1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/klass.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/threadCritical.hpp"
  76 #include "runtime/threadWXSetters.inline.hpp"
  77 #include "runtime/vframe.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vframe_hp.hpp"
  80 #include "utilities/copy.hpp"
  81 #include "utilities/preserveException.hpp"
  82 
  83 
  84 // For debugging purposes:
  85 //  To force FullGCALot inside a runtime function, add the following two lines
  86 //
  87 //  Universe::release_fullgc_alot_dummy();
  88 //  MarkSweep::invoke(0, "Debugging");
  89 //
  90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  91 
  92 
  93 
  94 
  95 // Compiled code entry points
  96 address OptoRuntime::_new_instance_Java                           = nullptr;
  97 address OptoRuntime::_new_array_Java                              = nullptr;
  98 address OptoRuntime::_new_array_nozero_Java                       = nullptr;
  99 address OptoRuntime::_multianewarray2_Java                        = nullptr;
 100 address OptoRuntime::_multianewarray3_Java                        = nullptr;
 101 address OptoRuntime::_multianewarray4_Java                        = nullptr;
 102 address OptoRuntime::_multianewarray5_Java                        = nullptr;
 103 address OptoRuntime::_multianewarrayN_Java                        = nullptr;
 104 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 105 address OptoRuntime::_complete_monitor_locking_Java               = nullptr;
 106 address OptoRuntime::_monitor_notify_Java                         = nullptr;
 107 address OptoRuntime::_monitor_notifyAll_Java                      = nullptr;
 108 address OptoRuntime::_rethrow_Java                                = nullptr;
 109 
 110 address OptoRuntime::_slow_arraycopy_Java                         = nullptr;
 111 address OptoRuntime::_register_finalizer_Java                     = nullptr;
 112 #if INCLUDE_JVMTI
 113 address OptoRuntime::_notify_jvmti_vthread_start                  = nullptr;
 114 address OptoRuntime::_notify_jvmti_vthread_end                    = nullptr;
 115 address OptoRuntime::_notify_jvmti_vthread_mount                  = nullptr;
 116 address OptoRuntime::_notify_jvmti_vthread_unmount                = nullptr;
 117 #endif
 118 
 119 ExceptionBlob* OptoRuntime::_exception_blob;
 120 
 121 // This should be called in an assertion at the start of OptoRuntime routines
 122 // which are entered from compiled code (all of them)
 123 #ifdef ASSERT
 124 static bool check_compiled_frame(JavaThread* thread) {
 125   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 126   RegisterMap map(thread,
 127                   RegisterMap::UpdateMap::skip,
 128                   RegisterMap::ProcessFrames::include,
 129                   RegisterMap::WalkContinuation::skip);
 130   frame caller = thread->last_frame().sender(&map);
 131   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 132   return true;
 133 }
 134 #endif // ASSERT
 135 
 136 
 137 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 138   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 139   if (var == nullptr) { return false; }
 140 
 141 bool OptoRuntime::generate(ciEnv* env) {
 142 
 143   generate_exception_blob();
 144 
 145   // Note: tls: Means fetching the return oop out of the thread-local storage
 146   //
 147   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,retpc
 148   // -------------------------------------------------------------------------------------------------------------------------------
 149   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true, false);
 150   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true, false);
 151   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true, false);
 152   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true, false);
 153   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true, false);
 154   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true, false);
 155   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true, false);
 156   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true, false);
 157 #if INCLUDE_JVMTI
 158   gen(env, _notify_jvmti_vthread_start     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_start, 0, true, false);
 159   gen(env, _notify_jvmti_vthread_end       , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_end,   0, true, false);
 160   gen(env, _notify_jvmti_vthread_mount     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_mount, 0, true, false);
 161   gen(env, _notify_jvmti_vthread_unmount   , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_unmount, 0, true, false);
 162 #endif
 163   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false);
 164   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false);
 165   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false);
 166   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , true );
 167 
 168   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false);
 169   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false);
 170 
 171   return true;
 172 }
 173 
 174 #undef gen
 175 
 176 
 177 // Helper method to do generation of RunTimeStub's
 178 address OptoRuntime::generate_stub(ciEnv* env,
 179                                    TypeFunc_generator gen, address C_function,
 180                                    const char *name, int is_fancy_jump,
 181                                    bool pass_tls,
 182                                    bool return_pc) {
 183 
 184   // Matching the default directive, we currently have no method to match.
 185   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 186   ResourceMark rm;
 187   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 188   DirectivesStack::release(directive);
 189   return  C.stub_entry_point();
 190 }
 191 
 192 const char* OptoRuntime::stub_name(address entry) {
 193 #ifndef PRODUCT
 194   CodeBlob* cb = CodeCache::find_blob(entry);
 195   RuntimeStub* rs =(RuntimeStub *)cb;
 196   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 197   return rs->name();
 198 #else
 199   // Fast implementation for product mode (maybe it should be inlined too)
 200   return "runtime stub";
 201 #endif
 202 }
 203 
 204 
 205 //=============================================================================
 206 // Opto compiler runtime routines
 207 //=============================================================================
 208 
 209 
 210 //=============================allocation======================================
 211 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 212 // and try allocation again.
 213 
 214 // object allocation
 215 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 216   JRT_BLOCK;
 217 #ifndef PRODUCT
 218   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 219 #endif
 220   assert(check_compiled_frame(current), "incorrect caller");
 221 
 222   // These checks are cheap to make and support reflective allocation.
 223   int lh = klass->layout_helper();
 224   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 225     Handle holder(current, klass->klass_holder()); // keep the klass alive
 226     klass->check_valid_for_instantiation(false, THREAD);
 227     if (!HAS_PENDING_EXCEPTION) {
 228       InstanceKlass::cast(klass)->initialize(THREAD);
 229     }
 230   }
 231 
 232   if (!HAS_PENDING_EXCEPTION) {
 233     // Scavenge and allocate an instance.
 234     Handle holder(current, klass->klass_holder()); // keep the klass alive
 235     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 236     current->set_vm_result(result);
 237 
 238     // Pass oops back through thread local storage.  Our apparent type to Java
 239     // is that we return an oop, but we can block on exit from this routine and
 240     // a GC can trash the oop in C's return register.  The generated stub will
 241     // fetch the oop from TLS after any possible GC.
 242   }
 243 
 244   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 245   JRT_BLOCK_END;
 246 
 247   // inform GC that we won't do card marks for initializing writes.
 248   SharedRuntime::on_slowpath_allocation_exit(current);
 249 JRT_END
 250 
 251 
 252 // array allocation
 253 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 254   JRT_BLOCK;
 255 #ifndef PRODUCT
 256   SharedRuntime::_new_array_ctr++;            // new array requires GC
 257 #endif
 258   assert(check_compiled_frame(current), "incorrect caller");
 259 
 260   // Scavenge and allocate an instance.
 261   oop result;
 262 
 263   if (array_type->is_typeArray_klass()) {
 264     // The oopFactory likes to work with the element type.
 265     // (We could bypass the oopFactory, since it doesn't add much value.)
 266     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 267     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 268   } else {
 269     // Although the oopFactory likes to work with the elem_type,
 270     // the compiler prefers the array_type, since it must already have
 271     // that latter value in hand for the fast path.
 272     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 273     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 274     result = oopFactory::new_objArray(elem_type, len, THREAD);
 275   }
 276 
 277   // Pass oops back through thread local storage.  Our apparent type to Java
 278   // is that we return an oop, but we can block on exit from this routine and
 279   // a GC can trash the oop in C's return register.  The generated stub will
 280   // fetch the oop from TLS after any possible GC.
 281   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 282   current->set_vm_result(result);
 283   JRT_BLOCK_END;
 284 
 285   // inform GC that we won't do card marks for initializing writes.
 286   SharedRuntime::on_slowpath_allocation_exit(current);
 287 JRT_END
 288 
 289 // array allocation without zeroing
 290 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 291   JRT_BLOCK;
 292 #ifndef PRODUCT
 293   SharedRuntime::_new_array_ctr++;            // new array requires GC
 294 #endif
 295   assert(check_compiled_frame(current), "incorrect caller");
 296 
 297   // Scavenge and allocate an instance.
 298   oop result;
 299 
 300   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 301   // The oopFactory likes to work with the element type.
 302   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 303   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 304 
 305   // Pass oops back through thread local storage.  Our apparent type to Java
 306   // is that we return an oop, but we can block on exit from this routine and
 307   // a GC can trash the oop in C's return register.  The generated stub will
 308   // fetch the oop from TLS after any possible GC.
 309   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 310   current->set_vm_result(result);
 311   JRT_BLOCK_END;
 312 
 313 
 314   // inform GC that we won't do card marks for initializing writes.
 315   SharedRuntime::on_slowpath_allocation_exit(current);
 316 
 317   oop result = current->vm_result();
 318   if ((len > 0) && (result != nullptr) &&
 319       is_deoptimized_caller_frame(current)) {
 320     // Zero array here if the caller is deoptimized.
 321     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 322     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 323     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 324     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 325     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 326     if (!is_aligned(hs_bytes, BytesPerLong)) {
 327       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 328       hs_bytes += BytesPerInt;
 329     }
 330 
 331     // Optimized zeroing.
 332     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 333     const size_t aligned_hs = hs_bytes / BytesPerLong;
 334     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 335   }
 336 
 337 JRT_END
 338 
 339 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 340 
 341 // multianewarray for 2 dimensions
 342 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 343 #ifndef PRODUCT
 344   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 345 #endif
 346   assert(check_compiled_frame(current), "incorrect caller");
 347   assert(elem_type->is_klass(), "not a class");
 348   jint dims[2];
 349   dims[0] = len1;
 350   dims[1] = len2;
 351   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 352   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 353   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 354   current->set_vm_result(obj);
 355 JRT_END
 356 
 357 // multianewarray for 3 dimensions
 358 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 359 #ifndef PRODUCT
 360   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 361 #endif
 362   assert(check_compiled_frame(current), "incorrect caller");
 363   assert(elem_type->is_klass(), "not a class");
 364   jint dims[3];
 365   dims[0] = len1;
 366   dims[1] = len2;
 367   dims[2] = len3;
 368   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 369   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 370   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 371   current->set_vm_result(obj);
 372 JRT_END
 373 
 374 // multianewarray for 4 dimensions
 375 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 376 #ifndef PRODUCT
 377   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 378 #endif
 379   assert(check_compiled_frame(current), "incorrect caller");
 380   assert(elem_type->is_klass(), "not a class");
 381   jint dims[4];
 382   dims[0] = len1;
 383   dims[1] = len2;
 384   dims[2] = len3;
 385   dims[3] = len4;
 386   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 387   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 388   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 389   current->set_vm_result(obj);
 390 JRT_END
 391 
 392 // multianewarray for 5 dimensions
 393 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 394 #ifndef PRODUCT
 395   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 396 #endif
 397   assert(check_compiled_frame(current), "incorrect caller");
 398   assert(elem_type->is_klass(), "not a class");
 399   jint dims[5];
 400   dims[0] = len1;
 401   dims[1] = len2;
 402   dims[2] = len3;
 403   dims[3] = len4;
 404   dims[4] = len5;
 405   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 406   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 407   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 408   current->set_vm_result(obj);
 409 JRT_END
 410 
 411 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 412   assert(check_compiled_frame(current), "incorrect caller");
 413   assert(elem_type->is_klass(), "not a class");
 414   assert(oop(dims)->is_typeArray(), "not an array");
 415 
 416   ResourceMark rm;
 417   jint len = dims->length();
 418   assert(len > 0, "Dimensions array should contain data");
 419   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 420   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 421                                        c_dims, len);
 422 
 423   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 424   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 425   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 426   current->set_vm_result(obj);
 427 JRT_END
 428 
 429 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 430 
 431   // Very few notify/notifyAll operations find any threads on the waitset, so
 432   // the dominant fast-path is to simply return.
 433   // Relatedly, it's critical that notify/notifyAll be fast in order to
 434   // reduce lock hold times.
 435   if (!SafepointSynchronize::is_synchronizing()) {
 436     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 437       return;
 438     }
 439   }
 440 
 441   // This is the case the fast-path above isn't provisioned to handle.
 442   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 443   // (The fast-path is just a degenerate variant of the slow-path).
 444   // Perform the dreaded state transition and pass control into the slow-path.
 445   JRT_BLOCK;
 446   Handle h_obj(current, obj);
 447   ObjectSynchronizer::notify(h_obj, CHECK);
 448   JRT_BLOCK_END;
 449 JRT_END
 450 
 451 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 452 
 453   if (!SafepointSynchronize::is_synchronizing() ) {
 454     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 455       return;
 456     }
 457   }
 458 
 459   // This is the case the fast-path above isn't provisioned to handle.
 460   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 461   // (The fast-path is just a degenerate variant of the slow-path).
 462   // Perform the dreaded state transition and pass control into the slow-path.
 463   JRT_BLOCK;
 464   Handle h_obj(current, obj);
 465   ObjectSynchronizer::notifyall(h_obj, CHECK);
 466   JRT_BLOCK_END;
 467 JRT_END
 468 
 469 const TypeFunc *OptoRuntime::new_instance_Type() {
 470   // create input type (domain)
 471   const Type **fields = TypeTuple::fields(1);
 472   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 473   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 474 
 475   // create result type (range)
 476   fields = TypeTuple::fields(1);
 477   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 478 
 479   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 480 
 481   return TypeFunc::make(domain, range);
 482 }
 483 
 484 #if INCLUDE_JVMTI
 485 const TypeFunc *OptoRuntime::notify_jvmti_vthread_Type() {
 486   // create input type (domain)
 487   const Type **fields = TypeTuple::fields(2);
 488   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 489   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 490   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 491 
 492   // no result type needed
 493   fields = TypeTuple::fields(1);
 494   fields[TypeFunc::Parms+0] = nullptr; // void
 495   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 496 
 497   return TypeFunc::make(domain,range);
 498 }
 499 #endif
 500 
 501 const TypeFunc *OptoRuntime::athrow_Type() {
 502   // create input type (domain)
 503   const Type **fields = TypeTuple::fields(1);
 504   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 505   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 506 
 507   // create result type (range)
 508   fields = TypeTuple::fields(0);
 509 
 510   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 511 
 512   return TypeFunc::make(domain, range);
 513 }
 514 
 515 
 516 const TypeFunc *OptoRuntime::new_array_Type() {
 517   // create input type (domain)
 518   const Type **fields = TypeTuple::fields(2);
 519   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 520   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 521   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 522 
 523   // create result type (range)
 524   fields = TypeTuple::fields(1);
 525   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 526 
 527   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 528 
 529   return TypeFunc::make(domain, range);
 530 }
 531 
 532 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 533   // create input type (domain)
 534   const int nargs = ndim + 1;
 535   const Type **fields = TypeTuple::fields(nargs);
 536   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 537   for( int i = 1; i < nargs; i++ )
 538     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 539   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 540 
 541   // create result type (range)
 542   fields = TypeTuple::fields(1);
 543   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 544   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 545 
 546   return TypeFunc::make(domain, range);
 547 }
 548 
 549 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 550   return multianewarray_Type(2);
 551 }
 552 
 553 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 554   return multianewarray_Type(3);
 555 }
 556 
 557 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 558   return multianewarray_Type(4);
 559 }
 560 
 561 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 562   return multianewarray_Type(5);
 563 }
 564 
 565 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 566   // create input type (domain)
 567   const Type **fields = TypeTuple::fields(2);
 568   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 569   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 570   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 571 
 572   // create result type (range)
 573   fields = TypeTuple::fields(1);
 574   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 575   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 576 
 577   return TypeFunc::make(domain, range);
 578 }
 579 
 580 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 581   // create input type (domain)
 582   const Type **fields = TypeTuple::fields(1);
 583   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 584   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 585 
 586   // create result type (range)
 587   fields = TypeTuple::fields(0);
 588   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 589 
 590   return TypeFunc::make(domain, range);
 591 }
 592 
 593 //-----------------------------------------------------------------------------
 594 // Monitor Handling
 595 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 596   // create input type (domain)
 597   const Type **fields = TypeTuple::fields(2);
 598   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 599   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 600   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 601 
 602   // create result type (range)
 603   fields = TypeTuple::fields(0);
 604 
 605   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 606 
 607   return TypeFunc::make(domain,range);
 608 }
 609 
 610 
 611 //-----------------------------------------------------------------------------
 612 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 613   // create input type (domain)
 614   const Type **fields = TypeTuple::fields(3);
 615   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 616   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 617   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 618   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 619 
 620   // create result type (range)
 621   fields = TypeTuple::fields(0);
 622 
 623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 624 
 625   return TypeFunc::make(domain, range);
 626 }
 627 
 628 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 629   // create input type (domain)
 630   const Type **fields = TypeTuple::fields(1);
 631   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 633 
 634   // create result type (range)
 635   fields = TypeTuple::fields(0);
 636   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 637   return TypeFunc::make(domain, range);
 638 }
 639 
 640 const TypeFunc* OptoRuntime::flush_windows_Type() {
 641   // create input type (domain)
 642   const Type** fields = TypeTuple::fields(1);
 643   fields[TypeFunc::Parms+0] = nullptr; // void
 644   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 645 
 646   // create result type
 647   fields = TypeTuple::fields(1);
 648   fields[TypeFunc::Parms+0] = nullptr; // void
 649   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 650 
 651   return TypeFunc::make(domain, range);
 652 }
 653 
 654 const TypeFunc* OptoRuntime::l2f_Type() {
 655   // create input type (domain)
 656   const Type **fields = TypeTuple::fields(2);
 657   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 658   fields[TypeFunc::Parms+1] = Type::HALF;
 659   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 660 
 661   // create result type (range)
 662   fields = TypeTuple::fields(1);
 663   fields[TypeFunc::Parms+0] = Type::FLOAT;
 664   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 665 
 666   return TypeFunc::make(domain, range);
 667 }
 668 
 669 const TypeFunc* OptoRuntime::modf_Type() {
 670   const Type **fields = TypeTuple::fields(2);
 671   fields[TypeFunc::Parms+0] = Type::FLOAT;
 672   fields[TypeFunc::Parms+1] = Type::FLOAT;
 673   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 674 
 675   // create result type (range)
 676   fields = TypeTuple::fields(1);
 677   fields[TypeFunc::Parms+0] = Type::FLOAT;
 678 
 679   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 680 
 681   return TypeFunc::make(domain, range);
 682 }
 683 
 684 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 685   // create input type (domain)
 686   const Type **fields = TypeTuple::fields(2);
 687   // Symbol* name of class to be loaded
 688   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 689   fields[TypeFunc::Parms+1] = Type::HALF;
 690   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 691 
 692   // create result type (range)
 693   fields = TypeTuple::fields(2);
 694   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 695   fields[TypeFunc::Parms+1] = Type::HALF;
 696   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 697 
 698   return TypeFunc::make(domain, range);
 699 }
 700 
 701 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 702   // create input type (domain)
 703   const Type **fields = TypeTuple::fields(num_arg);
 704   // Symbol* name of class to be loaded
 705   assert(num_arg > 0, "must have at least 1 input");
 706   for (uint i = 0; i < num_arg; i++) {
 707     fields[TypeFunc::Parms+i] = in_type;
 708   }
 709   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 710 
 711   // create result type (range)
 712   const uint num_ret = 1;
 713   fields = TypeTuple::fields(num_ret);
 714   fields[TypeFunc::Parms+0] = out_type;
 715   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 716 
 717   return TypeFunc::make(domain, range);
 718 }
 719 
 720 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 721   const Type **fields = TypeTuple::fields(4);
 722   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 723   fields[TypeFunc::Parms+1] = Type::HALF;
 724   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 725   fields[TypeFunc::Parms+3] = Type::HALF;
 726   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 727 
 728   // create result type (range)
 729   fields = TypeTuple::fields(2);
 730   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 731   fields[TypeFunc::Parms+1] = Type::HALF;
 732   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 733 
 734   return TypeFunc::make(domain, range);
 735 }
 736 
 737 //-------------- currentTimeMillis, currentTimeNanos, etc
 738 
 739 const TypeFunc* OptoRuntime::void_long_Type() {
 740   // create input type (domain)
 741   const Type **fields = TypeTuple::fields(0);
 742   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 743 
 744   // create result type (range)
 745   fields = TypeTuple::fields(2);
 746   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 747   fields[TypeFunc::Parms+1] = Type::HALF;
 748   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 749 
 750   return TypeFunc::make(domain, range);
 751 }
 752 
 753 const TypeFunc* OptoRuntime::void_void_Type() {
 754    // create input type (domain)
 755    const Type **fields = TypeTuple::fields(0);
 756    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 757 
 758    // create result type (range)
 759    fields = TypeTuple::fields(0);
 760    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 761    return TypeFunc::make(domain, range);
 762  }
 763 
 764  const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() {
 765    // create input type (domain)
 766    const Type **fields = TypeTuple::fields(0);
 767    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 768 
 769    // create result type (range)
 770    fields = TypeTuple::fields(0);
 771    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 772    return TypeFunc::make(domain, range);
 773  }
 774 
 775 
 776 // arraycopy stub variations:
 777 enum ArrayCopyType {
 778   ac_fast,                      // void(ptr, ptr, size_t)
 779   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 780   ac_slow,                      // void(ptr, int, ptr, int, int)
 781   ac_generic                    //  int(ptr, int, ptr, int, int)
 782 };
 783 
 784 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 785   // create input type (domain)
 786   int num_args      = (act == ac_fast ? 3 : 5);
 787   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 788   int argcnt = num_args;
 789   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 790   const Type** fields = TypeTuple::fields(argcnt);
 791   int argp = TypeFunc::Parms;
 792   fields[argp++] = TypePtr::NOTNULL;    // src
 793   if (num_size_args == 0) {
 794     fields[argp++] = TypeInt::INT;      // src_pos
 795   }
 796   fields[argp++] = TypePtr::NOTNULL;    // dest
 797   if (num_size_args == 0) {
 798     fields[argp++] = TypeInt::INT;      // dest_pos
 799     fields[argp++] = TypeInt::INT;      // length
 800   }
 801   while (num_size_args-- > 0) {
 802     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 803     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 804   }
 805   if (act == ac_checkcast) {
 806     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 807   }
 808   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 809   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 810 
 811   // create result type if needed
 812   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 813   fields = TypeTuple::fields(1);
 814   if (retcnt == 0)
 815     fields[TypeFunc::Parms+0] = nullptr; // void
 816   else
 817     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 818   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 819   return TypeFunc::make(domain, range);
 820 }
 821 
 822 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 823   // This signature is simple:  Two base pointers and a size_t.
 824   return make_arraycopy_Type(ac_fast);
 825 }
 826 
 827 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 828   // An extension of fast_arraycopy_Type which adds type checking.
 829   return make_arraycopy_Type(ac_checkcast);
 830 }
 831 
 832 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 833   // This signature is exactly the same as System.arraycopy.
 834   // There are no intptr_t (int/long) arguments.
 835   return make_arraycopy_Type(ac_slow);
 836 }
 837 
 838 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 839   // This signature is like System.arraycopy, except that it returns status.
 840   return make_arraycopy_Type(ac_generic);
 841 }
 842 
 843 
 844 const TypeFunc* OptoRuntime::array_fill_Type() {
 845   const Type** fields;
 846   int argp = TypeFunc::Parms;
 847   // create input type (domain): pointer, int, size_t
 848   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 849   fields[argp++] = TypePtr::NOTNULL;
 850   fields[argp++] = TypeInt::INT;
 851   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 852   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 853   const TypeTuple *domain = TypeTuple::make(argp, fields);
 854 
 855   // create result type
 856   fields = TypeTuple::fields(1);
 857   fields[TypeFunc::Parms+0] = nullptr; // void
 858   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 859 
 860   return TypeFunc::make(domain, range);
 861 }
 862 
 863 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 864 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 865   // create input type (domain)
 866   int num_args      = 3;
 867   int argcnt = num_args;
 868   const Type** fields = TypeTuple::fields(argcnt);
 869   int argp = TypeFunc::Parms;
 870   fields[argp++] = TypePtr::NOTNULL;    // src
 871   fields[argp++] = TypePtr::NOTNULL;    // dest
 872   fields[argp++] = TypePtr::NOTNULL;    // k array
 873   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 874   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 875 
 876   // no result type needed
 877   fields = TypeTuple::fields(1);
 878   fields[TypeFunc::Parms+0] = nullptr; // void
 879   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 880   return TypeFunc::make(domain, range);
 881 }
 882 
 883 /**
 884  * int updateBytesCRC32(int crc, byte* b, int len)
 885  */
 886 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 887   // create input type (domain)
 888   int num_args      = 3;
 889   int argcnt = num_args;
 890   const Type** fields = TypeTuple::fields(argcnt);
 891   int argp = TypeFunc::Parms;
 892   fields[argp++] = TypeInt::INT;        // crc
 893   fields[argp++] = TypePtr::NOTNULL;    // src
 894   fields[argp++] = TypeInt::INT;        // len
 895   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 896   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 897 
 898   // result type needed
 899   fields = TypeTuple::fields(1);
 900   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 901   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 902   return TypeFunc::make(domain, range);
 903 }
 904 
 905 /**
 906  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 907  */
 908 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 909   // create input type (domain)
 910   int num_args      = 4;
 911   int argcnt = num_args;
 912   const Type** fields = TypeTuple::fields(argcnt);
 913   int argp = TypeFunc::Parms;
 914   fields[argp++] = TypeInt::INT;        // crc
 915   fields[argp++] = TypePtr::NOTNULL;    // buf
 916   fields[argp++] = TypeInt::INT;        // len
 917   fields[argp++] = TypePtr::NOTNULL;    // table
 918   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 919   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 920 
 921   // result type needed
 922   fields = TypeTuple::fields(1);
 923   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 924   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 925   return TypeFunc::make(domain, range);
 926 }
 927 
 928 /**
 929 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 930 */
 931 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 932   // create input type (domain)
 933   int num_args      = 3;
 934   int argcnt = num_args;
 935   const Type** fields = TypeTuple::fields(argcnt);
 936   int argp = TypeFunc::Parms;
 937   fields[argp++] = TypeInt::INT;        // crc
 938   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 939   fields[argp++] = TypeInt::INT;        // len
 940   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 941   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 942 
 943   // result type needed
 944   fields = TypeTuple::fields(1);
 945   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 946   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 947   return TypeFunc::make(domain, range);
 948 }
 949 
 950 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 951 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 952   // create input type (domain)
 953   int num_args      = 5;
 954   int argcnt = num_args;
 955   const Type** fields = TypeTuple::fields(argcnt);
 956   int argp = TypeFunc::Parms;
 957   fields[argp++] = TypePtr::NOTNULL;    // src
 958   fields[argp++] = TypePtr::NOTNULL;    // dest
 959   fields[argp++] = TypePtr::NOTNULL;    // k array
 960   fields[argp++] = TypePtr::NOTNULL;    // r array
 961   fields[argp++] = TypeInt::INT;        // src len
 962   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 963   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 964 
 965   // returning cipher len (int)
 966   fields = TypeTuple::fields(1);
 967   fields[TypeFunc::Parms+0] = TypeInt::INT;
 968   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 969   return TypeFunc::make(domain, range);
 970 }
 971 
 972 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
 973 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
 974   // create input type (domain)
 975   int num_args = 4;
 976   int argcnt = num_args;
 977   const Type** fields = TypeTuple::fields(argcnt);
 978   int argp = TypeFunc::Parms;
 979   fields[argp++] = TypePtr::NOTNULL;    // src
 980   fields[argp++] = TypePtr::NOTNULL;    // dest
 981   fields[argp++] = TypePtr::NOTNULL;    // k array
 982   fields[argp++] = TypeInt::INT;        // src len
 983   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 984   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 985 
 986   // returning cipher len (int)
 987   fields = TypeTuple::fields(1);
 988   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 989   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 990   return TypeFunc::make(domain, range);
 991 }
 992 
 993 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 994 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 995   // create input type (domain)
 996   int num_args = 7;
 997   int argcnt = num_args;
 998   const Type** fields = TypeTuple::fields(argcnt);
 999   int argp = TypeFunc::Parms;
1000   fields[argp++] = TypePtr::NOTNULL; // src
1001   fields[argp++] = TypePtr::NOTNULL; // dest
1002   fields[argp++] = TypePtr::NOTNULL; // k array
1003   fields[argp++] = TypePtr::NOTNULL; // counter array
1004   fields[argp++] = TypeInt::INT; // src len
1005   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1006   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1007   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1008   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1009   // returning cipher len (int)
1010   fields = TypeTuple::fields(1);
1011   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1012   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1013   return TypeFunc::make(domain, range);
1014 }
1015 
1016 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1017 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() {
1018   // create input type (domain)
1019   int num_args = 8;
1020   int argcnt = num_args;
1021   const Type** fields = TypeTuple::fields(argcnt);
1022   int argp = TypeFunc::Parms;
1023   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1024   fields[argp++] = TypeInt::INT;     // int len
1025   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1026   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1027   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1028   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1029   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1030   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1031 
1032   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1033   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1034   // returning cipher len (int)
1035   fields = TypeTuple::fields(1);
1036   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1037   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1038   return TypeFunc::make(domain, range);
1039 }
1040 
1041 /*
1042  * void implCompress(byte[] buf, int ofs)
1043  */
1044 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
1045   // create input type (domain)
1046   int num_args = is_sha3 ? 3 : 2;
1047   int argcnt = num_args;
1048   const Type** fields = TypeTuple::fields(argcnt);
1049   int argp = TypeFunc::Parms;
1050   fields[argp++] = TypePtr::NOTNULL; // buf
1051   fields[argp++] = TypePtr::NOTNULL; // state
1052   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1053   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1054   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1055 
1056   // no result type needed
1057   fields = TypeTuple::fields(1);
1058   fields[TypeFunc::Parms+0] = nullptr; // void
1059   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1060   return TypeFunc::make(domain, range);
1061 }
1062 
1063 /*
1064  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1065  */
1066 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
1067   // create input type (domain)
1068   int num_args = is_sha3 ? 5 : 4;
1069   int argcnt = num_args;
1070   const Type** fields = TypeTuple::fields(argcnt);
1071   int argp = TypeFunc::Parms;
1072   fields[argp++] = TypePtr::NOTNULL; // buf
1073   fields[argp++] = TypePtr::NOTNULL; // state
1074   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1075   fields[argp++] = TypeInt::INT;     // ofs
1076   fields[argp++] = TypeInt::INT;     // limit
1077   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1078   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1079 
1080   // returning ofs (int)
1081   fields = TypeTuple::fields(1);
1082   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1083   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1084   return TypeFunc::make(domain, range);
1085 }
1086 
1087 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1088   // create input type (domain)
1089   int num_args      = 6;
1090   int argcnt = num_args;
1091   const Type** fields = TypeTuple::fields(argcnt);
1092   int argp = TypeFunc::Parms;
1093   fields[argp++] = TypePtr::NOTNULL;    // x
1094   fields[argp++] = TypeInt::INT;        // xlen
1095   fields[argp++] = TypePtr::NOTNULL;    // y
1096   fields[argp++] = TypeInt::INT;        // ylen
1097   fields[argp++] = TypePtr::NOTNULL;    // z
1098   fields[argp++] = TypeInt::INT;        // zlen
1099   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1100   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1101 
1102   // no result type needed
1103   fields = TypeTuple::fields(1);
1104   fields[TypeFunc::Parms+0] = nullptr;
1105   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1106   return TypeFunc::make(domain, range);
1107 }
1108 
1109 const TypeFunc* OptoRuntime::squareToLen_Type() {
1110   // create input type (domain)
1111   int num_args      = 4;
1112   int argcnt = num_args;
1113   const Type** fields = TypeTuple::fields(argcnt);
1114   int argp = TypeFunc::Parms;
1115   fields[argp++] = TypePtr::NOTNULL;    // x
1116   fields[argp++] = TypeInt::INT;        // len
1117   fields[argp++] = TypePtr::NOTNULL;    // z
1118   fields[argp++] = TypeInt::INT;        // zlen
1119   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1120   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1121 
1122   // no result type needed
1123   fields = TypeTuple::fields(1);
1124   fields[TypeFunc::Parms+0] = nullptr;
1125   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1126   return TypeFunc::make(domain, range);
1127 }
1128 
1129 // for mulAdd calls, 2 pointers and 3 ints, returning int
1130 const TypeFunc* OptoRuntime::mulAdd_Type() {
1131   // create input type (domain)
1132   int num_args      = 5;
1133   int argcnt = num_args;
1134   const Type** fields = TypeTuple::fields(argcnt);
1135   int argp = TypeFunc::Parms;
1136   fields[argp++] = TypePtr::NOTNULL;    // out
1137   fields[argp++] = TypePtr::NOTNULL;    // in
1138   fields[argp++] = TypeInt::INT;        // offset
1139   fields[argp++] = TypeInt::INT;        // len
1140   fields[argp++] = TypeInt::INT;        // k
1141   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1142   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1143 
1144   // returning carry (int)
1145   fields = TypeTuple::fields(1);
1146   fields[TypeFunc::Parms+0] = TypeInt::INT;
1147   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1148   return TypeFunc::make(domain, range);
1149 }
1150 
1151 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1152   // create input type (domain)
1153   int num_args      = 7;
1154   int argcnt = num_args;
1155   const Type** fields = TypeTuple::fields(argcnt);
1156   int argp = TypeFunc::Parms;
1157   fields[argp++] = TypePtr::NOTNULL;    // a
1158   fields[argp++] = TypePtr::NOTNULL;    // b
1159   fields[argp++] = TypePtr::NOTNULL;    // n
1160   fields[argp++] = TypeInt::INT;        // len
1161   fields[argp++] = TypeLong::LONG;      // inv
1162   fields[argp++] = Type::HALF;
1163   fields[argp++] = TypePtr::NOTNULL;    // result
1164   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1165   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1166 
1167   // result type needed
1168   fields = TypeTuple::fields(1);
1169   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1170 
1171   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1172   return TypeFunc::make(domain, range);
1173 }
1174 
1175 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1176   // create input type (domain)
1177   int num_args      = 6;
1178   int argcnt = num_args;
1179   const Type** fields = TypeTuple::fields(argcnt);
1180   int argp = TypeFunc::Parms;
1181   fields[argp++] = TypePtr::NOTNULL;    // a
1182   fields[argp++] = TypePtr::NOTNULL;    // n
1183   fields[argp++] = TypeInt::INT;        // len
1184   fields[argp++] = TypeLong::LONG;      // inv
1185   fields[argp++] = Type::HALF;
1186   fields[argp++] = TypePtr::NOTNULL;    // result
1187   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1188   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1189 
1190   // result type needed
1191   fields = TypeTuple::fields(1);
1192   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1193 
1194   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1195   return TypeFunc::make(domain, range);
1196 }
1197 
1198 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1199   int argcnt = 5;
1200   const Type** fields = TypeTuple::fields(argcnt);
1201   int argp = TypeFunc::Parms;
1202   fields[argp++] = TypePtr::NOTNULL;    // newArr
1203   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1204   fields[argp++] = TypeInt::INT;        // newIdx
1205   fields[argp++] = TypeInt::INT;        // shiftCount
1206   fields[argp++] = TypeInt::INT;        // numIter
1207   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1208   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1209 
1210   // no result type needed
1211   fields = TypeTuple::fields(1);
1212   fields[TypeFunc::Parms + 0] = nullptr;
1213   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1214   return TypeFunc::make(domain, range);
1215 }
1216 
1217 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1218   // create input type (domain)
1219   int num_args = 4;
1220   int argcnt = num_args;
1221   const Type** fields = TypeTuple::fields(argcnt);
1222   int argp = TypeFunc::Parms;
1223   fields[argp++] = TypePtr::NOTNULL;    // obja
1224   fields[argp++] = TypePtr::NOTNULL;    // objb
1225   fields[argp++] = TypeInt::INT;        // length, number of elements
1226   fields[argp++] = TypeInt::INT;        // log2scale, element size
1227   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1228   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1229 
1230   //return mismatch index (int)
1231   fields = TypeTuple::fields(1);
1232   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1233   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1234   return TypeFunc::make(domain, range);
1235 }
1236 
1237 // GHASH block processing
1238 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1239     int argcnt = 4;
1240 
1241     const Type** fields = TypeTuple::fields(argcnt);
1242     int argp = TypeFunc::Parms;
1243     fields[argp++] = TypePtr::NOTNULL;    // state
1244     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1245     fields[argp++] = TypePtr::NOTNULL;    // data
1246     fields[argp++] = TypeInt::INT;        // blocks
1247     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1248     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1249 
1250     // result type needed
1251     fields = TypeTuple::fields(1);
1252     fields[TypeFunc::Parms+0] = nullptr; // void
1253     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1254     return TypeFunc::make(domain, range);
1255 }
1256 
1257 // ChaCha20 Block function
1258 const TypeFunc* OptoRuntime::chacha20Block_Type() {
1259     int argcnt = 2;
1260 
1261     const Type** fields = TypeTuple::fields(argcnt);
1262     int argp = TypeFunc::Parms;
1263     fields[argp++] = TypePtr::NOTNULL;      // state
1264     fields[argp++] = TypePtr::NOTNULL;      // result
1265 
1266     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1267     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1268 
1269     // result type needed
1270     fields = TypeTuple::fields(1);
1271     fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1272     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1273     return TypeFunc::make(domain, range);
1274 }
1275 
1276 // Base64 encode function
1277 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1278   int argcnt = 6;
1279 
1280   const Type** fields = TypeTuple::fields(argcnt);
1281   int argp = TypeFunc::Parms;
1282   fields[argp++] = TypePtr::NOTNULL;    // src array
1283   fields[argp++] = TypeInt::INT;        // offset
1284   fields[argp++] = TypeInt::INT;        // length
1285   fields[argp++] = TypePtr::NOTNULL;    // dest array
1286   fields[argp++] = TypeInt::INT;       // dp
1287   fields[argp++] = TypeInt::BOOL;       // isURL
1288   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1289   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1290 
1291   // result type needed
1292   fields = TypeTuple::fields(1);
1293   fields[TypeFunc::Parms + 0] = nullptr; // void
1294   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1295   return TypeFunc::make(domain, range);
1296 }
1297 // Base64 decode function
1298 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1299   int argcnt = 7;
1300 
1301   const Type** fields = TypeTuple::fields(argcnt);
1302   int argp = TypeFunc::Parms;
1303   fields[argp++] = TypePtr::NOTNULL;    // src array
1304   fields[argp++] = TypeInt::INT;        // src offset
1305   fields[argp++] = TypeInt::INT;        // src length
1306   fields[argp++] = TypePtr::NOTNULL;    // dest array
1307   fields[argp++] = TypeInt::INT;        // dest offset
1308   fields[argp++] = TypeInt::BOOL;       // isURL
1309   fields[argp++] = TypeInt::BOOL;       // isMIME
1310   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1311   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1312 
1313   // result type needed
1314   fields = TypeTuple::fields(1);
1315   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1316   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1317   return TypeFunc::make(domain, range);
1318 }
1319 
1320 // Poly1305 processMultipleBlocks function
1321 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() {
1322   int argcnt = 4;
1323 
1324   const Type** fields = TypeTuple::fields(argcnt);
1325   int argp = TypeFunc::Parms;
1326   fields[argp++] = TypePtr::NOTNULL;    // input array
1327   fields[argp++] = TypeInt::INT;        // input length
1328   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1329   fields[argp++] = TypePtr::NOTNULL;    // r array
1330   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1331   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1332 
1333   // result type needed
1334   fields = TypeTuple::fields(1);
1335   fields[TypeFunc::Parms + 0] = nullptr; // void
1336   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1337   return TypeFunc::make(domain, range);
1338 }
1339 
1340 //------------- Interpreter state access for on stack replacement
1341 const TypeFunc* OptoRuntime::osr_end_Type() {
1342   // create input type (domain)
1343   const Type **fields = TypeTuple::fields(1);
1344   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1345   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1346 
1347   // create result type
1348   fields = TypeTuple::fields(1);
1349   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1350   fields[TypeFunc::Parms+0] = nullptr; // void
1351   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1352   return TypeFunc::make(domain, range);
1353 }
1354 
1355 //-------------------------------------------------------------------------------------
1356 // register policy
1357 
1358 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1359   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1360   switch (register_save_policy[reg]) {
1361     case 'C': return false; //SOC
1362     case 'E': return true ; //SOE
1363     case 'N': return false; //NS
1364     case 'A': return false; //AS
1365   }
1366   ShouldNotReachHere();
1367   return false;
1368 }
1369 
1370 //-----------------------------------------------------------------------
1371 // Exceptions
1372 //
1373 
1374 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1375 
1376 // The method is an entry that is always called by a C++ method not
1377 // directly from compiled code. Compiled code will call the C++ method following.
1378 // We can't allow async exception to be installed during  exception processing.
1379 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1380   // The frame we rethrow the exception to might not have been processed by the GC yet.
1381   // The stack watermark barrier takes care of detecting that and ensuring the frame
1382   // has updated oops.
1383   StackWatermarkSet::after_unwind(current);
1384 
1385   // Do not confuse exception_oop with pending_exception. The exception_oop
1386   // is only used to pass arguments into the method. Not for general
1387   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1388   // the runtime stubs checks this on exit.
1389   assert(current->exception_oop() != nullptr, "exception oop is found");
1390   address handler_address = nullptr;
1391 
1392   Handle exception(current, current->exception_oop());
1393   address pc = current->exception_pc();
1394 
1395   // Clear out the exception oop and pc since looking up an
1396   // exception handler can cause class loading, which might throw an
1397   // exception and those fields are expected to be clear during
1398   // normal bytecode execution.
1399   current->clear_exception_oop_and_pc();
1400 
1401   LogTarget(Info, exceptions) lt;
1402   if (lt.is_enabled()) {
1403     ResourceMark rm;
1404     LogStream ls(lt);
1405     trace_exception(&ls, exception(), pc, "");
1406   }
1407 
1408   // for AbortVMOnException flag
1409   Exceptions::debug_check_abort(exception);
1410 
1411 #ifdef ASSERT
1412   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1413     // should throw an exception here
1414     ShouldNotReachHere();
1415   }
1416 #endif
1417 
1418   // new exception handling: this method is entered only from adapters
1419   // exceptions from compiled java methods are handled in compiled code
1420   // using rethrow node
1421 
1422   nm = CodeCache::find_nmethod(pc);
1423   assert(nm != nullptr, "No NMethod found");
1424   if (nm->is_native_method()) {
1425     fatal("Native method should not have path to exception handling");
1426   } else {
1427     // we are switching to old paradigm: search for exception handler in caller_frame
1428     // instead in exception handler of caller_frame.sender()
1429 
1430     if (JvmtiExport::can_post_on_exceptions()) {
1431       // "Full-speed catching" is not necessary here,
1432       // since we're notifying the VM on every catch.
1433       // Force deoptimization and the rest of the lookup
1434       // will be fine.
1435       deoptimize_caller_frame(current);
1436     }
1437 
1438     // Check the stack guard pages.  If enabled, look for handler in this frame;
1439     // otherwise, forcibly unwind the frame.
1440     //
1441     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1442     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1443     bool deopting = false;
1444     if (nm->is_deopt_pc(pc)) {
1445       deopting = true;
1446       RegisterMap map(current,
1447                       RegisterMap::UpdateMap::skip,
1448                       RegisterMap::ProcessFrames::include,
1449                       RegisterMap::WalkContinuation::skip);
1450       frame deoptee = current->last_frame().sender(&map);
1451       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1452       // Adjust the pc back to the original throwing pc
1453       pc = deoptee.pc();
1454     }
1455 
1456     // If we are forcing an unwind because of stack overflow then deopt is
1457     // irrelevant since we are throwing the frame away anyway.
1458 
1459     if (deopting && !force_unwind) {
1460       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1461     } else {
1462 
1463       handler_address =
1464         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1465 
1466       if (handler_address == nullptr) {
1467         bool recursive_exception = false;
1468         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1469         assert (handler_address != nullptr, "must have compiled handler");
1470         // Update the exception cache only when the unwind was not forced
1471         // and there didn't happen another exception during the computation of the
1472         // compiled exception handler. Checking for exception oop equality is not
1473         // sufficient because some exceptions are pre-allocated and reused.
1474         if (!force_unwind && !recursive_exception) {
1475           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1476         }
1477       } else {
1478 #ifdef ASSERT
1479         bool recursive_exception = false;
1480         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1481         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1482                  p2i(handler_address), p2i(computed_address));
1483 #endif
1484       }
1485     }
1486 
1487     current->set_exception_pc(pc);
1488     current->set_exception_handler_pc(handler_address);
1489 
1490     // Check if the exception PC is a MethodHandle call site.
1491     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1492   }
1493 
1494   // Restore correct return pc.  Was saved above.
1495   current->set_exception_oop(exception());
1496   return handler_address;
1497 
1498 JRT_END
1499 
1500 // We are entering here from exception_blob
1501 // If there is a compiled exception handler in this method, we will continue there;
1502 // otherwise we will unwind the stack and continue at the caller of top frame method
1503 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1504 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1505 // we looked up the handler for has been deoptimized in the meantime. If it has been
1506 // we must not use the handler and instead return the deopt blob.
1507 address OptoRuntime::handle_exception_C(JavaThread* current) {
1508 //
1509 // We are in Java not VM and in debug mode we have a NoHandleMark
1510 //
1511 #ifndef PRODUCT
1512   SharedRuntime::_find_handler_ctr++;          // find exception handler
1513 #endif
1514   debug_only(NoHandleMark __hm;)
1515   nmethod* nm = nullptr;
1516   address handler_address = nullptr;
1517   {
1518     // Enter the VM
1519 
1520     ResetNoHandleMark rnhm;
1521     handler_address = handle_exception_C_helper(current, nm);
1522   }
1523 
1524   // Back in java: Use no oops, DON'T safepoint
1525 
1526   // Now check to see if the handler we are returning is in a now
1527   // deoptimized frame
1528 
1529   if (nm != nullptr) {
1530     RegisterMap map(current,
1531                     RegisterMap::UpdateMap::skip,
1532                     RegisterMap::ProcessFrames::skip,
1533                     RegisterMap::WalkContinuation::skip);
1534     frame caller = current->last_frame().sender(&map);
1535 #ifdef ASSERT
1536     assert(caller.is_compiled_frame(), "must be");
1537 #endif // ASSERT
1538     if (caller.is_deoptimized_frame()) {
1539       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1540     }
1541   }
1542   return handler_address;
1543 }
1544 
1545 //------------------------------rethrow----------------------------------------
1546 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1547 // is either throwing or rethrowing an exception.  The callee-save registers
1548 // have been restored, synchronized objects have been unlocked and the callee
1549 // stack frame has been removed.  The return address was passed in.
1550 // Exception oop is passed as the 1st argument.  This routine is then called
1551 // from the stub.  On exit, we know where to jump in the caller's code.
1552 // After this C code exits, the stub will pop his frame and end in a jump
1553 // (instead of a return).  We enter the caller's default handler.
1554 //
1555 // This must be JRT_LEAF:
1556 //     - caller will not change its state as we cannot block on exit,
1557 //       therefore raw_exception_handler_for_return_address is all it takes
1558 //       to handle deoptimized blobs
1559 //
1560 // However, there needs to be a safepoint check in the middle!  So compiled
1561 // safepoints are completely watertight.
1562 //
1563 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1564 //
1565 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1566 //
1567 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1568   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1569   // This needs authenticating, but to do that here requires the fp of the previous frame.
1570   // A better way of doing it would be authenticate in the caller by adding a
1571   // AuthPAuthNode and using it in GraphKit::gen_stub. For now, just strip it.
1572   AARCH64_PORT_ONLY(ret_pc = pauth_strip_pointer(ret_pc));
1573 
1574 #ifndef PRODUCT
1575   SharedRuntime::_rethrow_ctr++;               // count rethrows
1576 #endif
1577   assert (exception != nullptr, "should have thrown a NullPointerException");
1578 #ifdef ASSERT
1579   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1580     // should throw an exception here
1581     ShouldNotReachHere();
1582   }
1583 #endif
1584 
1585   thread->set_vm_result(exception);
1586   // Frame not compiled (handles deoptimization blob)
1587   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1588 }
1589 
1590 
1591 const TypeFunc *OptoRuntime::rethrow_Type() {
1592   // create input type (domain)
1593   const Type **fields = TypeTuple::fields(1);
1594   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1595   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1596 
1597   // create result type (range)
1598   fields = TypeTuple::fields(1);
1599   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1600   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1601 
1602   return TypeFunc::make(domain, range);
1603 }
1604 
1605 
1606 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1607   // Deoptimize the caller before continuing, as the compiled
1608   // exception handler table may not be valid.
1609   if (!StressCompiledExceptionHandlers && doit) {
1610     deoptimize_caller_frame(thread);
1611   }
1612 }
1613 
1614 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1615   // Called from within the owner thread, so no need for safepoint
1616   RegisterMap reg_map(thread,
1617                       RegisterMap::UpdateMap::include,
1618                       RegisterMap::ProcessFrames::include,
1619                       RegisterMap::WalkContinuation::skip);
1620   frame stub_frame = thread->last_frame();
1621   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1622   frame caller_frame = stub_frame.sender(&reg_map);
1623 
1624   // Deoptimize the caller frame.
1625   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1626 }
1627 
1628 
1629 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1630   // Called from within the owner thread, so no need for safepoint
1631   RegisterMap reg_map(thread,
1632                       RegisterMap::UpdateMap::include,
1633                       RegisterMap::ProcessFrames::include,
1634                       RegisterMap::WalkContinuation::skip);
1635   frame stub_frame = thread->last_frame();
1636   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1637   frame caller_frame = stub_frame.sender(&reg_map);
1638   return caller_frame.is_deoptimized_frame();
1639 }
1640 
1641 
1642 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1643   // create input type (domain)
1644   const Type **fields = TypeTuple::fields(1);
1645   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1646   // // The JavaThread* is passed to each routine as the last argument
1647   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1648   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1649 
1650   // create result type (range)
1651   fields = TypeTuple::fields(0);
1652 
1653   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1654 
1655   return TypeFunc::make(domain,range);
1656 }
1657 
1658 #if INCLUDE_JFR
1659 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() {
1660   // create input type (domain)
1661   const Type **fields = TypeTuple::fields(1);
1662   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1663   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1664 
1665   // create result type (range)
1666   fields = TypeTuple::fields(0);
1667 
1668   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1669 
1670   return TypeFunc::make(domain,range);
1671 }
1672 #endif
1673 
1674 //-----------------------------------------------------------------------------
1675 // Dtrace support.  entry and exit probes have the same signature
1676 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1677   // create input type (domain)
1678   const Type **fields = TypeTuple::fields(2);
1679   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1680   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1681   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1682 
1683   // create result type (range)
1684   fields = TypeTuple::fields(0);
1685 
1686   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1687 
1688   return TypeFunc::make(domain,range);
1689 }
1690 
1691 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1692   // create input type (domain)
1693   const Type **fields = TypeTuple::fields(2);
1694   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1695   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1696 
1697   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1698 
1699   // create result type (range)
1700   fields = TypeTuple::fields(0);
1701 
1702   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1703 
1704   return TypeFunc::make(domain,range);
1705 }
1706 
1707 
1708 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current))
1709   assert(oopDesc::is_oop(obj), "must be a valid oop");
1710   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1711   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1712 JRT_END
1713 
1714 //-----------------------------------------------------------------------------
1715 
1716 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1717 
1718 //
1719 // dump the collected NamedCounters.
1720 //
1721 void OptoRuntime::print_named_counters() {
1722   int total_lock_count = 0;
1723   int eliminated_lock_count = 0;
1724 
1725   NamedCounter* c = _named_counters;
1726   while (c) {
1727     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1728       int count = c->count();
1729       if (count > 0) {
1730         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1731         if (Verbose) {
1732           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1733         }
1734         total_lock_count += count;
1735         if (eliminated) {
1736           eliminated_lock_count += count;
1737         }
1738       }
1739 #if INCLUDE_RTM_OPT
1740     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1741       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1742       if (rlc->nonzero()) {
1743         tty->print_cr("%s", c->name());
1744         rlc->print_on(tty);
1745       }
1746 #endif
1747     }
1748     c = c->next();
1749   }
1750   if (total_lock_count > 0) {
1751     tty->print_cr("dynamic locks: %d", total_lock_count);
1752     if (eliminated_lock_count) {
1753       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1754                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1755     }
1756   }
1757 }
1758 
1759 //
1760 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1761 //  name which consists of method@line for the inlining tree.
1762 //
1763 
1764 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1765   int max_depth = youngest_jvms->depth();
1766 
1767   // Visit scopes from youngest to oldest.
1768   bool first = true;
1769   stringStream st;
1770   for (int depth = max_depth; depth >= 1; depth--) {
1771     JVMState* jvms = youngest_jvms->of_depth(depth);
1772     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1773     if (!first) {
1774       st.print(" ");
1775     } else {
1776       first = false;
1777     }
1778     int bci = jvms->bci();
1779     if (bci < 0) bci = 0;
1780     if (m != nullptr) {
1781       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1782     } else {
1783       st.print("no method");
1784     }
1785     st.print("@%d", bci);
1786     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1787   }
1788   NamedCounter* c;
1789   if (tag == NamedCounter::RTMLockingCounter) {
1790     c = new RTMLockingNamedCounter(st.freeze());
1791   } else {
1792     c = new NamedCounter(st.freeze(), tag);
1793   }
1794 
1795   // atomically add the new counter to the head of the list.  We only
1796   // add counters so this is safe.
1797   NamedCounter* head;
1798   do {
1799     c->set_next(nullptr);
1800     head = _named_counters;
1801     c->set_next(head);
1802   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1803   return c;
1804 }
1805 
1806 int trace_exception_counter = 0;
1807 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1808   trace_exception_counter++;
1809   stringStream tempst;
1810 
1811   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1812   exception_oop->print_value_on(&tempst);
1813   tempst.print(" in ");
1814   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1815   if (blob->is_compiled()) {
1816     CompiledMethod* cm = blob->as_compiled_method_or_null();
1817     cm->method()->print_value_on(&tempst);
1818   } else if (blob->is_runtime_stub()) {
1819     tempst.print("<runtime-stub>");
1820   } else {
1821     tempst.print("<unknown>");
1822   }
1823   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1824   tempst.print("]");
1825 
1826   st->print_raw_cr(tempst.freeze());
1827 }