1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "gc/shared/tlab_globals.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/arraycopynode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/regalloc.hpp"
  38 #include "opto/compile.hpp"
  39 #include "opto/connode.hpp"
  40 #include "opto/convertnode.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/machnode.hpp"
  43 #include "opto/matcher.hpp"
  44 #include "opto/memnode.hpp"
  45 #include "opto/mulnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/phaseX.hpp"
  48 #include "opto/regmask.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/vectornode.hpp"
  51 #include "utilities/align.hpp"
  52 #include "utilities/copy.hpp"
  53 #include "utilities/macros.hpp"
  54 #include "utilities/powerOfTwo.hpp"
  55 #include "utilities/vmError.hpp"
  56 
  57 // Portions of code courtesy of Clifford Click
  58 
  59 // Optimization - Graph Style
  60 
  61 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  62 
  63 //=============================================================================
  64 uint MemNode::size_of() const { return sizeof(*this); }
  65 
  66 const TypePtr *MemNode::adr_type() const {
  67   Node* adr = in(Address);
  68   if (adr == nullptr)  return nullptr; // node is dead
  69   const TypePtr* cross_check = nullptr;
  70   DEBUG_ONLY(cross_check = _adr_type);
  71   return calculate_adr_type(adr->bottom_type(), cross_check);
  72 }
  73 
  74 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  75   if (adr != nullptr) {
  76     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  77       return true;
  78     }
  79   }
  80   return false;
  81 }
  82 
  83 #ifndef PRODUCT
  84 void MemNode::dump_spec(outputStream *st) const {
  85   if (in(Address) == nullptr)  return; // node is dead
  86 #ifndef ASSERT
  87   // fake the missing field
  88   const TypePtr* _adr_type = nullptr;
  89   if (in(Address) != nullptr)
  90     _adr_type = in(Address)->bottom_type()->isa_ptr();
  91 #endif
  92   dump_adr_type(this, _adr_type, st);
  93 
  94   Compile* C = Compile::current();
  95   if (C->alias_type(_adr_type)->is_volatile()) {
  96     st->print(" Volatile!");
  97   }
  98   if (_unaligned_access) {
  99     st->print(" unaligned");
 100   }
 101   if (_mismatched_access) {
 102     st->print(" mismatched");
 103   }
 104   if (_unsafe_access) {
 105     st->print(" unsafe");
 106   }
 107 }
 108 
 109 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 110   st->print(" @");
 111   if (adr_type == nullptr) {
 112     st->print("null");
 113   } else {
 114     adr_type->dump_on(st);
 115     Compile* C = Compile::current();
 116     Compile::AliasType* atp = nullptr;
 117     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 118     if (atp == nullptr)
 119       st->print(", idx=?\?;");
 120     else if (atp->index() == Compile::AliasIdxBot)
 121       st->print(", idx=Bot;");
 122     else if (atp->index() == Compile::AliasIdxTop)
 123       st->print(", idx=Top;");
 124     else if (atp->index() == Compile::AliasIdxRaw)
 125       st->print(", idx=Raw;");
 126     else {
 127       ciField* field = atp->field();
 128       if (field) {
 129         st->print(", name=");
 130         field->print_name_on(st);
 131       }
 132       st->print(", idx=%d;", atp->index());
 133     }
 134   }
 135 }
 136 
 137 extern void print_alias_types();
 138 
 139 #endif
 140 
 141 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 142   assert((t_oop != nullptr), "sanity");
 143   bool is_instance = t_oop->is_known_instance_field();
 144   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 145                              (load != nullptr) && load->is_Load() &&
 146                              (phase->is_IterGVN() != nullptr);
 147   if (!(is_instance || is_boxed_value_load))
 148     return mchain;  // don't try to optimize non-instance types
 149   uint instance_id = t_oop->instance_id();
 150   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 151   Node *prev = nullptr;
 152   Node *result = mchain;
 153   while (prev != result) {
 154     prev = result;
 155     if (result == start_mem)
 156       break;  // hit one of our sentinels
 157     // skip over a call which does not affect this memory slice
 158     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 159       Node *proj_in = result->in(0);
 160       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 161         break;  // hit one of our sentinels
 162       } else if (proj_in->is_Call()) {
 163         // ArrayCopyNodes processed here as well
 164         CallNode *call = proj_in->as_Call();
 165         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 166           result = call->in(TypeFunc::Memory);
 167         }
 168       } else if (proj_in->is_Initialize()) {
 169         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 170         // Stop if this is the initialization for the object instance which
 171         // contains this memory slice, otherwise skip over it.
 172         if ((alloc == nullptr) || (alloc->_idx == instance_id)) {
 173           break;
 174         }
 175         if (is_instance) {
 176           result = proj_in->in(TypeFunc::Memory);
 177         } else if (is_boxed_value_load) {
 178           Node* klass = alloc->in(AllocateNode::KlassNode);
 179           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 180           if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) {
 181             result = proj_in->in(TypeFunc::Memory); // not related allocation
 182           }
 183         }
 184       } else if (proj_in->is_MemBar()) {
 185         ArrayCopyNode* ac = nullptr;
 186         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 187           break;
 188         }
 189         result = proj_in->in(TypeFunc::Memory);
 190       } else if (proj_in->is_top()) {
 191         break; // dead code
 192       } else {
 193         assert(false, "unexpected projection");
 194       }
 195     } else if (result->is_ClearArray()) {
 196       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 197         // Can not bypass initialization of the instance
 198         // we are looking for.
 199         break;
 200       }
 201       // Otherwise skip it (the call updated 'result' value).
 202     } else if (result->is_MergeMem()) {
 203       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty);
 204     }
 205   }
 206   return result;
 207 }
 208 
 209 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 210   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 211   if (t_oop == nullptr)
 212     return mchain;  // don't try to optimize non-oop types
 213   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 214   bool is_instance = t_oop->is_known_instance_field();
 215   PhaseIterGVN *igvn = phase->is_IterGVN();
 216   if (is_instance && igvn != nullptr && result->is_Phi()) {
 217     PhiNode *mphi = result->as_Phi();
 218     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 219     const TypePtr *t = mphi->adr_type();
 220     bool do_split = false;
 221     // In the following cases, Load memory input can be further optimized based on
 222     // its precise address type
 223     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) {
 224       do_split = true;
 225     } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) {
 226       const TypeOopPtr* mem_t =
 227         t->is_oopptr()->cast_to_exactness(true)
 228         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 229         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id());
 230       if (t_oop->is_aryptr()) {
 231         mem_t = mem_t->is_aryptr()
 232                      ->cast_to_stable(t_oop->is_aryptr()->is_stable())
 233                      ->cast_to_size(t_oop->is_aryptr()->size())
 234                      ->with_offset(t_oop->is_aryptr()->offset())
 235                      ->is_aryptr();
 236       }
 237       do_split = mem_t == t_oop;
 238     }
 239     if (do_split) {
 240       // clone the Phi with our address type
 241       result = mphi->split_out_instance(t_adr, igvn);
 242     } else {
 243       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 244     }
 245   }
 246   return result;
 247 }
 248 
 249 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 250   uint alias_idx = phase->C->get_alias_index(tp);
 251   Node *mem = mmem;
 252 #ifdef ASSERT
 253   {
 254     // Check that current type is consistent with the alias index used during graph construction
 255     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 256     bool consistent =  adr_check == nullptr || adr_check->empty() ||
 257                        phase->C->must_alias(adr_check, alias_idx );
 258     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 259     if( !consistent && adr_check != nullptr && !adr_check->empty() &&
 260                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 261         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 262         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 263           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 264           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 265       // don't assert if it is dead code.
 266       consistent = true;
 267     }
 268     if( !consistent ) {
 269       st->print("alias_idx==%d, adr_check==", alias_idx);
 270       if( adr_check == nullptr ) {
 271         st->print("null");
 272       } else {
 273         adr_check->dump();
 274       }
 275       st->cr();
 276       print_alias_types();
 277       assert(consistent, "adr_check must match alias idx");
 278     }
 279   }
 280 #endif
 281   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 282   // means an array I have not precisely typed yet.  Do not do any
 283   // alias stuff with it any time soon.
 284   const TypeOopPtr *toop = tp->isa_oopptr();
 285   if (tp->base() != Type::AnyPtr &&
 286       !(toop &&
 287         toop->isa_instptr() &&
 288         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
 289         toop->offset() == Type::OffsetBot)) {
 290     // compress paths and change unreachable cycles to TOP
 291     // If not, we can update the input infinitely along a MergeMem cycle
 292     // Equivalent code in PhiNode::Ideal
 293     Node* m  = phase->transform(mmem);
 294     // If transformed to a MergeMem, get the desired slice
 295     // Otherwise the returned node represents memory for every slice
 296     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 297     // Update input if it is progress over what we have now
 298   }
 299   return mem;
 300 }
 301 
 302 //--------------------------Ideal_common---------------------------------------
 303 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 304 // Unhook non-raw memories from complete (macro-expanded) initializations.
 305 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 306   // If our control input is a dead region, kill all below the region
 307   Node *ctl = in(MemNode::Control);
 308   if (ctl && remove_dead_region(phase, can_reshape))
 309     return this;
 310   ctl = in(MemNode::Control);
 311   // Don't bother trying to transform a dead node
 312   if (ctl && ctl->is_top())  return NodeSentinel;
 313 
 314   PhaseIterGVN *igvn = phase->is_IterGVN();
 315   // Wait if control on the worklist.
 316   if (ctl && can_reshape && igvn != nullptr) {
 317     Node* bol = nullptr;
 318     Node* cmp = nullptr;
 319     if (ctl->in(0)->is_If()) {
 320       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 321       bol = ctl->in(0)->in(1);
 322       if (bol->is_Bool())
 323         cmp = ctl->in(0)->in(1)->in(1);
 324     }
 325     if (igvn->_worklist.member(ctl) ||
 326         (bol != nullptr && igvn->_worklist.member(bol)) ||
 327         (cmp != nullptr && igvn->_worklist.member(cmp)) ) {
 328       // This control path may be dead.
 329       // Delay this memory node transformation until the control is processed.
 330       igvn->_worklist.push(this);
 331       return NodeSentinel; // caller will return null
 332     }
 333   }
 334   // Ignore if memory is dead, or self-loop
 335   Node *mem = in(MemNode::Memory);
 336   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null
 337   assert(mem != this, "dead loop in MemNode::Ideal");
 338 
 339   if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) {
 340     // This memory slice may be dead.
 341     // Delay this mem node transformation until the memory is processed.
 342     igvn->_worklist.push(this);
 343     return NodeSentinel; // caller will return null
 344   }
 345 
 346   Node *address = in(MemNode::Address);
 347   const Type *t_adr = phase->type(address);
 348   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return null
 349 
 350   if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
 351     // Unsafe off-heap access with zero address. Remove access and other control users
 352     // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
 353     assert(ctl != nullptr, "unsafe accesses should be control dependent");
 354     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
 355       Node* u = ctl->fast_out(i);
 356       if (u != ctl) {
 357         igvn->rehash_node_delayed(u);
 358         int nb = u->replace_edge(ctl, phase->C->top(), igvn);
 359         --i, imax -= nb;
 360       }
 361     }
 362     Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
 363     Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address"));
 364     phase->C->root()->add_req(halt);
 365     return this;
 366   }
 367 
 368   if (can_reshape && igvn != nullptr &&
 369       (igvn->_worklist.member(address) ||
 370        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 371     // The address's base and type may change when the address is processed.
 372     // Delay this mem node transformation until the address is processed.
 373     igvn->_worklist.push(this);
 374     return NodeSentinel; // caller will return null
 375   }
 376 
 377   // Do NOT remove or optimize the next lines: ensure a new alias index
 378   // is allocated for an oop pointer type before Escape Analysis.
 379   // Note: C++ will not remove it since the call has side effect.
 380   if (t_adr->isa_oopptr()) {
 381     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 382   }
 383 
 384   Node* base = nullptr;
 385   if (address->is_AddP()) {
 386     base = address->in(AddPNode::Base);
 387   }
 388   if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 389       !t_adr->isa_rawptr()) {
 390     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 391     // Skip this node optimization if its address has TOP base.
 392     return NodeSentinel; // caller will return null
 393   }
 394 
 395   // Avoid independent memory operations
 396   Node* old_mem = mem;
 397 
 398   // The code which unhooks non-raw memories from complete (macro-expanded)
 399   // initializations was removed. After macro-expansion all stores caught
 400   // by Initialize node became raw stores and there is no information
 401   // which memory slices they modify. So it is unsafe to move any memory
 402   // operation above these stores. Also in most cases hooked non-raw memories
 403   // were already unhooked by using information from detect_ptr_independence()
 404   // and find_previous_store().
 405 
 406   if (mem->is_MergeMem()) {
 407     MergeMemNode* mmem = mem->as_MergeMem();
 408     const TypePtr *tp = t_adr->is_ptr();
 409 
 410     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 411   }
 412 
 413   if (mem != old_mem) {
 414     set_req_X(MemNode::Memory, mem, phase);
 415     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 416     return this;
 417   }
 418 
 419   // let the subclass continue analyzing...
 420   return nullptr;
 421 }
 422 
 423 // Helper function for proving some simple control dominations.
 424 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 425 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 426 // is not a constant (dominated by the method's StartNode).
 427 // Used by MemNode::find_previous_store to prove that the
 428 // control input of a memory operation predates (dominates)
 429 // an allocation it wants to look past.
 430 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 431   if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top())
 432     return false; // Conservative answer for dead code
 433 
 434   // Check 'dom'. Skip Proj and CatchProj nodes.
 435   dom = dom->find_exact_control(dom);
 436   if (dom == nullptr || dom->is_top())
 437     return false; // Conservative answer for dead code
 438 
 439   if (dom == sub) {
 440     // For the case when, for example, 'sub' is Initialize and the original
 441     // 'dom' is Proj node of the 'sub'.
 442     return false;
 443   }
 444 
 445   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 446     return true;
 447 
 448   // 'dom' dominates 'sub' if its control edge and control edges
 449   // of all its inputs dominate or equal to sub's control edge.
 450 
 451   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 452   // Or Region for the check in LoadNode::Ideal();
 453   // 'sub' should have sub->in(0) != nullptr.
 454   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 455          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 456 
 457   // Get control edge of 'sub'.
 458   Node* orig_sub = sub;
 459   sub = sub->find_exact_control(sub->in(0));
 460   if (sub == nullptr || sub->is_top())
 461     return false; // Conservative answer for dead code
 462 
 463   assert(sub->is_CFG(), "expecting control");
 464 
 465   if (sub == dom)
 466     return true;
 467 
 468   if (sub->is_Start() || sub->is_Root())
 469     return false;
 470 
 471   {
 472     // Check all control edges of 'dom'.
 473 
 474     ResourceMark rm;
 475     Node_List nlist;
 476     Unique_Node_List dom_list;
 477 
 478     dom_list.push(dom);
 479     bool only_dominating_controls = false;
 480 
 481     for (uint next = 0; next < dom_list.size(); next++) {
 482       Node* n = dom_list.at(next);
 483       if (n == orig_sub)
 484         return false; // One of dom's inputs dominated by sub.
 485       if (!n->is_CFG() && n->pinned()) {
 486         // Check only own control edge for pinned non-control nodes.
 487         n = n->find_exact_control(n->in(0));
 488         if (n == nullptr || n->is_top())
 489           return false; // Conservative answer for dead code
 490         assert(n->is_CFG(), "expecting control");
 491         dom_list.push(n);
 492       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 493         only_dominating_controls = true;
 494       } else if (n->is_CFG()) {
 495         if (n->dominates(sub, nlist))
 496           only_dominating_controls = true;
 497         else
 498           return false;
 499       } else {
 500         // First, own control edge.
 501         Node* m = n->find_exact_control(n->in(0));
 502         if (m != nullptr) {
 503           if (m->is_top())
 504             return false; // Conservative answer for dead code
 505           dom_list.push(m);
 506         }
 507         // Now, the rest of edges.
 508         uint cnt = n->req();
 509         for (uint i = 1; i < cnt; i++) {
 510           m = n->find_exact_control(n->in(i));
 511           if (m == nullptr || m->is_top())
 512             continue;
 513           dom_list.push(m);
 514         }
 515       }
 516     }
 517     return only_dominating_controls;
 518   }
 519 }
 520 
 521 //---------------------detect_ptr_independence---------------------------------
 522 // Used by MemNode::find_previous_store to prove that two base
 523 // pointers are never equal.
 524 // The pointers are accompanied by their associated allocations,
 525 // if any, which have been previously discovered by the caller.
 526 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 527                                       Node* p2, AllocateNode* a2,
 528                                       PhaseTransform* phase) {
 529   // Attempt to prove that these two pointers cannot be aliased.
 530   // They may both manifestly be allocations, and they should differ.
 531   // Or, if they are not both allocations, they can be distinct constants.
 532   // Otherwise, one is an allocation and the other a pre-existing value.
 533   if (a1 == nullptr && a2 == nullptr) {           // neither an allocation
 534     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 535   } else if (a1 != nullptr && a2 != nullptr) {    // both allocations
 536     return (a1 != a2);
 537   } else if (a1 != nullptr) {                  // one allocation a1
 538     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 539     return all_controls_dominate(p2, a1);
 540   } else { //(a2 != null)                   // one allocation a2
 541     return all_controls_dominate(p1, a2);
 542   }
 543   return false;
 544 }
 545 
 546 
 547 // Find an arraycopy ac that produces the memory state represented by parameter mem.
 548 // Return ac if
 549 // (a) can_see_stored_value=true  and ac must have set the value for this load or if
 550 // (b) can_see_stored_value=false and ac could have set the value for this load or if
 551 // (c) can_see_stored_value=false and ac cannot have set the value for this load.
 552 // In case (c) change the parameter mem to the memory input of ac to skip it
 553 // when searching stored value.
 554 // Otherwise return null.
 555 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 556   ArrayCopyNode* ac = find_array_copy_clone(phase, ld_alloc, mem);
 557   if (ac != nullptr) {
 558     Node* ld_addp = in(MemNode::Address);
 559     Node* src = ac->in(ArrayCopyNode::Src);
 560     const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr();
 561 
 562     // This is a load from a cloned array. The corresponding arraycopy ac must
 563     // have set the value for the load and we can return ac but only if the load
 564     // is known to be within bounds. This is checked below.
 565     if (ary_t != nullptr && ld_addp->is_AddP()) {
 566       Node* ld_offs = ld_addp->in(AddPNode::Offset);
 567       BasicType ary_elem = ary_t->elem()->array_element_basic_type();
 568       jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 569       jlong elemsize = type2aelembytes(ary_elem);
 570 
 571       const TypeX*   ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 572       const TypeInt* sizetype  = ary_t->size();
 573 
 574       if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) {
 575         // The load is known to be within bounds. It receives its value from ac.
 576         return ac;
 577       }
 578       // The load is known to be out-of-bounds.
 579     }
 580     // The load could be out-of-bounds. It must not be hoisted but must remain
 581     // dependent on the runtime range check. This is achieved by returning null.
 582   } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) {
 583     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 584 
 585     if (ac->is_arraycopy_validated() ||
 586         ac->is_copyof_validated() ||
 587         ac->is_copyofrange_validated()) {
 588       Node* ld_addp = in(MemNode::Address);
 589       if (ld_addp->is_AddP()) {
 590         Node* ld_base = ld_addp->in(AddPNode::Address);
 591         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 592 
 593         Node* dest = ac->in(ArrayCopyNode::Dest);
 594 
 595         if (dest == ld_base) {
 596           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 597           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 598             return ac;
 599           }
 600           if (!can_see_stored_value) {
 601             mem = ac->in(TypeFunc::Memory);
 602             return ac;
 603           }
 604         }
 605       }
 606     }
 607   }
 608   return nullptr;
 609 }
 610 
 611 ArrayCopyNode* MemNode::find_array_copy_clone(PhaseValues* phase, Node* ld_alloc, Node* mem) const {
 612   if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 613                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 614     if (ld_alloc != nullptr) {
 615       // Check if there is an array copy for a clone
 616       Node* mb = mem->in(0);
 617       ArrayCopyNode* ac = nullptr;
 618       if (mb->in(0) != nullptr && mb->in(0)->is_Proj() &&
 619           mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) {
 620         ac = mb->in(0)->in(0)->as_ArrayCopy();
 621       } else {
 622         // Step over GC barrier when ReduceInitialCardMarks is disabled
 623         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 624         Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0));
 625 
 626         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
 627           ac = control_proj_ac->in(0)->as_ArrayCopy();
 628         }
 629       }
 630 
 631       if (ac != nullptr && ac->is_clonebasic()) {
 632         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase);
 633         if (alloc != nullptr && alloc == ld_alloc) {
 634           return ac;
 635         }
 636       }
 637     }
 638   }
 639   return nullptr;
 640 }
 641 
 642 // The logic for reordering loads and stores uses four steps:
 643 // (a) Walk carefully past stores and initializations which we
 644 //     can prove are independent of this load.
 645 // (b) Observe that the next memory state makes an exact match
 646 //     with self (load or store), and locate the relevant store.
 647 // (c) Ensure that, if we were to wire self directly to the store,
 648 //     the optimizer would fold it up somehow.
 649 // (d) Do the rewiring, and return, depending on some other part of
 650 //     the optimizer to fold up the load.
 651 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 652 // specific to loads and stores, so they are handled by the callers.
 653 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 654 //
 655 Node* MemNode::find_previous_store(PhaseValues* phase) {
 656   Node*         ctrl   = in(MemNode::Control);
 657   Node*         adr    = in(MemNode::Address);
 658   intptr_t      offset = 0;
 659   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 660   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 661 
 662   if (offset == Type::OffsetBot)
 663     return nullptr;            // cannot unalias unless there are precise offsets
 664 
 665   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 666   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 667 
 668   intptr_t size_in_bytes = memory_size();
 669 
 670   Node* mem = in(MemNode::Memory);   // start searching here...
 671 
 672   int cnt = 50;             // Cycle limiter
 673   for (;;) {                // While we can dance past unrelated stores...
 674     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 675 
 676     Node* prev = mem;
 677     if (mem->is_Store()) {
 678       Node* st_adr = mem->in(MemNode::Address);
 679       intptr_t st_offset = 0;
 680       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 681       if (st_base == nullptr)
 682         break;              // inscrutable pointer
 683 
 684       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 685       // We need the bases to be the equal in order for the offset check to make sense.
 686       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 687         break;
 688       }
 689 
 690       if (st_offset != offset && st_offset != Type::OffsetBot) {
 691         const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
 692         assert(mem->as_Store()->memory_size() <= MAX_STORE, "");
 693         if (st_offset >= offset + size_in_bytes ||
 694             st_offset <= offset - MAX_STORE ||
 695             st_offset <= offset - mem->as_Store()->memory_size()) {
 696           // Success:  The offsets are provably independent.
 697           // (You may ask, why not just test st_offset != offset and be done?
 698           // The answer is that stores of different sizes can co-exist
 699           // in the same sequence of RawMem effects.  We sometimes initialize
 700           // a whole 'tile' of array elements with a single jint or jlong.)
 701           mem = mem->in(MemNode::Memory);
 702           continue;           // (a) advance through independent store memory
 703         }
 704       }
 705       if (st_base != base &&
 706           detect_ptr_independence(base, alloc,
 707                                   st_base,
 708                                   AllocateNode::Ideal_allocation(st_base, phase),
 709                                   phase)) {
 710         // Success:  The bases are provably independent.
 711         mem = mem->in(MemNode::Memory);
 712         continue;           // (a) advance through independent store memory
 713       }
 714 
 715       // (b) At this point, if the bases or offsets do not agree, we lose,
 716       // since we have not managed to prove 'this' and 'mem' independent.
 717       if (st_base == base && st_offset == offset) {
 718         return mem;         // let caller handle steps (c), (d)
 719       }
 720 
 721     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 722       InitializeNode* st_init = mem->in(0)->as_Initialize();
 723       AllocateNode*  st_alloc = st_init->allocation();
 724       if (st_alloc == nullptr)
 725         break;              // something degenerated
 726       bool known_identical = false;
 727       bool known_independent = false;
 728       if (alloc == st_alloc)
 729         known_identical = true;
 730       else if (alloc != nullptr)
 731         known_independent = true;
 732       else if (all_controls_dominate(this, st_alloc))
 733         known_independent = true;
 734 
 735       if (known_independent) {
 736         // The bases are provably independent: Either they are
 737         // manifestly distinct allocations, or else the control
 738         // of this load dominates the store's allocation.
 739         int alias_idx = phase->C->get_alias_index(adr_type());
 740         if (alias_idx == Compile::AliasIdxRaw) {
 741           mem = st_alloc->in(TypeFunc::Memory);
 742         } else {
 743           mem = st_init->memory(alias_idx);
 744         }
 745         continue;           // (a) advance through independent store memory
 746       }
 747 
 748       // (b) at this point, if we are not looking at a store initializing
 749       // the same allocation we are loading from, we lose.
 750       if (known_identical) {
 751         // From caller, can_see_stored_value will consult find_captured_store.
 752         return mem;         // let caller handle steps (c), (d)
 753       }
 754 
 755     } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) {
 756       if (prev != mem) {
 757         // Found an arraycopy but it doesn't affect that load
 758         continue;
 759       }
 760       // Found an arraycopy that may affect that load
 761       return mem;
 762     } else if (addr_t != nullptr && addr_t->is_known_instance_field()) {
 763       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 764       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 765         // ArrayCopyNodes processed here as well.
 766         CallNode *call = mem->in(0)->as_Call();
 767         if (!call->may_modify(addr_t, phase)) {
 768           mem = call->in(TypeFunc::Memory);
 769           continue;         // (a) advance through independent call memory
 770         }
 771       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 772         ArrayCopyNode* ac = nullptr;
 773         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 774           break;
 775         }
 776         mem = mem->in(0)->in(TypeFunc::Memory);
 777         continue;           // (a) advance through independent MemBar memory
 778       } else if (mem->is_ClearArray()) {
 779         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 780           // (the call updated 'mem' value)
 781           continue;         // (a) advance through independent allocation memory
 782         } else {
 783           // Can not bypass initialization of the instance
 784           // we are looking for.
 785           return mem;
 786         }
 787       } else if (mem->is_MergeMem()) {
 788         int alias_idx = phase->C->get_alias_index(adr_type());
 789         mem = mem->as_MergeMem()->memory_at(alias_idx);
 790         continue;           // (a) advance through independent MergeMem memory
 791       }
 792     }
 793 
 794     // Unless there is an explicit 'continue', we must bail out here,
 795     // because 'mem' is an inscrutable memory state (e.g., a call).
 796     break;
 797   }
 798 
 799   return nullptr;              // bail out
 800 }
 801 
 802 //----------------------calculate_adr_type-------------------------------------
 803 // Helper function.  Notices when the given type of address hits top or bottom.
 804 // Also, asserts a cross-check of the type against the expected address type.
 805 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 806   if (t == Type::TOP)  return nullptr; // does not touch memory any more?
 807   #ifdef ASSERT
 808   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = nullptr;
 809   #endif
 810   const TypePtr* tp = t->isa_ptr();
 811   if (tp == nullptr) {
 812     assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 813     return TypePtr::BOTTOM;           // touches lots of memory
 814   } else {
 815     #ifdef ASSERT
 816     // %%%% [phh] We don't check the alias index if cross_check is
 817     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 818     if (cross_check != nullptr &&
 819         cross_check != TypePtr::BOTTOM &&
 820         cross_check != TypeRawPtr::BOTTOM) {
 821       // Recheck the alias index, to see if it has changed (due to a bug).
 822       Compile* C = Compile::current();
 823       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 824              "must stay in the original alias category");
 825       // The type of the address must be contained in the adr_type,
 826       // disregarding "null"-ness.
 827       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 828       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 829       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 830              "real address must not escape from expected memory type");
 831     }
 832     #endif
 833     return tp;
 834   }
 835 }
 836 
 837 //=============================================================================
 838 // Should LoadNode::Ideal() attempt to remove control edges?
 839 bool LoadNode::can_remove_control() const {
 840   return !has_pinned_control_dependency();
 841 }
 842 uint LoadNode::size_of() const { return sizeof(*this); }
 843 bool LoadNode::cmp( const Node &n ) const
 844 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 845 const Type *LoadNode::bottom_type() const { return _type; }
 846 uint LoadNode::ideal_reg() const {
 847   return _type->ideal_reg();
 848 }
 849 
 850 #ifndef PRODUCT
 851 void LoadNode::dump_spec(outputStream *st) const {
 852   MemNode::dump_spec(st);
 853   if( !Verbose && !WizardMode ) {
 854     // standard dump does this in Verbose and WizardMode
 855     st->print(" #"); _type->dump_on(st);
 856   }
 857   if (!depends_only_on_test()) {
 858     st->print(" (does not depend only on test, ");
 859     if (control_dependency() == UnknownControl) {
 860       st->print("unknown control");
 861     } else if (control_dependency() == Pinned) {
 862       st->print("pinned");
 863     } else if (adr_type() == TypeRawPtr::BOTTOM) {
 864       st->print("raw access");
 865     } else {
 866       st->print("unknown reason");
 867     }
 868     st->print(")");
 869   }
 870 }
 871 #endif
 872 
 873 #ifdef ASSERT
 874 //----------------------------is_immutable_value-------------------------------
 875 // Helper function to allow a raw load without control edge for some cases
 876 bool LoadNode::is_immutable_value(Node* adr) {
 877   if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 878       adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) {
 879 
 880     jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1);
 881     int offsets[] = {
 882       in_bytes(JavaThread::osthread_offset()),
 883       in_bytes(JavaThread::threadObj_offset()),
 884       in_bytes(JavaThread::vthread_offset()),
 885       in_bytes(JavaThread::scopedValueCache_offset()),
 886     };
 887 
 888     for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) {
 889       if (offset == offsets[i]) {
 890         return true;
 891       }
 892     }
 893   }
 894 
 895   return false;
 896 }
 897 #endif
 898 
 899 //----------------------------LoadNode::make-----------------------------------
 900 // Polymorphic factory method:
 901 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo,
 902                      ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) {
 903   Compile* C = gvn.C;
 904 
 905   // sanity check the alias category against the created node type
 906   assert(!(adr_type->isa_oopptr() &&
 907            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 908          "use LoadKlassNode instead");
 909   assert(!(adr_type->isa_aryptr() &&
 910            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 911          "use LoadRangeNode instead");
 912   // Check control edge of raw loads
 913   assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 914           // oop will be recorded in oop map if load crosses safepoint
 915           rt->isa_oopptr() || is_immutable_value(adr),
 916           "raw memory operations should have control edge");
 917   LoadNode* load = nullptr;
 918   switch (bt) {
 919   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 920   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 921   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 922   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 923   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 924   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break;
 925   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 926   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency, require_atomic_access); break;
 927   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 928   case T_OBJECT:
 929 #ifdef _LP64
 930     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 931       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 932     } else
 933 #endif
 934     {
 935       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 936       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 937     }
 938     break;
 939   default:
 940     ShouldNotReachHere();
 941     break;
 942   }
 943   assert(load != nullptr, "LoadNode should have been created");
 944   if (unaligned) {
 945     load->set_unaligned_access();
 946   }
 947   if (mismatched) {
 948     load->set_mismatched_access();
 949   }
 950   if (unsafe) {
 951     load->set_unsafe_access();
 952   }
 953   load->set_barrier_data(barrier_data);
 954   if (load->Opcode() == Op_LoadN) {
 955     Node* ld = gvn.transform(load);
 956     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 957   }
 958 
 959   return load;
 960 }
 961 
 962 //------------------------------hash-------------------------------------------
 963 uint LoadNode::hash() const {
 964   // unroll addition of interesting fields
 965   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 966 }
 967 
 968 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 969   if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) {
 970     bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile();
 971     bool is_stable_ary = FoldStableValues &&
 972                          (tp != nullptr) && (tp->isa_aryptr() != nullptr) &&
 973                          tp->isa_aryptr()->is_stable();
 974 
 975     return (eliminate_boxing && non_volatile) || is_stable_ary;
 976   }
 977 
 978   return false;
 979 }
 980 
 981 // Is the value loaded previously stored by an arraycopy? If so return
 982 // a load node that reads from the source array so we may be able to
 983 // optimize out the ArrayCopy node later.
 984 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 985   Node* ld_adr = in(MemNode::Address);
 986   intptr_t ld_off = 0;
 987   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 988   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 989   if (ac != nullptr) {
 990     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 991 
 992     Node* mem = ac->in(TypeFunc::Memory);
 993     Node* ctl = ac->in(0);
 994     Node* src = ac->in(ArrayCopyNode::Src);
 995 
 996     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 997       return nullptr;
 998     }
 999 
1000     LoadNode* ld = clone()->as_Load();
1001     Node* addp = in(MemNode::Address)->clone();
1002     if (ac->as_ArrayCopy()->is_clonebasic()) {
1003       assert(ld_alloc != nullptr, "need an alloc");
1004       assert(addp->is_AddP(), "address must be addp");
1005       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1006       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1007       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1008       addp->set_req(AddPNode::Base, src);
1009       addp->set_req(AddPNode::Address, src);
1010     } else {
1011       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
1012              ac->as_ArrayCopy()->is_copyof_validated() ||
1013              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
1014       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
1015       addp->set_req(AddPNode::Base, src);
1016       addp->set_req(AddPNode::Address, src);
1017 
1018       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
1019       BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
1020       if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
1021 
1022       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
1023       uint shift  = exact_log2(type2aelembytes(ary_elem));
1024 
1025       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
1026 #ifdef _LP64
1027       diff = phase->transform(new ConvI2LNode(diff));
1028 #endif
1029       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
1030 
1031       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
1032       addp->set_req(AddPNode::Offset, offset);
1033     }
1034     addp = phase->transform(addp);
1035 #ifdef ASSERT
1036     const TypePtr* adr_type = phase->type(addp)->is_ptr();
1037     ld->_adr_type = adr_type;
1038 #endif
1039     ld->set_req(MemNode::Address, addp);
1040     ld->set_req(0, ctl);
1041     ld->set_req(MemNode::Memory, mem);
1042     // load depends on the tests that validate the arraycopy
1043     ld->_control_dependency = UnknownControl;
1044     return ld;
1045   }
1046   return nullptr;
1047 }
1048 
1049 
1050 //---------------------------can_see_stored_value------------------------------
1051 // This routine exists to make sure this set of tests is done the same
1052 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
1053 // will change the graph shape in a way which makes memory alive twice at the
1054 // same time (uses the Oracle model of aliasing), then some
1055 // LoadXNode::Identity will fold things back to the equivalence-class model
1056 // of aliasing.
1057 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const {
1058   Node* ld_adr = in(MemNode::Address);
1059   intptr_t ld_off = 0;
1060   Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
1061   Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase);
1062   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1063   Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr;
1064   // This is more general than load from boxing objects.
1065   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1066     uint alias_idx = atp->index();
1067     Node* result = nullptr;
1068     Node* current = st;
1069     // Skip through chains of MemBarNodes checking the MergeMems for
1070     // new states for the slice of this load.  Stop once any other
1071     // kind of node is encountered.  Loads from final memory can skip
1072     // through any kind of MemBar but normal loads shouldn't skip
1073     // through MemBarAcquire since the could allow them to move out of
1074     // a synchronized region. It is not safe to step over MemBarCPUOrder,
1075     // because alias info above them may be inaccurate (e.g., due to
1076     // mixed/mismatched unsafe accesses).
1077     bool is_final_mem = !atp->is_rewritable();
1078     while (current->is_Proj()) {
1079       int opc = current->in(0)->Opcode();
1080       if ((is_final_mem && (opc == Op_MemBarAcquire ||
1081                             opc == Op_MemBarAcquireLock ||
1082                             opc == Op_LoadFence)) ||
1083           opc == Op_MemBarRelease ||
1084           opc == Op_StoreFence ||
1085           opc == Op_MemBarReleaseLock ||
1086           opc == Op_MemBarStoreStore ||
1087           opc == Op_StoreStoreFence) {
1088         Node* mem = current->in(0)->in(TypeFunc::Memory);
1089         if (mem->is_MergeMem()) {
1090           MergeMemNode* merge = mem->as_MergeMem();
1091           Node* new_st = merge->memory_at(alias_idx);
1092           if (new_st == merge->base_memory()) {
1093             // Keep searching
1094             current = new_st;
1095             continue;
1096           }
1097           // Save the new memory state for the slice and fall through
1098           // to exit.
1099           result = new_st;
1100         }
1101       }
1102       break;
1103     }
1104     if (result != nullptr) {
1105       st = result;
1106     }
1107   }
1108 
1109   // Loop around twice in the case Load -> Initialize -> Store.
1110   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1111   for (int trip = 0; trip <= 1; trip++) {
1112 
1113     if (st->is_Store()) {
1114       Node* st_adr = st->in(MemNode::Address);
1115       if (st_adr != ld_adr) {
1116         // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1117         intptr_t st_off = 0;
1118         Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1119         if (ld_base == nullptr)                                return nullptr;
1120         if (st_base == nullptr)                                return nullptr;
1121         if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr;
1122         if (ld_off != st_off)                                  return nullptr;
1123         if (ld_off == Type::OffsetBot)                         return nullptr;
1124         // Same base, same offset.
1125         // Possible improvement for arrays: check index value instead of absolute offset.
1126 
1127         // At this point we have proven something like this setup:
1128         //   B = << base >>
1129         //   L =  LoadQ(AddP(Check/CastPP(B), #Off))
1130         //   S = StoreQ(AddP(             B , #Off), V)
1131         // (Actually, we haven't yet proven the Q's are the same.)
1132         // In other words, we are loading from a casted version of
1133         // the same pointer-and-offset that we stored to.
1134         // Casted version may carry a dependency and it is respected.
1135         // Thus, we are able to replace L by V.
1136       }
1137       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1138       if (store_Opcode() != st->Opcode()) {
1139         return nullptr;
1140       }
1141       // LoadVector/StoreVector needs additional check to ensure the types match.
1142       if (st->is_StoreVector()) {
1143         const TypeVect*  in_vt = st->as_StoreVector()->vect_type();
1144         const TypeVect* out_vt = as_LoadVector()->vect_type();
1145         if (in_vt != out_vt) {
1146           return nullptr;
1147         }
1148       }
1149       return st->in(MemNode::ValueIn);
1150     }
1151 
1152     // A load from a freshly-created object always returns zero.
1153     // (This can happen after LoadNode::Ideal resets the load's memory input
1154     // to find_captured_store, which returned InitializeNode::zero_memory.)
1155     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1156         (st->in(0) == ld_alloc) &&
1157         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1158       // return a zero value for the load's basic type
1159       // (This is one of the few places where a generic PhaseTransform
1160       // can create new nodes.  Think of it as lazily manifesting
1161       // virtually pre-existing constants.)
1162       if (memory_type() != T_VOID) {
1163         if (ReduceBulkZeroing || find_array_copy_clone(phase, ld_alloc, in(MemNode::Memory)) == nullptr) {
1164           // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an
1165           // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done
1166           // by the ArrayCopyNode.
1167           return phase->zerocon(memory_type());
1168         }
1169       } else {
1170         // TODO: materialize all-zero vector constant
1171         assert(!isa_Load() || as_Load()->type()->isa_vect(), "");
1172       }
1173     }
1174 
1175     // A load from an initialization barrier can match a captured store.
1176     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1177       InitializeNode* init = st->in(0)->as_Initialize();
1178       AllocateNode* alloc = init->allocation();
1179       if ((alloc != nullptr) && (alloc == ld_alloc)) {
1180         // examine a captured store value
1181         st = init->find_captured_store(ld_off, memory_size(), phase);
1182         if (st != nullptr) {
1183           continue;             // take one more trip around
1184         }
1185       }
1186     }
1187 
1188     // Load boxed value from result of valueOf() call is input parameter.
1189     if (this->is_Load() && ld_adr->is_AddP() &&
1190         (tp != nullptr) && tp->is_ptr_to_boxed_value()) {
1191       intptr_t ignore = 0;
1192       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1193       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1194       base = bs->step_over_gc_barrier(base);
1195       if (base != nullptr && base->is_Proj() &&
1196           base->as_Proj()->_con == TypeFunc::Parms &&
1197           base->in(0)->is_CallStaticJava() &&
1198           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1199         return base->in(0)->in(TypeFunc::Parms);
1200       }
1201     }
1202 
1203     break;
1204   }
1205 
1206   return nullptr;
1207 }
1208 
1209 //----------------------is_instance_field_load_with_local_phi------------------
1210 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1211   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1212       in(Address)->is_AddP() ) {
1213     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1214     // Only instances and boxed values.
1215     if( t_oop != nullptr &&
1216         (t_oop->is_ptr_to_boxed_value() ||
1217          t_oop->is_known_instance_field()) &&
1218         t_oop->offset() != Type::OffsetBot &&
1219         t_oop->offset() != Type::OffsetTop) {
1220       return true;
1221     }
1222   }
1223   return false;
1224 }
1225 
1226 //------------------------------Identity---------------------------------------
1227 // Loads are identity if previous store is to same address
1228 Node* LoadNode::Identity(PhaseGVN* phase) {
1229   // If the previous store-maker is the right kind of Store, and the store is
1230   // to the same address, then we are equal to the value stored.
1231   Node* mem = in(Memory);
1232   Node* value = can_see_stored_value(mem, phase);
1233   if( value ) {
1234     // byte, short & char stores truncate naturally.
1235     // A load has to load the truncated value which requires
1236     // some sort of masking operation and that requires an
1237     // Ideal call instead of an Identity call.
1238     if (memory_size() < BytesPerInt) {
1239       // If the input to the store does not fit with the load's result type,
1240       // it must be truncated via an Ideal call.
1241       if (!phase->type(value)->higher_equal(phase->type(this)))
1242         return this;
1243     }
1244     // (This works even when value is a Con, but LoadNode::Value
1245     // usually runs first, producing the singleton type of the Con.)
1246     if (!has_pinned_control_dependency() || value->is_Con()) {
1247       return value;
1248     } else {
1249       return this;
1250     }
1251   }
1252 
1253   if (has_pinned_control_dependency()) {
1254     return this;
1255   }
1256   // Search for an existing data phi which was generated before for the same
1257   // instance's field to avoid infinite generation of phis in a loop.
1258   Node *region = mem->in(0);
1259   if (is_instance_field_load_with_local_phi(region)) {
1260     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1261     int this_index  = phase->C->get_alias_index(addr_t);
1262     int this_offset = addr_t->offset();
1263     int this_iid    = addr_t->instance_id();
1264     if (!addr_t->is_known_instance() &&
1265          addr_t->is_ptr_to_boxed_value()) {
1266       // Use _idx of address base (could be Phi node) for boxed values.
1267       intptr_t   ignore = 0;
1268       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1269       if (base == nullptr) {
1270         return this;
1271       }
1272       this_iid = base->_idx;
1273     }
1274     const Type* this_type = bottom_type();
1275     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1276       Node* phi = region->fast_out(i);
1277       if (phi->is_Phi() && phi != mem &&
1278           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1279         return phi;
1280       }
1281     }
1282   }
1283 
1284   return this;
1285 }
1286 
1287 // Construct an equivalent unsigned load.
1288 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1289   BasicType bt = T_ILLEGAL;
1290   const Type* rt = nullptr;
1291   switch (Opcode()) {
1292     case Op_LoadUB: return this;
1293     case Op_LoadUS: return this;
1294     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1295     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1296     default:
1297       assert(false, "no unsigned variant: %s", Name());
1298       return nullptr;
1299   }
1300   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1301                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1302                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1303 }
1304 
1305 // Construct an equivalent signed load.
1306 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1307   BasicType bt = T_ILLEGAL;
1308   const Type* rt = nullptr;
1309   switch (Opcode()) {
1310     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1311     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1312     case Op_LoadB: // fall through
1313     case Op_LoadS: // fall through
1314     case Op_LoadI: // fall through
1315     case Op_LoadL: return this;
1316     default:
1317       assert(false, "no signed variant: %s", Name());
1318       return nullptr;
1319   }
1320   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1321                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1322                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1323 }
1324 
1325 bool LoadNode::has_reinterpret_variant(const Type* rt) {
1326   BasicType bt = rt->basic_type();
1327   switch (Opcode()) {
1328     case Op_LoadI: return (bt == T_FLOAT);
1329     case Op_LoadL: return (bt == T_DOUBLE);
1330     case Op_LoadF: return (bt == T_INT);
1331     case Op_LoadD: return (bt == T_LONG);
1332 
1333     default: return false;
1334   }
1335 }
1336 
1337 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) {
1338   BasicType bt = rt->basic_type();
1339   assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1340   bool is_mismatched = is_mismatched_access();
1341   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1342   if (raw_type == nullptr) {
1343     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1344   }
1345   const int op = Opcode();
1346   bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) ||
1347                                (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access());
1348   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1349                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1350                         require_atomic_access, is_unaligned_access(), is_mismatched);
1351 }
1352 
1353 bool StoreNode::has_reinterpret_variant(const Type* vt) {
1354   BasicType bt = vt->basic_type();
1355   switch (Opcode()) {
1356     case Op_StoreI: return (bt == T_FLOAT);
1357     case Op_StoreL: return (bt == T_DOUBLE);
1358     case Op_StoreF: return (bt == T_INT);
1359     case Op_StoreD: return (bt == T_LONG);
1360 
1361     default: return false;
1362   }
1363 }
1364 
1365 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) {
1366   BasicType bt = vt->basic_type();
1367   assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1368   const int op = Opcode();
1369   bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) ||
1370                                (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access());
1371   StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1372                                   raw_adr_type(), val, bt, _mo, require_atomic_access);
1373 
1374   bool is_mismatched = is_mismatched_access();
1375   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1376   if (raw_type == nullptr) {
1377     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1378   }
1379   if (is_mismatched) {
1380     st->set_mismatched_access();
1381   }
1382   return st;
1383 }
1384 
1385 // We're loading from an object which has autobox behaviour.
1386 // If this object is result of a valueOf call we'll have a phi
1387 // merging a newly allocated object and a load from the cache.
1388 // We want to replace this load with the original incoming
1389 // argument to the valueOf call.
1390 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) {
1391   assert(igvn->C->eliminate_boxing(), "sanity");
1392   intptr_t ignore = 0;
1393   Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore);
1394   if ((base == nullptr) || base->is_Phi()) {
1395     // Push the loads from the phi that comes from valueOf up
1396     // through it to allow elimination of the loads and the recovery
1397     // of the original value. It is done in split_through_phi().
1398     return nullptr;
1399   } else if (base->is_Load() ||
1400              (base->is_DecodeN() && base->in(1)->is_Load())) {
1401     // Eliminate the load of boxed value for integer types from the cache
1402     // array by deriving the value from the index into the array.
1403     // Capture the offset of the load and then reverse the computation.
1404 
1405     // Get LoadN node which loads a boxing object from 'cache' array.
1406     if (base->is_DecodeN()) {
1407       base = base->in(1);
1408     }
1409     if (!base->in(Address)->is_AddP()) {
1410       return nullptr; // Complex address
1411     }
1412     AddPNode* address = base->in(Address)->as_AddP();
1413     Node* cache_base = address->in(AddPNode::Base);
1414     if ((cache_base != nullptr) && cache_base->is_DecodeN()) {
1415       // Get ConP node which is static 'cache' field.
1416       cache_base = cache_base->in(1);
1417     }
1418     if ((cache_base != nullptr) && cache_base->is_Con()) {
1419       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1420       if ((base_type != nullptr) && base_type->is_autobox_cache()) {
1421         Node* elements[4];
1422         int shift = exact_log2(type2aelembytes(T_OBJECT));
1423         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1424         if (count > 0 && elements[0]->is_Con() &&
1425             (count == 1 ||
1426              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1427                             elements[1]->in(2) == igvn->intcon(shift)))) {
1428           ciObjArray* array = base_type->const_oop()->as_obj_array();
1429           // Fetch the box object cache[0] at the base of the array and get its value
1430           ciInstance* box = array->obj_at(0)->as_instance();
1431           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1432           assert(ik->is_box_klass(), "sanity");
1433           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1434           if (ik->nof_nonstatic_fields() == 1) {
1435             // This should be true nonstatic_field_at requires calling
1436             // nof_nonstatic_fields so check it anyway
1437             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1438             BasicType bt = c.basic_type();
1439             // Only integer types have boxing cache.
1440             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1441                    bt == T_BYTE    || bt == T_SHORT ||
1442                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1443             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1444             if (cache_low != (int)cache_low) {
1445               return nullptr; // should not happen since cache is array indexed by value
1446             }
1447             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1448             if (offset != (int)offset) {
1449               return nullptr; // should not happen since cache is array indexed by value
1450             }
1451            // Add up all the offsets making of the address of the load
1452             Node* result = elements[0];
1453             for (int i = 1; i < count; i++) {
1454               result = igvn->transform(new AddXNode(result, elements[i]));
1455             }
1456             // Remove the constant offset from the address and then
1457             result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset)));
1458             // remove the scaling of the offset to recover the original index.
1459             if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) {
1460               // Peel the shift off directly but wrap it in a dummy node
1461               // since Ideal can't return existing nodes
1462               igvn->_worklist.push(result); // remove dead node later
1463               result = new RShiftXNode(result->in(1), igvn->intcon(0));
1464             } else if (result->is_Add() && result->in(2)->is_Con() &&
1465                        result->in(1)->Opcode() == Op_LShiftX &&
1466                        result->in(1)->in(2) == igvn->intcon(shift)) {
1467               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1468               // but for boxing cache access we know that X<<Z will not overflow
1469               // (there is range check) so we do this optimizatrion by hand here.
1470               igvn->_worklist.push(result); // remove dead node later
1471               Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift));
1472               result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con));
1473             } else {
1474               result = new RShiftXNode(result, igvn->intcon(shift));
1475             }
1476 #ifdef _LP64
1477             if (bt != T_LONG) {
1478               result = new ConvL2INode(igvn->transform(result));
1479             }
1480 #else
1481             if (bt == T_LONG) {
1482               result = new ConvI2LNode(igvn->transform(result));
1483             }
1484 #endif
1485             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1486             // Need to preserve unboxing load type if it is unsigned.
1487             switch(this->Opcode()) {
1488               case Op_LoadUB:
1489                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF));
1490                 break;
1491               case Op_LoadUS:
1492                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF));
1493                 break;
1494             }
1495             return result;
1496           }
1497         }
1498       }
1499     }
1500   }
1501   return nullptr;
1502 }
1503 
1504 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1505   Node* region = phi->in(0);
1506   if (region == nullptr) {
1507     return false; // Wait stable graph
1508   }
1509   uint cnt = phi->req();
1510   for (uint i = 1; i < cnt; i++) {
1511     Node* rc = region->in(i);
1512     if (rc == nullptr || phase->type(rc) == Type::TOP)
1513       return false; // Wait stable graph
1514     Node* in = phi->in(i);
1515     if (in == nullptr || phase->type(in) == Type::TOP)
1516       return false; // Wait stable graph
1517   }
1518   return true;
1519 }
1520 //------------------------------split_through_phi------------------------------
1521 // Split instance or boxed field load through Phi.
1522 Node* LoadNode::split_through_phi(PhaseGVN* phase) {
1523   if (req() > 3) {
1524     assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs");
1525     // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account
1526     return nullptr;
1527   }
1528   Node* mem     = in(Memory);
1529   Node* address = in(Address);
1530   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1531 
1532   assert((t_oop != nullptr) &&
1533          (t_oop->is_known_instance_field() ||
1534           t_oop->is_ptr_to_boxed_value()), "invalid conditions");
1535 
1536   Compile* C = phase->C;
1537   intptr_t ignore = 0;
1538   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1539   bool base_is_phi = (base != nullptr) && base->is_Phi();
1540   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1541                            (base != nullptr) && (base == address->in(AddPNode::Base)) &&
1542                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1543 
1544   if (!((mem->is_Phi() || base_is_phi) &&
1545         (load_boxed_values || t_oop->is_known_instance_field()))) {
1546     return nullptr; // memory is not Phi
1547   }
1548 
1549   if (mem->is_Phi()) {
1550     if (!stable_phi(mem->as_Phi(), phase)) {
1551       return nullptr; // Wait stable graph
1552     }
1553     uint cnt = mem->req();
1554     // Check for loop invariant memory.
1555     if (cnt == 3) {
1556       for (uint i = 1; i < cnt; i++) {
1557         Node* in = mem->in(i);
1558         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1559         if (m == mem) {
1560           if (i == 1) {
1561             // if the first edge was a loop, check second edge too.
1562             // If both are replaceable - we are in an infinite loop
1563             Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1564             if (n == mem) {
1565               break;
1566             }
1567           }
1568           set_req(Memory, mem->in(cnt - i));
1569           return this; // made change
1570         }
1571       }
1572     }
1573   }
1574   if (base_is_phi) {
1575     if (!stable_phi(base->as_Phi(), phase)) {
1576       return nullptr; // Wait stable graph
1577     }
1578     uint cnt = base->req();
1579     // Check for loop invariant memory.
1580     if (cnt == 3) {
1581       for (uint i = 1; i < cnt; i++) {
1582         if (base->in(i) == base) {
1583           return nullptr; // Wait stable graph
1584         }
1585       }
1586     }
1587   }
1588 
1589   // Split through Phi (see original code in loopopts.cpp).
1590   assert(C->have_alias_type(t_oop), "instance should have alias type");
1591 
1592   // Do nothing here if Identity will find a value
1593   // (to avoid infinite chain of value phis generation).
1594   if (this != Identity(phase)) {
1595     return nullptr;
1596   }
1597 
1598   // Select Region to split through.
1599   Node* region;
1600   if (!base_is_phi) {
1601     assert(mem->is_Phi(), "sanity");
1602     region = mem->in(0);
1603     // Skip if the region dominates some control edge of the address.
1604     if (!MemNode::all_controls_dominate(address, region))
1605       return nullptr;
1606   } else if (!mem->is_Phi()) {
1607     assert(base_is_phi, "sanity");
1608     region = base->in(0);
1609     // Skip if the region dominates some control edge of the memory.
1610     if (!MemNode::all_controls_dominate(mem, region))
1611       return nullptr;
1612   } else if (base->in(0) != mem->in(0)) {
1613     assert(base_is_phi && mem->is_Phi(), "sanity");
1614     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1615       region = base->in(0);
1616     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1617       region = mem->in(0);
1618     } else {
1619       return nullptr; // complex graph
1620     }
1621   } else {
1622     assert(base->in(0) == mem->in(0), "sanity");
1623     region = mem->in(0);
1624   }
1625 
1626   const Type* this_type = this->bottom_type();
1627   int this_index  = C->get_alias_index(t_oop);
1628   int this_offset = t_oop->offset();
1629   int this_iid    = t_oop->instance_id();
1630   if (!t_oop->is_known_instance() && load_boxed_values) {
1631     // Use _idx of address base for boxed values.
1632     this_iid = base->_idx;
1633   }
1634   PhaseIterGVN* igvn = phase->is_IterGVN();
1635   Node* phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset);
1636   for (uint i = 1; i < region->req(); i++) {
1637     Node* x;
1638     Node* the_clone = nullptr;
1639     Node* in = region->in(i);
1640     if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl &&
1641         in != nullptr && in->is_OuterStripMinedLoop()) {
1642       // No node should go in the outer strip mined loop
1643       in = in->in(LoopNode::EntryControl);
1644     }
1645     if (in == nullptr || in == C->top()) {
1646       x = C->top();      // Dead path?  Use a dead data op
1647     } else {
1648       x = this->clone();        // Else clone up the data op
1649       the_clone = x;            // Remember for possible deletion.
1650       // Alter data node to use pre-phi inputs
1651       if (this->in(0) == region) {
1652         x->set_req(0, in);
1653       } else {
1654         x->set_req(0, nullptr);
1655       }
1656       if (mem->is_Phi() && (mem->in(0) == region)) {
1657         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1658       }
1659       if (address->is_Phi() && address->in(0) == region) {
1660         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1661       }
1662       if (base_is_phi && (base->in(0) == region)) {
1663         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1664         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1665         x->set_req(Address, adr_x);
1666       }
1667     }
1668     // Check for a 'win' on some paths
1669     const Type *t = x->Value(igvn);
1670 
1671     bool singleton = t->singleton();
1672 
1673     // See comments in PhaseIdealLoop::split_thru_phi().
1674     if (singleton && t == Type::TOP) {
1675       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1676     }
1677 
1678     if (singleton) {
1679       x = igvn->makecon(t);
1680     } else {
1681       // We now call Identity to try to simplify the cloned node.
1682       // Note that some Identity methods call phase->type(this).
1683       // Make sure that the type array is big enough for
1684       // our new node, even though we may throw the node away.
1685       // (This tweaking with igvn only works because x is a new node.)
1686       igvn->set_type(x, t);
1687       // If x is a TypeNode, capture any more-precise type permanently into Node
1688       // otherwise it will be not updated during igvn->transform since
1689       // igvn->type(x) is set to x->Value() already.
1690       x->raise_bottom_type(t);
1691       Node* y = x->Identity(igvn);
1692       if (y != x) {
1693         x = y;
1694       } else {
1695         y = igvn->hash_find_insert(x);
1696         if (y) {
1697           x = y;
1698         } else {
1699           // Else x is a new node we are keeping
1700           // We do not need register_new_node_with_optimizer
1701           // because set_type has already been called.
1702           igvn->_worklist.push(x);
1703         }
1704       }
1705     }
1706     if (x != the_clone && the_clone != nullptr) {
1707       igvn->remove_dead_node(the_clone);
1708     }
1709     phi->set_req(i, x);
1710   }
1711   // Record Phi
1712   igvn->register_new_node_with_optimizer(phi);
1713   return phi;
1714 }
1715 
1716 AllocateNode* LoadNode::is_new_object_mark_load(PhaseGVN *phase) const {
1717   if (Opcode() == Op_LoadX) {
1718     Node* address = in(MemNode::Address);
1719     AllocateNode* alloc = AllocateNode::Ideal_allocation(address, phase);
1720     Node* mem = in(MemNode::Memory);
1721     if (alloc != nullptr && mem->is_Proj() &&
1722         mem->in(0) != nullptr &&
1723         mem->in(0) == alloc->initialization() &&
1724         alloc->initialization()->proj_out_or_null(0) != nullptr) {
1725       return alloc;
1726     }
1727   }
1728   return nullptr;
1729 }
1730 
1731 
1732 //------------------------------Ideal------------------------------------------
1733 // If the load is from Field memory and the pointer is non-null, it might be possible to
1734 // zero out the control input.
1735 // If the offset is constant and the base is an object allocation,
1736 // try to hook me up to the exact initializing store.
1737 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1738   if (has_pinned_control_dependency()) {
1739     return nullptr;
1740   }
1741   Node* p = MemNode::Ideal_common(phase, can_reshape);
1742   if (p)  return (p == NodeSentinel) ? nullptr : p;
1743 
1744   Node* ctrl    = in(MemNode::Control);
1745   Node* address = in(MemNode::Address);
1746   bool progress = false;
1747 
1748   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1749          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1750 
1751   // Skip up past a SafePoint control.  Cannot do this for Stores because
1752   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1753   if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint &&
1754       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1755       !addr_mark &&
1756       (depends_only_on_test() || has_unknown_control_dependency())) {
1757     ctrl = ctrl->in(0);
1758     set_req(MemNode::Control,ctrl);
1759     progress = true;
1760   }
1761 
1762   intptr_t ignore = 0;
1763   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1764   if (base != nullptr
1765       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1766     // Check for useless control edge in some common special cases
1767     if (in(MemNode::Control) != nullptr
1768         && can_remove_control()
1769         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1770         && all_controls_dominate(base, phase->C->start())) {
1771       // A method-invariant, non-null address (constant or 'this' argument).
1772       set_req(MemNode::Control, nullptr);
1773       progress = true;
1774     }
1775   }
1776 
1777   Node* mem = in(MemNode::Memory);
1778   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1779 
1780   if (can_reshape && (addr_t != nullptr)) {
1781     // try to optimize our memory input
1782     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1783     if (opt_mem != mem) {
1784       set_req_X(MemNode::Memory, opt_mem, phase);
1785       if (phase->type( opt_mem ) == Type::TOP) return nullptr;
1786       return this;
1787     }
1788     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1789     if ((t_oop != nullptr) &&
1790         (t_oop->is_known_instance_field() ||
1791          t_oop->is_ptr_to_boxed_value())) {
1792       PhaseIterGVN *igvn = phase->is_IterGVN();
1793       assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true");
1794       if (igvn->_worklist.member(opt_mem)) {
1795         // Delay this transformation until memory Phi is processed.
1796         igvn->_worklist.push(this);
1797         return nullptr;
1798       }
1799       // Split instance field load through Phi.
1800       Node* result = split_through_phi(phase);
1801       if (result != nullptr) return result;
1802 
1803       if (t_oop->is_ptr_to_boxed_value()) {
1804         Node* result = eliminate_autobox(igvn);
1805         if (result != nullptr) return result;
1806       }
1807     }
1808   }
1809 
1810   // Is there a dominating load that loads the same value?  Leave
1811   // anything that is not a load of a field/array element (like
1812   // barriers etc.) alone
1813   if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) {
1814     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1815       Node *use = mem->fast_out(i);
1816       if (use != this &&
1817           use->Opcode() == Opcode() &&
1818           use->in(0) != nullptr &&
1819           use->in(0) != in(0) &&
1820           use->in(Address) == in(Address)) {
1821         Node* ctl = in(0);
1822         for (int i = 0; i < 10 && ctl != nullptr; i++) {
1823           ctl = IfNode::up_one_dom(ctl);
1824           if (ctl == use->in(0)) {
1825             set_req(0, use->in(0));
1826             return this;
1827           }
1828         }
1829       }
1830     }
1831   }
1832 
1833   // Check for prior store with a different base or offset; make Load
1834   // independent.  Skip through any number of them.  Bail out if the stores
1835   // are in an endless dead cycle and report no progress.  This is a key
1836   // transform for Reflection.  However, if after skipping through the Stores
1837   // we can't then fold up against a prior store do NOT do the transform as
1838   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1839   // array memory alive twice: once for the hoisted Load and again after the
1840   // bypassed Store.  This situation only works if EVERYBODY who does
1841   // anti-dependence work knows how to bypass.  I.e. we need all
1842   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1843   // the alias index stuff.  So instead, peek through Stores and IFF we can
1844   // fold up, do so.
1845   Node* prev_mem = find_previous_store(phase);
1846   if (prev_mem != nullptr) {
1847     Node* value = can_see_arraycopy_value(prev_mem, phase);
1848     if (value != nullptr) {
1849       return value;
1850     }
1851   }
1852   // Steps (a), (b):  Walk past independent stores to find an exact match.
1853   if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) {
1854     // (c) See if we can fold up on the spot, but don't fold up here.
1855     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1856     // just return a prior value, which is done by Identity calls.
1857     if (can_see_stored_value(prev_mem, phase)) {
1858       // Make ready for step (d):
1859       set_req_X(MemNode::Memory, prev_mem, phase);
1860       return this;
1861     }
1862   }
1863 
1864   return progress ? this : nullptr;
1865 }
1866 
1867 // Helper to recognize certain Klass fields which are invariant across
1868 // some group of array types (e.g., int[] or all T[] where T < Object).
1869 const Type*
1870 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1871                                  ciKlass* klass) const {
1872   if (UseCompactObjectHeaders) {
1873     if (tkls->offset() == in_bytes(Klass::prototype_header_offset())) {
1874       // The field is Klass::_prototype_header.  Return its (constant) value.
1875       assert(this->Opcode() == Op_LoadX, "must load a proper type from _prototype_header");
1876       return TypeX::make(klass->prototype_header());
1877     }
1878   }
1879   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1880     // The field is Klass::_modifier_flags.  Return its (constant) value.
1881     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1882     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1883     return TypeInt::make(klass->modifier_flags());
1884   }
1885   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1886     // The field is Klass::_access_flags.  Return its (constant) value.
1887     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1888     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1889     return TypeInt::make(klass->access_flags());
1890   }
1891   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1892     // The field is Klass::_layout_helper.  Return its constant value if known.
1893     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1894     return TypeInt::make(klass->layout_helper());
1895   }
1896 
1897   // No match.
1898   return nullptr;
1899 }
1900 
1901 //------------------------------Value-----------------------------------------
1902 const Type* LoadNode::Value(PhaseGVN* phase) const {
1903   // Either input is TOP ==> the result is TOP
1904   Node* mem = in(MemNode::Memory);
1905   const Type *t1 = phase->type(mem);
1906   if (t1 == Type::TOP)  return Type::TOP;
1907   Node* adr = in(MemNode::Address);
1908   const TypePtr* tp = phase->type(adr)->isa_ptr();
1909   if (tp == nullptr || tp->empty())  return Type::TOP;
1910   int off = tp->offset();
1911   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1912   Compile* C = phase->C;
1913 
1914   // Try to guess loaded type from pointer type
1915   if (tp->isa_aryptr()) {
1916     const TypeAryPtr* ary = tp->is_aryptr();
1917     const Type* t = ary->elem();
1918 
1919     // Determine whether the reference is beyond the header or not, by comparing
1920     // the offset against the offset of the start of the array's data.
1921     // Different array types begin at slightly different offsets (12 vs. 16).
1922     // We choose T_BYTE as an example base type that is least restrictive
1923     // as to alignment, which will therefore produce the smallest
1924     // possible base offset.
1925     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1926     const bool off_beyond_header = (off >= min_base_off);
1927 
1928     // Try to constant-fold a stable array element.
1929     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1930       // Make sure the reference is not into the header and the offset is constant
1931       ciObject* aobj = ary->const_oop();
1932       if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1933         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1934         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1935                                                                       stable_dimension,
1936                                                                       memory_type(), is_unsigned());
1937         if (con_type != nullptr) {
1938           return con_type;
1939         }
1940       }
1941     }
1942 
1943     // Don't do this for integer types. There is only potential profit if
1944     // the element type t is lower than _type; that is, for int types, if _type is
1945     // more restrictive than t.  This only happens here if one is short and the other
1946     // char (both 16 bits), and in those cases we've made an intentional decision
1947     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1948     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1949     //
1950     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1951     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1952     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1953     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1954     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1955     // In fact, that could have been the original type of p1, and p1 could have
1956     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1957     // expression (LShiftL quux 3) independently optimized to the constant 8.
1958     if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr)
1959         && (_type->isa_vect() == nullptr)
1960         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1961       // t might actually be lower than _type, if _type is a unique
1962       // concrete subclass of abstract class t.
1963       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1964         const Type* jt = t->join_speculative(_type);
1965         // In any case, do not allow the join, per se, to empty out the type.
1966         if (jt->empty() && !t->empty()) {
1967           // This can happen if a interface-typed array narrows to a class type.
1968           jt = _type;
1969         }
1970 #ifdef ASSERT
1971         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1972           // The pointers in the autobox arrays are always non-null
1973           Node* base = adr->in(AddPNode::Base);
1974           if ((base != nullptr) && base->is_DecodeN()) {
1975             // Get LoadN node which loads IntegerCache.cache field
1976             base = base->in(1);
1977           }
1978           if ((base != nullptr) && base->is_Con()) {
1979             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1980             if ((base_type != nullptr) && base_type->is_autobox_cache()) {
1981               // It could be narrow oop
1982               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1983             }
1984           }
1985         }
1986 #endif
1987         return jt;
1988       }
1989     }
1990   } else if (tp->base() == Type::InstPtr) {
1991     assert( off != Type::OffsetBot ||
1992             // arrays can be cast to Objects
1993             !tp->isa_instptr() ||
1994             tp->is_instptr()->instance_klass()->is_java_lang_Object() ||
1995             // unsafe field access may not have a constant offset
1996             C->has_unsafe_access(),
1997             "Field accesses must be precise" );
1998     // For oop loads, we expect the _type to be precise.
1999 
2000     // Optimize loads from constant fields.
2001     const TypeInstPtr* tinst = tp->is_instptr();
2002     ciObject* const_oop = tinst->const_oop();
2003     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) {
2004       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
2005       if (con_type != nullptr) {
2006         return con_type;
2007       }
2008     }
2009   } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) {
2010     assert(off != Type::OffsetBot ||
2011             !tp->isa_instklassptr() ||
2012            // arrays can be cast to Objects
2013            tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() ||
2014            // also allow array-loading from the primary supertype
2015            // array during subtype checks
2016            Opcode() == Op_LoadKlass,
2017            "Field accesses must be precise");
2018     // For klass/static loads, we expect the _type to be precise
2019   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
2020     /* With mirrors being an indirect in the Klass*
2021      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
2022      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
2023      *
2024      * So check the type and klass of the node before the LoadP.
2025      */
2026     Node* adr2 = adr->in(MemNode::Address);
2027     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2028     if (tkls != nullptr && !StressReflectiveCode) {
2029       if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
2030         ciKlass* klass = tkls->exact_klass();
2031         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2032         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2033         return TypeInstPtr::make(klass->java_mirror());
2034       }
2035     }
2036   }
2037 
2038   const TypeKlassPtr *tkls = tp->isa_klassptr();
2039   if (tkls != nullptr) {
2040     if (tkls->is_loaded() && tkls->klass_is_exact()) {
2041       ciKlass* klass = tkls->exact_klass();
2042       // We are loading a field from a Klass metaobject whose identity
2043       // is known at compile time (the type is "exact" or "precise").
2044       // Check for fields we know are maintained as constants by the VM.
2045       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
2046         // The field is Klass::_super_check_offset.  Return its (constant) value.
2047         // (Folds up type checking code.)
2048         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
2049         return TypeInt::make(klass->super_check_offset());
2050       }
2051       if (UseCompactObjectHeaders) {
2052         if (tkls->offset() == in_bytes(Klass::prototype_header_offset())) {
2053           // The field is Klass::_prototype_header. Return its (constant) value.
2054           assert(this->Opcode() == Op_LoadX, "must load a proper type from _prototype_header");
2055           return TypeX::make(klass->prototype_header());
2056         }
2057       }
2058       // Compute index into primary_supers array
2059       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2060       // Check for overflowing; use unsigned compare to handle the negative case.
2061       if( depth < ciKlass::primary_super_limit() ) {
2062         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2063         // (Folds up type checking code.)
2064         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2065         ciKlass *ss = klass->super_of_depth(depth);
2066         return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2067       }
2068       const Type* aift = load_array_final_field(tkls, klass);
2069       if (aift != nullptr)  return aift;
2070     }
2071 
2072     // We can still check if we are loading from the primary_supers array at a
2073     // shallow enough depth.  Even though the klass is not exact, entries less
2074     // than or equal to its super depth are correct.
2075     if (tkls->is_loaded()) {
2076       ciKlass* klass = nullptr;
2077       if (tkls->isa_instklassptr()) {
2078         klass = tkls->is_instklassptr()->instance_klass();
2079       } else {
2080         int dims;
2081         const Type* inner = tkls->is_aryklassptr()->base_element_type(dims);
2082         if (inner->isa_instklassptr()) {
2083           klass = inner->is_instklassptr()->instance_klass();
2084           klass = ciObjArrayKlass::make(klass, dims);
2085         }
2086       }
2087       if (klass != nullptr) {
2088         // Compute index into primary_supers array
2089         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2090         // Check for overflowing; use unsigned compare to handle the negative case.
2091         if (depth < ciKlass::primary_super_limit() &&
2092             depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case
2093           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2094           // (Folds up type checking code.)
2095           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2096           ciKlass *ss = klass->super_of_depth(depth);
2097           return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2098         }
2099       }
2100     }
2101 
2102     // If the type is enough to determine that the thing is not an array,
2103     // we can give the layout_helper a positive interval type.
2104     // This will help short-circuit some reflective code.
2105     if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) &&
2106         tkls->isa_instklassptr() && // not directly typed as an array
2107         !tkls->is_instklassptr()->instance_klass()->is_java_lang_Object() // not the supertype of all T[] and specifically not Serializable & Cloneable
2108         ) {
2109       // Note:  When interfaces are reliable, we can narrow the interface
2110       // test to (klass != Serializable && klass != Cloneable).
2111       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
2112       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
2113       // The key property of this type is that it folds up tests
2114       // for array-ness, since it proves that the layout_helper is positive.
2115       // Thus, a generic value like the basic object layout helper works fine.
2116       return TypeInt::make(min_size, max_jint, Type::WidenMin);
2117     }
2118   }
2119 
2120   // If we are loading from a freshly-allocated object, produce a zero,
2121   // if the load is provably beyond the header of the object.
2122   // (Also allow a variable load from a fresh array to produce zero.)
2123   const TypeOopPtr *tinst = tp->isa_oopptr();
2124   bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field();
2125   bool is_boxed_value = (tinst != nullptr) && tinst->is_ptr_to_boxed_value();
2126   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
2127     Node* value = can_see_stored_value(mem,phase);
2128     if (value != nullptr && value->is_Con()) {
2129       assert(value->bottom_type()->higher_equal(_type),"sanity");
2130       return value->bottom_type();
2131     }
2132   }
2133 
2134   bool is_vect = (_type->isa_vect() != nullptr);
2135   if (is_instance && !is_vect) {
2136     // If we have an instance type and our memory input is the
2137     // programs's initial memory state, there is no matching store,
2138     // so just return a zero of the appropriate type -
2139     // except if it is vectorized - then we have no zero constant.
2140     Node *mem = in(MemNode::Memory);
2141     if (mem->is_Parm() && mem->in(0)->is_Start()) {
2142       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
2143       return Type::get_zero_type(_type->basic_type());
2144     }
2145   }
2146 
2147   Node* alloc = is_new_object_mark_load(phase);
2148   if (!UseCompactObjectHeaders && alloc != nullptr) {
2149     return TypeX::make(markWord::prototype().value());
2150   }
2151 
2152   return _type;
2153 }
2154 
2155 //------------------------------match_edge-------------------------------------
2156 // Do we Match on this edge index or not?  Match only the address.
2157 uint LoadNode::match_edge(uint idx) const {
2158   return idx == MemNode::Address;
2159 }
2160 
2161 //--------------------------LoadBNode::Ideal--------------------------------------
2162 //
2163 //  If the previous store is to the same address as this load,
2164 //  and the value stored was larger than a byte, replace this load
2165 //  with the value stored truncated to a byte.  If no truncation is
2166 //  needed, the replacement is done in LoadNode::Identity().
2167 //
2168 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2169   Node* mem = in(MemNode::Memory);
2170   Node* value = can_see_stored_value(mem,phase);
2171   if (value != nullptr) {
2172     Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false);
2173     if (narrow != value) {
2174       return narrow;
2175     }
2176   }
2177   // Identity call will handle the case where truncation is not needed.
2178   return LoadNode::Ideal(phase, can_reshape);
2179 }
2180 
2181 const Type* LoadBNode::Value(PhaseGVN* phase) const {
2182   Node* mem = in(MemNode::Memory);
2183   Node* value = can_see_stored_value(mem,phase);
2184   if (value != nullptr && value->is_Con() &&
2185       !value->bottom_type()->higher_equal(_type)) {
2186     // If the input to the store does not fit with the load's result type,
2187     // it must be truncated. We can't delay until Ideal call since
2188     // a singleton Value is needed for split_thru_phi optimization.
2189     int con = value->get_int();
2190     return TypeInt::make((con << 24) >> 24);
2191   }
2192   return LoadNode::Value(phase);
2193 }
2194 
2195 //--------------------------LoadUBNode::Ideal-------------------------------------
2196 //
2197 //  If the previous store is to the same address as this load,
2198 //  and the value stored was larger than a byte, replace this load
2199 //  with the value stored truncated to a byte.  If no truncation is
2200 //  needed, the replacement is done in LoadNode::Identity().
2201 //
2202 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2203   Node* mem = in(MemNode::Memory);
2204   Node* value = can_see_stored_value(mem, phase);
2205   if (value != nullptr) {
2206     Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false);
2207     if (narrow != value) {
2208       return narrow;
2209     }
2210   }
2211   // Identity call will handle the case where truncation is not needed.
2212   return LoadNode::Ideal(phase, can_reshape);
2213 }
2214 
2215 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2216   Node* mem = in(MemNode::Memory);
2217   Node* value = can_see_stored_value(mem,phase);
2218   if (value != nullptr && value->is_Con() &&
2219       !value->bottom_type()->higher_equal(_type)) {
2220     // If the input to the store does not fit with the load's result type,
2221     // it must be truncated. We can't delay until Ideal call since
2222     // a singleton Value is needed for split_thru_phi optimization.
2223     int con = value->get_int();
2224     return TypeInt::make(con & 0xFF);
2225   }
2226   return LoadNode::Value(phase);
2227 }
2228 
2229 //--------------------------LoadUSNode::Ideal-------------------------------------
2230 //
2231 //  If the previous store is to the same address as this load,
2232 //  and the value stored was larger than a char, replace this load
2233 //  with the value stored truncated to a char.  If no truncation is
2234 //  needed, the replacement is done in LoadNode::Identity().
2235 //
2236 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2237   Node* mem = in(MemNode::Memory);
2238   Node* value = can_see_stored_value(mem,phase);
2239   if (value != nullptr) {
2240     Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false);
2241     if (narrow != value) {
2242       return narrow;
2243     }
2244   }
2245   // Identity call will handle the case where truncation is not needed.
2246   return LoadNode::Ideal(phase, can_reshape);
2247 }
2248 
2249 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2250   Node* mem = in(MemNode::Memory);
2251   Node* value = can_see_stored_value(mem,phase);
2252   if (value != nullptr && value->is_Con() &&
2253       !value->bottom_type()->higher_equal(_type)) {
2254     // If the input to the store does not fit with the load's result type,
2255     // it must be truncated. We can't delay until Ideal call since
2256     // a singleton Value is needed for split_thru_phi optimization.
2257     int con = value->get_int();
2258     return TypeInt::make(con & 0xFFFF);
2259   }
2260   return LoadNode::Value(phase);
2261 }
2262 
2263 //--------------------------LoadSNode::Ideal--------------------------------------
2264 //
2265 //  If the previous store is to the same address as this load,
2266 //  and the value stored was larger than a short, replace this load
2267 //  with the value stored truncated to a short.  If no truncation is
2268 //  needed, the replacement is done in LoadNode::Identity().
2269 //
2270 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2271   Node* mem = in(MemNode::Memory);
2272   Node* value = can_see_stored_value(mem,phase);
2273   if (value != nullptr) {
2274     Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false);
2275     if (narrow != value) {
2276       return narrow;
2277     }
2278   }
2279   // Identity call will handle the case where truncation is not needed.
2280   return LoadNode::Ideal(phase, can_reshape);
2281 }
2282 
2283 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2284   Node* mem = in(MemNode::Memory);
2285   Node* value = can_see_stored_value(mem,phase);
2286   if (value != nullptr && value->is_Con() &&
2287       !value->bottom_type()->higher_equal(_type)) {
2288     // If the input to the store does not fit with the load's result type,
2289     // it must be truncated. We can't delay until Ideal call since
2290     // a singleton Value is needed for split_thru_phi optimization.
2291     int con = value->get_int();
2292     return TypeInt::make((con << 16) >> 16);
2293   }
2294   return LoadNode::Value(phase);
2295 }
2296 
2297 //=============================================================================
2298 //----------------------------LoadKlassNode::make------------------------------
2299 // Polymorphic factory method:
2300 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2301   // sanity check the alias category against the created node type
2302   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2303   assert(adr_type != nullptr, "expecting TypeKlassPtr");
2304 #ifdef _LP64
2305   if (adr_type->is_ptr_to_narrowklass()) {
2306     assert(UseCompressedClassPointers, "no compressed klasses");
2307     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2308     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2309   }
2310 #endif
2311   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2312   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2313 }
2314 
2315 //------------------------------Value------------------------------------------
2316 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2317   return klass_value_common(phase);
2318 }
2319 
2320 // In most cases, LoadKlassNode does not have the control input set. If the control
2321 // input is set, it must not be removed (by LoadNode::Ideal()).
2322 bool LoadKlassNode::can_remove_control() const {
2323   return false;
2324 }
2325 
2326 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2327   // Either input is TOP ==> the result is TOP
2328   const Type *t1 = phase->type( in(MemNode::Memory) );
2329   if (t1 == Type::TOP)  return Type::TOP;
2330   Node *adr = in(MemNode::Address);
2331   const Type *t2 = phase->type( adr );
2332   if (t2 == Type::TOP)  return Type::TOP;
2333   const TypePtr *tp = t2->is_ptr();
2334   if (TypePtr::above_centerline(tp->ptr()) ||
2335       tp->ptr() == TypePtr::Null)  return Type::TOP;
2336 
2337   // Return a more precise klass, if possible
2338   const TypeInstPtr *tinst = tp->isa_instptr();
2339   if (tinst != nullptr) {
2340     ciInstanceKlass* ik = tinst->instance_klass();
2341     int offset = tinst->offset();
2342     if (ik == phase->C->env()->Class_klass()
2343         && (offset == java_lang_Class::klass_offset() ||
2344             offset == java_lang_Class::array_klass_offset())) {
2345       // We are loading a special hidden field from a Class mirror object,
2346       // the field which points to the VM's Klass metaobject.
2347       ciType* t = tinst->java_mirror_type();
2348       // java_mirror_type returns non-null for compile-time Class constants.
2349       if (t != nullptr) {
2350         // constant oop => constant klass
2351         if (offset == java_lang_Class::array_klass_offset()) {
2352           if (t->is_void()) {
2353             // We cannot create a void array.  Since void is a primitive type return null
2354             // klass.  Users of this result need to do a null check on the returned klass.
2355             return TypePtr::NULL_PTR;
2356           }
2357           return TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces);
2358         }
2359         if (!t->is_klass()) {
2360           // a primitive Class (e.g., int.class) has null for a klass field
2361           return TypePtr::NULL_PTR;
2362         }
2363         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2364         return TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces);
2365       }
2366       // non-constant mirror, so we can't tell what's going on
2367     }
2368     if (!tinst->is_loaded())
2369       return _type;             // Bail out if not loaded
2370     if (offset == oopDesc::klass_offset_in_bytes()) {
2371       return tinst->as_klass_type(true);
2372     }
2373   }
2374 
2375   // Check for loading klass from an array
2376   const TypeAryPtr *tary = tp->isa_aryptr();
2377   if (tary != nullptr &&
2378       tary->offset() == oopDesc::klass_offset_in_bytes()) {
2379     return tary->as_klass_type(true);
2380   }
2381 
2382   // Check for loading klass from an array klass
2383   const TypeKlassPtr *tkls = tp->isa_klassptr();
2384   if (tkls != nullptr && !StressReflectiveCode) {
2385     if (!tkls->is_loaded())
2386      return _type;             // Bail out if not loaded
2387     if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() &&
2388         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2389       // // Always returning precise element type is incorrect,
2390       // // e.g., element type could be object and array may contain strings
2391       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2392 
2393       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2394       // according to the element type's subclassing.
2395       return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact());
2396     }
2397     if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() &&
2398         tkls->offset() == in_bytes(Klass::super_offset())) {
2399       ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super();
2400       // The field is Klass::_super.  Return its (constant) value.
2401       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2402       return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR;
2403     }
2404   }
2405 
2406   // Bailout case
2407   return LoadNode::Value(phase);
2408 }
2409 
2410 //------------------------------Identity---------------------------------------
2411 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2412 // Also feed through the klass in Allocate(...klass...)._klass.
2413 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2414   return klass_identity_common(phase);
2415 }
2416 
2417 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2418   Node* x = LoadNode::Identity(phase);
2419   if (x != this)  return x;
2420 
2421   // Take apart the address into an oop and offset.
2422   // Return 'this' if we cannot.
2423   Node*    adr    = in(MemNode::Address);
2424   intptr_t offset = 0;
2425   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2426   if (base == nullptr)     return this;
2427   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2428   if (toop == nullptr)     return this;
2429 
2430   // Step over potential GC barrier for OopHandle resolve
2431   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2432   if (bs->is_gc_barrier_node(base)) {
2433     base = bs->step_over_gc_barrier(base);
2434   }
2435 
2436   // We can fetch the klass directly through an AllocateNode.
2437   // This works even if the klass is not constant (clone or newArray).
2438   if (offset == oopDesc::klass_offset_in_bytes()) {
2439     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2440     if (allocated_klass != nullptr) {
2441       return allocated_klass;
2442     }
2443   }
2444 
2445   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2446   // See inline_native_Class_query for occurrences of these patterns.
2447   // Java Example:  x.getClass().isAssignableFrom(y)
2448   //
2449   // This improves reflective code, often making the Class
2450   // mirror go completely dead.  (Current exception:  Class
2451   // mirrors may appear in debug info, but we could clean them out by
2452   // introducing a new debug info operator for Klass.java_mirror).
2453 
2454   if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass()
2455       && offset == java_lang_Class::klass_offset()) {
2456     if (base->is_Load()) {
2457       Node* base2 = base->in(MemNode::Address);
2458       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2459         Node* adr2 = base2->in(MemNode::Address);
2460         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2461         if (tkls != nullptr && !tkls->empty()
2462             && (tkls->isa_instklassptr() || tkls->isa_aryklassptr())
2463             && adr2->is_AddP()
2464            ) {
2465           int mirror_field = in_bytes(Klass::java_mirror_offset());
2466           if (tkls->offset() == mirror_field) {
2467             return adr2->in(AddPNode::Base);
2468           }
2469         }
2470       }
2471     }
2472   }
2473 
2474   return this;
2475 }
2476 
2477 
2478 //------------------------------Value------------------------------------------
2479 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2480   const Type *t = klass_value_common(phase);
2481   if (t == Type::TOP)
2482     return t;
2483 
2484   return t->make_narrowklass();
2485 }
2486 
2487 //------------------------------Identity---------------------------------------
2488 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2489 // Also feed through the klass in Allocate(...klass...)._klass.
2490 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2491   Node *x = klass_identity_common(phase);
2492 
2493   const Type *t = phase->type( x );
2494   if( t == Type::TOP ) return x;
2495   if( t->isa_narrowklass()) return x;
2496   assert (!t->isa_narrowoop(), "no narrow oop here");
2497 
2498   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2499 }
2500 
2501 //------------------------------Value-----------------------------------------
2502 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2503   // Either input is TOP ==> the result is TOP
2504   const Type *t1 = phase->type( in(MemNode::Memory) );
2505   if( t1 == Type::TOP ) return Type::TOP;
2506   Node *adr = in(MemNode::Address);
2507   const Type *t2 = phase->type( adr );
2508   if( t2 == Type::TOP ) return Type::TOP;
2509   const TypePtr *tp = t2->is_ptr();
2510   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2511   const TypeAryPtr *tap = tp->isa_aryptr();
2512   if( !tap ) return _type;
2513   return tap->size();
2514 }
2515 
2516 //-------------------------------Ideal---------------------------------------
2517 // Feed through the length in AllocateArray(...length...)._length.
2518 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2519   Node* p = MemNode::Ideal_common(phase, can_reshape);
2520   if (p)  return (p == NodeSentinel) ? nullptr : p;
2521 
2522   // Take apart the address into an oop and offset.
2523   // Return 'this' if we cannot.
2524   Node*    adr    = in(MemNode::Address);
2525   intptr_t offset = 0;
2526   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2527   if (base == nullptr)     return nullptr;
2528   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2529   if (tary == nullptr)     return nullptr;
2530 
2531   // We can fetch the length directly through an AllocateArrayNode.
2532   // This works even if the length is not constant (clone or newArray).
2533   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2534     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2535     if (alloc != nullptr) {
2536       Node* allocated_length = alloc->Ideal_length();
2537       Node* len = alloc->make_ideal_length(tary, phase);
2538       if (allocated_length != len) {
2539         // New CastII improves on this.
2540         return len;
2541       }
2542     }
2543   }
2544 
2545   return nullptr;
2546 }
2547 
2548 //------------------------------Identity---------------------------------------
2549 // Feed through the length in AllocateArray(...length...)._length.
2550 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2551   Node* x = LoadINode::Identity(phase);
2552   if (x != this)  return x;
2553 
2554   // Take apart the address into an oop and offset.
2555   // Return 'this' if we cannot.
2556   Node*    adr    = in(MemNode::Address);
2557   intptr_t offset = 0;
2558   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2559   if (base == nullptr)     return this;
2560   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2561   if (tary == nullptr)     return this;
2562 
2563   // We can fetch the length directly through an AllocateArrayNode.
2564   // This works even if the length is not constant (clone or newArray).
2565   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2566     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2567     if (alloc != nullptr) {
2568       Node* allocated_length = alloc->Ideal_length();
2569       // Do not allow make_ideal_length to allocate a CastII node.
2570       Node* len = alloc->make_ideal_length(tary, phase, false);
2571       if (allocated_length == len) {
2572         // Return allocated_length only if it would not be improved by a CastII.
2573         return allocated_length;
2574       }
2575     }
2576   }
2577 
2578   return this;
2579 
2580 }
2581 
2582 //=============================================================================
2583 //---------------------------StoreNode::make-----------------------------------
2584 // Polymorphic factory method:
2585 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) {
2586   assert((mo == unordered || mo == release), "unexpected");
2587   Compile* C = gvn.C;
2588   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2589          ctl != nullptr, "raw memory operations should have control edge");
2590 
2591   switch (bt) {
2592   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2593   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2594   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2595   case T_CHAR:
2596   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2597   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2598   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2599   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2600   case T_METADATA:
2601   case T_ADDRESS:
2602   case T_OBJECT:
2603 #ifdef _LP64
2604     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2605       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2606       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2607     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2608                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2609                 adr->bottom_type()->isa_rawptr())) {
2610       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2611       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2612     }
2613 #endif
2614     {
2615       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2616     }
2617   default:
2618     ShouldNotReachHere();
2619     return (StoreNode*)nullptr;
2620   }
2621 }
2622 
2623 //--------------------------bottom_type----------------------------------------
2624 const Type *StoreNode::bottom_type() const {
2625   return Type::MEMORY;
2626 }
2627 
2628 //------------------------------hash-------------------------------------------
2629 uint StoreNode::hash() const {
2630   // unroll addition of interesting fields
2631   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2632 
2633   // Since they are not commoned, do not hash them:
2634   return NO_HASH;
2635 }
2636 
2637 //------------------------------Ideal------------------------------------------
2638 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2639 // When a store immediately follows a relevant allocation/initialization,
2640 // try to capture it into the initialization, or hoist it above.
2641 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2642   Node* p = MemNode::Ideal_common(phase, can_reshape);
2643   if (p)  return (p == NodeSentinel) ? nullptr : p;
2644 
2645   Node* mem     = in(MemNode::Memory);
2646   Node* address = in(MemNode::Address);
2647   Node* value   = in(MemNode::ValueIn);
2648   // Back-to-back stores to same address?  Fold em up.  Generally
2649   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2650   // since they must follow each StoreP operation.  Redundant StoreCMs
2651   // are eliminated just before matching in final_graph_reshape.
2652   {
2653     Node* st = mem;
2654     // If Store 'st' has more than one use, we cannot fold 'st' away.
2655     // For example, 'st' might be the final state at a conditional
2656     // return.  Or, 'st' might be used by some node which is live at
2657     // the same time 'st' is live, which might be unschedulable.  So,
2658     // require exactly ONE user until such time as we clone 'mem' for
2659     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2660     // true).
2661     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2662       // Looking at a dead closed cycle of memory?
2663       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2664       assert(Opcode() == st->Opcode() ||
2665              st->Opcode() == Op_StoreVector ||
2666              Opcode() == Op_StoreVector ||
2667              st->Opcode() == Op_StoreVectorScatter ||
2668              Opcode() == Op_StoreVectorScatter ||
2669              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2670              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2671              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2672              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2673              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2674 
2675       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2676           st->as_Store()->memory_size() <= this->memory_size()) {
2677         Node* use = st->raw_out(0);
2678         if (phase->is_IterGVN()) {
2679           phase->is_IterGVN()->rehash_node_delayed(use);
2680         }
2681         // It's OK to do this in the parser, since DU info is always accurate,
2682         // and the parser always refers to nodes via SafePointNode maps.
2683         use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase);
2684         return this;
2685       }
2686       st = st->in(MemNode::Memory);
2687     }
2688   }
2689 
2690 
2691   // Capture an unaliased, unconditional, simple store into an initializer.
2692   // Or, if it is independent of the allocation, hoist it above the allocation.
2693   if (ReduceFieldZeroing && /*can_reshape &&*/
2694       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2695     InitializeNode* init = mem->in(0)->as_Initialize();
2696     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2697     if (offset > 0) {
2698       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2699       // If the InitializeNode captured me, it made a raw copy of me,
2700       // and I need to disappear.
2701       if (moved != nullptr) {
2702         // %%% hack to ensure that Ideal returns a new node:
2703         mem = MergeMemNode::make(mem);
2704         return mem;             // fold me away
2705       }
2706     }
2707   }
2708 
2709   // Fold reinterpret cast into memory operation:
2710   //    StoreX mem (MoveY2X v) => StoreY mem v
2711   if (value->is_Move()) {
2712     const Type* vt = value->in(1)->bottom_type();
2713     if (has_reinterpret_variant(vt)) {
2714       if (phase->C->post_loop_opts_phase()) {
2715         return convert_to_reinterpret_store(*phase, value->in(1), vt);
2716       } else {
2717         phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over
2718       }
2719     }
2720   }
2721 
2722   return nullptr;                  // No further progress
2723 }
2724 
2725 //------------------------------Value-----------------------------------------
2726 const Type* StoreNode::Value(PhaseGVN* phase) const {
2727   // Either input is TOP ==> the result is TOP
2728   const Type *t1 = phase->type( in(MemNode::Memory) );
2729   if( t1 == Type::TOP ) return Type::TOP;
2730   const Type *t2 = phase->type( in(MemNode::Address) );
2731   if( t2 == Type::TOP ) return Type::TOP;
2732   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2733   if( t3 == Type::TOP ) return Type::TOP;
2734   return Type::MEMORY;
2735 }
2736 
2737 //------------------------------Identity---------------------------------------
2738 // Remove redundant stores:
2739 //   Store(m, p, Load(m, p)) changes to m.
2740 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2741 Node* StoreNode::Identity(PhaseGVN* phase) {
2742   Node* mem = in(MemNode::Memory);
2743   Node* adr = in(MemNode::Address);
2744   Node* val = in(MemNode::ValueIn);
2745 
2746   Node* result = this;
2747 
2748   // Load then Store?  Then the Store is useless
2749   if (val->is_Load() &&
2750       val->in(MemNode::Address)->eqv_uncast(adr) &&
2751       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2752       val->as_Load()->store_Opcode() == Opcode()) {
2753     result = mem;
2754   }
2755 
2756   // Two stores in a row of the same value?
2757   if (result == this &&
2758       mem->is_Store() &&
2759       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2760       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2761       mem->Opcode() == Opcode()) {
2762     result = mem;
2763   }
2764 
2765   // Store of zero anywhere into a freshly-allocated object?
2766   // Then the store is useless.
2767   // (It must already have been captured by the InitializeNode.)
2768   if (result == this &&
2769       ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2770     // a newly allocated object is already all-zeroes everywhere
2771     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2772       result = mem;
2773     }
2774 
2775     if (result == this) {
2776       // the store may also apply to zero-bits in an earlier object
2777       Node* prev_mem = find_previous_store(phase);
2778       // Steps (a), (b):  Walk past independent stores to find an exact match.
2779       if (prev_mem != nullptr) {
2780         Node* prev_val = can_see_stored_value(prev_mem, phase);
2781         if (prev_val != nullptr && prev_val == val) {
2782           // prev_val and val might differ by a cast; it would be good
2783           // to keep the more informative of the two.
2784           result = mem;
2785         }
2786       }
2787     }
2788   }
2789 
2790   PhaseIterGVN* igvn = phase->is_IterGVN();
2791   if (result != this && igvn != nullptr) {
2792     MemBarNode* trailing = trailing_membar();
2793     if (trailing != nullptr) {
2794 #ifdef ASSERT
2795       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2796       assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects");
2797 #endif
2798       trailing->remove(igvn);
2799     }
2800   }
2801 
2802   return result;
2803 }
2804 
2805 //------------------------------match_edge-------------------------------------
2806 // Do we Match on this edge index or not?  Match only memory & value
2807 uint StoreNode::match_edge(uint idx) const {
2808   return idx == MemNode::Address || idx == MemNode::ValueIn;
2809 }
2810 
2811 //------------------------------cmp--------------------------------------------
2812 // Do not common stores up together.  They generally have to be split
2813 // back up anyways, so do not bother.
2814 bool StoreNode::cmp( const Node &n ) const {
2815   return (&n == this);          // Always fail except on self
2816 }
2817 
2818 //------------------------------Ideal_masked_input-----------------------------
2819 // Check for a useless mask before a partial-word store
2820 // (StoreB ... (AndI valIn conIa) )
2821 // If (conIa & mask == mask) this simplifies to
2822 // (StoreB ... (valIn) )
2823 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2824   Node *val = in(MemNode::ValueIn);
2825   if( val->Opcode() == Op_AndI ) {
2826     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2827     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2828       set_req_X(MemNode::ValueIn, val->in(1), phase);
2829       return this;
2830     }
2831   }
2832   return nullptr;
2833 }
2834 
2835 
2836 //------------------------------Ideal_sign_extended_input----------------------
2837 // Check for useless sign-extension before a partial-word store
2838 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2839 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2840 // (StoreB ... (valIn) )
2841 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2842   Node *val = in(MemNode::ValueIn);
2843   if( val->Opcode() == Op_RShiftI ) {
2844     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2845     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2846       Node *shl = val->in(1);
2847       if( shl->Opcode() == Op_LShiftI ) {
2848         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2849         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2850           set_req_X(MemNode::ValueIn, shl->in(1), phase);
2851           return this;
2852         }
2853       }
2854     }
2855   }
2856   return nullptr;
2857 }
2858 
2859 //------------------------------value_never_loaded-----------------------------------
2860 // Determine whether there are any possible loads of the value stored.
2861 // For simplicity, we actually check if there are any loads from the
2862 // address stored to, not just for loads of the value stored by this node.
2863 //
2864 bool StoreNode::value_never_loaded(PhaseValues* phase) const {
2865   Node *adr = in(Address);
2866   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2867   if (adr_oop == nullptr)
2868     return false;
2869   if (!adr_oop->is_known_instance_field())
2870     return false; // if not a distinct instance, there may be aliases of the address
2871   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2872     Node *use = adr->fast_out(i);
2873     if (use->is_Load() || use->is_LoadStore()) {
2874       return false;
2875     }
2876   }
2877   return true;
2878 }
2879 
2880 MemBarNode* StoreNode::trailing_membar() const {
2881   if (is_release()) {
2882     MemBarNode* trailing_mb = nullptr;
2883     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2884       Node* u = fast_out(i);
2885       if (u->is_MemBar()) {
2886         if (u->as_MemBar()->trailing_store()) {
2887           assert(u->Opcode() == Op_MemBarVolatile, "");
2888           assert(trailing_mb == nullptr, "only one");
2889           trailing_mb = u->as_MemBar();
2890 #ifdef ASSERT
2891           Node* leading = u->as_MemBar()->leading_membar();
2892           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2893           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2894           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2895 #endif
2896         } else {
2897           assert(u->as_MemBar()->standalone(), "");
2898         }
2899       }
2900     }
2901     return trailing_mb;
2902   }
2903   return nullptr;
2904 }
2905 
2906 
2907 //=============================================================================
2908 //------------------------------Ideal------------------------------------------
2909 // If the store is from an AND mask that leaves the low bits untouched, then
2910 // we can skip the AND operation.  If the store is from a sign-extension
2911 // (a left shift, then right shift) we can skip both.
2912 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2913   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2914   if( progress != nullptr ) return progress;
2915 
2916   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2917   if( progress != nullptr ) return progress;
2918 
2919   // Finally check the default case
2920   return StoreNode::Ideal(phase, can_reshape);
2921 }
2922 
2923 //=============================================================================
2924 //------------------------------Ideal------------------------------------------
2925 // If the store is from an AND mask that leaves the low bits untouched, then
2926 // we can skip the AND operation
2927 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2928   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2929   if( progress != nullptr ) return progress;
2930 
2931   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2932   if( progress != nullptr ) return progress;
2933 
2934   // Finally check the default case
2935   return StoreNode::Ideal(phase, can_reshape);
2936 }
2937 
2938 //=============================================================================
2939 //------------------------------Identity---------------------------------------
2940 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2941   // No need to card mark when storing a null ptr
2942   Node* my_store = in(MemNode::OopStore);
2943   if (my_store->is_Store()) {
2944     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2945     if( t1 == TypePtr::NULL_PTR ) {
2946       return in(MemNode::Memory);
2947     }
2948   }
2949   return this;
2950 }
2951 
2952 //=============================================================================
2953 //------------------------------Ideal---------------------------------------
2954 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2955   Node* progress = StoreNode::Ideal(phase, can_reshape);
2956   if (progress != nullptr) return progress;
2957 
2958   Node* my_store = in(MemNode::OopStore);
2959   if (my_store->is_MergeMem()) {
2960     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2961     set_req_X(MemNode::OopStore, mem, phase);
2962     return this;
2963   }
2964 
2965   return nullptr;
2966 }
2967 
2968 //------------------------------Value-----------------------------------------
2969 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2970   // Either input is TOP ==> the result is TOP (checked in StoreNode::Value).
2971   // If extra input is TOP ==> the result is TOP
2972   const Type* t = phase->type(in(MemNode::OopStore));
2973   if (t == Type::TOP) {
2974     return Type::TOP;
2975   }
2976   return StoreNode::Value(phase);
2977 }
2978 
2979 
2980 //=============================================================================
2981 //----------------------------------SCMemProjNode------------------------------
2982 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2983 {
2984   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
2985     return Type::TOP;
2986   }
2987   return bottom_type();
2988 }
2989 
2990 //=============================================================================
2991 //----------------------------------LoadStoreNode------------------------------
2992 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2993   : Node(required),
2994     _type(rt),
2995     _adr_type(at),
2996     _barrier_data(0)
2997 {
2998   init_req(MemNode::Control, c  );
2999   init_req(MemNode::Memory , mem);
3000   init_req(MemNode::Address, adr);
3001   init_req(MemNode::ValueIn, val);
3002   init_class_id(Class_LoadStore);
3003 }
3004 
3005 //------------------------------Value-----------------------------------------
3006 const Type* LoadStoreNode::Value(PhaseGVN* phase) const {
3007   // Either input is TOP ==> the result is TOP
3008   if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) {
3009     return Type::TOP;
3010   }
3011   const Type* t = phase->type(in(MemNode::Memory));
3012   if (t == Type::TOP) {
3013     return Type::TOP;
3014   }
3015   t = phase->type(in(MemNode::Address));
3016   if (t == Type::TOP) {
3017     return Type::TOP;
3018   }
3019   t = phase->type(in(MemNode::ValueIn));
3020   if (t == Type::TOP) {
3021     return Type::TOP;
3022   }
3023   return bottom_type();
3024 }
3025 
3026 uint LoadStoreNode::ideal_reg() const {
3027   return _type->ideal_reg();
3028 }
3029 
3030 bool LoadStoreNode::result_not_used() const {
3031   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
3032     Node *x = fast_out(i);
3033     if (x->Opcode() == Op_SCMemProj) continue;
3034     return false;
3035   }
3036   return true;
3037 }
3038 
3039 MemBarNode* LoadStoreNode::trailing_membar() const {
3040   MemBarNode* trailing = nullptr;
3041   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
3042     Node* u = fast_out(i);
3043     if (u->is_MemBar()) {
3044       if (u->as_MemBar()->trailing_load_store()) {
3045         assert(u->Opcode() == Op_MemBarAcquire, "");
3046         assert(trailing == nullptr, "only one");
3047         trailing = u->as_MemBar();
3048 #ifdef ASSERT
3049         Node* leading = trailing->leading_membar();
3050         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
3051         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
3052         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
3053 #endif
3054       } else {
3055         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
3056       }
3057     }
3058   }
3059 
3060   return trailing;
3061 }
3062 
3063 uint LoadStoreNode::size_of() const { return sizeof(*this); }
3064 
3065 //=============================================================================
3066 //----------------------------------LoadStoreConditionalNode--------------------
3067 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) {
3068   init_req(ExpectedIn, ex );
3069 }
3070 
3071 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const {
3072   // Either input is TOP ==> the result is TOP
3073   const Type* t = phase->type(in(ExpectedIn));
3074   if (t == Type::TOP) {
3075     return Type::TOP;
3076   }
3077   return LoadStoreNode::Value(phase);
3078 }
3079 
3080 //=============================================================================
3081 //-------------------------------adr_type--------------------------------------
3082 const TypePtr* ClearArrayNode::adr_type() const {
3083   Node *adr = in(3);
3084   if (adr == nullptr)  return nullptr; // node is dead
3085   return MemNode::calculate_adr_type(adr->bottom_type());
3086 }
3087 
3088 //------------------------------match_edge-------------------------------------
3089 // Do we Match on this edge index or not?  Do not match memory
3090 uint ClearArrayNode::match_edge(uint idx) const {
3091   return idx > 1;
3092 }
3093 
3094 //------------------------------Identity---------------------------------------
3095 // Clearing a zero length array does nothing
3096 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
3097   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
3098 }
3099 
3100 //------------------------------Idealize---------------------------------------
3101 // Clearing a short array is faster with stores
3102 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3103   // Already know this is a large node, do not try to ideal it
3104   if (_is_large) return nullptr;
3105 
3106   const int unit = BytesPerLong;
3107   const TypeX* t = phase->type(in(2))->isa_intptr_t();
3108   if (!t)  return nullptr;
3109   if (!t->is_con())  return nullptr;
3110   intptr_t raw_count = t->get_con();
3111   intptr_t size = raw_count;
3112   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
3113   // Clearing nothing uses the Identity call.
3114   // Negative clears are possible on dead ClearArrays
3115   // (see jck test stmt114.stmt11402.val).
3116   if (size <= 0 || size % unit != 0)  return nullptr;
3117   intptr_t count = size / unit;
3118   // Length too long; communicate this to matchers and assemblers.
3119   // Assemblers are responsible to produce fast hardware clears for it.
3120   if (size > InitArrayShortSize) {
3121     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
3122   } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) {
3123     return nullptr;
3124   }
3125   if (!IdealizeClearArrayNode) return nullptr;
3126   Node *mem = in(1);
3127   if( phase->type(mem)==Type::TOP ) return nullptr;
3128   Node *adr = in(3);
3129   const Type* at = phase->type(adr);
3130   if( at==Type::TOP ) return nullptr;
3131   const TypePtr* atp = at->isa_ptr();
3132   // adjust atp to be the correct array element address type
3133   if (atp == nullptr)  atp = TypePtr::BOTTOM;
3134   else              atp = atp->add_offset(Type::OffsetBot);
3135   // Get base for derived pointer purposes
3136   if( adr->Opcode() != Op_AddP ) Unimplemented();
3137   Node *base = adr->in(1);
3138 
3139   Node *zero = phase->makecon(TypeLong::ZERO);
3140   Node *off  = phase->MakeConX(BytesPerLong);
3141   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
3142   count--;
3143   while( count-- ) {
3144     mem = phase->transform(mem);
3145     adr = phase->transform(new AddPNode(base,adr,off));
3146     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
3147   }
3148   return mem;
3149 }
3150 
3151 //----------------------------step_through----------------------------------
3152 // Return allocation input memory edge if it is different instance
3153 // or itself if it is the one we are looking for.
3154 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) {
3155   Node* n = *np;
3156   assert(n->is_ClearArray(), "sanity");
3157   intptr_t offset;
3158   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
3159   // This method is called only before Allocate nodes are expanded
3160   // during macro nodes expansion. Before that ClearArray nodes are
3161   // only generated in PhaseMacroExpand::generate_arraycopy() (before
3162   // Allocate nodes are expanded) which follows allocations.
3163   assert(alloc != nullptr, "should have allocation");
3164   if (alloc->_idx == instance_id) {
3165     // Can not bypass initialization of the instance we are looking for.
3166     return false;
3167   }
3168   // Otherwise skip it.
3169   InitializeNode* init = alloc->initialization();
3170   if (init != nullptr)
3171     *np = init->in(TypeFunc::Memory);
3172   else
3173     *np = alloc->in(TypeFunc::Memory);
3174   return true;
3175 }
3176 
3177 //----------------------------clear_memory-------------------------------------
3178 // Generate code to initialize object storage to zero.
3179 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3180                                    intptr_t start_offset,
3181                                    Node* end_offset,
3182                                    PhaseGVN* phase) {
3183   intptr_t offset = start_offset;
3184 
3185   int unit = BytesPerLong;
3186   if ((offset % unit) != 0) {
3187     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
3188     adr = phase->transform(adr);
3189     const TypePtr* atp = TypeRawPtr::BOTTOM;
3190     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3191     mem = phase->transform(mem);
3192     offset += BytesPerInt;
3193   }
3194   assert((offset % unit) == 0, "");
3195 
3196   // Initialize the remaining stuff, if any, with a ClearArray.
3197   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
3198 }
3199 
3200 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3201                                    Node* start_offset,
3202                                    Node* end_offset,
3203                                    PhaseGVN* phase) {
3204   if (start_offset == end_offset) {
3205     // nothing to do
3206     return mem;
3207   }
3208 
3209   int unit = BytesPerLong;
3210   Node* zbase = start_offset;
3211   Node* zend  = end_offset;
3212 
3213   // Scale to the unit required by the CPU:
3214   if (!Matcher::init_array_count_is_in_bytes) {
3215     Node* shift = phase->intcon(exact_log2(unit));
3216     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3217     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3218   }
3219 
3220   // Bulk clear double-words
3221   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3222   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3223   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
3224   return phase->transform(mem);
3225 }
3226 
3227 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3228                                    intptr_t start_offset,
3229                                    intptr_t end_offset,
3230                                    PhaseGVN* phase) {
3231   if (start_offset == end_offset) {
3232     // nothing to do
3233     return mem;
3234   }
3235 
3236   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3237   intptr_t done_offset = end_offset;
3238   if ((done_offset % BytesPerLong) != 0) {
3239     done_offset -= BytesPerInt;
3240   }
3241   if (done_offset > start_offset) {
3242     mem = clear_memory(ctl, mem, dest,
3243                        start_offset, phase->MakeConX(done_offset), phase);
3244   }
3245   if (done_offset < end_offset) { // emit the final 32-bit store
3246     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3247     adr = phase->transform(adr);
3248     const TypePtr* atp = TypeRawPtr::BOTTOM;
3249     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3250     mem = phase->transform(mem);
3251     done_offset += BytesPerInt;
3252   }
3253   assert(done_offset == end_offset, "");
3254   return mem;
3255 }
3256 
3257 //=============================================================================
3258 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3259   : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)),
3260     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3261 #ifdef ASSERT
3262   , _pair_idx(0)
3263 #endif
3264 {
3265   init_class_id(Class_MemBar);
3266   Node* top = C->top();
3267   init_req(TypeFunc::I_O,top);
3268   init_req(TypeFunc::FramePtr,top);
3269   init_req(TypeFunc::ReturnAdr,top);
3270   if (precedent != nullptr)
3271     init_req(TypeFunc::Parms, precedent);
3272 }
3273 
3274 //------------------------------cmp--------------------------------------------
3275 uint MemBarNode::hash() const { return NO_HASH; }
3276 bool MemBarNode::cmp( const Node &n ) const {
3277   return (&n == this);          // Always fail except on self
3278 }
3279 
3280 //------------------------------make-------------------------------------------
3281 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3282   switch (opcode) {
3283   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3284   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3285   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3286   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3287   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3288   case Op_StoreStoreFence:   return new StoreStoreFenceNode(C, atp, pn);
3289   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3290   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3291   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3292   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3293   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3294   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3295   default: ShouldNotReachHere(); return nullptr;
3296   }
3297 }
3298 
3299 void MemBarNode::remove(PhaseIterGVN *igvn) {
3300   if (outcnt() != 2) {
3301     assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory");
3302     assert(outcnt() == 1, "Only control then");
3303   }
3304   if (trailing_store() || trailing_load_store()) {
3305     MemBarNode* leading = leading_membar();
3306     if (leading != nullptr) {
3307       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3308       leading->remove(igvn);
3309     }
3310   }
3311   if (proj_out_or_null(TypeFunc::Memory) != nullptr) {
3312     igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3313   }
3314   if (proj_out_or_null(TypeFunc::Control) != nullptr) {
3315     igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3316   }
3317 }
3318 
3319 //------------------------------Ideal------------------------------------------
3320 // Return a node which is more "ideal" than the current node.  Strip out
3321 // control copies
3322 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3323   if (remove_dead_region(phase, can_reshape)) return this;
3324   // Don't bother trying to transform a dead node
3325   if (in(0) && in(0)->is_top()) {
3326     return nullptr;
3327   }
3328 
3329   bool progress = false;
3330   // Eliminate volatile MemBars for scalar replaced objects.
3331   if (can_reshape && req() == (Precedent+1)) {
3332     bool eliminate = false;
3333     int opc = Opcode();
3334     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3335       // Volatile field loads and stores.
3336       Node* my_mem = in(MemBarNode::Precedent);
3337       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3338       if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3339         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3340         // replace this Precedent (decodeN) with the Load instead.
3341         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3342           Node* load_node = my_mem->in(1);
3343           set_req(MemBarNode::Precedent, load_node);
3344           phase->is_IterGVN()->_worklist.push(my_mem);
3345           my_mem = load_node;
3346         } else {
3347           assert(my_mem->unique_out() == this, "sanity");
3348           del_req(Precedent);
3349           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3350           my_mem = nullptr;
3351         }
3352         progress = true;
3353       }
3354       if (my_mem != nullptr && my_mem->is_Mem()) {
3355         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3356         // Check for scalar replaced object reference.
3357         if( t_oop != nullptr && t_oop->is_known_instance_field() &&
3358             t_oop->offset() != Type::OffsetBot &&
3359             t_oop->offset() != Type::OffsetTop) {
3360           eliminate = true;
3361         }
3362       }
3363     } else if (opc == Op_MemBarRelease) {
3364       // Final field stores.
3365       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3366       if ((alloc != nullptr) && alloc->is_Allocate() &&
3367           alloc->as_Allocate()->does_not_escape_thread()) {
3368         // The allocated object does not escape.
3369         eliminate = true;
3370       }
3371     }
3372     if (eliminate) {
3373       // Replace MemBar projections by its inputs.
3374       PhaseIterGVN* igvn = phase->is_IterGVN();
3375       remove(igvn);
3376       // Must return either the original node (now dead) or a new node
3377       // (Do not return a top here, since that would break the uniqueness of top.)
3378       return new ConINode(TypeInt::ZERO);
3379     }
3380   }
3381   return progress ? this : nullptr;
3382 }
3383 
3384 //------------------------------Value------------------------------------------
3385 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3386   if( !in(0) ) return Type::TOP;
3387   if( phase->type(in(0)) == Type::TOP )
3388     return Type::TOP;
3389   return TypeTuple::MEMBAR;
3390 }
3391 
3392 //------------------------------match------------------------------------------
3393 // Construct projections for memory.
3394 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3395   switch (proj->_con) {
3396   case TypeFunc::Control:
3397   case TypeFunc::Memory:
3398     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3399   }
3400   ShouldNotReachHere();
3401   return nullptr;
3402 }
3403 
3404 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3405   trailing->_kind = TrailingStore;
3406   leading->_kind = LeadingStore;
3407 #ifdef ASSERT
3408   trailing->_pair_idx = leading->_idx;
3409   leading->_pair_idx = leading->_idx;
3410 #endif
3411 }
3412 
3413 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3414   trailing->_kind = TrailingLoadStore;
3415   leading->_kind = LeadingLoadStore;
3416 #ifdef ASSERT
3417   trailing->_pair_idx = leading->_idx;
3418   leading->_pair_idx = leading->_idx;
3419 #endif
3420 }
3421 
3422 MemBarNode* MemBarNode::trailing_membar() const {
3423   ResourceMark rm;
3424   Node* trailing = (Node*)this;
3425   VectorSet seen;
3426   Node_Stack multis(0);
3427   do {
3428     Node* c = trailing;
3429     uint i = 0;
3430     do {
3431       trailing = nullptr;
3432       for (; i < c->outcnt(); i++) {
3433         Node* next = c->raw_out(i);
3434         if (next != c && next->is_CFG()) {
3435           if (c->is_MultiBranch()) {
3436             if (multis.node() == c) {
3437               multis.set_index(i+1);
3438             } else {
3439               multis.push(c, i+1);
3440             }
3441           }
3442           trailing = next;
3443           break;
3444         }
3445       }
3446       if (trailing != nullptr && !seen.test_set(trailing->_idx)) {
3447         break;
3448       }
3449       while (multis.size() > 0) {
3450         c = multis.node();
3451         i = multis.index();
3452         if (i < c->req()) {
3453           break;
3454         }
3455         multis.pop();
3456       }
3457     } while (multis.size() > 0);
3458   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3459 
3460   MemBarNode* mb = trailing->as_MemBar();
3461   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3462          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3463   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3464   return mb;
3465 }
3466 
3467 MemBarNode* MemBarNode::leading_membar() const {
3468   ResourceMark rm;
3469   VectorSet seen;
3470   Node_Stack regions(0);
3471   Node* leading = in(0);
3472   while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3473     while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) {
3474       leading = nullptr;
3475       while (regions.size() > 0 && leading == nullptr) {
3476         Node* r = regions.node();
3477         uint i = regions.index();
3478         if (i < r->req()) {
3479           leading = r->in(i);
3480           regions.set_index(i+1);
3481         } else {
3482           regions.pop();
3483         }
3484       }
3485       if (leading == nullptr) {
3486         assert(regions.size() == 0, "all paths should have been tried");
3487         return nullptr;
3488       }
3489     }
3490     if (leading->is_Region()) {
3491       regions.push(leading, 2);
3492       leading = leading->in(1);
3493     } else {
3494       leading = leading->in(0);
3495     }
3496   }
3497 #ifdef ASSERT
3498   Unique_Node_List wq;
3499   wq.push((Node*)this);
3500   uint found = 0;
3501   for (uint i = 0; i < wq.size(); i++) {
3502     Node* n = wq.at(i);
3503     if (n->is_Region()) {
3504       for (uint j = 1; j < n->req(); j++) {
3505         Node* in = n->in(j);
3506         if (in != nullptr && !in->is_top()) {
3507           wq.push(in);
3508         }
3509       }
3510     } else {
3511       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3512         assert(n == leading, "consistency check failed");
3513         found++;
3514       } else {
3515         Node* in = n->in(0);
3516         if (in != nullptr && !in->is_top()) {
3517           wq.push(in);
3518         }
3519       }
3520     }
3521   }
3522   assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed");
3523 #endif
3524   if (leading == nullptr) {
3525     return nullptr;
3526   }
3527   MemBarNode* mb = leading->as_MemBar();
3528   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3529          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3530   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3531   return mb;
3532 }
3533 
3534 
3535 //===========================InitializeNode====================================
3536 // SUMMARY:
3537 // This node acts as a memory barrier on raw memory, after some raw stores.
3538 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3539 // The Initialize can 'capture' suitably constrained stores as raw inits.
3540 // It can coalesce related raw stores into larger units (called 'tiles').
3541 // It can avoid zeroing new storage for memory units which have raw inits.
3542 // At macro-expansion, it is marked 'complete', and does not optimize further.
3543 //
3544 // EXAMPLE:
3545 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3546 //   ctl = incoming control; mem* = incoming memory
3547 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3548 // First allocate uninitialized memory and fill in the header:
3549 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3550 //   ctl := alloc.Control; mem* := alloc.Memory*
3551 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3552 // Then initialize to zero the non-header parts of the raw memory block:
3553 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3554 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3555 // After the initialize node executes, the object is ready for service:
3556 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3557 // Suppose its body is immediately initialized as {1,2}:
3558 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3559 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3560 //   mem.SLICE(#short[*]) := store2
3561 //
3562 // DETAILS:
3563 // An InitializeNode collects and isolates object initialization after
3564 // an AllocateNode and before the next possible safepoint.  As a
3565 // memory barrier (MemBarNode), it keeps critical stores from drifting
3566 // down past any safepoint or any publication of the allocation.
3567 // Before this barrier, a newly-allocated object may have uninitialized bits.
3568 // After this barrier, it may be treated as a real oop, and GC is allowed.
3569 //
3570 // The semantics of the InitializeNode include an implicit zeroing of
3571 // the new object from object header to the end of the object.
3572 // (The object header and end are determined by the AllocateNode.)
3573 //
3574 // Certain stores may be added as direct inputs to the InitializeNode.
3575 // These stores must update raw memory, and they must be to addresses
3576 // derived from the raw address produced by AllocateNode, and with
3577 // a constant offset.  They must be ordered by increasing offset.
3578 // The first one is at in(RawStores), the last at in(req()-1).
3579 // Unlike most memory operations, they are not linked in a chain,
3580 // but are displayed in parallel as users of the rawmem output of
3581 // the allocation.
3582 //
3583 // (See comments in InitializeNode::capture_store, which continue
3584 // the example given above.)
3585 //
3586 // When the associated Allocate is macro-expanded, the InitializeNode
3587 // may be rewritten to optimize collected stores.  A ClearArrayNode
3588 // may also be created at that point to represent any required zeroing.
3589 // The InitializeNode is then marked 'complete', prohibiting further
3590 // capturing of nearby memory operations.
3591 //
3592 // During macro-expansion, all captured initializations which store
3593 // constant values of 32 bits or smaller are coalesced (if advantageous)
3594 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3595 // initialized in fewer memory operations.  Memory words which are
3596 // covered by neither tiles nor non-constant stores are pre-zeroed
3597 // by explicit stores of zero.  (The code shape happens to do all
3598 // zeroing first, then all other stores, with both sequences occurring
3599 // in order of ascending offsets.)
3600 //
3601 // Alternatively, code may be inserted between an AllocateNode and its
3602 // InitializeNode, to perform arbitrary initialization of the new object.
3603 // E.g., the object copying intrinsics insert complex data transfers here.
3604 // The initialization must then be marked as 'complete' disable the
3605 // built-in zeroing semantics and the collection of initializing stores.
3606 //
3607 // While an InitializeNode is incomplete, reads from the memory state
3608 // produced by it are optimizable if they match the control edge and
3609 // new oop address associated with the allocation/initialization.
3610 // They return a stored value (if the offset matches) or else zero.
3611 // A write to the memory state, if it matches control and address,
3612 // and if it is to a constant offset, may be 'captured' by the
3613 // InitializeNode.  It is cloned as a raw memory operation and rewired
3614 // inside the initialization, to the raw oop produced by the allocation.
3615 // Operations on addresses which are provably distinct (e.g., to
3616 // other AllocateNodes) are allowed to bypass the initialization.
3617 //
3618 // The effect of all this is to consolidate object initialization
3619 // (both arrays and non-arrays, both piecewise and bulk) into a
3620 // single location, where it can be optimized as a unit.
3621 //
3622 // Only stores with an offset less than TrackedInitializationLimit words
3623 // will be considered for capture by an InitializeNode.  This puts a
3624 // reasonable limit on the complexity of optimized initializations.
3625 
3626 //---------------------------InitializeNode------------------------------------
3627 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3628   : MemBarNode(C, adr_type, rawoop),
3629     _is_complete(Incomplete), _does_not_escape(false)
3630 {
3631   init_class_id(Class_Initialize);
3632 
3633   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3634   assert(in(RawAddress) == rawoop, "proper init");
3635   // Note:  allocation() can be null, for secondary initialization barriers
3636 }
3637 
3638 // Since this node is not matched, it will be processed by the
3639 // register allocator.  Declare that there are no constraints
3640 // on the allocation of the RawAddress edge.
3641 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3642   // This edge should be set to top, by the set_complete.  But be conservative.
3643   if (idx == InitializeNode::RawAddress)
3644     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3645   return RegMask::Empty;
3646 }
3647 
3648 Node* InitializeNode::memory(uint alias_idx) {
3649   Node* mem = in(Memory);
3650   if (mem->is_MergeMem()) {
3651     return mem->as_MergeMem()->memory_at(alias_idx);
3652   } else {
3653     // incoming raw memory is not split
3654     return mem;
3655   }
3656 }
3657 
3658 bool InitializeNode::is_non_zero() {
3659   if (is_complete())  return false;
3660   remove_extra_zeroes();
3661   return (req() > RawStores);
3662 }
3663 
3664 void InitializeNode::set_complete(PhaseGVN* phase) {
3665   assert(!is_complete(), "caller responsibility");
3666   _is_complete = Complete;
3667 
3668   // After this node is complete, it contains a bunch of
3669   // raw-memory initializations.  There is no need for
3670   // it to have anything to do with non-raw memory effects.
3671   // Therefore, tell all non-raw users to re-optimize themselves,
3672   // after skipping the memory effects of this initialization.
3673   PhaseIterGVN* igvn = phase->is_IterGVN();
3674   if (igvn)  igvn->add_users_to_worklist(this);
3675 }
3676 
3677 // convenience function
3678 // return false if the init contains any stores already
3679 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3680   InitializeNode* init = initialization();
3681   if (init == nullptr || init->is_complete())  return false;
3682   init->remove_extra_zeroes();
3683   // for now, if this allocation has already collected any inits, bail:
3684   if (init->is_non_zero())  return false;
3685   init->set_complete(phase);
3686   return true;
3687 }
3688 
3689 void InitializeNode::remove_extra_zeroes() {
3690   if (req() == RawStores)  return;
3691   Node* zmem = zero_memory();
3692   uint fill = RawStores;
3693   for (uint i = fill; i < req(); i++) {
3694     Node* n = in(i);
3695     if (n->is_top() || n == zmem)  continue;  // skip
3696     if (fill < i)  set_req(fill, n);          // compact
3697     ++fill;
3698   }
3699   // delete any empty spaces created:
3700   while (fill < req()) {
3701     del_req(fill);
3702   }
3703 }
3704 
3705 // Helper for remembering which stores go with which offsets.
3706 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) {
3707   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3708   intptr_t offset = -1;
3709   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3710                                                phase, offset);
3711   if (base == nullptr)  return -1;  // something is dead,
3712   if (offset < 0)       return -1;  //        dead, dead
3713   return offset;
3714 }
3715 
3716 // Helper for proving that an initialization expression is
3717 // "simple enough" to be folded into an object initialization.
3718 // Attempts to prove that a store's initial value 'n' can be captured
3719 // within the initialization without creating a vicious cycle, such as:
3720 //     { Foo p = new Foo(); p.next = p; }
3721 // True for constants and parameters and small combinations thereof.
3722 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) {
3723   ResourceMark rm;
3724   Unique_Node_List worklist;
3725   worklist.push(value);
3726 
3727   uint complexity_limit = 20;
3728   for (uint j = 0; j < worklist.size(); j++) {
3729     if (j >= complexity_limit) {
3730       return false;  // Bail out if processed too many nodes
3731     }
3732 
3733     Node* n = worklist.at(j);
3734     if (n == nullptr)   continue;   // (can this really happen?)
3735     if (n->is_Proj())   n = n->in(0);
3736     if (n == this)      return false;  // found a cycle
3737     if (n->is_Con())    continue;
3738     if (n->is_Start())  continue;   // params, etc., are OK
3739     if (n->is_Root())   continue;   // even better
3740 
3741     // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation
3742     if (n->is_CFG() && phase->is_dominator(n, allocation())) {
3743       continue;
3744     }
3745 
3746     Node* ctl = n->in(0);
3747     if (ctl != nullptr && !ctl->is_top()) {
3748       if (ctl->is_Proj())  ctl = ctl->in(0);
3749       if (ctl == this)  return false;
3750 
3751       // If we already know that the enclosing memory op is pinned right after
3752       // the init, then any control flow that the store has picked up
3753       // must have preceded the init, or else be equal to the init.
3754       // Even after loop optimizations (which might change control edges)
3755       // a store is never pinned *before* the availability of its inputs.
3756       if (!MemNode::all_controls_dominate(n, this))
3757         return false;                  // failed to prove a good control
3758     }
3759 
3760     // Check data edges for possible dependencies on 'this'.
3761     for (uint i = 1; i < n->req(); i++) {
3762       Node* m = n->in(i);
3763       if (m == nullptr || m == n || m->is_top())  continue;
3764 
3765       // Only process data inputs once
3766       worklist.push(m);
3767     }
3768   }
3769 
3770   return true;
3771 }
3772 
3773 // Here are all the checks a Store must pass before it can be moved into
3774 // an initialization.  Returns zero if a check fails.
3775 // On success, returns the (constant) offset to which the store applies,
3776 // within the initialized memory.
3777 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) {
3778   const int FAIL = 0;
3779   if (st->req() != MemNode::ValueIn + 1)
3780     return FAIL;                // an inscrutable StoreNode (card mark?)
3781   Node* ctl = st->in(MemNode::Control);
3782   if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this))
3783     return FAIL;                // must be unconditional after the initialization
3784   Node* mem = st->in(MemNode::Memory);
3785   if (!(mem->is_Proj() && mem->in(0) == this))
3786     return FAIL;                // must not be preceded by other stores
3787   Node* adr = st->in(MemNode::Address);
3788   intptr_t offset;
3789   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3790   if (alloc == nullptr)
3791     return FAIL;                // inscrutable address
3792   if (alloc != allocation())
3793     return FAIL;                // wrong allocation!  (store needs to float up)
3794   int size_in_bytes = st->memory_size();
3795   if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
3796     return FAIL;                // mismatched access
3797   }
3798   Node* val = st->in(MemNode::ValueIn);
3799 
3800   if (!detect_init_independence(val, phase))
3801     return FAIL;                // stored value must be 'simple enough'
3802 
3803   // The Store can be captured only if nothing after the allocation
3804   // and before the Store is using the memory location that the store
3805   // overwrites.
3806   bool failed = false;
3807   // If is_complete_with_arraycopy() is true the shape of the graph is
3808   // well defined and is safe so no need for extra checks.
3809   if (!is_complete_with_arraycopy()) {
3810     // We are going to look at each use of the memory state following
3811     // the allocation to make sure nothing reads the memory that the
3812     // Store writes.
3813     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3814     int alias_idx = phase->C->get_alias_index(t_adr);
3815     ResourceMark rm;
3816     Unique_Node_List mems;
3817     mems.push(mem);
3818     Node* unique_merge = nullptr;
3819     for (uint next = 0; next < mems.size(); ++next) {
3820       Node *m  = mems.at(next);
3821       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3822         Node *n = m->fast_out(j);
3823         if (n->outcnt() == 0) {
3824           continue;
3825         }
3826         if (n == st) {
3827           continue;
3828         } else if (n->in(0) != nullptr && n->in(0) != ctl) {
3829           // If the control of this use is different from the control
3830           // of the Store which is right after the InitializeNode then
3831           // this node cannot be between the InitializeNode and the
3832           // Store.
3833           continue;
3834         } else if (n->is_MergeMem()) {
3835           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3836             // We can hit a MergeMemNode (that will likely go away
3837             // later) that is a direct use of the memory state
3838             // following the InitializeNode on the same slice as the
3839             // store node that we'd like to capture. We need to check
3840             // the uses of the MergeMemNode.
3841             mems.push(n);
3842           }
3843         } else if (n->is_Mem()) {
3844           Node* other_adr = n->in(MemNode::Address);
3845           if (other_adr == adr) {
3846             failed = true;
3847             break;
3848           } else {
3849             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3850             if (other_t_adr != nullptr) {
3851               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3852               if (other_alias_idx == alias_idx) {
3853                 // A load from the same memory slice as the store right
3854                 // after the InitializeNode. We check the control of the
3855                 // object/array that is loaded from. If it's the same as
3856                 // the store control then we cannot capture the store.
3857                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3858                 Node* base = other_adr;
3859                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3860                 base = base->in(AddPNode::Base);
3861                 if (base != nullptr) {
3862                   base = base->uncast();
3863                   if (base->is_Proj() && base->in(0) == alloc) {
3864                     failed = true;
3865                     break;
3866                   }
3867                 }
3868               }
3869             }
3870           }
3871         } else {
3872           failed = true;
3873           break;
3874         }
3875       }
3876     }
3877   }
3878   if (failed) {
3879     if (!can_reshape) {
3880       // We decided we couldn't capture the store during parsing. We
3881       // should try again during the next IGVN once the graph is
3882       // cleaner.
3883       phase->C->record_for_igvn(st);
3884     }
3885     return FAIL;
3886   }
3887 
3888   return offset;                // success
3889 }
3890 
3891 // Find the captured store in(i) which corresponds to the range
3892 // [start..start+size) in the initialized object.
3893 // If there is one, return its index i.  If there isn't, return the
3894 // negative of the index where it should be inserted.
3895 // Return 0 if the queried range overlaps an initialization boundary
3896 // or if dead code is encountered.
3897 // If size_in_bytes is zero, do not bother with overlap checks.
3898 int InitializeNode::captured_store_insertion_point(intptr_t start,
3899                                                    int size_in_bytes,
3900                                                    PhaseValues* phase) {
3901   const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
3902 
3903   if (is_complete())
3904     return FAIL;                // arraycopy got here first; punt
3905 
3906   assert(allocation() != nullptr, "must be present");
3907 
3908   // no negatives, no header fields:
3909   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3910 
3911   // after a certain size, we bail out on tracking all the stores:
3912   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3913   if (start >= ti_limit)  return FAIL;
3914 
3915   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3916     if (i >= limit)  return -(int)i; // not found; here is where to put it
3917 
3918     Node*    st     = in(i);
3919     intptr_t st_off = get_store_offset(st, phase);
3920     if (st_off < 0) {
3921       if (st != zero_memory()) {
3922         return FAIL;            // bail out if there is dead garbage
3923       }
3924     } else if (st_off > start) {
3925       // ...we are done, since stores are ordered
3926       if (st_off < start + size_in_bytes) {
3927         return FAIL;            // the next store overlaps
3928       }
3929       return -(int)i;           // not found; here is where to put it
3930     } else if (st_off < start) {
3931       assert(st->as_Store()->memory_size() <= MAX_STORE, "");
3932       if (size_in_bytes != 0 &&
3933           start < st_off + MAX_STORE &&
3934           start < st_off + st->as_Store()->memory_size()) {
3935         return FAIL;            // the previous store overlaps
3936       }
3937     } else {
3938       if (size_in_bytes != 0 &&
3939           st->as_Store()->memory_size() != size_in_bytes) {
3940         return FAIL;            // mismatched store size
3941       }
3942       return i;
3943     }
3944 
3945     ++i;
3946   }
3947 }
3948 
3949 // Look for a captured store which initializes at the offset 'start'
3950 // with the given size.  If there is no such store, and no other
3951 // initialization interferes, then return zero_memory (the memory
3952 // projection of the AllocateNode).
3953 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3954                                           PhaseValues* phase) {
3955   assert(stores_are_sane(phase), "");
3956   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3957   if (i == 0) {
3958     return nullptr;              // something is dead
3959   } else if (i < 0) {
3960     return zero_memory();       // just primordial zero bits here
3961   } else {
3962     Node* st = in(i);           // here is the store at this position
3963     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3964     return st;
3965   }
3966 }
3967 
3968 // Create, as a raw pointer, an address within my new object at 'offset'.
3969 Node* InitializeNode::make_raw_address(intptr_t offset,
3970                                        PhaseGVN* phase) {
3971   Node* addr = in(RawAddress);
3972   if (offset != 0) {
3973     Compile* C = phase->C;
3974     addr = phase->transform( new AddPNode(C->top(), addr,
3975                                                  phase->MakeConX(offset)) );
3976   }
3977   return addr;
3978 }
3979 
3980 // Clone the given store, converting it into a raw store
3981 // initializing a field or element of my new object.
3982 // Caller is responsible for retiring the original store,
3983 // with subsume_node or the like.
3984 //
3985 // From the example above InitializeNode::InitializeNode,
3986 // here are the old stores to be captured:
3987 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3988 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3989 //
3990 // Here is the changed code; note the extra edges on init:
3991 //   alloc = (Allocate ...)
3992 //   rawoop = alloc.RawAddress
3993 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3994 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3995 //   init = (Initialize alloc.Control alloc.Memory rawoop
3996 //                      rawstore1 rawstore2)
3997 //
3998 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3999                                     PhaseGVN* phase, bool can_reshape) {
4000   assert(stores_are_sane(phase), "");
4001 
4002   if (start < 0)  return nullptr;
4003   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
4004 
4005   Compile* C = phase->C;
4006   int size_in_bytes = st->memory_size();
4007   int i = captured_store_insertion_point(start, size_in_bytes, phase);
4008   if (i == 0)  return nullptr;  // bail out
4009   Node* prev_mem = nullptr;     // raw memory for the captured store
4010   if (i > 0) {
4011     prev_mem = in(i);           // there is a pre-existing store under this one
4012     set_req(i, C->top());       // temporarily disconnect it
4013     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
4014   } else {
4015     i = -i;                     // no pre-existing store
4016     prev_mem = zero_memory();   // a slice of the newly allocated object
4017     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
4018       set_req(--i, C->top());   // reuse this edge; it has been folded away
4019     else
4020       ins_req(i, C->top());     // build a new edge
4021   }
4022   Node* new_st = st->clone();
4023   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4024   new_st->set_req(MemNode::Control, in(Control));
4025   new_st->set_req(MemNode::Memory,  prev_mem);
4026   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
4027   bs->eliminate_gc_barrier_data(new_st);
4028   new_st = phase->transform(new_st);
4029 
4030   // At this point, new_st might have swallowed a pre-existing store
4031   // at the same offset, or perhaps new_st might have disappeared,
4032   // if it redundantly stored the same value (or zero to fresh memory).
4033 
4034   // In any case, wire it in:
4035   PhaseIterGVN* igvn = phase->is_IterGVN();
4036   if (igvn) {
4037     igvn->rehash_node_delayed(this);
4038   }
4039   set_req(i, new_st);
4040 
4041   // The caller may now kill the old guy.
4042   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
4043   assert(check_st == new_st || check_st == nullptr, "must be findable");
4044   assert(!is_complete(), "");
4045   return new_st;
4046 }
4047 
4048 static bool store_constant(jlong* tiles, int num_tiles,
4049                            intptr_t st_off, int st_size,
4050                            jlong con) {
4051   if ((st_off & (st_size-1)) != 0)
4052     return false;               // strange store offset (assume size==2**N)
4053   address addr = (address)tiles + st_off;
4054   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
4055   switch (st_size) {
4056   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
4057   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
4058   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
4059   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
4060   default: return false;        // strange store size (detect size!=2**N here)
4061   }
4062   return true;                  // return success to caller
4063 }
4064 
4065 // Coalesce subword constants into int constants and possibly
4066 // into long constants.  The goal, if the CPU permits,
4067 // is to initialize the object with a small number of 64-bit tiles.
4068 // Also, convert floating-point constants to bit patterns.
4069 // Non-constants are not relevant to this pass.
4070 //
4071 // In terms of the running example on InitializeNode::InitializeNode
4072 // and InitializeNode::capture_store, here is the transformation
4073 // of rawstore1 and rawstore2 into rawstore12:
4074 //   alloc = (Allocate ...)
4075 //   rawoop = alloc.RawAddress
4076 //   tile12 = 0x00010002
4077 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
4078 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
4079 //
4080 void
4081 InitializeNode::coalesce_subword_stores(intptr_t header_size,
4082                                         Node* size_in_bytes,
4083                                         PhaseGVN* phase) {
4084   Compile* C = phase->C;
4085 
4086   assert(stores_are_sane(phase), "");
4087   // Note:  After this pass, they are not completely sane,
4088   // since there may be some overlaps.
4089 
4090   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
4091 
4092   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
4093   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
4094   size_limit = MIN2(size_limit, ti_limit);
4095   size_limit = align_up(size_limit, BytesPerLong);
4096   int num_tiles = size_limit / BytesPerLong;
4097 
4098   // allocate space for the tile map:
4099   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
4100   jlong  tiles_buf[small_len];
4101   Node*  nodes_buf[small_len];
4102   jlong  inits_buf[small_len];
4103   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
4104                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
4105   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
4106                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
4107   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
4108                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
4109   // tiles: exact bitwise model of all primitive constants
4110   // nodes: last constant-storing node subsumed into the tiles model
4111   // inits: which bytes (in each tile) are touched by any initializations
4112 
4113   //// Pass A: Fill in the tile model with any relevant stores.
4114 
4115   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
4116   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
4117   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
4118   Node* zmem = zero_memory(); // initially zero memory state
4119   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4120     Node* st = in(i);
4121     intptr_t st_off = get_store_offset(st, phase);
4122 
4123     // Figure out the store's offset and constant value:
4124     if (st_off < header_size)             continue; //skip (ignore header)
4125     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
4126     int st_size = st->as_Store()->memory_size();
4127     if (st_off + st_size > size_limit)    break;
4128 
4129     // Record which bytes are touched, whether by constant or not.
4130     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
4131       continue;                 // skip (strange store size)
4132 
4133     const Type* val = phase->type(st->in(MemNode::ValueIn));
4134     if (!val->singleton())                continue; //skip (non-con store)
4135     BasicType type = val->basic_type();
4136 
4137     jlong con = 0;
4138     switch (type) {
4139     case T_INT:    con = val->is_int()->get_con();  break;
4140     case T_LONG:   con = val->is_long()->get_con(); break;
4141     case T_FLOAT:  con = jint_cast(val->getf());    break;
4142     case T_DOUBLE: con = jlong_cast(val->getd());   break;
4143     default:                              continue; //skip (odd store type)
4144     }
4145 
4146     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
4147         st->Opcode() == Op_StoreL) {
4148       continue;                 // This StoreL is already optimal.
4149     }
4150 
4151     // Store down the constant.
4152     store_constant(tiles, num_tiles, st_off, st_size, con);
4153 
4154     intptr_t j = st_off >> LogBytesPerLong;
4155 
4156     if (type == T_INT && st_size == BytesPerInt
4157         && (st_off & BytesPerInt) == BytesPerInt) {
4158       jlong lcon = tiles[j];
4159       if (!Matcher::isSimpleConstant64(lcon) &&
4160           st->Opcode() == Op_StoreI) {
4161         // This StoreI is already optimal by itself.
4162         jint* intcon = (jint*) &tiles[j];
4163         intcon[1] = 0;  // undo the store_constant()
4164 
4165         // If the previous store is also optimal by itself, back up and
4166         // undo the action of the previous loop iteration... if we can.
4167         // But if we can't, just let the previous half take care of itself.
4168         st = nodes[j];
4169         st_off -= BytesPerInt;
4170         con = intcon[0];
4171         if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) {
4172           assert(st_off >= header_size, "still ignoring header");
4173           assert(get_store_offset(st, phase) == st_off, "must be");
4174           assert(in(i-1) == zmem, "must be");
4175           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
4176           assert(con == tcon->is_int()->get_con(), "must be");
4177           // Undo the effects of the previous loop trip, which swallowed st:
4178           intcon[0] = 0;        // undo store_constant()
4179           set_req(i-1, st);     // undo set_req(i, zmem)
4180           nodes[j] = nullptr;   // undo nodes[j] = st
4181           --old_subword;        // undo ++old_subword
4182         }
4183         continue;               // This StoreI is already optimal.
4184       }
4185     }
4186 
4187     // This store is not needed.
4188     set_req(i, zmem);
4189     nodes[j] = st;              // record for the moment
4190     if (st_size < BytesPerLong) // something has changed
4191           ++old_subword;        // includes int/float, but who's counting...
4192     else  ++old_long;
4193   }
4194 
4195   if ((old_subword + old_long) == 0)
4196     return;                     // nothing more to do
4197 
4198   //// Pass B: Convert any non-zero tiles into optimal constant stores.
4199   // Be sure to insert them before overlapping non-constant stores.
4200   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
4201   for (int j = 0; j < num_tiles; j++) {
4202     jlong con  = tiles[j];
4203     jlong init = inits[j];
4204     if (con == 0)  continue;
4205     jint con0,  con1;           // split the constant, address-wise
4206     jint init0, init1;          // split the init map, address-wise
4207     { union { jlong con; jint intcon[2]; } u;
4208       u.con = con;
4209       con0  = u.intcon[0];
4210       con1  = u.intcon[1];
4211       u.con = init;
4212       init0 = u.intcon[0];
4213       init1 = u.intcon[1];
4214     }
4215 
4216     Node* old = nodes[j];
4217     assert(old != nullptr, "need the prior store");
4218     intptr_t offset = (j * BytesPerLong);
4219 
4220     bool split = !Matcher::isSimpleConstant64(con);
4221 
4222     if (offset < header_size) {
4223       assert(offset + BytesPerInt >= header_size, "second int counts");
4224       assert(*(jint*)&tiles[j] == 0, "junk in header");
4225       split = true;             // only the second word counts
4226       // Example:  int a[] = { 42 ... }
4227     } else if (con0 == 0 && init0 == -1) {
4228       split = true;             // first word is covered by full inits
4229       // Example:  int a[] = { ... foo(), 42 ... }
4230     } else if (con1 == 0 && init1 == -1) {
4231       split = true;             // second word is covered by full inits
4232       // Example:  int a[] = { ... 42, foo() ... }
4233     }
4234 
4235     // Here's a case where init0 is neither 0 nor -1:
4236     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4237     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4238     // In this case the tile is not split; it is (jlong)42.
4239     // The big tile is stored down, and then the foo() value is inserted.
4240     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4241 
4242     Node* ctl = old->in(MemNode::Control);
4243     Node* adr = make_raw_address(offset, phase);
4244     const TypePtr* atp = TypeRawPtr::BOTTOM;
4245 
4246     // One or two coalesced stores to plop down.
4247     Node*    st[2];
4248     intptr_t off[2];
4249     int  nst = 0;
4250     if (!split) {
4251       ++new_long;
4252       off[nst] = offset;
4253       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4254                                   phase->longcon(con), T_LONG, MemNode::unordered);
4255     } else {
4256       // Omit either if it is a zero.
4257       if (con0 != 0) {
4258         ++new_int;
4259         off[nst]  = offset;
4260         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4261                                     phase->intcon(con0), T_INT, MemNode::unordered);
4262       }
4263       if (con1 != 0) {
4264         ++new_int;
4265         offset += BytesPerInt;
4266         adr = make_raw_address(offset, phase);
4267         off[nst]  = offset;
4268         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4269                                     phase->intcon(con1), T_INT, MemNode::unordered);
4270       }
4271     }
4272 
4273     // Insert second store first, then the first before the second.
4274     // Insert each one just before any overlapping non-constant stores.
4275     while (nst > 0) {
4276       Node* st1 = st[--nst];
4277       C->copy_node_notes_to(st1, old);
4278       st1 = phase->transform(st1);
4279       offset = off[nst];
4280       assert(offset >= header_size, "do not smash header");
4281       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4282       guarantee(ins_idx != 0, "must re-insert constant store");
4283       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4284       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4285         set_req(--ins_idx, st1);
4286       else
4287         ins_req(ins_idx, st1);
4288     }
4289   }
4290 
4291   if (PrintCompilation && WizardMode)
4292     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4293                   old_subword, old_long, new_int, new_long);
4294   if (C->log() != nullptr)
4295     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4296                    old_subword, old_long, new_int, new_long);
4297 
4298   // Clean up any remaining occurrences of zmem:
4299   remove_extra_zeroes();
4300 }
4301 
4302 // Explore forward from in(start) to find the first fully initialized
4303 // word, and return its offset.  Skip groups of subword stores which
4304 // together initialize full words.  If in(start) is itself part of a
4305 // fully initialized word, return the offset of in(start).  If there
4306 // are no following full-word stores, or if something is fishy, return
4307 // a negative value.
4308 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4309   int       int_map = 0;
4310   intptr_t  int_map_off = 0;
4311   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4312 
4313   for (uint i = start, limit = req(); i < limit; i++) {
4314     Node* st = in(i);
4315 
4316     intptr_t st_off = get_store_offset(st, phase);
4317     if (st_off < 0)  break;  // return conservative answer
4318 
4319     int st_size = st->as_Store()->memory_size();
4320     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4321       return st_off;            // we found a complete word init
4322     }
4323 
4324     // update the map:
4325 
4326     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4327     if (this_int_off != int_map_off) {
4328       // reset the map:
4329       int_map = 0;
4330       int_map_off = this_int_off;
4331     }
4332 
4333     int subword_off = st_off - this_int_off;
4334     int_map |= right_n_bits(st_size) << subword_off;
4335     if ((int_map & FULL_MAP) == FULL_MAP) {
4336       return this_int_off;      // we found a complete word init
4337     }
4338 
4339     // Did this store hit or cross the word boundary?
4340     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4341     if (next_int_off == this_int_off + BytesPerInt) {
4342       // We passed the current int, without fully initializing it.
4343       int_map_off = next_int_off;
4344       int_map >>= BytesPerInt;
4345     } else if (next_int_off > this_int_off + BytesPerInt) {
4346       // We passed the current and next int.
4347       return this_int_off + BytesPerInt;
4348     }
4349   }
4350 
4351   return -1;
4352 }
4353 
4354 
4355 // Called when the associated AllocateNode is expanded into CFG.
4356 // At this point, we may perform additional optimizations.
4357 // Linearize the stores by ascending offset, to make memory
4358 // activity as coherent as possible.
4359 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4360                                       intptr_t header_size,
4361                                       Node* size_in_bytes,
4362                                       PhaseIterGVN* phase) {
4363   assert(!is_complete(), "not already complete");
4364   assert(stores_are_sane(phase), "");
4365   assert(allocation() != nullptr, "must be present");
4366 
4367   remove_extra_zeroes();
4368 
4369   if (ReduceFieldZeroing || ReduceBulkZeroing)
4370     // reduce instruction count for common initialization patterns
4371     coalesce_subword_stores(header_size, size_in_bytes, phase);
4372 
4373   Node* zmem = zero_memory();   // initially zero memory state
4374   Node* inits = zmem;           // accumulating a linearized chain of inits
4375   #ifdef ASSERT
4376   intptr_t first_offset = allocation()->minimum_header_size();
4377   intptr_t last_init_off = first_offset;  // previous init offset
4378   intptr_t last_init_end = first_offset;  // previous init offset+size
4379   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4380   #endif
4381   intptr_t zeroes_done = header_size;
4382 
4383   bool do_zeroing = true;       // we might give up if inits are very sparse
4384   int  big_init_gaps = 0;       // how many large gaps have we seen?
4385 
4386   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4387   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4388 
4389   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4390     Node* st = in(i);
4391     intptr_t st_off = get_store_offset(st, phase);
4392     if (st_off < 0)
4393       break;                    // unknown junk in the inits
4394     if (st->in(MemNode::Memory) != zmem)
4395       break;                    // complicated store chains somehow in list
4396 
4397     int st_size = st->as_Store()->memory_size();
4398     intptr_t next_init_off = st_off + st_size;
4399 
4400     if (do_zeroing && zeroes_done < next_init_off) {
4401       // See if this store needs a zero before it or under it.
4402       intptr_t zeroes_needed = st_off;
4403 
4404       if (st_size < BytesPerInt) {
4405         // Look for subword stores which only partially initialize words.
4406         // If we find some, we must lay down some word-level zeroes first,
4407         // underneath the subword stores.
4408         //
4409         // Examples:
4410         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4411         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4412         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4413         //
4414         // Note:  coalesce_subword_stores may have already done this,
4415         // if it was prompted by constant non-zero subword initializers.
4416         // But this case can still arise with non-constant stores.
4417 
4418         intptr_t next_full_store = find_next_fullword_store(i, phase);
4419 
4420         // In the examples above:
4421         //   in(i)          p   q   r   s     x   y     z
4422         //   st_off        12  13  14  15    12  13    14
4423         //   st_size        1   1   1   1     1   1     1
4424         //   next_full_s.  12  16  16  16    16  16    16
4425         //   z's_done      12  16  16  16    12  16    12
4426         //   z's_needed    12  16  16  16    16  16    16
4427         //   zsize          0   0   0   0     4   0     4
4428         if (next_full_store < 0) {
4429           // Conservative tack:  Zero to end of current word.
4430           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4431         } else {
4432           // Zero to beginning of next fully initialized word.
4433           // Or, don't zero at all, if we are already in that word.
4434           assert(next_full_store >= zeroes_needed, "must go forward");
4435           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4436           zeroes_needed = next_full_store;
4437         }
4438       }
4439 
4440       if (zeroes_needed > zeroes_done) {
4441         intptr_t zsize = zeroes_needed - zeroes_done;
4442         // Do some incremental zeroing on rawmem, in parallel with inits.
4443         zeroes_done = align_down(zeroes_done, BytesPerInt);
4444         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4445                                               zeroes_done, zeroes_needed,
4446                                               phase);
4447         zeroes_done = zeroes_needed;
4448         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4449           do_zeroing = false;   // leave the hole, next time
4450       }
4451     }
4452 
4453     // Collect the store and move on:
4454     phase->replace_input_of(st, MemNode::Memory, inits);
4455     inits = st;                 // put it on the linearized chain
4456     set_req(i, zmem);           // unhook from previous position
4457 
4458     if (zeroes_done == st_off)
4459       zeroes_done = next_init_off;
4460 
4461     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4462 
4463     #ifdef ASSERT
4464     // Various order invariants.  Weaker than stores_are_sane because
4465     // a large constant tile can be filled in by smaller non-constant stores.
4466     assert(st_off >= last_init_off, "inits do not reverse");
4467     last_init_off = st_off;
4468     const Type* val = nullptr;
4469     if (st_size >= BytesPerInt &&
4470         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4471         (int)val->basic_type() < (int)T_OBJECT) {
4472       assert(st_off >= last_tile_end, "tiles do not overlap");
4473       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4474       last_tile_end = MAX2(last_tile_end, next_init_off);
4475     } else {
4476       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4477       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4478       assert(st_off      >= last_init_end, "inits do not overlap");
4479       last_init_end = next_init_off;  // it's a non-tile
4480     }
4481     #endif //ASSERT
4482   }
4483 
4484   remove_extra_zeroes();        // clear out all the zmems left over
4485   add_req(inits);
4486 
4487   if (!(UseTLAB && ZeroTLAB)) {
4488     // If anything remains to be zeroed, zero it all now.
4489     zeroes_done = align_down(zeroes_done, BytesPerInt);
4490     // if it is the last unused 4 bytes of an instance, forget about it
4491     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4492     if (zeroes_done + BytesPerLong >= size_limit) {
4493       AllocateNode* alloc = allocation();
4494       assert(alloc != nullptr, "must be present");
4495       if (alloc != nullptr && alloc->Opcode() == Op_Allocate) {
4496         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4497         ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass();
4498         if (zeroes_done == k->layout_helper())
4499           zeroes_done = size_limit;
4500       }
4501     }
4502     if (zeroes_done < size_limit) {
4503       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4504                                             zeroes_done, size_in_bytes, phase);
4505     }
4506   }
4507 
4508   set_complete(phase);
4509   return rawmem;
4510 }
4511 
4512 
4513 #ifdef ASSERT
4514 bool InitializeNode::stores_are_sane(PhaseValues* phase) {
4515   if (is_complete())
4516     return true;                // stores could be anything at this point
4517   assert(allocation() != nullptr, "must be present");
4518   intptr_t last_off = allocation()->minimum_header_size();
4519   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4520     Node* st = in(i);
4521     intptr_t st_off = get_store_offset(st, phase);
4522     if (st_off < 0)  continue;  // ignore dead garbage
4523     if (last_off > st_off) {
4524       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4525       this->dump(2);
4526       assert(false, "ascending store offsets");
4527       return false;
4528     }
4529     last_off = st_off + st->as_Store()->memory_size();
4530   }
4531   return true;
4532 }
4533 #endif //ASSERT
4534 
4535 
4536 
4537 
4538 //============================MergeMemNode=====================================
4539 //
4540 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4541 // contributing store or call operations.  Each contributor provides the memory
4542 // state for a particular "alias type" (see Compile::alias_type).  For example,
4543 // if a MergeMem has an input X for alias category #6, then any memory reference
4544 // to alias category #6 may use X as its memory state input, as an exact equivalent
4545 // to using the MergeMem as a whole.
4546 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4547 //
4548 // (Here, the <N> notation gives the index of the relevant adr_type.)
4549 //
4550 // In one special case (and more cases in the future), alias categories overlap.
4551 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4552 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4553 // it is exactly equivalent to that state W:
4554 //   MergeMem(<Bot>: W) <==> W
4555 //
4556 // Usually, the merge has more than one input.  In that case, where inputs
4557 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4558 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4559 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4560 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4561 //
4562 // A merge can take a "wide" memory state as one of its narrow inputs.
4563 // This simply means that the merge observes out only the relevant parts of
4564 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4565 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4566 //
4567 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4568 // and that memory slices "leak through":
4569 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4570 //
4571 // But, in such a cascade, repeated memory slices can "block the leak":
4572 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4573 //
4574 // In the last example, Y is not part of the combined memory state of the
4575 // outermost MergeMem.  The system must, of course, prevent unschedulable
4576 // memory states from arising, so you can be sure that the state Y is somehow
4577 // a precursor to state Y'.
4578 //
4579 //
4580 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4581 // of each MergeMemNode array are exactly the numerical alias indexes, including
4582 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4583 // Compile::alias_type (and kin) produce and manage these indexes.
4584 //
4585 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4586 // (Note that this provides quick access to the top node inside MergeMem methods,
4587 // without the need to reach out via TLS to Compile::current.)
4588 //
4589 // As a consequence of what was just described, a MergeMem that represents a full
4590 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4591 // containing all alias categories.
4592 //
4593 // MergeMem nodes never (?) have control inputs, so in(0) is null.
4594 //
4595 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4596 // a memory state for the alias type <N>, or else the top node, meaning that
4597 // there is no particular input for that alias type.  Note that the length of
4598 // a MergeMem is variable, and may be extended at any time to accommodate new
4599 // memory states at larger alias indexes.  When merges grow, they are of course
4600 // filled with "top" in the unused in() positions.
4601 //
4602 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4603 // (Top was chosen because it works smoothly with passes like GCM.)
4604 //
4605 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4606 // the type of random VM bits like TLS references.)  Since it is always the
4607 // first non-Bot memory slice, some low-level loops use it to initialize an
4608 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4609 //
4610 //
4611 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4612 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4613 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4614 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4615 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4616 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4617 //
4618 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4619 // really that different from the other memory inputs.  An abbreviation called
4620 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4621 //
4622 //
4623 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4624 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4625 // that "emerges though" the base memory will be marked as excluding the alias types
4626 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4627 //
4628 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4629 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4630 //
4631 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4632 // (It is currently unimplemented.)  As you can see, the resulting merge is
4633 // actually a disjoint union of memory states, rather than an overlay.
4634 //
4635 
4636 //------------------------------MergeMemNode-----------------------------------
4637 Node* MergeMemNode::make_empty_memory() {
4638   Node* empty_memory = (Node*) Compile::current()->top();
4639   assert(empty_memory->is_top(), "correct sentinel identity");
4640   return empty_memory;
4641 }
4642 
4643 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4644   init_class_id(Class_MergeMem);
4645   // all inputs are nullified in Node::Node(int)
4646   // set_input(0, nullptr);  // no control input
4647 
4648   // Initialize the edges uniformly to top, for starters.
4649   Node* empty_mem = make_empty_memory();
4650   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4651     init_req(i,empty_mem);
4652   }
4653   assert(empty_memory() == empty_mem, "");
4654 
4655   if( new_base != nullptr && new_base->is_MergeMem() ) {
4656     MergeMemNode* mdef = new_base->as_MergeMem();
4657     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4658     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4659       mms.set_memory(mms.memory2());
4660     }
4661     assert(base_memory() == mdef->base_memory(), "");
4662   } else {
4663     set_base_memory(new_base);
4664   }
4665 }
4666 
4667 // Make a new, untransformed MergeMem with the same base as 'mem'.
4668 // If mem is itself a MergeMem, populate the result with the same edges.
4669 MergeMemNode* MergeMemNode::make(Node* mem) {
4670   return new MergeMemNode(mem);
4671 }
4672 
4673 //------------------------------cmp--------------------------------------------
4674 uint MergeMemNode::hash() const { return NO_HASH; }
4675 bool MergeMemNode::cmp( const Node &n ) const {
4676   return (&n == this);          // Always fail except on self
4677 }
4678 
4679 //------------------------------Identity---------------------------------------
4680 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4681   // Identity if this merge point does not record any interesting memory
4682   // disambiguations.
4683   Node* base_mem = base_memory();
4684   Node* empty_mem = empty_memory();
4685   if (base_mem != empty_mem) {  // Memory path is not dead?
4686     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4687       Node* mem = in(i);
4688       if (mem != empty_mem && mem != base_mem) {
4689         return this;            // Many memory splits; no change
4690       }
4691     }
4692   }
4693   return base_mem;              // No memory splits; ID on the one true input
4694 }
4695 
4696 //------------------------------Ideal------------------------------------------
4697 // This method is invoked recursively on chains of MergeMem nodes
4698 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4699   // Remove chain'd MergeMems
4700   //
4701   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4702   // relative to the "in(Bot)".  Since we are patching both at the same time,
4703   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4704   // but rewrite each "in(i)" relative to the new "in(Bot)".
4705   Node *progress = nullptr;
4706 
4707 
4708   Node* old_base = base_memory();
4709   Node* empty_mem = empty_memory();
4710   if (old_base == empty_mem)
4711     return nullptr; // Dead memory path.
4712 
4713   MergeMemNode* old_mbase;
4714   if (old_base != nullptr && old_base->is_MergeMem())
4715     old_mbase = old_base->as_MergeMem();
4716   else
4717     old_mbase = nullptr;
4718   Node* new_base = old_base;
4719 
4720   // simplify stacked MergeMems in base memory
4721   if (old_mbase)  new_base = old_mbase->base_memory();
4722 
4723   // the base memory might contribute new slices beyond my req()
4724   if (old_mbase)  grow_to_match(old_mbase);
4725 
4726   // Note:  We do not call verify_sparse on entry, because inputs
4727   // can normalize to the base_memory via subsume_node or similar
4728   // mechanisms.  This method repairs that damage.
4729 
4730   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4731 
4732   // Look at each slice.
4733   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4734     Node* old_in = in(i);
4735     // calculate the old memory value
4736     Node* old_mem = old_in;
4737     if (old_mem == empty_mem)  old_mem = old_base;
4738     assert(old_mem == memory_at(i), "");
4739 
4740     // maybe update (reslice) the old memory value
4741 
4742     // simplify stacked MergeMems
4743     Node* new_mem = old_mem;
4744     MergeMemNode* old_mmem;
4745     if (old_mem != nullptr && old_mem->is_MergeMem())
4746       old_mmem = old_mem->as_MergeMem();
4747     else
4748       old_mmem = nullptr;
4749     if (old_mmem == this) {
4750       // This can happen if loops break up and safepoints disappear.
4751       // A merge of BotPtr (default) with a RawPtr memory derived from a
4752       // safepoint can be rewritten to a merge of the same BotPtr with
4753       // the BotPtr phi coming into the loop.  If that phi disappears
4754       // also, we can end up with a self-loop of the mergemem.
4755       // In general, if loops degenerate and memory effects disappear,
4756       // a mergemem can be left looking at itself.  This simply means
4757       // that the mergemem's default should be used, since there is
4758       // no longer any apparent effect on this slice.
4759       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4760       //       from start.  Update the input to TOP.
4761       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4762     }
4763     else if (old_mmem != nullptr) {
4764       new_mem = old_mmem->memory_at(i);
4765     }
4766     // else preceding memory was not a MergeMem
4767 
4768     // maybe store down a new value
4769     Node* new_in = new_mem;
4770     if (new_in == new_base)  new_in = empty_mem;
4771 
4772     if (new_in != old_in) {
4773       // Warning:  Do not combine this "if" with the previous "if"
4774       // A memory slice might have be be rewritten even if it is semantically
4775       // unchanged, if the base_memory value has changed.
4776       set_req_X(i, new_in, phase);
4777       progress = this;          // Report progress
4778     }
4779   }
4780 
4781   if (new_base != old_base) {
4782     set_req_X(Compile::AliasIdxBot, new_base, phase);
4783     // Don't use set_base_memory(new_base), because we need to update du.
4784     assert(base_memory() == new_base, "");
4785     progress = this;
4786   }
4787 
4788   if( base_memory() == this ) {
4789     // a self cycle indicates this memory path is dead
4790     set_req(Compile::AliasIdxBot, empty_mem);
4791   }
4792 
4793   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4794   // Recursion must occur after the self cycle check above
4795   if( base_memory()->is_MergeMem() ) {
4796     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4797     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4798     if( m != nullptr &&
4799         (m->is_top() ||
4800          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4801       // propagate rollup of dead cycle to self
4802       set_req(Compile::AliasIdxBot, empty_mem);
4803     }
4804   }
4805 
4806   if( base_memory() == empty_mem ) {
4807     progress = this;
4808     // Cut inputs during Parse phase only.
4809     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4810     if( !can_reshape ) {
4811       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4812         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4813       }
4814     }
4815   }
4816 
4817   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4818     // Check if PhiNode::Ideal's "Split phis through memory merges"
4819     // transform should be attempted. Look for this->phi->this cycle.
4820     uint merge_width = req();
4821     if (merge_width > Compile::AliasIdxRaw) {
4822       PhiNode* phi = base_memory()->as_Phi();
4823       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4824         if (phi->in(i) == this) {
4825           phase->is_IterGVN()->_worklist.push(phi);
4826           break;
4827         }
4828       }
4829     }
4830   }
4831 
4832   assert(progress || verify_sparse(), "please, no dups of base");
4833   return progress;
4834 }
4835 
4836 //-------------------------set_base_memory-------------------------------------
4837 void MergeMemNode::set_base_memory(Node *new_base) {
4838   Node* empty_mem = empty_memory();
4839   set_req(Compile::AliasIdxBot, new_base);
4840   assert(memory_at(req()) == new_base, "must set default memory");
4841   // Clear out other occurrences of new_base:
4842   if (new_base != empty_mem) {
4843     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4844       if (in(i) == new_base)  set_req(i, empty_mem);
4845     }
4846   }
4847 }
4848 
4849 //------------------------------out_RegMask------------------------------------
4850 const RegMask &MergeMemNode::out_RegMask() const {
4851   return RegMask::Empty;
4852 }
4853 
4854 //------------------------------dump_spec--------------------------------------
4855 #ifndef PRODUCT
4856 void MergeMemNode::dump_spec(outputStream *st) const {
4857   st->print(" {");
4858   Node* base_mem = base_memory();
4859   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4860     Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem;
4861     if (mem == base_mem) { st->print(" -"); continue; }
4862     st->print( " N%d:", mem->_idx );
4863     Compile::current()->get_adr_type(i)->dump_on(st);
4864   }
4865   st->print(" }");
4866 }
4867 #endif // !PRODUCT
4868 
4869 
4870 #ifdef ASSERT
4871 static bool might_be_same(Node* a, Node* b) {
4872   if (a == b)  return true;
4873   if (!(a->is_Phi() || b->is_Phi()))  return false;
4874   // phis shift around during optimization
4875   return true;  // pretty stupid...
4876 }
4877 
4878 // verify a narrow slice (either incoming or outgoing)
4879 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4880   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4881   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4882   if (Node::in_dump())               return;  // muzzle asserts when printing
4883   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4884   assert(n != nullptr, "");
4885   // Elide intervening MergeMem's
4886   while (n->is_MergeMem()) {
4887     n = n->as_MergeMem()->memory_at(alias_idx);
4888   }
4889   Compile* C = Compile::current();
4890   const TypePtr* n_adr_type = n->adr_type();
4891   if (n == m->empty_memory()) {
4892     // Implicit copy of base_memory()
4893   } else if (n_adr_type != TypePtr::BOTTOM) {
4894     assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type");
4895     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4896   } else {
4897     // A few places like make_runtime_call "know" that VM calls are narrow,
4898     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4899     bool expected_wide_mem = false;
4900     if (n == m->base_memory()) {
4901       expected_wide_mem = true;
4902     } else if (alias_idx == Compile::AliasIdxRaw ||
4903                n == m->memory_at(Compile::AliasIdxRaw)) {
4904       expected_wide_mem = true;
4905     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4906       // memory can "leak through" calls on channels that
4907       // are write-once.  Allow this also.
4908       expected_wide_mem = true;
4909     }
4910     assert(expected_wide_mem, "expected narrow slice replacement");
4911   }
4912 }
4913 #else // !ASSERT
4914 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4915 #endif
4916 
4917 
4918 //-----------------------------memory_at---------------------------------------
4919 Node* MergeMemNode::memory_at(uint alias_idx) const {
4920   assert(alias_idx >= Compile::AliasIdxRaw ||
4921          alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing(),
4922          "must avoid base_memory and AliasIdxTop");
4923 
4924   // Otherwise, it is a narrow slice.
4925   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4926   if (is_empty_memory(n)) {
4927     // the array is sparse; empty slots are the "top" node
4928     n = base_memory();
4929     assert(Node::in_dump()
4930            || n == nullptr || n->bottom_type() == Type::TOP
4931            || n->adr_type() == nullptr // address is TOP
4932            || n->adr_type() == TypePtr::BOTTOM
4933            || n->adr_type() == TypeRawPtr::BOTTOM
4934            || !Compile::current()->do_aliasing(),
4935            "must be a wide memory");
4936     // do_aliasing == false if we are organizing the memory states manually.
4937     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4938   } else {
4939     // make sure the stored slice is sane
4940     #ifdef ASSERT
4941     if (VMError::is_error_reported() || Node::in_dump()) {
4942     } else if (might_be_same(n, base_memory())) {
4943       // Give it a pass:  It is a mostly harmless repetition of the base.
4944       // This can arise normally from node subsumption during optimization.
4945     } else {
4946       verify_memory_slice(this, alias_idx, n);
4947     }
4948     #endif
4949   }
4950   return n;
4951 }
4952 
4953 //---------------------------set_memory_at-------------------------------------
4954 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4955   verify_memory_slice(this, alias_idx, n);
4956   Node* empty_mem = empty_memory();
4957   if (n == base_memory())  n = empty_mem;  // collapse default
4958   uint need_req = alias_idx+1;
4959   if (req() < need_req) {
4960     if (n == empty_mem)  return;  // already the default, so do not grow me
4961     // grow the sparse array
4962     do {
4963       add_req(empty_mem);
4964     } while (req() < need_req);
4965   }
4966   set_req( alias_idx, n );
4967 }
4968 
4969 
4970 
4971 //--------------------------iteration_setup------------------------------------
4972 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4973   if (other != nullptr) {
4974     grow_to_match(other);
4975     // invariant:  the finite support of mm2 is within mm->req()
4976     #ifdef ASSERT
4977     for (uint i = req(); i < other->req(); i++) {
4978       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4979     }
4980     #endif
4981   }
4982   // Replace spurious copies of base_memory by top.
4983   Node* base_mem = base_memory();
4984   if (base_mem != nullptr && !base_mem->is_top()) {
4985     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4986       if (in(i) == base_mem)
4987         set_req(i, empty_memory());
4988     }
4989   }
4990 }
4991 
4992 //---------------------------grow_to_match-------------------------------------
4993 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4994   Node* empty_mem = empty_memory();
4995   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4996   // look for the finite support of the other memory
4997   for (uint i = other->req(); --i >= req(); ) {
4998     if (other->in(i) != empty_mem) {
4999       uint new_len = i+1;
5000       while (req() < new_len)  add_req(empty_mem);
5001       break;
5002     }
5003   }
5004 }
5005 
5006 //---------------------------verify_sparse-------------------------------------
5007 #ifndef PRODUCT
5008 bool MergeMemNode::verify_sparse() const {
5009   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
5010   Node* base_mem = base_memory();
5011   // The following can happen in degenerate cases, since empty==top.
5012   if (is_empty_memory(base_mem))  return true;
5013   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5014     assert(in(i) != nullptr, "sane slice");
5015     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
5016   }
5017   return true;
5018 }
5019 
5020 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
5021   Node* n;
5022   n = mm->in(idx);
5023   if (mem == n)  return true;  // might be empty_memory()
5024   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
5025   if (mem == n)  return true;
5026   return false;
5027 }
5028 #endif // !PRODUCT