1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciTypeFlow.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "libadt/dict.hpp" 32 #include "memory/oopFactory.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/instanceKlass.hpp" 35 #include "oops/instanceMirrorKlass.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "oops/typeArrayKlass.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/node.hpp" 40 #include "opto/opcodes.hpp" 41 #include "opto/type.hpp" 42 #include "utilities/powerOfTwo.hpp" 43 #include "utilities/stringUtils.hpp" 44 45 // Portions of code courtesy of Clifford Click 46 47 // Optimization - Graph Style 48 49 // Dictionary of types shared among compilations. 50 Dict* Type::_shared_type_dict = nullptr; 51 52 // Array which maps compiler types to Basic Types 53 const Type::TypeInfo Type::_type_info[Type::lastype] = { 54 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad 55 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control 56 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top 57 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int 58 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long 59 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half 60 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop 61 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass 62 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple 63 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array 64 { Bad, T_ARRAY, "interfaces:", false, Node::NotAMachineReg, relocInfo::none }, // Interfaces 65 66 #if defined(PPC64) 67 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 68 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 69 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 70 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 71 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 72 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 73 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 74 #elif defined(S390) 75 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 76 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 77 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 78 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 79 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX 80 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 81 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 82 #else // all other 83 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 84 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 85 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS 86 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD 87 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 88 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY 89 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ 90 #endif 91 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr 92 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr 93 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr 94 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr 95 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr 96 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr 97 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr 98 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr 99 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr 100 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function 101 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio 102 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address 103 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory 104 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop 105 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon 106 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot 107 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop 108 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon 109 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot 110 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom 111 }; 112 113 // Map ideal registers (machine types) to ideal types 114 const Type *Type::mreg2type[_last_machine_leaf]; 115 116 // Map basic types to canonical Type* pointers. 117 const Type* Type:: _const_basic_type[T_CONFLICT+1]; 118 119 // Map basic types to constant-zero Types. 120 const Type* Type:: _zero_type[T_CONFLICT+1]; 121 122 // Map basic types to array-body alias types. 123 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; 124 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr; 125 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr; 126 127 //============================================================================= 128 // Convenience common pre-built types. 129 const Type *Type::ABIO; // State-of-machine only 130 const Type *Type::BOTTOM; // All values 131 const Type *Type::CONTROL; // Control only 132 const Type *Type::DOUBLE; // All doubles 133 const Type *Type::FLOAT; // All floats 134 const Type *Type::HALF; // Placeholder half of doublewide type 135 const Type *Type::MEMORY; // Abstract store only 136 const Type *Type::RETURN_ADDRESS; 137 const Type *Type::TOP; // No values in set 138 139 //------------------------------get_const_type--------------------------- 140 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) { 141 if (type == nullptr) { 142 return nullptr; 143 } else if (type->is_primitive_type()) { 144 return get_const_basic_type(type->basic_type()); 145 } else { 146 return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling); 147 } 148 } 149 150 //---------------------------array_element_basic_type--------------------------------- 151 // Mapping to the array element's basic type. 152 BasicType Type::array_element_basic_type() const { 153 BasicType bt = basic_type(); 154 if (bt == T_INT) { 155 if (this == TypeInt::INT) return T_INT; 156 if (this == TypeInt::CHAR) return T_CHAR; 157 if (this == TypeInt::BYTE) return T_BYTE; 158 if (this == TypeInt::BOOL) return T_BOOLEAN; 159 if (this == TypeInt::SHORT) return T_SHORT; 160 return T_VOID; 161 } 162 return bt; 163 } 164 165 // For two instance arrays of same dimension, return the base element types. 166 // Otherwise or if the arrays have different dimensions, return null. 167 void Type::get_arrays_base_elements(const Type *a1, const Type *a2, 168 const TypeInstPtr **e1, const TypeInstPtr **e2) { 169 170 if (e1) *e1 = nullptr; 171 if (e2) *e2 = nullptr; 172 const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr(); 173 const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr(); 174 175 if (a1tap != nullptr && a2tap != nullptr) { 176 // Handle multidimensional arrays 177 const TypePtr* a1tp = a1tap->elem()->make_ptr(); 178 const TypePtr* a2tp = a2tap->elem()->make_ptr(); 179 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { 180 a1tap = a1tp->is_aryptr(); 181 a2tap = a2tp->is_aryptr(); 182 a1tp = a1tap->elem()->make_ptr(); 183 a2tp = a2tap->elem()->make_ptr(); 184 } 185 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { 186 if (e1) *e1 = a1tp->is_instptr(); 187 if (e2) *e2 = a2tp->is_instptr(); 188 } 189 } 190 } 191 192 //---------------------------get_typeflow_type--------------------------------- 193 // Import a type produced by ciTypeFlow. 194 const Type* Type::get_typeflow_type(ciType* type) { 195 switch (type->basic_type()) { 196 197 case ciTypeFlow::StateVector::T_BOTTOM: 198 assert(type == ciTypeFlow::StateVector::bottom_type(), ""); 199 return Type::BOTTOM; 200 201 case ciTypeFlow::StateVector::T_TOP: 202 assert(type == ciTypeFlow::StateVector::top_type(), ""); 203 return Type::TOP; 204 205 case ciTypeFlow::StateVector::T_NULL: 206 assert(type == ciTypeFlow::StateVector::null_type(), ""); 207 return TypePtr::NULL_PTR; 208 209 case ciTypeFlow::StateVector::T_LONG2: 210 // The ciTypeFlow pass pushes a long, then the half. 211 // We do the same. 212 assert(type == ciTypeFlow::StateVector::long2_type(), ""); 213 return TypeInt::TOP; 214 215 case ciTypeFlow::StateVector::T_DOUBLE2: 216 // The ciTypeFlow pass pushes double, then the half. 217 // Our convention is the same. 218 assert(type == ciTypeFlow::StateVector::double2_type(), ""); 219 return Type::TOP; 220 221 case T_ADDRESS: 222 assert(type->is_return_address(), ""); 223 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); 224 225 default: 226 // make sure we did not mix up the cases: 227 assert(type != ciTypeFlow::StateVector::bottom_type(), ""); 228 assert(type != ciTypeFlow::StateVector::top_type(), ""); 229 assert(type != ciTypeFlow::StateVector::null_type(), ""); 230 assert(type != ciTypeFlow::StateVector::long2_type(), ""); 231 assert(type != ciTypeFlow::StateVector::double2_type(), ""); 232 assert(!type->is_return_address(), ""); 233 234 return Type::get_const_type(type); 235 } 236 } 237 238 239 //-----------------------make_from_constant------------------------------------ 240 const Type* Type::make_from_constant(ciConstant constant, bool require_constant, 241 int stable_dimension, bool is_narrow_oop, 242 bool is_autobox_cache) { 243 switch (constant.basic_type()) { 244 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 245 case T_CHAR: return TypeInt::make(constant.as_char()); 246 case T_BYTE: return TypeInt::make(constant.as_byte()); 247 case T_SHORT: return TypeInt::make(constant.as_short()); 248 case T_INT: return TypeInt::make(constant.as_int()); 249 case T_LONG: return TypeLong::make(constant.as_long()); 250 case T_FLOAT: return TypeF::make(constant.as_float()); 251 case T_DOUBLE: return TypeD::make(constant.as_double()); 252 case T_ARRAY: 253 case T_OBJECT: { 254 const Type* con_type = nullptr; 255 ciObject* oop_constant = constant.as_object(); 256 if (oop_constant->is_null_object()) { 257 con_type = Type::get_zero_type(T_OBJECT); 258 } else { 259 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed"); 260 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); 261 if (Compile::current()->eliminate_boxing() && is_autobox_cache) { 262 con_type = con_type->is_aryptr()->cast_to_autobox_cache(); 263 } 264 if (stable_dimension > 0) { 265 assert(FoldStableValues, "sanity"); 266 assert(!con_type->is_zero_type(), "default value for stable field"); 267 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); 268 } 269 } 270 if (is_narrow_oop) { 271 con_type = con_type->make_narrowoop(); 272 } 273 return con_type; 274 } 275 case T_ILLEGAL: 276 // Invalid ciConstant returned due to OutOfMemoryError in the CI 277 assert(Compile::current()->env()->failing(), "otherwise should not see this"); 278 return nullptr; 279 default: 280 // Fall through to failure 281 return nullptr; 282 } 283 } 284 285 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { 286 BasicType conbt = con.basic_type(); 287 switch (conbt) { 288 case T_BOOLEAN: conbt = T_BYTE; break; 289 case T_ARRAY: conbt = T_OBJECT; break; 290 default: break; 291 } 292 switch (loadbt) { 293 case T_BOOLEAN: loadbt = T_BYTE; break; 294 case T_NARROWOOP: loadbt = T_OBJECT; break; 295 case T_ARRAY: loadbt = T_OBJECT; break; 296 case T_ADDRESS: loadbt = T_OBJECT; break; 297 default: break; 298 } 299 if (conbt == loadbt) { 300 if (is_unsigned && conbt == T_BYTE) { 301 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). 302 return ciConstant(T_INT, con.as_int() & 0xFF); 303 } else { 304 return con; 305 } 306 } 307 if (conbt == T_SHORT && loadbt == T_CHAR) { 308 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). 309 return ciConstant(T_INT, con.as_int() & 0xFFFF); 310 } 311 return ciConstant(); // T_ILLEGAL 312 } 313 314 // Try to constant-fold a stable array element. 315 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, 316 BasicType loadbt, bool is_unsigned_load) { 317 // Decode the results of GraphKit::array_element_address. 318 ciConstant element_value = array->element_value_by_offset(off); 319 if (element_value.basic_type() == T_ILLEGAL) { 320 return nullptr; // wrong offset 321 } 322 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); 323 324 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d", 325 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load); 326 327 if (con.is_valid() && // not a mismatched access 328 !con.is_null_or_zero()) { // not a default value 329 bool is_narrow_oop = (loadbt == T_NARROWOOP); 330 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); 331 } 332 return nullptr; 333 } 334 335 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { 336 ciField* field; 337 ciType* type = holder->java_mirror_type(); 338 if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { 339 // Static field 340 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); 341 } else { 342 // Instance field 343 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); 344 } 345 if (field == nullptr) { 346 return nullptr; // Wrong offset 347 } 348 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); 349 } 350 351 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, 352 BasicType loadbt, bool is_unsigned_load) { 353 if (!field->is_constant()) { 354 return nullptr; // Non-constant field 355 } 356 ciConstant field_value; 357 if (field->is_static()) { 358 // final static field 359 field_value = field->constant_value(); 360 } else if (holder != nullptr) { 361 // final or stable non-static field 362 // Treat final non-static fields of trusted classes (classes in 363 // java.lang.invoke and sun.invoke packages and subpackages) as 364 // compile time constants. 365 field_value = field->constant_value_of(holder); 366 } 367 if (!field_value.is_valid()) { 368 return nullptr; // Not a constant 369 } 370 371 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); 372 373 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d", 374 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load); 375 376 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); 377 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); 378 bool is_narrow_oop = (loadbt == T_NARROWOOP); 379 380 const Type* con_type = make_from_constant(con, /*require_constant=*/ true, 381 stable_dimension, is_narrow_oop, 382 field->is_autobox_cache()); 383 if (con_type != nullptr && field->is_call_site_target()) { 384 ciCallSite* call_site = holder->as_call_site(); 385 if (!call_site->is_fully_initialized_constant_call_site()) { 386 ciMethodHandle* target = con.as_object()->as_method_handle(); 387 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); 388 } 389 } 390 return con_type; 391 } 392 393 //------------------------------make------------------------------------------- 394 // Create a simple Type, with default empty symbol sets. Then hashcons it 395 // and look for an existing copy in the type dictionary. 396 const Type *Type::make( enum TYPES t ) { 397 return (new Type(t))->hashcons(); 398 } 399 400 //------------------------------cmp-------------------------------------------- 401 int Type::cmp( const Type *const t1, const Type *const t2 ) { 402 if( t1->_base != t2->_base ) 403 return 1; // Missed badly 404 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive"); 405 return !t1->eq(t2); // Return ZERO if equal 406 } 407 408 const Type* Type::maybe_remove_speculative(bool include_speculative) const { 409 if (!include_speculative) { 410 return remove_speculative(); 411 } 412 return this; 413 } 414 415 //------------------------------hash------------------------------------------- 416 int Type::uhash( const Type *const t ) { 417 return (int)t->hash(); 418 } 419 420 #define SMALLINT ((juint)3) // a value too insignificant to consider widening 421 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite 422 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite 423 424 //--------------------------Initialize_shared---------------------------------- 425 void Type::Initialize_shared(Compile* current) { 426 // This method does not need to be locked because the first system 427 // compilations (stub compilations) occur serially. If they are 428 // changed to proceed in parallel, then this section will need 429 // locking. 430 431 Arena* save = current->type_arena(); 432 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); 433 434 current->set_type_arena(shared_type_arena); 435 _shared_type_dict = 436 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash, 437 shared_type_arena, 128 ); 438 current->set_type_dict(_shared_type_dict); 439 440 // Make shared pre-built types. 441 CONTROL = make(Control); // Control only 442 TOP = make(Top); // No values in set 443 MEMORY = make(Memory); // Abstract store only 444 ABIO = make(Abio); // State-of-machine only 445 RETURN_ADDRESS=make(Return_Address); 446 FLOAT = make(FloatBot); // All floats 447 DOUBLE = make(DoubleBot); // All doubles 448 BOTTOM = make(Bottom); // Everything 449 HALF = make(Half); // Placeholder half of doublewide type 450 451 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX 452 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN 453 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) 454 TypeF::ONE = TypeF::make(1.0); // Float 1 455 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F)); 456 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F)); 457 458 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX 459 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN 460 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) 461 TypeD::ONE = TypeD::make(1.0); // Double 1 462 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D)); 463 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D)); 464 465 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX 466 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN 467 TypeInt::MINUS_1 = TypeInt::make(-1); // -1 468 TypeInt::ZERO = TypeInt::make( 0); // 0 469 TypeInt::ONE = TypeInt::make( 1); // 1 470 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. 471 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes 472 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 473 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE 474 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO 475 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); 476 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL 477 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes 478 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes 479 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars 480 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts 481 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values 482 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values 483 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers 484 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range 485 TypeInt::TYPE_DOMAIN = TypeInt::INT; 486 // CmpL is overloaded both as the bytecode computation returning 487 // a trinary (-1,0,+1) integer result AND as an efficient long 488 // compare returning optimizer ideal-type flags. 489 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); 490 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); 491 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); 492 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); 493 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small"); 494 495 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX 496 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN 497 TypeLong::MINUS_1 = TypeLong::make(-1); // -1 498 TypeLong::ZERO = TypeLong::make( 0); // 0 499 TypeLong::ONE = TypeLong::make( 1); // 1 500 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values 501 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers 502 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); 503 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); 504 TypeLong::TYPE_DOMAIN = TypeLong::LONG; 505 506 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 507 fboth[0] = Type::CONTROL; 508 fboth[1] = Type::CONTROL; 509 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); 510 511 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 512 ffalse[0] = Type::CONTROL; 513 ffalse[1] = Type::TOP; 514 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); 515 516 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 517 fneither[0] = Type::TOP; 518 fneither[1] = Type::TOP; 519 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); 520 521 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 522 ftrue[0] = Type::TOP; 523 ftrue[1] = Type::CONTROL; 524 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); 525 526 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 527 floop[0] = Type::CONTROL; 528 floop[1] = TypeInt::INT; 529 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); 530 531 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0); 532 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot); 533 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot); 534 535 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); 536 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); 537 538 const Type **fmembar = TypeTuple::fields(0); 539 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); 540 541 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 542 fsc[0] = TypeInt::CC; 543 fsc[1] = Type::MEMORY; 544 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); 545 546 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); 547 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); 548 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); 549 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 550 false, 0, oopDesc::mark_offset_in_bytes()); 551 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 552 false, 0, oopDesc::klass_offset_in_bytes()); 553 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot); 554 555 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot); 556 557 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); 558 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); 559 560 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); 561 562 mreg2type[Op_Node] = Type::BOTTOM; 563 mreg2type[Op_Set ] = 0; 564 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; 565 mreg2type[Op_RegI] = TypeInt::INT; 566 mreg2type[Op_RegP] = TypePtr::BOTTOM; 567 mreg2type[Op_RegF] = Type::FLOAT; 568 mreg2type[Op_RegD] = Type::DOUBLE; 569 mreg2type[Op_RegL] = TypeLong::LONG; 570 mreg2type[Op_RegFlags] = TypeInt::CC; 571 572 GrowableArray<ciInstanceKlass*> array_interfaces; 573 array_interfaces.push(current->env()->Cloneable_klass()); 574 array_interfaces.push(current->env()->Serializable_klass()); 575 TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces); 576 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces; 577 578 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes()); 579 580 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 581 582 #ifdef _LP64 583 if (UseCompressedOops) { 584 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop"); 585 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; 586 } else 587 #endif 588 { 589 // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). 590 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 591 } 592 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot); 593 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot); 594 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot); 595 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot); 596 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot); 597 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot); 598 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot); 599 600 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert. 601 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr; 602 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; 603 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays 604 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; 605 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array 606 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; 607 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; 608 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; 609 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; 610 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; 611 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; 612 613 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0); 614 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0); 615 616 const Type **fi2c = TypeTuple::fields(2); 617 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* 618 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer 619 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); 620 621 const Type **intpair = TypeTuple::fields(2); 622 intpair[0] = TypeInt::INT; 623 intpair[1] = TypeInt::INT; 624 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); 625 626 const Type **longpair = TypeTuple::fields(2); 627 longpair[0] = TypeLong::LONG; 628 longpair[1] = TypeLong::LONG; 629 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); 630 631 const Type **intccpair = TypeTuple::fields(2); 632 intccpair[0] = TypeInt::INT; 633 intccpair[1] = TypeInt::CC; 634 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); 635 636 const Type **longccpair = TypeTuple::fields(2); 637 longccpair[0] = TypeLong::LONG; 638 longccpair[1] = TypeInt::CC; 639 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); 640 641 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; 642 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; 643 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; 644 _const_basic_type[T_CHAR] = TypeInt::CHAR; 645 _const_basic_type[T_BYTE] = TypeInt::BYTE; 646 _const_basic_type[T_SHORT] = TypeInt::SHORT; 647 _const_basic_type[T_INT] = TypeInt::INT; 648 _const_basic_type[T_LONG] = TypeLong::LONG; 649 _const_basic_type[T_FLOAT] = Type::FLOAT; 650 _const_basic_type[T_DOUBLE] = Type::DOUBLE; 651 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; 652 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays 653 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way 654 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs 655 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? 656 657 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; 658 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; 659 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 660 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 661 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 662 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 663 _zero_type[T_INT] = TypeInt::ZERO; 664 _zero_type[T_LONG] = TypeLong::ZERO; 665 _zero_type[T_FLOAT] = TypeF::ZERO; 666 _zero_type[T_DOUBLE] = TypeD::ZERO; 667 _zero_type[T_OBJECT] = TypePtr::NULL_PTR; 668 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop 669 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null 670 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all 671 672 // get_zero_type() should not happen for T_CONFLICT 673 _zero_type[T_CONFLICT]= nullptr; 674 675 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons(); 676 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK; 677 678 if (Matcher::supports_scalable_vector()) { 679 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE)); 680 } 681 682 // Vector predefined types, it needs initialized _const_basic_type[]. 683 if (Matcher::vector_size_supported(T_BYTE,4)) { 684 TypeVect::VECTS = TypeVect::make(T_BYTE,4); 685 } 686 if (Matcher::vector_size_supported(T_FLOAT,2)) { 687 TypeVect::VECTD = TypeVect::make(T_FLOAT,2); 688 } 689 if (Matcher::vector_size_supported(T_FLOAT,4)) { 690 TypeVect::VECTX = TypeVect::make(T_FLOAT,4); 691 } 692 if (Matcher::vector_size_supported(T_FLOAT,8)) { 693 TypeVect::VECTY = TypeVect::make(T_FLOAT,8); 694 } 695 if (Matcher::vector_size_supported(T_FLOAT,16)) { 696 TypeVect::VECTZ = TypeVect::make(T_FLOAT,16); 697 } 698 699 mreg2type[Op_VecA] = TypeVect::VECTA; 700 mreg2type[Op_VecS] = TypeVect::VECTS; 701 mreg2type[Op_VecD] = TypeVect::VECTD; 702 mreg2type[Op_VecX] = TypeVect::VECTX; 703 mreg2type[Op_VecY] = TypeVect::VECTY; 704 mreg2type[Op_VecZ] = TypeVect::VECTZ; 705 706 // Restore working type arena. 707 current->set_type_arena(save); 708 current->set_type_dict(nullptr); 709 } 710 711 //------------------------------Initialize------------------------------------- 712 void Type::Initialize(Compile* current) { 713 assert(current->type_arena() != nullptr, "must have created type arena"); 714 715 if (_shared_type_dict == nullptr) { 716 Initialize_shared(current); 717 } 718 719 Arena* type_arena = current->type_arena(); 720 721 // Create the hash-cons'ing dictionary with top-level storage allocation 722 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena); 723 current->set_type_dict(tdic); 724 } 725 726 //------------------------------hashcons--------------------------------------- 727 // Do the hash-cons trick. If the Type already exists in the type table, 728 // delete the current Type and return the existing Type. Otherwise stick the 729 // current Type in the Type table. 730 const Type *Type::hashcons(void) { 731 debug_only(base()); // Check the assertion in Type::base(). 732 // Look up the Type in the Type dictionary 733 Dict *tdic = type_dict(); 734 Type* old = (Type*)(tdic->Insert(this, this, false)); 735 if( old ) { // Pre-existing Type? 736 if( old != this ) // Yes, this guy is not the pre-existing? 737 delete this; // Yes, Nuke this guy 738 assert( old->_dual, "" ); 739 return old; // Return pre-existing 740 } 741 742 // Every type has a dual (to make my lattice symmetric). 743 // Since we just discovered a new Type, compute its dual right now. 744 assert( !_dual, "" ); // No dual yet 745 _dual = xdual(); // Compute the dual 746 if (cmp(this, _dual) == 0) { // Handle self-symmetric 747 if (_dual != this) { 748 delete _dual; 749 _dual = this; 750 } 751 return this; 752 } 753 assert( !_dual->_dual, "" ); // No reverse dual yet 754 assert( !(*tdic)[_dual], "" ); // Dual not in type system either 755 // New Type, insert into Type table 756 tdic->Insert((void*)_dual,(void*)_dual); 757 ((Type*)_dual)->_dual = this; // Finish up being symmetric 758 #ifdef ASSERT 759 Type *dual_dual = (Type*)_dual->xdual(); 760 assert( eq(dual_dual), "xdual(xdual()) should be identity" ); 761 delete dual_dual; 762 #endif 763 return this; // Return new Type 764 } 765 766 //------------------------------eq--------------------------------------------- 767 // Structural equality check for Type representations 768 bool Type::eq( const Type * ) const { 769 return true; // Nothing else can go wrong 770 } 771 772 //------------------------------hash------------------------------------------- 773 // Type-specific hashing function. 774 uint Type::hash(void) const { 775 return _base; 776 } 777 778 //------------------------------is_finite-------------------------------------- 779 // Has a finite value 780 bool Type::is_finite() const { 781 return false; 782 } 783 784 //------------------------------is_nan----------------------------------------- 785 // Is not a number (NaN) 786 bool Type::is_nan() const { 787 return false; 788 } 789 790 #ifdef ASSERT 791 class VerifyMeet; 792 class VerifyMeetResult : public ArenaObj { 793 friend class VerifyMeet; 794 friend class Type; 795 private: 796 class VerifyMeetResultEntry { 797 private: 798 const Type* _in1; 799 const Type* _in2; 800 const Type* _res; 801 public: 802 VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res): 803 _in1(in1), _in2(in2), _res(res) { 804 } 805 VerifyMeetResultEntry(): 806 _in1(nullptr), _in2(nullptr), _res(nullptr) { 807 } 808 809 bool operator==(const VerifyMeetResultEntry& rhs) const { 810 return _in1 == rhs._in1 && 811 _in2 == rhs._in2 && 812 _res == rhs._res; 813 } 814 815 bool operator!=(const VerifyMeetResultEntry& rhs) const { 816 return !(rhs == *this); 817 } 818 819 static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) { 820 if ((intptr_t) v1._in1 < (intptr_t) v2._in1) { 821 return -1; 822 } else if (v1._in1 == v2._in1) { 823 if ((intptr_t) v1._in2 < (intptr_t) v2._in2) { 824 return -1; 825 } else if (v1._in2 == v2._in2) { 826 assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result"); 827 return 0; 828 } 829 return 1; 830 } 831 return 1; 832 } 833 const Type* res() const { return _res; } 834 }; 835 uint _depth; 836 GrowableArray<VerifyMeetResultEntry> _cache; 837 838 // With verification code, the meet of A and B causes the computation of: 839 // 1- meet(A, B) 840 // 2- meet(B, A) 841 // 3- meet(dual(meet(A, B)), dual(A)) 842 // 4- meet(dual(meet(A, B)), dual(B)) 843 // 5- meet(dual(A), dual(B)) 844 // 6- meet(dual(B), dual(A)) 845 // 7- meet(dual(meet(dual(A), dual(B))), A) 846 // 8- meet(dual(meet(dual(A), dual(B))), B) 847 // 848 // In addition the meet of A[] and B[] requires the computation of the meet of A and B. 849 // 850 // The meet of A[] and B[] triggers the computation of: 851 // 1- meet(A[], B[][) 852 // 1.1- meet(A, B) 853 // 1.2- meet(B, A) 854 // 1.3- meet(dual(meet(A, B)), dual(A)) 855 // 1.4- meet(dual(meet(A, B)), dual(B)) 856 // 1.5- meet(dual(A), dual(B)) 857 // 1.6- meet(dual(B), dual(A)) 858 // 1.7- meet(dual(meet(dual(A), dual(B))), A) 859 // 1.8- meet(dual(meet(dual(A), dual(B))), B) 860 // 2- meet(B[], A[]) 861 // 2.1- meet(B, A) = 1.2 862 // 2.2- meet(A, B) = 1.1 863 // 2.3- meet(dual(meet(B, A)), dual(B)) = 1.4 864 // 2.4- meet(dual(meet(B, A)), dual(A)) = 1.3 865 // 2.5- meet(dual(B), dual(A)) = 1.6 866 // 2.6- meet(dual(A), dual(B)) = 1.5 867 // 2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8 868 // 2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7 869 // etc. 870 // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number 871 // of different meet operations is linear in the number of dimensions. The function below caches meet results for the 872 // duration of the meet at the root of the recursive calls. 873 // 874 const Type* meet(const Type* t1, const Type* t2) { 875 bool found = false; 876 const VerifyMeetResultEntry meet(t1, t2, nullptr); 877 int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 878 const Type* res = nullptr; 879 if (found) { 880 res = _cache.at(pos).res(); 881 } else { 882 res = t1->xmeet(t2); 883 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 884 found = false; 885 _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 886 assert(found, "should be in table after it's added"); 887 } 888 return res; 889 } 890 891 void add(const Type* t1, const Type* t2, const Type* res) { 892 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 893 } 894 895 bool empty_cache() const { 896 return _cache.length() == 0; 897 } 898 public: 899 VerifyMeetResult(Compile* C) : 900 _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) { 901 } 902 }; 903 904 void Type::assert_type_verify_empty() const { 905 assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded"); 906 } 907 908 class VerifyMeet { 909 private: 910 Compile* _C; 911 public: 912 VerifyMeet(Compile* C) : _C(C) { 913 if (C->_type_verify == nullptr) { 914 C->_type_verify = new (C->comp_arena())VerifyMeetResult(C); 915 } 916 _C->_type_verify->_depth++; 917 } 918 919 ~VerifyMeet() { 920 assert(_C->_type_verify->_depth != 0, ""); 921 _C->_type_verify->_depth--; 922 if (_C->_type_verify->_depth == 0) { 923 _C->_type_verify->_cache.trunc_to(0); 924 } 925 } 926 927 const Type* meet(const Type* t1, const Type* t2) const { 928 return _C->_type_verify->meet(t1, t2); 929 } 930 931 void add(const Type* t1, const Type* t2, const Type* res) const { 932 _C->_type_verify->add(t1, t2, res); 933 } 934 }; 935 936 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const { 937 Compile* C = Compile::current(); 938 const Type* mt2 = verify.meet(t, this); 939 if (mt != mt2) { 940 tty->print_cr("=== Meet Not Commutative ==="); 941 tty->print("t = "); t->dump(); tty->cr(); 942 tty->print("this = "); dump(); tty->cr(); 943 tty->print("t meet this = "); mt2->dump(); tty->cr(); 944 tty->print("this meet t = "); mt->dump(); tty->cr(); 945 fatal("meet not commutative"); 946 } 947 const Type* dual_join = mt->_dual; 948 const Type* t2t = verify.meet(dual_join,t->_dual); 949 const Type* t2this = verify.meet(dual_join,this->_dual); 950 951 // Interface meet Oop is Not Symmetric: 952 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull 953 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull 954 955 if (t2t != t->_dual || t2this != this->_dual) { 956 tty->print_cr("=== Meet Not Symmetric ==="); 957 tty->print("t = "); t->dump(); tty->cr(); 958 tty->print("this= "); dump(); tty->cr(); 959 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); 960 961 tty->print("t_dual= "); t->_dual->dump(); tty->cr(); 962 tty->print("this_dual= "); _dual->dump(); tty->cr(); 963 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); 964 965 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); 966 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); 967 968 fatal("meet not symmetric"); 969 } 970 } 971 #endif 972 973 //------------------------------meet------------------------------------------- 974 // Compute the MEET of two types. NOT virtual. It enforces that meet is 975 // commutative and the lattice is symmetric. 976 const Type *Type::meet_helper(const Type *t, bool include_speculative) const { 977 if (isa_narrowoop() && t->isa_narrowoop()) { 978 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 979 return result->make_narrowoop(); 980 } 981 if (isa_narrowklass() && t->isa_narrowklass()) { 982 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 983 return result->make_narrowklass(); 984 } 985 986 #ifdef ASSERT 987 Compile* C = Compile::current(); 988 VerifyMeet verify(C); 989 #endif 990 991 const Type *this_t = maybe_remove_speculative(include_speculative); 992 t = t->maybe_remove_speculative(include_speculative); 993 994 const Type *mt = this_t->xmeet(t); 995 #ifdef ASSERT 996 verify.add(this_t, t, mt); 997 if (isa_narrowoop() || t->isa_narrowoop()) { 998 return mt; 999 } 1000 if (isa_narrowklass() || t->isa_narrowklass()) { 1001 return mt; 1002 } 1003 this_t->check_symmetrical(t, mt, verify); 1004 const Type *mt_dual = verify.meet(this_t->_dual, t->_dual); 1005 this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify); 1006 #endif 1007 return mt; 1008 } 1009 1010 //------------------------------xmeet------------------------------------------ 1011 // Compute the MEET of two types. It returns a new Type object. 1012 const Type *Type::xmeet( const Type *t ) const { 1013 // Perform a fast test for common case; meeting the same types together. 1014 if( this == t ) return this; // Meeting same type-rep? 1015 1016 // Meeting TOP with anything? 1017 if( _base == Top ) return t; 1018 1019 // Meeting BOTTOM with anything? 1020 if( _base == Bottom ) return BOTTOM; 1021 1022 // Current "this->_base" is one of: Bad, Multi, Control, Top, 1023 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. 1024 switch (t->base()) { // Switch on original type 1025 1026 // Cut in half the number of cases I must handle. Only need cases for when 1027 // the given enum "t->type" is less than or equal to the local enum "type". 1028 case FloatCon: 1029 case DoubleCon: 1030 case Int: 1031 case Long: 1032 return t->xmeet(this); 1033 1034 case OopPtr: 1035 return t->xmeet(this); 1036 1037 case InstPtr: 1038 return t->xmeet(this); 1039 1040 case MetadataPtr: 1041 case KlassPtr: 1042 case InstKlassPtr: 1043 case AryKlassPtr: 1044 return t->xmeet(this); 1045 1046 case AryPtr: 1047 return t->xmeet(this); 1048 1049 case NarrowOop: 1050 return t->xmeet(this); 1051 1052 case NarrowKlass: 1053 return t->xmeet(this); 1054 1055 case Bad: // Type check 1056 default: // Bogus type not in lattice 1057 typerr(t); 1058 return Type::BOTTOM; 1059 1060 case Bottom: // Ye Olde Default 1061 return t; 1062 1063 case FloatTop: 1064 if( _base == FloatTop ) return this; 1065 case FloatBot: // Float 1066 if( _base == FloatBot || _base == FloatTop ) return FLOAT; 1067 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; 1068 typerr(t); 1069 return Type::BOTTOM; 1070 1071 case DoubleTop: 1072 if( _base == DoubleTop ) return this; 1073 case DoubleBot: // Double 1074 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; 1075 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; 1076 typerr(t); 1077 return Type::BOTTOM; 1078 1079 // These next few cases must match exactly or it is a compile-time error. 1080 case Control: // Control of code 1081 case Abio: // State of world outside of program 1082 case Memory: 1083 if( _base == t->_base ) return this; 1084 typerr(t); 1085 return Type::BOTTOM; 1086 1087 case Top: // Top of the lattice 1088 return this; 1089 } 1090 1091 // The type is unchanged 1092 return this; 1093 } 1094 1095 //-----------------------------filter------------------------------------------ 1096 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { 1097 const Type* ft = join_helper(kills, include_speculative); 1098 if (ft->empty()) 1099 return Type::TOP; // Canonical empty value 1100 return ft; 1101 } 1102 1103 //------------------------------xdual------------------------------------------ 1104 const Type *Type::xdual() const { 1105 // Note: the base() accessor asserts the sanity of _base. 1106 assert(_type_info[base()].dual_type != Bad, "implement with v-call"); 1107 return new Type(_type_info[_base].dual_type); 1108 } 1109 1110 //------------------------------has_memory------------------------------------- 1111 bool Type::has_memory() const { 1112 Type::TYPES tx = base(); 1113 if (tx == Memory) return true; 1114 if (tx == Tuple) { 1115 const TypeTuple *t = is_tuple(); 1116 for (uint i=0; i < t->cnt(); i++) { 1117 tx = t->field_at(i)->base(); 1118 if (tx == Memory) return true; 1119 } 1120 } 1121 return false; 1122 } 1123 1124 #ifndef PRODUCT 1125 //------------------------------dump2------------------------------------------ 1126 void Type::dump2( Dict &d, uint depth, outputStream *st ) const { 1127 st->print("%s", _type_info[_base].msg); 1128 } 1129 1130 //------------------------------dump------------------------------------------- 1131 void Type::dump_on(outputStream *st) const { 1132 ResourceMark rm; 1133 Dict d(cmpkey,hashkey); // Stop recursive type dumping 1134 dump2(d,1, st); 1135 if (is_ptr_to_narrowoop()) { 1136 st->print(" [narrow]"); 1137 } else if (is_ptr_to_narrowklass()) { 1138 st->print(" [narrowklass]"); 1139 } 1140 } 1141 1142 //----------------------------------------------------------------------------- 1143 const char* Type::str(const Type* t) { 1144 stringStream ss; 1145 t->dump_on(&ss); 1146 return ss.as_string(); 1147 } 1148 #endif 1149 1150 //------------------------------singleton-------------------------------------- 1151 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1152 // constants (Ldi nodes). Singletons are integer, float or double constants. 1153 bool Type::singleton(void) const { 1154 return _base == Top || _base == Half; 1155 } 1156 1157 //------------------------------empty------------------------------------------ 1158 // TRUE if Type is a type with no values, FALSE otherwise. 1159 bool Type::empty(void) const { 1160 switch (_base) { 1161 case DoubleTop: 1162 case FloatTop: 1163 case Top: 1164 return true; 1165 1166 case Half: 1167 case Abio: 1168 case Return_Address: 1169 case Memory: 1170 case Bottom: 1171 case FloatBot: 1172 case DoubleBot: 1173 return false; // never a singleton, therefore never empty 1174 1175 default: 1176 ShouldNotReachHere(); 1177 return false; 1178 } 1179 } 1180 1181 //------------------------------dump_stats------------------------------------- 1182 // Dump collected statistics to stderr 1183 #ifndef PRODUCT 1184 void Type::dump_stats() { 1185 tty->print("Types made: %d\n", type_dict()->Size()); 1186 } 1187 #endif 1188 1189 //------------------------------category--------------------------------------- 1190 #ifndef PRODUCT 1191 Type::Category Type::category() const { 1192 const TypeTuple* tuple; 1193 switch (base()) { 1194 case Type::Int: 1195 case Type::Long: 1196 case Type::Half: 1197 case Type::NarrowOop: 1198 case Type::NarrowKlass: 1199 case Type::Array: 1200 case Type::VectorA: 1201 case Type::VectorS: 1202 case Type::VectorD: 1203 case Type::VectorX: 1204 case Type::VectorY: 1205 case Type::VectorZ: 1206 case Type::VectorMask: 1207 case Type::AnyPtr: 1208 case Type::RawPtr: 1209 case Type::OopPtr: 1210 case Type::InstPtr: 1211 case Type::AryPtr: 1212 case Type::MetadataPtr: 1213 case Type::KlassPtr: 1214 case Type::InstKlassPtr: 1215 case Type::AryKlassPtr: 1216 case Type::Function: 1217 case Type::Return_Address: 1218 case Type::FloatTop: 1219 case Type::FloatCon: 1220 case Type::FloatBot: 1221 case Type::DoubleTop: 1222 case Type::DoubleCon: 1223 case Type::DoubleBot: 1224 return Category::Data; 1225 case Type::Memory: 1226 return Category::Memory; 1227 case Type::Control: 1228 return Category::Control; 1229 case Type::Top: 1230 case Type::Abio: 1231 case Type::Bottom: 1232 return Category::Other; 1233 case Type::Bad: 1234 case Type::lastype: 1235 return Category::Undef; 1236 case Type::Tuple: 1237 // Recursive case. Return CatMixed if the tuple contains types of 1238 // different categories (e.g. CallStaticJavaNode's type), or the specific 1239 // category if all types are of the same category (e.g. IfNode's type). 1240 tuple = is_tuple(); 1241 if (tuple->cnt() == 0) { 1242 return Category::Undef; 1243 } else { 1244 Category first = tuple->field_at(0)->category(); 1245 for (uint i = 1; i < tuple->cnt(); i++) { 1246 if (tuple->field_at(i)->category() != first) { 1247 return Category::Mixed; 1248 } 1249 } 1250 return first; 1251 } 1252 default: 1253 assert(false, "unmatched base type: all base types must be categorized"); 1254 } 1255 return Category::Undef; 1256 } 1257 1258 bool Type::has_category(Type::Category cat) const { 1259 if (category() == cat) { 1260 return true; 1261 } 1262 if (category() == Category::Mixed) { 1263 const TypeTuple* tuple = is_tuple(); 1264 for (uint i = 0; i < tuple->cnt(); i++) { 1265 if (tuple->field_at(i)->has_category(cat)) { 1266 return true; 1267 } 1268 } 1269 } 1270 return false; 1271 } 1272 #endif 1273 1274 //------------------------------typerr----------------------------------------- 1275 void Type::typerr( const Type *t ) const { 1276 #ifndef PRODUCT 1277 tty->print("\nError mixing types: "); 1278 dump(); 1279 tty->print(" and "); 1280 t->dump(); 1281 tty->print("\n"); 1282 #endif 1283 ShouldNotReachHere(); 1284 } 1285 1286 1287 //============================================================================= 1288 // Convenience common pre-built types. 1289 const TypeF *TypeF::MAX; // Floating point max 1290 const TypeF *TypeF::MIN; // Floating point min 1291 const TypeF *TypeF::ZERO; // Floating point zero 1292 const TypeF *TypeF::ONE; // Floating point one 1293 const TypeF *TypeF::POS_INF; // Floating point positive infinity 1294 const TypeF *TypeF::NEG_INF; // Floating point negative infinity 1295 1296 //------------------------------make------------------------------------------- 1297 // Create a float constant 1298 const TypeF *TypeF::make(float f) { 1299 return (TypeF*)(new TypeF(f))->hashcons(); 1300 } 1301 1302 //------------------------------meet------------------------------------------- 1303 // Compute the MEET of two types. It returns a new Type object. 1304 const Type *TypeF::xmeet( const Type *t ) const { 1305 // Perform a fast test for common case; meeting the same types together. 1306 if( this == t ) return this; // Meeting same type-rep? 1307 1308 // Current "this->_base" is FloatCon 1309 switch (t->base()) { // Switch on original type 1310 case AnyPtr: // Mixing with oops happens when javac 1311 case RawPtr: // reuses local variables 1312 case OopPtr: 1313 case InstPtr: 1314 case AryPtr: 1315 case MetadataPtr: 1316 case KlassPtr: 1317 case InstKlassPtr: 1318 case AryKlassPtr: 1319 case NarrowOop: 1320 case NarrowKlass: 1321 case Int: 1322 case Long: 1323 case DoubleTop: 1324 case DoubleCon: 1325 case DoubleBot: 1326 case Bottom: // Ye Olde Default 1327 return Type::BOTTOM; 1328 1329 case FloatBot: 1330 return t; 1331 1332 default: // All else is a mistake 1333 typerr(t); 1334 1335 case FloatCon: // Float-constant vs Float-constant? 1336 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? 1337 // must compare bitwise as positive zero, negative zero and NaN have 1338 // all the same representation in C++ 1339 return FLOAT; // Return generic float 1340 // Equal constants 1341 case Top: 1342 case FloatTop: 1343 break; // Return the float constant 1344 } 1345 return this; // Return the float constant 1346 } 1347 1348 //------------------------------xdual------------------------------------------ 1349 // Dual: symmetric 1350 const Type *TypeF::xdual() const { 1351 return this; 1352 } 1353 1354 //------------------------------eq--------------------------------------------- 1355 // Structural equality check for Type representations 1356 bool TypeF::eq(const Type *t) const { 1357 // Bitwise comparison to distinguish between +/-0. These values must be treated 1358 // as different to be consistent with C1 and the interpreter. 1359 return (jint_cast(_f) == jint_cast(t->getf())); 1360 } 1361 1362 //------------------------------hash------------------------------------------- 1363 // Type-specific hashing function. 1364 uint TypeF::hash(void) const { 1365 return *(uint*)(&_f); 1366 } 1367 1368 //------------------------------is_finite-------------------------------------- 1369 // Has a finite value 1370 bool TypeF::is_finite() const { 1371 return g_isfinite(getf()) != 0; 1372 } 1373 1374 //------------------------------is_nan----------------------------------------- 1375 // Is not a number (NaN) 1376 bool TypeF::is_nan() const { 1377 return g_isnan(getf()) != 0; 1378 } 1379 1380 //------------------------------dump2------------------------------------------ 1381 // Dump float constant Type 1382 #ifndef PRODUCT 1383 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { 1384 Type::dump2(d,depth, st); 1385 st->print("%f", _f); 1386 } 1387 #endif 1388 1389 //------------------------------singleton-------------------------------------- 1390 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1391 // constants (Ldi nodes). Singletons are integer, float or double constants 1392 // or a single symbol. 1393 bool TypeF::singleton(void) const { 1394 return true; // Always a singleton 1395 } 1396 1397 bool TypeF::empty(void) const { 1398 return false; // always exactly a singleton 1399 } 1400 1401 //============================================================================= 1402 // Convenience common pre-built types. 1403 const TypeD *TypeD::MAX; // Floating point max 1404 const TypeD *TypeD::MIN; // Floating point min 1405 const TypeD *TypeD::ZERO; // Floating point zero 1406 const TypeD *TypeD::ONE; // Floating point one 1407 const TypeD *TypeD::POS_INF; // Floating point positive infinity 1408 const TypeD *TypeD::NEG_INF; // Floating point negative infinity 1409 1410 //------------------------------make------------------------------------------- 1411 const TypeD *TypeD::make(double d) { 1412 return (TypeD*)(new TypeD(d))->hashcons(); 1413 } 1414 1415 //------------------------------meet------------------------------------------- 1416 // Compute the MEET of two types. It returns a new Type object. 1417 const Type *TypeD::xmeet( const Type *t ) const { 1418 // Perform a fast test for common case; meeting the same types together. 1419 if( this == t ) return this; // Meeting same type-rep? 1420 1421 // Current "this->_base" is DoubleCon 1422 switch (t->base()) { // Switch on original type 1423 case AnyPtr: // Mixing with oops happens when javac 1424 case RawPtr: // reuses local variables 1425 case OopPtr: 1426 case InstPtr: 1427 case AryPtr: 1428 case MetadataPtr: 1429 case KlassPtr: 1430 case InstKlassPtr: 1431 case AryKlassPtr: 1432 case NarrowOop: 1433 case NarrowKlass: 1434 case Int: 1435 case Long: 1436 case FloatTop: 1437 case FloatCon: 1438 case FloatBot: 1439 case Bottom: // Ye Olde Default 1440 return Type::BOTTOM; 1441 1442 case DoubleBot: 1443 return t; 1444 1445 default: // All else is a mistake 1446 typerr(t); 1447 1448 case DoubleCon: // Double-constant vs Double-constant? 1449 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) 1450 return DOUBLE; // Return generic double 1451 case Top: 1452 case DoubleTop: 1453 break; 1454 } 1455 return this; // Return the double constant 1456 } 1457 1458 //------------------------------xdual------------------------------------------ 1459 // Dual: symmetric 1460 const Type *TypeD::xdual() const { 1461 return this; 1462 } 1463 1464 //------------------------------eq--------------------------------------------- 1465 // Structural equality check for Type representations 1466 bool TypeD::eq(const Type *t) const { 1467 // Bitwise comparison to distinguish between +/-0. These values must be treated 1468 // as different to be consistent with C1 and the interpreter. 1469 return (jlong_cast(_d) == jlong_cast(t->getd())); 1470 } 1471 1472 //------------------------------hash------------------------------------------- 1473 // Type-specific hashing function. 1474 uint TypeD::hash(void) const { 1475 return *(uint*)(&_d); 1476 } 1477 1478 //------------------------------is_finite-------------------------------------- 1479 // Has a finite value 1480 bool TypeD::is_finite() const { 1481 return g_isfinite(getd()) != 0; 1482 } 1483 1484 //------------------------------is_nan----------------------------------------- 1485 // Is not a number (NaN) 1486 bool TypeD::is_nan() const { 1487 return g_isnan(getd()) != 0; 1488 } 1489 1490 //------------------------------dump2------------------------------------------ 1491 // Dump double constant Type 1492 #ifndef PRODUCT 1493 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { 1494 Type::dump2(d,depth,st); 1495 st->print("%f", _d); 1496 } 1497 #endif 1498 1499 //------------------------------singleton-------------------------------------- 1500 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1501 // constants (Ldi nodes). Singletons are integer, float or double constants 1502 // or a single symbol. 1503 bool TypeD::singleton(void) const { 1504 return true; // Always a singleton 1505 } 1506 1507 bool TypeD::empty(void) const { 1508 return false; // always exactly a singleton 1509 } 1510 1511 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) { 1512 if (bt == T_INT) { 1513 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w); 1514 } 1515 assert(bt == T_LONG, "basic type not an int or long"); 1516 return TypeLong::make(lo, hi, w); 1517 } 1518 1519 jlong TypeInteger::get_con_as_long(BasicType bt) const { 1520 if (bt == T_INT) { 1521 return is_int()->get_con(); 1522 } 1523 assert(bt == T_LONG, "basic type not an int or long"); 1524 return is_long()->get_con(); 1525 } 1526 1527 const TypeInteger* TypeInteger::bottom(BasicType bt) { 1528 if (bt == T_INT) { 1529 return TypeInt::INT; 1530 } 1531 assert(bt == T_LONG, "basic type not an int or long"); 1532 return TypeLong::LONG; 1533 } 1534 1535 const TypeInteger* TypeInteger::zero(BasicType bt) { 1536 if (bt == T_INT) { 1537 return TypeInt::ZERO; 1538 } 1539 assert(bt == T_LONG, "basic type not an int or long"); 1540 return TypeLong::ZERO; 1541 } 1542 1543 const TypeInteger* TypeInteger::one(BasicType bt) { 1544 if (bt == T_INT) { 1545 return TypeInt::ONE; 1546 } 1547 assert(bt == T_LONG, "basic type not an int or long"); 1548 return TypeLong::ONE; 1549 } 1550 1551 const TypeInteger* TypeInteger::minus_1(BasicType bt) { 1552 if (bt == T_INT) { 1553 return TypeInt::MINUS_1; 1554 } 1555 assert(bt == T_LONG, "basic type not an int or long"); 1556 return TypeLong::MINUS_1; 1557 } 1558 1559 //============================================================================= 1560 // Convenience common pre-built types. 1561 const TypeInt *TypeInt::MAX; // INT_MAX 1562 const TypeInt *TypeInt::MIN; // INT_MIN 1563 const TypeInt *TypeInt::MINUS_1;// -1 1564 const TypeInt *TypeInt::ZERO; // 0 1565 const TypeInt *TypeInt::ONE; // 1 1566 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. 1567 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes 1568 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 1569 const TypeInt *TypeInt::CC_GT; // [1] == ONE 1570 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO 1571 const TypeInt *TypeInt::CC_LE; // [-1,0] 1572 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) 1573 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 1574 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 1575 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 1576 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 1577 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero 1578 const TypeInt *TypeInt::POS1; // Positive 32-bit integers 1579 const TypeInt *TypeInt::INT; // 32-bit integers 1580 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] 1581 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT 1582 1583 //------------------------------TypeInt---------------------------------------- 1584 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) { 1585 } 1586 1587 //------------------------------make------------------------------------------- 1588 const TypeInt *TypeInt::make( jint lo ) { 1589 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); 1590 } 1591 1592 static int normalize_int_widen( jint lo, jint hi, int w ) { 1593 // Certain normalizations keep us sane when comparing types. 1594 // The 'SMALLINT' covers constants and also CC and its relatives. 1595 if (lo <= hi) { 1596 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin; 1597 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT 1598 } else { 1599 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin; 1600 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT 1601 } 1602 return w; 1603 } 1604 1605 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { 1606 w = normalize_int_widen(lo, hi, w); 1607 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); 1608 } 1609 1610 //------------------------------meet------------------------------------------- 1611 // Compute the MEET of two types. It returns a new Type representation object 1612 // with reference count equal to the number of Types pointing at it. 1613 // Caller should wrap a Types around it. 1614 const Type *TypeInt::xmeet( const Type *t ) const { 1615 // Perform a fast test for common case; meeting the same types together. 1616 if( this == t ) return this; // Meeting same type? 1617 1618 // Currently "this->_base" is a TypeInt 1619 switch (t->base()) { // Switch on original type 1620 case AnyPtr: // Mixing with oops happens when javac 1621 case RawPtr: // reuses local variables 1622 case OopPtr: 1623 case InstPtr: 1624 case AryPtr: 1625 case MetadataPtr: 1626 case KlassPtr: 1627 case InstKlassPtr: 1628 case AryKlassPtr: 1629 case NarrowOop: 1630 case NarrowKlass: 1631 case Long: 1632 case FloatTop: 1633 case FloatCon: 1634 case FloatBot: 1635 case DoubleTop: 1636 case DoubleCon: 1637 case DoubleBot: 1638 case Bottom: // Ye Olde Default 1639 return Type::BOTTOM; 1640 default: // All else is a mistake 1641 typerr(t); 1642 case Top: // No change 1643 return this; 1644 case Int: // Int vs Int? 1645 break; 1646 } 1647 1648 // Expand covered set 1649 const TypeInt *r = t->is_int(); 1650 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1651 } 1652 1653 //------------------------------xdual------------------------------------------ 1654 // Dual: reverse hi & lo; flip widen 1655 const Type *TypeInt::xdual() const { 1656 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); 1657 return new TypeInt(_hi,_lo,w); 1658 } 1659 1660 //------------------------------widen------------------------------------------ 1661 // Only happens for optimistic top-down optimizations. 1662 const Type *TypeInt::widen( const Type *old, const Type* limit ) const { 1663 // Coming from TOP or such; no widening 1664 if( old->base() != Int ) return this; 1665 const TypeInt *ot = old->is_int(); 1666 1667 // If new guy is equal to old guy, no widening 1668 if( _lo == ot->_lo && _hi == ot->_hi ) 1669 return old; 1670 1671 // If new guy contains old, then we widened 1672 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1673 // New contains old 1674 // If new guy is already wider than old, no widening 1675 if( _widen > ot->_widen ) return this; 1676 // If old guy was a constant, do not bother 1677 if (ot->_lo == ot->_hi) return this; 1678 // Now widen new guy. 1679 // Check for widening too far 1680 if (_widen == WidenMax) { 1681 int max = max_jint; 1682 int min = min_jint; 1683 if (limit->isa_int()) { 1684 max = limit->is_int()->_hi; 1685 min = limit->is_int()->_lo; 1686 } 1687 if (min < _lo && _hi < max) { 1688 // If neither endpoint is extremal yet, push out the endpoint 1689 // which is closer to its respective limit. 1690 if (_lo >= 0 || // easy common case 1691 ((juint)_lo - min) >= ((juint)max - _hi)) { 1692 // Try to widen to an unsigned range type of 31 bits: 1693 return make(_lo, max, WidenMax); 1694 } else { 1695 return make(min, _hi, WidenMax); 1696 } 1697 } 1698 return TypeInt::INT; 1699 } 1700 // Returned widened new guy 1701 return make(_lo,_hi,_widen+1); 1702 } 1703 1704 // If old guy contains new, then we probably widened too far & dropped to 1705 // bottom. Return the wider fellow. 1706 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1707 return old; 1708 1709 //fatal("Integer value range is not subset"); 1710 //return this; 1711 return TypeInt::INT; 1712 } 1713 1714 //------------------------------narrow--------------------------------------- 1715 // Only happens for pessimistic optimizations. 1716 const Type *TypeInt::narrow( const Type *old ) const { 1717 if (_lo >= _hi) return this; // already narrow enough 1718 if (old == nullptr) return this; 1719 const TypeInt* ot = old->isa_int(); 1720 if (ot == nullptr) return this; 1721 jint olo = ot->_lo; 1722 jint ohi = ot->_hi; 1723 1724 // If new guy is equal to old guy, no narrowing 1725 if (_lo == olo && _hi == ohi) return old; 1726 1727 // If old guy was maximum range, allow the narrowing 1728 if (olo == min_jint && ohi == max_jint) return this; 1729 1730 if (_lo < olo || _hi > ohi) 1731 return this; // doesn't narrow; pretty weird 1732 1733 // The new type narrows the old type, so look for a "death march". 1734 // See comments on PhaseTransform::saturate. 1735 juint nrange = (juint)_hi - _lo; 1736 juint orange = (juint)ohi - olo; 1737 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1738 // Use the new type only if the range shrinks a lot. 1739 // We do not want the optimizer computing 2^31 point by point. 1740 return old; 1741 } 1742 1743 return this; 1744 } 1745 1746 //-----------------------------filter------------------------------------------ 1747 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { 1748 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); 1749 if (ft == nullptr || ft->empty()) 1750 return Type::TOP; // Canonical empty value 1751 if (ft->_widen < this->_widen) { 1752 // Do not allow the value of kill->_widen to affect the outcome. 1753 // The widen bits must be allowed to run freely through the graph. 1754 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); 1755 } 1756 return ft; 1757 } 1758 1759 //------------------------------eq--------------------------------------------- 1760 // Structural equality check for Type representations 1761 bool TypeInt::eq( const Type *t ) const { 1762 const TypeInt *r = t->is_int(); // Handy access 1763 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1764 } 1765 1766 //------------------------------hash------------------------------------------- 1767 // Type-specific hashing function. 1768 uint TypeInt::hash(void) const { 1769 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Int; 1770 } 1771 1772 //------------------------------is_finite-------------------------------------- 1773 // Has a finite value 1774 bool TypeInt::is_finite() const { 1775 return true; 1776 } 1777 1778 //------------------------------dump2------------------------------------------ 1779 // Dump TypeInt 1780 #ifndef PRODUCT 1781 static const char* intname(char* buf, size_t buf_size, jint n) { 1782 if (n == min_jint) 1783 return "min"; 1784 else if (n < min_jint + 10000) 1785 os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint); 1786 else if (n == max_jint) 1787 return "max"; 1788 else if (n > max_jint - 10000) 1789 os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n); 1790 else 1791 os::snprintf_checked(buf, buf_size, INT32_FORMAT, n); 1792 return buf; 1793 } 1794 1795 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { 1796 char buf[40], buf2[40]; 1797 if (_lo == min_jint && _hi == max_jint) 1798 st->print("int"); 1799 else if (is_con()) 1800 st->print("int:%s", intname(buf, sizeof(buf), get_con())); 1801 else if (_lo == BOOL->_lo && _hi == BOOL->_hi) 1802 st->print("bool"); 1803 else if (_lo == BYTE->_lo && _hi == BYTE->_hi) 1804 st->print("byte"); 1805 else if (_lo == CHAR->_lo && _hi == CHAR->_hi) 1806 st->print("char"); 1807 else if (_lo == SHORT->_lo && _hi == SHORT->_hi) 1808 st->print("short"); 1809 else if (_hi == max_jint) 1810 st->print("int:>=%s", intname(buf, sizeof(buf), _lo)); 1811 else if (_lo == min_jint) 1812 st->print("int:<=%s", intname(buf, sizeof(buf), _hi)); 1813 else 1814 st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi)); 1815 1816 if (_widen != 0 && this != TypeInt::INT) 1817 st->print(":%.*s", _widen, "wwww"); 1818 } 1819 #endif 1820 1821 //------------------------------singleton-------------------------------------- 1822 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1823 // constants. 1824 bool TypeInt::singleton(void) const { 1825 return _lo >= _hi; 1826 } 1827 1828 bool TypeInt::empty(void) const { 1829 return _lo > _hi; 1830 } 1831 1832 //============================================================================= 1833 // Convenience common pre-built types. 1834 const TypeLong *TypeLong::MAX; 1835 const TypeLong *TypeLong::MIN; 1836 const TypeLong *TypeLong::MINUS_1;// -1 1837 const TypeLong *TypeLong::ZERO; // 0 1838 const TypeLong *TypeLong::ONE; // 1 1839 const TypeLong *TypeLong::POS; // >=0 1840 const TypeLong *TypeLong::LONG; // 64-bit integers 1841 const TypeLong *TypeLong::INT; // 32-bit subrange 1842 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange 1843 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG 1844 1845 //------------------------------TypeLong--------------------------------------- 1846 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) { 1847 } 1848 1849 //------------------------------make------------------------------------------- 1850 const TypeLong *TypeLong::make( jlong lo ) { 1851 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); 1852 } 1853 1854 static int normalize_long_widen( jlong lo, jlong hi, int w ) { 1855 // Certain normalizations keep us sane when comparing types. 1856 // The 'SMALLINT' covers constants. 1857 if (lo <= hi) { 1858 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin; 1859 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG 1860 } else { 1861 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin; 1862 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG 1863 } 1864 return w; 1865 } 1866 1867 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { 1868 w = normalize_long_widen(lo, hi, w); 1869 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); 1870 } 1871 1872 1873 //------------------------------meet------------------------------------------- 1874 // Compute the MEET of two types. It returns a new Type representation object 1875 // with reference count equal to the number of Types pointing at it. 1876 // Caller should wrap a Types around it. 1877 const Type *TypeLong::xmeet( const Type *t ) const { 1878 // Perform a fast test for common case; meeting the same types together. 1879 if( this == t ) return this; // Meeting same type? 1880 1881 // Currently "this->_base" is a TypeLong 1882 switch (t->base()) { // Switch on original type 1883 case AnyPtr: // Mixing with oops happens when javac 1884 case RawPtr: // reuses local variables 1885 case OopPtr: 1886 case InstPtr: 1887 case AryPtr: 1888 case MetadataPtr: 1889 case KlassPtr: 1890 case InstKlassPtr: 1891 case AryKlassPtr: 1892 case NarrowOop: 1893 case NarrowKlass: 1894 case Int: 1895 case FloatTop: 1896 case FloatCon: 1897 case FloatBot: 1898 case DoubleTop: 1899 case DoubleCon: 1900 case DoubleBot: 1901 case Bottom: // Ye Olde Default 1902 return Type::BOTTOM; 1903 default: // All else is a mistake 1904 typerr(t); 1905 case Top: // No change 1906 return this; 1907 case Long: // Long vs Long? 1908 break; 1909 } 1910 1911 // Expand covered set 1912 const TypeLong *r = t->is_long(); // Turn into a TypeLong 1913 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1914 } 1915 1916 //------------------------------xdual------------------------------------------ 1917 // Dual: reverse hi & lo; flip widen 1918 const Type *TypeLong::xdual() const { 1919 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); 1920 return new TypeLong(_hi,_lo,w); 1921 } 1922 1923 //------------------------------widen------------------------------------------ 1924 // Only happens for optimistic top-down optimizations. 1925 const Type *TypeLong::widen( const Type *old, const Type* limit ) const { 1926 // Coming from TOP or such; no widening 1927 if( old->base() != Long ) return this; 1928 const TypeLong *ot = old->is_long(); 1929 1930 // If new guy is equal to old guy, no widening 1931 if( _lo == ot->_lo && _hi == ot->_hi ) 1932 return old; 1933 1934 // If new guy contains old, then we widened 1935 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1936 // New contains old 1937 // If new guy is already wider than old, no widening 1938 if( _widen > ot->_widen ) return this; 1939 // If old guy was a constant, do not bother 1940 if (ot->_lo == ot->_hi) return this; 1941 // Now widen new guy. 1942 // Check for widening too far 1943 if (_widen == WidenMax) { 1944 jlong max = max_jlong; 1945 jlong min = min_jlong; 1946 if (limit->isa_long()) { 1947 max = limit->is_long()->_hi; 1948 min = limit->is_long()->_lo; 1949 } 1950 if (min < _lo && _hi < max) { 1951 // If neither endpoint is extremal yet, push out the endpoint 1952 // which is closer to its respective limit. 1953 if (_lo >= 0 || // easy common case 1954 ((julong)_lo - min) >= ((julong)max - _hi)) { 1955 // Try to widen to an unsigned range type of 32/63 bits: 1956 if (max >= max_juint && _hi < max_juint) 1957 return make(_lo, max_juint, WidenMax); 1958 else 1959 return make(_lo, max, WidenMax); 1960 } else { 1961 return make(min, _hi, WidenMax); 1962 } 1963 } 1964 return TypeLong::LONG; 1965 } 1966 // Returned widened new guy 1967 return make(_lo,_hi,_widen+1); 1968 } 1969 1970 // If old guy contains new, then we probably widened too far & dropped to 1971 // bottom. Return the wider fellow. 1972 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1973 return old; 1974 1975 // fatal("Long value range is not subset"); 1976 // return this; 1977 return TypeLong::LONG; 1978 } 1979 1980 //------------------------------narrow---------------------------------------- 1981 // Only happens for pessimistic optimizations. 1982 const Type *TypeLong::narrow( const Type *old ) const { 1983 if (_lo >= _hi) return this; // already narrow enough 1984 if (old == nullptr) return this; 1985 const TypeLong* ot = old->isa_long(); 1986 if (ot == nullptr) return this; 1987 jlong olo = ot->_lo; 1988 jlong ohi = ot->_hi; 1989 1990 // If new guy is equal to old guy, no narrowing 1991 if (_lo == olo && _hi == ohi) return old; 1992 1993 // If old guy was maximum range, allow the narrowing 1994 if (olo == min_jlong && ohi == max_jlong) return this; 1995 1996 if (_lo < olo || _hi > ohi) 1997 return this; // doesn't narrow; pretty weird 1998 1999 // The new type narrows the old type, so look for a "death march". 2000 // See comments on PhaseTransform::saturate. 2001 julong nrange = (julong)_hi - _lo; 2002 julong orange = (julong)ohi - olo; 2003 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 2004 // Use the new type only if the range shrinks a lot. 2005 // We do not want the optimizer computing 2^31 point by point. 2006 return old; 2007 } 2008 2009 return this; 2010 } 2011 2012 //-----------------------------filter------------------------------------------ 2013 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { 2014 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); 2015 if (ft == nullptr || ft->empty()) 2016 return Type::TOP; // Canonical empty value 2017 if (ft->_widen < this->_widen) { 2018 // Do not allow the value of kill->_widen to affect the outcome. 2019 // The widen bits must be allowed to run freely through the graph. 2020 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); 2021 } 2022 return ft; 2023 } 2024 2025 //------------------------------eq--------------------------------------------- 2026 // Structural equality check for Type representations 2027 bool TypeLong::eq( const Type *t ) const { 2028 const TypeLong *r = t->is_long(); // Handy access 2029 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 2030 } 2031 2032 //------------------------------hash------------------------------------------- 2033 // Type-specific hashing function. 2034 uint TypeLong::hash(void) const { 2035 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Long; 2036 } 2037 2038 //------------------------------is_finite-------------------------------------- 2039 // Has a finite value 2040 bool TypeLong::is_finite() const { 2041 return true; 2042 } 2043 2044 //------------------------------dump2------------------------------------------ 2045 // Dump TypeLong 2046 #ifndef PRODUCT 2047 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) { 2048 if (n > x) { 2049 if (n >= x + 10000) return nullptr; 2050 os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x); 2051 } else if (n < x) { 2052 if (n <= x - 10000) return nullptr; 2053 os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n); 2054 } else { 2055 return xname; 2056 } 2057 return buf; 2058 } 2059 2060 static const char* longname(char* buf, size_t buf_size, jlong n) { 2061 const char* str; 2062 if (n == min_jlong) 2063 return "min"; 2064 else if (n < min_jlong + 10000) 2065 os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong); 2066 else if (n == max_jlong) 2067 return "max"; 2068 else if (n > max_jlong - 10000) 2069 os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n); 2070 else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != nullptr) 2071 return str; 2072 else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != nullptr) 2073 return str; 2074 else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != nullptr) 2075 return str; 2076 else 2077 os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n); 2078 return buf; 2079 } 2080 2081 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { 2082 char buf[80], buf2[80]; 2083 if (_lo == min_jlong && _hi == max_jlong) 2084 st->print("long"); 2085 else if (is_con()) 2086 st->print("long:%s", longname(buf, sizeof(buf), get_con())); 2087 else if (_hi == max_jlong) 2088 st->print("long:>=%s", longname(buf, sizeof(buf), _lo)); 2089 else if (_lo == min_jlong) 2090 st->print("long:<=%s", longname(buf, sizeof(buf), _hi)); 2091 else 2092 st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2), _hi)); 2093 2094 if (_widen != 0 && this != TypeLong::LONG) 2095 st->print(":%.*s", _widen, "wwww"); 2096 } 2097 #endif 2098 2099 //------------------------------singleton-------------------------------------- 2100 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2101 // constants 2102 bool TypeLong::singleton(void) const { 2103 return _lo >= _hi; 2104 } 2105 2106 bool TypeLong::empty(void) const { 2107 return _lo > _hi; 2108 } 2109 2110 //============================================================================= 2111 // Convenience common pre-built types. 2112 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable 2113 const TypeTuple *TypeTuple::IFFALSE; 2114 const TypeTuple *TypeTuple::IFTRUE; 2115 const TypeTuple *TypeTuple::IFNEITHER; 2116 const TypeTuple *TypeTuple::LOOPBODY; 2117 const TypeTuple *TypeTuple::MEMBAR; 2118 const TypeTuple *TypeTuple::STORECONDITIONAL; 2119 const TypeTuple *TypeTuple::START_I2C; 2120 const TypeTuple *TypeTuple::INT_PAIR; 2121 const TypeTuple *TypeTuple::LONG_PAIR; 2122 const TypeTuple *TypeTuple::INT_CC_PAIR; 2123 const TypeTuple *TypeTuple::LONG_CC_PAIR; 2124 2125 //------------------------------make------------------------------------------- 2126 // Make a TypeTuple from the range of a method signature 2127 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) { 2128 ciType* return_type = sig->return_type(); 2129 uint arg_cnt = return_type->size(); 2130 const Type **field_array = fields(arg_cnt); 2131 switch (return_type->basic_type()) { 2132 case T_LONG: 2133 field_array[TypeFunc::Parms] = TypeLong::LONG; 2134 field_array[TypeFunc::Parms+1] = Type::HALF; 2135 break; 2136 case T_DOUBLE: 2137 field_array[TypeFunc::Parms] = Type::DOUBLE; 2138 field_array[TypeFunc::Parms+1] = Type::HALF; 2139 break; 2140 case T_OBJECT: 2141 case T_ARRAY: 2142 case T_BOOLEAN: 2143 case T_CHAR: 2144 case T_FLOAT: 2145 case T_BYTE: 2146 case T_SHORT: 2147 case T_INT: 2148 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling); 2149 break; 2150 case T_VOID: 2151 break; 2152 default: 2153 ShouldNotReachHere(); 2154 } 2155 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2156 } 2157 2158 // Make a TypeTuple from the domain of a method signature 2159 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) { 2160 uint arg_cnt = sig->size(); 2161 2162 uint pos = TypeFunc::Parms; 2163 const Type **field_array; 2164 if (recv != nullptr) { 2165 arg_cnt++; 2166 field_array = fields(arg_cnt); 2167 // Use get_const_type here because it respects UseUniqueSubclasses: 2168 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL); 2169 } else { 2170 field_array = fields(arg_cnt); 2171 } 2172 2173 int i = 0; 2174 while (pos < TypeFunc::Parms + arg_cnt) { 2175 ciType* type = sig->type_at(i); 2176 2177 switch (type->basic_type()) { 2178 case T_LONG: 2179 field_array[pos++] = TypeLong::LONG; 2180 field_array[pos++] = Type::HALF; 2181 break; 2182 case T_DOUBLE: 2183 field_array[pos++] = Type::DOUBLE; 2184 field_array[pos++] = Type::HALF; 2185 break; 2186 case T_OBJECT: 2187 case T_ARRAY: 2188 case T_FLOAT: 2189 case T_INT: 2190 field_array[pos++] = get_const_type(type, interface_handling); 2191 break; 2192 case T_BOOLEAN: 2193 case T_CHAR: 2194 case T_BYTE: 2195 case T_SHORT: 2196 field_array[pos++] = TypeInt::INT; 2197 break; 2198 default: 2199 ShouldNotReachHere(); 2200 } 2201 i++; 2202 } 2203 2204 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2205 } 2206 2207 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { 2208 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); 2209 } 2210 2211 //------------------------------fields----------------------------------------- 2212 // Subroutine call type with space allocated for argument types 2213 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 2214 const Type **TypeTuple::fields( uint arg_cnt ) { 2215 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); 2216 flds[TypeFunc::Control ] = Type::CONTROL; 2217 flds[TypeFunc::I_O ] = Type::ABIO; 2218 flds[TypeFunc::Memory ] = Type::MEMORY; 2219 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; 2220 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; 2221 2222 return flds; 2223 } 2224 2225 //------------------------------meet------------------------------------------- 2226 // Compute the MEET of two types. It returns a new Type object. 2227 const Type *TypeTuple::xmeet( const Type *t ) const { 2228 // Perform a fast test for common case; meeting the same types together. 2229 if( this == t ) return this; // Meeting same type-rep? 2230 2231 // Current "this->_base" is Tuple 2232 switch (t->base()) { // switch on original type 2233 2234 case Bottom: // Ye Olde Default 2235 return t; 2236 2237 default: // All else is a mistake 2238 typerr(t); 2239 2240 case Tuple: { // Meeting 2 signatures? 2241 const TypeTuple *x = t->is_tuple(); 2242 assert( _cnt == x->_cnt, "" ); 2243 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2244 for( uint i=0; i<_cnt; i++ ) 2245 fields[i] = field_at(i)->xmeet( x->field_at(i) ); 2246 return TypeTuple::make(_cnt,fields); 2247 } 2248 case Top: 2249 break; 2250 } 2251 return this; // Return the double constant 2252 } 2253 2254 //------------------------------xdual------------------------------------------ 2255 // Dual: compute field-by-field dual 2256 const Type *TypeTuple::xdual() const { 2257 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2258 for( uint i=0; i<_cnt; i++ ) 2259 fields[i] = _fields[i]->dual(); 2260 return new TypeTuple(_cnt,fields); 2261 } 2262 2263 //------------------------------eq--------------------------------------------- 2264 // Structural equality check for Type representations 2265 bool TypeTuple::eq( const Type *t ) const { 2266 const TypeTuple *s = (const TypeTuple *)t; 2267 if (_cnt != s->_cnt) return false; // Unequal field counts 2268 for (uint i = 0; i < _cnt; i++) 2269 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! 2270 return false; // Missed 2271 return true; 2272 } 2273 2274 //------------------------------hash------------------------------------------- 2275 // Type-specific hashing function. 2276 uint TypeTuple::hash(void) const { 2277 uintptr_t sum = _cnt; 2278 for( uint i=0; i<_cnt; i++ ) 2279 sum += (uintptr_t)_fields[i]; // Hash on pointers directly 2280 return (uint)sum; 2281 } 2282 2283 //------------------------------dump2------------------------------------------ 2284 // Dump signature Type 2285 #ifndef PRODUCT 2286 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { 2287 st->print("{"); 2288 if( !depth || d[this] ) { // Check for recursive print 2289 st->print("...}"); 2290 return; 2291 } 2292 d.Insert((void*)this, (void*)this); // Stop recursion 2293 if( _cnt ) { 2294 uint i; 2295 for( i=0; i<_cnt-1; i++ ) { 2296 st->print("%d:", i); 2297 _fields[i]->dump2(d, depth-1, st); 2298 st->print(", "); 2299 } 2300 st->print("%d:", i); 2301 _fields[i]->dump2(d, depth-1, st); 2302 } 2303 st->print("}"); 2304 } 2305 #endif 2306 2307 //------------------------------singleton-------------------------------------- 2308 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2309 // constants (Ldi nodes). Singletons are integer, float or double constants 2310 // or a single symbol. 2311 bool TypeTuple::singleton(void) const { 2312 return false; // Never a singleton 2313 } 2314 2315 bool TypeTuple::empty(void) const { 2316 for( uint i=0; i<_cnt; i++ ) { 2317 if (_fields[i]->empty()) return true; 2318 } 2319 return false; 2320 } 2321 2322 //============================================================================= 2323 // Convenience common pre-built types. 2324 2325 inline const TypeInt* normalize_array_size(const TypeInt* size) { 2326 // Certain normalizations keep us sane when comparing types. 2327 // We do not want arrayOop variables to differ only by the wideness 2328 // of their index types. Pick minimum wideness, since that is the 2329 // forced wideness of small ranges anyway. 2330 if (size->_widen != Type::WidenMin) 2331 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); 2332 else 2333 return size; 2334 } 2335 2336 //------------------------------make------------------------------------------- 2337 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) { 2338 if (UseCompressedOops && elem->isa_oopptr()) { 2339 elem = elem->make_narrowoop(); 2340 } 2341 size = normalize_array_size(size); 2342 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons(); 2343 } 2344 2345 //------------------------------meet------------------------------------------- 2346 // Compute the MEET of two types. It returns a new Type object. 2347 const Type *TypeAry::xmeet( const Type *t ) const { 2348 // Perform a fast test for common case; meeting the same types together. 2349 if( this == t ) return this; // Meeting same type-rep? 2350 2351 // Current "this->_base" is Ary 2352 switch (t->base()) { // switch on original type 2353 2354 case Bottom: // Ye Olde Default 2355 return t; 2356 2357 default: // All else is a mistake 2358 typerr(t); 2359 2360 case Array: { // Meeting 2 arrays? 2361 const TypeAry *a = t->is_ary(); 2362 return TypeAry::make(_elem->meet_speculative(a->_elem), 2363 _size->xmeet(a->_size)->is_int(), 2364 _stable && a->_stable); 2365 } 2366 case Top: 2367 break; 2368 } 2369 return this; // Return the double constant 2370 } 2371 2372 //------------------------------xdual------------------------------------------ 2373 // Dual: compute field-by-field dual 2374 const Type *TypeAry::xdual() const { 2375 const TypeInt* size_dual = _size->dual()->is_int(); 2376 size_dual = normalize_array_size(size_dual); 2377 return new TypeAry(_elem->dual(), size_dual, !_stable); 2378 } 2379 2380 //------------------------------eq--------------------------------------------- 2381 // Structural equality check for Type representations 2382 bool TypeAry::eq( const Type *t ) const { 2383 const TypeAry *a = (const TypeAry*)t; 2384 return _elem == a->_elem && 2385 _stable == a->_stable && 2386 _size == a->_size; 2387 } 2388 2389 //------------------------------hash------------------------------------------- 2390 // Type-specific hashing function. 2391 uint TypeAry::hash(void) const { 2392 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0); 2393 } 2394 2395 /** 2396 * Return same type without a speculative part in the element 2397 */ 2398 const TypeAry* TypeAry::remove_speculative() const { 2399 return make(_elem->remove_speculative(), _size, _stable); 2400 } 2401 2402 /** 2403 * Return same type with cleaned up speculative part of element 2404 */ 2405 const Type* TypeAry::cleanup_speculative() const { 2406 return make(_elem->cleanup_speculative(), _size, _stable); 2407 } 2408 2409 /** 2410 * Return same type but with a different inline depth (used for speculation) 2411 * 2412 * @param depth depth to meet with 2413 */ 2414 const TypePtr* TypePtr::with_inline_depth(int depth) const { 2415 if (!UseInlineDepthForSpeculativeTypes) { 2416 return this; 2417 } 2418 return make(AnyPtr, _ptr, _offset, _speculative, depth); 2419 } 2420 2421 //------------------------------dump2------------------------------------------ 2422 #ifndef PRODUCT 2423 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { 2424 if (_stable) st->print("stable:"); 2425 _elem->dump2(d, depth, st); 2426 st->print("["); 2427 _size->dump2(d, depth, st); 2428 st->print("]"); 2429 } 2430 #endif 2431 2432 //------------------------------singleton-------------------------------------- 2433 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2434 // constants (Ldi nodes). Singletons are integer, float or double constants 2435 // or a single symbol. 2436 bool TypeAry::singleton(void) const { 2437 return false; // Never a singleton 2438 } 2439 2440 bool TypeAry::empty(void) const { 2441 return _elem->empty() || _size->empty(); 2442 } 2443 2444 //--------------------------ary_must_be_exact---------------------------------- 2445 bool TypeAry::ary_must_be_exact() const { 2446 // This logic looks at the element type of an array, and returns true 2447 // if the element type is either a primitive or a final instance class. 2448 // In such cases, an array built on this ary must have no subclasses. 2449 if (_elem == BOTTOM) return false; // general array not exact 2450 if (_elem == TOP ) return false; // inverted general array not exact 2451 const TypeOopPtr* toop = nullptr; 2452 if (UseCompressedOops && _elem->isa_narrowoop()) { 2453 toop = _elem->make_ptr()->isa_oopptr(); 2454 } else { 2455 toop = _elem->isa_oopptr(); 2456 } 2457 if (!toop) return true; // a primitive type, like int 2458 if (!toop->is_loaded()) return false; // unloaded class 2459 const TypeInstPtr* tinst; 2460 if (_elem->isa_narrowoop()) 2461 tinst = _elem->make_ptr()->isa_instptr(); 2462 else 2463 tinst = _elem->isa_instptr(); 2464 if (tinst) 2465 return tinst->instance_klass()->is_final(); 2466 const TypeAryPtr* tap; 2467 if (_elem->isa_narrowoop()) 2468 tap = _elem->make_ptr()->isa_aryptr(); 2469 else 2470 tap = _elem->isa_aryptr(); 2471 if (tap) 2472 return tap->ary()->ary_must_be_exact(); 2473 return false; 2474 } 2475 2476 //==============================TypeVect======================================= 2477 // Convenience common pre-built types. 2478 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic 2479 const TypeVect *TypeVect::VECTS = nullptr; // 32-bit vectors 2480 const TypeVect *TypeVect::VECTD = nullptr; // 64-bit vectors 2481 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors 2482 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors 2483 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors 2484 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector 2485 2486 //------------------------------make------------------------------------------- 2487 const TypeVect* TypeVect::make(const Type *elem, uint length, bool is_mask) { 2488 if (is_mask) { 2489 return makemask(elem, length); 2490 } 2491 BasicType elem_bt = elem->array_element_basic_type(); 2492 assert(is_java_primitive(elem_bt), "only primitive types in vector"); 2493 assert(Matcher::vector_size_supported(elem_bt, length), "length in range"); 2494 int size = length * type2aelembytes(elem_bt); 2495 switch (Matcher::vector_ideal_reg(size)) { 2496 case Op_VecA: 2497 return (TypeVect*)(new TypeVectA(elem, length))->hashcons(); 2498 case Op_VecS: 2499 return (TypeVect*)(new TypeVectS(elem, length))->hashcons(); 2500 case Op_RegL: 2501 case Op_VecD: 2502 case Op_RegD: 2503 return (TypeVect*)(new TypeVectD(elem, length))->hashcons(); 2504 case Op_VecX: 2505 return (TypeVect*)(new TypeVectX(elem, length))->hashcons(); 2506 case Op_VecY: 2507 return (TypeVect*)(new TypeVectY(elem, length))->hashcons(); 2508 case Op_VecZ: 2509 return (TypeVect*)(new TypeVectZ(elem, length))->hashcons(); 2510 } 2511 ShouldNotReachHere(); 2512 return nullptr; 2513 } 2514 2515 const TypeVect *TypeVect::makemask(const Type* elem, uint length) { 2516 BasicType elem_bt = elem->array_element_basic_type(); 2517 if (Matcher::has_predicated_vectors() && 2518 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) { 2519 return TypeVectMask::make(elem, length); 2520 } else { 2521 return make(elem, length); 2522 } 2523 } 2524 2525 //------------------------------meet------------------------------------------- 2526 // Compute the MEET of two types. It returns a new Type object. 2527 const Type *TypeVect::xmeet( const Type *t ) const { 2528 // Perform a fast test for common case; meeting the same types together. 2529 if( this == t ) return this; // Meeting same type-rep? 2530 2531 // Current "this->_base" is Vector 2532 switch (t->base()) { // switch on original type 2533 2534 case Bottom: // Ye Olde Default 2535 return t; 2536 2537 default: // All else is a mistake 2538 typerr(t); 2539 case VectorMask: { 2540 const TypeVectMask* v = t->is_vectmask(); 2541 assert( base() == v->base(), ""); 2542 assert(length() == v->length(), ""); 2543 assert(element_basic_type() == v->element_basic_type(), ""); 2544 return TypeVect::makemask(_elem->xmeet(v->_elem), _length); 2545 } 2546 case VectorA: 2547 case VectorS: 2548 case VectorD: 2549 case VectorX: 2550 case VectorY: 2551 case VectorZ: { // Meeting 2 vectors? 2552 const TypeVect* v = t->is_vect(); 2553 assert( base() == v->base(), ""); 2554 assert(length() == v->length(), ""); 2555 assert(element_basic_type() == v->element_basic_type(), ""); 2556 return TypeVect::make(_elem->xmeet(v->_elem), _length); 2557 } 2558 case Top: 2559 break; 2560 } 2561 return this; 2562 } 2563 2564 //------------------------------xdual------------------------------------------ 2565 // Dual: compute field-by-field dual 2566 const Type *TypeVect::xdual() const { 2567 return new TypeVect(base(), _elem->dual(), _length); 2568 } 2569 2570 //------------------------------eq--------------------------------------------- 2571 // Structural equality check for Type representations 2572 bool TypeVect::eq(const Type *t) const { 2573 const TypeVect *v = t->is_vect(); 2574 return (_elem == v->_elem) && (_length == v->_length); 2575 } 2576 2577 //------------------------------hash------------------------------------------- 2578 // Type-specific hashing function. 2579 uint TypeVect::hash(void) const { 2580 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_length; 2581 } 2582 2583 //------------------------------singleton-------------------------------------- 2584 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2585 // constants (Ldi nodes). Vector is singleton if all elements are the same 2586 // constant value (when vector is created with Replicate code). 2587 bool TypeVect::singleton(void) const { 2588 // There is no Con node for vectors yet. 2589 // return _elem->singleton(); 2590 return false; 2591 } 2592 2593 bool TypeVect::empty(void) const { 2594 return _elem->empty(); 2595 } 2596 2597 //------------------------------dump2------------------------------------------ 2598 #ifndef PRODUCT 2599 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const { 2600 switch (base()) { 2601 case VectorA: 2602 st->print("vectora["); break; 2603 case VectorS: 2604 st->print("vectors["); break; 2605 case VectorD: 2606 st->print("vectord["); break; 2607 case VectorX: 2608 st->print("vectorx["); break; 2609 case VectorY: 2610 st->print("vectory["); break; 2611 case VectorZ: 2612 st->print("vectorz["); break; 2613 case VectorMask: 2614 st->print("vectormask["); break; 2615 default: 2616 ShouldNotReachHere(); 2617 } 2618 st->print("%d]:{", _length); 2619 _elem->dump2(d, depth, st); 2620 st->print("}"); 2621 } 2622 #endif 2623 2624 bool TypeVectMask::eq(const Type *t) const { 2625 const TypeVectMask *v = t->is_vectmask(); 2626 return (element_type() == v->element_type()) && (length() == v->length()); 2627 } 2628 2629 const Type *TypeVectMask::xdual() const { 2630 return new TypeVectMask(element_type()->dual(), length()); 2631 } 2632 2633 const TypeVectMask *TypeVectMask::make(const BasicType elem_bt, uint length) { 2634 return make(get_const_basic_type(elem_bt), length); 2635 } 2636 2637 const TypeVectMask *TypeVectMask::make(const Type* elem, uint length) { 2638 const TypeVectMask* mtype = Matcher::predicate_reg_type(elem, length); 2639 return (TypeVectMask*) const_cast<TypeVectMask*>(mtype)->hashcons(); 2640 } 2641 2642 //============================================================================= 2643 // Convenience common pre-built types. 2644 const TypePtr *TypePtr::NULL_PTR; 2645 const TypePtr *TypePtr::NOTNULL; 2646 const TypePtr *TypePtr::BOTTOM; 2647 2648 //------------------------------meet------------------------------------------- 2649 // Meet over the PTR enum 2650 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { 2651 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, 2652 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, 2653 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, 2654 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, 2655 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, 2656 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, 2657 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} 2658 }; 2659 2660 //------------------------------make------------------------------------------- 2661 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) { 2662 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); 2663 } 2664 2665 //------------------------------cast_to_ptr_type------------------------------- 2666 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const { 2667 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type"); 2668 if( ptr == _ptr ) return this; 2669 return make(_base, ptr, _offset, _speculative, _inline_depth); 2670 } 2671 2672 //------------------------------get_con---------------------------------------- 2673 intptr_t TypePtr::get_con() const { 2674 assert( _ptr == Null, "" ); 2675 return _offset; 2676 } 2677 2678 //------------------------------meet------------------------------------------- 2679 // Compute the MEET of two types. It returns a new Type object. 2680 const Type *TypePtr::xmeet(const Type *t) const { 2681 const Type* res = xmeet_helper(t); 2682 if (res->isa_ptr() == nullptr) { 2683 return res; 2684 } 2685 2686 const TypePtr* res_ptr = res->is_ptr(); 2687 if (res_ptr->speculative() != nullptr) { 2688 // type->speculative() is null means that speculation is no better 2689 // than type, i.e. type->speculative() == type. So there are 2 2690 // ways to represent the fact that we have no useful speculative 2691 // data and we should use a single one to be able to test for 2692 // equality between types. Check whether type->speculative() == 2693 // type and set speculative to null if it is the case. 2694 if (res_ptr->remove_speculative() == res_ptr->speculative()) { 2695 return res_ptr->remove_speculative(); 2696 } 2697 } 2698 2699 return res; 2700 } 2701 2702 const Type *TypePtr::xmeet_helper(const Type *t) const { 2703 // Perform a fast test for common case; meeting the same types together. 2704 if( this == t ) return this; // Meeting same type-rep? 2705 2706 // Current "this->_base" is AnyPtr 2707 switch (t->base()) { // switch on original type 2708 case Int: // Mixing ints & oops happens when javac 2709 case Long: // reuses local variables 2710 case FloatTop: 2711 case FloatCon: 2712 case FloatBot: 2713 case DoubleTop: 2714 case DoubleCon: 2715 case DoubleBot: 2716 case NarrowOop: 2717 case NarrowKlass: 2718 case Bottom: // Ye Olde Default 2719 return Type::BOTTOM; 2720 case Top: 2721 return this; 2722 2723 case AnyPtr: { // Meeting to AnyPtrs 2724 const TypePtr *tp = t->is_ptr(); 2725 const TypePtr* speculative = xmeet_speculative(tp); 2726 int depth = meet_inline_depth(tp->inline_depth()); 2727 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); 2728 } 2729 case RawPtr: // For these, flip the call around to cut down 2730 case OopPtr: 2731 case InstPtr: // on the cases I have to handle. 2732 case AryPtr: 2733 case MetadataPtr: 2734 case KlassPtr: 2735 case InstKlassPtr: 2736 case AryKlassPtr: 2737 return t->xmeet(this); // Call in reverse direction 2738 default: // All else is a mistake 2739 typerr(t); 2740 2741 } 2742 return this; 2743 } 2744 2745 //------------------------------meet_offset------------------------------------ 2746 int TypePtr::meet_offset( int offset ) const { 2747 // Either is 'TOP' offset? Return the other offset! 2748 if( _offset == OffsetTop ) return offset; 2749 if( offset == OffsetTop ) return _offset; 2750 // If either is different, return 'BOTTOM' offset 2751 if( _offset != offset ) return OffsetBot; 2752 return _offset; 2753 } 2754 2755 //------------------------------dual_offset------------------------------------ 2756 int TypePtr::dual_offset( ) const { 2757 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM' 2758 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP' 2759 return _offset; // Map everything else into self 2760 } 2761 2762 //------------------------------xdual------------------------------------------ 2763 // Dual: compute field-by-field dual 2764 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { 2765 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR 2766 }; 2767 const Type *TypePtr::xdual() const { 2768 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); 2769 } 2770 2771 //------------------------------xadd_offset------------------------------------ 2772 int TypePtr::xadd_offset( intptr_t offset ) const { 2773 // Adding to 'TOP' offset? Return 'TOP'! 2774 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop; 2775 // Adding to 'BOTTOM' offset? Return 'BOTTOM'! 2776 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot; 2777 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! 2778 offset += (intptr_t)_offset; 2779 if (offset != (int)offset || offset == OffsetTop) return OffsetBot; 2780 2781 // assert( _offset >= 0 && _offset+offset >= 0, "" ); 2782 // It is possible to construct a negative offset during PhaseCCP 2783 2784 return (int)offset; // Sum valid offsets 2785 } 2786 2787 //------------------------------add_offset------------------------------------- 2788 const TypePtr *TypePtr::add_offset( intptr_t offset ) const { 2789 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); 2790 } 2791 2792 const TypePtr *TypePtr::with_offset(intptr_t offset) const { 2793 return make(AnyPtr, _ptr, offset, _speculative, _inline_depth); 2794 } 2795 2796 //------------------------------eq--------------------------------------------- 2797 // Structural equality check for Type representations 2798 bool TypePtr::eq( const Type *t ) const { 2799 const TypePtr *a = (const TypePtr*)t; 2800 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth; 2801 } 2802 2803 //------------------------------hash------------------------------------------- 2804 // Type-specific hashing function. 2805 uint TypePtr::hash(void) const { 2806 return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth; 2807 } 2808 2809 /** 2810 * Return same type without a speculative part 2811 */ 2812 const TypePtr* TypePtr::remove_speculative() const { 2813 if (_speculative == nullptr) { 2814 return this; 2815 } 2816 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 2817 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth); 2818 } 2819 2820 /** 2821 * Return same type but drop speculative part if we know we won't use 2822 * it 2823 */ 2824 const Type* TypePtr::cleanup_speculative() const { 2825 if (speculative() == nullptr) { 2826 return this; 2827 } 2828 const Type* no_spec = remove_speculative(); 2829 // If this is NULL_PTR then we don't need the speculative type 2830 // (with_inline_depth in case the current type inline depth is 2831 // InlineDepthTop) 2832 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { 2833 return no_spec; 2834 } 2835 if (above_centerline(speculative()->ptr())) { 2836 return no_spec; 2837 } 2838 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); 2839 // If the speculative may be null and is an inexact klass then it 2840 // doesn't help 2841 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && 2842 (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) { 2843 return no_spec; 2844 } 2845 return this; 2846 } 2847 2848 /** 2849 * dual of the speculative part of the type 2850 */ 2851 const TypePtr* TypePtr::dual_speculative() const { 2852 if (_speculative == nullptr) { 2853 return nullptr; 2854 } 2855 return _speculative->dual()->is_ptr(); 2856 } 2857 2858 /** 2859 * meet of the speculative parts of 2 types 2860 * 2861 * @param other type to meet with 2862 */ 2863 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { 2864 bool this_has_spec = (_speculative != nullptr); 2865 bool other_has_spec = (other->speculative() != nullptr); 2866 2867 if (!this_has_spec && !other_has_spec) { 2868 return nullptr; 2869 } 2870 2871 // If we are at a point where control flow meets and one branch has 2872 // a speculative type and the other has not, we meet the speculative 2873 // type of one branch with the actual type of the other. If the 2874 // actual type is exact and the speculative is as well, then the 2875 // result is a speculative type which is exact and we can continue 2876 // speculation further. 2877 const TypePtr* this_spec = _speculative; 2878 const TypePtr* other_spec = other->speculative(); 2879 2880 if (!this_has_spec) { 2881 this_spec = this; 2882 } 2883 2884 if (!other_has_spec) { 2885 other_spec = other; 2886 } 2887 2888 return this_spec->meet(other_spec)->is_ptr(); 2889 } 2890 2891 /** 2892 * dual of the inline depth for this type (used for speculation) 2893 */ 2894 int TypePtr::dual_inline_depth() const { 2895 return -inline_depth(); 2896 } 2897 2898 /** 2899 * meet of 2 inline depths (used for speculation) 2900 * 2901 * @param depth depth to meet with 2902 */ 2903 int TypePtr::meet_inline_depth(int depth) const { 2904 return MAX2(inline_depth(), depth); 2905 } 2906 2907 /** 2908 * Are the speculative parts of 2 types equal? 2909 * 2910 * @param other type to compare this one to 2911 */ 2912 bool TypePtr::eq_speculative(const TypePtr* other) const { 2913 if (_speculative == nullptr || other->speculative() == nullptr) { 2914 return _speculative == other->speculative(); 2915 } 2916 2917 if (_speculative->base() != other->speculative()->base()) { 2918 return false; 2919 } 2920 2921 return _speculative->eq(other->speculative()); 2922 } 2923 2924 /** 2925 * Hash of the speculative part of the type 2926 */ 2927 int TypePtr::hash_speculative() const { 2928 if (_speculative == nullptr) { 2929 return 0; 2930 } 2931 2932 return _speculative->hash(); 2933 } 2934 2935 /** 2936 * add offset to the speculative part of the type 2937 * 2938 * @param offset offset to add 2939 */ 2940 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { 2941 if (_speculative == nullptr) { 2942 return nullptr; 2943 } 2944 return _speculative->add_offset(offset)->is_ptr(); 2945 } 2946 2947 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const { 2948 if (_speculative == nullptr) { 2949 return nullptr; 2950 } 2951 return _speculative->with_offset(offset)->is_ptr(); 2952 } 2953 2954 /** 2955 * return exact klass from the speculative type if there's one 2956 */ 2957 ciKlass* TypePtr::speculative_type() const { 2958 if (_speculative != nullptr && _speculative->isa_oopptr()) { 2959 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); 2960 if (speculative->klass_is_exact()) { 2961 return speculative->exact_klass(); 2962 } 2963 } 2964 return nullptr; 2965 } 2966 2967 /** 2968 * return true if speculative type may be null 2969 */ 2970 bool TypePtr::speculative_maybe_null() const { 2971 if (_speculative != nullptr) { 2972 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2973 return speculative->maybe_null(); 2974 } 2975 return true; 2976 } 2977 2978 bool TypePtr::speculative_always_null() const { 2979 if (_speculative != nullptr) { 2980 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2981 return speculative == TypePtr::NULL_PTR; 2982 } 2983 return false; 2984 } 2985 2986 /** 2987 * Same as TypePtr::speculative_type() but return the klass only if 2988 * the speculative tells us is not null 2989 */ 2990 ciKlass* TypePtr::speculative_type_not_null() const { 2991 if (speculative_maybe_null()) { 2992 return nullptr; 2993 } 2994 return speculative_type(); 2995 } 2996 2997 /** 2998 * Check whether new profiling would improve speculative type 2999 * 3000 * @param exact_kls class from profiling 3001 * @param inline_depth inlining depth of profile point 3002 * 3003 * @return true if type profile is valuable 3004 */ 3005 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 3006 // no profiling? 3007 if (exact_kls == nullptr) { 3008 return false; 3009 } 3010 if (speculative() == TypePtr::NULL_PTR) { 3011 return false; 3012 } 3013 // no speculative type or non exact speculative type? 3014 if (speculative_type() == nullptr) { 3015 return true; 3016 } 3017 // If the node already has an exact speculative type keep it, 3018 // unless it was provided by profiling that is at a deeper 3019 // inlining level. Profiling at a higher inlining depth is 3020 // expected to be less accurate. 3021 if (_speculative->inline_depth() == InlineDepthBottom) { 3022 return false; 3023 } 3024 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison"); 3025 return inline_depth < _speculative->inline_depth(); 3026 } 3027 3028 /** 3029 * Check whether new profiling would improve ptr (= tells us it is non 3030 * null) 3031 * 3032 * @param ptr_kind always null or not null? 3033 * 3034 * @return true if ptr profile is valuable 3035 */ 3036 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { 3037 // profiling doesn't tell us anything useful 3038 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { 3039 return false; 3040 } 3041 // We already know this is not null 3042 if (!this->maybe_null()) { 3043 return false; 3044 } 3045 // We already know the speculative type cannot be null 3046 if (!speculative_maybe_null()) { 3047 return false; 3048 } 3049 // We already know this is always null 3050 if (this == TypePtr::NULL_PTR) { 3051 return false; 3052 } 3053 // We already know the speculative type is always null 3054 if (speculative_always_null()) { 3055 return false; 3056 } 3057 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) { 3058 return false; 3059 } 3060 return true; 3061 } 3062 3063 //------------------------------dump2------------------------------------------ 3064 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { 3065 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR" 3066 }; 3067 3068 #ifndef PRODUCT 3069 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3070 if( _ptr == Null ) st->print("null"); 3071 else st->print("%s *", ptr_msg[_ptr]); 3072 if( _offset == OffsetTop ) st->print("+top"); 3073 else if( _offset == OffsetBot ) st->print("+bot"); 3074 else if( _offset ) st->print("+%d", _offset); 3075 dump_inline_depth(st); 3076 dump_speculative(st); 3077 } 3078 3079 /** 3080 *dump the speculative part of the type 3081 */ 3082 void TypePtr::dump_speculative(outputStream *st) const { 3083 if (_speculative != nullptr) { 3084 st->print(" (speculative="); 3085 _speculative->dump_on(st); 3086 st->print(")"); 3087 } 3088 } 3089 3090 /** 3091 *dump the inline depth of the type 3092 */ 3093 void TypePtr::dump_inline_depth(outputStream *st) const { 3094 if (_inline_depth != InlineDepthBottom) { 3095 if (_inline_depth == InlineDepthTop) { 3096 st->print(" (inline_depth=InlineDepthTop)"); 3097 } else { 3098 st->print(" (inline_depth=%d)", _inline_depth); 3099 } 3100 } 3101 } 3102 #endif 3103 3104 //------------------------------singleton-------------------------------------- 3105 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3106 // constants 3107 bool TypePtr::singleton(void) const { 3108 // TopPTR, Null, AnyNull, Constant are all singletons 3109 return (_offset != OffsetBot) && !below_centerline(_ptr); 3110 } 3111 3112 bool TypePtr::empty(void) const { 3113 return (_offset == OffsetTop) || above_centerline(_ptr); 3114 } 3115 3116 //============================================================================= 3117 // Convenience common pre-built types. 3118 const TypeRawPtr *TypeRawPtr::BOTTOM; 3119 const TypeRawPtr *TypeRawPtr::NOTNULL; 3120 3121 //------------------------------make------------------------------------------- 3122 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { 3123 assert( ptr != Constant, "what is the constant?" ); 3124 assert( ptr != Null, "Use TypePtr for null" ); 3125 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons(); 3126 } 3127 3128 const TypeRawPtr *TypeRawPtr::make( address bits ) { 3129 assert( bits, "Use TypePtr for null" ); 3130 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); 3131 } 3132 3133 //------------------------------cast_to_ptr_type------------------------------- 3134 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const { 3135 assert( ptr != Constant, "what is the constant?" ); 3136 assert( ptr != Null, "Use TypePtr for null" ); 3137 assert( _bits==0, "Why cast a constant address?"); 3138 if( ptr == _ptr ) return this; 3139 return make(ptr); 3140 } 3141 3142 //------------------------------get_con---------------------------------------- 3143 intptr_t TypeRawPtr::get_con() const { 3144 assert( _ptr == Null || _ptr == Constant, "" ); 3145 return (intptr_t)_bits; 3146 } 3147 3148 //------------------------------meet------------------------------------------- 3149 // Compute the MEET of two types. It returns a new Type object. 3150 const Type *TypeRawPtr::xmeet( const Type *t ) const { 3151 // Perform a fast test for common case; meeting the same types together. 3152 if( this == t ) return this; // Meeting same type-rep? 3153 3154 // Current "this->_base" is RawPtr 3155 switch( t->base() ) { // switch on original type 3156 case Bottom: // Ye Olde Default 3157 return t; 3158 case Top: 3159 return this; 3160 case AnyPtr: // Meeting to AnyPtrs 3161 break; 3162 case RawPtr: { // might be top, bot, any/not or constant 3163 enum PTR tptr = t->is_ptr()->ptr(); 3164 enum PTR ptr = meet_ptr( tptr ); 3165 if( ptr == Constant ) { // Cannot be equal constants, so... 3166 if( tptr == Constant && _ptr != Constant) return t; 3167 if( _ptr == Constant && tptr != Constant) return this; 3168 ptr = NotNull; // Fall down in lattice 3169 } 3170 return make( ptr ); 3171 } 3172 3173 case OopPtr: 3174 case InstPtr: 3175 case AryPtr: 3176 case MetadataPtr: 3177 case KlassPtr: 3178 case InstKlassPtr: 3179 case AryKlassPtr: 3180 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3181 default: // All else is a mistake 3182 typerr(t); 3183 } 3184 3185 // Found an AnyPtr type vs self-RawPtr type 3186 const TypePtr *tp = t->is_ptr(); 3187 switch (tp->ptr()) { 3188 case TypePtr::TopPTR: return this; 3189 case TypePtr::BotPTR: return t; 3190 case TypePtr::Null: 3191 if( _ptr == TypePtr::TopPTR ) return t; 3192 return TypeRawPtr::BOTTOM; 3193 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); 3194 case TypePtr::AnyNull: 3195 if( _ptr == TypePtr::Constant) return this; 3196 return make( meet_ptr(TypePtr::AnyNull) ); 3197 default: ShouldNotReachHere(); 3198 } 3199 return this; 3200 } 3201 3202 //------------------------------xdual------------------------------------------ 3203 // Dual: compute field-by-field dual 3204 const Type *TypeRawPtr::xdual() const { 3205 return new TypeRawPtr( dual_ptr(), _bits ); 3206 } 3207 3208 //------------------------------add_offset------------------------------------- 3209 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const { 3210 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer 3211 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer 3212 if( offset == 0 ) return this; // No change 3213 switch (_ptr) { 3214 case TypePtr::TopPTR: 3215 case TypePtr::BotPTR: 3216 case TypePtr::NotNull: 3217 return this; 3218 case TypePtr::Null: 3219 case TypePtr::Constant: { 3220 address bits = _bits+offset; 3221 if ( bits == 0 ) return TypePtr::NULL_PTR; 3222 return make( bits ); 3223 } 3224 default: ShouldNotReachHere(); 3225 } 3226 return nullptr; // Lint noise 3227 } 3228 3229 //------------------------------eq--------------------------------------------- 3230 // Structural equality check for Type representations 3231 bool TypeRawPtr::eq( const Type *t ) const { 3232 const TypeRawPtr *a = (const TypeRawPtr*)t; 3233 return _bits == a->_bits && TypePtr::eq(t); 3234 } 3235 3236 //------------------------------hash------------------------------------------- 3237 // Type-specific hashing function. 3238 uint TypeRawPtr::hash(void) const { 3239 return (uint)(uintptr_t)_bits + (uint)TypePtr::hash(); 3240 } 3241 3242 //------------------------------dump2------------------------------------------ 3243 #ifndef PRODUCT 3244 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3245 if( _ptr == Constant ) 3246 st->print(INTPTR_FORMAT, p2i(_bits)); 3247 else 3248 st->print("rawptr:%s", ptr_msg[_ptr]); 3249 } 3250 #endif 3251 3252 //============================================================================= 3253 // Convenience common pre-built type. 3254 const TypeOopPtr *TypeOopPtr::BOTTOM; 3255 3256 TypeInterfaces::TypeInterfaces() 3257 : Type(Interfaces), _list(Compile::current()->type_arena(), 0, 0, nullptr), 3258 _hash(0), _exact_klass(nullptr) { 3259 DEBUG_ONLY(_initialized = true); 3260 } 3261 3262 TypeInterfaces::TypeInterfaces(GrowableArray<ciInstanceKlass*>* interfaces) 3263 : Type(Interfaces), _list(Compile::current()->type_arena(), interfaces->length(), 0, nullptr), 3264 _hash(0), _exact_klass(nullptr) { 3265 for (int i = 0; i < interfaces->length(); i++) { 3266 add(interfaces->at(i)); 3267 } 3268 initialize(); 3269 } 3270 3271 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) { 3272 TypeInterfaces* result = (interfaces == nullptr) ? new TypeInterfaces() : new TypeInterfaces(interfaces); 3273 return (const TypeInterfaces*)result->hashcons(); 3274 } 3275 3276 void TypeInterfaces::initialize() { 3277 compute_hash(); 3278 compute_exact_klass(); 3279 DEBUG_ONLY(_initialized = true;) 3280 } 3281 3282 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) { 3283 if ((intptr_t)k1 < (intptr_t)k2) { 3284 return -1; 3285 } else if ((intptr_t)k1 > (intptr_t)k2) { 3286 return 1; 3287 } 3288 return 0; 3289 } 3290 3291 void TypeInterfaces::add(ciInstanceKlass* interface) { 3292 assert(interface->is_interface(), "for interfaces only"); 3293 _list.insert_sorted<compare>(interface); 3294 verify(); 3295 } 3296 3297 bool TypeInterfaces::eq(const Type* t) const { 3298 const TypeInterfaces* other = (const TypeInterfaces*)t; 3299 if (_list.length() != other->_list.length()) { 3300 return false; 3301 } 3302 for (int i = 0; i < _list.length(); i++) { 3303 ciKlass* k1 = _list.at(i); 3304 ciKlass* k2 = other->_list.at(i); 3305 if (!k1->equals(k2)) { 3306 return false; 3307 } 3308 } 3309 return true; 3310 } 3311 3312 bool TypeInterfaces::eq(ciInstanceKlass* k) const { 3313 assert(k->is_loaded(), "should be loaded"); 3314 GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces(); 3315 if (_list.length() != interfaces->length()) { 3316 return false; 3317 } 3318 for (int i = 0; i < interfaces->length(); i++) { 3319 bool found = false; 3320 _list.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found); 3321 if (!found) { 3322 return false; 3323 } 3324 } 3325 return true; 3326 } 3327 3328 3329 uint TypeInterfaces::hash() const { 3330 assert(_initialized, "must be"); 3331 return _hash; 3332 } 3333 3334 const Type* TypeInterfaces::xdual() const { 3335 return this; 3336 } 3337 3338 void TypeInterfaces::compute_hash() { 3339 uint hash = 0; 3340 for (int i = 0; i < _list.length(); i++) { 3341 ciKlass* k = _list.at(i); 3342 hash += k->hash(); 3343 } 3344 _hash = hash; 3345 } 3346 3347 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) { 3348 return (int)((*k1)->ident() - (*k2)->ident()); 3349 } 3350 3351 void TypeInterfaces::dump(outputStream* st) const { 3352 if (_list.length() == 0) { 3353 return; 3354 } 3355 ResourceMark rm; 3356 st->print(" ("); 3357 GrowableArray<ciInstanceKlass*> interfaces; 3358 interfaces.appendAll(&_list); 3359 // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation 3360 interfaces.sort(compare_interfaces); 3361 for (int i = 0; i < interfaces.length(); i++) { 3362 if (i > 0) { 3363 st->print(","); 3364 } 3365 ciKlass* k = interfaces.at(i); 3366 k->print_name_on(st); 3367 } 3368 st->print(")"); 3369 } 3370 3371 #ifdef ASSERT 3372 void TypeInterfaces::verify() const { 3373 for (int i = 1; i < _list.length(); i++) { 3374 ciInstanceKlass* k1 = _list.at(i-1); 3375 ciInstanceKlass* k2 = _list.at(i); 3376 assert(compare(k2, k1) > 0, "should be ordered"); 3377 assert(k1 != k2, "no duplicate"); 3378 } 3379 } 3380 #endif 3381 3382 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const { 3383 GrowableArray<ciInstanceKlass*> result_list; 3384 int i = 0; 3385 int j = 0; 3386 while (i < _list.length() || j < other->_list.length()) { 3387 while (i < _list.length() && 3388 (j >= other->_list.length() || 3389 compare(_list.at(i), other->_list.at(j)) < 0)) { 3390 result_list.push(_list.at(i)); 3391 i++; 3392 } 3393 while (j < other->_list.length() && 3394 (i >= _list.length() || 3395 compare(other->_list.at(j), _list.at(i)) < 0)) { 3396 result_list.push(other->_list.at(j)); 3397 j++; 3398 } 3399 if (i < _list.length() && 3400 j < other->_list.length() && 3401 _list.at(i) == other->_list.at(j)) { 3402 result_list.push(_list.at(i)); 3403 i++; 3404 j++; 3405 } 3406 } 3407 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3408 #ifdef ASSERT 3409 result->verify(); 3410 for (int i = 0; i < _list.length(); i++) { 3411 assert(result->_list.contains(_list.at(i)), "missing"); 3412 } 3413 for (int i = 0; i < other->_list.length(); i++) { 3414 assert(result->_list.contains(other->_list.at(i)), "missing"); 3415 } 3416 for (int i = 0; i < result->_list.length(); i++) { 3417 assert(_list.contains(result->_list.at(i)) || other->_list.contains(result->_list.at(i)), "missing"); 3418 } 3419 #endif 3420 return result; 3421 } 3422 3423 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const { 3424 GrowableArray<ciInstanceKlass*> result_list; 3425 int i = 0; 3426 int j = 0; 3427 while (i < _list.length() || j < other->_list.length()) { 3428 while (i < _list.length() && 3429 (j >= other->_list.length() || 3430 compare(_list.at(i), other->_list.at(j)) < 0)) { 3431 i++; 3432 } 3433 while (j < other->_list.length() && 3434 (i >= _list.length() || 3435 compare(other->_list.at(j), _list.at(i)) < 0)) { 3436 j++; 3437 } 3438 if (i < _list.length() && 3439 j < other->_list.length() && 3440 _list.at(i) == other->_list.at(j)) { 3441 result_list.push(_list.at(i)); 3442 i++; 3443 j++; 3444 } 3445 } 3446 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3447 #ifdef ASSERT 3448 result->verify(); 3449 for (int i = 0; i < _list.length(); i++) { 3450 assert(!other->_list.contains(_list.at(i)) || result->_list.contains(_list.at(i)), "missing"); 3451 } 3452 for (int i = 0; i < other->_list.length(); i++) { 3453 assert(!_list.contains(other->_list.at(i)) || result->_list.contains(other->_list.at(i)), "missing"); 3454 } 3455 for (int i = 0; i < result->_list.length(); i++) { 3456 assert(_list.contains(result->_list.at(i)) && other->_list.contains(result->_list.at(i)), "missing"); 3457 } 3458 #endif 3459 return result; 3460 } 3461 3462 // Is there a single ciKlass* that can represent the interface set? 3463 ciInstanceKlass* TypeInterfaces::exact_klass() const { 3464 assert(_initialized, "must be"); 3465 return _exact_klass; 3466 } 3467 3468 void TypeInterfaces::compute_exact_klass() { 3469 if (_list.length() == 0) { 3470 _exact_klass = nullptr; 3471 return; 3472 } 3473 ciInstanceKlass* res = nullptr; 3474 for (int i = 0; i < _list.length(); i++) { 3475 ciInstanceKlass* interface = _list.at(i); 3476 if (eq(interface)) { 3477 assert(res == nullptr, ""); 3478 res = interface; 3479 } 3480 } 3481 _exact_klass = res; 3482 } 3483 3484 #ifdef ASSERT 3485 void TypeInterfaces::verify_is_loaded() const { 3486 for (int i = 0; i < _list.length(); i++) { 3487 ciKlass* interface = _list.at(i); 3488 assert(interface->is_loaded(), "Interface not loaded"); 3489 } 3490 } 3491 #endif 3492 3493 // Can't be implemented because there's no way to know if the type is above or below the center line. 3494 const Type* TypeInterfaces::xmeet(const Type* t) const { 3495 ShouldNotReachHere(); 3496 return Type::xmeet(t); 3497 } 3498 3499 bool TypeInterfaces::singleton(void) const { 3500 ShouldNotReachHere(); 3501 return Type::singleton(); 3502 } 3503 3504 //------------------------------TypeOopPtr------------------------------------- 3505 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, 3506 int instance_id, const TypePtr* speculative, int inline_depth) 3507 : TypePtr(t, ptr, offset, speculative, inline_depth), 3508 _const_oop(o), _klass(k), 3509 _interfaces(interfaces), 3510 _klass_is_exact(xk), 3511 _is_ptr_to_narrowoop(false), 3512 _is_ptr_to_narrowklass(false), 3513 _is_ptr_to_boxed_value(false), 3514 _instance_id(instance_id) { 3515 #ifdef ASSERT 3516 if (klass() != nullptr && klass()->is_loaded()) { 3517 interfaces->verify_is_loaded(); 3518 } 3519 #endif 3520 if (Compile::current()->eliminate_boxing() && (t == InstPtr) && 3521 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) { 3522 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset); 3523 } 3524 #ifdef _LP64 3525 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) { 3526 if (_offset == oopDesc::klass_offset_in_bytes()) { 3527 _is_ptr_to_narrowklass = UseCompressedClassPointers; 3528 } else if (klass() == nullptr) { 3529 // Array with unknown body type 3530 assert(this->isa_aryptr(), "only arrays without klass"); 3531 _is_ptr_to_narrowoop = UseCompressedOops; 3532 } else if (this->isa_aryptr()) { 3533 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() && 3534 _offset != arrayOopDesc::length_offset_in_bytes()); 3535 } else if (klass()->is_instance_klass()) { 3536 ciInstanceKlass* ik = klass()->as_instance_klass(); 3537 if (this->isa_klassptr()) { 3538 // Perm objects don't use compressed references 3539 } else if (_offset == OffsetBot || _offset == OffsetTop) { 3540 // unsafe access 3541 _is_ptr_to_narrowoop = UseCompressedOops; 3542 } else { 3543 assert(this->isa_instptr(), "must be an instance ptr."); 3544 3545 if (klass() == ciEnv::current()->Class_klass() && 3546 (_offset == java_lang_Class::klass_offset() || 3547 _offset == java_lang_Class::array_klass_offset())) { 3548 // Special hidden fields from the Class. 3549 assert(this->isa_instptr(), "must be an instance ptr."); 3550 _is_ptr_to_narrowoop = false; 3551 } else if (klass() == ciEnv::current()->Class_klass() && 3552 _offset >= InstanceMirrorKlass::offset_of_static_fields()) { 3553 // Static fields 3554 ciField* field = nullptr; 3555 if (const_oop() != nullptr) { 3556 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 3557 field = k->get_field_by_offset(_offset, true); 3558 } 3559 if (field != nullptr) { 3560 BasicType basic_elem_type = field->layout_type(); 3561 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3562 } else { 3563 // unsafe access 3564 _is_ptr_to_narrowoop = UseCompressedOops; 3565 } 3566 } else { 3567 // Instance fields which contains a compressed oop references. 3568 ciField* field = ik->get_field_by_offset(_offset, false); 3569 if (field != nullptr) { 3570 BasicType basic_elem_type = field->layout_type(); 3571 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3572 } else if (klass()->equals(ciEnv::current()->Object_klass())) { 3573 // Compile::find_alias_type() cast exactness on all types to verify 3574 // that it does not affect alias type. 3575 _is_ptr_to_narrowoop = UseCompressedOops; 3576 } else { 3577 // Type for the copy start in LibraryCallKit::inline_native_clone(). 3578 _is_ptr_to_narrowoop = UseCompressedOops; 3579 } 3580 } 3581 } 3582 } 3583 } 3584 #endif 3585 } 3586 3587 //------------------------------make------------------------------------------- 3588 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id, 3589 const TypePtr* speculative, int inline_depth) { 3590 assert(ptr != Constant, "no constant generic pointers"); 3591 ciKlass* k = Compile::current()->env()->Object_klass(); 3592 bool xk = false; 3593 ciObject* o = nullptr; 3594 const TypeInterfaces* interfaces = TypeInterfaces::make(); 3595 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons(); 3596 } 3597 3598 3599 //------------------------------cast_to_ptr_type------------------------------- 3600 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const { 3601 assert(_base == OopPtr, "subclass must override cast_to_ptr_type"); 3602 if( ptr == _ptr ) return this; 3603 return make(ptr, _offset, _instance_id, _speculative, _inline_depth); 3604 } 3605 3606 //-----------------------------cast_to_instance_id---------------------------- 3607 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { 3608 // There are no instances of a general oop. 3609 // Return self unchanged. 3610 return this; 3611 } 3612 3613 //-----------------------------cast_to_exactness------------------------------- 3614 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { 3615 // There is no such thing as an exact general oop. 3616 // Return self unchanged. 3617 return this; 3618 } 3619 3620 3621 //------------------------------as_klass_type---------------------------------- 3622 // Return the klass type corresponding to this instance or array type. 3623 // It is the type that is loaded from an object of this type. 3624 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const { 3625 ShouldNotReachHere(); 3626 return nullptr; 3627 } 3628 3629 //------------------------------meet------------------------------------------- 3630 // Compute the MEET of two types. It returns a new Type object. 3631 const Type *TypeOopPtr::xmeet_helper(const Type *t) const { 3632 // Perform a fast test for common case; meeting the same types together. 3633 if( this == t ) return this; // Meeting same type-rep? 3634 3635 // Current "this->_base" is OopPtr 3636 switch (t->base()) { // switch on original type 3637 3638 case Int: // Mixing ints & oops happens when javac 3639 case Long: // reuses local variables 3640 case FloatTop: 3641 case FloatCon: 3642 case FloatBot: 3643 case DoubleTop: 3644 case DoubleCon: 3645 case DoubleBot: 3646 case NarrowOop: 3647 case NarrowKlass: 3648 case Bottom: // Ye Olde Default 3649 return Type::BOTTOM; 3650 case Top: 3651 return this; 3652 3653 default: // All else is a mistake 3654 typerr(t); 3655 3656 case RawPtr: 3657 case MetadataPtr: 3658 case KlassPtr: 3659 case InstKlassPtr: 3660 case AryKlassPtr: 3661 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3662 3663 case AnyPtr: { 3664 // Found an AnyPtr type vs self-OopPtr type 3665 const TypePtr *tp = t->is_ptr(); 3666 int offset = meet_offset(tp->offset()); 3667 PTR ptr = meet_ptr(tp->ptr()); 3668 const TypePtr* speculative = xmeet_speculative(tp); 3669 int depth = meet_inline_depth(tp->inline_depth()); 3670 switch (tp->ptr()) { 3671 case Null: 3672 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3673 // else fall through: 3674 case TopPTR: 3675 case AnyNull: { 3676 int instance_id = meet_instance_id(InstanceTop); 3677 return make(ptr, offset, instance_id, speculative, depth); 3678 } 3679 case BotPTR: 3680 case NotNull: 3681 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3682 default: typerr(t); 3683 } 3684 } 3685 3686 case OopPtr: { // Meeting to other OopPtrs 3687 const TypeOopPtr *tp = t->is_oopptr(); 3688 int instance_id = meet_instance_id(tp->instance_id()); 3689 const TypePtr* speculative = xmeet_speculative(tp); 3690 int depth = meet_inline_depth(tp->inline_depth()); 3691 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); 3692 } 3693 3694 case InstPtr: // For these, flip the call around to cut down 3695 case AryPtr: 3696 return t->xmeet(this); // Call in reverse direction 3697 3698 } // End of switch 3699 return this; // Return the double constant 3700 } 3701 3702 3703 //------------------------------xdual------------------------------------------ 3704 // Dual of a pure heap pointer. No relevant klass or oop information. 3705 const Type *TypeOopPtr::xdual() const { 3706 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here"); 3707 assert(const_oop() == nullptr, "no constants here"); 3708 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 3709 } 3710 3711 //--------------------------make_from_klass_common----------------------------- 3712 // Computes the element-type given a klass. 3713 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) { 3714 if (klass->is_instance_klass()) { 3715 Compile* C = Compile::current(); 3716 Dependencies* deps = C->dependencies(); 3717 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 3718 // Element is an instance 3719 bool klass_is_exact = false; 3720 if (klass->is_loaded()) { 3721 // Try to set klass_is_exact. 3722 ciInstanceKlass* ik = klass->as_instance_klass(); 3723 klass_is_exact = ik->is_final(); 3724 if (!klass_is_exact && klass_change 3725 && deps != nullptr && UseUniqueSubclasses) { 3726 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 3727 if (sub != nullptr) { 3728 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 3729 klass = ik = sub; 3730 klass_is_exact = sub->is_final(); 3731 } 3732 } 3733 if (!klass_is_exact && try_for_exact && deps != nullptr && 3734 !ik->is_interface() && !ik->has_subklass()) { 3735 // Add a dependence; if concrete subclass added we need to recompile 3736 deps->assert_leaf_type(ik); 3737 klass_is_exact = true; 3738 } 3739 } 3740 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 3741 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0); 3742 } else if (klass->is_obj_array_klass()) { 3743 // Element is an object array. Recursively call ourself. 3744 ciKlass* eklass = klass->as_obj_array_klass()->element_klass(); 3745 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling); 3746 bool xk = etype->klass_is_exact(); 3747 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3748 // We used to pass NotNull in here, asserting that the sub-arrays 3749 // are all not-null. This is not true in generally, as code can 3750 // slam nulls down in the subarrays. 3751 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0); 3752 return arr; 3753 } else if (klass->is_type_array_klass()) { 3754 // Element is an typeArray 3755 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); 3756 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3757 // We used to pass NotNull in here, asserting that the array pointer 3758 // is not-null. That was not true in general. 3759 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0); 3760 return arr; 3761 } else { 3762 ShouldNotReachHere(); 3763 return nullptr; 3764 } 3765 } 3766 3767 //------------------------------make_from_constant----------------------------- 3768 // Make a java pointer from an oop constant 3769 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { 3770 assert(!o->is_null_object(), "null object not yet handled here."); 3771 3772 const bool make_constant = require_constant || o->should_be_constant(); 3773 3774 ciKlass* klass = o->klass(); 3775 if (klass->is_instance_klass()) { 3776 // Element is an instance 3777 if (make_constant) { 3778 return TypeInstPtr::make(o); 3779 } else { 3780 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0); 3781 } 3782 } else if (klass->is_obj_array_klass()) { 3783 // Element is an object array. Recursively call ourself. 3784 const TypeOopPtr *etype = 3785 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces); 3786 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3787 // We used to pass NotNull in here, asserting that the sub-arrays 3788 // are all not-null. This is not true in generally, as code can 3789 // slam nulls down in the subarrays. 3790 if (make_constant) { 3791 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3792 } else { 3793 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3794 } 3795 } else if (klass->is_type_array_klass()) { 3796 // Element is an typeArray 3797 const Type* etype = 3798 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); 3799 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3800 // We used to pass NotNull in here, asserting that the array pointer 3801 // is not-null. That was not true in general. 3802 if (make_constant) { 3803 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3804 } else { 3805 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3806 } 3807 } 3808 3809 fatal("unhandled object type"); 3810 return nullptr; 3811 } 3812 3813 //------------------------------get_con---------------------------------------- 3814 intptr_t TypeOopPtr::get_con() const { 3815 assert( _ptr == Null || _ptr == Constant, "" ); 3816 assert( _offset >= 0, "" ); 3817 3818 if (_offset != 0) { 3819 // After being ported to the compiler interface, the compiler no longer 3820 // directly manipulates the addresses of oops. Rather, it only has a pointer 3821 // to a handle at compile time. This handle is embedded in the generated 3822 // code and dereferenced at the time the nmethod is made. Until that time, 3823 // it is not reasonable to do arithmetic with the addresses of oops (we don't 3824 // have access to the addresses!). This does not seem to currently happen, 3825 // but this assertion here is to help prevent its occurrence. 3826 tty->print_cr("Found oop constant with non-zero offset"); 3827 ShouldNotReachHere(); 3828 } 3829 3830 return (intptr_t)const_oop()->constant_encoding(); 3831 } 3832 3833 3834 //-----------------------------filter------------------------------------------ 3835 // Do not allow interface-vs.-noninterface joins to collapse to top. 3836 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { 3837 3838 const Type* ft = join_helper(kills, include_speculative); 3839 const TypeInstPtr* ftip = ft->isa_instptr(); 3840 const TypeInstPtr* ktip = kills->isa_instptr(); 3841 3842 if (ft->empty()) { 3843 return Type::TOP; // Canonical empty value 3844 } 3845 3846 return ft; 3847 } 3848 3849 //------------------------------eq--------------------------------------------- 3850 // Structural equality check for Type representations 3851 bool TypeOopPtr::eq( const Type *t ) const { 3852 const TypeOopPtr *a = (const TypeOopPtr*)t; 3853 if (_klass_is_exact != a->_klass_is_exact || 3854 _instance_id != a->_instance_id) return false; 3855 ciObject* one = const_oop(); 3856 ciObject* two = a->const_oop(); 3857 if (one == nullptr || two == nullptr) { 3858 return (one == two) && TypePtr::eq(t); 3859 } else { 3860 return one->equals(two) && TypePtr::eq(t); 3861 } 3862 } 3863 3864 //------------------------------hash------------------------------------------- 3865 // Type-specific hashing function. 3866 uint TypeOopPtr::hash(void) const { 3867 return 3868 (uint)(const_oop() ? const_oop()->hash() : 0) + 3869 (uint)_klass_is_exact + 3870 (uint)_instance_id + TypePtr::hash(); 3871 } 3872 3873 //------------------------------dump2------------------------------------------ 3874 #ifndef PRODUCT 3875 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3876 st->print("oopptr:%s", ptr_msg[_ptr]); 3877 if( _klass_is_exact ) st->print(":exact"); 3878 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop())); 3879 switch( _offset ) { 3880 case OffsetTop: st->print("+top"); break; 3881 case OffsetBot: st->print("+any"); break; 3882 case 0: break; 3883 default: st->print("+%d",_offset); break; 3884 } 3885 if (_instance_id == InstanceTop) 3886 st->print(",iid=top"); 3887 else if (_instance_id != InstanceBot) 3888 st->print(",iid=%d",_instance_id); 3889 3890 dump_inline_depth(st); 3891 dump_speculative(st); 3892 } 3893 #endif 3894 3895 //------------------------------singleton-------------------------------------- 3896 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3897 // constants 3898 bool TypeOopPtr::singleton(void) const { 3899 // detune optimizer to not generate constant oop + constant offset as a constant! 3900 // TopPTR, Null, AnyNull, Constant are all singletons 3901 return (_offset == 0) && !below_centerline(_ptr); 3902 } 3903 3904 //------------------------------add_offset------------------------------------- 3905 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const { 3906 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 3907 } 3908 3909 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const { 3910 return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth); 3911 } 3912 3913 /** 3914 * Return same type without a speculative part 3915 */ 3916 const TypeOopPtr* TypeOopPtr::remove_speculative() const { 3917 if (_speculative == nullptr) { 3918 return this; 3919 } 3920 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 3921 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth); 3922 } 3923 3924 /** 3925 * Return same type but drop speculative part if we know we won't use 3926 * it 3927 */ 3928 const Type* TypeOopPtr::cleanup_speculative() const { 3929 // If the klass is exact and the ptr is not null then there's 3930 // nothing that the speculative type can help us with 3931 if (klass_is_exact() && !maybe_null()) { 3932 return remove_speculative(); 3933 } 3934 return TypePtr::cleanup_speculative(); 3935 } 3936 3937 /** 3938 * Return same type but with a different inline depth (used for speculation) 3939 * 3940 * @param depth depth to meet with 3941 */ 3942 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { 3943 if (!UseInlineDepthForSpeculativeTypes) { 3944 return this; 3945 } 3946 return make(_ptr, _offset, _instance_id, _speculative, depth); 3947 } 3948 3949 //------------------------------with_instance_id-------------------------------- 3950 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const { 3951 assert(_instance_id != -1, "should be known"); 3952 return make(_ptr, _offset, instance_id, _speculative, _inline_depth); 3953 } 3954 3955 //------------------------------meet_instance_id-------------------------------- 3956 int TypeOopPtr::meet_instance_id( int instance_id ) const { 3957 // Either is 'TOP' instance? Return the other instance! 3958 if( _instance_id == InstanceTop ) return instance_id; 3959 if( instance_id == InstanceTop ) return _instance_id; 3960 // If either is different, return 'BOTTOM' instance 3961 if( _instance_id != instance_id ) return InstanceBot; 3962 return _instance_id; 3963 } 3964 3965 //------------------------------dual_instance_id-------------------------------- 3966 int TypeOopPtr::dual_instance_id( ) const { 3967 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM 3968 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP 3969 return _instance_id; // Map everything else into self 3970 } 3971 3972 3973 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const { 3974 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 3975 return _interfaces->union_with(other->_interfaces); 3976 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 3977 return other->_interfaces; 3978 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 3979 return _interfaces; 3980 } 3981 return _interfaces->intersection_with(other->_interfaces); 3982 } 3983 3984 /** 3985 * Check whether new profiling would improve speculative type 3986 * 3987 * @param exact_kls class from profiling 3988 * @param inline_depth inlining depth of profile point 3989 * 3990 * @return true if type profile is valuable 3991 */ 3992 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 3993 // no way to improve an already exact type 3994 if (klass_is_exact()) { 3995 return false; 3996 } 3997 return TypePtr::would_improve_type(exact_kls, inline_depth); 3998 } 3999 4000 //============================================================================= 4001 // Convenience common pre-built types. 4002 const TypeInstPtr *TypeInstPtr::NOTNULL; 4003 const TypeInstPtr *TypeInstPtr::BOTTOM; 4004 const TypeInstPtr *TypeInstPtr::MIRROR; 4005 const TypeInstPtr *TypeInstPtr::MARK; 4006 const TypeInstPtr *TypeInstPtr::KLASS; 4007 4008 // Is there a single ciKlass* that can represent that type? 4009 ciKlass* TypeInstPtr::exact_klass_helper() const { 4010 if (_interfaces->empty()) { 4011 return _klass; 4012 } 4013 if (_klass != ciEnv::current()->Object_klass()) { 4014 if (_interfaces->eq(_klass->as_instance_klass())) { 4015 return _klass; 4016 } 4017 return nullptr; 4018 } 4019 return _interfaces->exact_klass(); 4020 } 4021 4022 //------------------------------TypeInstPtr------------------------------------- 4023 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, 4024 int instance_id, const TypePtr* speculative, int inline_depth) 4025 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) { 4026 assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here"); 4027 assert(k != nullptr && 4028 (k->is_loaded() || o == nullptr), 4029 "cannot have constants with non-loaded klass"); 4030 }; 4031 4032 //------------------------------make------------------------------------------- 4033 const TypeInstPtr *TypeInstPtr::make(PTR ptr, 4034 ciKlass* k, 4035 const TypeInterfaces* interfaces, 4036 bool xk, 4037 ciObject* o, 4038 int offset, 4039 int instance_id, 4040 const TypePtr* speculative, 4041 int inline_depth) { 4042 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance"); 4043 // Either const_oop() is null or else ptr is Constant 4044 assert( (!o && ptr != Constant) || (o && ptr == Constant), 4045 "constant pointers must have a value supplied" ); 4046 // Ptr is never Null 4047 assert( ptr != Null, "null pointers are not typed" ); 4048 4049 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4050 if (ptr == Constant) { 4051 // Note: This case includes meta-object constants, such as methods. 4052 xk = true; 4053 } else if (k->is_loaded()) { 4054 ciInstanceKlass* ik = k->as_instance_klass(); 4055 if (!xk && ik->is_final()) xk = true; // no inexact final klass 4056 assert(!ik->is_interface(), "no interface here"); 4057 if (xk && ik->is_interface()) xk = false; // no exact interface 4058 } 4059 4060 // Now hash this baby 4061 TypeInstPtr *result = 4062 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons(); 4063 4064 return result; 4065 } 4066 4067 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) { 4068 if (k->is_instance_klass()) { 4069 if (k->is_loaded()) { 4070 if (k->is_interface() && interface_handling == ignore_interfaces) { 4071 assert(interface, "no interface expected"); 4072 k = ciEnv::current()->Object_klass(); 4073 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4074 return interfaces; 4075 } 4076 GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces(); 4077 const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces); 4078 if (k->is_interface()) { 4079 assert(interface, "no interface expected"); 4080 k = ciEnv::current()->Object_klass(); 4081 } else { 4082 assert(klass, "no instance klass expected"); 4083 } 4084 return interfaces; 4085 } 4086 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4087 return interfaces; 4088 } 4089 assert(array, "no array expected"); 4090 assert(k->is_array_klass(), "Not an array?"); 4091 ciType* e = k->as_array_klass()->base_element_type(); 4092 if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) { 4093 if (interface_handling == ignore_interfaces) { 4094 k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension()); 4095 } 4096 } 4097 return TypeAryPtr::_array_interfaces; 4098 } 4099 4100 /** 4101 * Create constant type for a constant boxed value 4102 */ 4103 const Type* TypeInstPtr::get_const_boxed_value() const { 4104 assert(is_ptr_to_boxed_value(), "should be called only for boxed value"); 4105 assert((const_oop() != nullptr), "should be called only for constant object"); 4106 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); 4107 BasicType bt = constant.basic_type(); 4108 switch (bt) { 4109 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 4110 case T_INT: return TypeInt::make(constant.as_int()); 4111 case T_CHAR: return TypeInt::make(constant.as_char()); 4112 case T_BYTE: return TypeInt::make(constant.as_byte()); 4113 case T_SHORT: return TypeInt::make(constant.as_short()); 4114 case T_FLOAT: return TypeF::make(constant.as_float()); 4115 case T_DOUBLE: return TypeD::make(constant.as_double()); 4116 case T_LONG: return TypeLong::make(constant.as_long()); 4117 default: break; 4118 } 4119 fatal("Invalid boxed value type '%s'", type2name(bt)); 4120 return nullptr; 4121 } 4122 4123 //------------------------------cast_to_ptr_type------------------------------- 4124 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const { 4125 if( ptr == _ptr ) return this; 4126 // Reconstruct _sig info here since not a problem with later lazy 4127 // construction, _sig will show up on demand. 4128 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth); 4129 } 4130 4131 4132 //-----------------------------cast_to_exactness------------------------------- 4133 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { 4134 if( klass_is_exact == _klass_is_exact ) return this; 4135 if (!_klass->is_loaded()) return this; 4136 ciInstanceKlass* ik = _klass->as_instance_klass(); 4137 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk 4138 assert(!ik->is_interface(), "no interface here"); 4139 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth); 4140 } 4141 4142 //-----------------------------cast_to_instance_id---------------------------- 4143 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const { 4144 if( instance_id == _instance_id ) return this; 4145 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth); 4146 } 4147 4148 //------------------------------xmeet_unloaded--------------------------------- 4149 // Compute the MEET of two InstPtrs when at least one is unloaded. 4150 // Assume classes are different since called after check for same name/class-loader 4151 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const { 4152 int off = meet_offset(tinst->offset()); 4153 PTR ptr = meet_ptr(tinst->ptr()); 4154 int instance_id = meet_instance_id(tinst->instance_id()); 4155 const TypePtr* speculative = xmeet_speculative(tinst); 4156 int depth = meet_inline_depth(tinst->inline_depth()); 4157 4158 const TypeInstPtr *loaded = is_loaded() ? this : tinst; 4159 const TypeInstPtr *unloaded = is_loaded() ? tinst : this; 4160 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { 4161 // 4162 // Meet unloaded class with java/lang/Object 4163 // 4164 // Meet 4165 // | Unloaded Class 4166 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | 4167 // =================================================================== 4168 // TOP | ..........................Unloaded......................| 4169 // AnyNull | U-AN |................Unloaded......................| 4170 // Constant | ... O-NN .................................. | O-BOT | 4171 // NotNull | ... O-NN .................................. | O-BOT | 4172 // BOTTOM | ........................Object-BOTTOM ..................| 4173 // 4174 assert(loaded->ptr() != TypePtr::Null, "insanity check"); 4175 // 4176 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4177 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); } 4178 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4179 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { 4180 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4181 else { return TypeInstPtr::NOTNULL->with_speculative(speculative); } 4182 } 4183 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4184 4185 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative); 4186 } 4187 4188 // Both are unloaded, not the same class, not Object 4189 // Or meet unloaded with a different loaded class, not java/lang/Object 4190 if (ptr != TypePtr::BotPTR) { 4191 return TypeInstPtr::NOTNULL->with_speculative(speculative); 4192 } 4193 return TypeInstPtr::BOTTOM->with_speculative(speculative); 4194 } 4195 4196 4197 //------------------------------meet------------------------------------------- 4198 // Compute the MEET of two types. It returns a new Type object. 4199 const Type *TypeInstPtr::xmeet_helper(const Type *t) const { 4200 // Perform a fast test for common case; meeting the same types together. 4201 if( this == t ) return this; // Meeting same type-rep? 4202 4203 // Current "this->_base" is Pointer 4204 switch (t->base()) { // switch on original type 4205 4206 case Int: // Mixing ints & oops happens when javac 4207 case Long: // reuses local variables 4208 case FloatTop: 4209 case FloatCon: 4210 case FloatBot: 4211 case DoubleTop: 4212 case DoubleCon: 4213 case DoubleBot: 4214 case NarrowOop: 4215 case NarrowKlass: 4216 case Bottom: // Ye Olde Default 4217 return Type::BOTTOM; 4218 case Top: 4219 return this; 4220 4221 default: // All else is a mistake 4222 typerr(t); 4223 4224 case MetadataPtr: 4225 case KlassPtr: 4226 case InstKlassPtr: 4227 case AryKlassPtr: 4228 case RawPtr: return TypePtr::BOTTOM; 4229 4230 case AryPtr: { // All arrays inherit from Object class 4231 // Call in reverse direction to avoid duplication 4232 return t->is_aryptr()->xmeet_helper(this); 4233 } 4234 4235 case OopPtr: { // Meeting to OopPtrs 4236 // Found a OopPtr type vs self-InstPtr type 4237 const TypeOopPtr *tp = t->is_oopptr(); 4238 int offset = meet_offset(tp->offset()); 4239 PTR ptr = meet_ptr(tp->ptr()); 4240 switch (tp->ptr()) { 4241 case TopPTR: 4242 case AnyNull: { 4243 int instance_id = meet_instance_id(InstanceTop); 4244 const TypePtr* speculative = xmeet_speculative(tp); 4245 int depth = meet_inline_depth(tp->inline_depth()); 4246 return make(ptr, klass(), _interfaces, klass_is_exact(), 4247 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth); 4248 } 4249 case NotNull: 4250 case BotPTR: { 4251 int instance_id = meet_instance_id(tp->instance_id()); 4252 const TypePtr* speculative = xmeet_speculative(tp); 4253 int depth = meet_inline_depth(tp->inline_depth()); 4254 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4255 } 4256 default: typerr(t); 4257 } 4258 } 4259 4260 case AnyPtr: { // Meeting to AnyPtrs 4261 // Found an AnyPtr type vs self-InstPtr type 4262 const TypePtr *tp = t->is_ptr(); 4263 int offset = meet_offset(tp->offset()); 4264 PTR ptr = meet_ptr(tp->ptr()); 4265 int instance_id = meet_instance_id(InstanceTop); 4266 const TypePtr* speculative = xmeet_speculative(tp); 4267 int depth = meet_inline_depth(tp->inline_depth()); 4268 switch (tp->ptr()) { 4269 case Null: 4270 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4271 // else fall through to AnyNull 4272 case TopPTR: 4273 case AnyNull: { 4274 return make(ptr, klass(), _interfaces, klass_is_exact(), 4275 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth); 4276 } 4277 case NotNull: 4278 case BotPTR: 4279 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); 4280 default: typerr(t); 4281 } 4282 } 4283 4284 /* 4285 A-top } 4286 / | \ } Tops 4287 B-top A-any C-top } 4288 | / | \ | } Any-nulls 4289 B-any | C-any } 4290 | | | 4291 B-con A-con C-con } constants; not comparable across classes 4292 | | | 4293 B-not | C-not } 4294 | \ | / | } not-nulls 4295 B-bot A-not C-bot } 4296 \ | / } Bottoms 4297 A-bot } 4298 */ 4299 4300 case InstPtr: { // Meeting 2 Oops? 4301 // Found an InstPtr sub-type vs self-InstPtr type 4302 const TypeInstPtr *tinst = t->is_instptr(); 4303 int off = meet_offset(tinst->offset()); 4304 PTR ptr = meet_ptr(tinst->ptr()); 4305 int instance_id = meet_instance_id(tinst->instance_id()); 4306 const TypePtr* speculative = xmeet_speculative(tinst); 4307 int depth = meet_inline_depth(tinst->inline_depth()); 4308 const TypeInterfaces* interfaces = meet_interfaces(tinst); 4309 4310 ciKlass* tinst_klass = tinst->klass(); 4311 ciKlass* this_klass = klass(); 4312 4313 ciKlass* res_klass = nullptr; 4314 bool res_xk = false; 4315 const Type* res; 4316 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk); 4317 4318 if (kind == UNLOADED) { 4319 // One of these classes has not been loaded 4320 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces); 4321 #ifndef PRODUCT 4322 if (PrintOpto && Verbose) { 4323 tty->print("meet of unloaded classes resulted in: "); 4324 unloaded_meet->dump(); 4325 tty->cr(); 4326 tty->print(" this == "); 4327 dump(); 4328 tty->cr(); 4329 tty->print(" tinst == "); 4330 tinst->dump(); 4331 tty->cr(); 4332 } 4333 #endif 4334 res = unloaded_meet; 4335 } else { 4336 if (kind == NOT_SUBTYPE && instance_id > 0) { 4337 instance_id = InstanceBot; 4338 } else if (kind == LCA) { 4339 instance_id = InstanceBot; 4340 } 4341 ciObject* o = nullptr; // Assume not constant when done 4342 ciObject* this_oop = const_oop(); 4343 ciObject* tinst_oop = tinst->const_oop(); 4344 if (ptr == Constant) { 4345 if (this_oop != nullptr && tinst_oop != nullptr && 4346 this_oop->equals(tinst_oop)) 4347 o = this_oop; 4348 else if (above_centerline(_ptr)) { 4349 assert(!tinst_klass->is_interface(), ""); 4350 o = tinst_oop; 4351 } else if (above_centerline(tinst->_ptr)) { 4352 assert(!this_klass->is_interface(), ""); 4353 o = this_oop; 4354 } else 4355 ptr = NotNull; 4356 } 4357 res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth); 4358 } 4359 4360 return res; 4361 4362 } // End of case InstPtr 4363 4364 } // End of switch 4365 return this; // Return the double constant 4366 } 4367 4368 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type, 4369 ciKlass*& res_klass, bool& res_xk) { 4370 ciKlass* this_klass = this_type->klass(); 4371 ciKlass* other_klass = other_type->klass(); 4372 bool this_xk = this_type->klass_is_exact(); 4373 bool other_xk = other_type->klass_is_exact(); 4374 PTR this_ptr = this_type->ptr(); 4375 PTR other_ptr = other_type->ptr(); 4376 const TypeInterfaces* this_interfaces = this_type->interfaces(); 4377 const TypeInterfaces* other_interfaces = other_type->interfaces(); 4378 // Check for easy case; klasses are equal (and perhaps not loaded!) 4379 // If we have constants, then we created oops so classes are loaded 4380 // and we can handle the constants further down. This case handles 4381 // both-not-loaded or both-loaded classes 4382 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) { 4383 res_klass = this_klass; 4384 res_xk = this_xk; 4385 return QUICK; 4386 } 4387 4388 // Classes require inspection in the Java klass hierarchy. Must be loaded. 4389 if (!other_klass->is_loaded() || !this_klass->is_loaded()) { 4390 return UNLOADED; 4391 } 4392 4393 // !!! Here's how the symmetry requirement breaks down into invariants: 4394 // If we split one up & one down AND they subtype, take the down man. 4395 // If we split one up & one down AND they do NOT subtype, "fall hard". 4396 // If both are up and they subtype, take the subtype class. 4397 // If both are up and they do NOT subtype, "fall hard". 4398 // If both are down and they subtype, take the supertype class. 4399 // If both are down and they do NOT subtype, "fall hard". 4400 // Constants treated as down. 4401 4402 // Now, reorder the above list; observe that both-down+subtype is also 4403 // "fall hard"; "fall hard" becomes the default case: 4404 // If we split one up & one down AND they subtype, take the down man. 4405 // If both are up and they subtype, take the subtype class. 4406 4407 // If both are down and they subtype, "fall hard". 4408 // If both are down and they do NOT subtype, "fall hard". 4409 // If both are up and they do NOT subtype, "fall hard". 4410 // If we split one up & one down AND they do NOT subtype, "fall hard". 4411 4412 // If a proper subtype is exact, and we return it, we return it exactly. 4413 // If a proper supertype is exact, there can be no subtyping relationship! 4414 // If both types are equal to the subtype, exactness is and-ed below the 4415 // centerline and or-ed above it. (N.B. Constants are always exact.) 4416 4417 // Check for subtyping: 4418 const T* subtype = nullptr; 4419 bool subtype_exact = false; 4420 if (this_type->is_same_java_type_as(other_type)) { 4421 subtype = this_type; 4422 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk); 4423 } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) { 4424 subtype = this_type; // Pick subtyping class 4425 subtype_exact = this_xk; 4426 } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) { 4427 subtype = other_type; // Pick subtyping class 4428 subtype_exact = other_xk; 4429 } 4430 4431 if (subtype) { 4432 if (above_centerline(ptr)) { // both are up? 4433 this_type = other_type = subtype; 4434 this_xk = other_xk = subtype_exact; 4435 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) { 4436 this_type = other_type; // tinst is down; keep down man 4437 this_xk = other_xk; 4438 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) { 4439 other_type = this_type; // this is down; keep down man 4440 other_xk = this_xk; 4441 } else { 4442 this_xk = subtype_exact; // either they are equal, or we'll do an LCA 4443 } 4444 } 4445 4446 // Check for classes now being equal 4447 if (this_type->is_same_java_type_as(other_type)) { 4448 // If the klasses are equal, the constants may still differ. Fall to 4449 // NotNull if they do (neither constant is null; that is a special case 4450 // handled elsewhere). 4451 res_klass = this_type->klass(); 4452 res_xk = this_xk; 4453 return SUBTYPE; 4454 } // Else classes are not equal 4455 4456 // Since klasses are different, we require a LCA in the Java 4457 // class hierarchy - which means we have to fall to at least NotNull. 4458 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) { 4459 ptr = NotNull; 4460 } 4461 4462 interfaces = this_interfaces->intersection_with(other_interfaces); 4463 4464 // Now we find the LCA of Java classes 4465 ciKlass* k = this_klass->least_common_ancestor(other_klass); 4466 4467 res_klass = k; 4468 res_xk = false; 4469 4470 return LCA; 4471 } 4472 4473 //------------------------java_mirror_type-------------------------------------- 4474 ciType* TypeInstPtr::java_mirror_type() const { 4475 // must be a singleton type 4476 if( const_oop() == nullptr ) return nullptr; 4477 4478 // must be of type java.lang.Class 4479 if( klass() != ciEnv::current()->Class_klass() ) return nullptr; 4480 4481 return const_oop()->as_instance()->java_mirror_type(); 4482 } 4483 4484 4485 //------------------------------xdual------------------------------------------ 4486 // Dual: do NOT dual on klasses. This means I do NOT understand the Java 4487 // inheritance mechanism. 4488 const Type *TypeInstPtr::xdual() const { 4489 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 4490 } 4491 4492 //------------------------------eq--------------------------------------------- 4493 // Structural equality check for Type representations 4494 bool TypeInstPtr::eq( const Type *t ) const { 4495 const TypeInstPtr *p = t->is_instptr(); 4496 return 4497 klass()->equals(p->klass()) && 4498 _interfaces->eq(p->_interfaces) && 4499 TypeOopPtr::eq(p); // Check sub-type stuff 4500 } 4501 4502 //------------------------------hash------------------------------------------- 4503 // Type-specific hashing function. 4504 uint TypeInstPtr::hash(void) const { 4505 return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash(); 4506 } 4507 4508 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4509 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4510 } 4511 4512 4513 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4514 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 4515 } 4516 4517 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4518 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4519 } 4520 4521 4522 //------------------------------dump2------------------------------------------ 4523 // Dump oop Type 4524 #ifndef PRODUCT 4525 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const { 4526 // Print the name of the klass. 4527 klass()->print_name_on(st); 4528 _interfaces->dump(st); 4529 4530 switch( _ptr ) { 4531 case Constant: 4532 if (WizardMode || Verbose) { 4533 ResourceMark rm; 4534 stringStream ss; 4535 4536 st->print(" "); 4537 const_oop()->print_oop(&ss); 4538 // 'const_oop->print_oop()' may emit newlines('\n') into ss. 4539 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node. 4540 char* buf = ss.as_string(/* c_heap= */false); 4541 StringUtils::replace_no_expand(buf, "\n", ""); 4542 st->print_raw(buf); 4543 } 4544 case BotPTR: 4545 if (!WizardMode && !Verbose) { 4546 if( _klass_is_exact ) st->print(":exact"); 4547 break; 4548 } 4549 case TopPTR: 4550 case AnyNull: 4551 case NotNull: 4552 st->print(":%s", ptr_msg[_ptr]); 4553 if( _klass_is_exact ) st->print(":exact"); 4554 break; 4555 default: 4556 break; 4557 } 4558 4559 if( _offset ) { // Dump offset, if any 4560 if( _offset == OffsetBot ) st->print("+any"); 4561 else if( _offset == OffsetTop ) st->print("+unknown"); 4562 else st->print("+%d", _offset); 4563 } 4564 4565 st->print(" *"); 4566 if (_instance_id == InstanceTop) 4567 st->print(",iid=top"); 4568 else if (_instance_id != InstanceBot) 4569 st->print(",iid=%d",_instance_id); 4570 4571 dump_inline_depth(st); 4572 dump_speculative(st); 4573 } 4574 #endif 4575 4576 //------------------------------add_offset------------------------------------- 4577 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const { 4578 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), 4579 _instance_id, add_offset_speculative(offset), _inline_depth); 4580 } 4581 4582 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const { 4583 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset, 4584 _instance_id, with_offset_speculative(offset), _inline_depth); 4585 } 4586 4587 const TypeInstPtr* TypeInstPtr::remove_speculative() const { 4588 if (_speculative == nullptr) { 4589 return this; 4590 } 4591 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4592 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, 4593 _instance_id, nullptr, _inline_depth); 4594 } 4595 4596 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const { 4597 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth); 4598 } 4599 4600 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const { 4601 if (!UseInlineDepthForSpeculativeTypes) { 4602 return this; 4603 } 4604 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth); 4605 } 4606 4607 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const { 4608 assert(is_known_instance(), "should be known"); 4609 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth); 4610 } 4611 4612 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const { 4613 bool xk = klass_is_exact(); 4614 ciInstanceKlass* ik = klass()->as_instance_klass(); 4615 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) { 4616 if (_interfaces->eq(ik)) { 4617 Compile* C = Compile::current(); 4618 Dependencies* deps = C->dependencies(); 4619 deps->assert_leaf_type(ik); 4620 xk = true; 4621 } 4622 } 4623 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0); 4624 } 4625 4626 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4627 static_assert(std::is_base_of<T2, T1>::value, ""); 4628 4629 if (!this_one->is_instance_type(other)) { 4630 return false; 4631 } 4632 4633 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4634 return true; 4635 } 4636 4637 return this_one->klass()->is_subtype_of(other->klass()) && 4638 (!this_xk || this_one->_interfaces->contains(other->_interfaces)); 4639 } 4640 4641 4642 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4643 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4644 } 4645 4646 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4647 static_assert(std::is_base_of<T2, T1>::value, ""); 4648 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4649 return true; 4650 } 4651 4652 if (this_one->is_instance_type(other)) { 4653 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces); 4654 } 4655 4656 int dummy; 4657 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 4658 if (this_top_or_bottom) { 4659 return false; 4660 } 4661 4662 const T1* other_ary = this_one->is_array_type(other); 4663 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 4664 const TypePtr* this_elem = this_one->elem()->make_ptr(); 4665 if (other_elem != nullptr && this_elem != nullptr) { 4666 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk); 4667 } 4668 4669 if (other_elem == nullptr && this_elem == nullptr) { 4670 return this_one->klass()->is_subtype_of(other->klass()); 4671 } 4672 4673 return false; 4674 } 4675 4676 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4677 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4678 } 4679 4680 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4681 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4682 } 4683 4684 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4685 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4686 } 4687 4688 //============================================================================= 4689 // Convenience common pre-built types. 4690 const TypeAryPtr *TypeAryPtr::RANGE; 4691 const TypeAryPtr *TypeAryPtr::OOPS; 4692 const TypeAryPtr *TypeAryPtr::NARROWOOPS; 4693 const TypeAryPtr *TypeAryPtr::BYTES; 4694 const TypeAryPtr *TypeAryPtr::SHORTS; 4695 const TypeAryPtr *TypeAryPtr::CHARS; 4696 const TypeAryPtr *TypeAryPtr::INTS; 4697 const TypeAryPtr *TypeAryPtr::LONGS; 4698 const TypeAryPtr *TypeAryPtr::FLOATS; 4699 const TypeAryPtr *TypeAryPtr::DOUBLES; 4700 4701 //------------------------------make------------------------------------------- 4702 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4703 int instance_id, const TypePtr* speculative, int inline_depth) { 4704 assert(!(k == nullptr && ary->_elem->isa_int()), 4705 "integral arrays must be pre-equipped with a class"); 4706 if (!xk) xk = ary->ary_must_be_exact(); 4707 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4708 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4709 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4710 k = nullptr; 4711 } 4712 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons(); 4713 } 4714 4715 //------------------------------make------------------------------------------- 4716 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4717 int instance_id, const TypePtr* speculative, int inline_depth, 4718 bool is_autobox_cache) { 4719 assert(!(k == nullptr && ary->_elem->isa_int()), 4720 "integral arrays must be pre-equipped with a class"); 4721 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); 4722 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact(); 4723 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4724 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4725 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4726 k = nullptr; 4727 } 4728 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); 4729 } 4730 4731 //------------------------------cast_to_ptr_type------------------------------- 4732 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const { 4733 if( ptr == _ptr ) return this; 4734 return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4735 } 4736 4737 4738 //-----------------------------cast_to_exactness------------------------------- 4739 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { 4740 if( klass_is_exact == _klass_is_exact ) return this; 4741 if (_ary->ary_must_be_exact()) return this; // cannot clear xk 4742 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 4743 } 4744 4745 //-----------------------------cast_to_instance_id---------------------------- 4746 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const { 4747 if( instance_id == _instance_id ) return this; 4748 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 4749 } 4750 4751 4752 //-----------------------------max_array_length------------------------------- 4753 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization. 4754 jint TypeAryPtr::max_array_length(BasicType etype) { 4755 if (!is_java_primitive(etype) && !::is_reference_type(etype)) { 4756 if (etype == T_NARROWOOP) { 4757 etype = T_OBJECT; 4758 } else if (etype == T_ILLEGAL) { // bottom[] 4759 etype = T_BYTE; // will produce conservatively high value 4760 } else { 4761 fatal("not an element type: %s", type2name(etype)); 4762 } 4763 } 4764 return arrayOopDesc::max_array_length(etype); 4765 } 4766 4767 //-----------------------------narrow_size_type------------------------------- 4768 // Narrow the given size type to the index range for the given array base type. 4769 // Return null if the resulting int type becomes empty. 4770 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { 4771 jint hi = size->_hi; 4772 jint lo = size->_lo; 4773 jint min_lo = 0; 4774 jint max_hi = max_array_length(elem()->array_element_basic_type()); 4775 //if (index_not_size) --max_hi; // type of a valid array index, FTR 4776 bool chg = false; 4777 if (lo < min_lo) { 4778 lo = min_lo; 4779 if (size->is_con()) { 4780 hi = lo; 4781 } 4782 chg = true; 4783 } 4784 if (hi > max_hi) { 4785 hi = max_hi; 4786 if (size->is_con()) { 4787 lo = hi; 4788 } 4789 chg = true; 4790 } 4791 // Negative length arrays will produce weird intermediate dead fast-path code 4792 if (lo > hi) 4793 return TypeInt::ZERO; 4794 if (!chg) 4795 return size; 4796 return TypeInt::make(lo, hi, Type::WidenMin); 4797 } 4798 4799 //-------------------------------cast_to_size---------------------------------- 4800 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { 4801 assert(new_size != nullptr, ""); 4802 new_size = narrow_size_type(new_size); 4803 if (new_size == size()) return this; 4804 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable()); 4805 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4806 } 4807 4808 //------------------------------cast_to_stable--------------------------------- 4809 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { 4810 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) 4811 return this; 4812 4813 const Type* elem = this->elem(); 4814 const TypePtr* elem_ptr = elem->make_ptr(); 4815 4816 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) { 4817 // If this is widened from a narrow oop, TypeAry::make will re-narrow it. 4818 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); 4819 } 4820 4821 const TypeAry* new_ary = TypeAry::make(elem, size(), stable); 4822 4823 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4824 } 4825 4826 //-----------------------------stable_dimension-------------------------------- 4827 int TypeAryPtr::stable_dimension() const { 4828 if (!is_stable()) return 0; 4829 int dim = 1; 4830 const TypePtr* elem_ptr = elem()->make_ptr(); 4831 if (elem_ptr != nullptr && elem_ptr->isa_aryptr()) 4832 dim += elem_ptr->is_aryptr()->stable_dimension(); 4833 return dim; 4834 } 4835 4836 //----------------------cast_to_autobox_cache----------------------------------- 4837 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const { 4838 if (is_autobox_cache()) return this; 4839 const TypeOopPtr* etype = elem()->make_oopptr(); 4840 if (etype == nullptr) return this; 4841 // The pointers in the autobox arrays are always non-null. 4842 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); 4843 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable()); 4844 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true); 4845 } 4846 4847 //------------------------------eq--------------------------------------------- 4848 // Structural equality check for Type representations 4849 bool TypeAryPtr::eq( const Type *t ) const { 4850 const TypeAryPtr *p = t->is_aryptr(); 4851 return 4852 _ary == p->_ary && // Check array 4853 TypeOopPtr::eq(p); // Check sub-parts 4854 } 4855 4856 //------------------------------hash------------------------------------------- 4857 // Type-specific hashing function. 4858 uint TypeAryPtr::hash(void) const { 4859 return (uint)(uintptr_t)_ary + TypeOopPtr::hash(); 4860 } 4861 4862 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4863 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 4864 } 4865 4866 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4867 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 4868 } 4869 4870 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4871 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 4872 } 4873 //------------------------------meet------------------------------------------- 4874 // Compute the MEET of two types. It returns a new Type object. 4875 const Type *TypeAryPtr::xmeet_helper(const Type *t) const { 4876 // Perform a fast test for common case; meeting the same types together. 4877 if( this == t ) return this; // Meeting same type-rep? 4878 // Current "this->_base" is Pointer 4879 switch (t->base()) { // switch on original type 4880 4881 // Mixing ints & oops happens when javac reuses local variables 4882 case Int: 4883 case Long: 4884 case FloatTop: 4885 case FloatCon: 4886 case FloatBot: 4887 case DoubleTop: 4888 case DoubleCon: 4889 case DoubleBot: 4890 case NarrowOop: 4891 case NarrowKlass: 4892 case Bottom: // Ye Olde Default 4893 return Type::BOTTOM; 4894 case Top: 4895 return this; 4896 4897 default: // All else is a mistake 4898 typerr(t); 4899 4900 case OopPtr: { // Meeting to OopPtrs 4901 // Found a OopPtr type vs self-AryPtr type 4902 const TypeOopPtr *tp = t->is_oopptr(); 4903 int offset = meet_offset(tp->offset()); 4904 PTR ptr = meet_ptr(tp->ptr()); 4905 int depth = meet_inline_depth(tp->inline_depth()); 4906 const TypePtr* speculative = xmeet_speculative(tp); 4907 switch (tp->ptr()) { 4908 case TopPTR: 4909 case AnyNull: { 4910 int instance_id = meet_instance_id(InstanceTop); 4911 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 4912 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4913 } 4914 case BotPTR: 4915 case NotNull: { 4916 int instance_id = meet_instance_id(tp->instance_id()); 4917 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4918 } 4919 default: ShouldNotReachHere(); 4920 } 4921 } 4922 4923 case AnyPtr: { // Meeting two AnyPtrs 4924 // Found an AnyPtr type vs self-AryPtr type 4925 const TypePtr *tp = t->is_ptr(); 4926 int offset = meet_offset(tp->offset()); 4927 PTR ptr = meet_ptr(tp->ptr()); 4928 const TypePtr* speculative = xmeet_speculative(tp); 4929 int depth = meet_inline_depth(tp->inline_depth()); 4930 switch (tp->ptr()) { 4931 case TopPTR: 4932 return this; 4933 case BotPTR: 4934 case NotNull: 4935 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4936 case Null: 4937 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4938 // else fall through to AnyNull 4939 case AnyNull: { 4940 int instance_id = meet_instance_id(InstanceTop); 4941 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 4942 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4943 } 4944 default: ShouldNotReachHere(); 4945 } 4946 } 4947 4948 case MetadataPtr: 4949 case KlassPtr: 4950 case InstKlassPtr: 4951 case AryKlassPtr: 4952 case RawPtr: return TypePtr::BOTTOM; 4953 4954 case AryPtr: { // Meeting 2 references? 4955 const TypeAryPtr *tap = t->is_aryptr(); 4956 int off = meet_offset(tap->offset()); 4957 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); 4958 PTR ptr = meet_ptr(tap->ptr()); 4959 int instance_id = meet_instance_id(tap->instance_id()); 4960 const TypePtr* speculative = xmeet_speculative(tap); 4961 int depth = meet_inline_depth(tap->inline_depth()); 4962 4963 ciKlass* res_klass = nullptr; 4964 bool res_xk = false; 4965 const Type* elem = tary->_elem; 4966 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) { 4967 instance_id = InstanceBot; 4968 } 4969 4970 ciObject* o = nullptr; // Assume not constant when done 4971 ciObject* this_oop = const_oop(); 4972 ciObject* tap_oop = tap->const_oop(); 4973 if (ptr == Constant) { 4974 if (this_oop != nullptr && tap_oop != nullptr && 4975 this_oop->equals(tap_oop)) { 4976 o = tap_oop; 4977 } else if (above_centerline(_ptr)) { 4978 o = tap_oop; 4979 } else if (above_centerline(tap->_ptr)) { 4980 o = this_oop; 4981 } else { 4982 ptr = NotNull; 4983 } 4984 } 4985 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth); 4986 } 4987 4988 // All arrays inherit from Object class 4989 case InstPtr: { 4990 const TypeInstPtr *tp = t->is_instptr(); 4991 int offset = meet_offset(tp->offset()); 4992 PTR ptr = meet_ptr(tp->ptr()); 4993 int instance_id = meet_instance_id(tp->instance_id()); 4994 const TypePtr* speculative = xmeet_speculative(tp); 4995 int depth = meet_inline_depth(tp->inline_depth()); 4996 const TypeInterfaces* interfaces = meet_interfaces(tp); 4997 const TypeInterfaces* tp_interfaces = tp->_interfaces; 4998 const TypeInterfaces* this_interfaces = _interfaces; 4999 5000 switch (ptr) { 5001 case TopPTR: 5002 case AnyNull: // Fall 'down' to dual of object klass 5003 // For instances when a subclass meets a superclass we fall 5004 // below the centerline when the superclass is exact. We need to 5005 // do the same here. 5006 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) { 5007 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 5008 } else { 5009 // cannot subclass, so the meet has to fall badly below the centerline 5010 ptr = NotNull; 5011 instance_id = InstanceBot; 5012 interfaces = this_interfaces->intersection_with(tp_interfaces); 5013 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth); 5014 } 5015 case Constant: 5016 case NotNull: 5017 case BotPTR: // Fall down to object klass 5018 // LCA is object_klass, but if we subclass from the top we can do better 5019 if (above_centerline(tp->ptr())) { 5020 // If 'tp' is above the centerline and it is Object class 5021 // then we can subclass in the Java class hierarchy. 5022 // For instances when a subclass meets a superclass we fall 5023 // below the centerline when the superclass is exact. We need 5024 // to do the same here. 5025 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) { 5026 // that is, my array type is a subtype of 'tp' klass 5027 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 5028 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 5029 } 5030 } 5031 // The other case cannot happen, since t cannot be a subtype of an array. 5032 // The meet falls down to Object class below centerline. 5033 if (ptr == Constant) { 5034 ptr = NotNull; 5035 } 5036 if (instance_id > 0) { 5037 instance_id = InstanceBot; 5038 } 5039 interfaces = this_interfaces->intersection_with(tp_interfaces); 5040 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth); 5041 default: typerr(t); 5042 } 5043 } 5044 } 5045 return this; // Lint noise 5046 } 5047 5048 5049 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, 5050 const T* other_ary, ciKlass*& res_klass, bool& res_xk) { 5051 int dummy; 5052 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM); 5053 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 5054 ciKlass* this_klass = this_ary->klass(); 5055 ciKlass* other_klass = other_ary->klass(); 5056 bool this_xk = this_ary->klass_is_exact(); 5057 bool other_xk = other_ary->klass_is_exact(); 5058 PTR this_ptr = this_ary->ptr(); 5059 PTR other_ptr = other_ary->ptr(); 5060 res_klass = nullptr; 5061 MeetResult result = SUBTYPE; 5062 if (elem->isa_int()) { 5063 // Integral array element types have irrelevant lattice relations. 5064 // It is the klass that determines array layout, not the element type. 5065 if (this_top_or_bottom) 5066 res_klass = other_klass; 5067 else if (other_top_or_bottom || other_klass == this_klass) { 5068 res_klass = this_klass; 5069 } else { 5070 // Something like byte[int+] meets char[int+]. 5071 // This must fall to bottom, not (int[-128..65535])[int+]. 5072 // instance_id = InstanceBot; 5073 elem = Type::BOTTOM; 5074 result = NOT_SUBTYPE; 5075 if (above_centerline(ptr) || ptr == Constant) { 5076 ptr = NotNull; 5077 res_xk = false; 5078 return NOT_SUBTYPE; 5079 } 5080 } 5081 } else {// Non integral arrays. 5082 // Must fall to bottom if exact klasses in upper lattice 5083 // are not equal or super klass is exact. 5084 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) && 5085 // meet with top[] and bottom[] are processed further down: 5086 !this_top_or_bottom && !other_top_or_bottom && 5087 // both are exact and not equal: 5088 ((other_xk && this_xk) || 5089 // 'tap' is exact and super or unrelated: 5090 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) || 5091 // 'this' is exact and super or unrelated: 5092 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) { 5093 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) { 5094 elem = Type::BOTTOM; 5095 } 5096 ptr = NotNull; 5097 res_xk = false; 5098 return NOT_SUBTYPE; 5099 } 5100 } 5101 5102 res_xk = false; 5103 switch (other_ptr) { 5104 case AnyNull: 5105 case TopPTR: 5106 // Compute new klass on demand, do not use tap->_klass 5107 if (below_centerline(this_ptr)) { 5108 res_xk = this_xk; 5109 } else { 5110 res_xk = (other_xk || this_xk); 5111 } 5112 return result; 5113 case Constant: { 5114 if (this_ptr == Constant) { 5115 res_xk = true; 5116 } else if(above_centerline(this_ptr)) { 5117 res_xk = true; 5118 } else { 5119 // Only precise for identical arrays 5120 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); 5121 } 5122 return result; 5123 } 5124 case NotNull: 5125 case BotPTR: 5126 // Compute new klass on demand, do not use tap->_klass 5127 if (above_centerline(this_ptr)) { 5128 res_xk = other_xk; 5129 } else { 5130 res_xk = (other_xk && this_xk) && 5131 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays 5132 } 5133 return result; 5134 default: { 5135 ShouldNotReachHere(); 5136 return result; 5137 } 5138 } 5139 return result; 5140 } 5141 5142 5143 //------------------------------xdual------------------------------------------ 5144 // Dual: compute field-by-field dual 5145 const Type *TypeAryPtr::xdual() const { 5146 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); 5147 } 5148 5149 //------------------------------dump2------------------------------------------ 5150 #ifndef PRODUCT 5151 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5152 _ary->dump2(d,depth,st); 5153 _interfaces->dump(st); 5154 5155 switch( _ptr ) { 5156 case Constant: 5157 const_oop()->print(st); 5158 break; 5159 case BotPTR: 5160 if (!WizardMode && !Verbose) { 5161 if( _klass_is_exact ) st->print(":exact"); 5162 break; 5163 } 5164 case TopPTR: 5165 case AnyNull: 5166 case NotNull: 5167 st->print(":%s", ptr_msg[_ptr]); 5168 if( _klass_is_exact ) st->print(":exact"); 5169 break; 5170 default: 5171 break; 5172 } 5173 5174 if( _offset != 0 ) { 5175 BasicType basic_elem_type = elem()->basic_type(); 5176 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 5177 if( _offset == OffsetTop ) st->print("+undefined"); 5178 else if( _offset == OffsetBot ) st->print("+any"); 5179 else if( _offset < header_size ) st->print("+%d", _offset); 5180 else { 5181 if (basic_elem_type == T_ILLEGAL) { 5182 st->print("+any"); 5183 } else { 5184 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 5185 int elem_size = type2aelembytes(basic_elem_type); 5186 st->print("[%d]", (_offset - array_base)/elem_size); 5187 } 5188 } 5189 } 5190 st->print(" *"); 5191 if (_instance_id == InstanceTop) 5192 st->print(",iid=top"); 5193 else if (_instance_id != InstanceBot) 5194 st->print(",iid=%d",_instance_id); 5195 5196 dump_inline_depth(st); 5197 dump_speculative(st); 5198 } 5199 #endif 5200 5201 bool TypeAryPtr::empty(void) const { 5202 if (_ary->empty()) return true; 5203 return TypeOopPtr::empty(); 5204 } 5205 5206 //------------------------------add_offset------------------------------------- 5207 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const { 5208 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 5209 } 5210 5211 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const { 5212 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth); 5213 } 5214 5215 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const { 5216 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 5217 } 5218 5219 const TypeAryPtr* TypeAryPtr::remove_speculative() const { 5220 if (_speculative == nullptr) { 5221 return this; 5222 } 5223 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 5224 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth); 5225 } 5226 5227 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const { 5228 if (!UseInlineDepthForSpeculativeTypes) { 5229 return this; 5230 } 5231 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth); 5232 } 5233 5234 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const { 5235 assert(is_known_instance(), "should be known"); 5236 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 5237 } 5238 5239 //============================================================================= 5240 5241 //------------------------------hash------------------------------------------- 5242 // Type-specific hashing function. 5243 uint TypeNarrowPtr::hash(void) const { 5244 return _ptrtype->hash() + 7; 5245 } 5246 5247 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton 5248 return _ptrtype->singleton(); 5249 } 5250 5251 bool TypeNarrowPtr::empty(void) const { 5252 return _ptrtype->empty(); 5253 } 5254 5255 intptr_t TypeNarrowPtr::get_con() const { 5256 return _ptrtype->get_con(); 5257 } 5258 5259 bool TypeNarrowPtr::eq( const Type *t ) const { 5260 const TypeNarrowPtr* tc = isa_same_narrowptr(t); 5261 if (tc != nullptr) { 5262 if (_ptrtype->base() != tc->_ptrtype->base()) { 5263 return false; 5264 } 5265 return tc->_ptrtype->eq(_ptrtype); 5266 } 5267 return false; 5268 } 5269 5270 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. 5271 const TypePtr* odual = _ptrtype->dual()->is_ptr(); 5272 return make_same_narrowptr(odual); 5273 } 5274 5275 5276 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { 5277 if (isa_same_narrowptr(kills)) { 5278 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); 5279 if (ft->empty()) 5280 return Type::TOP; // Canonical empty value 5281 if (ft->isa_ptr()) { 5282 return make_hash_same_narrowptr(ft->isa_ptr()); 5283 } 5284 return ft; 5285 } else if (kills->isa_ptr()) { 5286 const Type* ft = _ptrtype->join_helper(kills, include_speculative); 5287 if (ft->empty()) 5288 return Type::TOP; // Canonical empty value 5289 return ft; 5290 } else { 5291 return Type::TOP; 5292 } 5293 } 5294 5295 //------------------------------xmeet------------------------------------------ 5296 // Compute the MEET of two types. It returns a new Type object. 5297 const Type *TypeNarrowPtr::xmeet( const Type *t ) const { 5298 // Perform a fast test for common case; meeting the same types together. 5299 if( this == t ) return this; // Meeting same type-rep? 5300 5301 if (t->base() == base()) { 5302 const Type* result = _ptrtype->xmeet(t->make_ptr()); 5303 if (result->isa_ptr()) { 5304 return make_hash_same_narrowptr(result->is_ptr()); 5305 } 5306 return result; 5307 } 5308 5309 // Current "this->_base" is NarrowKlass or NarrowOop 5310 switch (t->base()) { // switch on original type 5311 5312 case Int: // Mixing ints & oops happens when javac 5313 case Long: // reuses local variables 5314 case FloatTop: 5315 case FloatCon: 5316 case FloatBot: 5317 case DoubleTop: 5318 case DoubleCon: 5319 case DoubleBot: 5320 case AnyPtr: 5321 case RawPtr: 5322 case OopPtr: 5323 case InstPtr: 5324 case AryPtr: 5325 case MetadataPtr: 5326 case KlassPtr: 5327 case InstKlassPtr: 5328 case AryKlassPtr: 5329 case NarrowOop: 5330 case NarrowKlass: 5331 5332 case Bottom: // Ye Olde Default 5333 return Type::BOTTOM; 5334 case Top: 5335 return this; 5336 5337 default: // All else is a mistake 5338 typerr(t); 5339 5340 } // End of switch 5341 5342 return this; 5343 } 5344 5345 #ifndef PRODUCT 5346 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 5347 _ptrtype->dump2(d, depth, st); 5348 } 5349 #endif 5350 5351 const TypeNarrowOop *TypeNarrowOop::BOTTOM; 5352 const TypeNarrowOop *TypeNarrowOop::NULL_PTR; 5353 5354 5355 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { 5356 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); 5357 } 5358 5359 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const { 5360 return make(_ptrtype->remove_speculative()->is_ptr()); 5361 } 5362 5363 const Type* TypeNarrowOop::cleanup_speculative() const { 5364 return make(_ptrtype->cleanup_speculative()->is_ptr()); 5365 } 5366 5367 #ifndef PRODUCT 5368 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { 5369 st->print("narrowoop: "); 5370 TypeNarrowPtr::dump2(d, depth, st); 5371 } 5372 #endif 5373 5374 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; 5375 5376 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { 5377 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); 5378 } 5379 5380 #ifndef PRODUCT 5381 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { 5382 st->print("narrowklass: "); 5383 TypeNarrowPtr::dump2(d, depth, st); 5384 } 5385 #endif 5386 5387 5388 //------------------------------eq--------------------------------------------- 5389 // Structural equality check for Type representations 5390 bool TypeMetadataPtr::eq( const Type *t ) const { 5391 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; 5392 ciMetadata* one = metadata(); 5393 ciMetadata* two = a->metadata(); 5394 if (one == nullptr || two == nullptr) { 5395 return (one == two) && TypePtr::eq(t); 5396 } else { 5397 return one->equals(two) && TypePtr::eq(t); 5398 } 5399 } 5400 5401 //------------------------------hash------------------------------------------- 5402 // Type-specific hashing function. 5403 uint TypeMetadataPtr::hash(void) const { 5404 return 5405 (metadata() ? metadata()->hash() : 0) + 5406 TypePtr::hash(); 5407 } 5408 5409 //------------------------------singleton-------------------------------------- 5410 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5411 // constants 5412 bool TypeMetadataPtr::singleton(void) const { 5413 // detune optimizer to not generate constant metadata + constant offset as a constant! 5414 // TopPTR, Null, AnyNull, Constant are all singletons 5415 return (_offset == 0) && !below_centerline(_ptr); 5416 } 5417 5418 //------------------------------add_offset------------------------------------- 5419 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const { 5420 return make( _ptr, _metadata, xadd_offset(offset)); 5421 } 5422 5423 //-----------------------------filter------------------------------------------ 5424 // Do not allow interface-vs.-noninterface joins to collapse to top. 5425 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { 5426 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); 5427 if (ft == nullptr || ft->empty()) 5428 return Type::TOP; // Canonical empty value 5429 return ft; 5430 } 5431 5432 //------------------------------get_con---------------------------------------- 5433 intptr_t TypeMetadataPtr::get_con() const { 5434 assert( _ptr == Null || _ptr == Constant, "" ); 5435 assert( _offset >= 0, "" ); 5436 5437 if (_offset != 0) { 5438 // After being ported to the compiler interface, the compiler no longer 5439 // directly manipulates the addresses of oops. Rather, it only has a pointer 5440 // to a handle at compile time. This handle is embedded in the generated 5441 // code and dereferenced at the time the nmethod is made. Until that time, 5442 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5443 // have access to the addresses!). This does not seem to currently happen, 5444 // but this assertion here is to help prevent its occurrence. 5445 tty->print_cr("Found oop constant with non-zero offset"); 5446 ShouldNotReachHere(); 5447 } 5448 5449 return (intptr_t)metadata()->constant_encoding(); 5450 } 5451 5452 //------------------------------cast_to_ptr_type------------------------------- 5453 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { 5454 if( ptr == _ptr ) return this; 5455 return make(ptr, metadata(), _offset); 5456 } 5457 5458 //------------------------------meet------------------------------------------- 5459 // Compute the MEET of two types. It returns a new Type object. 5460 const Type *TypeMetadataPtr::xmeet( const Type *t ) const { 5461 // Perform a fast test for common case; meeting the same types together. 5462 if( this == t ) return this; // Meeting same type-rep? 5463 5464 // Current "this->_base" is OopPtr 5465 switch (t->base()) { // switch on original type 5466 5467 case Int: // Mixing ints & oops happens when javac 5468 case Long: // reuses local variables 5469 case FloatTop: 5470 case FloatCon: 5471 case FloatBot: 5472 case DoubleTop: 5473 case DoubleCon: 5474 case DoubleBot: 5475 case NarrowOop: 5476 case NarrowKlass: 5477 case Bottom: // Ye Olde Default 5478 return Type::BOTTOM; 5479 case Top: 5480 return this; 5481 5482 default: // All else is a mistake 5483 typerr(t); 5484 5485 case AnyPtr: { 5486 // Found an AnyPtr type vs self-OopPtr type 5487 const TypePtr *tp = t->is_ptr(); 5488 int offset = meet_offset(tp->offset()); 5489 PTR ptr = meet_ptr(tp->ptr()); 5490 switch (tp->ptr()) { 5491 case Null: 5492 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5493 // else fall through: 5494 case TopPTR: 5495 case AnyNull: { 5496 return make(ptr, _metadata, offset); 5497 } 5498 case BotPTR: 5499 case NotNull: 5500 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5501 default: typerr(t); 5502 } 5503 } 5504 5505 case RawPtr: 5506 case KlassPtr: 5507 case InstKlassPtr: 5508 case AryKlassPtr: 5509 case OopPtr: 5510 case InstPtr: 5511 case AryPtr: 5512 return TypePtr::BOTTOM; // Oop meet raw is not well defined 5513 5514 case MetadataPtr: { 5515 const TypeMetadataPtr *tp = t->is_metadataptr(); 5516 int offset = meet_offset(tp->offset()); 5517 PTR tptr = tp->ptr(); 5518 PTR ptr = meet_ptr(tptr); 5519 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); 5520 if (tptr == TopPTR || _ptr == TopPTR || 5521 metadata()->equals(tp->metadata())) { 5522 return make(ptr, md, offset); 5523 } 5524 // metadata is different 5525 if( ptr == Constant ) { // Cannot be equal constants, so... 5526 if( tptr == Constant && _ptr != Constant) return t; 5527 if( _ptr == Constant && tptr != Constant) return this; 5528 ptr = NotNull; // Fall down in lattice 5529 } 5530 return make(ptr, nullptr, offset); 5531 break; 5532 } 5533 } // End of switch 5534 return this; // Return the double constant 5535 } 5536 5537 5538 //------------------------------xdual------------------------------------------ 5539 // Dual of a pure metadata pointer. 5540 const Type *TypeMetadataPtr::xdual() const { 5541 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); 5542 } 5543 5544 //------------------------------dump2------------------------------------------ 5545 #ifndef PRODUCT 5546 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5547 st->print("metadataptr:%s", ptr_msg[_ptr]); 5548 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata())); 5549 switch( _offset ) { 5550 case OffsetTop: st->print("+top"); break; 5551 case OffsetBot: st->print("+any"); break; 5552 case 0: break; 5553 default: st->print("+%d",_offset); break; 5554 } 5555 } 5556 #endif 5557 5558 5559 //============================================================================= 5560 // Convenience common pre-built type. 5561 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; 5562 5563 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset): 5564 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { 5565 } 5566 5567 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { 5568 return make(Constant, m, 0); 5569 } 5570 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { 5571 return make(Constant, m, 0); 5572 } 5573 5574 //------------------------------make------------------------------------------- 5575 // Create a meta data constant 5576 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) { 5577 assert(m == nullptr || !m->is_klass(), "wrong type"); 5578 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); 5579 } 5580 5581 5582 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const { 5583 const Type* elem = _ary->_elem; 5584 bool xk = klass_is_exact(); 5585 if (elem->make_oopptr() != nullptr) { 5586 elem = elem->make_oopptr()->as_klass_type(try_for_exact); 5587 if (elem->is_klassptr()->klass_is_exact()) { 5588 xk = true; 5589 } 5590 } 5591 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0); 5592 } 5593 5594 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) { 5595 if (klass->is_instance_klass()) { 5596 return TypeInstKlassPtr::make(klass, interface_handling); 5597 } 5598 return TypeAryKlassPtr::make(klass, interface_handling); 5599 } 5600 5601 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) { 5602 if (klass->is_instance_klass()) { 5603 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 5604 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset); 5605 } 5606 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling); 5607 } 5608 5609 5610 //------------------------------TypeKlassPtr----------------------------------- 5611 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset) 5612 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) { 5613 assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) || 5614 klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here"); 5615 } 5616 5617 // Is there a single ciKlass* that can represent that type? 5618 ciKlass* TypeKlassPtr::exact_klass_helper() const { 5619 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface"); 5620 if (_interfaces->empty()) { 5621 return _klass; 5622 } 5623 if (_klass != ciEnv::current()->Object_klass()) { 5624 if (_interfaces->eq(_klass->as_instance_klass())) { 5625 return _klass; 5626 } 5627 return nullptr; 5628 } 5629 return _interfaces->exact_klass(); 5630 } 5631 5632 //------------------------------eq--------------------------------------------- 5633 // Structural equality check for Type representations 5634 bool TypeKlassPtr::eq(const Type *t) const { 5635 const TypeKlassPtr *p = t->is_klassptr(); 5636 return 5637 _interfaces->eq(p->_interfaces) && 5638 TypePtr::eq(p); 5639 } 5640 5641 //------------------------------hash------------------------------------------- 5642 // Type-specific hashing function. 5643 uint TypeKlassPtr::hash(void) const { 5644 return TypePtr::hash() + _interfaces->hash(); 5645 } 5646 5647 //------------------------------singleton-------------------------------------- 5648 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5649 // constants 5650 bool TypeKlassPtr::singleton(void) const { 5651 // detune optimizer to not generate constant klass + constant offset as a constant! 5652 // TopPTR, Null, AnyNull, Constant are all singletons 5653 return (_offset == 0) && !below_centerline(_ptr); 5654 } 5655 5656 // Do not allow interface-vs.-noninterface joins to collapse to top. 5657 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { 5658 // logic here mirrors the one from TypeOopPtr::filter. See comments 5659 // there. 5660 const Type* ft = join_helper(kills, include_speculative); 5661 const TypeKlassPtr* ftkp = ft->isa_instklassptr(); 5662 const TypeKlassPtr* ktkp = kills->isa_instklassptr(); 5663 5664 if (ft->empty()) { 5665 return Type::TOP; // Canonical empty value 5666 } 5667 5668 return ft; 5669 } 5670 5671 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const { 5672 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 5673 return _interfaces->union_with(other->_interfaces); 5674 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 5675 return other->_interfaces; 5676 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 5677 return _interfaces; 5678 } 5679 return _interfaces->intersection_with(other->_interfaces); 5680 } 5681 5682 //------------------------------get_con---------------------------------------- 5683 intptr_t TypeKlassPtr::get_con() const { 5684 assert( _ptr == Null || _ptr == Constant, "" ); 5685 assert( _offset >= 0, "" ); 5686 5687 if (_offset != 0) { 5688 // After being ported to the compiler interface, the compiler no longer 5689 // directly manipulates the addresses of oops. Rather, it only has a pointer 5690 // to a handle at compile time. This handle is embedded in the generated 5691 // code and dereferenced at the time the nmethod is made. Until that time, 5692 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5693 // have access to the addresses!). This does not seem to currently happen, 5694 // but this assertion here is to help prevent its occurrence. 5695 tty->print_cr("Found oop constant with non-zero offset"); 5696 ShouldNotReachHere(); 5697 } 5698 5699 ciKlass* k = exact_klass(); 5700 5701 return (intptr_t)k->constant_encoding(); 5702 } 5703 5704 //------------------------------dump2------------------------------------------ 5705 // Dump Klass Type 5706 #ifndef PRODUCT 5707 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const { 5708 switch(_ptr) { 5709 case Constant: 5710 st->print("precise "); 5711 case NotNull: 5712 { 5713 const char *name = klass()->name()->as_utf8(); 5714 if (name) { 5715 st->print("%s: " INTPTR_FORMAT, name, p2i(klass())); 5716 } else { 5717 ShouldNotReachHere(); 5718 } 5719 _interfaces->dump(st); 5720 } 5721 case BotPTR: 5722 if (!WizardMode && !Verbose && _ptr != Constant) break; 5723 case TopPTR: 5724 case AnyNull: 5725 st->print(":%s", ptr_msg[_ptr]); 5726 if (_ptr == Constant) st->print(":exact"); 5727 break; 5728 default: 5729 break; 5730 } 5731 5732 if (_offset) { // Dump offset, if any 5733 if (_offset == OffsetBot) { st->print("+any"); } 5734 else if (_offset == OffsetTop) { st->print("+unknown"); } 5735 else { st->print("+%d", _offset); } 5736 } 5737 5738 st->print(" *"); 5739 } 5740 #endif 5741 5742 //============================================================================= 5743 // Convenience common pre-built types. 5744 5745 // Not-null object klass or below 5746 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT; 5747 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL; 5748 5749 bool TypeInstKlassPtr::eq(const Type *t) const { 5750 const TypeKlassPtr *p = t->is_klassptr(); 5751 return 5752 klass()->equals(p->klass()) && 5753 TypeKlassPtr::eq(p); 5754 } 5755 5756 uint TypeInstKlassPtr::hash(void) const { 5757 return klass()->hash() + TypeKlassPtr::hash(); 5758 } 5759 5760 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) { 5761 TypeInstKlassPtr *r = 5762 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons(); 5763 5764 return r; 5765 } 5766 5767 //------------------------------add_offset------------------------------------- 5768 // Access internals of klass object 5769 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const { 5770 return make( _ptr, klass(), _interfaces, xadd_offset(offset) ); 5771 } 5772 5773 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const { 5774 return make(_ptr, klass(), _interfaces, offset); 5775 } 5776 5777 //------------------------------cast_to_ptr_type------------------------------- 5778 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const { 5779 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type"); 5780 if( ptr == _ptr ) return this; 5781 return make(ptr, _klass, _interfaces, _offset); 5782 } 5783 5784 5785 bool TypeInstKlassPtr::must_be_exact() const { 5786 if (!_klass->is_loaded()) return false; 5787 ciInstanceKlass* ik = _klass->as_instance_klass(); 5788 if (ik->is_final()) return true; // cannot clear xk 5789 return false; 5790 } 5791 5792 //-----------------------------cast_to_exactness------------------------------- 5793 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const { 5794 if (klass_is_exact == (_ptr == Constant)) return this; 5795 if (must_be_exact()) return this; 5796 ciKlass* k = klass(); 5797 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset); 5798 } 5799 5800 5801 //-----------------------------as_instance_type-------------------------------- 5802 // Corresponding type for an instance of the given class. 5803 // It will be NotNull, and exact if and only if the klass type is exact. 5804 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const { 5805 ciKlass* k = klass(); 5806 bool xk = klass_is_exact(); 5807 Compile* C = Compile::current(); 5808 Dependencies* deps = C->dependencies(); 5809 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 5810 // Element is an instance 5811 bool klass_is_exact = false; 5812 const TypeInterfaces* interfaces = _interfaces; 5813 if (k->is_loaded()) { 5814 // Try to set klass_is_exact. 5815 ciInstanceKlass* ik = k->as_instance_klass(); 5816 klass_is_exact = ik->is_final(); 5817 if (!klass_is_exact && klass_change 5818 && deps != nullptr && UseUniqueSubclasses) { 5819 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 5820 if (sub != nullptr) { 5821 if (_interfaces->eq(sub)) { 5822 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 5823 k = ik = sub; 5824 xk = sub->is_final(); 5825 } 5826 } 5827 } 5828 } 5829 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0); 5830 } 5831 5832 //------------------------------xmeet------------------------------------------ 5833 // Compute the MEET of two types, return a new Type object. 5834 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const { 5835 // Perform a fast test for common case; meeting the same types together. 5836 if( this == t ) return this; // Meeting same type-rep? 5837 5838 // Current "this->_base" is Pointer 5839 switch (t->base()) { // switch on original type 5840 5841 case Int: // Mixing ints & oops happens when javac 5842 case Long: // reuses local variables 5843 case FloatTop: 5844 case FloatCon: 5845 case FloatBot: 5846 case DoubleTop: 5847 case DoubleCon: 5848 case DoubleBot: 5849 case NarrowOop: 5850 case NarrowKlass: 5851 case Bottom: // Ye Olde Default 5852 return Type::BOTTOM; 5853 case Top: 5854 return this; 5855 5856 default: // All else is a mistake 5857 typerr(t); 5858 5859 case AnyPtr: { // Meeting to AnyPtrs 5860 // Found an AnyPtr type vs self-KlassPtr type 5861 const TypePtr *tp = t->is_ptr(); 5862 int offset = meet_offset(tp->offset()); 5863 PTR ptr = meet_ptr(tp->ptr()); 5864 switch (tp->ptr()) { 5865 case TopPTR: 5866 return this; 5867 case Null: 5868 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5869 case AnyNull: 5870 return make( ptr, klass(), _interfaces, offset ); 5871 case BotPTR: 5872 case NotNull: 5873 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5874 default: typerr(t); 5875 } 5876 } 5877 5878 case RawPtr: 5879 case MetadataPtr: 5880 case OopPtr: 5881 case AryPtr: // Meet with AryPtr 5882 case InstPtr: // Meet with InstPtr 5883 return TypePtr::BOTTOM; 5884 5885 // 5886 // A-top } 5887 // / | \ } Tops 5888 // B-top A-any C-top } 5889 // | / | \ | } Any-nulls 5890 // B-any | C-any } 5891 // | | | 5892 // B-con A-con C-con } constants; not comparable across classes 5893 // | | | 5894 // B-not | C-not } 5895 // | \ | / | } not-nulls 5896 // B-bot A-not C-bot } 5897 // \ | / } Bottoms 5898 // A-bot } 5899 // 5900 5901 case InstKlassPtr: { // Meet two KlassPtr types 5902 const TypeInstKlassPtr *tkls = t->is_instklassptr(); 5903 int off = meet_offset(tkls->offset()); 5904 PTR ptr = meet_ptr(tkls->ptr()); 5905 const TypeInterfaces* interfaces = meet_interfaces(tkls); 5906 5907 ciKlass* res_klass = nullptr; 5908 bool res_xk = false; 5909 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) { 5910 case UNLOADED: 5911 ShouldNotReachHere(); 5912 case SUBTYPE: 5913 case NOT_SUBTYPE: 5914 case LCA: 5915 case QUICK: { 5916 assert(res_xk == (ptr == Constant), ""); 5917 const Type* res = make(ptr, res_klass, interfaces, off); 5918 return res; 5919 } 5920 default: 5921 ShouldNotReachHere(); 5922 } 5923 } // End of case KlassPtr 5924 case AryKlassPtr: { // All arrays inherit from Object class 5925 const TypeAryKlassPtr *tp = t->is_aryklassptr(); 5926 int offset = meet_offset(tp->offset()); 5927 PTR ptr = meet_ptr(tp->ptr()); 5928 const TypeInterfaces* interfaces = meet_interfaces(tp); 5929 const TypeInterfaces* tp_interfaces = tp->_interfaces; 5930 const TypeInterfaces* this_interfaces = _interfaces; 5931 5932 switch (ptr) { 5933 case TopPTR: 5934 case AnyNull: // Fall 'down' to dual of object klass 5935 // For instances when a subclass meets a superclass we fall 5936 // below the centerline when the superclass is exact. We need to 5937 // do the same here. 5938 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) { 5939 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset); 5940 } else { 5941 // cannot subclass, so the meet has to fall badly below the centerline 5942 ptr = NotNull; 5943 interfaces = _interfaces->intersection_with(tp->_interfaces); 5944 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 5945 } 5946 case Constant: 5947 case NotNull: 5948 case BotPTR: // Fall down to object klass 5949 // LCA is object_klass, but if we subclass from the top we can do better 5950 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) 5951 // If 'this' (InstPtr) is above the centerline and it is Object class 5952 // then we can subclass in the Java class hierarchy. 5953 // For instances when a subclass meets a superclass we fall 5954 // below the centerline when the superclass is exact. We need 5955 // to do the same here. 5956 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) { 5957 // that is, tp's array type is a subtype of my klass 5958 return TypeAryKlassPtr::make(ptr, 5959 tp->elem(), tp->klass(), offset); 5960 } 5961 } 5962 // The other case cannot happen, since I cannot be a subtype of an array. 5963 // The meet falls down to Object class below centerline. 5964 if( ptr == Constant ) 5965 ptr = NotNull; 5966 interfaces = this_interfaces->intersection_with(tp_interfaces); 5967 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 5968 default: typerr(t); 5969 } 5970 } 5971 5972 } // End of switch 5973 return this; // Return the double constant 5974 } 5975 5976 //------------------------------xdual------------------------------------------ 5977 // Dual: compute field-by-field dual 5978 const Type *TypeInstKlassPtr::xdual() const { 5979 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset()); 5980 } 5981 5982 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 5983 static_assert(std::is_base_of<T2, T1>::value, ""); 5984 if (!this_one->is_loaded() || !other->is_loaded()) { 5985 return false; 5986 } 5987 if (!this_one->is_instance_type(other)) { 5988 return false; 5989 } 5990 5991 if (!other_exact) { 5992 return false; 5993 } 5994 5995 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) { 5996 return true; 5997 } 5998 5999 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 6000 } 6001 6002 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6003 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 6004 } 6005 6006 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) { 6007 static_assert(std::is_base_of<T2, T1>::value, ""); 6008 if (!this_one->is_loaded() || !other->is_loaded()) { 6009 return false; 6010 } 6011 if (!this_one->is_instance_type(other)) { 6012 return false; 6013 } 6014 return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces); 6015 } 6016 6017 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6018 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 6019 } 6020 6021 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6022 static_assert(std::is_base_of<T2, T1>::value, ""); 6023 if (!this_one->is_loaded() || !other->is_loaded()) { 6024 return true; 6025 } 6026 6027 if (this_one->is_array_type(other)) { 6028 return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->contains(this_one->_interfaces); 6029 } 6030 6031 assert(this_one->is_instance_type(other), "unsupported"); 6032 6033 if (this_exact && other_exact) { 6034 return this_one->is_java_subtype_of(other); 6035 } 6036 6037 if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) { 6038 return false; 6039 } 6040 6041 if (this_exact) { 6042 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 6043 } 6044 6045 return true; 6046 } 6047 6048 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6049 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 6050 } 6051 6052 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const { 6053 if (!UseUniqueSubclasses) { 6054 return this; 6055 } 6056 ciKlass* k = klass(); 6057 Compile* C = Compile::current(); 6058 Dependencies* deps = C->dependencies(); 6059 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 6060 const TypeInterfaces* interfaces = _interfaces; 6061 if (k->is_loaded()) { 6062 ciInstanceKlass* ik = k->as_instance_klass(); 6063 bool klass_is_exact = ik->is_final(); 6064 if (!klass_is_exact && 6065 deps != nullptr) { 6066 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 6067 if (sub != nullptr) { 6068 if (_interfaces->eq(sub)) { 6069 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 6070 k = ik = sub; 6071 klass_is_exact = sub->is_final(); 6072 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset); 6073 } 6074 } 6075 } 6076 } 6077 return this; 6078 } 6079 6080 6081 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) { 6082 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons(); 6083 } 6084 6085 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) { 6086 if (k->is_obj_array_klass()) { 6087 // Element is an object array. Recursively call ourself. 6088 ciKlass* eklass = k->as_obj_array_klass()->element_klass(); 6089 const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false); 6090 return TypeAryKlassPtr::make(ptr, etype, nullptr, offset); 6091 } else if (k->is_type_array_klass()) { 6092 // Element is an typeArray 6093 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type()); 6094 return TypeAryKlassPtr::make(ptr, etype, k, offset); 6095 } else { 6096 ShouldNotReachHere(); 6097 return nullptr; 6098 } 6099 } 6100 6101 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) { 6102 return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling); 6103 } 6104 6105 //------------------------------eq--------------------------------------------- 6106 // Structural equality check for Type representations 6107 bool TypeAryKlassPtr::eq(const Type *t) const { 6108 const TypeAryKlassPtr *p = t->is_aryklassptr(); 6109 return 6110 _elem == p->_elem && // Check array 6111 TypeKlassPtr::eq(p); // Check sub-parts 6112 } 6113 6114 //------------------------------hash------------------------------------------- 6115 // Type-specific hashing function. 6116 uint TypeAryKlassPtr::hash(void) const { 6117 return (uint)(uintptr_t)_elem + TypeKlassPtr::hash(); 6118 } 6119 6120 //----------------------compute_klass------------------------------------------ 6121 // Compute the defining klass for this class 6122 ciKlass* TypeAryPtr::compute_klass() const { 6123 // Compute _klass based on element type. 6124 ciKlass* k_ary = nullptr; 6125 const TypeInstPtr *tinst; 6126 const TypeAryPtr *tary; 6127 const Type* el = elem(); 6128 if (el->isa_narrowoop()) { 6129 el = el->make_ptr(); 6130 } 6131 6132 // Get element klass 6133 if ((tinst = el->isa_instptr()) != nullptr) { 6134 // Leave k_ary at null. 6135 } else if ((tary = el->isa_aryptr()) != nullptr) { 6136 // Leave k_ary at null. 6137 } else if ((el->base() == Type::Top) || 6138 (el->base() == Type::Bottom)) { 6139 // element type of Bottom occurs from meet of basic type 6140 // and object; Top occurs when doing join on Bottom. 6141 // Leave k_ary at null. 6142 } else { 6143 assert(!el->isa_int(), "integral arrays must be pre-equipped with a class"); 6144 // Compute array klass directly from basic type 6145 k_ary = ciTypeArrayKlass::make(el->basic_type()); 6146 } 6147 return k_ary; 6148 } 6149 6150 //------------------------------klass------------------------------------------ 6151 // Return the defining klass for this class 6152 ciKlass* TypeAryPtr::klass() const { 6153 if( _klass ) return _klass; // Return cached value, if possible 6154 6155 // Oops, need to compute _klass and cache it 6156 ciKlass* k_ary = compute_klass(); 6157 6158 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { 6159 // The _klass field acts as a cache of the underlying 6160 // ciKlass for this array type. In order to set the field, 6161 // we need to cast away const-ness. 6162 // 6163 // IMPORTANT NOTE: we *never* set the _klass field for the 6164 // type TypeAryPtr::OOPS. This Type is shared between all 6165 // active compilations. However, the ciKlass which represents 6166 // this Type is *not* shared between compilations, so caching 6167 // this value would result in fetching a dangling pointer. 6168 // 6169 // Recomputing the underlying ciKlass for each request is 6170 // a bit less efficient than caching, but calls to 6171 // TypeAryPtr::OOPS->klass() are not common enough to matter. 6172 ((TypeAryPtr*)this)->_klass = k_ary; 6173 } 6174 return k_ary; 6175 } 6176 6177 // Is there a single ciKlass* that can represent that type? 6178 ciKlass* TypeAryPtr::exact_klass_helper() const { 6179 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) { 6180 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper(); 6181 if (k == nullptr) { 6182 return nullptr; 6183 } 6184 k = ciObjArrayKlass::make(k); 6185 return k; 6186 } 6187 6188 return klass(); 6189 } 6190 6191 const Type* TypeAryPtr::base_element_type(int& dims) const { 6192 const Type* elem = this->elem(); 6193 dims = 1; 6194 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) { 6195 elem = elem->make_ptr()->is_aryptr()->elem(); 6196 dims++; 6197 } 6198 return elem; 6199 } 6200 6201 //------------------------------add_offset------------------------------------- 6202 // Access internals of klass object 6203 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const { 6204 return make(_ptr, elem(), klass(), xadd_offset(offset)); 6205 } 6206 6207 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const { 6208 return make(_ptr, elem(), klass(), offset); 6209 } 6210 6211 //------------------------------cast_to_ptr_type------------------------------- 6212 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const { 6213 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type"); 6214 if (ptr == _ptr) return this; 6215 return make(ptr, elem(), _klass, _offset); 6216 } 6217 6218 bool TypeAryKlassPtr::must_be_exact() const { 6219 if (_elem == Type::BOTTOM) return false; 6220 if (_elem == Type::TOP ) return false; 6221 const TypeKlassPtr* tk = _elem->isa_klassptr(); 6222 if (!tk) return true; // a primitive type, like int 6223 return tk->must_be_exact(); 6224 } 6225 6226 6227 //-----------------------------cast_to_exactness------------------------------- 6228 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const { 6229 if (must_be_exact()) return this; // cannot clear xk 6230 ciKlass* k = _klass; 6231 const Type* elem = this->elem(); 6232 if (elem->isa_klassptr() && !klass_is_exact) { 6233 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact); 6234 } 6235 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset); 6236 } 6237 6238 6239 //-----------------------------as_instance_type-------------------------------- 6240 // Corresponding type for an instance of the given class. 6241 // It will be NotNull, and exact if and only if the klass type is exact. 6242 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const { 6243 ciKlass* k = klass(); 6244 bool xk = klass_is_exact(); 6245 const Type* el = nullptr; 6246 if (elem()->isa_klassptr()) { 6247 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false); 6248 k = nullptr; 6249 } else { 6250 el = elem(); 6251 } 6252 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0); 6253 } 6254 6255 6256 //------------------------------xmeet------------------------------------------ 6257 // Compute the MEET of two types, return a new Type object. 6258 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const { 6259 // Perform a fast test for common case; meeting the same types together. 6260 if( this == t ) return this; // Meeting same type-rep? 6261 6262 // Current "this->_base" is Pointer 6263 switch (t->base()) { // switch on original type 6264 6265 case Int: // Mixing ints & oops happens when javac 6266 case Long: // reuses local variables 6267 case FloatTop: 6268 case FloatCon: 6269 case FloatBot: 6270 case DoubleTop: 6271 case DoubleCon: 6272 case DoubleBot: 6273 case NarrowOop: 6274 case NarrowKlass: 6275 case Bottom: // Ye Olde Default 6276 return Type::BOTTOM; 6277 case Top: 6278 return this; 6279 6280 default: // All else is a mistake 6281 typerr(t); 6282 6283 case AnyPtr: { // Meeting to AnyPtrs 6284 // Found an AnyPtr type vs self-KlassPtr type 6285 const TypePtr *tp = t->is_ptr(); 6286 int offset = meet_offset(tp->offset()); 6287 PTR ptr = meet_ptr(tp->ptr()); 6288 switch (tp->ptr()) { 6289 case TopPTR: 6290 return this; 6291 case Null: 6292 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6293 case AnyNull: 6294 return make( ptr, _elem, klass(), offset ); 6295 case BotPTR: 6296 case NotNull: 6297 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6298 default: typerr(t); 6299 } 6300 } 6301 6302 case RawPtr: 6303 case MetadataPtr: 6304 case OopPtr: 6305 case AryPtr: // Meet with AryPtr 6306 case InstPtr: // Meet with InstPtr 6307 return TypePtr::BOTTOM; 6308 6309 // 6310 // A-top } 6311 // / | \ } Tops 6312 // B-top A-any C-top } 6313 // | / | \ | } Any-nulls 6314 // B-any | C-any } 6315 // | | | 6316 // B-con A-con C-con } constants; not comparable across classes 6317 // | | | 6318 // B-not | C-not } 6319 // | \ | / | } not-nulls 6320 // B-bot A-not C-bot } 6321 // \ | / } Bottoms 6322 // A-bot } 6323 // 6324 6325 case AryKlassPtr: { // Meet two KlassPtr types 6326 const TypeAryKlassPtr *tap = t->is_aryklassptr(); 6327 int off = meet_offset(tap->offset()); 6328 const Type* elem = _elem->meet(tap->_elem); 6329 6330 PTR ptr = meet_ptr(tap->ptr()); 6331 ciKlass* res_klass = nullptr; 6332 bool res_xk = false; 6333 meet_aryptr(ptr, elem, this, tap, res_klass, res_xk); 6334 assert(res_xk == (ptr == Constant), ""); 6335 return make(ptr, elem, res_klass, off); 6336 } // End of case KlassPtr 6337 case InstKlassPtr: { 6338 const TypeInstKlassPtr *tp = t->is_instklassptr(); 6339 int offset = meet_offset(tp->offset()); 6340 PTR ptr = meet_ptr(tp->ptr()); 6341 const TypeInterfaces* interfaces = meet_interfaces(tp); 6342 const TypeInterfaces* tp_interfaces = tp->_interfaces; 6343 const TypeInterfaces* this_interfaces = _interfaces; 6344 6345 switch (ptr) { 6346 case TopPTR: 6347 case AnyNull: // Fall 'down' to dual of object klass 6348 // For instances when a subclass meets a superclass we fall 6349 // below the centerline when the superclass is exact. We need to 6350 // do the same here. 6351 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) { 6352 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset); 6353 } else { 6354 // cannot subclass, so the meet has to fall badly below the centerline 6355 ptr = NotNull; 6356 interfaces = this_interfaces->intersection_with(tp->_interfaces); 6357 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 6358 } 6359 case Constant: 6360 case NotNull: 6361 case BotPTR: // Fall down to object klass 6362 // LCA is object_klass, but if we subclass from the top we can do better 6363 if (above_centerline(tp->ptr())) { 6364 // If 'tp' is above the centerline and it is Object class 6365 // then we can subclass in the Java class hierarchy. 6366 // For instances when a subclass meets a superclass we fall 6367 // below the centerline when the superclass is exact. We need 6368 // to do the same here. 6369 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) { 6370 // that is, my array type is a subtype of 'tp' klass 6371 return make(ptr, _elem, _klass, offset); 6372 } 6373 } 6374 // The other case cannot happen, since t cannot be a subtype of an array. 6375 // The meet falls down to Object class below centerline. 6376 if (ptr == Constant) 6377 ptr = NotNull; 6378 interfaces = this_interfaces->intersection_with(tp_interfaces); 6379 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 6380 default: typerr(t); 6381 } 6382 } 6383 6384 } // End of switch 6385 return this; // Return the double constant 6386 } 6387 6388 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6389 static_assert(std::is_base_of<T2, T1>::value, ""); 6390 6391 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 6392 return true; 6393 } 6394 6395 int dummy; 6396 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6397 6398 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6399 return false; 6400 } 6401 6402 if (this_one->is_instance_type(other)) { 6403 return other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->intersection_with(this_one->_interfaces)->eq(other->_interfaces) && other_exact; 6404 } 6405 6406 assert(this_one->is_array_type(other), ""); 6407 const T1* other_ary = this_one->is_array_type(other); 6408 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6409 if (other_top_or_bottom) { 6410 return false; 6411 } 6412 6413 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6414 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6415 if (this_elem != nullptr && other_elem != nullptr) { 6416 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6417 } 6418 if (this_elem == nullptr && other_elem == nullptr) { 6419 return this_one->klass()->is_subtype_of(other->klass()); 6420 } 6421 return false; 6422 } 6423 6424 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6425 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6426 } 6427 6428 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) { 6429 static_assert(std::is_base_of<T2, T1>::value, ""); 6430 6431 int dummy; 6432 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6433 6434 if (!this_one->is_array_type(other) || 6435 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6436 return false; 6437 } 6438 const T1* other_ary = this_one->is_array_type(other); 6439 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6440 6441 if (other_top_or_bottom) { 6442 return false; 6443 } 6444 6445 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6446 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6447 if (other_elem != nullptr && this_elem != nullptr) { 6448 return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem)); 6449 } 6450 if (other_elem == nullptr && this_elem == nullptr) { 6451 return this_one->klass()->equals(other->klass()); 6452 } 6453 return false; 6454 } 6455 6456 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6457 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 6458 } 6459 6460 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6461 static_assert(std::is_base_of<T2, T1>::value, ""); 6462 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 6463 return true; 6464 } 6465 if (!this_one->is_loaded() || !other->is_loaded()) { 6466 return true; 6467 } 6468 if (this_one->is_instance_type(other)) { 6469 return other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->intersection_with(this_one->_interfaces)->eq(other->_interfaces); 6470 } 6471 6472 int dummy; 6473 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6474 if (this_top_or_bottom) { 6475 return true; 6476 } 6477 6478 assert(this_one->is_array_type(other), ""); 6479 6480 const T1* other_ary = this_one->is_array_type(other); 6481 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6482 if (other_top_or_bottom) { 6483 return true; 6484 } 6485 if (this_exact && other_exact) { 6486 return this_one->is_java_subtype_of(other); 6487 } 6488 6489 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6490 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6491 if (other_elem != nullptr && this_elem != nullptr) { 6492 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6493 } 6494 if (other_elem == nullptr && this_elem == nullptr) { 6495 return this_one->klass()->is_subtype_of(other->klass()); 6496 } 6497 return false; 6498 } 6499 6500 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6501 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6502 } 6503 6504 //------------------------------xdual------------------------------------------ 6505 // Dual: compute field-by-field dual 6506 const Type *TypeAryKlassPtr::xdual() const { 6507 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset()); 6508 } 6509 6510 // Is there a single ciKlass* that can represent that type? 6511 ciKlass* TypeAryKlassPtr::exact_klass_helper() const { 6512 if (elem()->isa_klassptr()) { 6513 ciKlass* k = elem()->is_klassptr()->exact_klass_helper(); 6514 if (k == nullptr) { 6515 return nullptr; 6516 } 6517 k = ciObjArrayKlass::make(k); 6518 return k; 6519 } 6520 6521 return klass(); 6522 } 6523 6524 ciKlass* TypeAryKlassPtr::klass() const { 6525 if (_klass != nullptr) { 6526 return _klass; 6527 } 6528 ciKlass* k = nullptr; 6529 if (elem()->isa_klassptr()) { 6530 // leave null 6531 } else if ((elem()->base() == Type::Top) || 6532 (elem()->base() == Type::Bottom)) { 6533 } else { 6534 k = ciTypeArrayKlass::make(elem()->basic_type()); 6535 ((TypeAryKlassPtr*)this)->_klass = k; 6536 } 6537 return k; 6538 } 6539 6540 //------------------------------dump2------------------------------------------ 6541 // Dump Klass Type 6542 #ifndef PRODUCT 6543 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 6544 switch( _ptr ) { 6545 case Constant: 6546 st->print("precise "); 6547 case NotNull: 6548 { 6549 st->print("["); 6550 _elem->dump2(d, depth, st); 6551 _interfaces->dump(st); 6552 st->print(": "); 6553 } 6554 case BotPTR: 6555 if( !WizardMode && !Verbose && _ptr != Constant ) break; 6556 case TopPTR: 6557 case AnyNull: 6558 st->print(":%s", ptr_msg[_ptr]); 6559 if( _ptr == Constant ) st->print(":exact"); 6560 break; 6561 default: 6562 break; 6563 } 6564 6565 if( _offset ) { // Dump offset, if any 6566 if( _offset == OffsetBot ) { st->print("+any"); } 6567 else if( _offset == OffsetTop ) { st->print("+unknown"); } 6568 else { st->print("+%d", _offset); } 6569 } 6570 6571 st->print(" *"); 6572 } 6573 #endif 6574 6575 const Type* TypeAryKlassPtr::base_element_type(int& dims) const { 6576 const Type* elem = this->elem(); 6577 dims = 1; 6578 while (elem->isa_aryklassptr()) { 6579 elem = elem->is_aryklassptr()->elem(); 6580 dims++; 6581 } 6582 return elem; 6583 } 6584 6585 //============================================================================= 6586 // Convenience common pre-built types. 6587 6588 //------------------------------make------------------------------------------- 6589 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) { 6590 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons(); 6591 } 6592 6593 //------------------------------make------------------------------------------- 6594 const TypeFunc *TypeFunc::make(ciMethod* method) { 6595 Compile* C = Compile::current(); 6596 const TypeFunc* tf = C->last_tf(method); // check cache 6597 if (tf != nullptr) return tf; // The hit rate here is almost 50%. 6598 const TypeTuple *domain; 6599 if (method->is_static()) { 6600 domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces); 6601 } else { 6602 domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces); 6603 } 6604 const TypeTuple *range = TypeTuple::make_range(method->signature(), ignore_interfaces); 6605 tf = TypeFunc::make(domain, range); 6606 C->set_last_tf(method, tf); // fill cache 6607 return tf; 6608 } 6609 6610 //------------------------------meet------------------------------------------- 6611 // Compute the MEET of two types. It returns a new Type object. 6612 const Type *TypeFunc::xmeet( const Type *t ) const { 6613 // Perform a fast test for common case; meeting the same types together. 6614 if( this == t ) return this; // Meeting same type-rep? 6615 6616 // Current "this->_base" is Func 6617 switch (t->base()) { // switch on original type 6618 6619 case Bottom: // Ye Olde Default 6620 return t; 6621 6622 default: // All else is a mistake 6623 typerr(t); 6624 6625 case Top: 6626 break; 6627 } 6628 return this; // Return the double constant 6629 } 6630 6631 //------------------------------xdual------------------------------------------ 6632 // Dual: compute field-by-field dual 6633 const Type *TypeFunc::xdual() const { 6634 return this; 6635 } 6636 6637 //------------------------------eq--------------------------------------------- 6638 // Structural equality check for Type representations 6639 bool TypeFunc::eq( const Type *t ) const { 6640 const TypeFunc *a = (const TypeFunc*)t; 6641 return _domain == a->_domain && 6642 _range == a->_range; 6643 } 6644 6645 //------------------------------hash------------------------------------------- 6646 // Type-specific hashing function. 6647 uint TypeFunc::hash(void) const { 6648 return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range; 6649 } 6650 6651 //------------------------------dump2------------------------------------------ 6652 // Dump Function Type 6653 #ifndef PRODUCT 6654 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { 6655 if( _range->cnt() <= Parms ) 6656 st->print("void"); 6657 else { 6658 uint i; 6659 for (i = Parms; i < _range->cnt()-1; i++) { 6660 _range->field_at(i)->dump2(d,depth,st); 6661 st->print("/"); 6662 } 6663 _range->field_at(i)->dump2(d,depth,st); 6664 } 6665 st->print(" "); 6666 st->print("( "); 6667 if( !depth || d[this] ) { // Check for recursive dump 6668 st->print("...)"); 6669 return; 6670 } 6671 d.Insert((void*)this,(void*)this); // Stop recursion 6672 if (Parms < _domain->cnt()) 6673 _domain->field_at(Parms)->dump2(d,depth-1,st); 6674 for (uint i = Parms+1; i < _domain->cnt(); i++) { 6675 st->print(", "); 6676 _domain->field_at(i)->dump2(d,depth-1,st); 6677 } 6678 st->print(" )"); 6679 } 6680 #endif 6681 6682 //------------------------------singleton-------------------------------------- 6683 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 6684 // constants (Ldi nodes). Singletons are integer, float or double constants 6685 // or a single symbol. 6686 bool TypeFunc::singleton(void) const { 6687 return false; // Never a singleton 6688 } 6689 6690 bool TypeFunc::empty(void) const { 6691 return false; // Never empty 6692 } 6693 6694 6695 BasicType TypeFunc::return_type() const{ 6696 if (range()->cnt() == TypeFunc::Parms) { 6697 return T_VOID; 6698 } 6699 return range()->field_at(TypeFunc::Parms)->basic_type(); 6700 }