1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "interpreter/bytecode.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvm.h"
  42 #include "logging/log.hpp"
  43 #include "logging/logLevel.hpp"
  44 #include "logging/logMessage.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/constantPool.hpp"
  51 #include "oops/fieldStreams.inline.hpp"
  52 #include "oops/method.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/objArrayOop.inline.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/typeArrayOop.inline.hpp"
  57 #include "oops/verifyOopClosure.hpp"
  58 #include "prims/jvmtiDeferredUpdates.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/jvmtiThreadState.hpp"
  61 #include "prims/methodHandles.hpp"
  62 #include "prims/vectorSupport.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/continuation.hpp"
  65 #include "runtime/continuationEntry.inline.hpp"
  66 #include "runtime/deoptimization.hpp"
  67 #include "runtime/escapeBarrier.hpp"
  68 #include "runtime/fieldDescriptor.hpp"
  69 #include "runtime/fieldDescriptor.inline.hpp"
  70 #include "runtime/frame.inline.hpp"
  71 #include "runtime/handles.inline.hpp"
  72 #include "runtime/interfaceSupport.inline.hpp"
  73 #include "runtime/javaThread.hpp"
  74 #include "runtime/jniHandles.inline.hpp"
  75 #include "runtime/keepStackGCProcessed.hpp"
  76 #include "runtime/objectMonitor.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepointVerifiers.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/signature.hpp"
  81 #include "runtime/stackFrameStream.inline.hpp"
  82 #include "runtime/stackValue.hpp"
  83 #include "runtime/stackWatermarkSet.hpp"
  84 #include "runtime/stubRoutines.hpp"
  85 #include "runtime/synchronizer.hpp"
  86 #include "runtime/threadSMR.hpp"
  87 #include "runtime/threadWXSetters.inline.hpp"
  88 #include "runtime/vframe.hpp"
  89 #include "runtime/vframeArray.hpp"
  90 #include "runtime/vframe_hp.hpp"
  91 #include "runtime/vmOperations.hpp"
  92 #include "utilities/events.hpp"
  93 #include "utilities/growableArray.hpp"
  94 #include "utilities/macros.hpp"
  95 #include "utilities/preserveException.hpp"
  96 #include "utilities/xmlstream.hpp"
  97 #if INCLUDE_JFR
  98 #include "jfr/jfrEvents.hpp"
  99 #include "jfr/metadata/jfrSerializer.hpp"
 100 #endif
 101 
 102 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 103 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 104 bool     DeoptimizationScope::_committing_in_progress = false;
 105 
 106 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 107   DEBUG_ONLY(_deopted = false;)
 108 
 109   MutexLocker ml(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
 110   // If there is nothing to deopt _required_gen is the same as comitted.
 111   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 112 }
 113 
 114 DeoptimizationScope::~DeoptimizationScope() {
 115   assert(_deopted, "Deopt not executed");
 116 }
 117 
 118 void DeoptimizationScope::mark(CompiledMethod* cm, bool inc_recompile_counts) {
 119   MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock,
 120                  Mutex::_no_safepoint_check_flag);
 121 
 122   // If it's already marked but we still need it to be deopted.
 123   if (cm->is_marked_for_deoptimization()) {
 124     dependent(cm);
 125     return;
 126   }
 127 
 128   CompiledMethod::DeoptimizationStatus status =
 129     inc_recompile_counts ? CompiledMethod::deoptimize : CompiledMethod::deoptimize_noupdate;
 130   Atomic::store(&cm->_deoptimization_status, status);
 131 
 132   // Make sure active is not committed
 133   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 134   assert(cm->_deoptimization_generation == 0, "Is already marked");
 135 
 136   cm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 137   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 138 }
 139 
 140 void DeoptimizationScope::dependent(CompiledMethod* cm) {
 141   MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock,
 142                  Mutex::_no_safepoint_check_flag);
 143   // A method marked by someone else may have a _required_gen lower than what we marked with.
 144   // Therefore only store it if it's higher than _required_gen.
 145   if (_required_gen < cm->_deoptimization_generation) {
 146     _required_gen = cm->_deoptimization_generation;
 147   }
 148 }
 149 
 150 void DeoptimizationScope::deoptimize_marked() {
 151   assert(!_deopted, "Already deopted");
 152 
 153   // We are not alive yet.
 154   if (!Universe::is_fully_initialized()) {
 155     DEBUG_ONLY(_deopted = true;)
 156     return;
 157   }
 158 
 159   // Safepoints are a special case, handled here.
 160   if (SafepointSynchronize::is_at_safepoint()) {
 161     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 162     DeoptimizationScope::_active_deopt_gen++;
 163     Deoptimization::deoptimize_all_marked();
 164     DEBUG_ONLY(_deopted = true;)
 165     return;
 166   }
 167 
 168   uint64_t comitting = 0;
 169   bool wait = false;
 170   while (true) {
 171     {
 172       MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock,
 173                  Mutex::_no_safepoint_check_flag);
 174       // First we check if we or someone else already deopted the gen we want.
 175       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 176         DEBUG_ONLY(_deopted = true;)
 177         return;
 178       }
 179       if (!_committing_in_progress) {
 180         // The version we are about to commit.
 181         comitting = DeoptimizationScope::_active_deopt_gen;
 182         // Make sure new marks use a higher gen.
 183         DeoptimizationScope::_active_deopt_gen++;
 184         _committing_in_progress = true;
 185         wait = false;
 186       } else {
 187         // Another thread is handshaking and committing a gen.
 188         wait = true;
 189       }
 190     }
 191     if (wait) {
 192       // Wait and let the concurrent handshake be performed.
 193       ThreadBlockInVM tbivm(JavaThread::current());
 194       os::naked_yield();
 195     } else {
 196       // Performs the handshake.
 197       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 198       DEBUG_ONLY(_deopted = true;)
 199       {
 200         MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock,
 201                        Mutex::_no_safepoint_check_flag);
 202         // Make sure that committed doesn't go backwards.
 203         // Should only happen if we did a deopt during a safepoint above.
 204         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 205           DeoptimizationScope::_committed_deopt_gen = comitting;
 206         }
 207         _committing_in_progress = false;
 208 
 209         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 210 
 211         return;
 212       }
 213     }
 214   }
 215 }
 216 
 217 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 218                                          int  caller_adjustment,
 219                                          int  caller_actual_parameters,
 220                                          int  number_of_frames,
 221                                          intptr_t* frame_sizes,
 222                                          address* frame_pcs,
 223                                          BasicType return_type,
 224                                          int exec_mode) {
 225   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 226   _caller_adjustment         = caller_adjustment;
 227   _caller_actual_parameters  = caller_actual_parameters;
 228   _number_of_frames          = number_of_frames;
 229   _frame_sizes               = frame_sizes;
 230   _frame_pcs                 = frame_pcs;
 231   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 232   _return_type               = return_type;
 233   _initial_info              = 0;
 234   // PD (x86 only)
 235   _counter_temp              = 0;
 236   _unpack_kind               = exec_mode;
 237   _sender_sp_temp            = 0;
 238 
 239   _total_frame_sizes         = size_of_frames();
 240   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 241 }
 242 
 243 Deoptimization::UnrollBlock::~UnrollBlock() {
 244   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 245   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 246   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 247 }
 248 
 249 int Deoptimization::UnrollBlock::size_of_frames() const {
 250   // Account first for the adjustment of the initial frame
 251   int result = _caller_adjustment;
 252   for (int index = 0; index < number_of_frames(); index++) {
 253     result += frame_sizes()[index];
 254   }
 255   return result;
 256 }
 257 
 258 void Deoptimization::UnrollBlock::print() {
 259   ResourceMark rm;
 260   stringStream st;
 261   st.print_cr("UnrollBlock");
 262   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 263   st.print(   "  frame_sizes: ");
 264   for (int index = 0; index < number_of_frames(); index++) {
 265     st.print(INTX_FORMAT " ", frame_sizes()[index]);
 266   }
 267   st.cr();
 268   tty->print_raw(st.freeze());
 269 }
 270 
 271 // In order to make fetch_unroll_info work properly with escape
 272 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 273 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 274 // which is called from the method fetch_unroll_info_helper below.
 275 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 276   // fetch_unroll_info() is called at the beginning of the deoptimization
 277   // handler. Note this fact before we start generating temporary frames
 278   // that can confuse an asynchronous stack walker. This counter is
 279   // decremented at the end of unpack_frames().
 280   current->inc_in_deopt_handler();
 281 
 282   if (exec_mode == Unpack_exception) {
 283     // When we get here, a callee has thrown an exception into a deoptimized
 284     // frame. That throw might have deferred stack watermark checking until
 285     // after unwinding. So we deal with such deferred requests here.
 286     StackWatermarkSet::after_unwind(current);
 287   }
 288 
 289   return fetch_unroll_info_helper(current, exec_mode);
 290 JRT_END
 291 
 292 #if COMPILER2_OR_JVMCI
 293 // print information about reallocated objects
 294 static void print_objects(JavaThread* deoptee_thread,
 295                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 296   ResourceMark rm;
 297   stringStream st;  // change to logStream with logging
 298   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 299   fieldDescriptor fd;
 300 
 301   for (int i = 0; i < objects->length(); i++) {
 302     ObjectValue* sv = (ObjectValue*) objects->at(i);
 303     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 304     Handle obj = sv->value();
 305 
 306     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 307     k->print_value_on(&st);
 308     assert(obj.not_null() || realloc_failures, "reallocation was missed");
 309     if (obj.is_null()) {
 310       st.print(" allocation failed");
 311     } else {
 312       st.print(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize);
 313     }
 314     st.cr();
 315 
 316     if (Verbose && !obj.is_null()) {
 317       k->oop_print_on(obj(), &st);
 318     }
 319   }
 320   tty->print_raw(st.freeze());
 321 }
 322 
 323 static bool rematerialize_objects(JavaThread* thread, int exec_mode, CompiledMethod* compiled_method,
 324                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 325                                   bool& deoptimized_objects) {
 326   bool realloc_failures = false;
 327   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 328 
 329   JavaThread* deoptee_thread = chunk->at(0)->thread();
 330   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 331          "a frame can only be deoptimized by the owner thread");
 332 
 333   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 334 
 335   // The flag return_oop() indicates call sites which return oop
 336   // in compiled code. Such sites include java method calls,
 337   // runtime calls (for example, used to allocate new objects/arrays
 338   // on slow code path) and any other calls generated in compiled code.
 339   // It is not guaranteed that we can get such information here only
 340   // by analyzing bytecode in deoptimized frames. This is why this flag
 341   // is set during method compilation (see Compile::Process_OopMap_Node()).
 342   // If the previous frame was popped or if we are dispatching an exception,
 343   // we don't have an oop result.
 344   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 345   Handle return_value;
 346   if (save_oop_result) {
 347     // Reallocation may trigger GC. If deoptimization happened on return from
 348     // call which returns oop we need to save it since it is not in oopmap.
 349     oop result = deoptee.saved_oop_result(&map);
 350     assert(oopDesc::is_oop_or_null(result), "must be oop");
 351     return_value = Handle(thread, result);
 352     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 353     if (TraceDeoptimization) {
 354       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 355       tty->cr();
 356     }
 357   }
 358   if (objects != nullptr) {
 359     if (exec_mode == Deoptimization::Unpack_none) {
 360       assert(thread->thread_state() == _thread_in_vm, "assumption");
 361       JavaThread* THREAD = thread; // For exception macros.
 362       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 363       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 364       deoptimized_objects = true;
 365     } else {
 366       JavaThread* current = thread; // For JRT_BLOCK
 367       JRT_BLOCK
 368       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 369       JRT_END
 370     }
 371     bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 372     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 373     if (TraceDeoptimization) {
 374       print_objects(deoptee_thread, objects, realloc_failures);
 375     }
 376   }
 377   if (save_oop_result) {
 378     // Restore result.
 379     deoptee.set_saved_oop_result(&map, return_value());
 380   }
 381   return realloc_failures;
 382 }
 383 
 384 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 385                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 386   JavaThread* deoptee_thread = chunk->at(0)->thread();
 387   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 388   assert(thread == Thread::current(), "should be");
 389   HandleMark hm(thread);
 390 #ifndef PRODUCT
 391   bool first = true;
 392 #endif // !PRODUCT
 393   for (int i = 0; i < chunk->length(); i++) {
 394     compiledVFrame* cvf = chunk->at(i);
 395     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 396     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 397     if (monitors->is_nonempty()) {
 398       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 399                                                      exec_mode, realloc_failures);
 400       deoptimized_objects = deoptimized_objects || relocked;
 401 #ifndef PRODUCT
 402       if (PrintDeoptimizationDetails) {
 403         ResourceMark rm;
 404         stringStream st;
 405         for (int j = 0; j < monitors->length(); j++) {
 406           MonitorInfo* mi = monitors->at(j);
 407           if (mi->eliminated()) {
 408             if (first) {
 409               first = false;
 410               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 411             }
 412             if (exec_mode == Deoptimization::Unpack_none) {
 413               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 414               if (monitor != nullptr && monitor->object() == mi->owner()) {
 415                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 416                 continue;
 417               }
 418             }
 419             if (mi->owner_is_scalar_replaced()) {
 420               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 421               st.print_cr("     failed reallocation for klass %s", k->external_name());
 422             } else {
 423               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 424             }
 425           }
 426         }
 427         tty->print_raw(st.freeze());
 428       }
 429 #endif // !PRODUCT
 430     }
 431   }
 432 }
 433 
 434 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 435 // The given vframes cover one physical frame.
 436 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 437                                                  bool& realloc_failures) {
 438   frame deoptee = chunk->at(0)->fr();
 439   JavaThread* deoptee_thread = chunk->at(0)->thread();
 440   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 441   RegisterMap map(chunk->at(0)->register_map());
 442   bool deoptimized_objects = false;
 443 
 444   bool const jvmci_enabled = JVMCI_ONLY(UseJVMCICompiler) NOT_JVMCI(false);
 445 
 446   // Reallocate the non-escaping objects and restore their fields.
 447   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 448                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 449     realloc_failures = rematerialize_objects(thread, Unpack_none, cm, deoptee, map, chunk, deoptimized_objects);
 450   }
 451 
 452   // MonitorInfo structures used in eliminate_locks are not GC safe.
 453   NoSafepointVerifier no_safepoint;
 454 
 455   // Now relock objects if synchronization on them was eliminated.
 456   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 457     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 458   }
 459   return deoptimized_objects;
 460 }
 461 #endif // COMPILER2_OR_JVMCI
 462 
 463 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 464 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 465   // When we get here we are about to unwind the deoptee frame. In order to
 466   // catch not yet safe to use frames, the following stack watermark barrier
 467   // poll will make such frames safe to use.
 468   StackWatermarkSet::before_unwind(current);
 469 
 470   // Note: there is a safepoint safety issue here. No matter whether we enter
 471   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 472   // the vframeArray is created.
 473   //
 474 
 475   // Allocate our special deoptimization ResourceMark
 476   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 477   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 478   current->set_deopt_mark(dmark);
 479 
 480   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 481   RegisterMap map(current,
 482                   RegisterMap::UpdateMap::include,
 483                   RegisterMap::ProcessFrames::include,
 484                   RegisterMap::WalkContinuation::skip);
 485   RegisterMap dummy_map(current,
 486                         RegisterMap::UpdateMap::skip,
 487                         RegisterMap::ProcessFrames::include,
 488                         RegisterMap::WalkContinuation::skip);
 489   // Now get the deoptee with a valid map
 490   frame deoptee = stub_frame.sender(&map);
 491   // Set the deoptee nmethod
 492   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 493   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 494   current->set_deopt_compiled_method(cm);
 495 
 496   if (VerifyStack) {
 497     current->validate_frame_layout();
 498   }
 499 
 500   // Create a growable array of VFrames where each VFrame represents an inlined
 501   // Java frame.  This storage is allocated with the usual system arena.
 502   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 503   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 504   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 505   while (!vf->is_top()) {
 506     assert(vf->is_compiled_frame(), "Wrong frame type");
 507     chunk->push(compiledVFrame::cast(vf));
 508     vf = vf->sender();
 509   }
 510   assert(vf->is_compiled_frame(), "Wrong frame type");
 511   chunk->push(compiledVFrame::cast(vf));
 512 
 513   bool realloc_failures = false;
 514 
 515 #if COMPILER2_OR_JVMCI
 516   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 517 
 518   // Reallocate the non-escaping objects and restore their fields. Then
 519   // relock objects if synchronization on them was eliminated.
 520   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 521                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 522     bool unused;
 523     realloc_failures = rematerialize_objects(current, exec_mode, cm, deoptee, map, chunk, unused);
 524   }
 525 #endif // COMPILER2_OR_JVMCI
 526 
 527   // Ensure that no safepoint is taken after pointers have been stored
 528   // in fields of rematerialized objects.  If a safepoint occurs from here on
 529   // out the java state residing in the vframeArray will be missed.
 530   // Locks may be rebaised in a safepoint.
 531   NoSafepointVerifier no_safepoint;
 532 
 533 #if COMPILER2_OR_JVMCI
 534   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 535       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 536     bool unused;
 537     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 538   }
 539 #endif // COMPILER2_OR_JVMCI
 540 
 541   ScopeDesc* trap_scope = chunk->at(0)->scope();
 542   Handle exceptionObject;
 543   if (trap_scope->rethrow_exception()) {
 544 #ifndef PRODUCT
 545     if (PrintDeoptimizationDetails) {
 546       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 547     }
 548 #endif // !PRODUCT
 549 
 550     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 551     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 552     ScopeValue* topOfStack = expressions->top();
 553     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 554     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 555   }
 556 
 557   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 558 #if COMPILER2_OR_JVMCI
 559   if (realloc_failures) {
 560     // This destroys all ScopedValue bindings.
 561     current->clear_scopedValueBindings();
 562     pop_frames_failed_reallocs(current, array);
 563   }
 564 #endif
 565 
 566   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 567   current->set_vframe_array_head(array);
 568 
 569   // Now that the vframeArray has been created if we have any deferred local writes
 570   // added by jvmti then we can free up that structure as the data is now in the
 571   // vframeArray
 572 
 573   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 574 
 575   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 576   CodeBlob* cb = stub_frame.cb();
 577   // Verify we have the right vframeArray
 578   assert(cb->frame_size() >= 0, "Unexpected frame size");
 579   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 580 
 581   // If the deopt call site is a MethodHandle invoke call site we have
 582   // to adjust the unpack_sp.
 583   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 584   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 585     unpack_sp = deoptee.unextended_sp();
 586 
 587 #ifdef ASSERT
 588   assert(cb->is_deoptimization_stub() ||
 589          cb->is_uncommon_trap_stub() ||
 590          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 591          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 592          "unexpected code blob: %s", cb->name());
 593 #endif
 594 
 595   // This is a guarantee instead of an assert because if vframe doesn't match
 596   // we will unpack the wrong deoptimized frame and wind up in strange places
 597   // where it will be very difficult to figure out what went wrong. Better
 598   // to die an early death here than some very obscure death later when the
 599   // trail is cold.
 600   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 601   // in that it will fail to detect a problem when there is one. This needs
 602   // more work in tiger timeframe.
 603   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 604 
 605   int number_of_frames = array->frames();
 606 
 607   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 608   // virtual activation, which is the reverse of the elements in the vframes array.
 609   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 610   // +1 because we always have an interpreter return address for the final slot.
 611   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 612   int popframe_extra_args = 0;
 613   // Create an interpreter return address for the stub to use as its return
 614   // address so the skeletal frames are perfectly walkable
 615   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 616 
 617   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 618   // activation be put back on the expression stack of the caller for reexecution
 619   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 620     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 621   }
 622 
 623   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 624   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 625   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 626   //
 627   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 628   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 629 
 630   // It's possible that the number of parameters at the call site is
 631   // different than number of arguments in the callee when method
 632   // handles are used.  If the caller is interpreted get the real
 633   // value so that the proper amount of space can be added to it's
 634   // frame.
 635   bool caller_was_method_handle = false;
 636   if (deopt_sender.is_interpreted_frame()) {
 637     methodHandle method(current, deopt_sender.interpreter_frame_method());
 638     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 639     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 640       // Method handle invokes may involve fairly arbitrary chains of
 641       // calls so it's impossible to know how much actual space the
 642       // caller has for locals.
 643       caller_was_method_handle = true;
 644     }
 645   }
 646 
 647   //
 648   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 649   // frame_sizes/frame_pcs[1] next oldest frame (int)
 650   // frame_sizes/frame_pcs[n] youngest frame (int)
 651   //
 652   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 653   // owns the space for the return address to it's caller).  Confusing ain't it.
 654   //
 655   // The vframe array can address vframes with indices running from
 656   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 657   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 658   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 659   // so things look a little strange in this loop.
 660   //
 661   int callee_parameters = 0;
 662   int callee_locals = 0;
 663   for (int index = 0; index < array->frames(); index++ ) {
 664     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 665     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 666     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 667     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 668                                                                                                     callee_locals,
 669                                                                                                     index == 0,
 670                                                                                                     popframe_extra_args);
 671     // This pc doesn't have to be perfect just good enough to identify the frame
 672     // as interpreted so the skeleton frame will be walkable
 673     // The correct pc will be set when the skeleton frame is completely filled out
 674     // The final pc we store in the loop is wrong and will be overwritten below
 675     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 676 
 677     callee_parameters = array->element(index)->method()->size_of_parameters();
 678     callee_locals = array->element(index)->method()->max_locals();
 679     popframe_extra_args = 0;
 680   }
 681 
 682   // Compute whether the root vframe returns a float or double value.
 683   BasicType return_type;
 684   {
 685     methodHandle method(current, array->element(0)->method());
 686     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 687     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 688   }
 689 
 690   // Compute information for handling adapters and adjusting the frame size of the caller.
 691   int caller_adjustment = 0;
 692 
 693   // Compute the amount the oldest interpreter frame will have to adjust
 694   // its caller's stack by. If the caller is a compiled frame then
 695   // we pretend that the callee has no parameters so that the
 696   // extension counts for the full amount of locals and not just
 697   // locals-parms. This is because without a c2i adapter the parm
 698   // area as created by the compiled frame will not be usable by
 699   // the interpreter. (Depending on the calling convention there
 700   // may not even be enough space).
 701 
 702   // QQQ I'd rather see this pushed down into last_frame_adjust
 703   // and have it take the sender (aka caller).
 704 
 705   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 706     caller_adjustment = last_frame_adjust(0, callee_locals);
 707   } else if (callee_locals > callee_parameters) {
 708     // The caller frame may need extending to accommodate
 709     // non-parameter locals of the first unpacked interpreted frame.
 710     // Compute that adjustment.
 711     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 712   }
 713 
 714   // If the sender is deoptimized the we must retrieve the address of the handler
 715   // since the frame will "magically" show the original pc before the deopt
 716   // and we'd undo the deopt.
 717 
 718   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 719   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 720     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 721   }
 722 
 723   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 724 
 725 #if INCLUDE_JVMCI
 726   if (exceptionObject() != nullptr) {
 727     current->set_exception_oop(exceptionObject());
 728     exec_mode = Unpack_exception;
 729   }
 730 #endif
 731 
 732   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 733     assert(current->has_pending_exception(), "should have thrown OOME");
 734     current->set_exception_oop(current->pending_exception());
 735     current->clear_pending_exception();
 736     exec_mode = Unpack_exception;
 737   }
 738 
 739 #if INCLUDE_JVMCI
 740   if (current->frames_to_pop_failed_realloc() > 0) {
 741     current->set_pending_monitorenter(false);
 742   }
 743 #endif
 744 
 745   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 746                                       caller_adjustment * BytesPerWord,
 747                                       caller_was_method_handle ? 0 : callee_parameters,
 748                                       number_of_frames,
 749                                       frame_sizes,
 750                                       frame_pcs,
 751                                       return_type,
 752                                       exec_mode);
 753   // On some platforms, we need a way to pass some platform dependent
 754   // information to the unpacking code so the skeletal frames come out
 755   // correct (initial fp value, unextended sp, ...)
 756   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 757 
 758   if (array->frames() > 1) {
 759     if (VerifyStack && TraceDeoptimization) {
 760       tty->print_cr("Deoptimizing method containing inlining");
 761     }
 762   }
 763 
 764   array->set_unroll_block(info);
 765   return info;
 766 }
 767 
 768 // Called to cleanup deoptimization data structures in normal case
 769 // after unpacking to stack and when stack overflow error occurs
 770 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 771                                         vframeArray *array) {
 772 
 773   // Get array if coming from exception
 774   if (array == nullptr) {
 775     array = thread->vframe_array_head();
 776   }
 777   thread->set_vframe_array_head(nullptr);
 778 
 779   // Free the previous UnrollBlock
 780   vframeArray* old_array = thread->vframe_array_last();
 781   thread->set_vframe_array_last(array);
 782 
 783   if (old_array != nullptr) {
 784     UnrollBlock* old_info = old_array->unroll_block();
 785     old_array->set_unroll_block(nullptr);
 786     delete old_info;
 787     delete old_array;
 788   }
 789 
 790   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 791   // inside the vframeArray (StackValueCollections)
 792 
 793   delete thread->deopt_mark();
 794   thread->set_deopt_mark(nullptr);
 795   thread->set_deopt_compiled_method(nullptr);
 796 
 797 
 798   if (JvmtiExport::can_pop_frame()) {
 799     // Regardless of whether we entered this routine with the pending
 800     // popframe condition bit set, we should always clear it now
 801     thread->clear_popframe_condition();
 802   }
 803 
 804   // unpack_frames() is called at the end of the deoptimization handler
 805   // and (in C2) at the end of the uncommon trap handler. Note this fact
 806   // so that an asynchronous stack walker can work again. This counter is
 807   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 808   // the beginning of uncommon_trap().
 809   thread->dec_in_deopt_handler();
 810 }
 811 
 812 // Moved from cpu directories because none of the cpus has callee save values.
 813 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 814 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 815 
 816   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 817   // the days we had adapter frames. When we deoptimize a situation where a
 818   // compiled caller calls a compiled caller will have registers it expects
 819   // to survive the call to the callee. If we deoptimize the callee the only
 820   // way we can restore these registers is to have the oldest interpreter
 821   // frame that we create restore these values. That is what this routine
 822   // will accomplish.
 823 
 824   // At the moment we have modified c2 to not have any callee save registers
 825   // so this problem does not exist and this routine is just a place holder.
 826 
 827   assert(f->is_interpreted_frame(), "must be interpreted");
 828 }
 829 
 830 #ifndef PRODUCT
 831 static bool falls_through(Bytecodes::Code bc) {
 832   switch (bc) {
 833     // List may be incomplete.  Here we really only care about bytecodes where compiled code
 834     // can deoptimize.
 835     case Bytecodes::_goto:
 836     case Bytecodes::_goto_w:
 837     case Bytecodes::_athrow:
 838       return false;
 839     default:
 840       return true;
 841   }
 842 }
 843 #endif
 844 
 845 // Return BasicType of value being returned
 846 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 847   assert(thread == JavaThread::current(), "pre-condition");
 848 
 849   // We are already active in the special DeoptResourceMark any ResourceObj's we
 850   // allocate will be freed at the end of the routine.
 851 
 852   // JRT_LEAF methods don't normally allocate handles and there is a
 853   // NoHandleMark to enforce that. It is actually safe to use Handles
 854   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 855   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 856   // then use a HandleMark to ensure any Handles we do create are
 857   // cleaned up in this scope.
 858   ResetNoHandleMark rnhm;
 859   HandleMark hm(thread);
 860 
 861   frame stub_frame = thread->last_frame();
 862 
 863   Continuation::notify_deopt(thread, stub_frame.sp());
 864 
 865   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 866   // must point to the vframeArray for the unpack frame.
 867   vframeArray* array = thread->vframe_array_head();
 868   UnrollBlock* info = array->unroll_block();
 869 
 870   // We set the last_Java frame. But the stack isn't really parsable here. So we
 871   // clear it to make sure JFR understands not to try and walk stacks from events
 872   // in here.
 873   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 874   thread->frame_anchor()->set_last_Java_sp(nullptr);
 875 
 876   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 877   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 878 
 879   thread->frame_anchor()->set_last_Java_sp(sp);
 880 
 881   BasicType bt = info->return_type();
 882 
 883   // If we have an exception pending, claim that the return type is an oop
 884   // so the deopt_blob does not overwrite the exception_oop.
 885 
 886   if (exec_mode == Unpack_exception)
 887     bt = T_OBJECT;
 888 
 889   // Cleanup thread deopt data
 890   cleanup_deopt_info(thread, array);
 891 
 892 #ifndef PRODUCT
 893   if (VerifyStack) {
 894     ResourceMark res_mark;
 895     // Clear pending exception to not break verification code (restored afterwards)
 896     PreserveExceptionMark pm(thread);
 897 
 898     thread->validate_frame_layout();
 899 
 900     // Verify that the just-unpacked frames match the interpreter's
 901     // notions of expression stack and locals
 902     vframeArray* cur_array = thread->vframe_array_last();
 903     RegisterMap rm(thread,
 904                    RegisterMap::UpdateMap::skip,
 905                    RegisterMap::ProcessFrames::include,
 906                    RegisterMap::WalkContinuation::skip);
 907     rm.set_include_argument_oops(false);
 908     bool is_top_frame = true;
 909     int callee_size_of_parameters = 0;
 910     int callee_max_locals = 0;
 911     for (int i = 0; i < cur_array->frames(); i++) {
 912       vframeArrayElement* el = cur_array->element(i);
 913       frame* iframe = el->iframe();
 914       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 915 
 916       // Get the oop map for this bci
 917       InterpreterOopMap mask;
 918       int cur_invoke_parameter_size = 0;
 919       bool try_next_mask = false;
 920       int next_mask_expression_stack_size = -1;
 921       int top_frame_expression_stack_adjustment = 0;
 922       methodHandle mh(thread, iframe->interpreter_frame_method());
 923       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 924       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 925       int max_bci = mh->code_size();
 926       // Get to the next bytecode if possible
 927       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 928       // Check to see if we can grab the number of outgoing arguments
 929       // at an uncommon trap for an invoke (where the compiler
 930       // generates debug info before the invoke has executed)
 931       Bytecodes::Code cur_code = str.next();
 932       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 933       if (Bytecodes::is_invoke(cur_code)) {
 934         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 935         cur_invoke_parameter_size = invoke.size_of_parameters();
 936         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 937           callee_size_of_parameters++;
 938         }
 939       }
 940       if (str.bci() < max_bci) {
 941         next_code = str.next();
 942         if (next_code >= 0) {
 943           // The interpreter oop map generator reports results before
 944           // the current bytecode has executed except in the case of
 945           // calls. It seems to be hard to tell whether the compiler
 946           // has emitted debug information matching the "state before"
 947           // a given bytecode or the state after, so we try both
 948           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 949             // Get expression stack size for the next bytecode
 950             InterpreterOopMap next_mask;
 951             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 952             next_mask_expression_stack_size = next_mask.expression_stack_size();
 953             if (Bytecodes::is_invoke(next_code)) {
 954               Bytecode_invoke invoke(mh, str.bci());
 955               next_mask_expression_stack_size += invoke.size_of_parameters();
 956             }
 957             // Need to subtract off the size of the result type of
 958             // the bytecode because this is not described in the
 959             // debug info but returned to the interpreter in the TOS
 960             // caching register
 961             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 962             if (bytecode_result_type != T_ILLEGAL) {
 963               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 964             }
 965             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 966             try_next_mask = true;
 967           }
 968         }
 969       }
 970 
 971       // Verify stack depth and oops in frame
 972       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 973       if (!(
 974             /* SPARC */
 975             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 976             /* x86 */
 977             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 978             (try_next_mask &&
 979              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 980                                                                     top_frame_expression_stack_adjustment))) ||
 981             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 982             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 983              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 984             )) {
 985         {
 986           // Print out some information that will help us debug the problem
 987           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 988           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 989           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
 990           if (try_next_mask) {
 991             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
 992           }
 993           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 994                         iframe->interpreter_frame_expression_stack_size());
 995           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 996           tty->print_cr("  try_next_mask = %d", try_next_mask);
 997           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 998           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 999           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1000           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1001           tty->print_cr("  exec_mode = %d", exec_mode);
1002           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1003           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1004           tty->print_cr("  Interpreted frames:");
1005           for (int k = 0; k < cur_array->frames(); k++) {
1006             vframeArrayElement* el = cur_array->element(k);
1007             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1008           }
1009           cur_array->print_on_2(tty);
1010         }
1011         guarantee(false, "wrong number of expression stack elements during deopt");
1012       }
1013       VerifyOopClosure verify;
1014       iframe->oops_interpreted_do(&verify, &rm, false);
1015       callee_size_of_parameters = mh->size_of_parameters();
1016       callee_max_locals = mh->max_locals();
1017       is_top_frame = false;
1018     }
1019   }
1020 #endif // !PRODUCT
1021 
1022   return bt;
1023 JRT_END
1024 
1025 class DeoptimizeMarkedClosure : public HandshakeClosure {
1026  public:
1027   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1028   void do_thread(Thread* thread) {
1029     JavaThread* jt = JavaThread::cast(thread);
1030     jt->deoptimize_marked_methods();
1031   }
1032 };
1033 
1034 void Deoptimization::deoptimize_all_marked() {
1035   ResourceMark rm;
1036 
1037   // Make the dependent methods not entrant
1038   CodeCache::make_marked_nmethods_deoptimized();
1039 
1040   DeoptimizeMarkedClosure deopt;
1041   if (SafepointSynchronize::is_at_safepoint()) {
1042     Threads::java_threads_do(&deopt);
1043   } else {
1044     Handshake::execute(&deopt);
1045   }
1046 }
1047 
1048 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1049   = Deoptimization::Action_reinterpret;
1050 
1051 #if INCLUDE_JVMCI
1052 template<typename CacheType>
1053 class BoxCacheBase : public CHeapObj<mtCompiler> {
1054 protected:
1055   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1056     ResourceMark rm(thread);
1057     char* klass_name_str = klass_name->as_C_string();
1058     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle());
1059     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1060     if (!ik->is_in_error_state()) {
1061       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1062       CacheType::compute_offsets(ik);
1063     }
1064     return ik;
1065   }
1066 };
1067 
1068 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1069   PrimitiveType _low;
1070   PrimitiveType _high;
1071   jobject _cache;
1072 protected:
1073   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1074   BoxCache(Thread* thread) {
1075     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1076     if (ik->is_in_error_state()) {
1077       _low = 1;
1078       _high = 0;
1079       _cache = nullptr;
1080     } else {
1081       objArrayOop cache = CacheType::cache(ik);
1082       assert(cache->length() > 0, "Empty cache");
1083       _low = BoxType::value(cache->obj_at(0));
1084       _high = _low + cache->length() - 1;
1085       _cache = JNIHandles::make_global(Handle(thread, cache));
1086     }
1087   }
1088   ~BoxCache() {
1089     JNIHandles::destroy_global(_cache);
1090   }
1091 public:
1092   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1093     if (_singleton == nullptr) {
1094       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1095       if (!Atomic::replace_if_null(&_singleton, s)) {
1096         delete s;
1097       }
1098     }
1099     return _singleton;
1100   }
1101   oop lookup(PrimitiveType value) {
1102     if (_low <= value && value <= _high) {
1103       int offset = value - _low;
1104       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1105     }
1106     return nullptr;
1107   }
1108   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1109     if (_cache == nullptr) {
1110       cache_init_error = true;
1111       return nullptr;
1112     }
1113     // Have to cast to avoid little/big-endian problems.
1114     if (sizeof(PrimitiveType) > sizeof(jint)) {
1115       jlong value = (jlong)raw_value;
1116       return lookup(value);
1117     }
1118     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1119     return lookup(value);
1120   }
1121 };
1122 
1123 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1124 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1125 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1126 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1127 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1128 
1129 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1130 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1131 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1132 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1133 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1134 
1135 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1136   jobject _true_cache;
1137   jobject _false_cache;
1138 protected:
1139   static BooleanBoxCache *_singleton;
1140   BooleanBoxCache(Thread *thread) {
1141     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1142     if (ik->is_in_error_state()) {
1143       _true_cache = nullptr;
1144       _false_cache = nullptr;
1145     } else {
1146       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1147       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1148     }
1149   }
1150   ~BooleanBoxCache() {
1151     JNIHandles::destroy_global(_true_cache);
1152     JNIHandles::destroy_global(_false_cache);
1153   }
1154 public:
1155   static BooleanBoxCache* singleton(Thread* thread) {
1156     if (_singleton == nullptr) {
1157       BooleanBoxCache* s = new BooleanBoxCache(thread);
1158       if (!Atomic::replace_if_null(&_singleton, s)) {
1159         delete s;
1160       }
1161     }
1162     return _singleton;
1163   }
1164   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1165     if (_true_cache == nullptr) {
1166       cache_in_error = true;
1167       return nullptr;
1168     }
1169     // Have to cast to avoid little/big-endian problems.
1170     jboolean value = (jboolean)*((jint*)&raw_value);
1171     return lookup(value);
1172   }
1173   oop lookup(jboolean value) {
1174     if (value != 0) {
1175       return JNIHandles::resolve_non_null(_true_cache);
1176     }
1177     return JNIHandles::resolve_non_null(_false_cache);
1178   }
1179 };
1180 
1181 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1182 
1183 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1184    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1185    BasicType box_type = vmClasses::box_klass_type(k);
1186    if (box_type != T_OBJECT) {
1187      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1188      switch(box_type) {
1189        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1190        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1191        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1192        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1193        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1194        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1195        default:;
1196      }
1197    }
1198    return nullptr;
1199 }
1200 #endif // INCLUDE_JVMCI
1201 
1202 #if COMPILER2_OR_JVMCI
1203 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1204   Handle pending_exception(THREAD, thread->pending_exception());
1205   const char* exception_file = thread->exception_file();
1206   int exception_line = thread->exception_line();
1207   thread->clear_pending_exception();
1208 
1209   bool failures = false;
1210 
1211   for (int i = 0; i < objects->length(); i++) {
1212     assert(objects->at(i)->is_object(), "invalid debug information");
1213     ObjectValue* sv = (ObjectValue*) objects->at(i);
1214 
1215     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1216     oop obj = nullptr;
1217 
1218     bool cache_init_error = false;
1219     if (k->is_instance_klass()) {
1220 #if INCLUDE_JVMCI
1221       CompiledMethod* cm = fr->cb()->as_compiled_method_or_null();
1222       if (cm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1223         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1224         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1225         if (obj != nullptr) {
1226           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1227           abv->set_cached(true);
1228         } else if (cache_init_error) {
1229           // Results in an OOME which is valid (as opposed to a class initialization error)
1230           // and is fine for the rare case a cache initialization failing.
1231           failures = true;
1232         }
1233       }
1234 #endif // INCLUDE_JVMCI
1235 
1236       InstanceKlass* ik = InstanceKlass::cast(k);
1237       if (obj == nullptr && !cache_init_error) {
1238 #ifdef COMPILER2
1239         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1240           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1241         } else {
1242           obj = ik->allocate_instance(THREAD);
1243         }
1244 #else
1245         obj = ik->allocate_instance(THREAD);
1246 #endif // COMPILER2
1247       }
1248     } else if (k->is_typeArray_klass()) {
1249       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1250       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1251       int len = sv->field_size() / type2size[ak->element_type()];
1252       obj = ak->allocate(len, THREAD);
1253     } else if (k->is_objArray_klass()) {
1254       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1255       obj = ak->allocate(sv->field_size(), THREAD);
1256     }
1257 
1258     if (obj == nullptr) {
1259       failures = true;
1260     }
1261 
1262     assert(sv->value().is_null(), "redundant reallocation");
1263     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1264     CLEAR_PENDING_EXCEPTION;
1265     sv->set_value(obj);
1266   }
1267 
1268   if (failures) {
1269     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1270   } else if (pending_exception.not_null()) {
1271     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1272   }
1273 
1274   return failures;
1275 }
1276 
1277 #if INCLUDE_JVMCI
1278 /**
1279  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1280  * we need to somehow be able to recover the actual kind to be able to write the correct
1281  * amount of bytes.
1282  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1283  * the entries at index n + 1 to n + i are 'markers'.
1284  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1285  * expected form of the array would be:
1286  *
1287  * {b0, b1, b2, b3, INT, marker, b6, b7}
1288  *
1289  * Thus, in order to get back the size of the entry, we simply need to count the number
1290  * of marked entries
1291  *
1292  * @param virtualArray the virtualized byte array
1293  * @param i index of the virtual entry we are recovering
1294  * @return The number of bytes the entry spans
1295  */
1296 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1297   int index = i;
1298   while (++index < virtualArray->field_size() &&
1299            virtualArray->field_at(index)->is_marker()) {}
1300   return index - i;
1301 }
1302 
1303 /**
1304  * If there was a guarantee for byte array to always start aligned to a long, we could
1305  * do a simple check on the parity of the index. Unfortunately, that is not always the
1306  * case. Thus, we check alignment of the actual address we are writing to.
1307  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1308  * write a long to index 3.
1309  */
1310 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1311     jbyte* res = obj->byte_at_addr(index);
1312     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1313     return res;
1314 }
1315 
1316 static void byte_array_put(typeArrayOop obj, intptr_t val, int index, int byte_count) {
1317   switch (byte_count) {
1318     case 1:
1319       obj->byte_at_put(index, (jbyte) *((jint *) &val));
1320       break;
1321     case 2:
1322       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) *((jint *) &val);
1323       break;
1324     case 4:
1325       *((jint *) check_alignment_get_addr(obj, index, 4)) = (jint) *((jint *) &val);
1326       break;
1327     case 8:
1328       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) *((jlong *) &val);
1329       break;
1330     default:
1331       ShouldNotReachHere();
1332   }
1333 }
1334 #endif // INCLUDE_JVMCI
1335 
1336 
1337 // restore elements of an eliminated type array
1338 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1339   int index = 0;
1340   intptr_t val;
1341 
1342   for (int i = 0; i < sv->field_size(); i++) {
1343     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1344     switch(type) {
1345     case T_LONG: case T_DOUBLE: {
1346       assert(value->type() == T_INT, "Agreement.");
1347       StackValue* low =
1348         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1349 #ifdef _LP64
1350       jlong res = (jlong)low->get_int();
1351 #else
1352       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1353 #endif
1354       obj->long_at_put(index, res);
1355       break;
1356     }
1357 
1358     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1359     case T_INT: case T_FLOAT: { // 4 bytes.
1360       assert(value->type() == T_INT, "Agreement.");
1361       bool big_value = false;
1362       if (i + 1 < sv->field_size() && type == T_INT) {
1363         if (sv->field_at(i)->is_location()) {
1364           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1365           if (type == Location::dbl || type == Location::lng) {
1366             big_value = true;
1367           }
1368         } else if (sv->field_at(i)->is_constant_int()) {
1369           ScopeValue* next_scope_field = sv->field_at(i + 1);
1370           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1371             big_value = true;
1372           }
1373         }
1374       }
1375 
1376       if (big_value) {
1377         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1378   #ifdef _LP64
1379         jlong res = (jlong)low->get_int();
1380   #else
1381         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1382   #endif
1383         obj->int_at_put(index, (jint)*((jint*)&res));
1384         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
1385       } else {
1386         val = value->get_int();
1387         obj->int_at_put(index, (jint)*((jint*)&val));
1388       }
1389       break;
1390     }
1391 
1392     case T_SHORT:
1393       assert(value->type() == T_INT, "Agreement.");
1394       val = value->get_int();
1395       obj->short_at_put(index, (jshort)*((jint*)&val));
1396       break;
1397 
1398     case T_CHAR:
1399       assert(value->type() == T_INT, "Agreement.");
1400       val = value->get_int();
1401       obj->char_at_put(index, (jchar)*((jint*)&val));
1402       break;
1403 
1404     case T_BYTE: {
1405       assert(value->type() == T_INT, "Agreement.");
1406       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1407       val = value->get_int();
1408 #if INCLUDE_JVMCI
1409       int byte_count = count_number_of_bytes_for_entry(sv, i);
1410       byte_array_put(obj, val, index, byte_count);
1411       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1412       i += byte_count - 1; // Balance the loop counter.
1413       index += byte_count;
1414       // index has been updated so continue at top of loop
1415       continue;
1416 #else
1417       obj->byte_at_put(index, (jbyte)*((jint*)&val));
1418       break;
1419 #endif // INCLUDE_JVMCI
1420     }
1421 
1422     case T_BOOLEAN: {
1423       assert(value->type() == T_INT, "Agreement.");
1424       val = value->get_int();
1425       obj->bool_at_put(index, (jboolean)*((jint*)&val));
1426       break;
1427     }
1428 
1429       default:
1430         ShouldNotReachHere();
1431     }
1432     index++;
1433   }
1434 }
1435 
1436 // restore fields of an eliminated object array
1437 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1438   for (int i = 0; i < sv->field_size(); i++) {
1439     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1440     assert(value->type() == T_OBJECT, "object element expected");
1441     obj->obj_at_put(i, value->get_obj()());
1442   }
1443 }
1444 
1445 class ReassignedField {
1446 public:
1447   int _offset;
1448   BasicType _type;
1449 public:
1450   ReassignedField() {
1451     _offset = 0;
1452     _type = T_ILLEGAL;
1453   }
1454 };
1455 
1456 int compare(ReassignedField* left, ReassignedField* right) {
1457   return left->_offset - right->_offset;
1458 }
1459 
1460 // Restore fields of an eliminated instance object using the same field order
1461 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1462 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1463   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1464   InstanceKlass* ik = klass;
1465   while (ik != nullptr) {
1466     for (AllFieldStream fs(ik); !fs.done(); fs.next()) {
1467       if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) {
1468         ReassignedField field;
1469         field._offset = fs.offset();
1470         field._type = Signature::basic_type(fs.signature());
1471         fields->append(field);
1472       }
1473     }
1474     ik = ik->superklass();
1475   }
1476   fields->sort(compare);
1477   for (int i = 0; i < fields->length(); i++) {
1478     intptr_t val;
1479     ScopeValue* scope_field = sv->field_at(svIndex);
1480     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1481     int offset = fields->at(i)._offset;
1482     BasicType type = fields->at(i)._type;
1483     switch (type) {
1484       case T_OBJECT: case T_ARRAY:
1485         assert(value->type() == T_OBJECT, "Agreement.");
1486         obj->obj_field_put(offset, value->get_obj()());
1487         break;
1488 
1489       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1490       case T_INT: case T_FLOAT: { // 4 bytes.
1491         assert(value->type() == T_INT, "Agreement.");
1492         bool big_value = false;
1493         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1494           if (scope_field->is_location()) {
1495             Location::Type type = ((LocationValue*) scope_field)->location().type();
1496             if (type == Location::dbl || type == Location::lng) {
1497               big_value = true;
1498             }
1499           }
1500           if (scope_field->is_constant_int()) {
1501             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1502             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1503               big_value = true;
1504             }
1505           }
1506         }
1507 
1508         if (big_value) {
1509           i++;
1510           assert(i < fields->length(), "second T_INT field needed");
1511           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1512         } else {
1513           val = value->get_int();
1514           obj->int_field_put(offset, (jint)*((jint*)&val));
1515           break;
1516         }
1517       }
1518         /* no break */
1519 
1520       case T_LONG: case T_DOUBLE: {
1521         assert(value->type() == T_INT, "Agreement.");
1522         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1523 #ifdef _LP64
1524         jlong res = (jlong)low->get_int();
1525 #else
1526         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1527 #endif
1528         obj->long_field_put(offset, res);
1529         break;
1530       }
1531 
1532       case T_SHORT:
1533         assert(value->type() == T_INT, "Agreement.");
1534         val = value->get_int();
1535         obj->short_field_put(offset, (jshort)*((jint*)&val));
1536         break;
1537 
1538       case T_CHAR:
1539         assert(value->type() == T_INT, "Agreement.");
1540         val = value->get_int();
1541         obj->char_field_put(offset, (jchar)*((jint*)&val));
1542         break;
1543 
1544       case T_BYTE:
1545         assert(value->type() == T_INT, "Agreement.");
1546         val = value->get_int();
1547         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1548         break;
1549 
1550       case T_BOOLEAN:
1551         assert(value->type() == T_INT, "Agreement.");
1552         val = value->get_int();
1553         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1554         break;
1555 
1556       default:
1557         ShouldNotReachHere();
1558     }
1559     svIndex++;
1560   }
1561   return svIndex;
1562 }
1563 
1564 // restore fields of all eliminated objects and arrays
1565 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1566   for (int i = 0; i < objects->length(); i++) {
1567     ObjectValue* sv = (ObjectValue*) objects->at(i);
1568     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1569     Handle obj = sv->value();
1570     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1571 #ifndef PRODUCT
1572     if (PrintDeoptimizationDetails) {
1573       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1574     }
1575 #endif // !PRODUCT
1576 
1577     if (obj.is_null()) {
1578       continue;
1579     }
1580 
1581 #if INCLUDE_JVMCI
1582     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1583     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1584       continue;
1585     }
1586 #endif // INCLUDE_JVMCI
1587 #ifdef COMPILER2
1588     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1589       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1590       ScopeValue* payload = sv->field_at(0);
1591       if (payload->is_location() &&
1592           payload->as_LocationValue()->location().type() == Location::vector) {
1593 #ifndef PRODUCT
1594         if (PrintDeoptimizationDetails) {
1595           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1596           if (Verbose) {
1597             Handle obj = sv->value();
1598             k->oop_print_on(obj(), tty);
1599           }
1600         }
1601 #endif // !PRODUCT
1602         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1603       }
1604       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1605       // which could be restored after vector object allocation.
1606     }
1607 #endif /* !COMPILER2 */
1608     if (k->is_instance_klass()) {
1609       InstanceKlass* ik = InstanceKlass::cast(k);
1610       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1611     } else if (k->is_typeArray_klass()) {
1612       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1613       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1614     } else if (k->is_objArray_klass()) {
1615       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1616     }
1617   }
1618   // These objects may escape when we return to Interpreter after deoptimization.
1619   // We need barrier so that stores that initialize these objects can't be reordered
1620   // with subsequent stores that make these objects accessible by other threads.
1621   OrderAccess::storestore();
1622 }
1623 
1624 
1625 // relock objects for which synchronization was eliminated
1626 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1627                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1628   bool relocked_objects = false;
1629   for (int i = 0; i < monitors->length(); i++) {
1630     MonitorInfo* mon_info = monitors->at(i);
1631     if (mon_info->eliminated()) {
1632       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1633       relocked_objects = true;
1634       if (!mon_info->owner_is_scalar_replaced()) {
1635         Handle obj(thread, mon_info->owner());
1636         markWord mark = obj->mark();
1637         if (exec_mode == Unpack_none) {
1638           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1639             // With exec_mode == Unpack_none obj may be thread local and locked in
1640             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1641             markWord dmw = mark.displaced_mark_helper();
1642             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1643             obj->set_mark(dmw);
1644           }
1645           if (mark.has_monitor()) {
1646             // defer relocking if the deoptee thread is currently waiting for obj
1647             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1648             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1649               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1650               mon_info->lock()->set_displaced_header(markWord::unused_mark());
1651               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1652               continue;
1653             }
1654           }
1655         }
1656         if (LockingMode == LM_LIGHTWEIGHT && exec_mode == Unpack_none) {
1657           // We have lost information about the correct state of the lock stack.
1658           // Inflate the locks instead. Enter then inflate to avoid races with
1659           // deflation.
1660           ObjectSynchronizer::enter(obj, nullptr, deoptee_thread);
1661           assert(mon_info->owner()->is_locked(), "object must be locked now");
1662           ObjectMonitor* mon = ObjectSynchronizer::inflate(deoptee_thread, obj(), ObjectSynchronizer::inflate_cause_vm_internal);
1663           assert(mon->owner() == deoptee_thread, "must be");
1664         } else {
1665           BasicLock* lock = mon_info->lock();
1666           ObjectSynchronizer::enter(obj, lock, deoptee_thread);
1667           assert(mon_info->owner()->is_locked(), "object must be locked now");
1668         }
1669       }
1670     }
1671   }
1672   return relocked_objects;
1673 }
1674 #endif // COMPILER2_OR_JVMCI
1675 
1676 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1677   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1678 
1679   // Register map for next frame (used for stack crawl).  We capture
1680   // the state of the deopt'ing frame's caller.  Thus if we need to
1681   // stuff a C2I adapter we can properly fill in the callee-save
1682   // register locations.
1683   frame caller = fr.sender(reg_map);
1684   int frame_size = caller.sp() - fr.sp();
1685 
1686   frame sender = caller;
1687 
1688   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1689   // the vframeArray containing the unpacking information is allocated in the C heap.
1690   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1691   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1692 
1693   // Compare the vframeArray to the collected vframes
1694   assert(array->structural_compare(thread, chunk), "just checking");
1695 
1696   if (TraceDeoptimization) {
1697     ResourceMark rm;
1698     stringStream st;
1699     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1700     st.print("   ");
1701     fr.print_on(&st);
1702     st.print_cr("   Virtual frames (innermost/newest first):");
1703     for (int index = 0; index < chunk->length(); index++) {
1704       compiledVFrame* vf = chunk->at(index);
1705       int bci = vf->raw_bci();
1706       const char* code_name;
1707       if (bci == SynchronizationEntryBCI) {
1708         code_name = "sync entry";
1709       } else {
1710         Bytecodes::Code code = vf->method()->code_at(bci);
1711         code_name = Bytecodes::name(code);
1712       }
1713 
1714       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1715       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1716       st.print(" - %s", code_name);
1717       st.print_cr(" @ bci=%d ", bci);
1718     }
1719     tty->print_raw(st.freeze());
1720     tty->cr();
1721   }
1722 
1723   return array;
1724 }
1725 
1726 #if COMPILER2_OR_JVMCI
1727 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1728   // Reallocation of some scalar replaced objects failed. Record
1729   // that we need to pop all the interpreter frames for the
1730   // deoptimized compiled frame.
1731   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1732   thread->set_frames_to_pop_failed_realloc(array->frames());
1733   // Unlock all monitors here otherwise the interpreter will see a
1734   // mix of locked and unlocked monitors (because of failed
1735   // reallocations of synchronized objects) and be confused.
1736   for (int i = 0; i < array->frames(); i++) {
1737     MonitorChunk* monitors = array->element(i)->monitors();
1738     if (monitors != nullptr) {
1739       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1740         BasicObjectLock* src = monitors->at(j);
1741         if (src->obj() != nullptr) {
1742           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1743         }
1744       }
1745       array->element(i)->free_monitors(thread);
1746 #ifdef ASSERT
1747       array->element(i)->set_removed_monitors();
1748 #endif
1749     }
1750   }
1751 }
1752 #endif
1753 
1754 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1755   assert(fr.can_be_deoptimized(), "checking frame type");
1756 
1757   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1758 
1759   if (LogCompilation && xtty != nullptr) {
1760     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1761     assert(cm != nullptr, "only compiled methods can deopt");
1762 
1763     ttyLocker ttyl;
1764     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1765     cm->log_identity(xtty);
1766     xtty->end_head();
1767     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1768       xtty->begin_elem("jvms bci='%d'", sd->bci());
1769       xtty->method(sd->method());
1770       xtty->end_elem();
1771       if (sd->is_top())  break;
1772     }
1773     xtty->tail("deoptimized");
1774   }
1775 
1776   Continuation::notify_deopt(thread, fr.sp());
1777 
1778   // Patch the compiled method so that when execution returns to it we will
1779   // deopt the execution state and return to the interpreter.
1780   fr.deoptimize(thread);
1781 }
1782 
1783 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1784   // Deoptimize only if the frame comes from compile code.
1785   // Do not deoptimize the frame which is already patched
1786   // during the execution of the loops below.
1787   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1788     return;
1789   }
1790   ResourceMark rm;
1791   deoptimize_single_frame(thread, fr, reason);
1792 }
1793 
1794 #if INCLUDE_JVMCI
1795 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1796   // there is no exception handler for this pc => deoptimize
1797   cm->make_not_entrant();
1798 
1799   // Use Deoptimization::deoptimize for all of its side-effects:
1800   // gathering traps statistics, logging...
1801   // it also patches the return pc but we do not care about that
1802   // since we return a continuation to the deopt_blob below.
1803   JavaThread* thread = JavaThread::current();
1804   RegisterMap reg_map(thread,
1805                       RegisterMap::UpdateMap::skip,
1806                       RegisterMap::ProcessFrames::include,
1807                       RegisterMap::WalkContinuation::skip);
1808   frame runtime_frame = thread->last_frame();
1809   frame caller_frame = runtime_frame.sender(&reg_map);
1810   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1811   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1812   compiledVFrame* cvf = compiledVFrame::cast(vf);
1813   ScopeDesc* imm_scope = cvf->scope();
1814   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1815   if (imm_mdo != nullptr) {
1816     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1817     if (pdata != nullptr && pdata->is_BitData()) {
1818       BitData* bit_data = (BitData*) pdata;
1819       bit_data->set_exception_seen();
1820     }
1821   }
1822 
1823   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1824 
1825   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, cm->method()), true);
1826   if (trap_mdo != nullptr) {
1827     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1828   }
1829 
1830   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1831 }
1832 #endif
1833 
1834 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1835   assert(thread == Thread::current() ||
1836          thread->is_handshake_safe_for(Thread::current()) ||
1837          SafepointSynchronize::is_at_safepoint(),
1838          "can only deoptimize other thread at a safepoint/handshake");
1839   // Compute frame and register map based on thread and sp.
1840   RegisterMap reg_map(thread,
1841                       RegisterMap::UpdateMap::skip,
1842                       RegisterMap::ProcessFrames::include,
1843                       RegisterMap::WalkContinuation::skip);
1844   frame fr = thread->last_frame();
1845   while (fr.id() != id) {
1846     fr = fr.sender(&reg_map);
1847   }
1848   deoptimize(thread, fr, reason);
1849 }
1850 
1851 
1852 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1853   Thread* current = Thread::current();
1854   if (thread == current || thread->is_handshake_safe_for(current)) {
1855     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1856   } else {
1857     VM_DeoptimizeFrame deopt(thread, id, reason);
1858     VMThread::execute(&deopt);
1859   }
1860 }
1861 
1862 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1863   deoptimize_frame(thread, id, Reason_constraint);
1864 }
1865 
1866 // JVMTI PopFrame support
1867 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1868 {
1869   assert(thread == JavaThread::current(), "pre-condition");
1870   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1871 }
1872 JRT_END
1873 
1874 MethodData*
1875 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1876                                 bool create_if_missing) {
1877   JavaThread* THREAD = thread; // For exception macros.
1878   MethodData* mdo = m()->method_data();
1879   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1880     // Build an MDO.  Ignore errors like OutOfMemory;
1881     // that simply means we won't have an MDO to update.
1882     Method::build_profiling_method_data(m, THREAD);
1883     if (HAS_PENDING_EXCEPTION) {
1884       // Only metaspace OOM is expected. No Java code executed.
1885       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1886       CLEAR_PENDING_EXCEPTION;
1887     }
1888     mdo = m()->method_data();
1889   }
1890   return mdo;
1891 }
1892 
1893 #if COMPILER2_OR_JVMCI
1894 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1895   // In case of an unresolved klass entry, load the class.
1896   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1897   // and probably nowhere else.
1898   // Even that case would benefit from simply re-interpreting the
1899   // bytecode, without paying special attention to the class index.
1900   // So this whole "class index" feature should probably be removed.
1901 
1902   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1903     Klass* tk = constant_pool->klass_at(index, THREAD);
1904     if (HAS_PENDING_EXCEPTION) {
1905       // Exception happened during classloading. We ignore the exception here, since it
1906       // is going to be rethrown since the current activation is going to be deoptimized and
1907       // the interpreter will re-execute the bytecode.
1908       // Do not clear probable Async Exceptions.
1909       CLEAR_PENDING_NONASYNC_EXCEPTION;
1910       // Class loading called java code which may have caused a stack
1911       // overflow. If the exception was thrown right before the return
1912       // to the runtime the stack is no longer guarded. Reguard the
1913       // stack otherwise if we return to the uncommon trap blob and the
1914       // stack bang causes a stack overflow we crash.
1915       JavaThread* jt = THREAD;
1916       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1917       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1918     }
1919     return;
1920   }
1921 
1922   assert(!constant_pool->tag_at(index).is_symbol(),
1923          "no symbolic names here, please");
1924 }
1925 
1926 #if INCLUDE_JFR
1927 
1928 class DeoptReasonSerializer : public JfrSerializer {
1929  public:
1930   void serialize(JfrCheckpointWriter& writer) {
1931     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1932     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1933       writer.write_key((u8)i);
1934       writer.write(Deoptimization::trap_reason_name(i));
1935     }
1936   }
1937 };
1938 
1939 class DeoptActionSerializer : public JfrSerializer {
1940  public:
1941   void serialize(JfrCheckpointWriter& writer) {
1942     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1943     writer.write_count(nof_actions);
1944     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1945       writer.write_key(i);
1946       writer.write(Deoptimization::trap_action_name((int)i));
1947     }
1948   }
1949 };
1950 
1951 static void register_serializers() {
1952   static int critical_section = 0;
1953   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1954     return;
1955   }
1956   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1957   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1958 }
1959 
1960 static void post_deoptimization_event(CompiledMethod* nm,
1961                                       const Method* method,
1962                                       int trap_bci,
1963                                       int instruction,
1964                                       Deoptimization::DeoptReason reason,
1965                                       Deoptimization::DeoptAction action) {
1966   assert(nm != nullptr, "invariant");
1967   assert(method != nullptr, "invariant");
1968   if (EventDeoptimization::is_enabled()) {
1969     static bool serializers_registered = false;
1970     if (!serializers_registered) {
1971       register_serializers();
1972       serializers_registered = true;
1973     }
1974     EventDeoptimization event;
1975     event.set_compileId(nm->compile_id());
1976     event.set_compiler(nm->compiler_type());
1977     event.set_method(method);
1978     event.set_lineNumber(method->line_number_from_bci(trap_bci));
1979     event.set_bci(trap_bci);
1980     event.set_instruction(instruction);
1981     event.set_reason(reason);
1982     event.set_action(action);
1983     event.commit();
1984   }
1985 }
1986 
1987 #endif // INCLUDE_JFR
1988 
1989 static void log_deopt(CompiledMethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
1990                               const char* reason_name, const char* reason_action) {
1991   LogTarget(Debug, deoptimization) lt;
1992   if (lt.is_enabled()) {
1993     LogStream ls(lt);
1994     bool is_osr = nm->is_osr_method();
1995     ls.print("cid=%4d %s level=%d",
1996              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
1997     ls.print(" %s", tm->name_and_sig_as_C_string());
1998     ls.print(" trap_bci=%d ", trap_bci);
1999     if (is_osr) {
2000       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2001     }
2002     ls.print("%s ", reason_name);
2003     ls.print("%s ", reason_action);
2004     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2005              pc, fr.pc() - nm->code_begin());
2006   }
2007 }
2008 
2009 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2010   HandleMark hm(current);
2011 
2012   // uncommon_trap() is called at the beginning of the uncommon trap
2013   // handler. Note this fact before we start generating temporary frames
2014   // that can confuse an asynchronous stack walker. This counter is
2015   // decremented at the end of unpack_frames().
2016 
2017   current->inc_in_deopt_handler();
2018 
2019 #if INCLUDE_JVMCI
2020   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2021   RegisterMap reg_map(current,
2022                       RegisterMap::UpdateMap::include,
2023                       RegisterMap::ProcessFrames::include,
2024                       RegisterMap::WalkContinuation::skip);
2025 #else
2026   RegisterMap reg_map(current,
2027                       RegisterMap::UpdateMap::skip,
2028                       RegisterMap::ProcessFrames::include,
2029                       RegisterMap::WalkContinuation::skip);
2030 #endif
2031   frame stub_frame = current->last_frame();
2032   frame fr = stub_frame.sender(&reg_map);
2033 
2034   // Log a message
2035   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2036               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2037 
2038   {
2039     ResourceMark rm;
2040 
2041     DeoptReason reason = trap_request_reason(trap_request);
2042     DeoptAction action = trap_request_action(trap_request);
2043 #if INCLUDE_JVMCI
2044     int debug_id = trap_request_debug_id(trap_request);
2045 #endif
2046     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2047 
2048     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2049     compiledVFrame* cvf = compiledVFrame::cast(vf);
2050 
2051     CompiledMethod* nm = cvf->code();
2052 
2053     ScopeDesc*      trap_scope  = cvf->scope();
2054 
2055     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2056 
2057     if (is_receiver_constraint_failure) {
2058       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2059                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2060                     JVMCI_ONLY(COMMA debug_id));
2061     }
2062 
2063     methodHandle    trap_method(current, trap_scope->method());
2064     int             trap_bci    = trap_scope->bci();
2065 #if INCLUDE_JVMCI
2066     jlong           speculation = current->pending_failed_speculation();
2067     if (nm->is_compiled_by_jvmci()) {
2068       nm->as_nmethod()->update_speculation(current);
2069     } else {
2070       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2071     }
2072 
2073     if (trap_bci == SynchronizationEntryBCI) {
2074       trap_bci = 0;
2075       current->set_pending_monitorenter(true);
2076     }
2077 
2078     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2079       current->set_pending_transfer_to_interpreter(true);
2080     }
2081 #endif
2082 
2083     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2084     // Record this event in the histogram.
2085     gather_statistics(reason, action, trap_bc);
2086 
2087     // Ensure that we can record deopt. history:
2088     // Need MDO to record RTM code generation state.
2089     bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
2090 
2091     methodHandle profiled_method;
2092 #if INCLUDE_JVMCI
2093     if (nm->is_compiled_by_jvmci()) {
2094       profiled_method = methodHandle(current, nm->method());
2095     } else {
2096       profiled_method = trap_method;
2097     }
2098 #else
2099     profiled_method = trap_method;
2100 #endif
2101 
2102     MethodData* trap_mdo =
2103       get_method_data(current, profiled_method, create_if_missing);
2104 
2105     { // Log Deoptimization event for JFR, UL and event system
2106       Method* tm = trap_method();
2107       const char* reason_name = trap_reason_name(reason);
2108       const char* reason_action = trap_action_name(action);
2109       intptr_t pc = p2i(fr.pc());
2110 
2111       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2112       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2113       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2114                                 reason_name, reason_action, pc,
2115                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2116     }
2117 
2118     // Print a bunch of diagnostics, if requested.
2119     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2120       ResourceMark rm;
2121       ttyLocker ttyl;
2122       char buf[100];
2123       if (xtty != nullptr) {
2124         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
2125                          os::current_thread_id(),
2126                          format_trap_request(buf, sizeof(buf), trap_request));
2127 #if INCLUDE_JVMCI
2128         if (speculation != 0) {
2129           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2130         }
2131 #endif
2132         nm->log_identity(xtty);
2133       }
2134       Symbol* class_name = nullptr;
2135       bool unresolved = false;
2136       if (unloaded_class_index >= 0) {
2137         constantPoolHandle constants (current, trap_method->constants());
2138         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2139           class_name = constants->klass_name_at(unloaded_class_index);
2140           unresolved = true;
2141           if (xtty != nullptr)
2142             xtty->print(" unresolved='1'");
2143         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2144           class_name = constants->symbol_at(unloaded_class_index);
2145         }
2146         if (xtty != nullptr)
2147           xtty->name(class_name);
2148       }
2149       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2150         // Dump the relevant MDO state.
2151         // This is the deopt count for the current reason, any previous
2152         // reasons or recompiles seen at this point.
2153         int dcnt = trap_mdo->trap_count(reason);
2154         if (dcnt != 0)
2155           xtty->print(" count='%d'", dcnt);
2156         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2157         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2158         if (dos != 0) {
2159           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2160           if (trap_state_is_recompiled(dos)) {
2161             int recnt2 = trap_mdo->overflow_recompile_count();
2162             if (recnt2 != 0)
2163               xtty->print(" recompiles2='%d'", recnt2);
2164           }
2165         }
2166       }
2167       if (xtty != nullptr) {
2168         xtty->stamp();
2169         xtty->end_head();
2170       }
2171       if (TraceDeoptimization) {  // make noise on the tty
2172         stringStream st;
2173         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2174         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2175                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2176         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2177 #if INCLUDE_JVMCI
2178         if (nm->is_nmethod()) {
2179           const char* installed_code_name = nm->as_nmethod()->jvmci_name();
2180           if (installed_code_name != nullptr) {
2181             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2182           }
2183         }
2184 #endif
2185         st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2186                    p2i(fr.pc()),
2187                    os::current_thread_id(),
2188                    trap_reason_name(reason),
2189                    trap_action_name(action),
2190                    unloaded_class_index
2191 #if INCLUDE_JVMCI
2192                    , debug_id
2193 #endif
2194                    );
2195         if (class_name != nullptr) {
2196           st.print(unresolved ? " unresolved class: " : " symbol: ");
2197           class_name->print_symbol_on(&st);
2198         }
2199         st.cr();
2200         tty->print_raw(st.freeze());
2201       }
2202       if (xtty != nullptr) {
2203         // Log the precise location of the trap.
2204         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2205           xtty->begin_elem("jvms bci='%d'", sd->bci());
2206           xtty->method(sd->method());
2207           xtty->end_elem();
2208           if (sd->is_top())  break;
2209         }
2210         xtty->tail("uncommon_trap");
2211       }
2212     }
2213     // (End diagnostic printout.)
2214 
2215     if (is_receiver_constraint_failure) {
2216       fatal("missing receiver type check");
2217     }
2218 
2219     // Load class if necessary
2220     if (unloaded_class_index >= 0) {
2221       constantPoolHandle constants(current, trap_method->constants());
2222       load_class_by_index(constants, unloaded_class_index, THREAD);
2223     }
2224 
2225     // Flush the nmethod if necessary and desirable.
2226     //
2227     // We need to avoid situations where we are re-flushing the nmethod
2228     // because of a hot deoptimization site.  Repeated flushes at the same
2229     // point need to be detected by the compiler and avoided.  If the compiler
2230     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2231     // module must take measures to avoid an infinite cycle of recompilation
2232     // and deoptimization.  There are several such measures:
2233     //
2234     //   1. If a recompilation is ordered a second time at some site X
2235     //   and for the same reason R, the action is adjusted to 'reinterpret',
2236     //   to give the interpreter time to exercise the method more thoroughly.
2237     //   If this happens, the method's overflow_recompile_count is incremented.
2238     //
2239     //   2. If the compiler fails to reduce the deoptimization rate, then
2240     //   the method's overflow_recompile_count will begin to exceed the set
2241     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2242     //   is adjusted to 'make_not_compilable', and the method is abandoned
2243     //   to the interpreter.  This is a performance hit for hot methods,
2244     //   but is better than a disastrous infinite cycle of recompilations.
2245     //   (Actually, only the method containing the site X is abandoned.)
2246     //
2247     //   3. In parallel with the previous measures, if the total number of
2248     //   recompilations of a method exceeds the much larger set limit
2249     //   PerMethodRecompilationCutoff, the method is abandoned.
2250     //   This should only happen if the method is very large and has
2251     //   many "lukewarm" deoptimizations.  The code which enforces this
2252     //   limit is elsewhere (class nmethod, class Method).
2253     //
2254     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2255     // to recompile at each bytecode independently of the per-BCI cutoff.
2256     //
2257     // The decision to update code is up to the compiler, and is encoded
2258     // in the Action_xxx code.  If the compiler requests Action_none
2259     // no trap state is changed, no compiled code is changed, and the
2260     // computation suffers along in the interpreter.
2261     //
2262     // The other action codes specify various tactics for decompilation
2263     // and recompilation.  Action_maybe_recompile is the loosest, and
2264     // allows the compiled code to stay around until enough traps are seen,
2265     // and until the compiler gets around to recompiling the trapping method.
2266     //
2267     // The other actions cause immediate removal of the present code.
2268 
2269     // Traps caused by injected profile shouldn't pollute trap counts.
2270     bool injected_profile_trap = trap_method->has_injected_profile() &&
2271                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2272 
2273     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2274     bool make_not_entrant = false;
2275     bool make_not_compilable = false;
2276     bool reprofile = false;
2277     switch (action) {
2278     case Action_none:
2279       // Keep the old code.
2280       update_trap_state = false;
2281       break;
2282     case Action_maybe_recompile:
2283       // Do not need to invalidate the present code, but we can
2284       // initiate another
2285       // Start compiler without (necessarily) invalidating the nmethod.
2286       // The system will tolerate the old code, but new code should be
2287       // generated when possible.
2288       break;
2289     case Action_reinterpret:
2290       // Go back into the interpreter for a while, and then consider
2291       // recompiling form scratch.
2292       make_not_entrant = true;
2293       // Reset invocation counter for outer most method.
2294       // This will allow the interpreter to exercise the bytecodes
2295       // for a while before recompiling.
2296       // By contrast, Action_make_not_entrant is immediate.
2297       //
2298       // Note that the compiler will track null_check, null_assert,
2299       // range_check, and class_check events and log them as if they
2300       // had been traps taken from compiled code.  This will update
2301       // the MDO trap history so that the next compilation will
2302       // properly detect hot trap sites.
2303       reprofile = true;
2304       break;
2305     case Action_make_not_entrant:
2306       // Request immediate recompilation, and get rid of the old code.
2307       // Make them not entrant, so next time they are called they get
2308       // recompiled.  Unloaded classes are loaded now so recompile before next
2309       // time they are called.  Same for uninitialized.  The interpreter will
2310       // link the missing class, if any.
2311       make_not_entrant = true;
2312       break;
2313     case Action_make_not_compilable:
2314       // Give up on compiling this method at all.
2315       make_not_entrant = true;
2316       make_not_compilable = true;
2317       break;
2318     default:
2319       ShouldNotReachHere();
2320     }
2321 
2322     // Setting +ProfileTraps fixes the following, on all platforms:
2323     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
2324     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2325     // recompile relies on a MethodData* to record heroic opt failures.
2326 
2327     // Whether the interpreter is producing MDO data or not, we also need
2328     // to use the MDO to detect hot deoptimization points and control
2329     // aggressive optimization.
2330     bool inc_recompile_count = false;
2331     ProfileData* pdata = nullptr;
2332     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2333       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2334       uint this_trap_count = 0;
2335       bool maybe_prior_trap = false;
2336       bool maybe_prior_recompile = false;
2337       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2338 #if INCLUDE_JVMCI
2339                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2340 #endif
2341                                    nm->method(),
2342                                    //outputs:
2343                                    this_trap_count,
2344                                    maybe_prior_trap,
2345                                    maybe_prior_recompile);
2346       // Because the interpreter also counts null, div0, range, and class
2347       // checks, these traps from compiled code are double-counted.
2348       // This is harmless; it just means that the PerXTrapLimit values
2349       // are in effect a little smaller than they look.
2350 
2351       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2352       if (per_bc_reason != Reason_none) {
2353         // Now take action based on the partially known per-BCI history.
2354         if (maybe_prior_trap
2355             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2356           // If there are too many traps at this BCI, force a recompile.
2357           // This will allow the compiler to see the limit overflow, and
2358           // take corrective action, if possible.  The compiler generally
2359           // does not use the exact PerBytecodeTrapLimit value, but instead
2360           // changes its tactics if it sees any traps at all.  This provides
2361           // a little hysteresis, delaying a recompile until a trap happens
2362           // several times.
2363           //
2364           // Actually, since there is only one bit of counter per BCI,
2365           // the possible per-BCI counts are {0,1,(per-method count)}.
2366           // This produces accurate results if in fact there is only
2367           // one hot trap site, but begins to get fuzzy if there are
2368           // many sites.  For example, if there are ten sites each
2369           // trapping two or more times, they each get the blame for
2370           // all of their traps.
2371           make_not_entrant = true;
2372         }
2373 
2374         // Detect repeated recompilation at the same BCI, and enforce a limit.
2375         if (make_not_entrant && maybe_prior_recompile) {
2376           // More than one recompile at this point.
2377           inc_recompile_count = maybe_prior_trap;
2378         }
2379       } else {
2380         // For reasons which are not recorded per-bytecode, we simply
2381         // force recompiles unconditionally.
2382         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2383         make_not_entrant = true;
2384       }
2385 
2386       // Go back to the compiler if there are too many traps in this method.
2387       if (this_trap_count >= per_method_trap_limit(reason)) {
2388         // If there are too many traps in this method, force a recompile.
2389         // This will allow the compiler to see the limit overflow, and
2390         // take corrective action, if possible.
2391         // (This condition is an unlikely backstop only, because the
2392         // PerBytecodeTrapLimit is more likely to take effect first,
2393         // if it is applicable.)
2394         make_not_entrant = true;
2395       }
2396 
2397       // Here's more hysteresis:  If there has been a recompile at
2398       // this trap point already, run the method in the interpreter
2399       // for a while to exercise it more thoroughly.
2400       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2401         reprofile = true;
2402       }
2403     }
2404 
2405     // Take requested actions on the method:
2406 
2407     // Recompile
2408     if (make_not_entrant) {
2409       if (!nm->make_not_entrant()) {
2410         return; // the call did not change nmethod's state
2411       }
2412 
2413       if (pdata != nullptr) {
2414         // Record the recompilation event, if any.
2415         int tstate0 = pdata->trap_state();
2416         int tstate1 = trap_state_set_recompiled(tstate0, true);
2417         if (tstate1 != tstate0)
2418           pdata->set_trap_state(tstate1);
2419       }
2420 
2421 #if INCLUDE_RTM_OPT
2422       // Restart collecting RTM locking abort statistic if the method
2423       // is recompiled for a reason other than RTM state change.
2424       // Assume that in new recompiled code the statistic could be different,
2425       // for example, due to different inlining.
2426       if ((reason != Reason_rtm_state_change) && (trap_mdo != nullptr) &&
2427           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
2428         trap_mdo->atomic_set_rtm_state(ProfileRTM);
2429       }
2430 #endif
2431       // For code aging we count traps separately here, using make_not_entrant()
2432       // as a guard against simultaneous deopts in multiple threads.
2433       if (reason == Reason_tenured && trap_mdo != nullptr) {
2434         trap_mdo->inc_tenure_traps();
2435       }
2436     }
2437 
2438     if (inc_recompile_count) {
2439       trap_mdo->inc_overflow_recompile_count();
2440       if ((uint)trap_mdo->overflow_recompile_count() >
2441           (uint)PerBytecodeRecompilationCutoff) {
2442         // Give up on the method containing the bad BCI.
2443         if (trap_method() == nm->method()) {
2444           make_not_compilable = true;
2445         } else {
2446           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2447           // But give grace to the enclosing nm->method().
2448         }
2449       }
2450     }
2451 
2452     // Reprofile
2453     if (reprofile) {
2454       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2455     }
2456 
2457     // Give up compiling
2458     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2459       assert(make_not_entrant, "consistent");
2460       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2461     }
2462 
2463   } // Free marked resources
2464 
2465 }
2466 JRT_END
2467 
2468 ProfileData*
2469 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2470                                          int trap_bci,
2471                                          Deoptimization::DeoptReason reason,
2472                                          bool update_total_trap_count,
2473 #if INCLUDE_JVMCI
2474                                          bool is_osr,
2475 #endif
2476                                          Method* compiled_method,
2477                                          //outputs:
2478                                          uint& ret_this_trap_count,
2479                                          bool& ret_maybe_prior_trap,
2480                                          bool& ret_maybe_prior_recompile) {
2481   bool maybe_prior_trap = false;
2482   bool maybe_prior_recompile = false;
2483   uint this_trap_count = 0;
2484   if (update_total_trap_count) {
2485     uint idx = reason;
2486 #if INCLUDE_JVMCI
2487     if (is_osr) {
2488       // Upper half of history array used for traps in OSR compilations
2489       idx += Reason_TRAP_HISTORY_LENGTH;
2490     }
2491 #endif
2492     uint prior_trap_count = trap_mdo->trap_count(idx);
2493     this_trap_count  = trap_mdo->inc_trap_count(idx);
2494 
2495     // If the runtime cannot find a place to store trap history,
2496     // it is estimated based on the general condition of the method.
2497     // If the method has ever been recompiled, or has ever incurred
2498     // a trap with the present reason , then this BCI is assumed
2499     // (pessimistically) to be the culprit.
2500     maybe_prior_trap      = (prior_trap_count != 0);
2501     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2502   }
2503   ProfileData* pdata = nullptr;
2504 
2505 
2506   // For reasons which are recorded per bytecode, we check per-BCI data.
2507   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2508   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2509   if (per_bc_reason != Reason_none) {
2510     // Find the profile data for this BCI.  If there isn't one,
2511     // try to allocate one from the MDO's set of spares.
2512     // This will let us detect a repeated trap at this point.
2513     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2514 
2515     if (pdata != nullptr) {
2516       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2517         if (LogCompilation && xtty != nullptr) {
2518           ttyLocker ttyl;
2519           // no more room for speculative traps in this MDO
2520           xtty->elem("speculative_traps_oom");
2521         }
2522       }
2523       // Query the trap state of this profile datum.
2524       int tstate0 = pdata->trap_state();
2525       if (!trap_state_has_reason(tstate0, per_bc_reason))
2526         maybe_prior_trap = false;
2527       if (!trap_state_is_recompiled(tstate0))
2528         maybe_prior_recompile = false;
2529 
2530       // Update the trap state of this profile datum.
2531       int tstate1 = tstate0;
2532       // Record the reason.
2533       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2534       // Store the updated state on the MDO, for next time.
2535       if (tstate1 != tstate0)
2536         pdata->set_trap_state(tstate1);
2537     } else {
2538       if (LogCompilation && xtty != nullptr) {
2539         ttyLocker ttyl;
2540         // Missing MDP?  Leave a small complaint in the log.
2541         xtty->elem("missing_mdp bci='%d'", trap_bci);
2542       }
2543     }
2544   }
2545 
2546   // Return results:
2547   ret_this_trap_count = this_trap_count;
2548   ret_maybe_prior_trap = maybe_prior_trap;
2549   ret_maybe_prior_recompile = maybe_prior_recompile;
2550   return pdata;
2551 }
2552 
2553 void
2554 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2555   ResourceMark rm;
2556   // Ignored outputs:
2557   uint ignore_this_trap_count;
2558   bool ignore_maybe_prior_trap;
2559   bool ignore_maybe_prior_recompile;
2560   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2561   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2562   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2563   query_update_method_data(trap_mdo, trap_bci,
2564                            (DeoptReason)reason,
2565                            update_total_counts,
2566 #if INCLUDE_JVMCI
2567                            false,
2568 #endif
2569                            nullptr,
2570                            ignore_this_trap_count,
2571                            ignore_maybe_prior_trap,
2572                            ignore_maybe_prior_recompile);
2573 }
2574 
2575 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) {
2576   // Enable WXWrite: current function is called from methods compiled by C2 directly
2577   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2578 
2579   // Still in Java no safepoints
2580   {
2581     // This enters VM and may safepoint
2582     uncommon_trap_inner(current, trap_request);
2583   }
2584   HandleMark hm(current);
2585   return fetch_unroll_info_helper(current, exec_mode);
2586 }
2587 
2588 // Local derived constants.
2589 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2590 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2591 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2592 
2593 //---------------------------trap_state_reason---------------------------------
2594 Deoptimization::DeoptReason
2595 Deoptimization::trap_state_reason(int trap_state) {
2596   // This assert provides the link between the width of DataLayout::trap_bits
2597   // and the encoding of "recorded" reasons.  It ensures there are enough
2598   // bits to store all needed reasons in the per-BCI MDO profile.
2599   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2600   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2601   trap_state -= recompile_bit;
2602   if (trap_state == DS_REASON_MASK) {
2603     return Reason_many;
2604   } else {
2605     assert((int)Reason_none == 0, "state=0 => Reason_none");
2606     return (DeoptReason)trap_state;
2607   }
2608 }
2609 //-------------------------trap_state_has_reason-------------------------------
2610 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2611   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2612   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2613   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2614   trap_state -= recompile_bit;
2615   if (trap_state == DS_REASON_MASK) {
2616     return -1;  // true, unspecifically (bottom of state lattice)
2617   } else if (trap_state == reason) {
2618     return 1;   // true, definitely
2619   } else if (trap_state == 0) {
2620     return 0;   // false, definitely (top of state lattice)
2621   } else {
2622     return 0;   // false, definitely
2623   }
2624 }
2625 //-------------------------trap_state_add_reason-------------------------------
2626 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2627   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2628   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2629   trap_state -= recompile_bit;
2630   if (trap_state == DS_REASON_MASK) {
2631     return trap_state + recompile_bit;     // already at state lattice bottom
2632   } else if (trap_state == reason) {
2633     return trap_state + recompile_bit;     // the condition is already true
2634   } else if (trap_state == 0) {
2635     return reason + recompile_bit;          // no condition has yet been true
2636   } else {
2637     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2638   }
2639 }
2640 //-----------------------trap_state_is_recompiled------------------------------
2641 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2642   return (trap_state & DS_RECOMPILE_BIT) != 0;
2643 }
2644 //-----------------------trap_state_set_recompiled-----------------------------
2645 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2646   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2647   else    return trap_state & ~DS_RECOMPILE_BIT;
2648 }
2649 //---------------------------format_trap_state---------------------------------
2650 // This is used for debugging and diagnostics, including LogFile output.
2651 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2652                                               int trap_state) {
2653   assert(buflen > 0, "sanity");
2654   DeoptReason reason      = trap_state_reason(trap_state);
2655   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2656   // Re-encode the state from its decoded components.
2657   int decoded_state = 0;
2658   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2659     decoded_state = trap_state_add_reason(decoded_state, reason);
2660   if (recomp_flag)
2661     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2662   // If the state re-encodes properly, format it symbolically.
2663   // Because this routine is used for debugging and diagnostics,
2664   // be robust even if the state is a strange value.
2665   size_t len;
2666   if (decoded_state != trap_state) {
2667     // Random buggy state that doesn't decode??
2668     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2669   } else {
2670     len = jio_snprintf(buf, buflen, "%s%s",
2671                        trap_reason_name(reason),
2672                        recomp_flag ? " recompiled" : "");
2673   }
2674   return buf;
2675 }
2676 
2677 
2678 //--------------------------------statics--------------------------------------
2679 const char* Deoptimization::_trap_reason_name[] = {
2680   // Note:  Keep this in sync. with enum DeoptReason.
2681   "none",
2682   "null_check",
2683   "null_assert" JVMCI_ONLY("_or_unreached0"),
2684   "range_check",
2685   "class_check",
2686   "array_check",
2687   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2688   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2689   "profile_predicate",
2690   "unloaded",
2691   "uninitialized",
2692   "initialized",
2693   "unreached",
2694   "unhandled",
2695   "constraint",
2696   "div0_check",
2697   "age",
2698   "predicate",
2699   "loop_limit_check",
2700   "speculate_class_check",
2701   "speculate_null_check",
2702   "speculate_null_assert",
2703   "rtm_state_change",
2704   "unstable_if",
2705   "unstable_fused_if",
2706   "receiver_constraint",
2707 #if INCLUDE_JVMCI
2708   "aliasing",
2709   "transfer_to_interpreter",
2710   "not_compiled_exception_handler",
2711   "unresolved",
2712   "jsr_mismatch",
2713 #endif
2714   "tenured"
2715 };
2716 const char* Deoptimization::_trap_action_name[] = {
2717   // Note:  Keep this in sync. with enum DeoptAction.
2718   "none",
2719   "maybe_recompile",
2720   "reinterpret",
2721   "make_not_entrant",
2722   "make_not_compilable"
2723 };
2724 
2725 const char* Deoptimization::trap_reason_name(int reason) {
2726   // Check that every reason has a name
2727   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2728 
2729   if (reason == Reason_many)  return "many";
2730   if ((uint)reason < Reason_LIMIT)
2731     return _trap_reason_name[reason];
2732   static char buf[20];
2733   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2734   return buf;
2735 }
2736 const char* Deoptimization::trap_action_name(int action) {
2737   // Check that every action has a name
2738   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2739 
2740   if ((uint)action < Action_LIMIT)
2741     return _trap_action_name[action];
2742   static char buf[20];
2743   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2744   return buf;
2745 }
2746 
2747 // This is used for debugging and diagnostics, including LogFile output.
2748 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2749                                                 int trap_request) {
2750   jint unloaded_class_index = trap_request_index(trap_request);
2751   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2752   const char* action = trap_action_name(trap_request_action(trap_request));
2753 #if INCLUDE_JVMCI
2754   int debug_id = trap_request_debug_id(trap_request);
2755 #endif
2756   size_t len;
2757   if (unloaded_class_index < 0) {
2758     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2759                        reason, action
2760 #if INCLUDE_JVMCI
2761                        ,debug_id
2762 #endif
2763                        );
2764   } else {
2765     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2766                        reason, action, unloaded_class_index
2767 #if INCLUDE_JVMCI
2768                        ,debug_id
2769 #endif
2770                        );
2771   }
2772   return buf;
2773 }
2774 
2775 juint Deoptimization::_deoptimization_hist
2776         [Deoptimization::Reason_LIMIT]
2777     [1 + Deoptimization::Action_LIMIT]
2778         [Deoptimization::BC_CASE_LIMIT]
2779   = {0};
2780 
2781 enum {
2782   LSB_BITS = 8,
2783   LSB_MASK = right_n_bits(LSB_BITS)
2784 };
2785 
2786 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2787                                        Bytecodes::Code bc) {
2788   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2789   assert(action >= 0 && action < Action_LIMIT, "oob");
2790   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2791   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2792   juint* cases = _deoptimization_hist[reason][1+action];
2793   juint* bc_counter_addr = nullptr;
2794   juint  bc_counter      = 0;
2795   // Look for an unused counter, or an exact match to this BC.
2796   if (bc != Bytecodes::_illegal) {
2797     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2798       juint* counter_addr = &cases[bc_case];
2799       juint  counter = *counter_addr;
2800       if ((counter == 0 && bc_counter_addr == nullptr)
2801           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2802         // this counter is either free or is already devoted to this BC
2803         bc_counter_addr = counter_addr;
2804         bc_counter = counter | bc;
2805       }
2806     }
2807   }
2808   if (bc_counter_addr == nullptr) {
2809     // Overflow, or no given bytecode.
2810     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2811     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2812   }
2813   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2814 }
2815 
2816 jint Deoptimization::total_deoptimization_count() {
2817   return _deoptimization_hist[Reason_none][0][0];
2818 }
2819 
2820 // Get the deopt count for a specific reason and a specific action. If either
2821 // one of 'reason' or 'action' is null, the method returns the sum of all
2822 // deoptimizations with the specific 'action' or 'reason' respectively.
2823 // If both arguments are null, the method returns the total deopt count.
2824 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2825   if (reason_str == nullptr && action_str == nullptr) {
2826     return total_deoptimization_count();
2827   }
2828   juint counter = 0;
2829   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2830     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2831       for (int action = 0; action < Action_LIMIT; action++) {
2832         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2833           juint* cases = _deoptimization_hist[reason][1+action];
2834           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2835             counter += cases[bc_case] >> LSB_BITS;
2836           }
2837         }
2838       }
2839     }
2840   }
2841   return counter;
2842 }
2843 
2844 void Deoptimization::print_statistics() {
2845   juint total = total_deoptimization_count();
2846   juint account = total;
2847   if (total != 0) {
2848     ttyLocker ttyl;
2849     if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2850     tty->print_cr("Deoptimization traps recorded:");
2851     #define PRINT_STAT_LINE(name, r) \
2852       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2853     PRINT_STAT_LINE("total", total);
2854     // For each non-zero entry in the histogram, print the reason,
2855     // the action, and (if specifically known) the type of bytecode.
2856     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2857       for (int action = 0; action < Action_LIMIT; action++) {
2858         juint* cases = _deoptimization_hist[reason][1+action];
2859         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2860           juint counter = cases[bc_case];
2861           if (counter != 0) {
2862             char name[1*K];
2863             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2864             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2865               bc = Bytecodes::_illegal;
2866             os::snprintf_checked(name, sizeof(name), "%s/%s/%s",
2867                     trap_reason_name(reason),
2868                     trap_action_name(action),
2869                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2870             juint r = counter >> LSB_BITS;
2871             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2872             account -= r;
2873           }
2874         }
2875       }
2876     }
2877     if (account != 0) {
2878       PRINT_STAT_LINE("unaccounted", account);
2879     }
2880     #undef PRINT_STAT_LINE
2881     if (xtty != nullptr)  xtty->tail("statistics");
2882   }
2883 }
2884 
2885 #else // COMPILER2_OR_JVMCI
2886 
2887 
2888 // Stubs for C1 only system.
2889 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2890   return false;
2891 }
2892 
2893 const char* Deoptimization::trap_reason_name(int reason) {
2894   return "unknown";
2895 }
2896 
2897 jint Deoptimization::total_deoptimization_count() {
2898   return 0;
2899 }
2900 
2901 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2902   return 0;
2903 }
2904 
2905 void Deoptimization::print_statistics() {
2906   // no output
2907 }
2908 
2909 void
2910 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2911   // no update
2912 }
2913 
2914 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2915   return 0;
2916 }
2917 
2918 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2919                                        Bytecodes::Code bc) {
2920   // no update
2921 }
2922 
2923 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2924                                               int trap_state) {
2925   jio_snprintf(buf, buflen, "#%d", trap_state);
2926   return buf;
2927 }
2928 
2929 #endif // COMPILER2_OR_JVMCI