // will have same classloader as CipherBlockChaining object 7680 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 7681 assert(tinst != nullptr, "GCTR obj is null"); 7682 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7683 7684 // we want to do an instanceof comparison against the AESCrypt class 7685 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7686 if (!klass_AESCrypt->is_loaded()) { 7687 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7688 Node* ctrl = control(); 7689 set_control(top()); // no regular fast path 7690 return ctrl; 7691 } 7692 7693 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7694 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7695 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7696 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7697 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7698 7699 return instof_false; // even if it is null 7700 } 7701 7702 //------------------------------get_state_from_digest_object----------------------- 7703 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 7704 const char* state_type; 7705 switch (elem_type) { 7706 case T_BYTE: state_type = "[B"; break; 7707 case T_INT: state_type = "[I"; break; 7708 case T_LONG: state_type = "[J"; break; 7709 default: ShouldNotReachHere(); 7710 } 7711 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 7712 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 7713 if (digest_state == nullptr) return (Node *) nullptr; 7714 7715 // now have the array, need to get the start address of the state array 7716 Node* state = array_element_address(digest_state, intcon(0), elem_type); 7717 return state; 7718 } 7719 7720 //------------------------------get_block_size_from_sha3_object---------------------------------- 7721 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 7722 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 7723 assert (block_size != nullptr, "sanity"); 7724 return block_size; 7725 } 7726 7727 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 7728 // Return node representing slow path of predicate check. 7729 // the pseudo code we want to emulate with this predicate is: 7730 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 7731 // 7732 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 7733 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7734 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7735 assert((uint)predicate < 5, "sanity"); 7736 7737 // The receiver was checked for null already. 7738 Node* digestBaseObj = argument(0); 7739 7740 // get DigestBase klass for instanceOf check 7741 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 7742 assert(tinst != nullptr, "digestBaseObj is null"); 7743 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7744 7745 const char* klass_name = nullptr; 7746 switch (predicate) { 7747 case 0: 7748 if (UseMD5Intrinsics) { 7749 // we want to do an instanceof comparison against the MD5 class 7750 klass_name = "sun/security/provider/MD5"; 7751 } 7752 break; 7753 case 1: 7754 if (UseSHA1Intrinsics) { 7755 // we want to do an instanceof comparison against the SHA class 7756 klass_name = "sun/security/provider/SHA"; 7757 } 7758 break; 7759 case 2: 7760 if (UseSHA256Intrinsics) { 7761 // we want to do an instanceof comparison against the SHA2 class 7762 klass_name = "sun/security/provider/SHA2"; 7763 } 7764 break; 7765 case 3: 7766 if (UseSHA512Intrinsics) { 7767 // we want to do an instanceof comparison against the SHA5 class 7768 klass_name = "sun/security/provider/SHA5"; 7769 } 7770 break; 7771 case 4: 7772 if (UseSHA3Intrinsics) { 7773 // we want to do an instanceof comparison against the SHA3 class 7774 klass_name = "sun/security/provider/SHA3"; 7775 } 7776 break; 7777 default: 7778 fatal("unknown SHA intrinsic predicate: %d", predicate); 7779 } 7780 7781 ciKlass* klass = nullptr; 7782 if (klass_name != nullptr) { 7783 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 7784 } 7785 if ((klass == nullptr) || !klass->is_loaded()) { 7786 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 7787 Node* ctrl = control(); 7788 set_control(top()); // no intrinsic path 7789 return ctrl; 7790 } 7791 ciInstanceKlass* instklass = klass->as_instance_klass(); 7792 7793 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 7794 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7795 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7796 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7797 7798 return instof_false; // even if it is null 7799 } 7800 7801 //-------------inline_fma----------------------------------- 7802 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 7803 Node *a = nullptr; 7804 Node *b = nullptr; 7805 Node *c = nullptr; 7806 Node* result = nullptr; 7807 switch (id) { 7808 case vmIntrinsics::_fmaD: 7809 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 7810 // no receiver since it is static method 7811 a = round_double_node(argument(0)); 7812 b = round_double_node(argument(2)); 7813 c = round_double_node(argument(4)); 7814 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 7815 break; 7816 case vmIntrinsics::_fmaF: 7817 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 7818 a = argument(0); 7819 b = argument(1); 7820 c = argument(2); 7821 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 7822 break; 7823 default: 7824 fatal_unexpected_iid(id); break; 7825 } 7826 set_result(result); 7827 return true; 7828 } 7829 7830 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 7831 // argument(0) is receiver 7832 Node* codePoint = argument(1); 7833 Node* n = nullptr; 7834 7835 switch (id) { 7836 case vmIntrinsics::_isDigit : 7837 n = new DigitNode(control(), codePoint); 7838 break; 7839 case vmIntrinsics::_isLowerCase : 7840 n = new LowerCaseNode(control(), codePoint); 7841 break; 7842 case vmIntrinsics::_isUpperCase : 7843 n = new UpperCaseNode(control(), codePoint); 7844 break; 7845 case vmIntrinsics::_isWhitespace : 7846 n = new WhitespaceNode(control(), codePoint); 7847 break; 7848 default: 7849 fatal_unexpected_iid(id); 7850 } 7851 7852 set_result(_gvn.transform(n)); 7853 return true; 7854 } 7855 7856 //------------------------------inline_fp_min_max------------------------------ 7857 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 7858 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 7859 7860 // The intrinsic should be used only when the API branches aren't predictable, 7861 // the last one performing the most important comparison. The following heuristic 7862 // uses the branch statistics to eventually bail out if necessary. 7863 7864 ciMethodData *md = callee()->method_data(); 7865 7866 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 7867 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 7868 7869 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 7870 // Bail out if the call-site didn't contribute enough to the statistics. 7871 return false; 7872 } 7873 7874 uint taken = 0, not_taken = 0; 7875 7876 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 7877 if (p->is_BranchData()) { 7878 taken = ((ciBranchData*)p)->taken(); 7879 not_taken = ((ciBranchData*)p)->not_taken(); 7880 } 7881 } 7882 7883 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 7884 balance = balance < 0 ? -balance : balance; 7885 if ( balance > 0.2 ) { 7886 // Bail out if the most important branch is predictable enough. 7887 return false; 7888 } 7889 } 7890 */ 7891 7892 Node *a = nullptr; 7893 Node *b = nullptr; 7894 Node *n = nullptr; 7895 switch (id) { 7896 case vmIntrinsics::_maxF: 7897 case vmIntrinsics::_minF: 7898 case vmIntrinsics::_maxF_strict: 7899 case vmIntrinsics::_minF_strict: 7900 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 7901 a = argument(0); 7902 b = argument(1); 7903 break; 7904 case vmIntrinsics::_maxD: 7905 case vmIntrinsics::_minD: 7906 case vmIntrinsics::_maxD_strict: 7907 case vmIntrinsics::_minD_strict: 7908 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 7909 a = round_double_node(argument(0)); 7910 b = round_double_node(argument(2)); 7911 break; 7912 default: 7913 fatal_unexpected_iid(id); 7914 break; 7915 } 7916 switch (id) { 7917 case vmIntrinsics::_maxF: 7918 case vmIntrinsics::_maxF_strict: 7919 n = new MaxFNode(a, b); 7920 break; 7921 case vmIntrinsics::_minF: 7922 case vmIntrinsics::_minF_strict: 7923 n = new MinFNode(a, b); 7924 break; 7925 case vmIntrinsics::_maxD: 7926 case vmIntrinsics::_maxD_strict: 7927 n = new MaxDNode(a, b); 7928 break; 7929 case vmIntrinsics::_minD: 7930 case vmIntrinsics::_minD_strict: 7931 n = new MinDNode(a, b); 7932 break; 7933 default: 7934 fatal_unexpected_iid(id); 7935 break; 7936 } 7937 set_result(_gvn.transform(n)); 7938 return true; 7939 } 7940 7941 bool LibraryCallKit::inline_profileBoolean() { 7942 Node* counts = argument(1); 7943 const TypeAryPtr* ary = nullptr; 7944 ciArray* aobj = nullptr; 7945 if (counts->is_Con() 7946 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 7947 && (aobj = ary->const_oop()->as_array()) != nullptr 7948 && (aobj->length() == 2)) { 7949 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 7950 jint false_cnt = aobj->element_value(0).as_int(); 7951 jint true_cnt = aobj->element_value(1).as_int(); 7952 7953 if (C->log() != nullptr) { 7954 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 7955 false_cnt, true_cnt); 7956 } 7957 7958 if (false_cnt + true_cnt == 0) { 7959 // According to profile, never executed. 7960 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7961 Deoptimization::Action_reinterpret); 7962 return true; 7963 } 7964 7965 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 7966 // is a number of each value occurrences. 7967 Node* result = argument(0); 7968 if (false_cnt == 0 || true_cnt == 0) { 7969 // According to profile, one value has been never seen. 7970 int expected_val = (false_cnt == 0) ? 1 : 0; 7971 7972 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 7973 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7974 7975 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 7976 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 7977 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 7978 7979 { // Slow path: uncommon trap for never seen value and then reexecute 7980 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 7981 // the value has been seen at least once. 7982 PreserveJVMState pjvms(this); 7983 PreserveReexecuteState preexecs(this); 7984 jvms()->set_should_reexecute(true); 7985 7986 set_control(slow_path); 7987 set_i_o(i_o()); 7988 7989 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7990 Deoptimization::Action_reinterpret); 7991 } 7992 // The guard for never seen value enables sharpening of the result and 7993 // returning a constant. It allows to eliminate branches on the same value 7994 // later on. 7995 set_control(fast_path); 7996 result = intcon(expected_val); 7997 } 7998 // Stop profiling. 7999 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8000 // By replacing method body with profile data (represented as ProfileBooleanNode 8001 // on IR level) we effectively disable profiling. 8002 // It enables full speed execution once optimized code is generated. 8003 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8004 C->record_for_igvn(profile); 8005 set_result(profile); 8006 return true; 8007 } else { 8008 // Continue profiling. 8009 // Profile data isn't available at the moment. So, execute method's bytecode version. 8010 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8011 // is compiled and counters aren't available since corresponding MethodHandle 8012 // isn't a compile-time constant. 8013 return false; 8014 } 8015 } 8016 8017 bool LibraryCallKit::inline_isCompileConstant() { 8018 Node* n = argument(0); 8019 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8020 return true; 8021 } 8022 8023 //------------------------------- inline_getObjectSize -------------------------------------- 8024 // 8025 // Calculate the runtime size of the object/array. 8026 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8027 // 8028 bool LibraryCallKit::inline_getObjectSize() { 8029 Node* obj = argument(3); 8030 Node* klass_node = load_object_klass(obj); 8031 8032 jint layout_con = Klass::_lh_neutral_value; 8033 Node* layout_val = get_layout_helper(klass_node, layout_con); 8034 int layout_is_con = (layout_val == nullptr); 8035 8036 if (layout_is_con) { 8037 // Layout helper is constant, can figure out things at compile time. 8038 8039 if (Klass::layout_helper_is_instance(layout_con)) { 8040 // Instance case: layout_con contains the size itself. 8041 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8042 set_result(size); 8043 } else { 8044 // Array case: size is round(header + element_size*arraylength). 8045 // Since arraylength is different for every array instance, we have to 8046 // compute the whole thing at runtime. 8047 8048 Node* arr_length = load_array_length(obj); 8049 8050 int round_mask = MinObjAlignmentInBytes - 1; 8051 int hsize = Klass::layout_helper_header_size(layout_con); 8052 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8053 8054 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8055 round_mask = 0; // strength-reduce it if it goes away completely 8056 } 8057 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8058 Node* header_size = intcon(hsize + round_mask); 8059 8060 Node* lengthx = ConvI2X(arr_length); 8061 Node* headerx = ConvI2X(header_size); 8062 8063 Node* abody = lengthx; 8064 if (eshift != 0) { 8065 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8066 } 8067 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8068 if (round_mask != 0) { 8069 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8070 } 8071 size = ConvX2L(size); 8072 set_result(size); 8073 } 8074 } else { 8075 // Layout helper is not constant, need to test for array-ness at runtime. 8076 8077 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8078 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8079 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8080 record_for_igvn(result_reg); 8081 8082 Node* array_ctl = generate_array_guard(klass_node, nullptr); 8083 if (array_ctl != nullptr) { 8084 // Array case: size is round(header + element_size*arraylength). 8085 // Since arraylength is different for every array instance, we have to 8086 // compute the whole thing at runtime. 8087 8088 PreserveJVMState pjvms(this); 8089 set_control(array_ctl); 8090 Node* arr_length = load_array_length(obj); 8091 8092 int round_mask = MinObjAlignmentInBytes - 1; 8093 Node* mask = intcon(round_mask); 8094 8095 Node* hss = intcon(Klass::_lh_header_size_shift); 8096 Node* hsm = intcon(Klass::_lh_header_size_mask); 8097 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8098 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8099 header_size = _gvn.transform(new AddINode(header_size, mask)); 8100 8101 // There is no need to mask or shift this value. 8102 // The semantics of LShiftINode include an implicit mask to 0x1F. 8103 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8104 Node* elem_shift = layout_val; 8105 8106 Node* lengthx = ConvI2X(arr_length); 8107 Node* headerx = ConvI2X(header_size); 8108 8109 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8110 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8111 if (round_mask != 0) { 8112 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8113 } 8114 size = ConvX2L(size); 8115 8116 result_reg->init_req(_array_path, control()); 8117 result_val->init_req(_array_path, size); 8118 } 8119 8120 if (!stopped()) { 8121 // Instance case: the layout helper gives us instance size almost directly, 8122 // but we need to mask out the _lh_instance_slow_path_bit. 8123 Node* size = ConvI2X(layout_val); 8124 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8125 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8126 size = _gvn.transform(new AndXNode(size, mask)); 8127 size = ConvX2L(size); 8128 8129 result_reg->init_req(_instance_path, control()); 8130 result_val->init_req(_instance_path, size); 8131 } 8132 8133 set_result(result_reg, result_val); 8134 } 8135 8136 return true; 8137 } 8138 8139 //------------------------------- inline_blackhole -------------------------------------- 8140 // 8141 // Make sure all arguments to this node are alive. 8142 // This matches methods that were requested to be blackholed through compile commands. 8143 // 8144 bool LibraryCallKit::inline_blackhole() { 8145 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8146 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8147 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8148 8149 // Blackhole node pinches only the control, not memory. This allows 8150 // the blackhole to be pinned in the loop that computes blackholed 8151 // values, but have no other side effects, like breaking the optimizations 8152 // across the blackhole. 8153 8154 Node* bh = _gvn.transform(new BlackholeNode(control())); 8155 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8156 8157 // Bind call arguments as blackhole arguments to keep them alive 8158 uint nargs = callee()->arg_size(); 8159 for (uint i = 0; i < nargs; i++) { 8160 bh->add_req(argument(i)); 8161 } 8162 8163 return true; 8164 }