1 /*
2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "ci/ciTypeFlow.hpp"
28 #include "classfile/javaClasses.hpp"
29 #include "classfile/symbolTable.hpp"
30 #include "compiler/compileLog.hpp"
31 #include "libadt/dict.hpp"
32 #include "memory/oopFactory.hpp"
33 #include "memory/resourceArea.hpp"
34 #include "oops/instanceKlass.hpp"
35 #include "oops/instanceMirrorKlass.hpp"
36 #include "oops/objArrayKlass.hpp"
37 #include "oops/typeArrayKlass.hpp"
38 #include "opto/matcher.hpp"
39 #include "opto/node.hpp"
40 #include "opto/opcodes.hpp"
41 #include "opto/type.hpp"
42 #include "utilities/powerOfTwo.hpp"
43 #include "utilities/stringUtils.hpp"
44
45 // Portions of code courtesy of Clifford Click
46
47 // Optimization - Graph Style
48
49 // Dictionary of types shared among compilations.
50 Dict* Type::_shared_type_dict = nullptr;
51
52 // Array which maps compiler types to Basic Types
53 const Type::TypeInfo Type::_type_info[Type::lastype] = {
54 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
55 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
56 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
57 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
58 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
59 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
60 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
61 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
62 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
63 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
64 { Bad, T_ARRAY, "interfaces:", false, Node::NotAMachineReg, relocInfo::none }, // Interfaces
65
66 #if defined(PPC64)
67 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
68 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
69 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
70 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
71 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
72 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
73 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
74 #elif defined(S390)
75 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
76 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
77 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
78 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
79 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
80 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
81 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
82 #else // all other
83 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
84 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
85 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
86 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
87 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
88 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
89 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ
90 #endif
91 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
92 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
93 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
94 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
95 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
96 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
97 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
98 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr
99 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr
100 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
101 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
102 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
103 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
104 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
105 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
106 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
107 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
108 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
109 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
110 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
111 };
112
113 // Map ideal registers (machine types) to ideal types
114 const Type *Type::mreg2type[_last_machine_leaf];
115
116 // Map basic types to canonical Type* pointers.
117 const Type* Type:: _const_basic_type[T_CONFLICT+1];
118
119 // Map basic types to constant-zero Types.
120 const Type* Type:: _zero_type[T_CONFLICT+1];
121
122 // Map basic types to array-body alias types.
123 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
124 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr;
125 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr;
126
127 //=============================================================================
128 // Convenience common pre-built types.
129 const Type *Type::ABIO; // State-of-machine only
130 const Type *Type::BOTTOM; // All values
131 const Type *Type::CONTROL; // Control only
132 const Type *Type::DOUBLE; // All doubles
133 const Type *Type::FLOAT; // All floats
134 const Type *Type::HALF; // Placeholder half of doublewide type
135 const Type *Type::MEMORY; // Abstract store only
136 const Type *Type::RETURN_ADDRESS;
137 const Type *Type::TOP; // No values in set
138
139 //------------------------------get_const_type---------------------------
140 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) {
141 if (type == nullptr) {
142 return nullptr;
143 } else if (type->is_primitive_type()) {
144 return get_const_basic_type(type->basic_type());
145 } else {
146 return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling);
147 }
148 }
149
150 //---------------------------array_element_basic_type---------------------------------
151 // Mapping to the array element's basic type.
152 BasicType Type::array_element_basic_type() const {
153 BasicType bt = basic_type();
154 if (bt == T_INT) {
155 if (this == TypeInt::INT) return T_INT;
156 if (this == TypeInt::CHAR) return T_CHAR;
157 if (this == TypeInt::BYTE) return T_BYTE;
158 if (this == TypeInt::BOOL) return T_BOOLEAN;
159 if (this == TypeInt::SHORT) return T_SHORT;
160 return T_VOID;
161 }
162 return bt;
163 }
164
165 // For two instance arrays of same dimension, return the base element types.
166 // Otherwise or if the arrays have different dimensions, return null.
167 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
168 const TypeInstPtr **e1, const TypeInstPtr **e2) {
169
170 if (e1) *e1 = nullptr;
171 if (e2) *e2 = nullptr;
172 const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
173 const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
174
175 if (a1tap != nullptr && a2tap != nullptr) {
176 // Handle multidimensional arrays
177 const TypePtr* a1tp = a1tap->elem()->make_ptr();
178 const TypePtr* a2tp = a2tap->elem()->make_ptr();
179 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
180 a1tap = a1tp->is_aryptr();
181 a2tap = a2tp->is_aryptr();
182 a1tp = a1tap->elem()->make_ptr();
183 a2tp = a2tap->elem()->make_ptr();
184 }
185 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
186 if (e1) *e1 = a1tp->is_instptr();
187 if (e2) *e2 = a2tp->is_instptr();
188 }
189 }
190 }
191
192 //---------------------------get_typeflow_type---------------------------------
193 // Import a type produced by ciTypeFlow.
194 const Type* Type::get_typeflow_type(ciType* type) {
195 switch (type->basic_type()) {
196
197 case ciTypeFlow::StateVector::T_BOTTOM:
198 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
199 return Type::BOTTOM;
200
201 case ciTypeFlow::StateVector::T_TOP:
202 assert(type == ciTypeFlow::StateVector::top_type(), "");
203 return Type::TOP;
204
205 case ciTypeFlow::StateVector::T_NULL:
206 assert(type == ciTypeFlow::StateVector::null_type(), "");
207 return TypePtr::NULL_PTR;
208
209 case ciTypeFlow::StateVector::T_LONG2:
210 // The ciTypeFlow pass pushes a long, then the half.
211 // We do the same.
212 assert(type == ciTypeFlow::StateVector::long2_type(), "");
213 return TypeInt::TOP;
214
215 case ciTypeFlow::StateVector::T_DOUBLE2:
216 // The ciTypeFlow pass pushes double, then the half.
217 // Our convention is the same.
218 assert(type == ciTypeFlow::StateVector::double2_type(), "");
219 return Type::TOP;
220
221 case T_ADDRESS:
222 assert(type->is_return_address(), "");
223 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
224
225 default:
226 // make sure we did not mix up the cases:
227 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
228 assert(type != ciTypeFlow::StateVector::top_type(), "");
229 assert(type != ciTypeFlow::StateVector::null_type(), "");
230 assert(type != ciTypeFlow::StateVector::long2_type(), "");
231 assert(type != ciTypeFlow::StateVector::double2_type(), "");
232 assert(!type->is_return_address(), "");
233
234 return Type::get_const_type(type);
235 }
236 }
237
238
239 //-----------------------make_from_constant------------------------------------
240 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
241 int stable_dimension, bool is_narrow_oop,
242 bool is_autobox_cache) {
243 switch (constant.basic_type()) {
244 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
245 case T_CHAR: return TypeInt::make(constant.as_char());
246 case T_BYTE: return TypeInt::make(constant.as_byte());
247 case T_SHORT: return TypeInt::make(constant.as_short());
248 case T_INT: return TypeInt::make(constant.as_int());
249 case T_LONG: return TypeLong::make(constant.as_long());
250 case T_FLOAT: return TypeF::make(constant.as_float());
251 case T_DOUBLE: return TypeD::make(constant.as_double());
252 case T_ARRAY:
253 case T_OBJECT: {
254 const Type* con_type = nullptr;
255 ciObject* oop_constant = constant.as_object();
256 if (oop_constant->is_null_object()) {
257 con_type = Type::get_zero_type(T_OBJECT);
258 } else {
259 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
260 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
261 if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
262 con_type = con_type->is_aryptr()->cast_to_autobox_cache();
263 }
264 if (stable_dimension > 0) {
265 assert(FoldStableValues, "sanity");
266 assert(!con_type->is_zero_type(), "default value for stable field");
267 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
268 }
269 }
270 if (is_narrow_oop) {
271 con_type = con_type->make_narrowoop();
272 }
273 return con_type;
274 }
275 case T_ILLEGAL:
276 // Invalid ciConstant returned due to OutOfMemoryError in the CI
277 assert(Compile::current()->env()->failing(), "otherwise should not see this");
278 return nullptr;
279 default:
280 // Fall through to failure
281 return nullptr;
282 }
283 }
284
285 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
286 BasicType conbt = con.basic_type();
287 switch (conbt) {
288 case T_BOOLEAN: conbt = T_BYTE; break;
289 case T_ARRAY: conbt = T_OBJECT; break;
290 default: break;
291 }
292 switch (loadbt) {
293 case T_BOOLEAN: loadbt = T_BYTE; break;
294 case T_NARROWOOP: loadbt = T_OBJECT; break;
295 case T_ARRAY: loadbt = T_OBJECT; break;
296 case T_ADDRESS: loadbt = T_OBJECT; break;
297 default: break;
298 }
299 if (conbt == loadbt) {
300 if (is_unsigned && conbt == T_BYTE) {
301 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
302 return ciConstant(T_INT, con.as_int() & 0xFF);
303 } else {
304 return con;
305 }
306 }
307 if (conbt == T_SHORT && loadbt == T_CHAR) {
308 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
309 return ciConstant(T_INT, con.as_int() & 0xFFFF);
310 }
311 return ciConstant(); // T_ILLEGAL
312 }
313
314 // Try to constant-fold a stable array element.
315 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
316 BasicType loadbt, bool is_unsigned_load) {
317 // Decode the results of GraphKit::array_element_address.
318 ciConstant element_value = array->element_value_by_offset(off);
319 if (element_value.basic_type() == T_ILLEGAL) {
320 return nullptr; // wrong offset
321 }
322 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
323
324 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
325 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
326
327 if (con.is_valid() && // not a mismatched access
328 !con.is_null_or_zero()) { // not a default value
329 bool is_narrow_oop = (loadbt == T_NARROWOOP);
330 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
331 }
332 return nullptr;
333 }
334
335 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
336 ciField* field;
337 ciType* type = holder->java_mirror_type();
338 if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
339 // Static field
340 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
341 } else {
342 // Instance field
343 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
344 }
345 if (field == nullptr) {
346 return nullptr; // Wrong offset
347 }
348 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
349 }
350
351 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
352 BasicType loadbt, bool is_unsigned_load) {
353 if (!field->is_constant()) {
354 return nullptr; // Non-constant field
355 }
356 ciConstant field_value;
357 if (field->is_static()) {
358 // final static field
359 field_value = field->constant_value();
360 } else if (holder != nullptr) {
361 // final or stable non-static field
362 // Treat final non-static fields of trusted classes (classes in
363 // java.lang.invoke and sun.invoke packages and subpackages) as
364 // compile time constants.
365 field_value = field->constant_value_of(holder);
366 }
367 if (!field_value.is_valid()) {
368 return nullptr; // Not a constant
369 }
370
371 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
372
373 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
374 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
375
376 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
377 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
378 bool is_narrow_oop = (loadbt == T_NARROWOOP);
379
380 const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
381 stable_dimension, is_narrow_oop,
382 field->is_autobox_cache());
383 if (con_type != nullptr && field->is_call_site_target()) {
384 ciCallSite* call_site = holder->as_call_site();
385 if (!call_site->is_fully_initialized_constant_call_site()) {
386 ciMethodHandle* target = con.as_object()->as_method_handle();
387 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
388 }
389 }
390 return con_type;
391 }
392
393 //------------------------------make-------------------------------------------
394 // Create a simple Type, with default empty symbol sets. Then hashcons it
395 // and look for an existing copy in the type dictionary.
396 const Type *Type::make( enum TYPES t ) {
397 return (new Type(t))->hashcons();
398 }
399
400 //------------------------------cmp--------------------------------------------
401 int Type::cmp( const Type *const t1, const Type *const t2 ) {
402 if( t1->_base != t2->_base )
403 return 1; // Missed badly
404 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
405 return !t1->eq(t2); // Return ZERO if equal
406 }
407
408 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
409 if (!include_speculative) {
410 return remove_speculative();
411 }
412 return this;
413 }
414
415 //------------------------------hash-------------------------------------------
416 int Type::uhash( const Type *const t ) {
417 return (int)t->hash();
418 }
419
420 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
421 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
422 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
423
424 //--------------------------Initialize_shared----------------------------------
425 void Type::Initialize_shared(Compile* current) {
426 // This method does not need to be locked because the first system
427 // compilations (stub compilations) occur serially. If they are
428 // changed to proceed in parallel, then this section will need
429 // locking.
430
431 Arena* save = current->type_arena();
432 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
433
434 current->set_type_arena(shared_type_arena);
435 _shared_type_dict =
436 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
437 shared_type_arena, 128 );
438 current->set_type_dict(_shared_type_dict);
439
440 // Make shared pre-built types.
441 CONTROL = make(Control); // Control only
442 TOP = make(Top); // No values in set
443 MEMORY = make(Memory); // Abstract store only
444 ABIO = make(Abio); // State-of-machine only
445 RETURN_ADDRESS=make(Return_Address);
446 FLOAT = make(FloatBot); // All floats
447 DOUBLE = make(DoubleBot); // All doubles
448 BOTTOM = make(Bottom); // Everything
449 HALF = make(Half); // Placeholder half of doublewide type
450
451 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
452 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
453 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
454 TypeF::ONE = TypeF::make(1.0); // Float 1
455 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
456 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
457
458 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
459 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
460 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
461 TypeD::ONE = TypeD::make(1.0); // Double 1
462 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
463 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
464
465 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
466 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
467 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
468 TypeInt::ZERO = TypeInt::make( 0); // 0
469 TypeInt::ONE = TypeInt::make( 1); // 1
470 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
471 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
472 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
473 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
474 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
475 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
476 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
477 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
478 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
479 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
480 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
481 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
482 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
483 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
484 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
485 TypeInt::TYPE_DOMAIN = TypeInt::INT;
486 // CmpL is overloaded both as the bytecode computation returning
487 // a trinary (-1,0,+1) integer result AND as an efficient long
488 // compare returning optimizer ideal-type flags.
489 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
490 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
491 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
492 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
493 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
494
495 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX
496 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN
497 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
498 TypeLong::ZERO = TypeLong::make( 0); // 0
499 TypeLong::ONE = TypeLong::make( 1); // 1
500 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
501 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
502 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
503 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
504 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
505
506 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
507 fboth[0] = Type::CONTROL;
508 fboth[1] = Type::CONTROL;
509 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
510
511 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
512 ffalse[0] = Type::CONTROL;
513 ffalse[1] = Type::TOP;
514 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
515
516 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
517 fneither[0] = Type::TOP;
518 fneither[1] = Type::TOP;
519 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
520
521 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
522 ftrue[0] = Type::TOP;
523 ftrue[1] = Type::CONTROL;
524 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
525
526 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
527 floop[0] = Type::CONTROL;
528 floop[1] = TypeInt::INT;
529 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
530
531 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
532 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
533 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
534
535 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
536 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
537
538 const Type **fmembar = TypeTuple::fields(0);
539 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
540
541 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
542 fsc[0] = TypeInt::CC;
543 fsc[1] = Type::MEMORY;
544 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
545
546 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
547 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
548 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
549 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
550 false, 0, oopDesc::mark_offset_in_bytes());
551 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
552 false, 0, oopDesc::klass_offset_in_bytes());
553 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
554
555 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
556
557 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
558 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
559
560 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
561
562 mreg2type[Op_Node] = Type::BOTTOM;
563 mreg2type[Op_Set ] = 0;
564 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
565 mreg2type[Op_RegI] = TypeInt::INT;
566 mreg2type[Op_RegP] = TypePtr::BOTTOM;
567 mreg2type[Op_RegF] = Type::FLOAT;
568 mreg2type[Op_RegD] = Type::DOUBLE;
569 mreg2type[Op_RegL] = TypeLong::LONG;
570 mreg2type[Op_RegFlags] = TypeInt::CC;
571
572 GrowableArray<ciInstanceKlass*> array_interfaces;
573 array_interfaces.push(current->env()->Cloneable_klass());
574 array_interfaces.push(current->env()->Serializable_klass());
575 TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
576 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
577
578 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
579
580 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
581
582 #ifdef _LP64
583 if (UseCompressedOops) {
584 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
585 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
586 } else
587 #endif
588 {
589 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
590 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
591 }
592 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
593 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
594 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
595 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
596 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
597 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
598 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
599
600 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
601 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
602 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
603 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
604 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
605 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
606 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
607 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
608 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
609 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
610 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
611 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
612
613 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
614 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
615
616 const Type **fi2c = TypeTuple::fields(2);
617 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
618 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
619 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
620
621 const Type **intpair = TypeTuple::fields(2);
622 intpair[0] = TypeInt::INT;
623 intpair[1] = TypeInt::INT;
624 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
625
626 const Type **longpair = TypeTuple::fields(2);
627 longpair[0] = TypeLong::LONG;
628 longpair[1] = TypeLong::LONG;
629 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
630
631 const Type **intccpair = TypeTuple::fields(2);
632 intccpair[0] = TypeInt::INT;
633 intccpair[1] = TypeInt::CC;
634 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
635
636 const Type **longccpair = TypeTuple::fields(2);
637 longccpair[0] = TypeLong::LONG;
638 longccpair[1] = TypeInt::CC;
639 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
640
641 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
642 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
643 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
644 _const_basic_type[T_CHAR] = TypeInt::CHAR;
645 _const_basic_type[T_BYTE] = TypeInt::BYTE;
646 _const_basic_type[T_SHORT] = TypeInt::SHORT;
647 _const_basic_type[T_INT] = TypeInt::INT;
648 _const_basic_type[T_LONG] = TypeLong::LONG;
649 _const_basic_type[T_FLOAT] = Type::FLOAT;
650 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
651 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
652 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
653 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
654 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
655 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
656
657 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
658 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
659 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
660 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
661 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
662 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
663 _zero_type[T_INT] = TypeInt::ZERO;
664 _zero_type[T_LONG] = TypeLong::ZERO;
665 _zero_type[T_FLOAT] = TypeF::ZERO;
666 _zero_type[T_DOUBLE] = TypeD::ZERO;
667 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
668 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
669 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
670 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
671
672 // get_zero_type() should not happen for T_CONFLICT
673 _zero_type[T_CONFLICT]= nullptr;
674
675 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
676 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
677
678 if (Matcher::supports_scalable_vector()) {
679 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
680 }
681
682 // Vector predefined types, it needs initialized _const_basic_type[].
683 if (Matcher::vector_size_supported(T_BYTE,4)) {
684 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
685 }
686 if (Matcher::vector_size_supported(T_FLOAT,2)) {
687 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
688 }
689 if (Matcher::vector_size_supported(T_FLOAT,4)) {
690 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
691 }
692 if (Matcher::vector_size_supported(T_FLOAT,8)) {
693 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
694 }
695 if (Matcher::vector_size_supported(T_FLOAT,16)) {
696 TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
697 }
698
699 mreg2type[Op_VecA] = TypeVect::VECTA;
700 mreg2type[Op_VecS] = TypeVect::VECTS;
701 mreg2type[Op_VecD] = TypeVect::VECTD;
702 mreg2type[Op_VecX] = TypeVect::VECTX;
703 mreg2type[Op_VecY] = TypeVect::VECTY;
704 mreg2type[Op_VecZ] = TypeVect::VECTZ;
705
706 // Restore working type arena.
707 current->set_type_arena(save);
708 current->set_type_dict(nullptr);
709 }
710
711 //------------------------------Initialize-------------------------------------
712 void Type::Initialize(Compile* current) {
713 assert(current->type_arena() != nullptr, "must have created type arena");
714
715 if (_shared_type_dict == nullptr) {
716 Initialize_shared(current);
717 }
718
719 Arena* type_arena = current->type_arena();
720
721 // Create the hash-cons'ing dictionary with top-level storage allocation
722 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
723 current->set_type_dict(tdic);
724 }
725
726 //------------------------------hashcons---------------------------------------
727 // Do the hash-cons trick. If the Type already exists in the type table,
728 // delete the current Type and return the existing Type. Otherwise stick the
729 // current Type in the Type table.
730 const Type *Type::hashcons(void) {
731 debug_only(base()); // Check the assertion in Type::base().
732 // Look up the Type in the Type dictionary
733 Dict *tdic = type_dict();
734 Type* old = (Type*)(tdic->Insert(this, this, false));
735 if( old ) { // Pre-existing Type?
736 if( old != this ) // Yes, this guy is not the pre-existing?
737 delete this; // Yes, Nuke this guy
738 assert( old->_dual, "" );
739 return old; // Return pre-existing
740 }
741
742 // Every type has a dual (to make my lattice symmetric).
743 // Since we just discovered a new Type, compute its dual right now.
744 assert( !_dual, "" ); // No dual yet
745 _dual = xdual(); // Compute the dual
746 if (cmp(this, _dual) == 0) { // Handle self-symmetric
747 if (_dual != this) {
748 delete _dual;
749 _dual = this;
750 }
751 return this;
752 }
753 assert( !_dual->_dual, "" ); // No reverse dual yet
754 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
755 // New Type, insert into Type table
756 tdic->Insert((void*)_dual,(void*)_dual);
757 ((Type*)_dual)->_dual = this; // Finish up being symmetric
758 #ifdef ASSERT
759 Type *dual_dual = (Type*)_dual->xdual();
760 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
761 delete dual_dual;
762 #endif
763 return this; // Return new Type
764 }
765
766 //------------------------------eq---------------------------------------------
767 // Structural equality check for Type representations
768 bool Type::eq( const Type * ) const {
769 return true; // Nothing else can go wrong
770 }
771
772 //------------------------------hash-------------------------------------------
773 // Type-specific hashing function.
774 uint Type::hash(void) const {
775 return _base;
776 }
777
778 //------------------------------is_finite--------------------------------------
779 // Has a finite value
780 bool Type::is_finite() const {
781 return false;
782 }
783
784 //------------------------------is_nan-----------------------------------------
785 // Is not a number (NaN)
786 bool Type::is_nan() const {
787 return false;
788 }
789
790 #ifdef ASSERT
791 class VerifyMeet;
792 class VerifyMeetResult : public ArenaObj {
793 friend class VerifyMeet;
794 friend class Type;
795 private:
796 class VerifyMeetResultEntry {
797 private:
798 const Type* _in1;
799 const Type* _in2;
800 const Type* _res;
801 public:
802 VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res):
803 _in1(in1), _in2(in2), _res(res) {
804 }
805 VerifyMeetResultEntry():
806 _in1(nullptr), _in2(nullptr), _res(nullptr) {
807 }
808
809 bool operator==(const VerifyMeetResultEntry& rhs) const {
810 return _in1 == rhs._in1 &&
811 _in2 == rhs._in2 &&
812 _res == rhs._res;
813 }
814
815 bool operator!=(const VerifyMeetResultEntry& rhs) const {
816 return !(rhs == *this);
817 }
818
819 static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) {
820 if ((intptr_t) v1._in1 < (intptr_t) v2._in1) {
821 return -1;
822 } else if (v1._in1 == v2._in1) {
823 if ((intptr_t) v1._in2 < (intptr_t) v2._in2) {
824 return -1;
825 } else if (v1._in2 == v2._in2) {
826 assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result");
827 return 0;
828 }
829 return 1;
830 }
831 return 1;
832 }
833 const Type* res() const { return _res; }
834 };
835 uint _depth;
836 GrowableArray<VerifyMeetResultEntry> _cache;
837
838 // With verification code, the meet of A and B causes the computation of:
839 // 1- meet(A, B)
840 // 2- meet(B, A)
841 // 3- meet(dual(meet(A, B)), dual(A))
842 // 4- meet(dual(meet(A, B)), dual(B))
843 // 5- meet(dual(A), dual(B))
844 // 6- meet(dual(B), dual(A))
845 // 7- meet(dual(meet(dual(A), dual(B))), A)
846 // 8- meet(dual(meet(dual(A), dual(B))), B)
847 //
848 // In addition the meet of A[] and B[] requires the computation of the meet of A and B.
849 //
850 // The meet of A[] and B[] triggers the computation of:
851 // 1- meet(A[], B[][)
852 // 1.1- meet(A, B)
853 // 1.2- meet(B, A)
854 // 1.3- meet(dual(meet(A, B)), dual(A))
855 // 1.4- meet(dual(meet(A, B)), dual(B))
856 // 1.5- meet(dual(A), dual(B))
857 // 1.6- meet(dual(B), dual(A))
858 // 1.7- meet(dual(meet(dual(A), dual(B))), A)
859 // 1.8- meet(dual(meet(dual(A), dual(B))), B)
860 // 2- meet(B[], A[])
861 // 2.1- meet(B, A) = 1.2
862 // 2.2- meet(A, B) = 1.1
863 // 2.3- meet(dual(meet(B, A)), dual(B)) = 1.4
864 // 2.4- meet(dual(meet(B, A)), dual(A)) = 1.3
865 // 2.5- meet(dual(B), dual(A)) = 1.6
866 // 2.6- meet(dual(A), dual(B)) = 1.5
867 // 2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8
868 // 2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7
869 // etc.
870 // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number
871 // of different meet operations is linear in the number of dimensions. The function below caches meet results for the
872 // duration of the meet at the root of the recursive calls.
873 //
874 const Type* meet(const Type* t1, const Type* t2) {
875 bool found = false;
876 const VerifyMeetResultEntry meet(t1, t2, nullptr);
877 int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
878 const Type* res = nullptr;
879 if (found) {
880 res = _cache.at(pos).res();
881 } else {
882 res = t1->xmeet(t2);
883 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
884 found = false;
885 _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
886 assert(found, "should be in table after it's added");
887 }
888 return res;
889 }
890
891 void add(const Type* t1, const Type* t2, const Type* res) {
892 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
893 }
894
895 bool empty_cache() const {
896 return _cache.length() == 0;
897 }
898 public:
899 VerifyMeetResult(Compile* C) :
900 _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) {
901 }
902 };
903
904 void Type::assert_type_verify_empty() const {
905 assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded");
906 }
907
908 class VerifyMeet {
909 private:
910 Compile* _C;
911 public:
912 VerifyMeet(Compile* C) : _C(C) {
913 if (C->_type_verify == nullptr) {
914 C->_type_verify = new (C->comp_arena())VerifyMeetResult(C);
915 }
916 _C->_type_verify->_depth++;
917 }
918
919 ~VerifyMeet() {
920 assert(_C->_type_verify->_depth != 0, "");
921 _C->_type_verify->_depth--;
922 if (_C->_type_verify->_depth == 0) {
923 _C->_type_verify->_cache.trunc_to(0);
924 }
925 }
926
927 const Type* meet(const Type* t1, const Type* t2) const {
928 return _C->_type_verify->meet(t1, t2);
929 }
930
931 void add(const Type* t1, const Type* t2, const Type* res) const {
932 _C->_type_verify->add(t1, t2, res);
933 }
934 };
935
936 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
937 Compile* C = Compile::current();
938 const Type* mt2 = verify.meet(t, this);
939 if (mt != mt2) {
940 tty->print_cr("=== Meet Not Commutative ===");
941 tty->print("t = "); t->dump(); tty->cr();
942 tty->print("this = "); dump(); tty->cr();
943 tty->print("t meet this = "); mt2->dump(); tty->cr();
944 tty->print("this meet t = "); mt->dump(); tty->cr();
945 fatal("meet not commutative");
946 }
947 const Type* dual_join = mt->_dual;
948 const Type* t2t = verify.meet(dual_join,t->_dual);
949 const Type* t2this = verify.meet(dual_join,this->_dual);
950
951 // Interface meet Oop is Not Symmetric:
952 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
953 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
954
955 if (t2t != t->_dual || t2this != this->_dual) {
956 tty->print_cr("=== Meet Not Symmetric ===");
957 tty->print("t = "); t->dump(); tty->cr();
958 tty->print("this= "); dump(); tty->cr();
959 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
960
961 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
962 tty->print("this_dual= "); _dual->dump(); tty->cr();
963 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
964
965 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
966 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
967
968 fatal("meet not symmetric");
969 }
970 }
971 #endif
972
973 //------------------------------meet-------------------------------------------
974 // Compute the MEET of two types. NOT virtual. It enforces that meet is
975 // commutative and the lattice is symmetric.
976 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
977 if (isa_narrowoop() && t->isa_narrowoop()) {
978 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
979 return result->make_narrowoop();
980 }
981 if (isa_narrowklass() && t->isa_narrowklass()) {
982 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
983 return result->make_narrowklass();
984 }
985
986 #ifdef ASSERT
987 Compile* C = Compile::current();
988 VerifyMeet verify(C);
989 #endif
990
991 const Type *this_t = maybe_remove_speculative(include_speculative);
992 t = t->maybe_remove_speculative(include_speculative);
993
994 const Type *mt = this_t->xmeet(t);
995 #ifdef ASSERT
996 verify.add(this_t, t, mt);
997 if (isa_narrowoop() || t->isa_narrowoop()) {
998 return mt;
999 }
1000 if (isa_narrowklass() || t->isa_narrowklass()) {
1001 return mt;
1002 }
1003 this_t->check_symmetrical(t, mt, verify);
1004 const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1005 this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1006 #endif
1007 return mt;
1008 }
1009
1010 //------------------------------xmeet------------------------------------------
1011 // Compute the MEET of two types. It returns a new Type object.
1012 const Type *Type::xmeet( const Type *t ) const {
1013 // Perform a fast test for common case; meeting the same types together.
1014 if( this == t ) return this; // Meeting same type-rep?
1015
1016 // Meeting TOP with anything?
1017 if( _base == Top ) return t;
1018
1019 // Meeting BOTTOM with anything?
1020 if( _base == Bottom ) return BOTTOM;
1021
1022 // Current "this->_base" is one of: Bad, Multi, Control, Top,
1023 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
1024 switch (t->base()) { // Switch on original type
1025
1026 // Cut in half the number of cases I must handle. Only need cases for when
1027 // the given enum "t->type" is less than or equal to the local enum "type".
1028 case FloatCon:
1029 case DoubleCon:
1030 case Int:
1031 case Long:
1032 return t->xmeet(this);
1033
1034 case OopPtr:
1035 return t->xmeet(this);
1036
1037 case InstPtr:
1038 return t->xmeet(this);
1039
1040 case MetadataPtr:
1041 case KlassPtr:
1042 case InstKlassPtr:
1043 case AryKlassPtr:
1044 return t->xmeet(this);
1045
1046 case AryPtr:
1047 return t->xmeet(this);
1048
1049 case NarrowOop:
1050 return t->xmeet(this);
1051
1052 case NarrowKlass:
1053 return t->xmeet(this);
1054
1055 case Bad: // Type check
1056 default: // Bogus type not in lattice
1057 typerr(t);
1058 return Type::BOTTOM;
1059
1060 case Bottom: // Ye Olde Default
1061 return t;
1062
1063 case FloatTop:
1064 if( _base == FloatTop ) return this;
1065 case FloatBot: // Float
1066 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
1067 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
1068 typerr(t);
1069 return Type::BOTTOM;
1070
1071 case DoubleTop:
1072 if( _base == DoubleTop ) return this;
1073 case DoubleBot: // Double
1074 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
1075 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
1076 typerr(t);
1077 return Type::BOTTOM;
1078
1079 // These next few cases must match exactly or it is a compile-time error.
1080 case Control: // Control of code
1081 case Abio: // State of world outside of program
1082 case Memory:
1083 if( _base == t->_base ) return this;
1084 typerr(t);
1085 return Type::BOTTOM;
1086
1087 case Top: // Top of the lattice
1088 return this;
1089 }
1090
1091 // The type is unchanged
1092 return this;
1093 }
1094
1095 //-----------------------------filter------------------------------------------
1096 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1097 const Type* ft = join_helper(kills, include_speculative);
1098 if (ft->empty())
1099 return Type::TOP; // Canonical empty value
1100 return ft;
1101 }
1102
1103 //------------------------------xdual------------------------------------------
1104 const Type *Type::xdual() const {
1105 // Note: the base() accessor asserts the sanity of _base.
1106 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1107 return new Type(_type_info[_base].dual_type);
1108 }
1109
1110 //------------------------------has_memory-------------------------------------
1111 bool Type::has_memory() const {
1112 Type::TYPES tx = base();
1113 if (tx == Memory) return true;
1114 if (tx == Tuple) {
1115 const TypeTuple *t = is_tuple();
1116 for (uint i=0; i < t->cnt(); i++) {
1117 tx = t->field_at(i)->base();
1118 if (tx == Memory) return true;
1119 }
1120 }
1121 return false;
1122 }
1123
1124 #ifndef PRODUCT
1125 //------------------------------dump2------------------------------------------
1126 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1127 st->print("%s", _type_info[_base].msg);
1128 }
1129
1130 //------------------------------dump-------------------------------------------
1131 void Type::dump_on(outputStream *st) const {
1132 ResourceMark rm;
1133 Dict d(cmpkey,hashkey); // Stop recursive type dumping
1134 dump2(d,1, st);
1135 if (is_ptr_to_narrowoop()) {
1136 st->print(" [narrow]");
1137 } else if (is_ptr_to_narrowklass()) {
1138 st->print(" [narrowklass]");
1139 }
1140 }
1141
1142 //-----------------------------------------------------------------------------
1143 const char* Type::str(const Type* t) {
1144 stringStream ss;
1145 t->dump_on(&ss);
1146 return ss.as_string();
1147 }
1148 #endif
1149
1150 //------------------------------singleton--------------------------------------
1151 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1152 // constants (Ldi nodes). Singletons are integer, float or double constants.
1153 bool Type::singleton(void) const {
1154 return _base == Top || _base == Half;
1155 }
1156
1157 //------------------------------empty------------------------------------------
1158 // TRUE if Type is a type with no values, FALSE otherwise.
1159 bool Type::empty(void) const {
1160 switch (_base) {
1161 case DoubleTop:
1162 case FloatTop:
1163 case Top:
1164 return true;
1165
1166 case Half:
1167 case Abio:
1168 case Return_Address:
1169 case Memory:
1170 case Bottom:
1171 case FloatBot:
1172 case DoubleBot:
1173 return false; // never a singleton, therefore never empty
1174
1175 default:
1176 ShouldNotReachHere();
1177 return false;
1178 }
1179 }
1180
1181 //------------------------------dump_stats-------------------------------------
1182 // Dump collected statistics to stderr
1183 #ifndef PRODUCT
1184 void Type::dump_stats() {
1185 tty->print("Types made: %d\n", type_dict()->Size());
1186 }
1187 #endif
1188
1189 //------------------------------category---------------------------------------
1190 #ifndef PRODUCT
1191 Type::Category Type::category() const {
1192 const TypeTuple* tuple;
1193 switch (base()) {
1194 case Type::Int:
1195 case Type::Long:
1196 case Type::Half:
1197 case Type::NarrowOop:
1198 case Type::NarrowKlass:
1199 case Type::Array:
1200 case Type::VectorA:
1201 case Type::VectorS:
1202 case Type::VectorD:
1203 case Type::VectorX:
1204 case Type::VectorY:
1205 case Type::VectorZ:
1206 case Type::VectorMask:
1207 case Type::AnyPtr:
1208 case Type::RawPtr:
1209 case Type::OopPtr:
1210 case Type::InstPtr:
1211 case Type::AryPtr:
1212 case Type::MetadataPtr:
1213 case Type::KlassPtr:
1214 case Type::InstKlassPtr:
1215 case Type::AryKlassPtr:
1216 case Type::Function:
1217 case Type::Return_Address:
1218 case Type::FloatTop:
1219 case Type::FloatCon:
1220 case Type::FloatBot:
1221 case Type::DoubleTop:
1222 case Type::DoubleCon:
1223 case Type::DoubleBot:
1224 return Category::Data;
1225 case Type::Memory:
1226 return Category::Memory;
1227 case Type::Control:
1228 return Category::Control;
1229 case Type::Top:
1230 case Type::Abio:
1231 case Type::Bottom:
1232 return Category::Other;
1233 case Type::Bad:
1234 case Type::lastype:
1235 return Category::Undef;
1236 case Type::Tuple:
1237 // Recursive case. Return CatMixed if the tuple contains types of
1238 // different categories (e.g. CallStaticJavaNode's type), or the specific
1239 // category if all types are of the same category (e.g. IfNode's type).
1240 tuple = is_tuple();
1241 if (tuple->cnt() == 0) {
1242 return Category::Undef;
1243 } else {
1244 Category first = tuple->field_at(0)->category();
1245 for (uint i = 1; i < tuple->cnt(); i++) {
1246 if (tuple->field_at(i)->category() != first) {
1247 return Category::Mixed;
1248 }
1249 }
1250 return first;
1251 }
1252 default:
1253 assert(false, "unmatched base type: all base types must be categorized");
1254 }
1255 return Category::Undef;
1256 }
1257
1258 bool Type::has_category(Type::Category cat) const {
1259 if (category() == cat) {
1260 return true;
1261 }
1262 if (category() == Category::Mixed) {
1263 const TypeTuple* tuple = is_tuple();
1264 for (uint i = 0; i < tuple->cnt(); i++) {
1265 if (tuple->field_at(i)->has_category(cat)) {
1266 return true;
1267 }
1268 }
1269 }
1270 return false;
1271 }
1272 #endif
1273
1274 //------------------------------typerr-----------------------------------------
1275 void Type::typerr( const Type *t ) const {
1276 #ifndef PRODUCT
1277 tty->print("\nError mixing types: ");
1278 dump();
1279 tty->print(" and ");
1280 t->dump();
1281 tty->print("\n");
1282 #endif
1283 ShouldNotReachHere();
1284 }
1285
1286
1287 //=============================================================================
1288 // Convenience common pre-built types.
1289 const TypeF *TypeF::MAX; // Floating point max
1290 const TypeF *TypeF::MIN; // Floating point min
1291 const TypeF *TypeF::ZERO; // Floating point zero
1292 const TypeF *TypeF::ONE; // Floating point one
1293 const TypeF *TypeF::POS_INF; // Floating point positive infinity
1294 const TypeF *TypeF::NEG_INF; // Floating point negative infinity
1295
1296 //------------------------------make-------------------------------------------
1297 // Create a float constant
1298 const TypeF *TypeF::make(float f) {
1299 return (TypeF*)(new TypeF(f))->hashcons();
1300 }
1301
1302 //------------------------------meet-------------------------------------------
1303 // Compute the MEET of two types. It returns a new Type object.
1304 const Type *TypeF::xmeet( const Type *t ) const {
1305 // Perform a fast test for common case; meeting the same types together.
1306 if( this == t ) return this; // Meeting same type-rep?
1307
1308 // Current "this->_base" is FloatCon
1309 switch (t->base()) { // Switch on original type
1310 case AnyPtr: // Mixing with oops happens when javac
1311 case RawPtr: // reuses local variables
1312 case OopPtr:
1313 case InstPtr:
1314 case AryPtr:
1315 case MetadataPtr:
1316 case KlassPtr:
1317 case InstKlassPtr:
1318 case AryKlassPtr:
1319 case NarrowOop:
1320 case NarrowKlass:
1321 case Int:
1322 case Long:
1323 case DoubleTop:
1324 case DoubleCon:
1325 case DoubleBot:
1326 case Bottom: // Ye Olde Default
1327 return Type::BOTTOM;
1328
1329 case FloatBot:
1330 return t;
1331
1332 default: // All else is a mistake
1333 typerr(t);
1334
1335 case FloatCon: // Float-constant vs Float-constant?
1336 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
1337 // must compare bitwise as positive zero, negative zero and NaN have
1338 // all the same representation in C++
1339 return FLOAT; // Return generic float
1340 // Equal constants
1341 case Top:
1342 case FloatTop:
1343 break; // Return the float constant
1344 }
1345 return this; // Return the float constant
1346 }
1347
1348 //------------------------------xdual------------------------------------------
1349 // Dual: symmetric
1350 const Type *TypeF::xdual() const {
1351 return this;
1352 }
1353
1354 //------------------------------eq---------------------------------------------
1355 // Structural equality check for Type representations
1356 bool TypeF::eq(const Type *t) const {
1357 // Bitwise comparison to distinguish between +/-0. These values must be treated
1358 // as different to be consistent with C1 and the interpreter.
1359 return (jint_cast(_f) == jint_cast(t->getf()));
1360 }
1361
1362 //------------------------------hash-------------------------------------------
1363 // Type-specific hashing function.
1364 uint TypeF::hash(void) const {
1365 return *(uint*)(&_f);
1366 }
1367
1368 //------------------------------is_finite--------------------------------------
1369 // Has a finite value
1370 bool TypeF::is_finite() const {
1371 return g_isfinite(getf()) != 0;
1372 }
1373
1374 //------------------------------is_nan-----------------------------------------
1375 // Is not a number (NaN)
1376 bool TypeF::is_nan() const {
1377 return g_isnan(getf()) != 0;
1378 }
1379
1380 //------------------------------dump2------------------------------------------
1381 // Dump float constant Type
1382 #ifndef PRODUCT
1383 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1384 Type::dump2(d,depth, st);
1385 st->print("%f", _f);
1386 }
1387 #endif
1388
1389 //------------------------------singleton--------------------------------------
1390 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1391 // constants (Ldi nodes). Singletons are integer, float or double constants
1392 // or a single symbol.
1393 bool TypeF::singleton(void) const {
1394 return true; // Always a singleton
1395 }
1396
1397 bool TypeF::empty(void) const {
1398 return false; // always exactly a singleton
1399 }
1400
1401 //=============================================================================
1402 // Convenience common pre-built types.
1403 const TypeD *TypeD::MAX; // Floating point max
1404 const TypeD *TypeD::MIN; // Floating point min
1405 const TypeD *TypeD::ZERO; // Floating point zero
1406 const TypeD *TypeD::ONE; // Floating point one
1407 const TypeD *TypeD::POS_INF; // Floating point positive infinity
1408 const TypeD *TypeD::NEG_INF; // Floating point negative infinity
1409
1410 //------------------------------make-------------------------------------------
1411 const TypeD *TypeD::make(double d) {
1412 return (TypeD*)(new TypeD(d))->hashcons();
1413 }
1414
1415 //------------------------------meet-------------------------------------------
1416 // Compute the MEET of two types. It returns a new Type object.
1417 const Type *TypeD::xmeet( const Type *t ) const {
1418 // Perform a fast test for common case; meeting the same types together.
1419 if( this == t ) return this; // Meeting same type-rep?
1420
1421 // Current "this->_base" is DoubleCon
1422 switch (t->base()) { // Switch on original type
1423 case AnyPtr: // Mixing with oops happens when javac
1424 case RawPtr: // reuses local variables
1425 case OopPtr:
1426 case InstPtr:
1427 case AryPtr:
1428 case MetadataPtr:
1429 case KlassPtr:
1430 case InstKlassPtr:
1431 case AryKlassPtr:
1432 case NarrowOop:
1433 case NarrowKlass:
1434 case Int:
1435 case Long:
1436 case FloatTop:
1437 case FloatCon:
1438 case FloatBot:
1439 case Bottom: // Ye Olde Default
1440 return Type::BOTTOM;
1441
1442 case DoubleBot:
1443 return t;
1444
1445 default: // All else is a mistake
1446 typerr(t);
1447
1448 case DoubleCon: // Double-constant vs Double-constant?
1449 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
1450 return DOUBLE; // Return generic double
1451 case Top:
1452 case DoubleTop:
1453 break;
1454 }
1455 return this; // Return the double constant
1456 }
1457
1458 //------------------------------xdual------------------------------------------
1459 // Dual: symmetric
1460 const Type *TypeD::xdual() const {
1461 return this;
1462 }
1463
1464 //------------------------------eq---------------------------------------------
1465 // Structural equality check for Type representations
1466 bool TypeD::eq(const Type *t) const {
1467 // Bitwise comparison to distinguish between +/-0. These values must be treated
1468 // as different to be consistent with C1 and the interpreter.
1469 return (jlong_cast(_d) == jlong_cast(t->getd()));
1470 }
1471
1472 //------------------------------hash-------------------------------------------
1473 // Type-specific hashing function.
1474 uint TypeD::hash(void) const {
1475 return *(uint*)(&_d);
1476 }
1477
1478 //------------------------------is_finite--------------------------------------
1479 // Has a finite value
1480 bool TypeD::is_finite() const {
1481 return g_isfinite(getd()) != 0;
1482 }
1483
1484 //------------------------------is_nan-----------------------------------------
1485 // Is not a number (NaN)
1486 bool TypeD::is_nan() const {
1487 return g_isnan(getd()) != 0;
1488 }
1489
1490 //------------------------------dump2------------------------------------------
1491 // Dump double constant Type
1492 #ifndef PRODUCT
1493 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1494 Type::dump2(d,depth,st);
1495 st->print("%f", _d);
1496 }
1497 #endif
1498
1499 //------------------------------singleton--------------------------------------
1500 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1501 // constants (Ldi nodes). Singletons are integer, float or double constants
1502 // or a single symbol.
1503 bool TypeD::singleton(void) const {
1504 return true; // Always a singleton
1505 }
1506
1507 bool TypeD::empty(void) const {
1508 return false; // always exactly a singleton
1509 }
1510
1511 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1512 if (bt == T_INT) {
1513 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1514 }
1515 assert(bt == T_LONG, "basic type not an int or long");
1516 return TypeLong::make(lo, hi, w);
1517 }
1518
1519 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1520 if (bt == T_INT) {
1521 return is_int()->get_con();
1522 }
1523 assert(bt == T_LONG, "basic type not an int or long");
1524 return is_long()->get_con();
1525 }
1526
1527 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1528 if (bt == T_INT) {
1529 return TypeInt::INT;
1530 }
1531 assert(bt == T_LONG, "basic type not an int or long");
1532 return TypeLong::LONG;
1533 }
1534
1535 const TypeInteger* TypeInteger::zero(BasicType bt) {
1536 if (bt == T_INT) {
1537 return TypeInt::ZERO;
1538 }
1539 assert(bt == T_LONG, "basic type not an int or long");
1540 return TypeLong::ZERO;
1541 }
1542
1543 const TypeInteger* TypeInteger::one(BasicType bt) {
1544 if (bt == T_INT) {
1545 return TypeInt::ONE;
1546 }
1547 assert(bt == T_LONG, "basic type not an int or long");
1548 return TypeLong::ONE;
1549 }
1550
1551 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1552 if (bt == T_INT) {
1553 return TypeInt::MINUS_1;
1554 }
1555 assert(bt == T_LONG, "basic type not an int or long");
1556 return TypeLong::MINUS_1;
1557 }
1558
1559 //=============================================================================
1560 // Convenience common pre-built types.
1561 const TypeInt *TypeInt::MAX; // INT_MAX
1562 const TypeInt *TypeInt::MIN; // INT_MIN
1563 const TypeInt *TypeInt::MINUS_1;// -1
1564 const TypeInt *TypeInt::ZERO; // 0
1565 const TypeInt *TypeInt::ONE; // 1
1566 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
1567 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
1568 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
1569 const TypeInt *TypeInt::CC_GT; // [1] == ONE
1570 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
1571 const TypeInt *TypeInt::CC_LE; // [-1,0]
1572 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
1573 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
1574 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
1575 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
1576 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
1577 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
1578 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
1579 const TypeInt *TypeInt::INT; // 32-bit integers
1580 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1581 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1582
1583 //------------------------------TypeInt----------------------------------------
1584 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) {
1585 }
1586
1587 //------------------------------make-------------------------------------------
1588 const TypeInt *TypeInt::make( jint lo ) {
1589 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1590 }
1591
1592 static int normalize_int_widen( jint lo, jint hi, int w ) {
1593 // Certain normalizations keep us sane when comparing types.
1594 // The 'SMALLINT' covers constants and also CC and its relatives.
1595 if (lo <= hi) {
1596 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin;
1597 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1598 } else {
1599 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin;
1600 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1601 }
1602 return w;
1603 }
1604
1605 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1606 w = normalize_int_widen(lo, hi, w);
1607 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1608 }
1609
1610 //------------------------------meet-------------------------------------------
1611 // Compute the MEET of two types. It returns a new Type representation object
1612 // with reference count equal to the number of Types pointing at it.
1613 // Caller should wrap a Types around it.
1614 const Type *TypeInt::xmeet( const Type *t ) const {
1615 // Perform a fast test for common case; meeting the same types together.
1616 if( this == t ) return this; // Meeting same type?
1617
1618 // Currently "this->_base" is a TypeInt
1619 switch (t->base()) { // Switch on original type
1620 case AnyPtr: // Mixing with oops happens when javac
1621 case RawPtr: // reuses local variables
1622 case OopPtr:
1623 case InstPtr:
1624 case AryPtr:
1625 case MetadataPtr:
1626 case KlassPtr:
1627 case InstKlassPtr:
1628 case AryKlassPtr:
1629 case NarrowOop:
1630 case NarrowKlass:
1631 case Long:
1632 case FloatTop:
1633 case FloatCon:
1634 case FloatBot:
1635 case DoubleTop:
1636 case DoubleCon:
1637 case DoubleBot:
1638 case Bottom: // Ye Olde Default
1639 return Type::BOTTOM;
1640 default: // All else is a mistake
1641 typerr(t);
1642 case Top: // No change
1643 return this;
1644 case Int: // Int vs Int?
1645 break;
1646 }
1647
1648 // Expand covered set
1649 const TypeInt *r = t->is_int();
1650 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1651 }
1652
1653 //------------------------------xdual------------------------------------------
1654 // Dual: reverse hi & lo; flip widen
1655 const Type *TypeInt::xdual() const {
1656 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1657 return new TypeInt(_hi,_lo,w);
1658 }
1659
1660 //------------------------------widen------------------------------------------
1661 // Only happens for optimistic top-down optimizations.
1662 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1663 // Coming from TOP or such; no widening
1664 if( old->base() != Int ) return this;
1665 const TypeInt *ot = old->is_int();
1666
1667 // If new guy is equal to old guy, no widening
1668 if( _lo == ot->_lo && _hi == ot->_hi )
1669 return old;
1670
1671 // If new guy contains old, then we widened
1672 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1673 // New contains old
1674 // If new guy is already wider than old, no widening
1675 if( _widen > ot->_widen ) return this;
1676 // If old guy was a constant, do not bother
1677 if (ot->_lo == ot->_hi) return this;
1678 // Now widen new guy.
1679 // Check for widening too far
1680 if (_widen == WidenMax) {
1681 int max = max_jint;
1682 int min = min_jint;
1683 if (limit->isa_int()) {
1684 max = limit->is_int()->_hi;
1685 min = limit->is_int()->_lo;
1686 }
1687 if (min < _lo && _hi < max) {
1688 // If neither endpoint is extremal yet, push out the endpoint
1689 // which is closer to its respective limit.
1690 if (_lo >= 0 || // easy common case
1691 ((juint)_lo - min) >= ((juint)max - _hi)) {
1692 // Try to widen to an unsigned range type of 31 bits:
1693 return make(_lo, max, WidenMax);
1694 } else {
1695 return make(min, _hi, WidenMax);
1696 }
1697 }
1698 return TypeInt::INT;
1699 }
1700 // Returned widened new guy
1701 return make(_lo,_hi,_widen+1);
1702 }
1703
1704 // If old guy contains new, then we probably widened too far & dropped to
1705 // bottom. Return the wider fellow.
1706 if ( ot->_lo <= _lo && ot->_hi >= _hi )
1707 return old;
1708
1709 //fatal("Integer value range is not subset");
1710 //return this;
1711 return TypeInt::INT;
1712 }
1713
1714 //------------------------------narrow---------------------------------------
1715 // Only happens for pessimistic optimizations.
1716 const Type *TypeInt::narrow( const Type *old ) const {
1717 if (_lo >= _hi) return this; // already narrow enough
1718 if (old == nullptr) return this;
1719 const TypeInt* ot = old->isa_int();
1720 if (ot == nullptr) return this;
1721 jint olo = ot->_lo;
1722 jint ohi = ot->_hi;
1723
1724 // If new guy is equal to old guy, no narrowing
1725 if (_lo == olo && _hi == ohi) return old;
1726
1727 // If old guy was maximum range, allow the narrowing
1728 if (olo == min_jint && ohi == max_jint) return this;
1729
1730 if (_lo < olo || _hi > ohi)
1731 return this; // doesn't narrow; pretty weird
1732
1733 // The new type narrows the old type, so look for a "death march".
1734 // See comments on PhaseTransform::saturate.
1735 juint nrange = (juint)_hi - _lo;
1736 juint orange = (juint)ohi - olo;
1737 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1738 // Use the new type only if the range shrinks a lot.
1739 // We do not want the optimizer computing 2^31 point by point.
1740 return old;
1741 }
1742
1743 return this;
1744 }
1745
1746 //-----------------------------filter------------------------------------------
1747 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1748 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1749 if (ft == nullptr || ft->empty())
1750 return Type::TOP; // Canonical empty value
1751 if (ft->_widen < this->_widen) {
1752 // Do not allow the value of kill->_widen to affect the outcome.
1753 // The widen bits must be allowed to run freely through the graph.
1754 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1755 }
1756 return ft;
1757 }
1758
1759 //------------------------------eq---------------------------------------------
1760 // Structural equality check for Type representations
1761 bool TypeInt::eq( const Type *t ) const {
1762 const TypeInt *r = t->is_int(); // Handy access
1763 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1764 }
1765
1766 //------------------------------hash-------------------------------------------
1767 // Type-specific hashing function.
1768 uint TypeInt::hash(void) const {
1769 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Int;
1770 }
1771
1772 //------------------------------is_finite--------------------------------------
1773 // Has a finite value
1774 bool TypeInt::is_finite() const {
1775 return true;
1776 }
1777
1778 //------------------------------dump2------------------------------------------
1779 // Dump TypeInt
1780 #ifndef PRODUCT
1781 static const char* intname(char* buf, size_t buf_size, jint n) {
1782 if (n == min_jint)
1783 return "min";
1784 else if (n < min_jint + 10000)
1785 os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint);
1786 else if (n == max_jint)
1787 return "max";
1788 else if (n > max_jint - 10000)
1789 os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n);
1790 else
1791 os::snprintf_checked(buf, buf_size, INT32_FORMAT, n);
1792 return buf;
1793 }
1794
1795 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1796 char buf[40], buf2[40];
1797 if (_lo == min_jint && _hi == max_jint)
1798 st->print("int");
1799 else if (is_con())
1800 st->print("int:%s", intname(buf, sizeof(buf), get_con()));
1801 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1802 st->print("bool");
1803 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1804 st->print("byte");
1805 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1806 st->print("char");
1807 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1808 st->print("short");
1809 else if (_hi == max_jint)
1810 st->print("int:>=%s", intname(buf, sizeof(buf), _lo));
1811 else if (_lo == min_jint)
1812 st->print("int:<=%s", intname(buf, sizeof(buf), _hi));
1813 else
1814 st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi));
1815
1816 if (_widen != 0 && this != TypeInt::INT)
1817 st->print(":%.*s", _widen, "wwww");
1818 }
1819 #endif
1820
1821 //------------------------------singleton--------------------------------------
1822 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1823 // constants.
1824 bool TypeInt::singleton(void) const {
1825 return _lo >= _hi;
1826 }
1827
1828 bool TypeInt::empty(void) const {
1829 return _lo > _hi;
1830 }
1831
1832 //=============================================================================
1833 // Convenience common pre-built types.
1834 const TypeLong *TypeLong::MAX;
1835 const TypeLong *TypeLong::MIN;
1836 const TypeLong *TypeLong::MINUS_1;// -1
1837 const TypeLong *TypeLong::ZERO; // 0
1838 const TypeLong *TypeLong::ONE; // 1
1839 const TypeLong *TypeLong::POS; // >=0
1840 const TypeLong *TypeLong::LONG; // 64-bit integers
1841 const TypeLong *TypeLong::INT; // 32-bit subrange
1842 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1843 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1844
1845 //------------------------------TypeLong---------------------------------------
1846 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) {
1847 }
1848
1849 //------------------------------make-------------------------------------------
1850 const TypeLong *TypeLong::make( jlong lo ) {
1851 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1852 }
1853
1854 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1855 // Certain normalizations keep us sane when comparing types.
1856 // The 'SMALLINT' covers constants.
1857 if (lo <= hi) {
1858 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin;
1859 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1860 } else {
1861 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin;
1862 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1863 }
1864 return w;
1865 }
1866
1867 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1868 w = normalize_long_widen(lo, hi, w);
1869 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1870 }
1871
1872
1873 //------------------------------meet-------------------------------------------
1874 // Compute the MEET of two types. It returns a new Type representation object
1875 // with reference count equal to the number of Types pointing at it.
1876 // Caller should wrap a Types around it.
1877 const Type *TypeLong::xmeet( const Type *t ) const {
1878 // Perform a fast test for common case; meeting the same types together.
1879 if( this == t ) return this; // Meeting same type?
1880
1881 // Currently "this->_base" is a TypeLong
1882 switch (t->base()) { // Switch on original type
1883 case AnyPtr: // Mixing with oops happens when javac
1884 case RawPtr: // reuses local variables
1885 case OopPtr:
1886 case InstPtr:
1887 case AryPtr:
1888 case MetadataPtr:
1889 case KlassPtr:
1890 case InstKlassPtr:
1891 case AryKlassPtr:
1892 case NarrowOop:
1893 case NarrowKlass:
1894 case Int:
1895 case FloatTop:
1896 case FloatCon:
1897 case FloatBot:
1898 case DoubleTop:
1899 case DoubleCon:
1900 case DoubleBot:
1901 case Bottom: // Ye Olde Default
1902 return Type::BOTTOM;
1903 default: // All else is a mistake
1904 typerr(t);
1905 case Top: // No change
1906 return this;
1907 case Long: // Long vs Long?
1908 break;
1909 }
1910
1911 // Expand covered set
1912 const TypeLong *r = t->is_long(); // Turn into a TypeLong
1913 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1914 }
1915
1916 //------------------------------xdual------------------------------------------
1917 // Dual: reverse hi & lo; flip widen
1918 const Type *TypeLong::xdual() const {
1919 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1920 return new TypeLong(_hi,_lo,w);
1921 }
1922
1923 //------------------------------widen------------------------------------------
1924 // Only happens for optimistic top-down optimizations.
1925 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1926 // Coming from TOP or such; no widening
1927 if( old->base() != Long ) return this;
1928 const TypeLong *ot = old->is_long();
1929
1930 // If new guy is equal to old guy, no widening
1931 if( _lo == ot->_lo && _hi == ot->_hi )
1932 return old;
1933
1934 // If new guy contains old, then we widened
1935 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1936 // New contains old
1937 // If new guy is already wider than old, no widening
1938 if( _widen > ot->_widen ) return this;
1939 // If old guy was a constant, do not bother
1940 if (ot->_lo == ot->_hi) return this;
1941 // Now widen new guy.
1942 // Check for widening too far
1943 if (_widen == WidenMax) {
1944 jlong max = max_jlong;
1945 jlong min = min_jlong;
1946 if (limit->isa_long()) {
1947 max = limit->is_long()->_hi;
1948 min = limit->is_long()->_lo;
1949 }
1950 if (min < _lo && _hi < max) {
1951 // If neither endpoint is extremal yet, push out the endpoint
1952 // which is closer to its respective limit.
1953 if (_lo >= 0 || // easy common case
1954 ((julong)_lo - min) >= ((julong)max - _hi)) {
1955 // Try to widen to an unsigned range type of 32/63 bits:
1956 if (max >= max_juint && _hi < max_juint)
1957 return make(_lo, max_juint, WidenMax);
1958 else
1959 return make(_lo, max, WidenMax);
1960 } else {
1961 return make(min, _hi, WidenMax);
1962 }
1963 }
1964 return TypeLong::LONG;
1965 }
1966 // Returned widened new guy
1967 return make(_lo,_hi,_widen+1);
1968 }
1969
1970 // If old guy contains new, then we probably widened too far & dropped to
1971 // bottom. Return the wider fellow.
1972 if ( ot->_lo <= _lo && ot->_hi >= _hi )
1973 return old;
1974
1975 // fatal("Long value range is not subset");
1976 // return this;
1977 return TypeLong::LONG;
1978 }
1979
1980 //------------------------------narrow----------------------------------------
1981 // Only happens for pessimistic optimizations.
1982 const Type *TypeLong::narrow( const Type *old ) const {
1983 if (_lo >= _hi) return this; // already narrow enough
1984 if (old == nullptr) return this;
1985 const TypeLong* ot = old->isa_long();
1986 if (ot == nullptr) return this;
1987 jlong olo = ot->_lo;
1988 jlong ohi = ot->_hi;
1989
1990 // If new guy is equal to old guy, no narrowing
1991 if (_lo == olo && _hi == ohi) return old;
1992
1993 // If old guy was maximum range, allow the narrowing
1994 if (olo == min_jlong && ohi == max_jlong) return this;
1995
1996 if (_lo < olo || _hi > ohi)
1997 return this; // doesn't narrow; pretty weird
1998
1999 // The new type narrows the old type, so look for a "death march".
2000 // See comments on PhaseTransform::saturate.
2001 julong nrange = (julong)_hi - _lo;
2002 julong orange = (julong)ohi - olo;
2003 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
2004 // Use the new type only if the range shrinks a lot.
2005 // We do not want the optimizer computing 2^31 point by point.
2006 return old;
2007 }
2008
2009 return this;
2010 }
2011
2012 //-----------------------------filter------------------------------------------
2013 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
2014 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
2015 if (ft == nullptr || ft->empty())
2016 return Type::TOP; // Canonical empty value
2017 if (ft->_widen < this->_widen) {
2018 // Do not allow the value of kill->_widen to affect the outcome.
2019 // The widen bits must be allowed to run freely through the graph.
2020 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
2021 }
2022 return ft;
2023 }
2024
2025 //------------------------------eq---------------------------------------------
2026 // Structural equality check for Type representations
2027 bool TypeLong::eq( const Type *t ) const {
2028 const TypeLong *r = t->is_long(); // Handy access
2029 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
2030 }
2031
2032 //------------------------------hash-------------------------------------------
2033 // Type-specific hashing function.
2034 uint TypeLong::hash(void) const {
2035 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Long;
2036 }
2037
2038 //------------------------------is_finite--------------------------------------
2039 // Has a finite value
2040 bool TypeLong::is_finite() const {
2041 return true;
2042 }
2043
2044 //------------------------------dump2------------------------------------------
2045 // Dump TypeLong
2046 #ifndef PRODUCT
2047 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) {
2048 if (n > x) {
2049 if (n >= x + 10000) return nullptr;
2050 os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x);
2051 } else if (n < x) {
2052 if (n <= x - 10000) return nullptr;
2053 os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n);
2054 } else {
2055 return xname;
2056 }
2057 return buf;
2058 }
2059
2060 static const char* longname(char* buf, size_t buf_size, jlong n) {
2061 const char* str;
2062 if (n == min_jlong)
2063 return "min";
2064 else if (n < min_jlong + 10000)
2065 os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong);
2066 else if (n == max_jlong)
2067 return "max";
2068 else if (n > max_jlong - 10000)
2069 os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n);
2070 else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != nullptr)
2071 return str;
2072 else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != nullptr)
2073 return str;
2074 else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != nullptr)
2075 return str;
2076 else
2077 os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n);
2078 return buf;
2079 }
2080
2081 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
2082 char buf[80], buf2[80];
2083 if (_lo == min_jlong && _hi == max_jlong)
2084 st->print("long");
2085 else if (is_con())
2086 st->print("long:%s", longname(buf, sizeof(buf), get_con()));
2087 else if (_hi == max_jlong)
2088 st->print("long:>=%s", longname(buf, sizeof(buf), _lo));
2089 else if (_lo == min_jlong)
2090 st->print("long:<=%s", longname(buf, sizeof(buf), _hi));
2091 else
2092 st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2), _hi));
2093
2094 if (_widen != 0 && this != TypeLong::LONG)
2095 st->print(":%.*s", _widen, "wwww");
2096 }
2097 #endif
2098
2099 //------------------------------singleton--------------------------------------
2100 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2101 // constants
2102 bool TypeLong::singleton(void) const {
2103 return _lo >= _hi;
2104 }
2105
2106 bool TypeLong::empty(void) const {
2107 return _lo > _hi;
2108 }
2109
2110 //=============================================================================
2111 // Convenience common pre-built types.
2112 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
2113 const TypeTuple *TypeTuple::IFFALSE;
2114 const TypeTuple *TypeTuple::IFTRUE;
2115 const TypeTuple *TypeTuple::IFNEITHER;
2116 const TypeTuple *TypeTuple::LOOPBODY;
2117 const TypeTuple *TypeTuple::MEMBAR;
2118 const TypeTuple *TypeTuple::STORECONDITIONAL;
2119 const TypeTuple *TypeTuple::START_I2C;
2120 const TypeTuple *TypeTuple::INT_PAIR;
2121 const TypeTuple *TypeTuple::LONG_PAIR;
2122 const TypeTuple *TypeTuple::INT_CC_PAIR;
2123 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2124
2125 //------------------------------make-------------------------------------------
2126 // Make a TypeTuple from the range of a method signature
2127 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2128 ciType* return_type = sig->return_type();
2129 uint arg_cnt = return_type->size();
2130 const Type **field_array = fields(arg_cnt);
2131 switch (return_type->basic_type()) {
2132 case T_LONG:
2133 field_array[TypeFunc::Parms] = TypeLong::LONG;
2134 field_array[TypeFunc::Parms+1] = Type::HALF;
2135 break;
2136 case T_DOUBLE:
2137 field_array[TypeFunc::Parms] = Type::DOUBLE;
2138 field_array[TypeFunc::Parms+1] = Type::HALF;
2139 break;
2140 case T_OBJECT:
2141 case T_ARRAY:
2142 case T_BOOLEAN:
2143 case T_CHAR:
2144 case T_FLOAT:
2145 case T_BYTE:
2146 case T_SHORT:
2147 case T_INT:
2148 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2149 break;
2150 case T_VOID:
2151 break;
2152 default:
2153 ShouldNotReachHere();
2154 }
2155 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2156 }
2157
2158 // Make a TypeTuple from the domain of a method signature
2159 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2160 uint arg_cnt = sig->size();
2161
2162 uint pos = TypeFunc::Parms;
2163 const Type **field_array;
2164 if (recv != nullptr) {
2165 arg_cnt++;
2166 field_array = fields(arg_cnt);
2167 // Use get_const_type here because it respects UseUniqueSubclasses:
2168 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2169 } else {
2170 field_array = fields(arg_cnt);
2171 }
2172
2173 int i = 0;
2174 while (pos < TypeFunc::Parms + arg_cnt) {
2175 ciType* type = sig->type_at(i);
2176
2177 switch (type->basic_type()) {
2178 case T_LONG:
2179 field_array[pos++] = TypeLong::LONG;
2180 field_array[pos++] = Type::HALF;
2181 break;
2182 case T_DOUBLE:
2183 field_array[pos++] = Type::DOUBLE;
2184 field_array[pos++] = Type::HALF;
2185 break;
2186 case T_OBJECT:
2187 case T_ARRAY:
2188 case T_FLOAT:
2189 case T_INT:
2190 field_array[pos++] = get_const_type(type, interface_handling);
2191 break;
2192 case T_BOOLEAN:
2193 case T_CHAR:
2194 case T_BYTE:
2195 case T_SHORT:
2196 field_array[pos++] = TypeInt::INT;
2197 break;
2198 default:
2199 ShouldNotReachHere();
2200 }
2201 i++;
2202 }
2203
2204 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2205 }
2206
2207 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2208 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2209 }
2210
2211 //------------------------------fields-----------------------------------------
2212 // Subroutine call type with space allocated for argument types
2213 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2214 const Type **TypeTuple::fields( uint arg_cnt ) {
2215 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2216 flds[TypeFunc::Control ] = Type::CONTROL;
2217 flds[TypeFunc::I_O ] = Type::ABIO;
2218 flds[TypeFunc::Memory ] = Type::MEMORY;
2219 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2220 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2221
2222 return flds;
2223 }
2224
2225 //------------------------------meet-------------------------------------------
2226 // Compute the MEET of two types. It returns a new Type object.
2227 const Type *TypeTuple::xmeet( const Type *t ) const {
2228 // Perform a fast test for common case; meeting the same types together.
2229 if( this == t ) return this; // Meeting same type-rep?
2230
2231 // Current "this->_base" is Tuple
2232 switch (t->base()) { // switch on original type
2233
2234 case Bottom: // Ye Olde Default
2235 return t;
2236
2237 default: // All else is a mistake
2238 typerr(t);
2239
2240 case Tuple: { // Meeting 2 signatures?
2241 const TypeTuple *x = t->is_tuple();
2242 assert( _cnt == x->_cnt, "" );
2243 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2244 for( uint i=0; i<_cnt; i++ )
2245 fields[i] = field_at(i)->xmeet( x->field_at(i) );
2246 return TypeTuple::make(_cnt,fields);
2247 }
2248 case Top:
2249 break;
2250 }
2251 return this; // Return the double constant
2252 }
2253
2254 //------------------------------xdual------------------------------------------
2255 // Dual: compute field-by-field dual
2256 const Type *TypeTuple::xdual() const {
2257 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2258 for( uint i=0; i<_cnt; i++ )
2259 fields[i] = _fields[i]->dual();
2260 return new TypeTuple(_cnt,fields);
2261 }
2262
2263 //------------------------------eq---------------------------------------------
2264 // Structural equality check for Type representations
2265 bool TypeTuple::eq( const Type *t ) const {
2266 const TypeTuple *s = (const TypeTuple *)t;
2267 if (_cnt != s->_cnt) return false; // Unequal field counts
2268 for (uint i = 0; i < _cnt; i++)
2269 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
2270 return false; // Missed
2271 return true;
2272 }
2273
2274 //------------------------------hash-------------------------------------------
2275 // Type-specific hashing function.
2276 uint TypeTuple::hash(void) const {
2277 uintptr_t sum = _cnt;
2278 for( uint i=0; i<_cnt; i++ )
2279 sum += (uintptr_t)_fields[i]; // Hash on pointers directly
2280 return (uint)sum;
2281 }
2282
2283 //------------------------------dump2------------------------------------------
2284 // Dump signature Type
2285 #ifndef PRODUCT
2286 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2287 st->print("{");
2288 if( !depth || d[this] ) { // Check for recursive print
2289 st->print("...}");
2290 return;
2291 }
2292 d.Insert((void*)this, (void*)this); // Stop recursion
2293 if( _cnt ) {
2294 uint i;
2295 for( i=0; i<_cnt-1; i++ ) {
2296 st->print("%d:", i);
2297 _fields[i]->dump2(d, depth-1, st);
2298 st->print(", ");
2299 }
2300 st->print("%d:", i);
2301 _fields[i]->dump2(d, depth-1, st);
2302 }
2303 st->print("}");
2304 }
2305 #endif
2306
2307 //------------------------------singleton--------------------------------------
2308 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2309 // constants (Ldi nodes). Singletons are integer, float or double constants
2310 // or a single symbol.
2311 bool TypeTuple::singleton(void) const {
2312 return false; // Never a singleton
2313 }
2314
2315 bool TypeTuple::empty(void) const {
2316 for( uint i=0; i<_cnt; i++ ) {
2317 if (_fields[i]->empty()) return true;
2318 }
2319 return false;
2320 }
2321
2322 //=============================================================================
2323 // Convenience common pre-built types.
2324
2325 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2326 // Certain normalizations keep us sane when comparing types.
2327 // We do not want arrayOop variables to differ only by the wideness
2328 // of their index types. Pick minimum wideness, since that is the
2329 // forced wideness of small ranges anyway.
2330 if (size->_widen != Type::WidenMin)
2331 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2332 else
2333 return size;
2334 }
2335
2336 //------------------------------make-------------------------------------------
2337 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2338 if (UseCompressedOops && elem->isa_oopptr()) {
2339 elem = elem->make_narrowoop();
2340 }
2341 size = normalize_array_size(size);
2342 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2343 }
2344
2345 //------------------------------meet-------------------------------------------
2346 // Compute the MEET of two types. It returns a new Type object.
2347 const Type *TypeAry::xmeet( const Type *t ) const {
2348 // Perform a fast test for common case; meeting the same types together.
2349 if( this == t ) return this; // Meeting same type-rep?
2350
2351 // Current "this->_base" is Ary
2352 switch (t->base()) { // switch on original type
2353
2354 case Bottom: // Ye Olde Default
2355 return t;
2356
2357 default: // All else is a mistake
2358 typerr(t);
2359
2360 case Array: { // Meeting 2 arrays?
2361 const TypeAry *a = t->is_ary();
2362 return TypeAry::make(_elem->meet_speculative(a->_elem),
2363 _size->xmeet(a->_size)->is_int(),
2364 _stable && a->_stable);
2365 }
2366 case Top:
2367 break;
2368 }
2369 return this; // Return the double constant
2370 }
2371
2372 //------------------------------xdual------------------------------------------
2373 // Dual: compute field-by-field dual
2374 const Type *TypeAry::xdual() const {
2375 const TypeInt* size_dual = _size->dual()->is_int();
2376 size_dual = normalize_array_size(size_dual);
2377 return new TypeAry(_elem->dual(), size_dual, !_stable);
2378 }
2379
2380 //------------------------------eq---------------------------------------------
2381 // Structural equality check for Type representations
2382 bool TypeAry::eq( const Type *t ) const {
2383 const TypeAry *a = (const TypeAry*)t;
2384 return _elem == a->_elem &&
2385 _stable == a->_stable &&
2386 _size == a->_size;
2387 }
2388
2389 //------------------------------hash-------------------------------------------
2390 // Type-specific hashing function.
2391 uint TypeAry::hash(void) const {
2392 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);
2393 }
2394
2395 /**
2396 * Return same type without a speculative part in the element
2397 */
2398 const TypeAry* TypeAry::remove_speculative() const {
2399 return make(_elem->remove_speculative(), _size, _stable);
2400 }
2401
2402 /**
2403 * Return same type with cleaned up speculative part of element
2404 */
2405 const Type* TypeAry::cleanup_speculative() const {
2406 return make(_elem->cleanup_speculative(), _size, _stable);
2407 }
2408
2409 /**
2410 * Return same type but with a different inline depth (used for speculation)
2411 *
2412 * @param depth depth to meet with
2413 */
2414 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2415 if (!UseInlineDepthForSpeculativeTypes) {
2416 return this;
2417 }
2418 return make(AnyPtr, _ptr, _offset, _speculative, depth);
2419 }
2420
2421 //------------------------------dump2------------------------------------------
2422 #ifndef PRODUCT
2423 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2424 if (_stable) st->print("stable:");
2425 _elem->dump2(d, depth, st);
2426 st->print("[");
2427 _size->dump2(d, depth, st);
2428 st->print("]");
2429 }
2430 #endif
2431
2432 //------------------------------singleton--------------------------------------
2433 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2434 // constants (Ldi nodes). Singletons are integer, float or double constants
2435 // or a single symbol.
2436 bool TypeAry::singleton(void) const {
2437 return false; // Never a singleton
2438 }
2439
2440 bool TypeAry::empty(void) const {
2441 return _elem->empty() || _size->empty();
2442 }
2443
2444 //--------------------------ary_must_be_exact----------------------------------
2445 bool TypeAry::ary_must_be_exact() const {
2446 // This logic looks at the element type of an array, and returns true
2447 // if the element type is either a primitive or a final instance class.
2448 // In such cases, an array built on this ary must have no subclasses.
2449 if (_elem == BOTTOM) return false; // general array not exact
2450 if (_elem == TOP ) return false; // inverted general array not exact
2451 const TypeOopPtr* toop = nullptr;
2452 if (UseCompressedOops && _elem->isa_narrowoop()) {
2453 toop = _elem->make_ptr()->isa_oopptr();
2454 } else {
2455 toop = _elem->isa_oopptr();
2456 }
2457 if (!toop) return true; // a primitive type, like int
2458 if (!toop->is_loaded()) return false; // unloaded class
2459 const TypeInstPtr* tinst;
2460 if (_elem->isa_narrowoop())
2461 tinst = _elem->make_ptr()->isa_instptr();
2462 else
2463 tinst = _elem->isa_instptr();
2464 if (tinst)
2465 return tinst->instance_klass()->is_final();
2466 const TypeAryPtr* tap;
2467 if (_elem->isa_narrowoop())
2468 tap = _elem->make_ptr()->isa_aryptr();
2469 else
2470 tap = _elem->isa_aryptr();
2471 if (tap)
2472 return tap->ary()->ary_must_be_exact();
2473 return false;
2474 }
2475
2476 //==============================TypeVect=======================================
2477 // Convenience common pre-built types.
2478 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2479 const TypeVect *TypeVect::VECTS = nullptr; // 32-bit vectors
2480 const TypeVect *TypeVect::VECTD = nullptr; // 64-bit vectors
2481 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2482 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2483 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2484 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2485
2486 //------------------------------make-------------------------------------------
2487 const TypeVect* TypeVect::make(const Type *elem, uint length, bool is_mask) {
2488 if (is_mask) {
2489 return makemask(elem, length);
2490 }
2491 BasicType elem_bt = elem->array_element_basic_type();
2492 assert(is_java_primitive(elem_bt), "only primitive types in vector");
2493 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2494 int size = length * type2aelembytes(elem_bt);
2495 switch (Matcher::vector_ideal_reg(size)) {
2496 case Op_VecA:
2497 return (TypeVect*)(new TypeVectA(elem, length))->hashcons();
2498 case Op_VecS:
2499 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2500 case Op_RegL:
2501 case Op_VecD:
2502 case Op_RegD:
2503 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2504 case Op_VecX:
2505 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2506 case Op_VecY:
2507 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2508 case Op_VecZ:
2509 return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2510 }
2511 ShouldNotReachHere();
2512 return nullptr;
2513 }
2514
2515 const TypeVect *TypeVect::makemask(const Type* elem, uint length) {
2516 BasicType elem_bt = elem->array_element_basic_type();
2517 if (Matcher::has_predicated_vectors() &&
2518 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2519 return TypeVectMask::make(elem, length);
2520 } else {
2521 return make(elem, length);
2522 }
2523 }
2524
2525 //------------------------------meet-------------------------------------------
2526 // Compute the MEET of two types. It returns a new Type object.
2527 const Type *TypeVect::xmeet( const Type *t ) const {
2528 // Perform a fast test for common case; meeting the same types together.
2529 if( this == t ) return this; // Meeting same type-rep?
2530
2531 // Current "this->_base" is Vector
2532 switch (t->base()) { // switch on original type
2533
2534 case Bottom: // Ye Olde Default
2535 return t;
2536
2537 default: // All else is a mistake
2538 typerr(t);
2539 case VectorMask: {
2540 const TypeVectMask* v = t->is_vectmask();
2541 assert( base() == v->base(), "");
2542 assert(length() == v->length(), "");
2543 assert(element_basic_type() == v->element_basic_type(), "");
2544 return TypeVect::makemask(_elem->xmeet(v->_elem), _length);
2545 }
2546 case VectorA:
2547 case VectorS:
2548 case VectorD:
2549 case VectorX:
2550 case VectorY:
2551 case VectorZ: { // Meeting 2 vectors?
2552 const TypeVect* v = t->is_vect();
2553 assert( base() == v->base(), "");
2554 assert(length() == v->length(), "");
2555 assert(element_basic_type() == v->element_basic_type(), "");
2556 return TypeVect::make(_elem->xmeet(v->_elem), _length);
2557 }
2558 case Top:
2559 break;
2560 }
2561 return this;
2562 }
2563
2564 //------------------------------xdual------------------------------------------
2565 // Dual: compute field-by-field dual
2566 const Type *TypeVect::xdual() const {
2567 return new TypeVect(base(), _elem->dual(), _length);
2568 }
2569
2570 //------------------------------eq---------------------------------------------
2571 // Structural equality check for Type representations
2572 bool TypeVect::eq(const Type *t) const {
2573 const TypeVect *v = t->is_vect();
2574 return (_elem == v->_elem) && (_length == v->_length);
2575 }
2576
2577 //------------------------------hash-------------------------------------------
2578 // Type-specific hashing function.
2579 uint TypeVect::hash(void) const {
2580 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_length;
2581 }
2582
2583 //------------------------------singleton--------------------------------------
2584 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2585 // constants (Ldi nodes). Vector is singleton if all elements are the same
2586 // constant value (when vector is created with Replicate code).
2587 bool TypeVect::singleton(void) const {
2588 // There is no Con node for vectors yet.
2589 // return _elem->singleton();
2590 return false;
2591 }
2592
2593 bool TypeVect::empty(void) const {
2594 return _elem->empty();
2595 }
2596
2597 //------------------------------dump2------------------------------------------
2598 #ifndef PRODUCT
2599 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2600 switch (base()) {
2601 case VectorA:
2602 st->print("vectora["); break;
2603 case VectorS:
2604 st->print("vectors["); break;
2605 case VectorD:
2606 st->print("vectord["); break;
2607 case VectorX:
2608 st->print("vectorx["); break;
2609 case VectorY:
2610 st->print("vectory["); break;
2611 case VectorZ:
2612 st->print("vectorz["); break;
2613 case VectorMask:
2614 st->print("vectormask["); break;
2615 default:
2616 ShouldNotReachHere();
2617 }
2618 st->print("%d]:{", _length);
2619 _elem->dump2(d, depth, st);
2620 st->print("}");
2621 }
2622 #endif
2623
2624 bool TypeVectMask::eq(const Type *t) const {
2625 const TypeVectMask *v = t->is_vectmask();
2626 return (element_type() == v->element_type()) && (length() == v->length());
2627 }
2628
2629 const Type *TypeVectMask::xdual() const {
2630 return new TypeVectMask(element_type()->dual(), length());
2631 }
2632
2633 const TypeVectMask *TypeVectMask::make(const BasicType elem_bt, uint length) {
2634 return make(get_const_basic_type(elem_bt), length);
2635 }
2636
2637 const TypeVectMask *TypeVectMask::make(const Type* elem, uint length) {
2638 const TypeVectMask* mtype = Matcher::predicate_reg_type(elem, length);
2639 return (TypeVectMask*) const_cast<TypeVectMask*>(mtype)->hashcons();
2640 }
2641
2642 //=============================================================================
2643 // Convenience common pre-built types.
2644 const TypePtr *TypePtr::NULL_PTR;
2645 const TypePtr *TypePtr::NOTNULL;
2646 const TypePtr *TypePtr::BOTTOM;
2647
2648 //------------------------------meet-------------------------------------------
2649 // Meet over the PTR enum
2650 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2651 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
2652 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
2653 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
2654 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
2655 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
2656 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
2657 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
2658 };
2659
2660 //------------------------------make-------------------------------------------
2661 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2662 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2663 }
2664
2665 //------------------------------cast_to_ptr_type-------------------------------
2666 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2667 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2668 if( ptr == _ptr ) return this;
2669 return make(_base, ptr, _offset, _speculative, _inline_depth);
2670 }
2671
2672 //------------------------------get_con----------------------------------------
2673 intptr_t TypePtr::get_con() const {
2674 assert( _ptr == Null, "" );
2675 return _offset;
2676 }
2677
2678 //------------------------------meet-------------------------------------------
2679 // Compute the MEET of two types. It returns a new Type object.
2680 const Type *TypePtr::xmeet(const Type *t) const {
2681 const Type* res = xmeet_helper(t);
2682 if (res->isa_ptr() == nullptr) {
2683 return res;
2684 }
2685
2686 const TypePtr* res_ptr = res->is_ptr();
2687 if (res_ptr->speculative() != nullptr) {
2688 // type->speculative() is null means that speculation is no better
2689 // than type, i.e. type->speculative() == type. So there are 2
2690 // ways to represent the fact that we have no useful speculative
2691 // data and we should use a single one to be able to test for
2692 // equality between types. Check whether type->speculative() ==
2693 // type and set speculative to null if it is the case.
2694 if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2695 return res_ptr->remove_speculative();
2696 }
2697 }
2698
2699 return res;
2700 }
2701
2702 const Type *TypePtr::xmeet_helper(const Type *t) const {
2703 // Perform a fast test for common case; meeting the same types together.
2704 if( this == t ) return this; // Meeting same type-rep?
2705
2706 // Current "this->_base" is AnyPtr
2707 switch (t->base()) { // switch on original type
2708 case Int: // Mixing ints & oops happens when javac
2709 case Long: // reuses local variables
2710 case FloatTop:
2711 case FloatCon:
2712 case FloatBot:
2713 case DoubleTop:
2714 case DoubleCon:
2715 case DoubleBot:
2716 case NarrowOop:
2717 case NarrowKlass:
2718 case Bottom: // Ye Olde Default
2719 return Type::BOTTOM;
2720 case Top:
2721 return this;
2722
2723 case AnyPtr: { // Meeting to AnyPtrs
2724 const TypePtr *tp = t->is_ptr();
2725 const TypePtr* speculative = xmeet_speculative(tp);
2726 int depth = meet_inline_depth(tp->inline_depth());
2727 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2728 }
2729 case RawPtr: // For these, flip the call around to cut down
2730 case OopPtr:
2731 case InstPtr: // on the cases I have to handle.
2732 case AryPtr:
2733 case MetadataPtr:
2734 case KlassPtr:
2735 case InstKlassPtr:
2736 case AryKlassPtr:
2737 return t->xmeet(this); // Call in reverse direction
2738 default: // All else is a mistake
2739 typerr(t);
2740
2741 }
2742 return this;
2743 }
2744
2745 //------------------------------meet_offset------------------------------------
2746 int TypePtr::meet_offset( int offset ) const {
2747 // Either is 'TOP' offset? Return the other offset!
2748 if( _offset == OffsetTop ) return offset;
2749 if( offset == OffsetTop ) return _offset;
2750 // If either is different, return 'BOTTOM' offset
2751 if( _offset != offset ) return OffsetBot;
2752 return _offset;
2753 }
2754
2755 //------------------------------dual_offset------------------------------------
2756 int TypePtr::dual_offset( ) const {
2757 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2758 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2759 return _offset; // Map everything else into self
2760 }
2761
2762 //------------------------------xdual------------------------------------------
2763 // Dual: compute field-by-field dual
2764 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2765 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2766 };
2767 const Type *TypePtr::xdual() const {
2768 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2769 }
2770
2771 //------------------------------xadd_offset------------------------------------
2772 int TypePtr::xadd_offset( intptr_t offset ) const {
2773 // Adding to 'TOP' offset? Return 'TOP'!
2774 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2775 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
2776 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2777 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2778 offset += (intptr_t)_offset;
2779 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2780
2781 // assert( _offset >= 0 && _offset+offset >= 0, "" );
2782 // It is possible to construct a negative offset during PhaseCCP
2783
2784 return (int)offset; // Sum valid offsets
2785 }
2786
2787 //------------------------------add_offset-------------------------------------
2788 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2789 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2790 }
2791
2792 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2793 return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2794 }
2795
2796 //------------------------------eq---------------------------------------------
2797 // Structural equality check for Type representations
2798 bool TypePtr::eq( const Type *t ) const {
2799 const TypePtr *a = (const TypePtr*)t;
2800 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2801 }
2802
2803 //------------------------------hash-------------------------------------------
2804 // Type-specific hashing function.
2805 uint TypePtr::hash(void) const {
2806 return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2807 }
2808
2809 /**
2810 * Return same type without a speculative part
2811 */
2812 const TypePtr* TypePtr::remove_speculative() const {
2813 if (_speculative == nullptr) {
2814 return this;
2815 }
2816 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2817 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2818 }
2819
2820 /**
2821 * Return same type but drop speculative part if we know we won't use
2822 * it
2823 */
2824 const Type* TypePtr::cleanup_speculative() const {
2825 if (speculative() == nullptr) {
2826 return this;
2827 }
2828 const Type* no_spec = remove_speculative();
2829 // If this is NULL_PTR then we don't need the speculative type
2830 // (with_inline_depth in case the current type inline depth is
2831 // InlineDepthTop)
2832 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2833 return no_spec;
2834 }
2835 if (above_centerline(speculative()->ptr())) {
2836 return no_spec;
2837 }
2838 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2839 // If the speculative may be null and is an inexact klass then it
2840 // doesn't help
2841 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2842 (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
2843 return no_spec;
2844 }
2845 return this;
2846 }
2847
2848 /**
2849 * dual of the speculative part of the type
2850 */
2851 const TypePtr* TypePtr::dual_speculative() const {
2852 if (_speculative == nullptr) {
2853 return nullptr;
2854 }
2855 return _speculative->dual()->is_ptr();
2856 }
2857
2858 /**
2859 * meet of the speculative parts of 2 types
2860 *
2861 * @param other type to meet with
2862 */
2863 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2864 bool this_has_spec = (_speculative != nullptr);
2865 bool other_has_spec = (other->speculative() != nullptr);
2866
2867 if (!this_has_spec && !other_has_spec) {
2868 return nullptr;
2869 }
2870
2871 // If we are at a point where control flow meets and one branch has
2872 // a speculative type and the other has not, we meet the speculative
2873 // type of one branch with the actual type of the other. If the
2874 // actual type is exact and the speculative is as well, then the
2875 // result is a speculative type which is exact and we can continue
2876 // speculation further.
2877 const TypePtr* this_spec = _speculative;
2878 const TypePtr* other_spec = other->speculative();
2879
2880 if (!this_has_spec) {
2881 this_spec = this;
2882 }
2883
2884 if (!other_has_spec) {
2885 other_spec = other;
2886 }
2887
2888 return this_spec->meet(other_spec)->is_ptr();
2889 }
2890
2891 /**
2892 * dual of the inline depth for this type (used for speculation)
2893 */
2894 int TypePtr::dual_inline_depth() const {
2895 return -inline_depth();
2896 }
2897
2898 /**
2899 * meet of 2 inline depths (used for speculation)
2900 *
2901 * @param depth depth to meet with
2902 */
2903 int TypePtr::meet_inline_depth(int depth) const {
2904 return MAX2(inline_depth(), depth);
2905 }
2906
2907 /**
2908 * Are the speculative parts of 2 types equal?
2909 *
2910 * @param other type to compare this one to
2911 */
2912 bool TypePtr::eq_speculative(const TypePtr* other) const {
2913 if (_speculative == nullptr || other->speculative() == nullptr) {
2914 return _speculative == other->speculative();
2915 }
2916
2917 if (_speculative->base() != other->speculative()->base()) {
2918 return false;
2919 }
2920
2921 return _speculative->eq(other->speculative());
2922 }
2923
2924 /**
2925 * Hash of the speculative part of the type
2926 */
2927 int TypePtr::hash_speculative() const {
2928 if (_speculative == nullptr) {
2929 return 0;
2930 }
2931
2932 return _speculative->hash();
2933 }
2934
2935 /**
2936 * add offset to the speculative part of the type
2937 *
2938 * @param offset offset to add
2939 */
2940 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2941 if (_speculative == nullptr) {
2942 return nullptr;
2943 }
2944 return _speculative->add_offset(offset)->is_ptr();
2945 }
2946
2947 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const {
2948 if (_speculative == nullptr) {
2949 return nullptr;
2950 }
2951 return _speculative->with_offset(offset)->is_ptr();
2952 }
2953
2954 /**
2955 * return exact klass from the speculative type if there's one
2956 */
2957 ciKlass* TypePtr::speculative_type() const {
2958 if (_speculative != nullptr && _speculative->isa_oopptr()) {
2959 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2960 if (speculative->klass_is_exact()) {
2961 return speculative->exact_klass();
2962 }
2963 }
2964 return nullptr;
2965 }
2966
2967 /**
2968 * return true if speculative type may be null
2969 */
2970 bool TypePtr::speculative_maybe_null() const {
2971 if (_speculative != nullptr) {
2972 const TypePtr* speculative = _speculative->join(this)->is_ptr();
2973 return speculative->maybe_null();
2974 }
2975 return true;
2976 }
2977
2978 bool TypePtr::speculative_always_null() const {
2979 if (_speculative != nullptr) {
2980 const TypePtr* speculative = _speculative->join(this)->is_ptr();
2981 return speculative == TypePtr::NULL_PTR;
2982 }
2983 return false;
2984 }
2985
2986 /**
2987 * Same as TypePtr::speculative_type() but return the klass only if
2988 * the speculative tells us is not null
2989 */
2990 ciKlass* TypePtr::speculative_type_not_null() const {
2991 if (speculative_maybe_null()) {
2992 return nullptr;
2993 }
2994 return speculative_type();
2995 }
2996
2997 /**
2998 * Check whether new profiling would improve speculative type
2999 *
3000 * @param exact_kls class from profiling
3001 * @param inline_depth inlining depth of profile point
3002 *
3003 * @return true if type profile is valuable
3004 */
3005 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3006 // no profiling?
3007 if (exact_kls == nullptr) {
3008 return false;
3009 }
3010 if (speculative() == TypePtr::NULL_PTR) {
3011 return false;
3012 }
3013 // no speculative type or non exact speculative type?
3014 if (speculative_type() == nullptr) {
3015 return true;
3016 }
3017 // If the node already has an exact speculative type keep it,
3018 // unless it was provided by profiling that is at a deeper
3019 // inlining level. Profiling at a higher inlining depth is
3020 // expected to be less accurate.
3021 if (_speculative->inline_depth() == InlineDepthBottom) {
3022 return false;
3023 }
3024 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
3025 return inline_depth < _speculative->inline_depth();
3026 }
3027
3028 /**
3029 * Check whether new profiling would improve ptr (= tells us it is non
3030 * null)
3031 *
3032 * @param ptr_kind always null or not null?
3033 *
3034 * @return true if ptr profile is valuable
3035 */
3036 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
3037 // profiling doesn't tell us anything useful
3038 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
3039 return false;
3040 }
3041 // We already know this is not null
3042 if (!this->maybe_null()) {
3043 return false;
3044 }
3045 // We already know the speculative type cannot be null
3046 if (!speculative_maybe_null()) {
3047 return false;
3048 }
3049 // We already know this is always null
3050 if (this == TypePtr::NULL_PTR) {
3051 return false;
3052 }
3053 // We already know the speculative type is always null
3054 if (speculative_always_null()) {
3055 return false;
3056 }
3057 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3058 return false;
3059 }
3060 return true;
3061 }
3062
3063 //------------------------------dump2------------------------------------------
3064 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3065 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3066 };
3067
3068 #ifndef PRODUCT
3069 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3070 if( _ptr == Null ) st->print("null");
3071 else st->print("%s *", ptr_msg[_ptr]);
3072 if( _offset == OffsetTop ) st->print("+top");
3073 else if( _offset == OffsetBot ) st->print("+bot");
3074 else if( _offset ) st->print("+%d", _offset);
3075 dump_inline_depth(st);
3076 dump_speculative(st);
3077 }
3078
3079 /**
3080 *dump the speculative part of the type
3081 */
3082 void TypePtr::dump_speculative(outputStream *st) const {
3083 if (_speculative != nullptr) {
3084 st->print(" (speculative=");
3085 _speculative->dump_on(st);
3086 st->print(")");
3087 }
3088 }
3089
3090 /**
3091 *dump the inline depth of the type
3092 */
3093 void TypePtr::dump_inline_depth(outputStream *st) const {
3094 if (_inline_depth != InlineDepthBottom) {
3095 if (_inline_depth == InlineDepthTop) {
3096 st->print(" (inline_depth=InlineDepthTop)");
3097 } else {
3098 st->print(" (inline_depth=%d)", _inline_depth);
3099 }
3100 }
3101 }
3102 #endif
3103
3104 //------------------------------singleton--------------------------------------
3105 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
3106 // constants
3107 bool TypePtr::singleton(void) const {
3108 // TopPTR, Null, AnyNull, Constant are all singletons
3109 return (_offset != OffsetBot) && !below_centerline(_ptr);
3110 }
3111
3112 bool TypePtr::empty(void) const {
3113 return (_offset == OffsetTop) || above_centerline(_ptr);
3114 }
3115
3116 //=============================================================================
3117 // Convenience common pre-built types.
3118 const TypeRawPtr *TypeRawPtr::BOTTOM;
3119 const TypeRawPtr *TypeRawPtr::NOTNULL;
3120
3121 //------------------------------make-------------------------------------------
3122 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3123 assert( ptr != Constant, "what is the constant?" );
3124 assert( ptr != Null, "Use TypePtr for null" );
3125 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3126 }
3127
3128 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3129 assert( bits, "Use TypePtr for null" );
3130 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3131 }
3132
3133 //------------------------------cast_to_ptr_type-------------------------------
3134 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3135 assert( ptr != Constant, "what is the constant?" );
3136 assert( ptr != Null, "Use TypePtr for null" );
3137 assert( _bits==0, "Why cast a constant address?");
3138 if( ptr == _ptr ) return this;
3139 return make(ptr);
3140 }
3141
3142 //------------------------------get_con----------------------------------------
3143 intptr_t TypeRawPtr::get_con() const {
3144 assert( _ptr == Null || _ptr == Constant, "" );
3145 return (intptr_t)_bits;
3146 }
3147
3148 //------------------------------meet-------------------------------------------
3149 // Compute the MEET of two types. It returns a new Type object.
3150 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3151 // Perform a fast test for common case; meeting the same types together.
3152 if( this == t ) return this; // Meeting same type-rep?
3153
3154 // Current "this->_base" is RawPtr
3155 switch( t->base() ) { // switch on original type
3156 case Bottom: // Ye Olde Default
3157 return t;
3158 case Top:
3159 return this;
3160 case AnyPtr: // Meeting to AnyPtrs
3161 break;
3162 case RawPtr: { // might be top, bot, any/not or constant
3163 enum PTR tptr = t->is_ptr()->ptr();
3164 enum PTR ptr = meet_ptr( tptr );
3165 if( ptr == Constant ) { // Cannot be equal constants, so...
3166 if( tptr == Constant && _ptr != Constant) return t;
3167 if( _ptr == Constant && tptr != Constant) return this;
3168 ptr = NotNull; // Fall down in lattice
3169 }
3170 return make( ptr );
3171 }
3172
3173 case OopPtr:
3174 case InstPtr:
3175 case AryPtr:
3176 case MetadataPtr:
3177 case KlassPtr:
3178 case InstKlassPtr:
3179 case AryKlassPtr:
3180 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3181 default: // All else is a mistake
3182 typerr(t);
3183 }
3184
3185 // Found an AnyPtr type vs self-RawPtr type
3186 const TypePtr *tp = t->is_ptr();
3187 switch (tp->ptr()) {
3188 case TypePtr::TopPTR: return this;
3189 case TypePtr::BotPTR: return t;
3190 case TypePtr::Null:
3191 if( _ptr == TypePtr::TopPTR ) return t;
3192 return TypeRawPtr::BOTTOM;
3193 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3194 case TypePtr::AnyNull:
3195 if( _ptr == TypePtr::Constant) return this;
3196 return make( meet_ptr(TypePtr::AnyNull) );
3197 default: ShouldNotReachHere();
3198 }
3199 return this;
3200 }
3201
3202 //------------------------------xdual------------------------------------------
3203 // Dual: compute field-by-field dual
3204 const Type *TypeRawPtr::xdual() const {
3205 return new TypeRawPtr( dual_ptr(), _bits );
3206 }
3207
3208 //------------------------------add_offset-------------------------------------
3209 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const {
3210 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3211 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3212 if( offset == 0 ) return this; // No change
3213 switch (_ptr) {
3214 case TypePtr::TopPTR:
3215 case TypePtr::BotPTR:
3216 case TypePtr::NotNull:
3217 return this;
3218 case TypePtr::Null:
3219 case TypePtr::Constant: {
3220 address bits = _bits+offset;
3221 if ( bits == 0 ) return TypePtr::NULL_PTR;
3222 return make( bits );
3223 }
3224 default: ShouldNotReachHere();
3225 }
3226 return nullptr; // Lint noise
3227 }
3228
3229 //------------------------------eq---------------------------------------------
3230 // Structural equality check for Type representations
3231 bool TypeRawPtr::eq( const Type *t ) const {
3232 const TypeRawPtr *a = (const TypeRawPtr*)t;
3233 return _bits == a->_bits && TypePtr::eq(t);
3234 }
3235
3236 //------------------------------hash-------------------------------------------
3237 // Type-specific hashing function.
3238 uint TypeRawPtr::hash(void) const {
3239 return (uint)(uintptr_t)_bits + (uint)TypePtr::hash();
3240 }
3241
3242 //------------------------------dump2------------------------------------------
3243 #ifndef PRODUCT
3244 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3245 if( _ptr == Constant )
3246 st->print(INTPTR_FORMAT, p2i(_bits));
3247 else
3248 st->print("rawptr:%s", ptr_msg[_ptr]);
3249 }
3250 #endif
3251
3252 //=============================================================================
3253 // Convenience common pre-built type.
3254 const TypeOopPtr *TypeOopPtr::BOTTOM;
3255
3256 TypeInterfaces::TypeInterfaces()
3257 : Type(Interfaces), _list(Compile::current()->type_arena(), 0, 0, nullptr),
3258 _hash(0), _exact_klass(nullptr) {
3259 DEBUG_ONLY(_initialized = true);
3260 }
3261
3262 TypeInterfaces::TypeInterfaces(GrowableArray<ciInstanceKlass*>* interfaces)
3263 : Type(Interfaces), _list(Compile::current()->type_arena(), interfaces->length(), 0, nullptr),
3264 _hash(0), _exact_klass(nullptr) {
3265 for (int i = 0; i < interfaces->length(); i++) {
3266 add(interfaces->at(i));
3267 }
3268 initialize();
3269 }
3270
3271 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) {
3272 TypeInterfaces* result = (interfaces == nullptr) ? new TypeInterfaces() : new TypeInterfaces(interfaces);
3273 return (const TypeInterfaces*)result->hashcons();
3274 }
3275
3276 void TypeInterfaces::initialize() {
3277 compute_hash();
3278 compute_exact_klass();
3279 DEBUG_ONLY(_initialized = true;)
3280 }
3281
3282 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) {
3283 if ((intptr_t)k1 < (intptr_t)k2) {
3284 return -1;
3285 } else if ((intptr_t)k1 > (intptr_t)k2) {
3286 return 1;
3287 }
3288 return 0;
3289 }
3290
3291 void TypeInterfaces::add(ciInstanceKlass* interface) {
3292 assert(interface->is_interface(), "for interfaces only");
3293 _list.insert_sorted<compare>(interface);
3294 verify();
3295 }
3296
3297 bool TypeInterfaces::eq(const Type* t) const {
3298 const TypeInterfaces* other = (const TypeInterfaces*)t;
3299 if (_list.length() != other->_list.length()) {
3300 return false;
3301 }
3302 for (int i = 0; i < _list.length(); i++) {
3303 ciKlass* k1 = _list.at(i);
3304 ciKlass* k2 = other->_list.at(i);
3305 if (!k1->equals(k2)) {
3306 return false;
3307 }
3308 }
3309 return true;
3310 }
3311
3312 bool TypeInterfaces::eq(ciInstanceKlass* k) const {
3313 assert(k->is_loaded(), "should be loaded");
3314 GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces();
3315 if (_list.length() != interfaces->length()) {
3316 return false;
3317 }
3318 for (int i = 0; i < interfaces->length(); i++) {
3319 bool found = false;
3320 _list.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found);
3321 if (!found) {
3322 return false;
3323 }
3324 }
3325 return true;
3326 }
3327
3328
3329 uint TypeInterfaces::hash() const {
3330 assert(_initialized, "must be");
3331 return _hash;
3332 }
3333
3334 const Type* TypeInterfaces::xdual() const {
3335 return this;
3336 }
3337
3338 void TypeInterfaces::compute_hash() {
3339 uint hash = 0;
3340 for (int i = 0; i < _list.length(); i++) {
3341 ciKlass* k = _list.at(i);
3342 hash += k->hash();
3343 }
3344 _hash = hash;
3345 }
3346
3347 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3348 return (int)((*k1)->ident() - (*k2)->ident());
3349 }
3350
3351 void TypeInterfaces::dump(outputStream* st) const {
3352 if (_list.length() == 0) {
3353 return;
3354 }
3355 ResourceMark rm;
3356 st->print(" (");
3357 GrowableArray<ciInstanceKlass*> interfaces;
3358 interfaces.appendAll(&_list);
3359 // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation
3360 interfaces.sort(compare_interfaces);
3361 for (int i = 0; i < interfaces.length(); i++) {
3362 if (i > 0) {
3363 st->print(",");
3364 }
3365 ciKlass* k = interfaces.at(i);
3366 k->print_name_on(st);
3367 }
3368 st->print(")");
3369 }
3370
3371 #ifdef ASSERT
3372 void TypeInterfaces::verify() const {
3373 for (int i = 1; i < _list.length(); i++) {
3374 ciInstanceKlass* k1 = _list.at(i-1);
3375 ciInstanceKlass* k2 = _list.at(i);
3376 assert(compare(k2, k1) > 0, "should be ordered");
3377 assert(k1 != k2, "no duplicate");
3378 }
3379 }
3380 #endif
3381
3382 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const {
3383 GrowableArray<ciInstanceKlass*> result_list;
3384 int i = 0;
3385 int j = 0;
3386 while (i < _list.length() || j < other->_list.length()) {
3387 while (i < _list.length() &&
3388 (j >= other->_list.length() ||
3389 compare(_list.at(i), other->_list.at(j)) < 0)) {
3390 result_list.push(_list.at(i));
3391 i++;
3392 }
3393 while (j < other->_list.length() &&
3394 (i >= _list.length() ||
3395 compare(other->_list.at(j), _list.at(i)) < 0)) {
3396 result_list.push(other->_list.at(j));
3397 j++;
3398 }
3399 if (i < _list.length() &&
3400 j < other->_list.length() &&
3401 _list.at(i) == other->_list.at(j)) {
3402 result_list.push(_list.at(i));
3403 i++;
3404 j++;
3405 }
3406 }
3407 const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3408 #ifdef ASSERT
3409 result->verify();
3410 for (int i = 0; i < _list.length(); i++) {
3411 assert(result->_list.contains(_list.at(i)), "missing");
3412 }
3413 for (int i = 0; i < other->_list.length(); i++) {
3414 assert(result->_list.contains(other->_list.at(i)), "missing");
3415 }
3416 for (int i = 0; i < result->_list.length(); i++) {
3417 assert(_list.contains(result->_list.at(i)) || other->_list.contains(result->_list.at(i)), "missing");
3418 }
3419 #endif
3420 return result;
3421 }
3422
3423 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const {
3424 GrowableArray<ciInstanceKlass*> result_list;
3425 int i = 0;
3426 int j = 0;
3427 while (i < _list.length() || j < other->_list.length()) {
3428 while (i < _list.length() &&
3429 (j >= other->_list.length() ||
3430 compare(_list.at(i), other->_list.at(j)) < 0)) {
3431 i++;
3432 }
3433 while (j < other->_list.length() &&
3434 (i >= _list.length() ||
3435 compare(other->_list.at(j), _list.at(i)) < 0)) {
3436 j++;
3437 }
3438 if (i < _list.length() &&
3439 j < other->_list.length() &&
3440 _list.at(i) == other->_list.at(j)) {
3441 result_list.push(_list.at(i));
3442 i++;
3443 j++;
3444 }
3445 }
3446 const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3447 #ifdef ASSERT
3448 result->verify();
3449 for (int i = 0; i < _list.length(); i++) {
3450 assert(!other->_list.contains(_list.at(i)) || result->_list.contains(_list.at(i)), "missing");
3451 }
3452 for (int i = 0; i < other->_list.length(); i++) {
3453 assert(!_list.contains(other->_list.at(i)) || result->_list.contains(other->_list.at(i)), "missing");
3454 }
3455 for (int i = 0; i < result->_list.length(); i++) {
3456 assert(_list.contains(result->_list.at(i)) && other->_list.contains(result->_list.at(i)), "missing");
3457 }
3458 #endif
3459 return result;
3460 }
3461
3462 // Is there a single ciKlass* that can represent the interface set?
3463 ciInstanceKlass* TypeInterfaces::exact_klass() const {
3464 assert(_initialized, "must be");
3465 return _exact_klass;
3466 }
3467
3468 void TypeInterfaces::compute_exact_klass() {
3469 if (_list.length() == 0) {
3470 _exact_klass = nullptr;
3471 return;
3472 }
3473 ciInstanceKlass* res = nullptr;
3474 for (int i = 0; i < _list.length(); i++) {
3475 ciInstanceKlass* interface = _list.at(i);
3476 if (eq(interface)) {
3477 assert(res == nullptr, "");
3478 res = interface;
3479 }
3480 }
3481 _exact_klass = res;
3482 }
3483
3484 #ifdef ASSERT
3485 void TypeInterfaces::verify_is_loaded() const {
3486 for (int i = 0; i < _list.length(); i++) {
3487 ciKlass* interface = _list.at(i);
3488 assert(interface->is_loaded(), "Interface not loaded");
3489 }
3490 }
3491 #endif
3492
3493 // Can't be implemented because there's no way to know if the type is above or below the center line.
3494 const Type* TypeInterfaces::xmeet(const Type* t) const {
3495 ShouldNotReachHere();
3496 return Type::xmeet(t);
3497 }
3498
3499 bool TypeInterfaces::singleton(void) const {
3500 ShouldNotReachHere();
3501 return Type::singleton();
3502 }
3503
3504 //------------------------------TypeOopPtr-------------------------------------
3505 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3506 int instance_id, const TypePtr* speculative, int inline_depth)
3507 : TypePtr(t, ptr, offset, speculative, inline_depth),
3508 _const_oop(o), _klass(k),
3509 _interfaces(interfaces),
3510 _klass_is_exact(xk),
3511 _is_ptr_to_narrowoop(false),
3512 _is_ptr_to_narrowklass(false),
3513 _is_ptr_to_boxed_value(false),
3514 _instance_id(instance_id) {
3515 #ifdef ASSERT
3516 if (klass() != nullptr && klass()->is_loaded()) {
3517 interfaces->verify_is_loaded();
3518 }
3519 #endif
3520 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3521 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
3522 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3523 }
3524 #ifdef _LP64
3525 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3526 if (_offset == oopDesc::klass_offset_in_bytes()) {
3527 _is_ptr_to_narrowklass = UseCompressedClassPointers;
3528 } else if (klass() == nullptr) {
3529 // Array with unknown body type
3530 assert(this->isa_aryptr(), "only arrays without klass");
3531 _is_ptr_to_narrowoop = UseCompressedOops;
3532 } else if (this->isa_aryptr()) {
3533 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3534 _offset != arrayOopDesc::length_offset_in_bytes());
3535 } else if (klass()->is_instance_klass()) {
3536 ciInstanceKlass* ik = klass()->as_instance_klass();
3537 if (this->isa_klassptr()) {
3538 // Perm objects don't use compressed references
3539 } else if (_offset == OffsetBot || _offset == OffsetTop) {
3540 // unsafe access
3541 _is_ptr_to_narrowoop = UseCompressedOops;
3542 } else {
3543 assert(this->isa_instptr(), "must be an instance ptr.");
3544
3545 if (klass() == ciEnv::current()->Class_klass() &&
3546 (_offset == java_lang_Class::klass_offset() ||
3547 _offset == java_lang_Class::array_klass_offset())) {
3548 // Special hidden fields from the Class.
3549 assert(this->isa_instptr(), "must be an instance ptr.");
3550 _is_ptr_to_narrowoop = false;
3551 } else if (klass() == ciEnv::current()->Class_klass() &&
3552 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3553 // Static fields
3554 ciField* field = nullptr;
3555 if (const_oop() != nullptr) {
3556 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3557 field = k->get_field_by_offset(_offset, true);
3558 }
3559 if (field != nullptr) {
3560 BasicType basic_elem_type = field->layout_type();
3561 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3562 } else {
3563 // unsafe access
3564 _is_ptr_to_narrowoop = UseCompressedOops;
3565 }
3566 } else {
3567 // Instance fields which contains a compressed oop references.
3568 ciField* field = ik->get_field_by_offset(_offset, false);
3569 if (field != nullptr) {
3570 BasicType basic_elem_type = field->layout_type();
3571 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3572 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3573 // Compile::find_alias_type() cast exactness on all types to verify
3574 // that it does not affect alias type.
3575 _is_ptr_to_narrowoop = UseCompressedOops;
3576 } else {
3577 // Type for the copy start in LibraryCallKit::inline_native_clone().
3578 _is_ptr_to_narrowoop = UseCompressedOops;
3579 }
3580 }
3581 }
3582 }
3583 }
3584 #endif
3585 }
3586
3587 //------------------------------make-------------------------------------------
3588 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3589 const TypePtr* speculative, int inline_depth) {
3590 assert(ptr != Constant, "no constant generic pointers");
3591 ciKlass* k = Compile::current()->env()->Object_klass();
3592 bool xk = false;
3593 ciObject* o = nullptr;
3594 const TypeInterfaces* interfaces = TypeInterfaces::make();
3595 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3596 }
3597
3598
3599 //------------------------------cast_to_ptr_type-------------------------------
3600 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3601 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3602 if( ptr == _ptr ) return this;
3603 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3604 }
3605
3606 //-----------------------------cast_to_instance_id----------------------------
3607 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3608 // There are no instances of a general oop.
3609 // Return self unchanged.
3610 return this;
3611 }
3612
3613 //-----------------------------cast_to_exactness-------------------------------
3614 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3615 // There is no such thing as an exact general oop.
3616 // Return self unchanged.
3617 return this;
3618 }
3619
3620
3621 //------------------------------as_klass_type----------------------------------
3622 // Return the klass type corresponding to this instance or array type.
3623 // It is the type that is loaded from an object of this type.
3624 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3625 ShouldNotReachHere();
3626 return nullptr;
3627 }
3628
3629 //------------------------------meet-------------------------------------------
3630 // Compute the MEET of two types. It returns a new Type object.
3631 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3632 // Perform a fast test for common case; meeting the same types together.
3633 if( this == t ) return this; // Meeting same type-rep?
3634
3635 // Current "this->_base" is OopPtr
3636 switch (t->base()) { // switch on original type
3637
3638 case Int: // Mixing ints & oops happens when javac
3639 case Long: // reuses local variables
3640 case FloatTop:
3641 case FloatCon:
3642 case FloatBot:
3643 case DoubleTop:
3644 case DoubleCon:
3645 case DoubleBot:
3646 case NarrowOop:
3647 case NarrowKlass:
3648 case Bottom: // Ye Olde Default
3649 return Type::BOTTOM;
3650 case Top:
3651 return this;
3652
3653 default: // All else is a mistake
3654 typerr(t);
3655
3656 case RawPtr:
3657 case MetadataPtr:
3658 case KlassPtr:
3659 case InstKlassPtr:
3660 case AryKlassPtr:
3661 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3662
3663 case AnyPtr: {
3664 // Found an AnyPtr type vs self-OopPtr type
3665 const TypePtr *tp = t->is_ptr();
3666 int offset = meet_offset(tp->offset());
3667 PTR ptr = meet_ptr(tp->ptr());
3668 const TypePtr* speculative = xmeet_speculative(tp);
3669 int depth = meet_inline_depth(tp->inline_depth());
3670 switch (tp->ptr()) {
3671 case Null:
3672 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3673 // else fall through:
3674 case TopPTR:
3675 case AnyNull: {
3676 int instance_id = meet_instance_id(InstanceTop);
3677 return make(ptr, offset, instance_id, speculative, depth);
3678 }
3679 case BotPTR:
3680 case NotNull:
3681 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3682 default: typerr(t);
3683 }
3684 }
3685
3686 case OopPtr: { // Meeting to other OopPtrs
3687 const TypeOopPtr *tp = t->is_oopptr();
3688 int instance_id = meet_instance_id(tp->instance_id());
3689 const TypePtr* speculative = xmeet_speculative(tp);
3690 int depth = meet_inline_depth(tp->inline_depth());
3691 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3692 }
3693
3694 case InstPtr: // For these, flip the call around to cut down
3695 case AryPtr:
3696 return t->xmeet(this); // Call in reverse direction
3697
3698 } // End of switch
3699 return this; // Return the double constant
3700 }
3701
3702
3703 //------------------------------xdual------------------------------------------
3704 // Dual of a pure heap pointer. No relevant klass or oop information.
3705 const Type *TypeOopPtr::xdual() const {
3706 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3707 assert(const_oop() == nullptr, "no constants here");
3708 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3709 }
3710
3711 //--------------------------make_from_klass_common-----------------------------
3712 // Computes the element-type given a klass.
3713 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3714 if (klass->is_instance_klass()) {
3715 Compile* C = Compile::current();
3716 Dependencies* deps = C->dependencies();
3717 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3718 // Element is an instance
3719 bool klass_is_exact = false;
3720 if (klass->is_loaded()) {
3721 // Try to set klass_is_exact.
3722 ciInstanceKlass* ik = klass->as_instance_klass();
3723 klass_is_exact = ik->is_final();
3724 if (!klass_is_exact && klass_change
3725 && deps != nullptr && UseUniqueSubclasses) {
3726 ciInstanceKlass* sub = ik->unique_concrete_subklass();
3727 if (sub != nullptr) {
3728 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3729 klass = ik = sub;
3730 klass_is_exact = sub->is_final();
3731 }
3732 }
3733 if (!klass_is_exact && try_for_exact && deps != nullptr &&
3734 !ik->is_interface() && !ik->has_subklass()) {
3735 // Add a dependence; if concrete subclass added we need to recompile
3736 deps->assert_leaf_type(ik);
3737 klass_is_exact = true;
3738 }
3739 }
3740 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3741 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3742 } else if (klass->is_obj_array_klass()) {
3743 // Element is an object array. Recursively call ourself.
3744 ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3745 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3746 bool xk = etype->klass_is_exact();
3747 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3748 // We used to pass NotNull in here, asserting that the sub-arrays
3749 // are all not-null. This is not true in generally, as code can
3750 // slam nulls down in the subarrays.
3751 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3752 return arr;
3753 } else if (klass->is_type_array_klass()) {
3754 // Element is an typeArray
3755 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3756 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3757 // We used to pass NotNull in here, asserting that the array pointer
3758 // is not-null. That was not true in general.
3759 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3760 return arr;
3761 } else {
3762 ShouldNotReachHere();
3763 return nullptr;
3764 }
3765 }
3766
3767 //------------------------------make_from_constant-----------------------------
3768 // Make a java pointer from an oop constant
3769 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3770 assert(!o->is_null_object(), "null object not yet handled here.");
3771
3772 const bool make_constant = require_constant || o->should_be_constant();
3773
3774 ciKlass* klass = o->klass();
3775 if (klass->is_instance_klass()) {
3776 // Element is an instance
3777 if (make_constant) {
3778 return TypeInstPtr::make(o);
3779 } else {
3780 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3781 }
3782 } else if (klass->is_obj_array_klass()) {
3783 // Element is an object array. Recursively call ourself.
3784 const TypeOopPtr *etype =
3785 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3786 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3787 // We used to pass NotNull in here, asserting that the sub-arrays
3788 // are all not-null. This is not true in generally, as code can
3789 // slam nulls down in the subarrays.
3790 if (make_constant) {
3791 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3792 } else {
3793 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3794 }
3795 } else if (klass->is_type_array_klass()) {
3796 // Element is an typeArray
3797 const Type* etype =
3798 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3799 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3800 // We used to pass NotNull in here, asserting that the array pointer
3801 // is not-null. That was not true in general.
3802 if (make_constant) {
3803 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3804 } else {
3805 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3806 }
3807 }
3808
3809 fatal("unhandled object type");
3810 return nullptr;
3811 }
3812
3813 //------------------------------get_con----------------------------------------
3814 intptr_t TypeOopPtr::get_con() const {
3815 assert( _ptr == Null || _ptr == Constant, "" );
3816 assert( _offset >= 0, "" );
3817
3818 if (_offset != 0) {
3819 // After being ported to the compiler interface, the compiler no longer
3820 // directly manipulates the addresses of oops. Rather, it only has a pointer
3821 // to a handle at compile time. This handle is embedded in the generated
3822 // code and dereferenced at the time the nmethod is made. Until that time,
3823 // it is not reasonable to do arithmetic with the addresses of oops (we don't
3824 // have access to the addresses!). This does not seem to currently happen,
3825 // but this assertion here is to help prevent its occurrence.
3826 tty->print_cr("Found oop constant with non-zero offset");
3827 ShouldNotReachHere();
3828 }
3829
3830 return (intptr_t)const_oop()->constant_encoding();
3831 }
3832
3833
3834 //-----------------------------filter------------------------------------------
3835 // Do not allow interface-vs.-noninterface joins to collapse to top.
3836 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3837
3838 const Type* ft = join_helper(kills, include_speculative);
3839 const TypeInstPtr* ftip = ft->isa_instptr();
3840 const TypeInstPtr* ktip = kills->isa_instptr();
3841
3842 if (ft->empty()) {
3843 return Type::TOP; // Canonical empty value
3844 }
3845
3846 return ft;
3847 }
3848
3849 //------------------------------eq---------------------------------------------
3850 // Structural equality check for Type representations
3851 bool TypeOopPtr::eq( const Type *t ) const {
3852 const TypeOopPtr *a = (const TypeOopPtr*)t;
3853 if (_klass_is_exact != a->_klass_is_exact ||
3854 _instance_id != a->_instance_id) return false;
3855 ciObject* one = const_oop();
3856 ciObject* two = a->const_oop();
3857 if (one == nullptr || two == nullptr) {
3858 return (one == two) && TypePtr::eq(t);
3859 } else {
3860 return one->equals(two) && TypePtr::eq(t);
3861 }
3862 }
3863
3864 //------------------------------hash-------------------------------------------
3865 // Type-specific hashing function.
3866 uint TypeOopPtr::hash(void) const {
3867 return
3868 (uint)(const_oop() ? const_oop()->hash() : 0) +
3869 (uint)_klass_is_exact +
3870 (uint)_instance_id + TypePtr::hash();
3871 }
3872
3873 //------------------------------dump2------------------------------------------
3874 #ifndef PRODUCT
3875 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3876 st->print("oopptr:%s", ptr_msg[_ptr]);
3877 if( _klass_is_exact ) st->print(":exact");
3878 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3879 switch( _offset ) {
3880 case OffsetTop: st->print("+top"); break;
3881 case OffsetBot: st->print("+any"); break;
3882 case 0: break;
3883 default: st->print("+%d",_offset); break;
3884 }
3885 if (_instance_id == InstanceTop)
3886 st->print(",iid=top");
3887 else if (_instance_id != InstanceBot)
3888 st->print(",iid=%d",_instance_id);
3889
3890 dump_inline_depth(st);
3891 dump_speculative(st);
3892 }
3893 #endif
3894
3895 //------------------------------singleton--------------------------------------
3896 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
3897 // constants
3898 bool TypeOopPtr::singleton(void) const {
3899 // detune optimizer to not generate constant oop + constant offset as a constant!
3900 // TopPTR, Null, AnyNull, Constant are all singletons
3901 return (_offset == 0) && !below_centerline(_ptr);
3902 }
3903
3904 //------------------------------add_offset-------------------------------------
3905 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3906 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3907 }
3908
3909 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3910 return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3911 }
3912
3913 /**
3914 * Return same type without a speculative part
3915 */
3916 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3917 if (_speculative == nullptr) {
3918 return this;
3919 }
3920 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3921 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3922 }
3923
3924 /**
3925 * Return same type but drop speculative part if we know we won't use
3926 * it
3927 */
3928 const Type* TypeOopPtr::cleanup_speculative() const {
3929 // If the klass is exact and the ptr is not null then there's
3930 // nothing that the speculative type can help us with
3931 if (klass_is_exact() && !maybe_null()) {
3932 return remove_speculative();
3933 }
3934 return TypePtr::cleanup_speculative();
3935 }
3936
3937 /**
3938 * Return same type but with a different inline depth (used for speculation)
3939 *
3940 * @param depth depth to meet with
3941 */
3942 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3943 if (!UseInlineDepthForSpeculativeTypes) {
3944 return this;
3945 }
3946 return make(_ptr, _offset, _instance_id, _speculative, depth);
3947 }
3948
3949 //------------------------------with_instance_id--------------------------------
3950 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3951 assert(_instance_id != -1, "should be known");
3952 return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3953 }
3954
3955 //------------------------------meet_instance_id--------------------------------
3956 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3957 // Either is 'TOP' instance? Return the other instance!
3958 if( _instance_id == InstanceTop ) return instance_id;
3959 if( instance_id == InstanceTop ) return _instance_id;
3960 // If either is different, return 'BOTTOM' instance
3961 if( _instance_id != instance_id ) return InstanceBot;
3962 return _instance_id;
3963 }
3964
3965 //------------------------------dual_instance_id--------------------------------
3966 int TypeOopPtr::dual_instance_id( ) const {
3967 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3968 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3969 return _instance_id; // Map everything else into self
3970 }
3971
3972
3973 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const {
3974 if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
3975 return _interfaces->union_with(other->_interfaces);
3976 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
3977 return other->_interfaces;
3978 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
3979 return _interfaces;
3980 }
3981 return _interfaces->intersection_with(other->_interfaces);
3982 }
3983
3984 /**
3985 * Check whether new profiling would improve speculative type
3986 *
3987 * @param exact_kls class from profiling
3988 * @param inline_depth inlining depth of profile point
3989 *
3990 * @return true if type profile is valuable
3991 */
3992 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3993 // no way to improve an already exact type
3994 if (klass_is_exact()) {
3995 return false;
3996 }
3997 return TypePtr::would_improve_type(exact_kls, inline_depth);
3998 }
3999
4000 //=============================================================================
4001 // Convenience common pre-built types.
4002 const TypeInstPtr *TypeInstPtr::NOTNULL;
4003 const TypeInstPtr *TypeInstPtr::BOTTOM;
4004 const TypeInstPtr *TypeInstPtr::MIRROR;
4005 const TypeInstPtr *TypeInstPtr::MARK;
4006 const TypeInstPtr *TypeInstPtr::KLASS;
4007
4008 // Is there a single ciKlass* that can represent that type?
4009 ciKlass* TypeInstPtr::exact_klass_helper() const {
4010 if (_interfaces->empty()) {
4011 return _klass;
4012 }
4013 if (_klass != ciEnv::current()->Object_klass()) {
4014 if (_interfaces->eq(_klass->as_instance_klass())) {
4015 return _klass;
4016 }
4017 return nullptr;
4018 }
4019 return _interfaces->exact_klass();
4020 }
4021
4022 //------------------------------TypeInstPtr-------------------------------------
4023 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
4024 int instance_id, const TypePtr* speculative, int inline_depth)
4025 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {
4026 assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4027 assert(k != nullptr &&
4028 (k->is_loaded() || o == nullptr),
4029 "cannot have constants with non-loaded klass");
4030 };
4031
4032 //------------------------------make-------------------------------------------
4033 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4034 ciKlass* k,
4035 const TypeInterfaces* interfaces,
4036 bool xk,
4037 ciObject* o,
4038 int offset,
4039 int instance_id,
4040 const TypePtr* speculative,
4041 int inline_depth) {
4042 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4043 // Either const_oop() is null or else ptr is Constant
4044 assert( (!o && ptr != Constant) || (o && ptr == Constant),
4045 "constant pointers must have a value supplied" );
4046 // Ptr is never Null
4047 assert( ptr != Null, "null pointers are not typed" );
4048
4049 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4050 if (ptr == Constant) {
4051 // Note: This case includes meta-object constants, such as methods.
4052 xk = true;
4053 } else if (k->is_loaded()) {
4054 ciInstanceKlass* ik = k->as_instance_klass();
4055 if (!xk && ik->is_final()) xk = true; // no inexact final klass
4056 assert(!ik->is_interface(), "no interface here");
4057 if (xk && ik->is_interface()) xk = false; // no exact interface
4058 }
4059
4060 // Now hash this baby
4061 TypeInstPtr *result =
4062 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4063
4064 return result;
4065 }
4066
4067 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4068 if (k->is_instance_klass()) {
4069 if (k->is_loaded()) {
4070 if (k->is_interface() && interface_handling == ignore_interfaces) {
4071 assert(interface, "no interface expected");
4072 k = ciEnv::current()->Object_klass();
4073 const TypeInterfaces* interfaces = TypeInterfaces::make();
4074 return interfaces;
4075 }
4076 GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4077 const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4078 if (k->is_interface()) {
4079 assert(interface, "no interface expected");
4080 k = ciEnv::current()->Object_klass();
4081 } else {
4082 assert(klass, "no instance klass expected");
4083 }
4084 return interfaces;
4085 }
4086 const TypeInterfaces* interfaces = TypeInterfaces::make();
4087 return interfaces;
4088 }
4089 assert(array, "no array expected");
4090 assert(k->is_array_klass(), "Not an array?");
4091 ciType* e = k->as_array_klass()->base_element_type();
4092 if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) {
4093 if (interface_handling == ignore_interfaces) {
4094 k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension());
4095 }
4096 }
4097 return TypeAryPtr::_array_interfaces;
4098 }
4099
4100 /**
4101 * Create constant type for a constant boxed value
4102 */
4103 const Type* TypeInstPtr::get_const_boxed_value() const {
4104 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
4105 assert((const_oop() != nullptr), "should be called only for constant object");
4106 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
4107 BasicType bt = constant.basic_type();
4108 switch (bt) {
4109 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
4110 case T_INT: return TypeInt::make(constant.as_int());
4111 case T_CHAR: return TypeInt::make(constant.as_char());
4112 case T_BYTE: return TypeInt::make(constant.as_byte());
4113 case T_SHORT: return TypeInt::make(constant.as_short());
4114 case T_FLOAT: return TypeF::make(constant.as_float());
4115 case T_DOUBLE: return TypeD::make(constant.as_double());
4116 case T_LONG: return TypeLong::make(constant.as_long());
4117 default: break;
4118 }
4119 fatal("Invalid boxed value type '%s'", type2name(bt));
4120 return nullptr;
4121 }
4122
4123 //------------------------------cast_to_ptr_type-------------------------------
4124 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4125 if( ptr == _ptr ) return this;
4126 // Reconstruct _sig info here since not a problem with later lazy
4127 // construction, _sig will show up on demand.
4128 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4129 }
4130
4131
4132 //-----------------------------cast_to_exactness-------------------------------
4133 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4134 if( klass_is_exact == _klass_is_exact ) return this;
4135 if (!_klass->is_loaded()) return this;
4136 ciInstanceKlass* ik = _klass->as_instance_klass();
4137 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
4138 assert(!ik->is_interface(), "no interface here");
4139 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4140 }
4141
4142 //-----------------------------cast_to_instance_id----------------------------
4143 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4144 if( instance_id == _instance_id ) return this;
4145 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4146 }
4147
4148 //------------------------------xmeet_unloaded---------------------------------
4149 // Compute the MEET of two InstPtrs when at least one is unloaded.
4150 // Assume classes are different since called after check for same name/class-loader
4151 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4152 int off = meet_offset(tinst->offset());
4153 PTR ptr = meet_ptr(tinst->ptr());
4154 int instance_id = meet_instance_id(tinst->instance_id());
4155 const TypePtr* speculative = xmeet_speculative(tinst);
4156 int depth = meet_inline_depth(tinst->inline_depth());
4157
4158 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
4159 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
4160 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4161 //
4162 // Meet unloaded class with java/lang/Object
4163 //
4164 // Meet
4165 // | Unloaded Class
4166 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
4167 // ===================================================================
4168 // TOP | ..........................Unloaded......................|
4169 // AnyNull | U-AN |................Unloaded......................|
4170 // Constant | ... O-NN .................................. | O-BOT |
4171 // NotNull | ... O-NN .................................. | O-BOT |
4172 // BOTTOM | ........................Object-BOTTOM ..................|
4173 //
4174 assert(loaded->ptr() != TypePtr::Null, "insanity check");
4175 //
4176 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4177 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4178 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4179 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4180 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4181 else { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4182 }
4183 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4184
4185 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4186 }
4187
4188 // Both are unloaded, not the same class, not Object
4189 // Or meet unloaded with a different loaded class, not java/lang/Object
4190 if (ptr != TypePtr::BotPTR) {
4191 return TypeInstPtr::NOTNULL->with_speculative(speculative);
4192 }
4193 return TypeInstPtr::BOTTOM->with_speculative(speculative);
4194 }
4195
4196
4197 //------------------------------meet-------------------------------------------
4198 // Compute the MEET of two types. It returns a new Type object.
4199 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
4200 // Perform a fast test for common case; meeting the same types together.
4201 if( this == t ) return this; // Meeting same type-rep?
4202
4203 // Current "this->_base" is Pointer
4204 switch (t->base()) { // switch on original type
4205
4206 case Int: // Mixing ints & oops happens when javac
4207 case Long: // reuses local variables
4208 case FloatTop:
4209 case FloatCon:
4210 case FloatBot:
4211 case DoubleTop:
4212 case DoubleCon:
4213 case DoubleBot:
4214 case NarrowOop:
4215 case NarrowKlass:
4216 case Bottom: // Ye Olde Default
4217 return Type::BOTTOM;
4218 case Top:
4219 return this;
4220
4221 default: // All else is a mistake
4222 typerr(t);
4223
4224 case MetadataPtr:
4225 case KlassPtr:
4226 case InstKlassPtr:
4227 case AryKlassPtr:
4228 case RawPtr: return TypePtr::BOTTOM;
4229
4230 case AryPtr: { // All arrays inherit from Object class
4231 // Call in reverse direction to avoid duplication
4232 return t->is_aryptr()->xmeet_helper(this);
4233 }
4234
4235 case OopPtr: { // Meeting to OopPtrs
4236 // Found a OopPtr type vs self-InstPtr type
4237 const TypeOopPtr *tp = t->is_oopptr();
4238 int offset = meet_offset(tp->offset());
4239 PTR ptr = meet_ptr(tp->ptr());
4240 switch (tp->ptr()) {
4241 case TopPTR:
4242 case AnyNull: {
4243 int instance_id = meet_instance_id(InstanceTop);
4244 const TypePtr* speculative = xmeet_speculative(tp);
4245 int depth = meet_inline_depth(tp->inline_depth());
4246 return make(ptr, klass(), _interfaces, klass_is_exact(),
4247 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4248 }
4249 case NotNull:
4250 case BotPTR: {
4251 int instance_id = meet_instance_id(tp->instance_id());
4252 const TypePtr* speculative = xmeet_speculative(tp);
4253 int depth = meet_inline_depth(tp->inline_depth());
4254 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4255 }
4256 default: typerr(t);
4257 }
4258 }
4259
4260 case AnyPtr: { // Meeting to AnyPtrs
4261 // Found an AnyPtr type vs self-InstPtr type
4262 const TypePtr *tp = t->is_ptr();
4263 int offset = meet_offset(tp->offset());
4264 PTR ptr = meet_ptr(tp->ptr());
4265 int instance_id = meet_instance_id(InstanceTop);
4266 const TypePtr* speculative = xmeet_speculative(tp);
4267 int depth = meet_inline_depth(tp->inline_depth());
4268 switch (tp->ptr()) {
4269 case Null:
4270 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4271 // else fall through to AnyNull
4272 case TopPTR:
4273 case AnyNull: {
4274 return make(ptr, klass(), _interfaces, klass_is_exact(),
4275 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4276 }
4277 case NotNull:
4278 case BotPTR:
4279 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4280 default: typerr(t);
4281 }
4282 }
4283
4284 /*
4285 A-top }
4286 / | \ } Tops
4287 B-top A-any C-top }
4288 | / | \ | } Any-nulls
4289 B-any | C-any }
4290 | | |
4291 B-con A-con C-con } constants; not comparable across classes
4292 | | |
4293 B-not | C-not }
4294 | \ | / | } not-nulls
4295 B-bot A-not C-bot }
4296 \ | / } Bottoms
4297 A-bot }
4298 */
4299
4300 case InstPtr: { // Meeting 2 Oops?
4301 // Found an InstPtr sub-type vs self-InstPtr type
4302 const TypeInstPtr *tinst = t->is_instptr();
4303 int off = meet_offset(tinst->offset());
4304 PTR ptr = meet_ptr(tinst->ptr());
4305 int instance_id = meet_instance_id(tinst->instance_id());
4306 const TypePtr* speculative = xmeet_speculative(tinst);
4307 int depth = meet_inline_depth(tinst->inline_depth());
4308 const TypeInterfaces* interfaces = meet_interfaces(tinst);
4309
4310 ciKlass* tinst_klass = tinst->klass();
4311 ciKlass* this_klass = klass();
4312
4313 ciKlass* res_klass = nullptr;
4314 bool res_xk = false;
4315 const Type* res;
4316 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4317
4318 if (kind == UNLOADED) {
4319 // One of these classes has not been loaded
4320 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4321 #ifndef PRODUCT
4322 if (PrintOpto && Verbose) {
4323 tty->print("meet of unloaded classes resulted in: ");
4324 unloaded_meet->dump();
4325 tty->cr();
4326 tty->print(" this == ");
4327 dump();
4328 tty->cr();
4329 tty->print(" tinst == ");
4330 tinst->dump();
4331 tty->cr();
4332 }
4333 #endif
4334 res = unloaded_meet;
4335 } else {
4336 if (kind == NOT_SUBTYPE && instance_id > 0) {
4337 instance_id = InstanceBot;
4338 } else if (kind == LCA) {
4339 instance_id = InstanceBot;
4340 }
4341 ciObject* o = nullptr; // Assume not constant when done
4342 ciObject* this_oop = const_oop();
4343 ciObject* tinst_oop = tinst->const_oop();
4344 if (ptr == Constant) {
4345 if (this_oop != nullptr && tinst_oop != nullptr &&
4346 this_oop->equals(tinst_oop))
4347 o = this_oop;
4348 else if (above_centerline(_ptr)) {
4349 assert(!tinst_klass->is_interface(), "");
4350 o = tinst_oop;
4351 } else if (above_centerline(tinst->_ptr)) {
4352 assert(!this_klass->is_interface(), "");
4353 o = this_oop;
4354 } else
4355 ptr = NotNull;
4356 }
4357 res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4358 }
4359
4360 return res;
4361
4362 } // End of case InstPtr
4363
4364 } // End of switch
4365 return this; // Return the double constant
4366 }
4367
4368 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4369 ciKlass*& res_klass, bool& res_xk) {
4370 ciKlass* this_klass = this_type->klass();
4371 ciKlass* other_klass = other_type->klass();
4372 bool this_xk = this_type->klass_is_exact();
4373 bool other_xk = other_type->klass_is_exact();
4374 PTR this_ptr = this_type->ptr();
4375 PTR other_ptr = other_type->ptr();
4376 const TypeInterfaces* this_interfaces = this_type->interfaces();
4377 const TypeInterfaces* other_interfaces = other_type->interfaces();
4378 // Check for easy case; klasses are equal (and perhaps not loaded!)
4379 // If we have constants, then we created oops so classes are loaded
4380 // and we can handle the constants further down. This case handles
4381 // both-not-loaded or both-loaded classes
4382 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4383 res_klass = this_klass;
4384 res_xk = this_xk;
4385 return QUICK;
4386 }
4387
4388 // Classes require inspection in the Java klass hierarchy. Must be loaded.
4389 if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4390 return UNLOADED;
4391 }
4392
4393 // !!! Here's how the symmetry requirement breaks down into invariants:
4394 // If we split one up & one down AND they subtype, take the down man.
4395 // If we split one up & one down AND they do NOT subtype, "fall hard".
4396 // If both are up and they subtype, take the subtype class.
4397 // If both are up and they do NOT subtype, "fall hard".
4398 // If both are down and they subtype, take the supertype class.
4399 // If both are down and they do NOT subtype, "fall hard".
4400 // Constants treated as down.
4401
4402 // Now, reorder the above list; observe that both-down+subtype is also
4403 // "fall hard"; "fall hard" becomes the default case:
4404 // If we split one up & one down AND they subtype, take the down man.
4405 // If both are up and they subtype, take the subtype class.
4406
4407 // If both are down and they subtype, "fall hard".
4408 // If both are down and they do NOT subtype, "fall hard".
4409 // If both are up and they do NOT subtype, "fall hard".
4410 // If we split one up & one down AND they do NOT subtype, "fall hard".
4411
4412 // If a proper subtype is exact, and we return it, we return it exactly.
4413 // If a proper supertype is exact, there can be no subtyping relationship!
4414 // If both types are equal to the subtype, exactness is and-ed below the
4415 // centerline and or-ed above it. (N.B. Constants are always exact.)
4416
4417 // Check for subtyping:
4418 const T* subtype = nullptr;
4419 bool subtype_exact = false;
4420 if (this_type->is_same_java_type_as(other_type)) {
4421 subtype = this_type;
4422 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4423 } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4424 subtype = this_type; // Pick subtyping class
4425 subtype_exact = this_xk;
4426 } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4427 subtype = other_type; // Pick subtyping class
4428 subtype_exact = other_xk;
4429 }
4430
4431 if (subtype) {
4432 if (above_centerline(ptr)) { // both are up?
4433 this_type = other_type = subtype;
4434 this_xk = other_xk = subtype_exact;
4435 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4436 this_type = other_type; // tinst is down; keep down man
4437 this_xk = other_xk;
4438 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4439 other_type = this_type; // this is down; keep down man
4440 other_xk = this_xk;
4441 } else {
4442 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
4443 }
4444 }
4445
4446 // Check for classes now being equal
4447 if (this_type->is_same_java_type_as(other_type)) {
4448 // If the klasses are equal, the constants may still differ. Fall to
4449 // NotNull if they do (neither constant is null; that is a special case
4450 // handled elsewhere).
4451 res_klass = this_type->klass();
4452 res_xk = this_xk;
4453 return SUBTYPE;
4454 } // Else classes are not equal
4455
4456 // Since klasses are different, we require a LCA in the Java
4457 // class hierarchy - which means we have to fall to at least NotNull.
4458 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4459 ptr = NotNull;
4460 }
4461
4462 interfaces = this_interfaces->intersection_with(other_interfaces);
4463
4464 // Now we find the LCA of Java classes
4465 ciKlass* k = this_klass->least_common_ancestor(other_klass);
4466
4467 res_klass = k;
4468 res_xk = false;
4469
4470 return LCA;
4471 }
4472
4473 //------------------------java_mirror_type--------------------------------------
4474 ciType* TypeInstPtr::java_mirror_type() const {
4475 // must be a singleton type
4476 if( const_oop() == nullptr ) return nullptr;
4477
4478 // must be of type java.lang.Class
4479 if( klass() != ciEnv::current()->Class_klass() ) return nullptr;
4480
4481 return const_oop()->as_instance()->java_mirror_type();
4482 }
4483
4484
4485 //------------------------------xdual------------------------------------------
4486 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
4487 // inheritance mechanism.
4488 const Type *TypeInstPtr::xdual() const {
4489 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4490 }
4491
4492 //------------------------------eq---------------------------------------------
4493 // Structural equality check for Type representations
4494 bool TypeInstPtr::eq( const Type *t ) const {
4495 const TypeInstPtr *p = t->is_instptr();
4496 return
4497 klass()->equals(p->klass()) &&
4498 _interfaces->eq(p->_interfaces) &&
4499 TypeOopPtr::eq(p); // Check sub-type stuff
4500 }
4501
4502 //------------------------------hash-------------------------------------------
4503 // Type-specific hashing function.
4504 uint TypeInstPtr::hash(void) const {
4505 return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4506 }
4507
4508 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4509 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4510 }
4511
4512
4513 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4514 return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4515 }
4516
4517 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4518 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4519 }
4520
4521
4522 //------------------------------dump2------------------------------------------
4523 // Dump oop Type
4524 #ifndef PRODUCT
4525 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4526 // Print the name of the klass.
4527 klass()->print_name_on(st);
4528 _interfaces->dump(st);
4529
4530 switch( _ptr ) {
4531 case Constant:
4532 if (WizardMode || Verbose) {
4533 ResourceMark rm;
4534 stringStream ss;
4535
4536 st->print(" ");
4537 const_oop()->print_oop(&ss);
4538 // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4539 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4540 char* buf = ss.as_string(/* c_heap= */false);
4541 StringUtils::replace_no_expand(buf, "\n", "");
4542 st->print_raw(buf);
4543 }
4544 case BotPTR:
4545 if (!WizardMode && !Verbose) {
4546 if( _klass_is_exact ) st->print(":exact");
4547 break;
4548 }
4549 case TopPTR:
4550 case AnyNull:
4551 case NotNull:
4552 st->print(":%s", ptr_msg[_ptr]);
4553 if( _klass_is_exact ) st->print(":exact");
4554 break;
4555 default:
4556 break;
4557 }
4558
4559 if( _offset ) { // Dump offset, if any
4560 if( _offset == OffsetBot ) st->print("+any");
4561 else if( _offset == OffsetTop ) st->print("+unknown");
4562 else st->print("+%d", _offset);
4563 }
4564
4565 st->print(" *");
4566 if (_instance_id == InstanceTop)
4567 st->print(",iid=top");
4568 else if (_instance_id != InstanceBot)
4569 st->print(",iid=%d",_instance_id);
4570
4571 dump_inline_depth(st);
4572 dump_speculative(st);
4573 }
4574 #endif
4575
4576 //------------------------------add_offset-------------------------------------
4577 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4578 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4579 _instance_id, add_offset_speculative(offset), _inline_depth);
4580 }
4581
4582 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4583 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4584 _instance_id, with_offset_speculative(offset), _inline_depth);
4585 }
4586
4587 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4588 if (_speculative == nullptr) {
4589 return this;
4590 }
4591 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4592 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4593 _instance_id, nullptr, _inline_depth);
4594 }
4595
4596 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4597 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4598 }
4599
4600 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4601 if (!UseInlineDepthForSpeculativeTypes) {
4602 return this;
4603 }
4604 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4605 }
4606
4607 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4608 assert(is_known_instance(), "should be known");
4609 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4610 }
4611
4612 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4613 bool xk = klass_is_exact();
4614 ciInstanceKlass* ik = klass()->as_instance_klass();
4615 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4616 if (_interfaces->eq(ik)) {
4617 Compile* C = Compile::current();
4618 Dependencies* deps = C->dependencies();
4619 deps->assert_leaf_type(ik);
4620 xk = true;
4621 }
4622 }
4623 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4624 }
4625
4626 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4627 static_assert(std::is_base_of<T2, T1>::value, "");
4628
4629 if (!this_one->is_instance_type(other)) {
4630 return false;
4631 }
4632
4633 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4634 return true;
4635 }
4636
4637 return this_one->klass()->is_subtype_of(other->klass()) &&
4638 (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4639 }
4640
4641
4642 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4643 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4644 }
4645
4646 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4647 static_assert(std::is_base_of<T2, T1>::value, "");
4648 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4649 return true;
4650 }
4651
4652 if (this_one->is_instance_type(other)) {
4653 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4654 }
4655
4656 int dummy;
4657 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4658 if (this_top_or_bottom) {
4659 return false;
4660 }
4661
4662 const T1* other_ary = this_one->is_array_type(other);
4663 const TypePtr* other_elem = other_ary->elem()->make_ptr();
4664 const TypePtr* this_elem = this_one->elem()->make_ptr();
4665 if (other_elem != nullptr && this_elem != nullptr) {
4666 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4667 }
4668
4669 if (other_elem == nullptr && this_elem == nullptr) {
4670 return this_one->klass()->is_subtype_of(other->klass());
4671 }
4672
4673 return false;
4674 }
4675
4676 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4677 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4678 }
4679
4680 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4681 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4682 }
4683
4684 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4685 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4686 }
4687
4688 //=============================================================================
4689 // Convenience common pre-built types.
4690 const TypeAryPtr *TypeAryPtr::RANGE;
4691 const TypeAryPtr *TypeAryPtr::OOPS;
4692 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4693 const TypeAryPtr *TypeAryPtr::BYTES;
4694 const TypeAryPtr *TypeAryPtr::SHORTS;
4695 const TypeAryPtr *TypeAryPtr::CHARS;
4696 const TypeAryPtr *TypeAryPtr::INTS;
4697 const TypeAryPtr *TypeAryPtr::LONGS;
4698 const TypeAryPtr *TypeAryPtr::FLOATS;
4699 const TypeAryPtr *TypeAryPtr::DOUBLES;
4700
4701 //------------------------------make-------------------------------------------
4702 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4703 int instance_id, const TypePtr* speculative, int inline_depth) {
4704 assert(!(k == nullptr && ary->_elem->isa_int()),
4705 "integral arrays must be pre-equipped with a class");
4706 if (!xk) xk = ary->ary_must_be_exact();
4707 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4708 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4709 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4710 k = nullptr;
4711 }
4712 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4713 }
4714
4715 //------------------------------make-------------------------------------------
4716 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4717 int instance_id, const TypePtr* speculative, int inline_depth,
4718 bool is_autobox_cache) {
4719 assert(!(k == nullptr && ary->_elem->isa_int()),
4720 "integral arrays must be pre-equipped with a class");
4721 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4722 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact();
4723 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4724 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4725 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4726 k = nullptr;
4727 }
4728 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4729 }
4730
4731 //------------------------------cast_to_ptr_type-------------------------------
4732 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4733 if( ptr == _ptr ) return this;
4734 return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4735 }
4736
4737
4738 //-----------------------------cast_to_exactness-------------------------------
4739 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4740 if( klass_is_exact == _klass_is_exact ) return this;
4741 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
4742 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4743 }
4744
4745 //-----------------------------cast_to_instance_id----------------------------
4746 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4747 if( instance_id == _instance_id ) return this;
4748 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4749 }
4750
4751
4752 //-----------------------------max_array_length-------------------------------
4753 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4754 jint TypeAryPtr::max_array_length(BasicType etype) {
4755 if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4756 if (etype == T_NARROWOOP) {
4757 etype = T_OBJECT;
4758 } else if (etype == T_ILLEGAL) { // bottom[]
4759 etype = T_BYTE; // will produce conservatively high value
4760 } else {
4761 fatal("not an element type: %s", type2name(etype));
4762 }
4763 }
4764 return arrayOopDesc::max_array_length(etype);
4765 }
4766
4767 //-----------------------------narrow_size_type-------------------------------
4768 // Narrow the given size type to the index range for the given array base type.
4769 // Return null if the resulting int type becomes empty.
4770 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4771 jint hi = size->_hi;
4772 jint lo = size->_lo;
4773 jint min_lo = 0;
4774 jint max_hi = max_array_length(elem()->array_element_basic_type());
4775 //if (index_not_size) --max_hi; // type of a valid array index, FTR
4776 bool chg = false;
4777 if (lo < min_lo) {
4778 lo = min_lo;
4779 if (size->is_con()) {
4780 hi = lo;
4781 }
4782 chg = true;
4783 }
4784 if (hi > max_hi) {
4785 hi = max_hi;
4786 if (size->is_con()) {
4787 lo = hi;
4788 }
4789 chg = true;
4790 }
4791 // Negative length arrays will produce weird intermediate dead fast-path code
4792 if (lo > hi)
4793 return TypeInt::ZERO;
4794 if (!chg)
4795 return size;
4796 return TypeInt::make(lo, hi, Type::WidenMin);
4797 }
4798
4799 //-------------------------------cast_to_size----------------------------------
4800 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4801 assert(new_size != nullptr, "");
4802 new_size = narrow_size_type(new_size);
4803 if (new_size == size()) return this;
4804 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4805 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4806 }
4807
4808 //------------------------------cast_to_stable---------------------------------
4809 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4810 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4811 return this;
4812
4813 const Type* elem = this->elem();
4814 const TypePtr* elem_ptr = elem->make_ptr();
4815
4816 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4817 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4818 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4819 }
4820
4821 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4822
4823 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4824 }
4825
4826 //-----------------------------stable_dimension--------------------------------
4827 int TypeAryPtr::stable_dimension() const {
4828 if (!is_stable()) return 0;
4829 int dim = 1;
4830 const TypePtr* elem_ptr = elem()->make_ptr();
4831 if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4832 dim += elem_ptr->is_aryptr()->stable_dimension();
4833 return dim;
4834 }
4835
4836 //----------------------cast_to_autobox_cache-----------------------------------
4837 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4838 if (is_autobox_cache()) return this;
4839 const TypeOopPtr* etype = elem()->make_oopptr();
4840 if (etype == nullptr) return this;
4841 // The pointers in the autobox arrays are always non-null.
4842 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4843 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4844 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4845 }
4846
4847 //------------------------------eq---------------------------------------------
4848 // Structural equality check for Type representations
4849 bool TypeAryPtr::eq( const Type *t ) const {
4850 const TypeAryPtr *p = t->is_aryptr();
4851 return
4852 _ary == p->_ary && // Check array
4853 TypeOopPtr::eq(p); // Check sub-parts
4854 }
4855
4856 //------------------------------hash-------------------------------------------
4857 // Type-specific hashing function.
4858 uint TypeAryPtr::hash(void) const {
4859 return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4860 }
4861
4862 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4863 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4864 }
4865
4866 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4867 return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4868 }
4869
4870 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4871 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4872 }
4873 //------------------------------meet-------------------------------------------
4874 // Compute the MEET of two types. It returns a new Type object.
4875 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4876 // Perform a fast test for common case; meeting the same types together.
4877 if( this == t ) return this; // Meeting same type-rep?
4878 // Current "this->_base" is Pointer
4879 switch (t->base()) { // switch on original type
4880
4881 // Mixing ints & oops happens when javac reuses local variables
4882 case Int:
4883 case Long:
4884 case FloatTop:
4885 case FloatCon:
4886 case FloatBot:
4887 case DoubleTop:
4888 case DoubleCon:
4889 case DoubleBot:
4890 case NarrowOop:
4891 case NarrowKlass:
4892 case Bottom: // Ye Olde Default
4893 return Type::BOTTOM;
4894 case Top:
4895 return this;
4896
4897 default: // All else is a mistake
4898 typerr(t);
4899
4900 case OopPtr: { // Meeting to OopPtrs
4901 // Found a OopPtr type vs self-AryPtr type
4902 const TypeOopPtr *tp = t->is_oopptr();
4903 int offset = meet_offset(tp->offset());
4904 PTR ptr = meet_ptr(tp->ptr());
4905 int depth = meet_inline_depth(tp->inline_depth());
4906 const TypePtr* speculative = xmeet_speculative(tp);
4907 switch (tp->ptr()) {
4908 case TopPTR:
4909 case AnyNull: {
4910 int instance_id = meet_instance_id(InstanceTop);
4911 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4912 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4913 }
4914 case BotPTR:
4915 case NotNull: {
4916 int instance_id = meet_instance_id(tp->instance_id());
4917 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4918 }
4919 default: ShouldNotReachHere();
4920 }
4921 }
4922
4923 case AnyPtr: { // Meeting two AnyPtrs
4924 // Found an AnyPtr type vs self-AryPtr type
4925 const TypePtr *tp = t->is_ptr();
4926 int offset = meet_offset(tp->offset());
4927 PTR ptr = meet_ptr(tp->ptr());
4928 const TypePtr* speculative = xmeet_speculative(tp);
4929 int depth = meet_inline_depth(tp->inline_depth());
4930 switch (tp->ptr()) {
4931 case TopPTR:
4932 return this;
4933 case BotPTR:
4934 case NotNull:
4935 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4936 case Null:
4937 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4938 // else fall through to AnyNull
4939 case AnyNull: {
4940 int instance_id = meet_instance_id(InstanceTop);
4941 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4942 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4943 }
4944 default: ShouldNotReachHere();
4945 }
4946 }
4947
4948 case MetadataPtr:
4949 case KlassPtr:
4950 case InstKlassPtr:
4951 case AryKlassPtr:
4952 case RawPtr: return TypePtr::BOTTOM;
4953
4954 case AryPtr: { // Meeting 2 references?
4955 const TypeAryPtr *tap = t->is_aryptr();
4956 int off = meet_offset(tap->offset());
4957 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4958 PTR ptr = meet_ptr(tap->ptr());
4959 int instance_id = meet_instance_id(tap->instance_id());
4960 const TypePtr* speculative = xmeet_speculative(tap);
4961 int depth = meet_inline_depth(tap->inline_depth());
4962
4963 ciKlass* res_klass = nullptr;
4964 bool res_xk = false;
4965 const Type* elem = tary->_elem;
4966 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4967 instance_id = InstanceBot;
4968 }
4969
4970 ciObject* o = nullptr; // Assume not constant when done
4971 ciObject* this_oop = const_oop();
4972 ciObject* tap_oop = tap->const_oop();
4973 if (ptr == Constant) {
4974 if (this_oop != nullptr && tap_oop != nullptr &&
4975 this_oop->equals(tap_oop)) {
4976 o = tap_oop;
4977 } else if (above_centerline(_ptr)) {
4978 o = tap_oop;
4979 } else if (above_centerline(tap->_ptr)) {
4980 o = this_oop;
4981 } else {
4982 ptr = NotNull;
4983 }
4984 }
4985 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4986 }
4987
4988 // All arrays inherit from Object class
4989 case InstPtr: {
4990 const TypeInstPtr *tp = t->is_instptr();
4991 int offset = meet_offset(tp->offset());
4992 PTR ptr = meet_ptr(tp->ptr());
4993 int instance_id = meet_instance_id(tp->instance_id());
4994 const TypePtr* speculative = xmeet_speculative(tp);
4995 int depth = meet_inline_depth(tp->inline_depth());
4996 const TypeInterfaces* interfaces = meet_interfaces(tp);
4997 const TypeInterfaces* tp_interfaces = tp->_interfaces;
4998 const TypeInterfaces* this_interfaces = _interfaces;
4999
5000 switch (ptr) {
5001 case TopPTR:
5002 case AnyNull: // Fall 'down' to dual of object klass
5003 // For instances when a subclass meets a superclass we fall
5004 // below the centerline when the superclass is exact. We need to
5005 // do the same here.
5006 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5007 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5008 } else {
5009 // cannot subclass, so the meet has to fall badly below the centerline
5010 ptr = NotNull;
5011 instance_id = InstanceBot;
5012 interfaces = this_interfaces->intersection_with(tp_interfaces);
5013 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
5014 }
5015 case Constant:
5016 case NotNull:
5017 case BotPTR: // Fall down to object klass
5018 // LCA is object_klass, but if we subclass from the top we can do better
5019 if (above_centerline(tp->ptr())) {
5020 // If 'tp' is above the centerline and it is Object class
5021 // then we can subclass in the Java class hierarchy.
5022 // For instances when a subclass meets a superclass we fall
5023 // below the centerline when the superclass is exact. We need
5024 // to do the same here.
5025 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5026 // that is, my array type is a subtype of 'tp' klass
5027 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5028 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5029 }
5030 }
5031 // The other case cannot happen, since t cannot be a subtype of an array.
5032 // The meet falls down to Object class below centerline.
5033 if (ptr == Constant) {
5034 ptr = NotNull;
5035 }
5036 if (instance_id > 0) {
5037 instance_id = InstanceBot;
5038 }
5039 interfaces = this_interfaces->intersection_with(tp_interfaces);
5040 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
5041 default: typerr(t);
5042 }
5043 }
5044 }
5045 return this; // Lint noise
5046 }
5047
5048
5049 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
5050 const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
5051 int dummy;
5052 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5053 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5054 ciKlass* this_klass = this_ary->klass();
5055 ciKlass* other_klass = other_ary->klass();
5056 bool this_xk = this_ary->klass_is_exact();
5057 bool other_xk = other_ary->klass_is_exact();
5058 PTR this_ptr = this_ary->ptr();
5059 PTR other_ptr = other_ary->ptr();
5060 res_klass = nullptr;
5061 MeetResult result = SUBTYPE;
5062 if (elem->isa_int()) {
5063 // Integral array element types have irrelevant lattice relations.
5064 // It is the klass that determines array layout, not the element type.
5065 if (this_top_or_bottom)
5066 res_klass = other_klass;
5067 else if (other_top_or_bottom || other_klass == this_klass) {
5068 res_klass = this_klass;
5069 } else {
5070 // Something like byte[int+] meets char[int+].
5071 // This must fall to bottom, not (int[-128..65535])[int+].
5072 // instance_id = InstanceBot;
5073 elem = Type::BOTTOM;
5074 result = NOT_SUBTYPE;
5075 if (above_centerline(ptr) || ptr == Constant) {
5076 ptr = NotNull;
5077 res_xk = false;
5078 return NOT_SUBTYPE;
5079 }
5080 }
5081 } else {// Non integral arrays.
5082 // Must fall to bottom if exact klasses in upper lattice
5083 // are not equal or super klass is exact.
5084 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5085 // meet with top[] and bottom[] are processed further down:
5086 !this_top_or_bottom && !other_top_or_bottom &&
5087 // both are exact and not equal:
5088 ((other_xk && this_xk) ||
5089 // 'tap' is exact and super or unrelated:
5090 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5091 // 'this' is exact and super or unrelated:
5092 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5093 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5094 elem = Type::BOTTOM;
5095 }
5096 ptr = NotNull;
5097 res_xk = false;
5098 return NOT_SUBTYPE;
5099 }
5100 }
5101
5102 res_xk = false;
5103 switch (other_ptr) {
5104 case AnyNull:
5105 case TopPTR:
5106 // Compute new klass on demand, do not use tap->_klass
5107 if (below_centerline(this_ptr)) {
5108 res_xk = this_xk;
5109 } else {
5110 res_xk = (other_xk || this_xk);
5111 }
5112 return result;
5113 case Constant: {
5114 if (this_ptr == Constant) {
5115 res_xk = true;
5116 } else if(above_centerline(this_ptr)) {
5117 res_xk = true;
5118 } else {
5119 // Only precise for identical arrays
5120 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5121 }
5122 return result;
5123 }
5124 case NotNull:
5125 case BotPTR:
5126 // Compute new klass on demand, do not use tap->_klass
5127 if (above_centerline(this_ptr)) {
5128 res_xk = other_xk;
5129 } else {
5130 res_xk = (other_xk && this_xk) &&
5131 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5132 }
5133 return result;
5134 default: {
5135 ShouldNotReachHere();
5136 return result;
5137 }
5138 }
5139 return result;
5140 }
5141
5142
5143 //------------------------------xdual------------------------------------------
5144 // Dual: compute field-by-field dual
5145 const Type *TypeAryPtr::xdual() const {
5146 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5147 }
5148
5149 //------------------------------dump2------------------------------------------
5150 #ifndef PRODUCT
5151 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5152 _ary->dump2(d,depth,st);
5153 _interfaces->dump(st);
5154
5155 switch( _ptr ) {
5156 case Constant:
5157 const_oop()->print(st);
5158 break;
5159 case BotPTR:
5160 if (!WizardMode && !Verbose) {
5161 if( _klass_is_exact ) st->print(":exact");
5162 break;
5163 }
5164 case TopPTR:
5165 case AnyNull:
5166 case NotNull:
5167 st->print(":%s", ptr_msg[_ptr]);
5168 if( _klass_is_exact ) st->print(":exact");
5169 break;
5170 default:
5171 break;
5172 }
5173
5174 if( _offset != 0 ) {
5175 int header_size = objArrayOopDesc::header_size() * wordSize;
5176 if( _offset == OffsetTop ) st->print("+undefined");
5177 else if( _offset == OffsetBot ) st->print("+any");
5178 else if( _offset < header_size ) st->print("+%d", _offset);
5179 else {
5180 BasicType basic_elem_type = elem()->basic_type();
5181 if (basic_elem_type == T_ILLEGAL) {
5182 st->print("+any");
5183 } else {
5184 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5185 int elem_size = type2aelembytes(basic_elem_type);
5186 st->print("[%d]", (_offset - array_base)/elem_size);
5187 }
5188 }
5189 }
5190 st->print(" *");
5191 if (_instance_id == InstanceTop)
5192 st->print(",iid=top");
5193 else if (_instance_id != InstanceBot)
5194 st->print(",iid=%d",_instance_id);
5195
5196 dump_inline_depth(st);
5197 dump_speculative(st);
5198 }
5199 #endif
5200
5201 bool TypeAryPtr::empty(void) const {
5202 if (_ary->empty()) return true;
5203 return TypeOopPtr::empty();
5204 }
5205
5206 //------------------------------add_offset-------------------------------------
5207 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5208 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5209 }
5210
5211 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5212 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5213 }
5214
5215 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5216 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5217 }
5218
5219 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5220 if (_speculative == nullptr) {
5221 return this;
5222 }
5223 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5224 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);
5225 }
5226
5227 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5228 if (!UseInlineDepthForSpeculativeTypes) {
5229 return this;
5230 }
5231 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
5232 }
5233
5234 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5235 assert(is_known_instance(), "should be known");
5236 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5237 }
5238
5239 //=============================================================================
5240
5241 //------------------------------hash-------------------------------------------
5242 // Type-specific hashing function.
5243 uint TypeNarrowPtr::hash(void) const {
5244 return _ptrtype->hash() + 7;
5245 }
5246
5247 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
5248 return _ptrtype->singleton();
5249 }
5250
5251 bool TypeNarrowPtr::empty(void) const {
5252 return _ptrtype->empty();
5253 }
5254
5255 intptr_t TypeNarrowPtr::get_con() const {
5256 return _ptrtype->get_con();
5257 }
5258
5259 bool TypeNarrowPtr::eq( const Type *t ) const {
5260 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5261 if (tc != nullptr) {
5262 if (_ptrtype->base() != tc->_ptrtype->base()) {
5263 return false;
5264 }
5265 return tc->_ptrtype->eq(_ptrtype);
5266 }
5267 return false;
5268 }
5269
5270 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
5271 const TypePtr* odual = _ptrtype->dual()->is_ptr();
5272 return make_same_narrowptr(odual);
5273 }
5274
5275
5276 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5277 if (isa_same_narrowptr(kills)) {
5278 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5279 if (ft->empty())
5280 return Type::TOP; // Canonical empty value
5281 if (ft->isa_ptr()) {
5282 return make_hash_same_narrowptr(ft->isa_ptr());
5283 }
5284 return ft;
5285 } else if (kills->isa_ptr()) {
5286 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5287 if (ft->empty())
5288 return Type::TOP; // Canonical empty value
5289 return ft;
5290 } else {
5291 return Type::TOP;
5292 }
5293 }
5294
5295 //------------------------------xmeet------------------------------------------
5296 // Compute the MEET of two types. It returns a new Type object.
5297 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5298 // Perform a fast test for common case; meeting the same types together.
5299 if( this == t ) return this; // Meeting same type-rep?
5300
5301 if (t->base() == base()) {
5302 const Type* result = _ptrtype->xmeet(t->make_ptr());
5303 if (result->isa_ptr()) {
5304 return make_hash_same_narrowptr(result->is_ptr());
5305 }
5306 return result;
5307 }
5308
5309 // Current "this->_base" is NarrowKlass or NarrowOop
5310 switch (t->base()) { // switch on original type
5311
5312 case Int: // Mixing ints & oops happens when javac
5313 case Long: // reuses local variables
5314 case FloatTop:
5315 case FloatCon:
5316 case FloatBot:
5317 case DoubleTop:
5318 case DoubleCon:
5319 case DoubleBot:
5320 case AnyPtr:
5321 case RawPtr:
5322 case OopPtr:
5323 case InstPtr:
5324 case AryPtr:
5325 case MetadataPtr:
5326 case KlassPtr:
5327 case InstKlassPtr:
5328 case AryKlassPtr:
5329 case NarrowOop:
5330 case NarrowKlass:
5331
5332 case Bottom: // Ye Olde Default
5333 return Type::BOTTOM;
5334 case Top:
5335 return this;
5336
5337 default: // All else is a mistake
5338 typerr(t);
5339
5340 } // End of switch
5341
5342 return this;
5343 }
5344
5345 #ifndef PRODUCT
5346 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5347 _ptrtype->dump2(d, depth, st);
5348 }
5349 #endif
5350
5351 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5352 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5353
5354
5355 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5356 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5357 }
5358
5359 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const {
5360 return make(_ptrtype->remove_speculative()->is_ptr());
5361 }
5362
5363 const Type* TypeNarrowOop::cleanup_speculative() const {
5364 return make(_ptrtype->cleanup_speculative()->is_ptr());
5365 }
5366
5367 #ifndef PRODUCT
5368 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5369 st->print("narrowoop: ");
5370 TypeNarrowPtr::dump2(d, depth, st);
5371 }
5372 #endif
5373
5374 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5375
5376 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5377 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5378 }
5379
5380 #ifndef PRODUCT
5381 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5382 st->print("narrowklass: ");
5383 TypeNarrowPtr::dump2(d, depth, st);
5384 }
5385 #endif
5386
5387
5388 //------------------------------eq---------------------------------------------
5389 // Structural equality check for Type representations
5390 bool TypeMetadataPtr::eq( const Type *t ) const {
5391 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5392 ciMetadata* one = metadata();
5393 ciMetadata* two = a->metadata();
5394 if (one == nullptr || two == nullptr) {
5395 return (one == two) && TypePtr::eq(t);
5396 } else {
5397 return one->equals(two) && TypePtr::eq(t);
5398 }
5399 }
5400
5401 //------------------------------hash-------------------------------------------
5402 // Type-specific hashing function.
5403 uint TypeMetadataPtr::hash(void) const {
5404 return
5405 (metadata() ? metadata()->hash() : 0) +
5406 TypePtr::hash();
5407 }
5408
5409 //------------------------------singleton--------------------------------------
5410 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5411 // constants
5412 bool TypeMetadataPtr::singleton(void) const {
5413 // detune optimizer to not generate constant metadata + constant offset as a constant!
5414 // TopPTR, Null, AnyNull, Constant are all singletons
5415 return (_offset == 0) && !below_centerline(_ptr);
5416 }
5417
5418 //------------------------------add_offset-------------------------------------
5419 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5420 return make( _ptr, _metadata, xadd_offset(offset));
5421 }
5422
5423 //-----------------------------filter------------------------------------------
5424 // Do not allow interface-vs.-noninterface joins to collapse to top.
5425 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5426 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5427 if (ft == nullptr || ft->empty())
5428 return Type::TOP; // Canonical empty value
5429 return ft;
5430 }
5431
5432 //------------------------------get_con----------------------------------------
5433 intptr_t TypeMetadataPtr::get_con() const {
5434 assert( _ptr == Null || _ptr == Constant, "" );
5435 assert( _offset >= 0, "" );
5436
5437 if (_offset != 0) {
5438 // After being ported to the compiler interface, the compiler no longer
5439 // directly manipulates the addresses of oops. Rather, it only has a pointer
5440 // to a handle at compile time. This handle is embedded in the generated
5441 // code and dereferenced at the time the nmethod is made. Until that time,
5442 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5443 // have access to the addresses!). This does not seem to currently happen,
5444 // but this assertion here is to help prevent its occurrence.
5445 tty->print_cr("Found oop constant with non-zero offset");
5446 ShouldNotReachHere();
5447 }
5448
5449 return (intptr_t)metadata()->constant_encoding();
5450 }
5451
5452 //------------------------------cast_to_ptr_type-------------------------------
5453 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5454 if( ptr == _ptr ) return this;
5455 return make(ptr, metadata(), _offset);
5456 }
5457
5458 //------------------------------meet-------------------------------------------
5459 // Compute the MEET of two types. It returns a new Type object.
5460 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5461 // Perform a fast test for common case; meeting the same types together.
5462 if( this == t ) return this; // Meeting same type-rep?
5463
5464 // Current "this->_base" is OopPtr
5465 switch (t->base()) { // switch on original type
5466
5467 case Int: // Mixing ints & oops happens when javac
5468 case Long: // reuses local variables
5469 case FloatTop:
5470 case FloatCon:
5471 case FloatBot:
5472 case DoubleTop:
5473 case DoubleCon:
5474 case DoubleBot:
5475 case NarrowOop:
5476 case NarrowKlass:
5477 case Bottom: // Ye Olde Default
5478 return Type::BOTTOM;
5479 case Top:
5480 return this;
5481
5482 default: // All else is a mistake
5483 typerr(t);
5484
5485 case AnyPtr: {
5486 // Found an AnyPtr type vs self-OopPtr type
5487 const TypePtr *tp = t->is_ptr();
5488 int offset = meet_offset(tp->offset());
5489 PTR ptr = meet_ptr(tp->ptr());
5490 switch (tp->ptr()) {
5491 case Null:
5492 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5493 // else fall through:
5494 case TopPTR:
5495 case AnyNull: {
5496 return make(ptr, _metadata, offset);
5497 }
5498 case BotPTR:
5499 case NotNull:
5500 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5501 default: typerr(t);
5502 }
5503 }
5504
5505 case RawPtr:
5506 case KlassPtr:
5507 case InstKlassPtr:
5508 case AryKlassPtr:
5509 case OopPtr:
5510 case InstPtr:
5511 case AryPtr:
5512 return TypePtr::BOTTOM; // Oop meet raw is not well defined
5513
5514 case MetadataPtr: {
5515 const TypeMetadataPtr *tp = t->is_metadataptr();
5516 int offset = meet_offset(tp->offset());
5517 PTR tptr = tp->ptr();
5518 PTR ptr = meet_ptr(tptr);
5519 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5520 if (tptr == TopPTR || _ptr == TopPTR ||
5521 metadata()->equals(tp->metadata())) {
5522 return make(ptr, md, offset);
5523 }
5524 // metadata is different
5525 if( ptr == Constant ) { // Cannot be equal constants, so...
5526 if( tptr == Constant && _ptr != Constant) return t;
5527 if( _ptr == Constant && tptr != Constant) return this;
5528 ptr = NotNull; // Fall down in lattice
5529 }
5530 return make(ptr, nullptr, offset);
5531 break;
5532 }
5533 } // End of switch
5534 return this; // Return the double constant
5535 }
5536
5537
5538 //------------------------------xdual------------------------------------------
5539 // Dual of a pure metadata pointer.
5540 const Type *TypeMetadataPtr::xdual() const {
5541 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5542 }
5543
5544 //------------------------------dump2------------------------------------------
5545 #ifndef PRODUCT
5546 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5547 st->print("metadataptr:%s", ptr_msg[_ptr]);
5548 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5549 switch( _offset ) {
5550 case OffsetTop: st->print("+top"); break;
5551 case OffsetBot: st->print("+any"); break;
5552 case 0: break;
5553 default: st->print("+%d",_offset); break;
5554 }
5555 }
5556 #endif
5557
5558
5559 //=============================================================================
5560 // Convenience common pre-built type.
5561 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5562
5563 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5564 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5565 }
5566
5567 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5568 return make(Constant, m, 0);
5569 }
5570 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5571 return make(Constant, m, 0);
5572 }
5573
5574 //------------------------------make-------------------------------------------
5575 // Create a meta data constant
5576 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5577 assert(m == nullptr || !m->is_klass(), "wrong type");
5578 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5579 }
5580
5581
5582 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5583 const Type* elem = _ary->_elem;
5584 bool xk = klass_is_exact();
5585 if (elem->make_oopptr() != nullptr) {
5586 elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5587 if (elem->is_klassptr()->klass_is_exact()) {
5588 xk = true;
5589 }
5590 }
5591 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5592 }
5593
5594 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5595 if (klass->is_instance_klass()) {
5596 return TypeInstKlassPtr::make(klass, interface_handling);
5597 }
5598 return TypeAryKlassPtr::make(klass, interface_handling);
5599 }
5600
5601 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5602 if (klass->is_instance_klass()) {
5603 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5604 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5605 }
5606 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5607 }
5608
5609
5610 //------------------------------TypeKlassPtr-----------------------------------
5611 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5612 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5613 assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5614 klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5615 }
5616
5617 // Is there a single ciKlass* that can represent that type?
5618 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5619 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5620 if (_interfaces->empty()) {
5621 return _klass;
5622 }
5623 if (_klass != ciEnv::current()->Object_klass()) {
5624 if (_interfaces->eq(_klass->as_instance_klass())) {
5625 return _klass;
5626 }
5627 return nullptr;
5628 }
5629 return _interfaces->exact_klass();
5630 }
5631
5632 //------------------------------eq---------------------------------------------
5633 // Structural equality check for Type representations
5634 bool TypeKlassPtr::eq(const Type *t) const {
5635 const TypeKlassPtr *p = t->is_klassptr();
5636 return
5637 _interfaces->eq(p->_interfaces) &&
5638 TypePtr::eq(p);
5639 }
5640
5641 //------------------------------hash-------------------------------------------
5642 // Type-specific hashing function.
5643 uint TypeKlassPtr::hash(void) const {
5644 return TypePtr::hash() + _interfaces->hash();
5645 }
5646
5647 //------------------------------singleton--------------------------------------
5648 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5649 // constants
5650 bool TypeKlassPtr::singleton(void) const {
5651 // detune optimizer to not generate constant klass + constant offset as a constant!
5652 // TopPTR, Null, AnyNull, Constant are all singletons
5653 return (_offset == 0) && !below_centerline(_ptr);
5654 }
5655
5656 // Do not allow interface-vs.-noninterface joins to collapse to top.
5657 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5658 // logic here mirrors the one from TypeOopPtr::filter. See comments
5659 // there.
5660 const Type* ft = join_helper(kills, include_speculative);
5661 const TypeKlassPtr* ftkp = ft->isa_instklassptr();
5662 const TypeKlassPtr* ktkp = kills->isa_instklassptr();
5663
5664 if (ft->empty()) {
5665 return Type::TOP; // Canonical empty value
5666 }
5667
5668 return ft;
5669 }
5670
5671 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5672 if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5673 return _interfaces->union_with(other->_interfaces);
5674 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5675 return other->_interfaces;
5676 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5677 return _interfaces;
5678 }
5679 return _interfaces->intersection_with(other->_interfaces);
5680 }
5681
5682 //------------------------------get_con----------------------------------------
5683 intptr_t TypeKlassPtr::get_con() const {
5684 assert( _ptr == Null || _ptr == Constant, "" );
5685 assert( _offset >= 0, "" );
5686
5687 if (_offset != 0) {
5688 // After being ported to the compiler interface, the compiler no longer
5689 // directly manipulates the addresses of oops. Rather, it only has a pointer
5690 // to a handle at compile time. This handle is embedded in the generated
5691 // code and dereferenced at the time the nmethod is made. Until that time,
5692 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5693 // have access to the addresses!). This does not seem to currently happen,
5694 // but this assertion here is to help prevent its occurrence.
5695 tty->print_cr("Found oop constant with non-zero offset");
5696 ShouldNotReachHere();
5697 }
5698
5699 ciKlass* k = exact_klass();
5700
5701 return (intptr_t)k->constant_encoding();
5702 }
5703
5704 //------------------------------dump2------------------------------------------
5705 // Dump Klass Type
5706 #ifndef PRODUCT
5707 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {
5708 switch(_ptr) {
5709 case Constant:
5710 st->print("precise ");
5711 case NotNull:
5712 {
5713 const char *name = klass()->name()->as_utf8();
5714 if (name) {
5715 st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5716 } else {
5717 ShouldNotReachHere();
5718 }
5719 _interfaces->dump(st);
5720 }
5721 case BotPTR:
5722 if (!WizardMode && !Verbose && _ptr != Constant) break;
5723 case TopPTR:
5724 case AnyNull:
5725 st->print(":%s", ptr_msg[_ptr]);
5726 if (_ptr == Constant) st->print(":exact");
5727 break;
5728 default:
5729 break;
5730 }
5731
5732 if (_offset) { // Dump offset, if any
5733 if (_offset == OffsetBot) { st->print("+any"); }
5734 else if (_offset == OffsetTop) { st->print("+unknown"); }
5735 else { st->print("+%d", _offset); }
5736 }
5737
5738 st->print(" *");
5739 }
5740 #endif
5741
5742 //=============================================================================
5743 // Convenience common pre-built types.
5744
5745 // Not-null object klass or below
5746 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5747 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5748
5749 bool TypeInstKlassPtr::eq(const Type *t) const {
5750 const TypeKlassPtr *p = t->is_klassptr();
5751 return
5752 klass()->equals(p->klass()) &&
5753 TypeKlassPtr::eq(p);
5754 }
5755
5756 uint TypeInstKlassPtr::hash(void) const {
5757 return klass()->hash() + TypeKlassPtr::hash();
5758 }
5759
5760 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {
5761 TypeInstKlassPtr *r =
5762 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5763
5764 return r;
5765 }
5766
5767 //------------------------------add_offset-------------------------------------
5768 // Access internals of klass object
5769 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5770 return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5771 }
5772
5773 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5774 return make(_ptr, klass(), _interfaces, offset);
5775 }
5776
5777 //------------------------------cast_to_ptr_type-------------------------------
5778 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5779 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5780 if( ptr == _ptr ) return this;
5781 return make(ptr, _klass, _interfaces, _offset);
5782 }
5783
5784
5785 bool TypeInstKlassPtr::must_be_exact() const {
5786 if (!_klass->is_loaded()) return false;
5787 ciInstanceKlass* ik = _klass->as_instance_klass();
5788 if (ik->is_final()) return true; // cannot clear xk
5789 return false;
5790 }
5791
5792 //-----------------------------cast_to_exactness-------------------------------
5793 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5794 if (klass_is_exact == (_ptr == Constant)) return this;
5795 if (must_be_exact()) return this;
5796 ciKlass* k = klass();
5797 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5798 }
5799
5800
5801 //-----------------------------as_instance_type--------------------------------
5802 // Corresponding type for an instance of the given class.
5803 // It will be NotNull, and exact if and only if the klass type is exact.
5804 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5805 ciKlass* k = klass();
5806 bool xk = klass_is_exact();
5807 Compile* C = Compile::current();
5808 Dependencies* deps = C->dependencies();
5809 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5810 // Element is an instance
5811 bool klass_is_exact = false;
5812 const TypeInterfaces* interfaces = _interfaces;
5813 if (k->is_loaded()) {
5814 // Try to set klass_is_exact.
5815 ciInstanceKlass* ik = k->as_instance_klass();
5816 klass_is_exact = ik->is_final();
5817 if (!klass_is_exact && klass_change
5818 && deps != nullptr && UseUniqueSubclasses) {
5819 ciInstanceKlass* sub = ik->unique_concrete_subklass();
5820 if (sub != nullptr) {
5821 if (_interfaces->eq(sub)) {
5822 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5823 k = ik = sub;
5824 xk = sub->is_final();
5825 }
5826 }
5827 }
5828 }
5829 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
5830 }
5831
5832 //------------------------------xmeet------------------------------------------
5833 // Compute the MEET of two types, return a new Type object.
5834 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const {
5835 // Perform a fast test for common case; meeting the same types together.
5836 if( this == t ) return this; // Meeting same type-rep?
5837
5838 // Current "this->_base" is Pointer
5839 switch (t->base()) { // switch on original type
5840
5841 case Int: // Mixing ints & oops happens when javac
5842 case Long: // reuses local variables
5843 case FloatTop:
5844 case FloatCon:
5845 case FloatBot:
5846 case DoubleTop:
5847 case DoubleCon:
5848 case DoubleBot:
5849 case NarrowOop:
5850 case NarrowKlass:
5851 case Bottom: // Ye Olde Default
5852 return Type::BOTTOM;
5853 case Top:
5854 return this;
5855
5856 default: // All else is a mistake
5857 typerr(t);
5858
5859 case AnyPtr: { // Meeting to AnyPtrs
5860 // Found an AnyPtr type vs self-KlassPtr type
5861 const TypePtr *tp = t->is_ptr();
5862 int offset = meet_offset(tp->offset());
5863 PTR ptr = meet_ptr(tp->ptr());
5864 switch (tp->ptr()) {
5865 case TopPTR:
5866 return this;
5867 case Null:
5868 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5869 case AnyNull:
5870 return make( ptr, klass(), _interfaces, offset );
5871 case BotPTR:
5872 case NotNull:
5873 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5874 default: typerr(t);
5875 }
5876 }
5877
5878 case RawPtr:
5879 case MetadataPtr:
5880 case OopPtr:
5881 case AryPtr: // Meet with AryPtr
5882 case InstPtr: // Meet with InstPtr
5883 return TypePtr::BOTTOM;
5884
5885 //
5886 // A-top }
5887 // / | \ } Tops
5888 // B-top A-any C-top }
5889 // | / | \ | } Any-nulls
5890 // B-any | C-any }
5891 // | | |
5892 // B-con A-con C-con } constants; not comparable across classes
5893 // | | |
5894 // B-not | C-not }
5895 // | \ | / | } not-nulls
5896 // B-bot A-not C-bot }
5897 // \ | / } Bottoms
5898 // A-bot }
5899 //
5900
5901 case InstKlassPtr: { // Meet two KlassPtr types
5902 const TypeInstKlassPtr *tkls = t->is_instklassptr();
5903 int off = meet_offset(tkls->offset());
5904 PTR ptr = meet_ptr(tkls->ptr());
5905 const TypeInterfaces* interfaces = meet_interfaces(tkls);
5906
5907 ciKlass* res_klass = nullptr;
5908 bool res_xk = false;
5909 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
5910 case UNLOADED:
5911 ShouldNotReachHere();
5912 case SUBTYPE:
5913 case NOT_SUBTYPE:
5914 case LCA:
5915 case QUICK: {
5916 assert(res_xk == (ptr == Constant), "");
5917 const Type* res = make(ptr, res_klass, interfaces, off);
5918 return res;
5919 }
5920 default:
5921 ShouldNotReachHere();
5922 }
5923 } // End of case KlassPtr
5924 case AryKlassPtr: { // All arrays inherit from Object class
5925 const TypeAryKlassPtr *tp = t->is_aryklassptr();
5926 int offset = meet_offset(tp->offset());
5927 PTR ptr = meet_ptr(tp->ptr());
5928 const TypeInterfaces* interfaces = meet_interfaces(tp);
5929 const TypeInterfaces* tp_interfaces = tp->_interfaces;
5930 const TypeInterfaces* this_interfaces = _interfaces;
5931
5932 switch (ptr) {
5933 case TopPTR:
5934 case AnyNull: // Fall 'down' to dual of object klass
5935 // For instances when a subclass meets a superclass we fall
5936 // below the centerline when the superclass is exact. We need to
5937 // do the same here.
5938 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5939 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5940 } else {
5941 // cannot subclass, so the meet has to fall badly below the centerline
5942 ptr = NotNull;
5943 interfaces = _interfaces->intersection_with(tp->_interfaces);
5944 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5945 }
5946 case Constant:
5947 case NotNull:
5948 case BotPTR: // Fall down to object klass
5949 // LCA is object_klass, but if we subclass from the top we can do better
5950 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5951 // If 'this' (InstPtr) is above the centerline and it is Object class
5952 // then we can subclass in the Java class hierarchy.
5953 // For instances when a subclass meets a superclass we fall
5954 // below the centerline when the superclass is exact. We need
5955 // to do the same here.
5956 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5957 // that is, tp's array type is a subtype of my klass
5958 return TypeAryKlassPtr::make(ptr,
5959 tp->elem(), tp->klass(), offset);
5960 }
5961 }
5962 // The other case cannot happen, since I cannot be a subtype of an array.
5963 // The meet falls down to Object class below centerline.
5964 if( ptr == Constant )
5965 ptr = NotNull;
5966 interfaces = this_interfaces->intersection_with(tp_interfaces);
5967 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5968 default: typerr(t);
5969 }
5970 }
5971
5972 } // End of switch
5973 return this; // Return the double constant
5974 }
5975
5976 //------------------------------xdual------------------------------------------
5977 // Dual: compute field-by-field dual
5978 const Type *TypeInstKlassPtr::xdual() const {
5979 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5980 }
5981
5982 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5983 static_assert(std::is_base_of<T2, T1>::value, "");
5984 if (!this_one->is_loaded() || !other->is_loaded()) {
5985 return false;
5986 }
5987 if (!this_one->is_instance_type(other)) {
5988 return false;
5989 }
5990
5991 if (!other_exact) {
5992 return false;
5993 }
5994
5995 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5996 return true;
5997 }
5998
5999 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6000 }
6001
6002 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6003 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6004 }
6005
6006 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) {
6007 static_assert(std::is_base_of<T2, T1>::value, "");
6008 if (!this_one->is_loaded() || !other->is_loaded()) {
6009 return false;
6010 }
6011 if (!this_one->is_instance_type(other)) {
6012 return false;
6013 }
6014 return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces);
6015 }
6016
6017 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6018 return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
6019 }
6020
6021 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6022 static_assert(std::is_base_of<T2, T1>::value, "");
6023 if (!this_one->is_loaded() || !other->is_loaded()) {
6024 return true;
6025 }
6026
6027 if (this_one->is_array_type(other)) {
6028 return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->contains(this_one->_interfaces);
6029 }
6030
6031 assert(this_one->is_instance_type(other), "unsupported");
6032
6033 if (this_exact && other_exact) {
6034 return this_one->is_java_subtype_of(other);
6035 }
6036
6037 if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) {
6038 return false;
6039 }
6040
6041 if (this_exact) {
6042 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6043 }
6044
6045 return true;
6046 }
6047
6048 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6049 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6050 }
6051
6052 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
6053 if (!UseUniqueSubclasses) {
6054 return this;
6055 }
6056 ciKlass* k = klass();
6057 Compile* C = Compile::current();
6058 Dependencies* deps = C->dependencies();
6059 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6060 const TypeInterfaces* interfaces = _interfaces;
6061 if (k->is_loaded()) {
6062 ciInstanceKlass* ik = k->as_instance_klass();
6063 bool klass_is_exact = ik->is_final();
6064 if (!klass_is_exact &&
6065 deps != nullptr) {
6066 ciInstanceKlass* sub = ik->unique_concrete_subklass();
6067 if (sub != nullptr) {
6068 if (_interfaces->eq(sub)) {
6069 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6070 k = ik = sub;
6071 klass_is_exact = sub->is_final();
6072 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6073 }
6074 }
6075 }
6076 }
6077 return this;
6078 }
6079
6080
6081 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6082 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6083 }
6084
6085 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {
6086 if (k->is_obj_array_klass()) {
6087 // Element is an object array. Recursively call ourself.
6088 ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6089 const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6090 return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6091 } else if (k->is_type_array_klass()) {
6092 // Element is an typeArray
6093 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6094 return TypeAryKlassPtr::make(ptr, etype, k, offset);
6095 } else {
6096 ShouldNotReachHere();
6097 return nullptr;
6098 }
6099 }
6100
6101 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6102 return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6103 }
6104
6105 //------------------------------eq---------------------------------------------
6106 // Structural equality check for Type representations
6107 bool TypeAryKlassPtr::eq(const Type *t) const {
6108 const TypeAryKlassPtr *p = t->is_aryklassptr();
6109 return
6110 _elem == p->_elem && // Check array
6111 TypeKlassPtr::eq(p); // Check sub-parts
6112 }
6113
6114 //------------------------------hash-------------------------------------------
6115 // Type-specific hashing function.
6116 uint TypeAryKlassPtr::hash(void) const {
6117 return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();
6118 }
6119
6120 //----------------------compute_klass------------------------------------------
6121 // Compute the defining klass for this class
6122 ciKlass* TypeAryPtr::compute_klass() const {
6123 // Compute _klass based on element type.
6124 ciKlass* k_ary = nullptr;
6125 const TypeInstPtr *tinst;
6126 const TypeAryPtr *tary;
6127 const Type* el = elem();
6128 if (el->isa_narrowoop()) {
6129 el = el->make_ptr();
6130 }
6131
6132 // Get element klass
6133 if ((tinst = el->isa_instptr()) != nullptr) {
6134 // Leave k_ary at null.
6135 } else if ((tary = el->isa_aryptr()) != nullptr) {
6136 // Leave k_ary at null.
6137 } else if ((el->base() == Type::Top) ||
6138 (el->base() == Type::Bottom)) {
6139 // element type of Bottom occurs from meet of basic type
6140 // and object; Top occurs when doing join on Bottom.
6141 // Leave k_ary at null.
6142 } else {
6143 assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6144 // Compute array klass directly from basic type
6145 k_ary = ciTypeArrayKlass::make(el->basic_type());
6146 }
6147 return k_ary;
6148 }
6149
6150 //------------------------------klass------------------------------------------
6151 // Return the defining klass for this class
6152 ciKlass* TypeAryPtr::klass() const {
6153 if( _klass ) return _klass; // Return cached value, if possible
6154
6155 // Oops, need to compute _klass and cache it
6156 ciKlass* k_ary = compute_klass();
6157
6158 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
6159 // The _klass field acts as a cache of the underlying
6160 // ciKlass for this array type. In order to set the field,
6161 // we need to cast away const-ness.
6162 //
6163 // IMPORTANT NOTE: we *never* set the _klass field for the
6164 // type TypeAryPtr::OOPS. This Type is shared between all
6165 // active compilations. However, the ciKlass which represents
6166 // this Type is *not* shared between compilations, so caching
6167 // this value would result in fetching a dangling pointer.
6168 //
6169 // Recomputing the underlying ciKlass for each request is
6170 // a bit less efficient than caching, but calls to
6171 // TypeAryPtr::OOPS->klass() are not common enough to matter.
6172 ((TypeAryPtr*)this)->_klass = k_ary;
6173 }
6174 return k_ary;
6175 }
6176
6177 // Is there a single ciKlass* that can represent that type?
6178 ciKlass* TypeAryPtr::exact_klass_helper() const {
6179 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6180 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6181 if (k == nullptr) {
6182 return nullptr;
6183 }
6184 k = ciObjArrayKlass::make(k);
6185 return k;
6186 }
6187
6188 return klass();
6189 }
6190
6191 const Type* TypeAryPtr::base_element_type(int& dims) const {
6192 const Type* elem = this->elem();
6193 dims = 1;
6194 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6195 elem = elem->make_ptr()->is_aryptr()->elem();
6196 dims++;
6197 }
6198 return elem;
6199 }
6200
6201 //------------------------------add_offset-------------------------------------
6202 // Access internals of klass object
6203 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6204 return make(_ptr, elem(), klass(), xadd_offset(offset));
6205 }
6206
6207 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6208 return make(_ptr, elem(), klass(), offset);
6209 }
6210
6211 //------------------------------cast_to_ptr_type-------------------------------
6212 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6213 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6214 if (ptr == _ptr) return this;
6215 return make(ptr, elem(), _klass, _offset);
6216 }
6217
6218 bool TypeAryKlassPtr::must_be_exact() const {
6219 if (_elem == Type::BOTTOM) return false;
6220 if (_elem == Type::TOP ) return false;
6221 const TypeKlassPtr* tk = _elem->isa_klassptr();
6222 if (!tk) return true; // a primitive type, like int
6223 return tk->must_be_exact();
6224 }
6225
6226
6227 //-----------------------------cast_to_exactness-------------------------------
6228 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6229 if (must_be_exact()) return this; // cannot clear xk
6230 ciKlass* k = _klass;
6231 const Type* elem = this->elem();
6232 if (elem->isa_klassptr() && !klass_is_exact) {
6233 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6234 }
6235 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6236 }
6237
6238
6239 //-----------------------------as_instance_type--------------------------------
6240 // Corresponding type for an instance of the given class.
6241 // It will be NotNull, and exact if and only if the klass type is exact.
6242 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6243 ciKlass* k = klass();
6244 bool xk = klass_is_exact();
6245 const Type* el = nullptr;
6246 if (elem()->isa_klassptr()) {
6247 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6248 k = nullptr;
6249 } else {
6250 el = elem();
6251 }
6252 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);
6253 }
6254
6255
6256 //------------------------------xmeet------------------------------------------
6257 // Compute the MEET of two types, return a new Type object.
6258 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const {
6259 // Perform a fast test for common case; meeting the same types together.
6260 if( this == t ) return this; // Meeting same type-rep?
6261
6262 // Current "this->_base" is Pointer
6263 switch (t->base()) { // switch on original type
6264
6265 case Int: // Mixing ints & oops happens when javac
6266 case Long: // reuses local variables
6267 case FloatTop:
6268 case FloatCon:
6269 case FloatBot:
6270 case DoubleTop:
6271 case DoubleCon:
6272 case DoubleBot:
6273 case NarrowOop:
6274 case NarrowKlass:
6275 case Bottom: // Ye Olde Default
6276 return Type::BOTTOM;
6277 case Top:
6278 return this;
6279
6280 default: // All else is a mistake
6281 typerr(t);
6282
6283 case AnyPtr: { // Meeting to AnyPtrs
6284 // Found an AnyPtr type vs self-KlassPtr type
6285 const TypePtr *tp = t->is_ptr();
6286 int offset = meet_offset(tp->offset());
6287 PTR ptr = meet_ptr(tp->ptr());
6288 switch (tp->ptr()) {
6289 case TopPTR:
6290 return this;
6291 case Null:
6292 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6293 case AnyNull:
6294 return make( ptr, _elem, klass(), offset );
6295 case BotPTR:
6296 case NotNull:
6297 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6298 default: typerr(t);
6299 }
6300 }
6301
6302 case RawPtr:
6303 case MetadataPtr:
6304 case OopPtr:
6305 case AryPtr: // Meet with AryPtr
6306 case InstPtr: // Meet with InstPtr
6307 return TypePtr::BOTTOM;
6308
6309 //
6310 // A-top }
6311 // / | \ } Tops
6312 // B-top A-any C-top }
6313 // | / | \ | } Any-nulls
6314 // B-any | C-any }
6315 // | | |
6316 // B-con A-con C-con } constants; not comparable across classes
6317 // | | |
6318 // B-not | C-not }
6319 // | \ | / | } not-nulls
6320 // B-bot A-not C-bot }
6321 // \ | / } Bottoms
6322 // A-bot }
6323 //
6324
6325 case AryKlassPtr: { // Meet two KlassPtr types
6326 const TypeAryKlassPtr *tap = t->is_aryklassptr();
6327 int off = meet_offset(tap->offset());
6328 const Type* elem = _elem->meet(tap->_elem);
6329
6330 PTR ptr = meet_ptr(tap->ptr());
6331 ciKlass* res_klass = nullptr;
6332 bool res_xk = false;
6333 meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);
6334 assert(res_xk == (ptr == Constant), "");
6335 return make(ptr, elem, res_klass, off);
6336 } // End of case KlassPtr
6337 case InstKlassPtr: {
6338 const TypeInstKlassPtr *tp = t->is_instklassptr();
6339 int offset = meet_offset(tp->offset());
6340 PTR ptr = meet_ptr(tp->ptr());
6341 const TypeInterfaces* interfaces = meet_interfaces(tp);
6342 const TypeInterfaces* tp_interfaces = tp->_interfaces;
6343 const TypeInterfaces* this_interfaces = _interfaces;
6344
6345 switch (ptr) {
6346 case TopPTR:
6347 case AnyNull: // Fall 'down' to dual of object klass
6348 // For instances when a subclass meets a superclass we fall
6349 // below the centerline when the superclass is exact. We need to
6350 // do the same here.
6351 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) {
6352 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6353 } else {
6354 // cannot subclass, so the meet has to fall badly below the centerline
6355 ptr = NotNull;
6356 interfaces = this_interfaces->intersection_with(tp->_interfaces);
6357 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6358 }
6359 case Constant:
6360 case NotNull:
6361 case BotPTR: // Fall down to object klass
6362 // LCA is object_klass, but if we subclass from the top we can do better
6363 if (above_centerline(tp->ptr())) {
6364 // If 'tp' is above the centerline and it is Object class
6365 // then we can subclass in the Java class hierarchy.
6366 // For instances when a subclass meets a superclass we fall
6367 // below the centerline when the superclass is exact. We need
6368 // to do the same here.
6369 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) {
6370 // that is, my array type is a subtype of 'tp' klass
6371 return make(ptr, _elem, _klass, offset);
6372 }
6373 }
6374 // The other case cannot happen, since t cannot be a subtype of an array.
6375 // The meet falls down to Object class below centerline.
6376 if (ptr == Constant)
6377 ptr = NotNull;
6378 interfaces = this_interfaces->intersection_with(tp_interfaces);
6379 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6380 default: typerr(t);
6381 }
6382 }
6383
6384 } // End of switch
6385 return this; // Return the double constant
6386 }
6387
6388 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6389 static_assert(std::is_base_of<T2, T1>::value, "");
6390
6391 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6392 return true;
6393 }
6394
6395 int dummy;
6396 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6397
6398 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6399 return false;
6400 }
6401
6402 if (this_one->is_instance_type(other)) {
6403 return other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->intersection_with(this_one->_interfaces)->eq(other->_interfaces) && other_exact;
6404 }
6405
6406 assert(this_one->is_array_type(other), "");
6407 const T1* other_ary = this_one->is_array_type(other);
6408 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6409 if (other_top_or_bottom) {
6410 return false;
6411 }
6412
6413 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6414 const TypePtr* this_elem = this_one->elem()->make_ptr();
6415 if (this_elem != nullptr && other_elem != nullptr) {
6416 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6417 }
6418 if (this_elem == nullptr && other_elem == nullptr) {
6419 return this_one->klass()->is_subtype_of(other->klass());
6420 }
6421 return false;
6422 }
6423
6424 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6425 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6426 }
6427
6428 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6429 static_assert(std::is_base_of<T2, T1>::value, "");
6430
6431 int dummy;
6432 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6433
6434 if (!this_one->is_array_type(other) ||
6435 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6436 return false;
6437 }
6438 const T1* other_ary = this_one->is_array_type(other);
6439 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6440
6441 if (other_top_or_bottom) {
6442 return false;
6443 }
6444
6445 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6446 const TypePtr* this_elem = this_one->elem()->make_ptr();
6447 if (other_elem != nullptr && this_elem != nullptr) {
6448 return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem));
6449 }
6450 if (other_elem == nullptr && this_elem == nullptr) {
6451 return this_one->klass()->equals(other->klass());
6452 }
6453 return false;
6454 }
6455
6456 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6457 return TypePtr::is_same_java_type_as_helper_for_array(this, other);
6458 }
6459
6460 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6461 static_assert(std::is_base_of<T2, T1>::value, "");
6462 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6463 return true;
6464 }
6465 if (!this_one->is_loaded() || !other->is_loaded()) {
6466 return true;
6467 }
6468 if (this_one->is_instance_type(other)) {
6469 return other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->intersection_with(this_one->_interfaces)->eq(other->_interfaces);
6470 }
6471
6472 int dummy;
6473 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6474 if (this_top_or_bottom) {
6475 return true;
6476 }
6477
6478 assert(this_one->is_array_type(other), "");
6479
6480 const T1* other_ary = this_one->is_array_type(other);
6481 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6482 if (other_top_or_bottom) {
6483 return true;
6484 }
6485 if (this_exact && other_exact) {
6486 return this_one->is_java_subtype_of(other);
6487 }
6488
6489 const TypePtr* this_elem = this_one->elem()->make_ptr();
6490 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6491 if (other_elem != nullptr && this_elem != nullptr) {
6492 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6493 }
6494 if (other_elem == nullptr && this_elem == nullptr) {
6495 return this_one->klass()->is_subtype_of(other->klass());
6496 }
6497 return false;
6498 }
6499
6500 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6501 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6502 }
6503
6504 //------------------------------xdual------------------------------------------
6505 // Dual: compute field-by-field dual
6506 const Type *TypeAryKlassPtr::xdual() const {
6507 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6508 }
6509
6510 // Is there a single ciKlass* that can represent that type?
6511 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6512 if (elem()->isa_klassptr()) {
6513 ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6514 if (k == nullptr) {
6515 return nullptr;
6516 }
6517 k = ciObjArrayKlass::make(k);
6518 return k;
6519 }
6520
6521 return klass();
6522 }
6523
6524 ciKlass* TypeAryKlassPtr::klass() const {
6525 if (_klass != nullptr) {
6526 return _klass;
6527 }
6528 ciKlass* k = nullptr;
6529 if (elem()->isa_klassptr()) {
6530 // leave null
6531 } else if ((elem()->base() == Type::Top) ||
6532 (elem()->base() == Type::Bottom)) {
6533 } else {
6534 k = ciTypeArrayKlass::make(elem()->basic_type());
6535 ((TypeAryKlassPtr*)this)->_klass = k;
6536 }
6537 return k;
6538 }
6539
6540 //------------------------------dump2------------------------------------------
6541 // Dump Klass Type
6542 #ifndef PRODUCT
6543 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
6544 switch( _ptr ) {
6545 case Constant:
6546 st->print("precise ");
6547 case NotNull:
6548 {
6549 st->print("[");
6550 _elem->dump2(d, depth, st);
6551 _interfaces->dump(st);
6552 st->print(": ");
6553 }
6554 case BotPTR:
6555 if( !WizardMode && !Verbose && _ptr != Constant ) break;
6556 case TopPTR:
6557 case AnyNull:
6558 st->print(":%s", ptr_msg[_ptr]);
6559 if( _ptr == Constant ) st->print(":exact");
6560 break;
6561 default:
6562 break;
6563 }
6564
6565 if( _offset ) { // Dump offset, if any
6566 if( _offset == OffsetBot ) { st->print("+any"); }
6567 else if( _offset == OffsetTop ) { st->print("+unknown"); }
6568 else { st->print("+%d", _offset); }
6569 }
6570
6571 st->print(" *");
6572 }
6573 #endif
6574
6575 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6576 const Type* elem = this->elem();
6577 dims = 1;
6578 while (elem->isa_aryklassptr()) {
6579 elem = elem->is_aryklassptr()->elem();
6580 dims++;
6581 }
6582 return elem;
6583 }
6584
6585 //=============================================================================
6586 // Convenience common pre-built types.
6587
6588 //------------------------------make-------------------------------------------
6589 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6590 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
6591 }
6592
6593 //------------------------------make-------------------------------------------
6594 const TypeFunc *TypeFunc::make(ciMethod* method) {
6595 Compile* C = Compile::current();
6596 const TypeFunc* tf = C->last_tf(method); // check cache
6597 if (tf != nullptr) return tf; // The hit rate here is almost 50%.
6598 const TypeTuple *domain;
6599 if (method->is_static()) {
6600 domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6601 } else {
6602 domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);
6603 }
6604 const TypeTuple *range = TypeTuple::make_range(method->signature(), ignore_interfaces);
6605 tf = TypeFunc::make(domain, range);
6606 C->set_last_tf(method, tf); // fill cache
6607 return tf;
6608 }
6609
6610 //------------------------------meet-------------------------------------------
6611 // Compute the MEET of two types. It returns a new Type object.
6612 const Type *TypeFunc::xmeet( const Type *t ) const {
6613 // Perform a fast test for common case; meeting the same types together.
6614 if( this == t ) return this; // Meeting same type-rep?
6615
6616 // Current "this->_base" is Func
6617 switch (t->base()) { // switch on original type
6618
6619 case Bottom: // Ye Olde Default
6620 return t;
6621
6622 default: // All else is a mistake
6623 typerr(t);
6624
6625 case Top:
6626 break;
6627 }
6628 return this; // Return the double constant
6629 }
6630
6631 //------------------------------xdual------------------------------------------
6632 // Dual: compute field-by-field dual
6633 const Type *TypeFunc::xdual() const {
6634 return this;
6635 }
6636
6637 //------------------------------eq---------------------------------------------
6638 // Structural equality check for Type representations
6639 bool TypeFunc::eq( const Type *t ) const {
6640 const TypeFunc *a = (const TypeFunc*)t;
6641 return _domain == a->_domain &&
6642 _range == a->_range;
6643 }
6644
6645 //------------------------------hash-------------------------------------------
6646 // Type-specific hashing function.
6647 uint TypeFunc::hash(void) const {
6648 return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6649 }
6650
6651 //------------------------------dump2------------------------------------------
6652 // Dump Function Type
6653 #ifndef PRODUCT
6654 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6655 if( _range->cnt() <= Parms )
6656 st->print("void");
6657 else {
6658 uint i;
6659 for (i = Parms; i < _range->cnt()-1; i++) {
6660 _range->field_at(i)->dump2(d,depth,st);
6661 st->print("/");
6662 }
6663 _range->field_at(i)->dump2(d,depth,st);
6664 }
6665 st->print(" ");
6666 st->print("( ");
6667 if( !depth || d[this] ) { // Check for recursive dump
6668 st->print("...)");
6669 return;
6670 }
6671 d.Insert((void*)this,(void*)this); // Stop recursion
6672 if (Parms < _domain->cnt())
6673 _domain->field_at(Parms)->dump2(d,depth-1,st);
6674 for (uint i = Parms+1; i < _domain->cnt(); i++) {
6675 st->print(", ");
6676 _domain->field_at(i)->dump2(d,depth-1,st);
6677 }
6678 st->print(" )");
6679 }
6680 #endif
6681
6682 //------------------------------singleton--------------------------------------
6683 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
6684 // constants (Ldi nodes). Singletons are integer, float or double constants
6685 // or a single symbol.
6686 bool TypeFunc::singleton(void) const {
6687 return false; // Never a singleton
6688 }
6689
6690 bool TypeFunc::empty(void) const {
6691 return false; // Never empty
6692 }
6693
6694
6695 BasicType TypeFunc::return_type() const{
6696 if (range()->cnt() == TypeFunc::Parms) {
6697 return T_VOID;
6698 }
6699 return range()->field_at(TypeFunc::Parms)->basic_type();
6700 }