1 /*
   2  * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/collectedHeap.inline.hpp"
  28 #include "gc/shared/tlab_globals.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/universe.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/graphKit.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/macro.hpp"
  43 #include "opto/memnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/node.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/phaseX.hpp"
  48 #include "opto/rootnode.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subnode.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "opto/type.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "runtime/continuation.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #if INCLUDE_G1GC
  59 #include "gc/g1/g1ThreadLocalData.hpp"
  60 #endif // INCLUDE_G1GC
  61 
  62 
  63 //
  64 // Replace any references to "oldref" in inputs to "use" with "newref".
  65 // Returns the number of replacements made.
  66 //
  67 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  68   int nreplacements = 0;
  69   uint req = use->req();
  70   for (uint j = 0; j < use->len(); j++) {
  71     Node *uin = use->in(j);
  72     if (uin == oldref) {
  73       if (j < req)
  74         use->set_req(j, newref);
  75       else
  76         use->set_prec(j, newref);
  77       nreplacements++;
  78     } else if (j >= req && uin == nullptr) {
  79       break;
  80     }
  81   }
  82   return nreplacements;
  83 }
  84 
  85 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) {
  86   assert(old != nullptr, "sanity");
  87   for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) {
  88     Node* use = old->fast_out(i);
  89     _igvn.rehash_node_delayed(use);
  90     imax -= replace_input(use, old, target);
  91     // back up iterator
  92     --i;
  93   }
  94   assert(old->outcnt() == 0, "all uses must be deleted");
  95 }
  96 
  97 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
  98   Node* cmp;
  99   if (mask != 0) {
 100     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
 101     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
 102   } else {
 103     cmp = word;
 104   }
 105   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
 106   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 107   transform_later(iff);
 108 
 109   // Fast path taken.
 110   Node *fast_taken = transform_later(new IfFalseNode(iff));
 111 
 112   // Fast path not-taken, i.e. slow path
 113   Node *slow_taken = transform_later(new IfTrueNode(iff));
 114 
 115   if (return_fast_path) {
 116     region->init_req(edge, slow_taken); // Capture slow-control
 117     return fast_taken;
 118   } else {
 119     region->init_req(edge, fast_taken); // Capture fast-control
 120     return slow_taken;
 121   }
 122 }
 123 
 124 //--------------------copy_predefined_input_for_runtime_call--------------------
 125 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 126   // Set fixed predefined input arguments
 127   call->init_req( TypeFunc::Control, ctrl );
 128   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 129   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 130   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 131   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 132 }
 133 
 134 //------------------------------make_slow_call---------------------------------
 135 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 136                                            address slow_call, const char* leaf_name, Node* slow_path,
 137                                            Node* parm0, Node* parm1, Node* parm2) {
 138 
 139   // Slow-path call
 140  CallNode *call = leaf_name
 141    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 142    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM );
 143 
 144   // Slow path call has no side-effects, uses few values
 145   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 146   if (parm0 != nullptr)  call->init_req(TypeFunc::Parms+0, parm0);
 147   if (parm1 != nullptr)  call->init_req(TypeFunc::Parms+1, parm1);
 148   if (parm2 != nullptr)  call->init_req(TypeFunc::Parms+2, parm2);
 149   call->copy_call_debug_info(&_igvn, oldcall);
 150   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 151   _igvn.replace_node(oldcall, call);
 152   transform_later(call);
 153 
 154   return call;
 155 }
 156 
 157 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
 158   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 159   bs->eliminate_gc_barrier(this, p2x);
 160 #ifndef PRODUCT
 161   if (PrintOptoStatistics) {
 162     Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter);
 163   }
 164 #endif
 165 }
 166 
 167 // Search for a memory operation for the specified memory slice.
 168 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 169   Node *orig_mem = mem;
 170   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 171   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 172   while (true) {
 173     if (mem == alloc_mem || mem == start_mem ) {
 174       return mem;  // hit one of our sentinels
 175     } else if (mem->is_MergeMem()) {
 176       mem = mem->as_MergeMem()->memory_at(alias_idx);
 177     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 178       Node *in = mem->in(0);
 179       // we can safely skip over safepoints, calls, locks and membars because we
 180       // already know that the object is safe to eliminate.
 181       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 182         return in;
 183       } else if (in->is_Call()) {
 184         CallNode *call = in->as_Call();
 185         if (call->may_modify(tinst, phase)) {
 186           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 187           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 188             return in;
 189           }
 190         }
 191         mem = in->in(TypeFunc::Memory);
 192       } else if (in->is_MemBar()) {
 193         ArrayCopyNode* ac = nullptr;
 194         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 195           if (ac != nullptr) {
 196             assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 197             return ac;
 198           }
 199         }
 200         mem = in->in(TypeFunc::Memory);
 201       } else {
 202 #ifdef ASSERT
 203         in->dump();
 204         mem->dump();
 205         assert(false, "unexpected projection");
 206 #endif
 207       }
 208     } else if (mem->is_Store()) {
 209       const TypePtr* atype = mem->as_Store()->adr_type();
 210       int adr_idx = phase->C->get_alias_index(atype);
 211       if (adr_idx == alias_idx) {
 212         assert(atype->isa_oopptr(), "address type must be oopptr");
 213         int adr_offset = atype->offset();
 214         uint adr_iid = atype->is_oopptr()->instance_id();
 215         // Array elements references have the same alias_idx
 216         // but different offset and different instance_id.
 217         if (adr_offset == offset && adr_iid == alloc->_idx) {
 218           return mem;
 219         }
 220       } else {
 221         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 222       }
 223       mem = mem->in(MemNode::Memory);
 224     } else if (mem->is_ClearArray()) {
 225       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 226         // Can not bypass initialization of the instance
 227         // we are looking.
 228         debug_only(intptr_t offset;)
 229         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 230         InitializeNode* init = alloc->as_Allocate()->initialization();
 231         // We are looking for stored value, return Initialize node
 232         // or memory edge from Allocate node.
 233         if (init != nullptr) {
 234           return init;
 235         } else {
 236           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 237         }
 238       }
 239       // Otherwise skip it (the call updated 'mem' value).
 240     } else if (mem->Opcode() == Op_SCMemProj) {
 241       mem = mem->in(0);
 242       Node* adr = nullptr;
 243       if (mem->is_LoadStore()) {
 244         adr = mem->in(MemNode::Address);
 245       } else {
 246         assert(mem->Opcode() == Op_EncodeISOArray ||
 247                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 248         adr = mem->in(3); // Destination array
 249       }
 250       const TypePtr* atype = adr->bottom_type()->is_ptr();
 251       int adr_idx = phase->C->get_alias_index(atype);
 252       if (adr_idx == alias_idx) {
 253         DEBUG_ONLY(mem->dump();)
 254         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 255         return nullptr;
 256       }
 257       mem = mem->in(MemNode::Memory);
 258    } else if (mem->Opcode() == Op_StrInflatedCopy) {
 259       Node* adr = mem->in(3); // Destination array
 260       const TypePtr* atype = adr->bottom_type()->is_ptr();
 261       int adr_idx = phase->C->get_alias_index(atype);
 262       if (adr_idx == alias_idx) {
 263         DEBUG_ONLY(mem->dump();)
 264         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 265         return nullptr;
 266       }
 267       mem = mem->in(MemNode::Memory);
 268     } else {
 269       return mem;
 270     }
 271     assert(mem != orig_mem, "dead memory loop");
 272   }
 273 }
 274 
 275 // Generate loads from source of the arraycopy for fields of
 276 // destination needed at a deoptimization point
 277 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 278   BasicType bt = ft;
 279   const Type *type = ftype;
 280   if (ft == T_NARROWOOP) {
 281     bt = T_OBJECT;
 282     type = ftype->make_oopptr();
 283   }
 284   Node* res = nullptr;
 285   if (ac->is_clonebasic()) {
 286     assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
 287     Node* base = ac->in(ArrayCopyNode::Src);
 288     Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
 289     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 290     MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 291     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 292     res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 293   } else {
 294     if (ac->modifies(offset, offset, &_igvn, true)) {
 295       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 296       uint shift = exact_log2(type2aelembytes(bt));
 297       Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
 298       Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
 299       const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
 300       const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
 301 
 302       Node* adr = nullptr;
 303       const TypePtr* adr_type = nullptr;
 304       if (src_pos_t->is_con() && dest_pos_t->is_con()) {
 305         intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
 306         Node* base = ac->in(ArrayCopyNode::Src);
 307         adr = _igvn.transform(new AddPNode(base, base, MakeConX(off)));
 308         adr_type = _igvn.type(base)->is_ptr()->add_offset(off);
 309         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 310           // Don't emit a new load from src if src == dst but try to get the value from memory instead
 311           return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc);
 312         }
 313       } else {
 314         Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 315 #ifdef _LP64
 316         diff = _igvn.transform(new ConvI2LNode(diff));
 317 #endif
 318         diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
 319 
 320         Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
 321         Node* base = ac->in(ArrayCopyNode::Src);
 322         adr = _igvn.transform(new AddPNode(base, base, off));
 323         adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot);
 324         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 325           // Non constant offset in the array: we can't statically
 326           // determine the value
 327           return nullptr;
 328         }
 329       }
 330       MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 331       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 332       res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 333     }
 334   }
 335   if (res != nullptr) {
 336     if (ftype->isa_narrowoop()) {
 337       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 338       res = _igvn.transform(new EncodePNode(res, ftype));
 339     }
 340     return res;
 341   }
 342   return nullptr;
 343 }
 344 
 345 //
 346 // Given a Memory Phi, compute a value Phi containing the values from stores
 347 // on the input paths.
 348 // Note: this function is recursive, its depth is limited by the "level" argument
 349 // Returns the computed Phi, or null if it cannot compute it.
 350 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 351   assert(mem->is_Phi(), "sanity");
 352   int alias_idx = C->get_alias_index(adr_t);
 353   int offset = adr_t->offset();
 354   int instance_id = adr_t->instance_id();
 355 
 356   // Check if an appropriate value phi already exists.
 357   Node* region = mem->in(0);
 358   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 359     Node* phi = region->fast_out(k);
 360     if (phi->is_Phi() && phi != mem &&
 361         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 362       return phi;
 363     }
 364   }
 365   // Check if an appropriate new value phi already exists.
 366   Node* new_phi = value_phis->find(mem->_idx);
 367   if (new_phi != nullptr)
 368     return new_phi;
 369 
 370   if (level <= 0) {
 371     return nullptr; // Give up: phi tree too deep
 372   }
 373   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 374   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 375 
 376   uint length = mem->req();
 377   GrowableArray <Node *> values(length, length, nullptr);
 378 
 379   // create a new Phi for the value
 380   PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset);
 381   transform_later(phi);
 382   value_phis->push(phi, mem->_idx);
 383 
 384   for (uint j = 1; j < length; j++) {
 385     Node *in = mem->in(j);
 386     if (in == nullptr || in->is_top()) {
 387       values.at_put(j, in);
 388     } else  {
 389       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 390       if (val == start_mem || val == alloc_mem) {
 391         // hit a sentinel, return appropriate 0 value
 392         values.at_put(j, _igvn.zerocon(ft));
 393         continue;
 394       }
 395       if (val->is_Initialize()) {
 396         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 397       }
 398       if (val == nullptr) {
 399         return nullptr;  // can't find a value on this path
 400       }
 401       if (val == mem) {
 402         values.at_put(j, mem);
 403       } else if (val->is_Store()) {
 404         Node* n = val->in(MemNode::ValueIn);
 405         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 406         n = bs->step_over_gc_barrier(n);
 407         if (is_subword_type(ft)) {
 408           n = Compile::narrow_value(ft, n, phi_type, &_igvn, true);
 409         }
 410         values.at_put(j, n);
 411       } else if(val->is_Proj() && val->in(0) == alloc) {
 412         values.at_put(j, _igvn.zerocon(ft));
 413       } else if (val->is_Phi()) {
 414         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 415         if (val == nullptr) {
 416           return nullptr;
 417         }
 418         values.at_put(j, val);
 419       } else if (val->Opcode() == Op_SCMemProj) {
 420         assert(val->in(0)->is_LoadStore() ||
 421                val->in(0)->Opcode() == Op_EncodeISOArray ||
 422                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 423         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 424         return nullptr;
 425       } else if (val->is_ArrayCopy()) {
 426         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 427         if (res == nullptr) {
 428           return nullptr;
 429         }
 430         values.at_put(j, res);
 431       } else {
 432         DEBUG_ONLY( val->dump(); )
 433         assert(false, "unknown node on this path");
 434         return nullptr;  // unknown node on this path
 435       }
 436     }
 437   }
 438   // Set Phi's inputs
 439   for (uint j = 1; j < length; j++) {
 440     if (values.at(j) == mem) {
 441       phi->init_req(j, phi);
 442     } else {
 443       phi->init_req(j, values.at(j));
 444     }
 445   }
 446   return phi;
 447 }
 448 
 449 // Search the last value stored into the object's field.
 450 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 451   assert(adr_t->is_known_instance_field(), "instance required");
 452   int instance_id = adr_t->instance_id();
 453   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 454 
 455   int alias_idx = C->get_alias_index(adr_t);
 456   int offset = adr_t->offset();
 457   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 458   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 459   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 460   VectorSet visited;
 461 
 462   bool done = sfpt_mem == alloc_mem;
 463   Node *mem = sfpt_mem;
 464   while (!done) {
 465     if (visited.test_set(mem->_idx)) {
 466       return nullptr;  // found a loop, give up
 467     }
 468     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 469     if (mem == start_mem || mem == alloc_mem) {
 470       done = true;  // hit a sentinel, return appropriate 0 value
 471     } else if (mem->is_Initialize()) {
 472       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 473       if (mem == nullptr) {
 474         done = true; // Something go wrong.
 475       } else if (mem->is_Store()) {
 476         const TypePtr* atype = mem->as_Store()->adr_type();
 477         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 478         done = true;
 479       }
 480     } else if (mem->is_Store()) {
 481       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 482       assert(atype != nullptr, "address type must be oopptr");
 483       assert(C->get_alias_index(atype) == alias_idx &&
 484              atype->is_known_instance_field() && atype->offset() == offset &&
 485              atype->instance_id() == instance_id, "store is correct memory slice");
 486       done = true;
 487     } else if (mem->is_Phi()) {
 488       // try to find a phi's unique input
 489       Node *unique_input = nullptr;
 490       Node *top = C->top();
 491       for (uint i = 1; i < mem->req(); i++) {
 492         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 493         if (n == nullptr || n == top || n == mem) {
 494           continue;
 495         } else if (unique_input == nullptr) {
 496           unique_input = n;
 497         } else if (unique_input != n) {
 498           unique_input = top;
 499           break;
 500         }
 501       }
 502       if (unique_input != nullptr && unique_input != top) {
 503         mem = unique_input;
 504       } else {
 505         done = true;
 506       }
 507     } else if (mem->is_ArrayCopy()) {
 508       done = true;
 509     } else {
 510       DEBUG_ONLY( mem->dump(); )
 511       assert(false, "unexpected node");
 512     }
 513   }
 514   if (mem != nullptr) {
 515     if (mem == start_mem || mem == alloc_mem) {
 516       // hit a sentinel, return appropriate 0 value
 517       return _igvn.zerocon(ft);
 518     } else if (mem->is_Store()) {
 519       Node* n = mem->in(MemNode::ValueIn);
 520       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 521       n = bs->step_over_gc_barrier(n);
 522       return n;
 523     } else if (mem->is_Phi()) {
 524       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 525       Node_Stack value_phis(8);
 526       Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 527       if (phi != nullptr) {
 528         return phi;
 529       } else {
 530         // Kill all new Phis
 531         while(value_phis.is_nonempty()) {
 532           Node* n = value_phis.node();
 533           _igvn.replace_node(n, C->top());
 534           value_phis.pop();
 535         }
 536       }
 537     } else if (mem->is_ArrayCopy()) {
 538       Node* ctl = mem->in(0);
 539       Node* m = mem->in(TypeFunc::Memory);
 540       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
 541         // pin the loads in the uncommon trap path
 542         ctl = sfpt_ctl;
 543         m = sfpt_mem;
 544       }
 545       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 546     }
 547   }
 548   // Something go wrong.
 549   return nullptr;
 550 }
 551 
 552 // Check the possibility of scalar replacement.
 553 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 554   //  Scan the uses of the allocation to check for anything that would
 555   //  prevent us from eliminating it.
 556   NOT_PRODUCT( const char* fail_eliminate = nullptr; )
 557   DEBUG_ONLY( Node* disq_node = nullptr; )
 558   bool  can_eliminate = true;
 559 
 560   Node* res = alloc->result_cast();
 561   const TypeOopPtr* res_type = nullptr;
 562   if (res == nullptr) {
 563     // All users were eliminated.
 564   } else if (!res->is_CheckCastPP()) {
 565     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 566     can_eliminate = false;
 567   } else {
 568     res_type = _igvn.type(res)->isa_oopptr();
 569     if (res_type == nullptr) {
 570       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 571       can_eliminate = false;
 572     } else if (res_type->isa_aryptr()) {
 573       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 574       if (length < 0) {
 575         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 576         can_eliminate = false;
 577       }
 578     }
 579   }
 580 
 581   if (can_eliminate && res != nullptr) {
 582     BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 583     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 584                                j < jmax && can_eliminate; j++) {
 585       Node* use = res->fast_out(j);
 586 
 587       if (use->is_AddP()) {
 588         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 589         int offset = addp_type->offset();
 590 
 591         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 592           NOT_PRODUCT(fail_eliminate = "Undefined field reference";)
 593           can_eliminate = false;
 594           break;
 595         }
 596         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 597                                    k < kmax && can_eliminate; k++) {
 598           Node* n = use->fast_out(k);
 599           if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n)) {
 600             DEBUG_ONLY(disq_node = n;)
 601             if (n->is_Load() || n->is_LoadStore()) {
 602               NOT_PRODUCT(fail_eliminate = "Field load";)
 603             } else {
 604               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 605             }
 606             can_eliminate = false;
 607           }
 608         }
 609       } else if (use->is_ArrayCopy() &&
 610                  (use->as_ArrayCopy()->is_clonebasic() ||
 611                   use->as_ArrayCopy()->is_arraycopy_validated() ||
 612                   use->as_ArrayCopy()->is_copyof_validated() ||
 613                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 614                  use->in(ArrayCopyNode::Dest) == res) {
 615         // ok to eliminate
 616       } else if (use->is_SafePoint()) {
 617         SafePointNode* sfpt = use->as_SafePoint();
 618         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 619           // Object is passed as argument.
 620           DEBUG_ONLY(disq_node = use;)
 621           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 622           can_eliminate = false;
 623         }
 624         Node* sfptMem = sfpt->memory();
 625         if (sfptMem == nullptr || sfptMem->is_top()) {
 626           DEBUG_ONLY(disq_node = use;)
 627           NOT_PRODUCT(fail_eliminate = "null or TOP memory";)
 628           can_eliminate = false;
 629         } else {
 630           safepoints.append_if_missing(sfpt);
 631         }
 632       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 633         if (use->is_Phi()) {
 634           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 635             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 636           } else {
 637             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 638           }
 639           DEBUG_ONLY(disq_node = use;)
 640         } else {
 641           if (use->Opcode() == Op_Return) {
 642             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 643           }else {
 644             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 645           }
 646           DEBUG_ONLY(disq_node = use;)
 647         }
 648         can_eliminate = false;
 649       }
 650     }
 651   }
 652 
 653 #ifndef PRODUCT
 654   if (PrintEliminateAllocations) {
 655     if (can_eliminate) {
 656       tty->print("Scalar ");
 657       if (res == nullptr)
 658         alloc->dump();
 659       else
 660         res->dump();
 661     } else if (alloc->_is_scalar_replaceable) {
 662       tty->print("NotScalar (%s)", fail_eliminate);
 663       if (res == nullptr)
 664         alloc->dump();
 665       else
 666         res->dump();
 667 #ifdef ASSERT
 668       if (disq_node != nullptr) {
 669           tty->print("  >>>> ");
 670           disq_node->dump();
 671       }
 672 #endif /*ASSERT*/
 673     }
 674   }
 675 #endif
 676   return can_eliminate;
 677 }
 678 
 679 // Do scalar replacement.
 680 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 681   GrowableArray <SafePointNode *> safepoints_done;
 682 
 683   ciInstanceKlass* iklass = nullptr;
 684   int nfields = 0;
 685   int array_base = 0;
 686   int element_size = 0;
 687   BasicType basic_elem_type = T_ILLEGAL;
 688   const Type* field_type = nullptr;
 689 
 690   Node* res = alloc->result_cast();
 691   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 692   const TypeOopPtr* res_type = nullptr;
 693   if (res != nullptr) { // Could be null when there are no users
 694     res_type = _igvn.type(res)->isa_oopptr();
 695   }
 696 
 697   if (res != nullptr) {
 698     if (res_type->isa_instptr()) {
 699       // find the fields of the class which will be needed for safepoint debug information
 700       iklass = res_type->is_instptr()->instance_klass();
 701       nfields = iklass->nof_nonstatic_fields();
 702     } else {
 703       // find the array's elements which will be needed for safepoint debug information
 704       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 705       assert(nfields >= 0, "must be an array klass.");
 706       basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type();
 707       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 708       element_size = type2aelembytes(basic_elem_type);
 709       field_type = res_type->is_aryptr()->elem();
 710     }
 711   }
 712   //
 713   // Process the safepoint uses
 714   //
 715   while (safepoints.length() > 0) {
 716     SafePointNode* sfpt = safepoints.pop();
 717     Node* mem = sfpt->memory();
 718     Node* ctl = sfpt->control();
 719     assert(sfpt->jvms() != nullptr, "missed JVMS");
 720     // Fields of scalar objs are referenced only at the end
 721     // of regular debuginfo at the last (youngest) JVMS.
 722     // Record relative start index.
 723     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
 724     SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 725 #ifdef ASSERT
 726                                                  alloc,
 727 #endif
 728                                                  first_ind, nfields);
 729     sobj->init_req(0, C->root());
 730     transform_later(sobj);
 731 
 732     // Scan object's fields adding an input to the safepoint for each field.
 733     for (int j = 0; j < nfields; j++) {
 734       intptr_t offset;
 735       ciField* field = nullptr;
 736       if (iklass != nullptr) {
 737         field = iklass->nonstatic_field_at(j);
 738         offset = field->offset_in_bytes();
 739         ciType* elem_type = field->type();
 740         basic_elem_type = field->layout_type();
 741 
 742         // The next code is taken from Parse::do_get_xxx().
 743         if (is_reference_type(basic_elem_type)) {
 744           if (!elem_type->is_loaded()) {
 745             field_type = TypeInstPtr::BOTTOM;
 746           } else if (field != nullptr && field->is_static_constant()) {
 747             ciObject* con = field->constant_value().as_object();
 748             // Do not "join" in the previous type; it doesn't add value,
 749             // and may yield a vacuous result if the field is of interface type.
 750             field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 751             assert(field_type != nullptr, "field singleton type must be consistent");
 752           } else {
 753             field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 754           }
 755           if (UseCompressedOops) {
 756             field_type = field_type->make_narrowoop();
 757             basic_elem_type = T_NARROWOOP;
 758           }
 759         } else {
 760           field_type = Type::get_const_basic_type(basic_elem_type);
 761         }
 762       } else {
 763         offset = array_base + j * (intptr_t)element_size;
 764       }
 765 
 766       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 767 
 768       Node *field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
 769       if (field_val == nullptr) {
 770         // We weren't able to find a value for this field,
 771         // give up on eliminating this allocation.
 772 
 773         // Remove any extra entries we added to the safepoint.
 774         uint last = sfpt->req() - 1;
 775         for (int k = 0;  k < j; k++) {
 776           sfpt->del_req(last--);
 777         }
 778         _igvn._worklist.push(sfpt);
 779         // rollback processed safepoints
 780         while (safepoints_done.length() > 0) {
 781           SafePointNode* sfpt_done = safepoints_done.pop();
 782           // remove any extra entries we added to the safepoint
 783           last = sfpt_done->req() - 1;
 784           for (int k = 0;  k < nfields; k++) {
 785             sfpt_done->del_req(last--);
 786           }
 787           JVMState *jvms = sfpt_done->jvms();
 788           jvms->set_endoff(sfpt_done->req());
 789           // Now make a pass over the debug information replacing any references
 790           // to SafePointScalarObjectNode with the allocated object.
 791           int start = jvms->debug_start();
 792           int end   = jvms->debug_end();
 793           for (int i = start; i < end; i++) {
 794             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 795               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 796               if (scobj->first_index(jvms) == sfpt_done->req() &&
 797                   scobj->n_fields() == (uint)nfields) {
 798                 assert(scobj->alloc() == alloc, "sanity");
 799                 sfpt_done->set_req(i, res);
 800               }
 801             }
 802           }
 803           _igvn._worklist.push(sfpt_done);
 804         }
 805 #ifndef PRODUCT
 806         if (PrintEliminateAllocations) {
 807           if (field != nullptr) {
 808             tty->print("=== At SafePoint node %d can't find value of Field: ",
 809                        sfpt->_idx);
 810             field->print();
 811             int field_idx = C->get_alias_index(field_addr_type);
 812             tty->print(" (alias_idx=%d)", field_idx);
 813           } else { // Array's element
 814             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 815                        sfpt->_idx, j);
 816           }
 817           tty->print(", which prevents elimination of: ");
 818           if (res == nullptr)
 819             alloc->dump();
 820           else
 821             res->dump();
 822         }
 823 #endif
 824         return false;
 825       }
 826       if (UseCompressedOops && field_type->isa_narrowoop()) {
 827         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 828         // to be able scalar replace the allocation.
 829         if (field_val->is_EncodeP()) {
 830           field_val = field_val->in(1);
 831         } else {
 832           field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 833         }
 834       }
 835       sfpt->add_req(field_val);
 836     }
 837     JVMState *jvms = sfpt->jvms();
 838     jvms->set_endoff(sfpt->req());
 839     // Now make a pass over the debug information replacing any references
 840     // to the allocated object with "sobj"
 841     int start = jvms->debug_start();
 842     int end   = jvms->debug_end();
 843     sfpt->replace_edges_in_range(res, sobj, start, end, &_igvn);
 844     _igvn._worklist.push(sfpt);
 845     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 846   }
 847   return true;
 848 }
 849 
 850 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
 851   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
 852   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
 853   if (ctl_proj != nullptr) {
 854     igvn.replace_node(ctl_proj, n->in(0));
 855   }
 856   if (mem_proj != nullptr) {
 857     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
 858   }
 859 }
 860 
 861 // Process users of eliminated allocation.
 862 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
 863   Node* res = alloc->result_cast();
 864   if (res != nullptr) {
 865     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 866       Node *use = res->last_out(j);
 867       uint oc1 = res->outcnt();
 868 
 869       if (use->is_AddP()) {
 870         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 871           Node *n = use->last_out(k);
 872           uint oc2 = use->outcnt();
 873           if (n->is_Store()) {
 874 #ifdef ASSERT
 875             // Verify that there is no dependent MemBarVolatile nodes,
 876             // they should be removed during IGVN, see MemBarNode::Ideal().
 877             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 878                                        p < pmax; p++) {
 879               Node* mb = n->fast_out(p);
 880               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 881                      mb->req() <= MemBarNode::Precedent ||
 882                      mb->in(MemBarNode::Precedent) != n,
 883                      "MemBarVolatile should be eliminated for non-escaping object");
 884             }
 885 #endif
 886             _igvn.replace_node(n, n->in(MemNode::Memory));
 887           } else {
 888             eliminate_gc_barrier(n);
 889           }
 890           k -= (oc2 - use->outcnt());
 891         }
 892         _igvn.remove_dead_node(use);
 893       } else if (use->is_ArrayCopy()) {
 894         // Disconnect ArrayCopy node
 895         ArrayCopyNode* ac = use->as_ArrayCopy();
 896         if (ac->is_clonebasic()) {
 897           Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
 898           disconnect_projections(ac, _igvn);
 899           assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
 900           Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
 901           disconnect_projections(membar_before->as_MemBar(), _igvn);
 902           if (membar_after->is_MemBar()) {
 903             disconnect_projections(membar_after->as_MemBar(), _igvn);
 904           }
 905         } else {
 906           assert(ac->is_arraycopy_validated() ||
 907                  ac->is_copyof_validated() ||
 908                  ac->is_copyofrange_validated(), "unsupported");
 909           CallProjections callprojs;
 910           ac->extract_projections(&callprojs, true);
 911 
 912           _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
 913           _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
 914           _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
 915 
 916           // Set control to top. IGVN will remove the remaining projections
 917           ac->set_req(0, top());
 918           ac->replace_edge(res, top(), &_igvn);
 919 
 920           // Disconnect src right away: it can help find new
 921           // opportunities for allocation elimination
 922           Node* src = ac->in(ArrayCopyNode::Src);
 923           ac->replace_edge(src, top(), &_igvn);
 924           // src can be top at this point if src and dest of the
 925           // arraycopy were the same
 926           if (src->outcnt() == 0 && !src->is_top()) {
 927             _igvn.remove_dead_node(src);
 928           }
 929         }
 930         _igvn._worklist.push(ac);
 931       } else {
 932         eliminate_gc_barrier(use);
 933       }
 934       j -= (oc1 - res->outcnt());
 935     }
 936     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 937     _igvn.remove_dead_node(res);
 938   }
 939 
 940   //
 941   // Process other users of allocation's projections
 942   //
 943   if (_callprojs.resproj != nullptr && _callprojs.resproj->outcnt() != 0) {
 944     // First disconnect stores captured by Initialize node.
 945     // If Initialize node is eliminated first in the following code,
 946     // it will kill such stores and DUIterator_Last will assert.
 947     for (DUIterator_Fast jmax, j = _callprojs.resproj->fast_outs(jmax);  j < jmax; j++) {
 948       Node* use = _callprojs.resproj->fast_out(j);
 949       if (use->is_AddP()) {
 950         // raw memory addresses used only by the initialization
 951         _igvn.replace_node(use, C->top());
 952         --j; --jmax;
 953       }
 954     }
 955     for (DUIterator_Last jmin, j = _callprojs.resproj->last_outs(jmin); j >= jmin; ) {
 956       Node* use = _callprojs.resproj->last_out(j);
 957       uint oc1 = _callprojs.resproj->outcnt();
 958       if (use->is_Initialize()) {
 959         // Eliminate Initialize node.
 960         InitializeNode *init = use->as_Initialize();
 961         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 962         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
 963         if (ctrl_proj != nullptr) {
 964           _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
 965 #ifdef ASSERT
 966           // If the InitializeNode has no memory out, it will die, and tmp will become null
 967           Node* tmp = init->in(TypeFunc::Control);
 968           assert(tmp == nullptr || tmp == _callprojs.fallthrough_catchproj, "allocation control projection");
 969 #endif
 970         }
 971         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
 972         if (mem_proj != nullptr) {
 973           Node *mem = init->in(TypeFunc::Memory);
 974 #ifdef ASSERT
 975           if (mem->is_MergeMem()) {
 976             assert(mem->in(TypeFunc::Memory) == _callprojs.fallthrough_memproj, "allocation memory projection");
 977           } else {
 978             assert(mem == _callprojs.fallthrough_memproj, "allocation memory projection");
 979           }
 980 #endif
 981           _igvn.replace_node(mem_proj, mem);
 982         }
 983       } else  {
 984         assert(false, "only Initialize or AddP expected");
 985       }
 986       j -= (oc1 - _callprojs.resproj->outcnt());
 987     }
 988   }
 989   if (_callprojs.fallthrough_catchproj != nullptr) {
 990     _igvn.replace_node(_callprojs.fallthrough_catchproj, alloc->in(TypeFunc::Control));
 991   }
 992   if (_callprojs.fallthrough_memproj != nullptr) {
 993     _igvn.replace_node(_callprojs.fallthrough_memproj, alloc->in(TypeFunc::Memory));
 994   }
 995   if (_callprojs.catchall_memproj != nullptr) {
 996     _igvn.replace_node(_callprojs.catchall_memproj, C->top());
 997   }
 998   if (_callprojs.fallthrough_ioproj != nullptr) {
 999     _igvn.replace_node(_callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
1000   }
1001   if (_callprojs.catchall_ioproj != nullptr) {
1002     _igvn.replace_node(_callprojs.catchall_ioproj, C->top());
1003   }
1004   if (_callprojs.catchall_catchproj != nullptr) {
1005     _igvn.replace_node(_callprojs.catchall_catchproj, C->top());
1006   }
1007 }
1008 
1009 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1010   // If reallocation fails during deoptimization we'll pop all
1011   // interpreter frames for this compiled frame and that won't play
1012   // nice with JVMTI popframe.
1013   // We avoid this issue by eager reallocation when the popframe request
1014   // is received.
1015   if (!EliminateAllocations || !alloc->_is_non_escaping) {
1016     return false;
1017   }
1018   Node* klass = alloc->in(AllocateNode::KlassNode);
1019   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1020   Node* res = alloc->result_cast();
1021   // Eliminate boxing allocations which are not used
1022   // regardless scalar replaceable status.
1023   bool boxing_alloc = C->eliminate_boxing() &&
1024                       tklass->isa_instklassptr() &&
1025                       tklass->is_instklassptr()->instance_klass()->is_box_klass();
1026   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != nullptr))) {
1027     return false;
1028   }
1029 
1030   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1031 
1032   GrowableArray <SafePointNode *> safepoints;
1033   if (!can_eliminate_allocation(alloc, safepoints)) {
1034     return false;
1035   }
1036 
1037   if (!alloc->_is_scalar_replaceable) {
1038     assert(res == nullptr, "sanity");
1039     // We can only eliminate allocation if all debug info references
1040     // are already replaced with SafePointScalarObject because
1041     // we can't search for a fields value without instance_id.
1042     if (safepoints.length() > 0) {
1043       return false;
1044     }
1045   }
1046 
1047   if (!scalar_replacement(alloc, safepoints)) {
1048     return false;
1049   }
1050 
1051   CompileLog* log = C->log();
1052   if (log != nullptr) {
1053     log->head("eliminate_allocation type='%d'",
1054               log->identify(tklass->exact_klass()));
1055     JVMState* p = alloc->jvms();
1056     while (p != nullptr) {
1057       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1058       p = p->caller();
1059     }
1060     log->tail("eliminate_allocation");
1061   }
1062 
1063   process_users_of_allocation(alloc);
1064 
1065 #ifndef PRODUCT
1066   if (PrintEliminateAllocations) {
1067     if (alloc->is_AllocateArray())
1068       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1069     else
1070       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1071   }
1072 #endif
1073 
1074   return true;
1075 }
1076 
1077 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1078   // EA should remove all uses of non-escaping boxing node.
1079   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) {
1080     return false;
1081   }
1082 
1083   assert(boxing->result_cast() == nullptr, "unexpected boxing node result");
1084 
1085   boxing->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1086 
1087   const TypeTuple* r = boxing->tf()->range();
1088   assert(r->cnt() > TypeFunc::Parms, "sanity");
1089   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1090   assert(t != nullptr, "sanity");
1091 
1092   CompileLog* log = C->log();
1093   if (log != nullptr) {
1094     log->head("eliminate_boxing type='%d'",
1095               log->identify(t->instance_klass()));
1096     JVMState* p = boxing->jvms();
1097     while (p != nullptr) {
1098       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1099       p = p->caller();
1100     }
1101     log->tail("eliminate_boxing");
1102   }
1103 
1104   process_users_of_allocation(boxing);
1105 
1106 #ifndef PRODUCT
1107   if (PrintEliminateAllocations) {
1108     tty->print("++++ Eliminated: %d ", boxing->_idx);
1109     boxing->method()->print_short_name(tty);
1110     tty->cr();
1111   }
1112 #endif
1113 
1114   return true;
1115 }
1116 
1117 
1118 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1119   Node* adr = basic_plus_adr(base, offset);
1120   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1121   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1122   transform_later(value);
1123   return value;
1124 }
1125 
1126 
1127 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1128   Node* adr = basic_plus_adr(base, offset);
1129   mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered);
1130   transform_later(mem);
1131   return mem;
1132 }
1133 
1134 //=============================================================================
1135 //
1136 //                              A L L O C A T I O N
1137 //
1138 // Allocation attempts to be fast in the case of frequent small objects.
1139 // It breaks down like this:
1140 //
1141 // 1) Size in doublewords is computed.  This is a constant for objects and
1142 // variable for most arrays.  Doubleword units are used to avoid size
1143 // overflow of huge doubleword arrays.  We need doublewords in the end for
1144 // rounding.
1145 //
1146 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1147 // the slow path into the VM.  The slow path can throw any required
1148 // exceptions, and does all the special checks for very large arrays.  The
1149 // size test can constant-fold away for objects.  For objects with
1150 // finalizers it constant-folds the otherway: you always go slow with
1151 // finalizers.
1152 //
1153 // 3) If NOT using TLABs, this is the contended loop-back point.
1154 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1155 //
1156 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1157 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1158 // "size*8" we always enter the VM, where "largish" is a constant picked small
1159 // enough that there's always space between the eden max and 4Gig (old space is
1160 // there so it's quite large) and large enough that the cost of entering the VM
1161 // is dwarfed by the cost to initialize the space.
1162 //
1163 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1164 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1165 // adjusted heap top back down; there is no contention.
1166 //
1167 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1168 // fields.
1169 //
1170 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1171 // oop flavor.
1172 //
1173 //=============================================================================
1174 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1175 // Allocations bigger than this always go the slow route.
1176 // This value must be small enough that allocation attempts that need to
1177 // trigger exceptions go the slow route.  Also, it must be small enough so
1178 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1179 //=============================================================================j//
1180 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1181 // The allocator will coalesce int->oop copies away.  See comment in
1182 // coalesce.cpp about how this works.  It depends critically on the exact
1183 // code shape produced here, so if you are changing this code shape
1184 // make sure the GC info for the heap-top is correct in and around the
1185 // slow-path call.
1186 //
1187 
1188 void PhaseMacroExpand::expand_allocate_common(
1189             AllocateNode* alloc, // allocation node to be expanded
1190             Node* length,  // array length for an array allocation
1191             const TypeFunc* slow_call_type, // Type of slow call
1192             address slow_call_address,  // Address of slow call
1193             Node* valid_length_test // whether length is valid or not
1194     )
1195 {
1196   Node* ctrl = alloc->in(TypeFunc::Control);
1197   Node* mem  = alloc->in(TypeFunc::Memory);
1198   Node* i_o  = alloc->in(TypeFunc::I_O);
1199   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1200   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1201   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1202   assert(ctrl != nullptr, "must have control");
1203 
1204   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1205   // they will not be used if "always_slow" is set
1206   enum { slow_result_path = 1, fast_result_path = 2 };
1207   Node *result_region = nullptr;
1208   Node *result_phi_rawmem = nullptr;
1209   Node *result_phi_rawoop = nullptr;
1210   Node *result_phi_i_o = nullptr;
1211 
1212   // The initial slow comparison is a size check, the comparison
1213   // we want to do is a BoolTest::gt
1214   bool expand_fast_path = true;
1215   int tv = _igvn.find_int_con(initial_slow_test, -1);
1216   if (tv >= 0) {
1217     // InitialTest has constant result
1218     //   0 - can fit in TLAB
1219     //   1 - always too big or negative
1220     assert(tv <= 1, "0 or 1 if a constant");
1221     expand_fast_path = (tv == 0);
1222     initial_slow_test = nullptr;
1223   } else {
1224     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1225   }
1226 
1227   if (!UseTLAB) {
1228     // Force slow-path allocation
1229     expand_fast_path = false;
1230     initial_slow_test = nullptr;
1231   }
1232 
1233   bool allocation_has_use = (alloc->result_cast() != nullptr);
1234   if (!allocation_has_use) {
1235     InitializeNode* init = alloc->initialization();
1236     if (init != nullptr) {
1237       init->remove(&_igvn);
1238     }
1239     if (expand_fast_path && (initial_slow_test == nullptr)) {
1240       // Remove allocation node and return.
1241       // Size is a non-negative constant -> no initial check needed -> directly to fast path.
1242       // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
1243 #ifndef PRODUCT
1244       if (PrintEliminateAllocations) {
1245         tty->print("NotUsed ");
1246         Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
1247         if (res != nullptr) {
1248           res->dump();
1249         } else {
1250           alloc->dump();
1251         }
1252       }
1253 #endif
1254       yank_alloc_node(alloc);
1255       return;
1256     }
1257   }
1258 
1259   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1260   Node *slow_region = nullptr;
1261   Node *toobig_false = ctrl;
1262 
1263   // generate the initial test if necessary
1264   if (initial_slow_test != nullptr ) {
1265     assert (expand_fast_path, "Only need test if there is a fast path");
1266     slow_region = new RegionNode(3);
1267 
1268     // Now make the initial failure test.  Usually a too-big test but
1269     // might be a TRUE for finalizers or a fancy class check for
1270     // newInstance0.
1271     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1272     transform_later(toobig_iff);
1273     // Plug the failing-too-big test into the slow-path region
1274     Node *toobig_true = new IfTrueNode( toobig_iff );
1275     transform_later(toobig_true);
1276     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1277     toobig_false = new IfFalseNode( toobig_iff );
1278     transform_later(toobig_false);
1279   } else {
1280     // No initial test, just fall into next case
1281     assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
1282     toobig_false = ctrl;
1283     debug_only(slow_region = NodeSentinel);
1284   }
1285 
1286   // If we are here there are several possibilities
1287   // - expand_fast_path is false - then only a slow path is expanded. That's it.
1288   // no_initial_check means a constant allocation.
1289   // - If check always evaluates to false -> expand_fast_path is false (see above)
1290   // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
1291   // if !allocation_has_use the fast path is empty
1292   // if !allocation_has_use && no_initial_check
1293   // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
1294   //   removed by yank_alloc_node above.
1295 
1296   Node *slow_mem = mem;  // save the current memory state for slow path
1297   // generate the fast allocation code unless we know that the initial test will always go slow
1298   if (expand_fast_path) {
1299     // Fast path modifies only raw memory.
1300     if (mem->is_MergeMem()) {
1301       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1302     }
1303 
1304     // allocate the Region and Phi nodes for the result
1305     result_region = new RegionNode(3);
1306     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1307     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1308 
1309     // Grab regular I/O before optional prefetch may change it.
1310     // Slow-path does no I/O so just set it to the original I/O.
1311     result_phi_i_o->init_req(slow_result_path, i_o);
1312 
1313     // Name successful fast-path variables
1314     Node* fast_oop_ctrl;
1315     Node* fast_oop_rawmem;
1316     if (allocation_has_use) {
1317       Node* needgc_ctrl = nullptr;
1318       result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1319 
1320       intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1321       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1322       Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1323                                         fast_oop_ctrl, fast_oop_rawmem,
1324                                         prefetch_lines);
1325 
1326       if (initial_slow_test != nullptr) {
1327         // This completes all paths into the slow merge point
1328         slow_region->init_req(need_gc_path, needgc_ctrl);
1329         transform_later(slow_region);
1330       } else {
1331         // No initial slow path needed!
1332         // Just fall from the need-GC path straight into the VM call.
1333         slow_region = needgc_ctrl;
1334       }
1335 
1336       InitializeNode* init = alloc->initialization();
1337       fast_oop_rawmem = initialize_object(alloc,
1338                                           fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1339                                           klass_node, length, size_in_bytes);
1340       expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
1341       expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
1342 
1343       result_phi_rawoop->init_req(fast_result_path, fast_oop);
1344     } else {
1345       assert (initial_slow_test != nullptr, "sanity");
1346       fast_oop_ctrl   = toobig_false;
1347       fast_oop_rawmem = mem;
1348       transform_later(slow_region);
1349     }
1350 
1351     // Plug in the successful fast-path into the result merge point
1352     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1353     result_phi_i_o   ->init_req(fast_result_path, i_o);
1354     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1355   } else {
1356     slow_region = ctrl;
1357     result_phi_i_o = i_o; // Rename it to use in the following code.
1358   }
1359 
1360   // Generate slow-path call
1361   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1362                                OptoRuntime::stub_name(slow_call_address),
1363                                TypePtr::BOTTOM);
1364   call->init_req(TypeFunc::Control,   slow_region);
1365   call->init_req(TypeFunc::I_O,       top());    // does no i/o
1366   call->init_req(TypeFunc::Memory,    slow_mem); // may gc ptrs
1367   call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1368   call->init_req(TypeFunc::FramePtr,  alloc->in(TypeFunc::FramePtr));
1369 
1370   call->init_req(TypeFunc::Parms+0, klass_node);
1371   if (length != nullptr) {
1372     call->init_req(TypeFunc::Parms+1, length);
1373   }
1374 
1375   // Copy debug information and adjust JVMState information, then replace
1376   // allocate node with the call
1377   call->copy_call_debug_info(&_igvn, alloc);
1378   // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify
1379   // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough
1380   // path dies).
1381   if (valid_length_test != nullptr) {
1382     call->add_req(valid_length_test);
1383   }
1384   if (expand_fast_path) {
1385     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1386   } else {
1387     // Hook i_o projection to avoid its elimination during allocation
1388     // replacement (when only a slow call is generated).
1389     call->set_req(TypeFunc::I_O, result_phi_i_o);
1390   }
1391   _igvn.replace_node(alloc, call);
1392   transform_later(call);
1393 
1394   // Identify the output projections from the allocate node and
1395   // adjust any references to them.
1396   // The control and io projections look like:
1397   //
1398   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1399   //  Allocate                   Catch
1400   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1401   //
1402   //  We are interested in the CatchProj nodes.
1403   //
1404   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1405 
1406   // An allocate node has separate memory projections for the uses on
1407   // the control and i_o paths. Replace the control memory projection with
1408   // result_phi_rawmem (unless we are only generating a slow call when
1409   // both memory projections are combined)
1410   if (expand_fast_path && _callprojs.fallthrough_memproj != nullptr) {
1411     migrate_outs(_callprojs.fallthrough_memproj, result_phi_rawmem);
1412   }
1413   // Now change uses of catchall_memproj to use fallthrough_memproj and delete
1414   // catchall_memproj so we end up with a call that has only 1 memory projection.
1415   if (_callprojs.catchall_memproj != nullptr ) {
1416     if (_callprojs.fallthrough_memproj == nullptr) {
1417       _callprojs.fallthrough_memproj = new ProjNode(call, TypeFunc::Memory);
1418       transform_later(_callprojs.fallthrough_memproj);
1419     }
1420     migrate_outs(_callprojs.catchall_memproj, _callprojs.fallthrough_memproj);
1421     _igvn.remove_dead_node(_callprojs.catchall_memproj);
1422   }
1423 
1424   // An allocate node has separate i_o projections for the uses on the control
1425   // and i_o paths. Always replace the control i_o projection with result i_o
1426   // otherwise incoming i_o become dead when only a slow call is generated
1427   // (it is different from memory projections where both projections are
1428   // combined in such case).
1429   if (_callprojs.fallthrough_ioproj != nullptr) {
1430     migrate_outs(_callprojs.fallthrough_ioproj, result_phi_i_o);
1431   }
1432   // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete
1433   // catchall_ioproj so we end up with a call that has only 1 i_o projection.
1434   if (_callprojs.catchall_ioproj != nullptr ) {
1435     if (_callprojs.fallthrough_ioproj == nullptr) {
1436       _callprojs.fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O);
1437       transform_later(_callprojs.fallthrough_ioproj);
1438     }
1439     migrate_outs(_callprojs.catchall_ioproj, _callprojs.fallthrough_ioproj);
1440     _igvn.remove_dead_node(_callprojs.catchall_ioproj);
1441   }
1442 
1443   // if we generated only a slow call, we are done
1444   if (!expand_fast_path) {
1445     // Now we can unhook i_o.
1446     if (result_phi_i_o->outcnt() > 1) {
1447       call->set_req(TypeFunc::I_O, top());
1448     } else {
1449       assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
1450       // Case of new array with negative size known during compilation.
1451       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1452       // following code since call to runtime will throw exception.
1453       // As result there will be no users of i_o after the call.
1454       // Leave i_o attached to this call to avoid problems in preceding graph.
1455     }
1456     return;
1457   }
1458 
1459   if (_callprojs.fallthrough_catchproj != nullptr) {
1460     ctrl = _callprojs.fallthrough_catchproj->clone();
1461     transform_later(ctrl);
1462     _igvn.replace_node(_callprojs.fallthrough_catchproj, result_region);
1463   } else {
1464     ctrl = top();
1465   }
1466   Node *slow_result;
1467   if (_callprojs.resproj == nullptr) {
1468     // no uses of the allocation result
1469     slow_result = top();
1470   } else {
1471     slow_result = _callprojs.resproj->clone();
1472     transform_later(slow_result);
1473     _igvn.replace_node(_callprojs.resproj, result_phi_rawoop);
1474   }
1475 
1476   // Plug slow-path into result merge point
1477   result_region->init_req( slow_result_path, ctrl);
1478   transform_later(result_region);
1479   if (allocation_has_use) {
1480     result_phi_rawoop->init_req(slow_result_path, slow_result);
1481     transform_later(result_phi_rawoop);
1482   }
1483   result_phi_rawmem->init_req(slow_result_path, _callprojs.fallthrough_memproj);
1484   transform_later(result_phi_rawmem);
1485   transform_later(result_phi_i_o);
1486   // This completes all paths into the result merge point
1487 }
1488 
1489 // Remove alloc node that has no uses.
1490 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
1491   Node* ctrl = alloc->in(TypeFunc::Control);
1492   Node* mem  = alloc->in(TypeFunc::Memory);
1493   Node* i_o  = alloc->in(TypeFunc::I_O);
1494 
1495   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1496   if (_callprojs.resproj != nullptr) {
1497     for (DUIterator_Fast imax, i = _callprojs.resproj->fast_outs(imax); i < imax; i++) {
1498       Node* use = _callprojs.resproj->fast_out(i);
1499       use->isa_MemBar()->remove(&_igvn);
1500       --imax;
1501       --i; // back up iterator
1502     }
1503     assert(_callprojs.resproj->outcnt() == 0, "all uses must be deleted");
1504     _igvn.remove_dead_node(_callprojs.resproj);
1505   }
1506   if (_callprojs.fallthrough_catchproj != nullptr) {
1507     migrate_outs(_callprojs.fallthrough_catchproj, ctrl);
1508     _igvn.remove_dead_node(_callprojs.fallthrough_catchproj);
1509   }
1510   if (_callprojs.catchall_catchproj != nullptr) {
1511     _igvn.rehash_node_delayed(_callprojs.catchall_catchproj);
1512     _callprojs.catchall_catchproj->set_req(0, top());
1513   }
1514   if (_callprojs.fallthrough_proj != nullptr) {
1515     Node* catchnode = _callprojs.fallthrough_proj->unique_ctrl_out();
1516     _igvn.remove_dead_node(catchnode);
1517     _igvn.remove_dead_node(_callprojs.fallthrough_proj);
1518   }
1519   if (_callprojs.fallthrough_memproj != nullptr) {
1520     migrate_outs(_callprojs.fallthrough_memproj, mem);
1521     _igvn.remove_dead_node(_callprojs.fallthrough_memproj);
1522   }
1523   if (_callprojs.fallthrough_ioproj != nullptr) {
1524     migrate_outs(_callprojs.fallthrough_ioproj, i_o);
1525     _igvn.remove_dead_node(_callprojs.fallthrough_ioproj);
1526   }
1527   if (_callprojs.catchall_memproj != nullptr) {
1528     _igvn.rehash_node_delayed(_callprojs.catchall_memproj);
1529     _callprojs.catchall_memproj->set_req(0, top());
1530   }
1531   if (_callprojs.catchall_ioproj != nullptr) {
1532     _igvn.rehash_node_delayed(_callprojs.catchall_ioproj);
1533     _callprojs.catchall_ioproj->set_req(0, top());
1534   }
1535 #ifndef PRODUCT
1536   if (PrintEliminateAllocations) {
1537     if (alloc->is_AllocateArray()) {
1538       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1539     } else {
1540       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1541     }
1542   }
1543 #endif
1544   _igvn.remove_dead_node(alloc);
1545 }
1546 
1547 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
1548                                                 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
1549   // If initialization is performed by an array copy, any required
1550   // MemBarStoreStore was already added. If the object does not
1551   // escape no need for a MemBarStoreStore. If the object does not
1552   // escape in its initializer and memory barrier (MemBarStoreStore or
1553   // stronger) is already added at exit of initializer, also no need
1554   // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1555   // so that stores that initialize this object can't be reordered
1556   // with a subsequent store that makes this object accessible by
1557   // other threads.
1558   // Other threads include java threads and JVM internal threads
1559   // (for example concurrent GC threads). Current concurrent GC
1560   // implementation: G1 will not scan newly created object,
1561   // so it's safe to skip storestore barrier when allocation does
1562   // not escape.
1563   if (!alloc->does_not_escape_thread() &&
1564     !alloc->is_allocation_MemBar_redundant() &&
1565     (init == nullptr || !init->is_complete_with_arraycopy())) {
1566     if (init == nullptr || init->req() < InitializeNode::RawStores) {
1567       // No InitializeNode or no stores captured by zeroing
1568       // elimination. Simply add the MemBarStoreStore after object
1569       // initialization.
1570       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1571       transform_later(mb);
1572 
1573       mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1574       mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1575       fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
1576       transform_later(fast_oop_ctrl);
1577       fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
1578       transform_later(fast_oop_rawmem);
1579     } else {
1580       // Add the MemBarStoreStore after the InitializeNode so that
1581       // all stores performing the initialization that were moved
1582       // before the InitializeNode happen before the storestore
1583       // barrier.
1584 
1585       Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1586       Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1587 
1588       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1589       transform_later(mb);
1590 
1591       Node* ctrl = new ProjNode(init, TypeFunc::Control);
1592       transform_later(ctrl);
1593       Node* mem = new ProjNode(init, TypeFunc::Memory);
1594       transform_later(mem);
1595 
1596       // The MemBarStoreStore depends on control and memory coming
1597       // from the InitializeNode
1598       mb->init_req(TypeFunc::Memory, mem);
1599       mb->init_req(TypeFunc::Control, ctrl);
1600 
1601       ctrl = new ProjNode(mb, TypeFunc::Control);
1602       transform_later(ctrl);
1603       mem = new ProjNode(mb, TypeFunc::Memory);
1604       transform_later(mem);
1605 
1606       // All nodes that depended on the InitializeNode for control
1607       // and memory must now depend on the MemBarNode that itself
1608       // depends on the InitializeNode
1609       if (init_ctrl != nullptr) {
1610         _igvn.replace_node(init_ctrl, ctrl);
1611       }
1612       if (init_mem != nullptr) {
1613         _igvn.replace_node(init_mem, mem);
1614       }
1615     }
1616   }
1617 }
1618 
1619 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
1620                                                 Node*& ctrl, Node*& rawmem) {
1621   if (C->env()->dtrace_alloc_probes()) {
1622     // Slow-path call
1623     int size = TypeFunc::Parms + 2;
1624     CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1625                                           CAST_FROM_FN_PTR(address,
1626                                           static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)),
1627                                           "dtrace_object_alloc",
1628                                           TypeRawPtr::BOTTOM);
1629 
1630     // Get base of thread-local storage area
1631     Node* thread = new ThreadLocalNode();
1632     transform_later(thread);
1633 
1634     call->init_req(TypeFunc::Parms + 0, thread);
1635     call->init_req(TypeFunc::Parms + 1, oop);
1636     call->init_req(TypeFunc::Control, ctrl);
1637     call->init_req(TypeFunc::I_O    , top()); // does no i/o
1638     call->init_req(TypeFunc::Memory , rawmem);
1639     call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1640     call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1641     transform_later(call);
1642     ctrl = new ProjNode(call, TypeFunc::Control);
1643     transform_later(ctrl);
1644     rawmem = new ProjNode(call, TypeFunc::Memory);
1645     transform_later(rawmem);
1646   }
1647 }
1648 
1649 // Helper for PhaseMacroExpand::expand_allocate_common.
1650 // Initializes the newly-allocated storage.
1651 Node*
1652 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1653                                     Node* control, Node* rawmem, Node* object,
1654                                     Node* klass_node, Node* length,
1655                                     Node* size_in_bytes) {
1656   InitializeNode* init = alloc->initialization();
1657   // Store the klass & mark bits
1658   Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem);
1659   if (!mark_node->is_Con()) {
1660     transform_later(mark_node);
1661   }
1662   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
1663 
1664   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1665   int header_size = alloc->minimum_header_size();  // conservatively small
1666 
1667   // Array length
1668   if (length != nullptr) {         // Arrays need length field
1669     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1670     // conservatively small header size:
1671     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1672     if (_igvn.type(klass_node)->isa_aryklassptr()) {   // we know the exact header size in most cases:
1673       BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();
1674       if (is_reference_type(elem, true)) {
1675         elem = T_OBJECT;
1676       }
1677       header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem));
1678     }
1679   }
1680 
1681   // Clear the object body, if necessary.
1682   if (init == nullptr) {
1683     // The init has somehow disappeared; be cautious and clear everything.
1684     //
1685     // This can happen if a node is allocated but an uncommon trap occurs
1686     // immediately.  In this case, the Initialize gets associated with the
1687     // trap, and may be placed in a different (outer) loop, if the Allocate
1688     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1689     // there can be two Allocates to one Initialize.  The answer in all these
1690     // edge cases is safety first.  It is always safe to clear immediately
1691     // within an Allocate, and then (maybe or maybe not) clear some more later.
1692     if (!(UseTLAB && ZeroTLAB)) {
1693       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1694                                             header_size, size_in_bytes,
1695                                             &_igvn);
1696     }
1697   } else {
1698     if (!init->is_complete()) {
1699       // Try to win by zeroing only what the init does not store.
1700       // We can also try to do some peephole optimizations,
1701       // such as combining some adjacent subword stores.
1702       rawmem = init->complete_stores(control, rawmem, object,
1703                                      header_size, size_in_bytes, &_igvn);
1704     }
1705     // We have no more use for this link, since the AllocateNode goes away:
1706     init->set_req(InitializeNode::RawAddress, top());
1707     // (If we keep the link, it just confuses the register allocator,
1708     // who thinks he sees a real use of the address by the membar.)
1709   }
1710 
1711   return rawmem;
1712 }
1713 
1714 // Generate prefetch instructions for next allocations.
1715 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1716                                         Node*& contended_phi_rawmem,
1717                                         Node* old_eden_top, Node* new_eden_top,
1718                                         intx lines) {
1719    enum { fall_in_path = 1, pf_path = 2 };
1720    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1721       // Generate prefetch allocation with watermark check.
1722       // As an allocation hits the watermark, we will prefetch starting
1723       // at a "distance" away from watermark.
1724 
1725       Node *pf_region = new RegionNode(3);
1726       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1727                                                 TypeRawPtr::BOTTOM );
1728       // I/O is used for Prefetch
1729       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1730 
1731       Node *thread = new ThreadLocalNode();
1732       transform_later(thread);
1733 
1734       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1735                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1736       transform_later(eden_pf_adr);
1737 
1738       Node *old_pf_wm = new LoadPNode(needgc_false,
1739                                    contended_phi_rawmem, eden_pf_adr,
1740                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1741                                    MemNode::unordered);
1742       transform_later(old_pf_wm);
1743 
1744       // check against new_eden_top
1745       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1746       transform_later(need_pf_cmp);
1747       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1748       transform_later(need_pf_bol);
1749       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1750                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1751       transform_later(need_pf_iff);
1752 
1753       // true node, add prefetchdistance
1754       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1755       transform_later(need_pf_true);
1756 
1757       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1758       transform_later(need_pf_false);
1759 
1760       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1761                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1762       transform_later(new_pf_wmt );
1763       new_pf_wmt->set_req(0, need_pf_true);
1764 
1765       Node *store_new_wmt = new StorePNode(need_pf_true,
1766                                        contended_phi_rawmem, eden_pf_adr,
1767                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1768                                        MemNode::unordered);
1769       transform_later(store_new_wmt);
1770 
1771       // adding prefetches
1772       pf_phi_abio->init_req( fall_in_path, i_o );
1773 
1774       Node *prefetch_adr;
1775       Node *prefetch;
1776       uint step_size = AllocatePrefetchStepSize;
1777       uint distance = 0;
1778 
1779       for ( intx i = 0; i < lines; i++ ) {
1780         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1781                                             _igvn.MakeConX(distance) );
1782         transform_later(prefetch_adr);
1783         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1784         transform_later(prefetch);
1785         distance += step_size;
1786         i_o = prefetch;
1787       }
1788       pf_phi_abio->set_req( pf_path, i_o );
1789 
1790       pf_region->init_req( fall_in_path, need_pf_false );
1791       pf_region->init_req( pf_path, need_pf_true );
1792 
1793       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1794       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1795 
1796       transform_later(pf_region);
1797       transform_later(pf_phi_rawmem);
1798       transform_later(pf_phi_abio);
1799 
1800       needgc_false = pf_region;
1801       contended_phi_rawmem = pf_phi_rawmem;
1802       i_o = pf_phi_abio;
1803    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1804       // Insert a prefetch instruction for each allocation.
1805       // This code is used to generate 1 prefetch instruction per cache line.
1806 
1807       // Generate several prefetch instructions.
1808       uint step_size = AllocatePrefetchStepSize;
1809       uint distance = AllocatePrefetchDistance;
1810 
1811       // Next cache address.
1812       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1813                                      _igvn.MakeConX(step_size + distance));
1814       transform_later(cache_adr);
1815       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1816       transform_later(cache_adr);
1817       // Address is aligned to execute prefetch to the beginning of cache line size
1818       // (it is important when BIS instruction is used on SPARC as prefetch).
1819       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1820       cache_adr = new AndXNode(cache_adr, mask);
1821       transform_later(cache_adr);
1822       cache_adr = new CastX2PNode(cache_adr);
1823       transform_later(cache_adr);
1824 
1825       // Prefetch
1826       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1827       prefetch->set_req(0, needgc_false);
1828       transform_later(prefetch);
1829       contended_phi_rawmem = prefetch;
1830       Node *prefetch_adr;
1831       distance = step_size;
1832       for ( intx i = 1; i < lines; i++ ) {
1833         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1834                                             _igvn.MakeConX(distance) );
1835         transform_later(prefetch_adr);
1836         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1837         transform_later(prefetch);
1838         distance += step_size;
1839         contended_phi_rawmem = prefetch;
1840       }
1841    } else if( AllocatePrefetchStyle > 0 ) {
1842       // Insert a prefetch for each allocation only on the fast-path
1843       Node *prefetch_adr;
1844       Node *prefetch;
1845       // Generate several prefetch instructions.
1846       uint step_size = AllocatePrefetchStepSize;
1847       uint distance = AllocatePrefetchDistance;
1848       for ( intx i = 0; i < lines; i++ ) {
1849         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
1850                                             _igvn.MakeConX(distance) );
1851         transform_later(prefetch_adr);
1852         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1853         // Do not let it float too high, since if eden_top == eden_end,
1854         // both might be null.
1855         if( i == 0 ) { // Set control for first prefetch, next follows it
1856           prefetch->init_req(0, needgc_false);
1857         }
1858         transform_later(prefetch);
1859         distance += step_size;
1860         i_o = prefetch;
1861       }
1862    }
1863    return i_o;
1864 }
1865 
1866 
1867 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1868   expand_allocate_common(alloc, nullptr,
1869                          OptoRuntime::new_instance_Type(),
1870                          OptoRuntime::new_instance_Java(), nullptr);
1871 }
1872 
1873 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1874   Node* length = alloc->in(AllocateNode::ALength);
1875   Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest);
1876   InitializeNode* init = alloc->initialization();
1877   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1878   const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr();
1879   address slow_call_address;  // Address of slow call
1880   if (init != nullptr && init->is_complete_with_arraycopy() &&
1881       ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) {
1882     // Don't zero type array during slow allocation in VM since
1883     // it will be initialized later by arraycopy in compiled code.
1884     slow_call_address = OptoRuntime::new_array_nozero_Java();
1885   } else {
1886     slow_call_address = OptoRuntime::new_array_Java();
1887   }
1888   expand_allocate_common(alloc, length,
1889                          OptoRuntime::new_array_Type(),
1890                          slow_call_address, valid_length_test);
1891 }
1892 
1893 //-------------------mark_eliminated_box----------------------------------
1894 //
1895 // During EA obj may point to several objects but after few ideal graph
1896 // transformations (CCP) it may point to only one non escaping object
1897 // (but still using phi), corresponding locks and unlocks will be marked
1898 // for elimination. Later obj could be replaced with a new node (new phi)
1899 // and which does not have escape information. And later after some graph
1900 // reshape other locks and unlocks (which were not marked for elimination
1901 // before) are connected to this new obj (phi) but they still will not be
1902 // marked for elimination since new obj has no escape information.
1903 // Mark all associated (same box and obj) lock and unlock nodes for
1904 // elimination if some of them marked already.
1905 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1906   if (oldbox->as_BoxLock()->is_eliminated()) {
1907     return; // This BoxLock node was processed already.
1908   }
1909   // New implementation (EliminateNestedLocks) has separate BoxLock
1910   // node for each locked region so mark all associated locks/unlocks as
1911   // eliminated even if different objects are referenced in one locked region
1912   // (for example, OSR compilation of nested loop inside locked scope).
1913   if (EliminateNestedLocks ||
1914       oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) {
1915     // Box is used only in one lock region. Mark this box as eliminated.
1916     _igvn.hash_delete(oldbox);
1917     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
1918      _igvn.hash_insert(oldbox);
1919 
1920     for (uint i = 0; i < oldbox->outcnt(); i++) {
1921       Node* u = oldbox->raw_out(i);
1922       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
1923         AbstractLockNode* alock = u->as_AbstractLock();
1924         // Check lock's box since box could be referenced by Lock's debug info.
1925         if (alock->box_node() == oldbox) {
1926           // Mark eliminated all related locks and unlocks.
1927 #ifdef ASSERT
1928           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
1929 #endif
1930           alock->set_non_esc_obj();
1931         }
1932       }
1933     }
1934     return;
1935   }
1936 
1937   // Create new "eliminated" BoxLock node and use it in monitor debug info
1938   // instead of oldbox for the same object.
1939   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1940 
1941   // Note: BoxLock node is marked eliminated only here and it is used
1942   // to indicate that all associated lock and unlock nodes are marked
1943   // for elimination.
1944   newbox->set_eliminated();
1945   transform_later(newbox);
1946 
1947   // Replace old box node with new box for all users of the same object.
1948   for (uint i = 0; i < oldbox->outcnt();) {
1949     bool next_edge = true;
1950 
1951     Node* u = oldbox->raw_out(i);
1952     if (u->is_AbstractLock()) {
1953       AbstractLockNode* alock = u->as_AbstractLock();
1954       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
1955         // Replace Box and mark eliminated all related locks and unlocks.
1956 #ifdef ASSERT
1957         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
1958 #endif
1959         alock->set_non_esc_obj();
1960         _igvn.rehash_node_delayed(alock);
1961         alock->set_box_node(newbox);
1962         next_edge = false;
1963       }
1964     }
1965     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
1966       FastLockNode* flock = u->as_FastLock();
1967       assert(flock->box_node() == oldbox, "sanity");
1968       _igvn.rehash_node_delayed(flock);
1969       flock->set_box_node(newbox);
1970       next_edge = false;
1971     }
1972 
1973     // Replace old box in monitor debug info.
1974     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1975       SafePointNode* sfn = u->as_SafePoint();
1976       JVMState* youngest_jvms = sfn->jvms();
1977       int max_depth = youngest_jvms->depth();
1978       for (int depth = 1; depth <= max_depth; depth++) {
1979         JVMState* jvms = youngest_jvms->of_depth(depth);
1980         int num_mon  = jvms->nof_monitors();
1981         // Loop over monitors
1982         for (int idx = 0; idx < num_mon; idx++) {
1983           Node* obj_node = sfn->monitor_obj(jvms, idx);
1984           Node* box_node = sfn->monitor_box(jvms, idx);
1985           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
1986             int j = jvms->monitor_box_offset(idx);
1987             _igvn.replace_input_of(u, j, newbox);
1988             next_edge = false;
1989           }
1990         }
1991       }
1992     }
1993     if (next_edge) i++;
1994   }
1995 }
1996 
1997 //-----------------------mark_eliminated_locking_nodes-----------------------
1998 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
1999   if (EliminateNestedLocks) {
2000     if (alock->is_nested()) {
2001        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2002        return;
2003     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2004       // Only Lock node has JVMState needed here.
2005       // Not that preceding claim is documented anywhere else.
2006       if (alock->jvms() != nullptr) {
2007         if (alock->as_Lock()->is_nested_lock_region()) {
2008           // Mark eliminated related nested locks and unlocks.
2009           Node* obj = alock->obj_node();
2010           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2011           assert(!box_node->is_eliminated(), "should not be marked yet");
2012           // Note: BoxLock node is marked eliminated only here
2013           // and it is used to indicate that all associated lock
2014           // and unlock nodes are marked for elimination.
2015           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2016           for (uint i = 0; i < box_node->outcnt(); i++) {
2017             Node* u = box_node->raw_out(i);
2018             if (u->is_AbstractLock()) {
2019               alock = u->as_AbstractLock();
2020               if (alock->box_node() == box_node) {
2021                 // Verify that this Box is referenced only by related locks.
2022                 assert(alock->obj_node()->eqv_uncast(obj), "");
2023                 // Mark all related locks and unlocks.
2024 #ifdef ASSERT
2025                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2026 #endif
2027                 alock->set_nested();
2028               }
2029             }
2030           }
2031         } else {
2032 #ifdef ASSERT
2033           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2034           if (C->log() != nullptr)
2035             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2036 #endif
2037         }
2038       }
2039       return;
2040     }
2041     // Process locks for non escaping object
2042     assert(alock->is_non_esc_obj(), "");
2043   } // EliminateNestedLocks
2044 
2045   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2046     // Look for all locks of this object and mark them and
2047     // corresponding BoxLock nodes as eliminated.
2048     Node* obj = alock->obj_node();
2049     for (uint j = 0; j < obj->outcnt(); j++) {
2050       Node* o = obj->raw_out(j);
2051       if (o->is_AbstractLock() &&
2052           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2053         alock = o->as_AbstractLock();
2054         Node* box = alock->box_node();
2055         // Replace old box node with new eliminated box for all users
2056         // of the same object and mark related locks as eliminated.
2057         mark_eliminated_box(box, obj);
2058       }
2059     }
2060   }
2061 }
2062 
2063 // we have determined that this lock/unlock can be eliminated, we simply
2064 // eliminate the node without expanding it.
2065 //
2066 // Note:  The membar's associated with the lock/unlock are currently not
2067 //        eliminated.  This should be investigated as a future enhancement.
2068 //
2069 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2070 
2071   if (!alock->is_eliminated()) {
2072     return false;
2073   }
2074 #ifdef ASSERT
2075   if (!alock->is_coarsened()) {
2076     // Check that new "eliminated" BoxLock node is created.
2077     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2078     assert(oldbox->is_eliminated(), "should be done already");
2079   }
2080 #endif
2081 
2082   alock->log_lock_optimization(C, "eliminate_lock");
2083 
2084 #ifndef PRODUCT
2085   if (PrintEliminateLocks) {
2086     tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string());
2087   }
2088 #endif
2089 
2090   Node* mem  = alock->in(TypeFunc::Memory);
2091   Node* ctrl = alock->in(TypeFunc::Control);
2092   guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null");
2093 
2094   alock->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2095   // There are 2 projections from the lock.  The lock node will
2096   // be deleted when its last use is subsumed below.
2097   assert(alock->outcnt() == 2 &&
2098          _callprojs.fallthrough_proj != nullptr &&
2099          _callprojs.fallthrough_memproj != nullptr,
2100          "Unexpected projections from Lock/Unlock");
2101 
2102   Node* fallthroughproj = _callprojs.fallthrough_proj;
2103   Node* memproj_fallthrough = _callprojs.fallthrough_memproj;
2104 
2105   // The memory projection from a lock/unlock is RawMem
2106   // The input to a Lock is merged memory, so extract its RawMem input
2107   // (unless the MergeMem has been optimized away.)
2108   if (alock->is_Lock()) {
2109     // Search for MemBarAcquireLock node and delete it also.
2110     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2111     assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, "");
2112     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2113     Node* memproj = membar->proj_out(TypeFunc::Memory);
2114     _igvn.replace_node(ctrlproj, fallthroughproj);
2115     _igvn.replace_node(memproj, memproj_fallthrough);
2116 
2117     // Delete FastLock node also if this Lock node is unique user
2118     // (a loop peeling may clone a Lock node).
2119     Node* flock = alock->as_Lock()->fastlock_node();
2120     if (flock->outcnt() == 1) {
2121       assert(flock->unique_out() == alock, "sanity");
2122       _igvn.replace_node(flock, top());
2123     }
2124   }
2125 
2126   // Search for MemBarReleaseLock node and delete it also.
2127   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2128     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2129     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2130            mem->is_Proj() && membar == mem->in(0), "");
2131     _igvn.replace_node(fallthroughproj, ctrl);
2132     _igvn.replace_node(memproj_fallthrough, mem);
2133     fallthroughproj = ctrl;
2134     memproj_fallthrough = mem;
2135     ctrl = membar->in(TypeFunc::Control);
2136     mem  = membar->in(TypeFunc::Memory);
2137   }
2138 
2139   _igvn.replace_node(fallthroughproj, ctrl);
2140   _igvn.replace_node(memproj_fallthrough, mem);
2141   return true;
2142 }
2143 
2144 
2145 //------------------------------expand_lock_node----------------------
2146 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2147 
2148   Node* ctrl = lock->in(TypeFunc::Control);
2149   Node* mem = lock->in(TypeFunc::Memory);
2150   Node* obj = lock->obj_node();
2151   Node* box = lock->box_node();
2152   Node* flock = lock->fastlock_node();
2153 
2154   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2155 
2156   // Make the merge point
2157   Node *region;
2158   Node *mem_phi;
2159   Node *slow_path;
2160 
2161   region  = new RegionNode(3);
2162   // create a Phi for the memory state
2163   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2164 
2165   // Optimize test; set region slot 2
2166   slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2167   mem_phi->init_req(2, mem);
2168 
2169   // Make slow path call
2170   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2171                                   OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path,
2172                                   obj, box, nullptr);
2173 
2174   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2175 
2176   // Slow path can only throw asynchronous exceptions, which are always
2177   // de-opted.  So the compiler thinks the slow-call can never throw an
2178   // exception.  If it DOES throw an exception we would need the debug
2179   // info removed first (since if it throws there is no monitor).
2180   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2181          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2182 
2183   // Capture slow path
2184   // disconnect fall-through projection from call and create a new one
2185   // hook up users of fall-through projection to region
2186   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2187   transform_later(slow_ctrl);
2188   _igvn.hash_delete(_callprojs.fallthrough_proj);
2189   _callprojs.fallthrough_proj->disconnect_inputs(C);
2190   region->init_req(1, slow_ctrl);
2191   // region inputs are now complete
2192   transform_later(region);
2193   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2194 
2195   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2196 
2197   mem_phi->init_req(1, memproj);
2198 
2199   transform_later(mem_phi);
2200 
2201   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2202 }
2203 
2204 //------------------------------expand_unlock_node----------------------
2205 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2206 
2207   Node* ctrl = unlock->in(TypeFunc::Control);
2208   Node* mem = unlock->in(TypeFunc::Memory);
2209   Node* obj = unlock->obj_node();
2210   Node* box = unlock->box_node();
2211 
2212   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2213 
2214   // No need for a null check on unlock
2215 
2216   // Make the merge point
2217   Node *region;
2218   Node *mem_phi;
2219 
2220   region  = new RegionNode(3);
2221   // create a Phi for the memory state
2222   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2223 
2224   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2225   funlock = transform_later( funlock )->as_FastUnlock();
2226   // Optimize test; set region slot 2
2227   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2228   Node *thread = transform_later(new ThreadLocalNode());
2229 
2230   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2231                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2232                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2233 
2234   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2235   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2236          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2237 
2238   // No exceptions for unlocking
2239   // Capture slow path
2240   // disconnect fall-through projection from call and create a new one
2241   // hook up users of fall-through projection to region
2242   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2243   transform_later(slow_ctrl);
2244   _igvn.hash_delete(_callprojs.fallthrough_proj);
2245   _callprojs.fallthrough_proj->disconnect_inputs(C);
2246   region->init_req(1, slow_ctrl);
2247   // region inputs are now complete
2248   transform_later(region);
2249   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2250 
2251   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2252   mem_phi->init_req(1, memproj );
2253   mem_phi->init_req(2, mem);
2254   transform_later(mem_phi);
2255 
2256   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2257 }
2258 
2259 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
2260   assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned");
2261   Node* bol = check->unique_out();
2262   Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
2263   Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
2264   assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
2265 
2266   for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
2267     Node* iff = bol->last_out(i);
2268     assert(iff->is_If(), "where's the if?");
2269 
2270     if (iff->in(0)->is_top()) {
2271       _igvn.replace_input_of(iff, 1, C->top());
2272       continue;
2273     }
2274 
2275     Node* iftrue = iff->as_If()->proj_out(1);
2276     Node* iffalse = iff->as_If()->proj_out(0);
2277     Node* ctrl = iff->in(0);
2278 
2279     Node* subklass = nullptr;
2280     if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
2281       subklass = obj_or_subklass;
2282     } else {
2283       Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
2284       subklass = _igvn.transform(LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), k_adr, TypeInstPtr::KLASS));
2285     }
2286 
2287     Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn);
2288 
2289     _igvn.replace_input_of(iff, 0, C->top());
2290     _igvn.replace_node(iftrue, not_subtype_ctrl);
2291     _igvn.replace_node(iffalse, ctrl);
2292   }
2293   _igvn.replace_node(check, C->top());
2294 }
2295 
2296 //---------------------------eliminate_macro_nodes----------------------
2297 // Eliminate scalar replaced allocations and associated locks.
2298 void PhaseMacroExpand::eliminate_macro_nodes() {
2299   if (C->macro_count() == 0)
2300     return;
2301   NOT_PRODUCT(int membar_before = count_MemBar(C);)
2302 
2303   // Before elimination may re-mark (change to Nested or NonEscObj)
2304   // all associated (same box and obj) lock and unlock nodes.
2305   int cnt = C->macro_count();
2306   for (int i=0; i < cnt; i++) {
2307     Node *n = C->macro_node(i);
2308     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2309       mark_eliminated_locking_nodes(n->as_AbstractLock());
2310     }
2311   }
2312   // Re-marking may break consistency of Coarsened locks.
2313   if (!C->coarsened_locks_consistent()) {
2314     return; // recompile without Coarsened locks if broken
2315   }
2316 
2317   // First, attempt to eliminate locks
2318   bool progress = true;
2319   while (progress) {
2320     progress = false;
2321     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2322       Node* n = C->macro_node(i - 1);
2323       bool success = false;
2324       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2325       if (n->is_AbstractLock()) {
2326         success = eliminate_locking_node(n->as_AbstractLock());
2327 #ifndef PRODUCT
2328         if (success && PrintOptoStatistics) {
2329           Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter);
2330         }
2331 #endif
2332       }
2333       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2334       progress = progress || success;
2335     }
2336   }
2337   // Next, attempt to eliminate allocations
2338   _has_locks = false;
2339   progress = true;
2340   while (progress) {
2341     progress = false;
2342     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2343       Node* n = C->macro_node(i - 1);
2344       bool success = false;
2345       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2346       switch (n->class_id()) {
2347       case Node::Class_Allocate:
2348       case Node::Class_AllocateArray:
2349         success = eliminate_allocate_node(n->as_Allocate());
2350 #ifndef PRODUCT
2351         if (success && PrintOptoStatistics) {
2352           Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter);
2353         }
2354 #endif
2355         break;
2356       case Node::Class_CallStaticJava:
2357         success = eliminate_boxing_node(n->as_CallStaticJava());
2358         break;
2359       case Node::Class_Lock:
2360       case Node::Class_Unlock:
2361         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2362         _has_locks = true;
2363         break;
2364       case Node::Class_ArrayCopy:
2365         break;
2366       case Node::Class_OuterStripMinedLoop:
2367         break;
2368       case Node::Class_SubTypeCheck:
2369         break;
2370       case Node::Class_Opaque1:
2371         break;
2372       default:
2373         assert(n->Opcode() == Op_LoopLimit ||
2374                n->Opcode() == Op_Opaque3   ||
2375                n->Opcode() == Op_Opaque4   ||
2376                n->Opcode() == Op_MaxL      ||
2377                n->Opcode() == Op_MinL      ||
2378                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
2379                "unknown node type in macro list");
2380       }
2381       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2382       progress = progress || success;
2383     }
2384   }
2385 #ifndef PRODUCT
2386   if (PrintOptoStatistics) {
2387     int membar_after = count_MemBar(C);
2388     Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after);
2389   }
2390 #endif
2391 }
2392 
2393 //------------------------------expand_macro_nodes----------------------
2394 //  Returns true if a failure occurred.
2395 bool PhaseMacroExpand::expand_macro_nodes() {
2396   // Last attempt to eliminate macro nodes.
2397   eliminate_macro_nodes();
2398   if (C->failing())  return true;
2399 
2400   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2401   bool progress = true;
2402   while (progress) {
2403     progress = false;
2404     for (int i = C->macro_count(); i > 0; i--) {
2405       Node* n = C->macro_node(i-1);
2406       bool success = false;
2407       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2408       if (n->Opcode() == Op_LoopLimit) {
2409         // Remove it from macro list and put on IGVN worklist to optimize.
2410         C->remove_macro_node(n);
2411         _igvn._worklist.push(n);
2412         success = true;
2413       } else if (n->Opcode() == Op_CallStaticJava) {
2414         // Remove it from macro list and put on IGVN worklist to optimize.
2415         C->remove_macro_node(n);
2416         _igvn._worklist.push(n);
2417         success = true;
2418       } else if (n->is_Opaque1()) {
2419         _igvn.replace_node(n, n->in(1));
2420         success = true;
2421 #if INCLUDE_RTM_OPT
2422       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2423         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2424         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2425         Node* cmp = n->unique_out();
2426 #ifdef ASSERT
2427         // Validate graph.
2428         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2429         BoolNode* bol = cmp->unique_out()->as_Bool();
2430         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2431                (bol->_test._test == BoolTest::ne), "");
2432         IfNode* ifn = bol->unique_out()->as_If();
2433         assert((ifn->outcnt() == 2) &&
2434                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != nullptr, "");
2435 #endif
2436         Node* repl = n->in(1);
2437         if (!_has_locks) {
2438           // Remove RTM state check if there are no locks in the code.
2439           // Replace input to compare the same value.
2440           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
2441         }
2442         _igvn.replace_node(n, repl);
2443         success = true;
2444 #endif
2445       } else if (n->Opcode() == Op_Opaque4) {
2446         // With Opaque4 nodes, the expectation is that the test of input 1
2447         // is always equal to the constant value of input 2. So we can
2448         // remove the Opaque4 and replace it by input 2. In debug builds,
2449         // leave the non constant test in instead to sanity check that it
2450         // never fails (if it does, that subgraph was constructed so, at
2451         // runtime, a Halt node is executed).
2452 #ifdef ASSERT
2453         _igvn.replace_node(n, n->in(1));
2454 #else
2455         _igvn.replace_node(n, n->in(2));
2456 #endif
2457         success = true;
2458       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
2459         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
2460         C->remove_macro_node(n);
2461         success = true;
2462       } else if (n->Opcode() == Op_MaxL) {
2463         // Since MaxL and MinL are not implemented in the backend, we expand them to
2464         // a CMoveL construct now. At least until here, the type could be computed
2465         // precisely. CMoveL is not so smart, but we can give it at least the best
2466         // type we know abouot n now.
2467         Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn);
2468         _igvn.replace_node(n, repl);
2469         success = true;
2470       } else if (n->Opcode() == Op_MinL) {
2471         Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn);
2472         _igvn.replace_node(n, repl);
2473         success = true;
2474       }
2475       assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
2476       progress = progress || success;
2477     }
2478   }
2479 
2480   // Clean up the graph so we're less likely to hit the maximum node
2481   // limit
2482   _igvn.set_delay_transform(false);
2483   _igvn.optimize();
2484   if (C->failing())  return true;
2485   _igvn.set_delay_transform(true);
2486 
2487 
2488   // Because we run IGVN after each expansion, some macro nodes may go
2489   // dead and be removed from the list as we iterate over it. Move
2490   // Allocate nodes (processed in a second pass) at the beginning of
2491   // the list and then iterate from the last element of the list until
2492   // an Allocate node is seen. This is robust to random deletion in
2493   // the list due to nodes going dead.
2494   C->sort_macro_nodes();
2495 
2496   // expand arraycopy "macro" nodes first
2497   // For ReduceBulkZeroing, we must first process all arraycopy nodes
2498   // before the allocate nodes are expanded.
2499   while (C->macro_count() > 0) {
2500     int macro_count = C->macro_count();
2501     Node * n = C->macro_node(macro_count-1);
2502     assert(n->is_macro(), "only macro nodes expected here");
2503     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2504       // node is unreachable, so don't try to expand it
2505       C->remove_macro_node(n);
2506       continue;
2507     }
2508     if (n->is_Allocate()) {
2509       break;
2510     }
2511     // Make sure expansion will not cause node limit to be exceeded.
2512     // Worst case is a macro node gets expanded into about 200 nodes.
2513     // Allow 50% more for optimization.
2514     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2515       return true;
2516     }
2517 
2518     DEBUG_ONLY(int old_macro_count = C->macro_count();)
2519     switch (n->class_id()) {
2520     case Node::Class_Lock:
2521       expand_lock_node(n->as_Lock());
2522       break;
2523     case Node::Class_Unlock:
2524       expand_unlock_node(n->as_Unlock());
2525       break;
2526     case Node::Class_ArrayCopy:
2527       expand_arraycopy_node(n->as_ArrayCopy());
2528       break;
2529     case Node::Class_SubTypeCheck:
2530       expand_subtypecheck_node(n->as_SubTypeCheck());
2531       break;
2532     default:
2533       assert(false, "unknown node type in macro list");
2534     }
2535     assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2536     if (C->failing())  return true;
2537 
2538     // Clean up the graph so we're less likely to hit the maximum node
2539     // limit
2540     _igvn.set_delay_transform(false);
2541     _igvn.optimize();
2542     if (C->failing())  return true;
2543     _igvn.set_delay_transform(true);
2544   }
2545 
2546   // All nodes except Allocate nodes are expanded now. There could be
2547   // new optimization opportunities (such as folding newly created
2548   // load from a just allocated object). Run IGVN.
2549 
2550   // expand "macro" nodes
2551   // nodes are removed from the macro list as they are processed
2552   while (C->macro_count() > 0) {
2553     int macro_count = C->macro_count();
2554     Node * n = C->macro_node(macro_count-1);
2555     assert(n->is_macro(), "only macro nodes expected here");
2556     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2557       // node is unreachable, so don't try to expand it
2558       C->remove_macro_node(n);
2559       continue;
2560     }
2561     // Make sure expansion will not cause node limit to be exceeded.
2562     // Worst case is a macro node gets expanded into about 200 nodes.
2563     // Allow 50% more for optimization.
2564     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2565       return true;
2566     }
2567     switch (n->class_id()) {
2568     case Node::Class_Allocate:
2569       expand_allocate(n->as_Allocate());
2570       break;
2571     case Node::Class_AllocateArray:
2572       expand_allocate_array(n->as_AllocateArray());
2573       break;
2574     default:
2575       assert(false, "unknown node type in macro list");
2576     }
2577     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2578     if (C->failing())  return true;
2579 
2580     // Clean up the graph so we're less likely to hit the maximum node
2581     // limit
2582     _igvn.set_delay_transform(false);
2583     _igvn.optimize();
2584     if (C->failing())  return true;
2585     _igvn.set_delay_transform(true);
2586   }
2587 
2588   _igvn.set_delay_transform(false);
2589   return false;
2590 }
2591 
2592 #ifndef PRODUCT
2593 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0;
2594 int PhaseMacroExpand::_monitor_objects_removed_counter = 0;
2595 int PhaseMacroExpand::_GC_barriers_removed_counter = 0;
2596 int PhaseMacroExpand::_memory_barriers_removed_counter = 0;
2597 
2598 void PhaseMacroExpand::print_statistics() {
2599   tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter));
2600   tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter));
2601   tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter));
2602   tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter));
2603 }
2604 
2605 int PhaseMacroExpand::count_MemBar(Compile *C) {
2606   if (!PrintOptoStatistics) {
2607     return 0;
2608   }
2609   Unique_Node_List ideal_nodes;
2610   int total = 0;
2611   ideal_nodes.map(C->live_nodes(), nullptr);
2612   ideal_nodes.push(C->root());
2613   for (uint next = 0; next < ideal_nodes.size(); ++next) {
2614     Node* n = ideal_nodes.at(next);
2615     if (n->is_MemBar()) {
2616       total++;
2617     }
2618     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2619       Node* m = n->fast_out(i);
2620       ideal_nodes.push(m);
2621     }
2622   }
2623   return total;
2624 }
2625 #endif