1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "compiler/compilationPolicy.hpp" 36 #include "compiler/compilerDefinitions.inline.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "interpreter/bytecode.hpp" 39 #include "interpreter/interpreter.hpp" 40 #include "interpreter/oopMapCache.hpp" 41 #include "jvm.h" 42 #include "logging/log.hpp" 43 #include "logging/logLevel.hpp" 44 #include "logging/logMessage.hpp" 45 #include "logging/logStream.hpp" 46 #include "memory/allocation.inline.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/constantPool.hpp" 51 #include "oops/fieldStreams.inline.hpp" 52 #include "oops/method.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/objArrayOop.inline.hpp" 55 #include "oops/oop.inline.hpp" 56 #include "oops/typeArrayOop.inline.hpp" 57 #include "oops/verifyOopClosure.hpp" 58 #include "prims/jvmtiDeferredUpdates.hpp" 59 #include "prims/jvmtiExport.hpp" 60 #include "prims/jvmtiThreadState.hpp" 61 #include "prims/methodHandles.hpp" 62 #include "prims/vectorSupport.hpp" 63 #include "runtime/atomic.hpp" 64 #include "runtime/continuation.hpp" 65 #include "runtime/continuationEntry.inline.hpp" 66 #include "runtime/deoptimization.hpp" 67 #include "runtime/escapeBarrier.hpp" 68 #include "runtime/fieldDescriptor.hpp" 69 #include "runtime/fieldDescriptor.inline.hpp" 70 #include "runtime/frame.inline.hpp" 71 #include "runtime/handles.inline.hpp" 72 #include "runtime/interfaceSupport.inline.hpp" 73 #include "runtime/javaThread.hpp" 74 #include "runtime/jniHandles.inline.hpp" 75 #include "runtime/keepStackGCProcessed.hpp" 76 #include "runtime/objectMonitor.inline.hpp" 77 #include "runtime/osThread.hpp" 78 #include "runtime/safepointVerifiers.hpp" 79 #include "runtime/sharedRuntime.hpp" 80 #include "runtime/signature.hpp" 81 #include "runtime/stackFrameStream.inline.hpp" 82 #include "runtime/stackValue.hpp" 83 #include "runtime/stackWatermarkSet.hpp" 84 #include "runtime/stubRoutines.hpp" 85 #include "runtime/synchronizer.hpp" 86 #include "runtime/threadSMR.hpp" 87 #include "runtime/threadWXSetters.inline.hpp" 88 #include "runtime/vframe.hpp" 89 #include "runtime/vframeArray.hpp" 90 #include "runtime/vframe_hp.hpp" 91 #include "runtime/vmOperations.hpp" 92 #include "utilities/events.hpp" 93 #include "utilities/growableArray.hpp" 94 #include "utilities/macros.hpp" 95 #include "utilities/preserveException.hpp" 96 #include "utilities/xmlstream.hpp" 97 #if INCLUDE_JFR 98 #include "jfr/jfrEvents.hpp" 99 #include "jfr/metadata/jfrSerializer.hpp" 100 #endif 101 102 uint64_t DeoptimizationScope::_committed_deopt_gen = 0; 103 uint64_t DeoptimizationScope::_active_deopt_gen = 1; 104 bool DeoptimizationScope::_committing_in_progress = false; 105 106 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) { 107 DEBUG_ONLY(_deopted = false;) 108 109 MutexLocker ml(CompiledMethod_lock, Mutex::_no_safepoint_check_flag); 110 // If there is nothing to deopt _required_gen is the same as comitted. 111 _required_gen = DeoptimizationScope::_committed_deopt_gen; 112 } 113 114 DeoptimizationScope::~DeoptimizationScope() { 115 assert(_deopted, "Deopt not executed"); 116 } 117 118 void DeoptimizationScope::mark(CompiledMethod* cm, bool inc_recompile_counts) { 119 MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock, 120 Mutex::_no_safepoint_check_flag); 121 122 // If it's already marked but we still need it to be deopted. 123 if (cm->is_marked_for_deoptimization()) { 124 dependent(cm); 125 return; 126 } 127 128 CompiledMethod::DeoptimizationStatus status = 129 inc_recompile_counts ? CompiledMethod::deoptimize : CompiledMethod::deoptimize_noupdate; 130 Atomic::store(&cm->_deoptimization_status, status); 131 132 // Make sure active is not committed 133 assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be"); 134 assert(cm->_deoptimization_generation == 0, "Is already marked"); 135 136 cm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen; 137 _required_gen = DeoptimizationScope::_active_deopt_gen; 138 } 139 140 void DeoptimizationScope::dependent(CompiledMethod* cm) { 141 MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock, 142 Mutex::_no_safepoint_check_flag); 143 // A method marked by someone else may have a _required_gen lower than what we marked with. 144 // Therefore only store it if it's higher than _required_gen. 145 if (_required_gen < cm->_deoptimization_generation) { 146 _required_gen = cm->_deoptimization_generation; 147 } 148 } 149 150 void DeoptimizationScope::deoptimize_marked() { 151 assert(!_deopted, "Already deopted"); 152 153 // We are not alive yet. 154 if (!Universe::is_fully_initialized()) { 155 DEBUG_ONLY(_deopted = true;) 156 return; 157 } 158 159 // Safepoints are a special case, handled here. 160 if (SafepointSynchronize::is_at_safepoint()) { 161 DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen; 162 DeoptimizationScope::_active_deopt_gen++; 163 Deoptimization::deoptimize_all_marked(); 164 DEBUG_ONLY(_deopted = true;) 165 return; 166 } 167 168 uint64_t comitting = 0; 169 bool wait = false; 170 while (true) { 171 { 172 MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock, 173 Mutex::_no_safepoint_check_flag); 174 // First we check if we or someone else already deopted the gen we want. 175 if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) { 176 DEBUG_ONLY(_deopted = true;) 177 return; 178 } 179 if (!_committing_in_progress) { 180 // The version we are about to commit. 181 comitting = DeoptimizationScope::_active_deopt_gen; 182 // Make sure new marks use a higher gen. 183 DeoptimizationScope::_active_deopt_gen++; 184 _committing_in_progress = true; 185 wait = false; 186 } else { 187 // Another thread is handshaking and committing a gen. 188 wait = true; 189 } 190 } 191 if (wait) { 192 // Wait and let the concurrent handshake be performed. 193 ThreadBlockInVM tbivm(JavaThread::current()); 194 os::naked_yield(); 195 } else { 196 // Performs the handshake. 197 Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred. 198 DEBUG_ONLY(_deopted = true;) 199 { 200 MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock, 201 Mutex::_no_safepoint_check_flag); 202 // Make sure that committed doesn't go backwards. 203 // Should only happen if we did a deopt during a safepoint above. 204 if (DeoptimizationScope::_committed_deopt_gen < comitting) { 205 DeoptimizationScope::_committed_deopt_gen = comitting; 206 } 207 _committing_in_progress = false; 208 209 assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be"); 210 211 return; 212 } 213 } 214 } 215 } 216 217 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 218 int caller_adjustment, 219 int caller_actual_parameters, 220 int number_of_frames, 221 intptr_t* frame_sizes, 222 address* frame_pcs, 223 BasicType return_type, 224 int exec_mode) { 225 _size_of_deoptimized_frame = size_of_deoptimized_frame; 226 _caller_adjustment = caller_adjustment; 227 _caller_actual_parameters = caller_actual_parameters; 228 _number_of_frames = number_of_frames; 229 _frame_sizes = frame_sizes; 230 _frame_pcs = frame_pcs; 231 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 232 _return_type = return_type; 233 _initial_info = 0; 234 // PD (x86 only) 235 _counter_temp = 0; 236 _unpack_kind = exec_mode; 237 _sender_sp_temp = 0; 238 239 _total_frame_sizes = size_of_frames(); 240 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 241 } 242 243 Deoptimization::UnrollBlock::~UnrollBlock() { 244 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 245 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 246 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 247 } 248 249 int Deoptimization::UnrollBlock::size_of_frames() const { 250 // Account first for the adjustment of the initial frame 251 int result = _caller_adjustment; 252 for (int index = 0; index < number_of_frames(); index++) { 253 result += frame_sizes()[index]; 254 } 255 return result; 256 } 257 258 void Deoptimization::UnrollBlock::print() { 259 ResourceMark rm; 260 stringStream st; 261 st.print_cr("UnrollBlock"); 262 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 263 st.print( " frame_sizes: "); 264 for (int index = 0; index < number_of_frames(); index++) { 265 st.print(INTX_FORMAT " ", frame_sizes()[index]); 266 } 267 st.cr(); 268 tty->print_raw(st.freeze()); 269 } 270 271 // In order to make fetch_unroll_info work properly with escape 272 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 273 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 274 // which is called from the method fetch_unroll_info_helper below. 275 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 276 // fetch_unroll_info() is called at the beginning of the deoptimization 277 // handler. Note this fact before we start generating temporary frames 278 // that can confuse an asynchronous stack walker. This counter is 279 // decremented at the end of unpack_frames(). 280 current->inc_in_deopt_handler(); 281 282 if (exec_mode == Unpack_exception) { 283 // When we get here, a callee has thrown an exception into a deoptimized 284 // frame. That throw might have deferred stack watermark checking until 285 // after unwinding. So we deal with such deferred requests here. 286 StackWatermarkSet::after_unwind(current); 287 } 288 289 return fetch_unroll_info_helper(current, exec_mode); 290 JRT_END 291 292 #if COMPILER2_OR_JVMCI 293 // print information about reallocated objects 294 static void print_objects(JavaThread* deoptee_thread, 295 GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 296 ResourceMark rm; 297 stringStream st; // change to logStream with logging 298 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 299 fieldDescriptor fd; 300 301 for (int i = 0; i < objects->length(); i++) { 302 ObjectValue* sv = (ObjectValue*) objects->at(i); 303 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 304 Handle obj = sv->value(); 305 306 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 307 k->print_value_on(&st); 308 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 309 if (obj.is_null()) { 310 st.print(" allocation failed"); 311 } else { 312 st.print(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize); 313 } 314 st.cr(); 315 316 if (Verbose && !obj.is_null()) { 317 k->oop_print_on(obj(), &st); 318 } 319 } 320 tty->print_raw(st.freeze()); 321 } 322 323 static bool rematerialize_objects(JavaThread* thread, int exec_mode, CompiledMethod* compiled_method, 324 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 325 bool& deoptimized_objects) { 326 bool realloc_failures = false; 327 assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames"); 328 329 JavaThread* deoptee_thread = chunk->at(0)->thread(); 330 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 331 "a frame can only be deoptimized by the owner thread"); 332 333 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects(); 334 335 // The flag return_oop() indicates call sites which return oop 336 // in compiled code. Such sites include java method calls, 337 // runtime calls (for example, used to allocate new objects/arrays 338 // on slow code path) and any other calls generated in compiled code. 339 // It is not guaranteed that we can get such information here only 340 // by analyzing bytecode in deoptimized frames. This is why this flag 341 // is set during method compilation (see Compile::Process_OopMap_Node()). 342 // If the previous frame was popped or if we are dispatching an exception, 343 // we don't have an oop result. 344 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 345 Handle return_value; 346 if (save_oop_result) { 347 // Reallocation may trigger GC. If deoptimization happened on return from 348 // call which returns oop we need to save it since it is not in oopmap. 349 oop result = deoptee.saved_oop_result(&map); 350 assert(oopDesc::is_oop_or_null(result), "must be oop"); 351 return_value = Handle(thread, result); 352 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 353 if (TraceDeoptimization) { 354 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 355 tty->cr(); 356 } 357 } 358 if (objects != nullptr) { 359 if (exec_mode == Deoptimization::Unpack_none) { 360 assert(thread->thread_state() == _thread_in_vm, "assumption"); 361 JavaThread* THREAD = thread; // For exception macros. 362 // Clear pending OOM if reallocation fails and return true indicating allocation failure 363 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 364 deoptimized_objects = true; 365 } else { 366 JavaThread* current = thread; // For JRT_BLOCK 367 JRT_BLOCK 368 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 369 JRT_END 370 } 371 bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci(); 372 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal); 373 if (TraceDeoptimization) { 374 print_objects(deoptee_thread, objects, realloc_failures); 375 } 376 } 377 if (save_oop_result) { 378 // Restore result. 379 deoptee.set_saved_oop_result(&map, return_value()); 380 } 381 return realloc_failures; 382 } 383 384 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 385 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 386 JavaThread* deoptee_thread = chunk->at(0)->thread(); 387 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 388 assert(thread == Thread::current(), "should be"); 389 HandleMark hm(thread); 390 #ifndef PRODUCT 391 bool first = true; 392 #endif // !PRODUCT 393 // Start locking from outermost/oldest frame 394 for (int i = (chunk->length() - 1); i >= 0; i--) { 395 compiledVFrame* cvf = chunk->at(i); 396 assert (cvf->scope() != nullptr,"expect only compiled java frames"); 397 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 398 if (monitors->is_nonempty()) { 399 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 400 exec_mode, realloc_failures); 401 deoptimized_objects = deoptimized_objects || relocked; 402 #ifndef PRODUCT 403 if (PrintDeoptimizationDetails) { 404 ResourceMark rm; 405 stringStream st; 406 for (int j = 0; j < monitors->length(); j++) { 407 MonitorInfo* mi = monitors->at(j); 408 if (mi->eliminated()) { 409 if (first) { 410 first = false; 411 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 412 } 413 if (exec_mode == Deoptimization::Unpack_none) { 414 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 415 if (monitor != nullptr && monitor->object() == mi->owner()) { 416 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 417 continue; 418 } 419 } 420 if (mi->owner_is_scalar_replaced()) { 421 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 422 st.print_cr(" failed reallocation for klass %s", k->external_name()); 423 } else { 424 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 425 } 426 } 427 } 428 tty->print_raw(st.freeze()); 429 } 430 #endif // !PRODUCT 431 } 432 } 433 } 434 435 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 436 // The given vframes cover one physical frame. 437 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 438 bool& realloc_failures) { 439 frame deoptee = chunk->at(0)->fr(); 440 JavaThread* deoptee_thread = chunk->at(0)->thread(); 441 CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null(); 442 RegisterMap map(chunk->at(0)->register_map()); 443 bool deoptimized_objects = false; 444 445 bool const jvmci_enabled = JVMCI_ONLY(UseJVMCICompiler) NOT_JVMCI(false); 446 447 // Reallocate the non-escaping objects and restore their fields. 448 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 449 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 450 realloc_failures = rematerialize_objects(thread, Unpack_none, cm, deoptee, map, chunk, deoptimized_objects); 451 } 452 453 // MonitorInfo structures used in eliminate_locks are not GC safe. 454 NoSafepointVerifier no_safepoint; 455 456 // Now relock objects if synchronization on them was eliminated. 457 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 458 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 459 } 460 return deoptimized_objects; 461 } 462 #endif // COMPILER2_OR_JVMCI 463 464 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 465 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 466 // When we get here we are about to unwind the deoptee frame. In order to 467 // catch not yet safe to use frames, the following stack watermark barrier 468 // poll will make such frames safe to use. 469 StackWatermarkSet::before_unwind(current); 470 471 // Note: there is a safepoint safety issue here. No matter whether we enter 472 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 473 // the vframeArray is created. 474 // 475 476 // Allocate our special deoptimization ResourceMark 477 DeoptResourceMark* dmark = new DeoptResourceMark(current); 478 assert(current->deopt_mark() == nullptr, "Pending deopt!"); 479 current->set_deopt_mark(dmark); 480 481 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 482 RegisterMap map(current, 483 RegisterMap::UpdateMap::include, 484 RegisterMap::ProcessFrames::include, 485 RegisterMap::WalkContinuation::skip); 486 RegisterMap dummy_map(current, 487 RegisterMap::UpdateMap::skip, 488 RegisterMap::ProcessFrames::include, 489 RegisterMap::WalkContinuation::skip); 490 // Now get the deoptee with a valid map 491 frame deoptee = stub_frame.sender(&map); 492 // Set the deoptee nmethod 493 assert(current->deopt_compiled_method() == nullptr, "Pending deopt!"); 494 CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null(); 495 current->set_deopt_compiled_method(cm); 496 497 if (VerifyStack) { 498 current->validate_frame_layout(); 499 } 500 501 // Create a growable array of VFrames where each VFrame represents an inlined 502 // Java frame. This storage is allocated with the usual system arena. 503 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 504 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 505 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 506 while (!vf->is_top()) { 507 assert(vf->is_compiled_frame(), "Wrong frame type"); 508 chunk->push(compiledVFrame::cast(vf)); 509 vf = vf->sender(); 510 } 511 assert(vf->is_compiled_frame(), "Wrong frame type"); 512 chunk->push(compiledVFrame::cast(vf)); 513 514 bool realloc_failures = false; 515 516 #if COMPILER2_OR_JVMCI 517 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 518 519 // Reallocate the non-escaping objects and restore their fields. Then 520 // relock objects if synchronization on them was eliminated. 521 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 522 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 523 bool unused; 524 realloc_failures = rematerialize_objects(current, exec_mode, cm, deoptee, map, chunk, unused); 525 } 526 #endif // COMPILER2_OR_JVMCI 527 528 // Ensure that no safepoint is taken after pointers have been stored 529 // in fields of rematerialized objects. If a safepoint occurs from here on 530 // out the java state residing in the vframeArray will be missed. 531 // Locks may be rebaised in a safepoint. 532 NoSafepointVerifier no_safepoint; 533 534 #if COMPILER2_OR_JVMCI 535 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 536 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 537 bool unused = false; 538 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 539 } 540 #endif // COMPILER2_OR_JVMCI 541 542 ScopeDesc* trap_scope = chunk->at(0)->scope(); 543 Handle exceptionObject; 544 if (trap_scope->rethrow_exception()) { 545 #ifndef PRODUCT 546 if (PrintDeoptimizationDetails) { 547 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 548 } 549 #endif // !PRODUCT 550 551 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 552 guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw"); 553 ScopeValue* topOfStack = expressions->top(); 554 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 555 guarantee(exceptionObject() != nullptr, "exception oop can not be null"); 556 } 557 558 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 559 #if COMPILER2_OR_JVMCI 560 if (realloc_failures) { 561 // This destroys all ScopedValue bindings. 562 current->clear_scopedValueBindings(); 563 pop_frames_failed_reallocs(current, array); 564 } 565 #endif 566 567 assert(current->vframe_array_head() == nullptr, "Pending deopt!"); 568 current->set_vframe_array_head(array); 569 570 // Now that the vframeArray has been created if we have any deferred local writes 571 // added by jvmti then we can free up that structure as the data is now in the 572 // vframeArray 573 574 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 575 576 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 577 CodeBlob* cb = stub_frame.cb(); 578 // Verify we have the right vframeArray 579 assert(cb->frame_size() >= 0, "Unexpected frame size"); 580 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 581 582 // If the deopt call site is a MethodHandle invoke call site we have 583 // to adjust the unpack_sp. 584 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 585 if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc())) 586 unpack_sp = deoptee.unextended_sp(); 587 588 #ifdef ASSERT 589 assert(cb->is_deoptimization_stub() || 590 cb->is_uncommon_trap_stub() || 591 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 592 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 593 "unexpected code blob: %s", cb->name()); 594 #endif 595 596 // This is a guarantee instead of an assert because if vframe doesn't match 597 // we will unpack the wrong deoptimized frame and wind up in strange places 598 // where it will be very difficult to figure out what went wrong. Better 599 // to die an early death here than some very obscure death later when the 600 // trail is cold. 601 // Note: on ia64 this guarantee can be fooled by frames with no memory stack 602 // in that it will fail to detect a problem when there is one. This needs 603 // more work in tiger timeframe. 604 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 605 606 int number_of_frames = array->frames(); 607 608 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 609 // virtual activation, which is the reverse of the elements in the vframes array. 610 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 611 // +1 because we always have an interpreter return address for the final slot. 612 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 613 int popframe_extra_args = 0; 614 // Create an interpreter return address for the stub to use as its return 615 // address so the skeletal frames are perfectly walkable 616 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 617 618 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 619 // activation be put back on the expression stack of the caller for reexecution 620 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 621 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 622 } 623 624 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 625 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 626 // than simply use array->sender.pc(). This requires us to walk the current set of frames 627 // 628 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 629 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 630 631 // It's possible that the number of parameters at the call site is 632 // different than number of arguments in the callee when method 633 // handles are used. If the caller is interpreted get the real 634 // value so that the proper amount of space can be added to it's 635 // frame. 636 bool caller_was_method_handle = false; 637 if (deopt_sender.is_interpreted_frame()) { 638 methodHandle method(current, deopt_sender.interpreter_frame_method()); 639 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci()); 640 if (cur.is_invokedynamic() || cur.is_invokehandle()) { 641 // Method handle invokes may involve fairly arbitrary chains of 642 // calls so it's impossible to know how much actual space the 643 // caller has for locals. 644 caller_was_method_handle = true; 645 } 646 } 647 648 // 649 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 650 // frame_sizes/frame_pcs[1] next oldest frame (int) 651 // frame_sizes/frame_pcs[n] youngest frame (int) 652 // 653 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 654 // owns the space for the return address to it's caller). Confusing ain't it. 655 // 656 // The vframe array can address vframes with indices running from 657 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 658 // When we create the skeletal frames we need the oldest frame to be in the zero slot 659 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 660 // so things look a little strange in this loop. 661 // 662 int callee_parameters = 0; 663 int callee_locals = 0; 664 for (int index = 0; index < array->frames(); index++ ) { 665 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 666 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 667 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 668 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 669 callee_locals, 670 index == 0, 671 popframe_extra_args); 672 // This pc doesn't have to be perfect just good enough to identify the frame 673 // as interpreted so the skeleton frame will be walkable 674 // The correct pc will be set when the skeleton frame is completely filled out 675 // The final pc we store in the loop is wrong and will be overwritten below 676 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 677 678 callee_parameters = array->element(index)->method()->size_of_parameters(); 679 callee_locals = array->element(index)->method()->max_locals(); 680 popframe_extra_args = 0; 681 } 682 683 // Compute whether the root vframe returns a float or double value. 684 BasicType return_type; 685 { 686 methodHandle method(current, array->element(0)->method()); 687 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 688 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 689 } 690 691 // Compute information for handling adapters and adjusting the frame size of the caller. 692 int caller_adjustment = 0; 693 694 // Compute the amount the oldest interpreter frame will have to adjust 695 // its caller's stack by. If the caller is a compiled frame then 696 // we pretend that the callee has no parameters so that the 697 // extension counts for the full amount of locals and not just 698 // locals-parms. This is because without a c2i adapter the parm 699 // area as created by the compiled frame will not be usable by 700 // the interpreter. (Depending on the calling convention there 701 // may not even be enough space). 702 703 // QQQ I'd rather see this pushed down into last_frame_adjust 704 // and have it take the sender (aka caller). 705 706 if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) { 707 caller_adjustment = last_frame_adjust(0, callee_locals); 708 } else if (callee_locals > callee_parameters) { 709 // The caller frame may need extending to accommodate 710 // non-parameter locals of the first unpacked interpreted frame. 711 // Compute that adjustment. 712 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 713 } 714 715 // If the sender is deoptimized the we must retrieve the address of the handler 716 // since the frame will "magically" show the original pc before the deopt 717 // and we'd undo the deopt. 718 719 frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc(); 720 if (Continuation::is_continuation_enterSpecial(deopt_sender)) { 721 ContinuationEntry::from_frame(deopt_sender)->set_argsize(0); 722 } 723 724 assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc"); 725 726 #if INCLUDE_JVMCI 727 if (exceptionObject() != nullptr) { 728 current->set_exception_oop(exceptionObject()); 729 exec_mode = Unpack_exception; 730 } 731 #endif 732 733 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 734 assert(current->has_pending_exception(), "should have thrown OOME"); 735 current->set_exception_oop(current->pending_exception()); 736 current->clear_pending_exception(); 737 exec_mode = Unpack_exception; 738 } 739 740 #if INCLUDE_JVMCI 741 if (current->frames_to_pop_failed_realloc() > 0) { 742 current->set_pending_monitorenter(false); 743 } 744 #endif 745 746 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 747 caller_adjustment * BytesPerWord, 748 caller_was_method_handle ? 0 : callee_parameters, 749 number_of_frames, 750 frame_sizes, 751 frame_pcs, 752 return_type, 753 exec_mode); 754 // On some platforms, we need a way to pass some platform dependent 755 // information to the unpacking code so the skeletal frames come out 756 // correct (initial fp value, unextended sp, ...) 757 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 758 759 if (array->frames() > 1) { 760 if (VerifyStack && TraceDeoptimization) { 761 tty->print_cr("Deoptimizing method containing inlining"); 762 } 763 } 764 765 array->set_unroll_block(info); 766 return info; 767 } 768 769 // Called to cleanup deoptimization data structures in normal case 770 // after unpacking to stack and when stack overflow error occurs 771 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 772 vframeArray *array) { 773 774 // Get array if coming from exception 775 if (array == nullptr) { 776 array = thread->vframe_array_head(); 777 } 778 thread->set_vframe_array_head(nullptr); 779 780 // Free the previous UnrollBlock 781 vframeArray* old_array = thread->vframe_array_last(); 782 thread->set_vframe_array_last(array); 783 784 if (old_array != nullptr) { 785 UnrollBlock* old_info = old_array->unroll_block(); 786 old_array->set_unroll_block(nullptr); 787 delete old_info; 788 delete old_array; 789 } 790 791 // Deallocate any resource creating in this routine and any ResourceObjs allocated 792 // inside the vframeArray (StackValueCollections) 793 794 delete thread->deopt_mark(); 795 thread->set_deopt_mark(nullptr); 796 thread->set_deopt_compiled_method(nullptr); 797 798 799 if (JvmtiExport::can_pop_frame()) { 800 // Regardless of whether we entered this routine with the pending 801 // popframe condition bit set, we should always clear it now 802 thread->clear_popframe_condition(); 803 } 804 805 // unpack_frames() is called at the end of the deoptimization handler 806 // and (in C2) at the end of the uncommon trap handler. Note this fact 807 // so that an asynchronous stack walker can work again. This counter is 808 // incremented at the beginning of fetch_unroll_info() and (in C2) at 809 // the beginning of uncommon_trap(). 810 thread->dec_in_deopt_handler(); 811 } 812 813 // Moved from cpu directories because none of the cpus has callee save values. 814 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 815 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 816 817 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 818 // the days we had adapter frames. When we deoptimize a situation where a 819 // compiled caller calls a compiled caller will have registers it expects 820 // to survive the call to the callee. If we deoptimize the callee the only 821 // way we can restore these registers is to have the oldest interpreter 822 // frame that we create restore these values. That is what this routine 823 // will accomplish. 824 825 // At the moment we have modified c2 to not have any callee save registers 826 // so this problem does not exist and this routine is just a place holder. 827 828 assert(f->is_interpreted_frame(), "must be interpreted"); 829 } 830 831 #ifndef PRODUCT 832 static bool falls_through(Bytecodes::Code bc) { 833 switch (bc) { 834 // List may be incomplete. Here we really only care about bytecodes where compiled code 835 // can deoptimize. 836 case Bytecodes::_goto: 837 case Bytecodes::_goto_w: 838 case Bytecodes::_athrow: 839 return false; 840 default: 841 return true; 842 } 843 } 844 #endif 845 846 // Return BasicType of value being returned 847 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 848 assert(thread == JavaThread::current(), "pre-condition"); 849 850 // We are already active in the special DeoptResourceMark any ResourceObj's we 851 // allocate will be freed at the end of the routine. 852 853 // JRT_LEAF methods don't normally allocate handles and there is a 854 // NoHandleMark to enforce that. It is actually safe to use Handles 855 // in a JRT_LEAF method, and sometimes desirable, but to do so we 856 // must use ResetNoHandleMark to bypass the NoHandleMark, and 857 // then use a HandleMark to ensure any Handles we do create are 858 // cleaned up in this scope. 859 ResetNoHandleMark rnhm; 860 HandleMark hm(thread); 861 862 frame stub_frame = thread->last_frame(); 863 864 Continuation::notify_deopt(thread, stub_frame.sp()); 865 866 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 867 // must point to the vframeArray for the unpack frame. 868 vframeArray* array = thread->vframe_array_head(); 869 UnrollBlock* info = array->unroll_block(); 870 871 // We set the last_Java frame. But the stack isn't really parsable here. So we 872 // clear it to make sure JFR understands not to try and walk stacks from events 873 // in here. 874 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 875 thread->frame_anchor()->set_last_Java_sp(nullptr); 876 877 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 878 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 879 880 thread->frame_anchor()->set_last_Java_sp(sp); 881 882 BasicType bt = info->return_type(); 883 884 // If we have an exception pending, claim that the return type is an oop 885 // so the deopt_blob does not overwrite the exception_oop. 886 887 if (exec_mode == Unpack_exception) 888 bt = T_OBJECT; 889 890 // Cleanup thread deopt data 891 cleanup_deopt_info(thread, array); 892 893 #ifndef PRODUCT 894 if (VerifyStack) { 895 ResourceMark res_mark; 896 // Clear pending exception to not break verification code (restored afterwards) 897 PreserveExceptionMark pm(thread); 898 899 thread->validate_frame_layout(); 900 901 // Verify that the just-unpacked frames match the interpreter's 902 // notions of expression stack and locals 903 vframeArray* cur_array = thread->vframe_array_last(); 904 RegisterMap rm(thread, 905 RegisterMap::UpdateMap::skip, 906 RegisterMap::ProcessFrames::include, 907 RegisterMap::WalkContinuation::skip); 908 rm.set_include_argument_oops(false); 909 bool is_top_frame = true; 910 int callee_size_of_parameters = 0; 911 int callee_max_locals = 0; 912 for (int i = 0; i < cur_array->frames(); i++) { 913 vframeArrayElement* el = cur_array->element(i); 914 frame* iframe = el->iframe(); 915 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 916 917 // Get the oop map for this bci 918 InterpreterOopMap mask; 919 int cur_invoke_parameter_size = 0; 920 bool try_next_mask = false; 921 int next_mask_expression_stack_size = -1; 922 int top_frame_expression_stack_adjustment = 0; 923 methodHandle mh(thread, iframe->interpreter_frame_method()); 924 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 925 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 926 int max_bci = mh->code_size(); 927 // Get to the next bytecode if possible 928 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 929 // Check to see if we can grab the number of outgoing arguments 930 // at an uncommon trap for an invoke (where the compiler 931 // generates debug info before the invoke has executed) 932 Bytecodes::Code cur_code = str.next(); 933 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 934 if (Bytecodes::is_invoke(cur_code)) { 935 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 936 cur_invoke_parameter_size = invoke.size_of_parameters(); 937 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) { 938 callee_size_of_parameters++; 939 } 940 } 941 if (str.bci() < max_bci) { 942 next_code = str.next(); 943 if (next_code >= 0) { 944 // The interpreter oop map generator reports results before 945 // the current bytecode has executed except in the case of 946 // calls. It seems to be hard to tell whether the compiler 947 // has emitted debug information matching the "state before" 948 // a given bytecode or the state after, so we try both 949 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 950 // Get expression stack size for the next bytecode 951 InterpreterOopMap next_mask; 952 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 953 next_mask_expression_stack_size = next_mask.expression_stack_size(); 954 if (Bytecodes::is_invoke(next_code)) { 955 Bytecode_invoke invoke(mh, str.bci()); 956 next_mask_expression_stack_size += invoke.size_of_parameters(); 957 } 958 // Need to subtract off the size of the result type of 959 // the bytecode because this is not described in the 960 // debug info but returned to the interpreter in the TOS 961 // caching register 962 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 963 if (bytecode_result_type != T_ILLEGAL) { 964 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 965 } 966 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 967 try_next_mask = true; 968 } 969 } 970 } 971 972 // Verify stack depth and oops in frame 973 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 974 if (!( 975 /* SPARC */ 976 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 977 /* x86 */ 978 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 979 (try_next_mask && 980 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 981 top_frame_expression_stack_adjustment))) || 982 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 983 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 984 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 985 )) { 986 { 987 // Print out some information that will help us debug the problem 988 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 989 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 990 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 991 if (try_next_mask) { 992 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 993 } 994 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 995 iframe->interpreter_frame_expression_stack_size()); 996 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 997 tty->print_cr(" try_next_mask = %d", try_next_mask); 998 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 999 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 1000 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 1001 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 1002 tty->print_cr(" exec_mode = %d", exec_mode); 1003 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 1004 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 1005 tty->print_cr(" Interpreted frames:"); 1006 for (int k = 0; k < cur_array->frames(); k++) { 1007 vframeArrayElement* el = cur_array->element(k); 1008 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 1009 } 1010 cur_array->print_on_2(tty); 1011 } 1012 guarantee(false, "wrong number of expression stack elements during deopt"); 1013 } 1014 VerifyOopClosure verify; 1015 iframe->oops_interpreted_do(&verify, &rm, false); 1016 callee_size_of_parameters = mh->size_of_parameters(); 1017 callee_max_locals = mh->max_locals(); 1018 is_top_frame = false; 1019 } 1020 } 1021 #endif // !PRODUCT 1022 1023 return bt; 1024 JRT_END 1025 1026 class DeoptimizeMarkedClosure : public HandshakeClosure { 1027 public: 1028 DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {} 1029 void do_thread(Thread* thread) { 1030 JavaThread* jt = JavaThread::cast(thread); 1031 jt->deoptimize_marked_methods(); 1032 } 1033 }; 1034 1035 void Deoptimization::deoptimize_all_marked() { 1036 ResourceMark rm; 1037 1038 // Make the dependent methods not entrant 1039 CodeCache::make_marked_nmethods_deoptimized(); 1040 1041 DeoptimizeMarkedClosure deopt; 1042 if (SafepointSynchronize::is_at_safepoint()) { 1043 Threads::java_threads_do(&deopt); 1044 } else { 1045 Handshake::execute(&deopt); 1046 } 1047 } 1048 1049 Deoptimization::DeoptAction Deoptimization::_unloaded_action 1050 = Deoptimization::Action_reinterpret; 1051 1052 #if INCLUDE_JVMCI 1053 template<typename CacheType> 1054 class BoxCacheBase : public CHeapObj<mtCompiler> { 1055 protected: 1056 static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) { 1057 ResourceMark rm(thread); 1058 char* klass_name_str = klass_name->as_C_string(); 1059 InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle()); 1060 guarantee(ik != nullptr, "%s must be loaded", klass_name_str); 1061 if (!ik->is_in_error_state()) { 1062 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 1063 CacheType::compute_offsets(ik); 1064 } 1065 return ik; 1066 } 1067 }; 1068 1069 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 1070 PrimitiveType _low; 1071 PrimitiveType _high; 1072 jobject _cache; 1073 protected: 1074 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 1075 BoxCache(Thread* thread) { 1076 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol()); 1077 if (ik->is_in_error_state()) { 1078 _low = 1; 1079 _high = 0; 1080 _cache = nullptr; 1081 } else { 1082 objArrayOop cache = CacheType::cache(ik); 1083 assert(cache->length() > 0, "Empty cache"); 1084 _low = BoxType::value(cache->obj_at(0)); 1085 _high = _low + cache->length() - 1; 1086 _cache = JNIHandles::make_global(Handle(thread, cache)); 1087 } 1088 } 1089 ~BoxCache() { 1090 JNIHandles::destroy_global(_cache); 1091 } 1092 public: 1093 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 1094 if (_singleton == nullptr) { 1095 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 1096 if (!Atomic::replace_if_null(&_singleton, s)) { 1097 delete s; 1098 } 1099 } 1100 return _singleton; 1101 } 1102 oop lookup(PrimitiveType value) { 1103 if (_low <= value && value <= _high) { 1104 int offset = value - _low; 1105 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 1106 } 1107 return nullptr; 1108 } 1109 oop lookup_raw(intptr_t raw_value, bool& cache_init_error) { 1110 if (_cache == nullptr) { 1111 cache_init_error = true; 1112 return nullptr; 1113 } 1114 // Have to cast to avoid little/big-endian problems. 1115 if (sizeof(PrimitiveType) > sizeof(jint)) { 1116 jlong value = (jlong)raw_value; 1117 return lookup(value); 1118 } 1119 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1120 return lookup(value); 1121 } 1122 }; 1123 1124 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1125 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1126 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1127 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1128 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1129 1130 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr; 1131 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr; 1132 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr; 1133 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr; 1134 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr; 1135 1136 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1137 jobject _true_cache; 1138 jobject _false_cache; 1139 protected: 1140 static BooleanBoxCache *_singleton; 1141 BooleanBoxCache(Thread *thread) { 1142 InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol()); 1143 if (ik->is_in_error_state()) { 1144 _true_cache = nullptr; 1145 _false_cache = nullptr; 1146 } else { 1147 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1148 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1149 } 1150 } 1151 ~BooleanBoxCache() { 1152 JNIHandles::destroy_global(_true_cache); 1153 JNIHandles::destroy_global(_false_cache); 1154 } 1155 public: 1156 static BooleanBoxCache* singleton(Thread* thread) { 1157 if (_singleton == nullptr) { 1158 BooleanBoxCache* s = new BooleanBoxCache(thread); 1159 if (!Atomic::replace_if_null(&_singleton, s)) { 1160 delete s; 1161 } 1162 } 1163 return _singleton; 1164 } 1165 oop lookup_raw(intptr_t raw_value, bool& cache_in_error) { 1166 if (_true_cache == nullptr) { 1167 cache_in_error = true; 1168 return nullptr; 1169 } 1170 // Have to cast to avoid little/big-endian problems. 1171 jboolean value = (jboolean)*((jint*)&raw_value); 1172 return lookup(value); 1173 } 1174 oop lookup(jboolean value) { 1175 if (value != 0) { 1176 return JNIHandles::resolve_non_null(_true_cache); 1177 } 1178 return JNIHandles::resolve_non_null(_false_cache); 1179 } 1180 }; 1181 1182 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr; 1183 1184 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) { 1185 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1186 BasicType box_type = vmClasses::box_klass_type(k); 1187 if (box_type != T_OBJECT) { 1188 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1189 switch(box_type) { 1190 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1191 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1192 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1193 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1194 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1195 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1196 default:; 1197 } 1198 } 1199 return nullptr; 1200 } 1201 #endif // INCLUDE_JVMCI 1202 1203 #if COMPILER2_OR_JVMCI 1204 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1205 Handle pending_exception(THREAD, thread->pending_exception()); 1206 const char* exception_file = thread->exception_file(); 1207 int exception_line = thread->exception_line(); 1208 thread->clear_pending_exception(); 1209 1210 bool failures = false; 1211 1212 for (int i = 0; i < objects->length(); i++) { 1213 assert(objects->at(i)->is_object(), "invalid debug information"); 1214 ObjectValue* sv = (ObjectValue*) objects->at(i); 1215 1216 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1217 oop obj = nullptr; 1218 1219 bool cache_init_error = false; 1220 if (k->is_instance_klass()) { 1221 #if INCLUDE_JVMCI 1222 CompiledMethod* cm = fr->cb()->as_compiled_method_or_null(); 1223 if (cm->is_compiled_by_jvmci() && sv->is_auto_box()) { 1224 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1225 obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD); 1226 if (obj != nullptr) { 1227 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1228 abv->set_cached(true); 1229 } else if (cache_init_error) { 1230 // Results in an OOME which is valid (as opposed to a class initialization error) 1231 // and is fine for the rare case a cache initialization failing. 1232 failures = true; 1233 } 1234 } 1235 #endif // INCLUDE_JVMCI 1236 1237 InstanceKlass* ik = InstanceKlass::cast(k); 1238 if (obj == nullptr && !cache_init_error) { 1239 #ifdef COMPILER2 1240 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1241 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1242 } else { 1243 obj = ik->allocate_instance(THREAD); 1244 } 1245 #else 1246 obj = ik->allocate_instance(THREAD); 1247 #endif // COMPILER2 1248 } 1249 } else if (k->is_typeArray_klass()) { 1250 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1251 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1252 int len = sv->field_size() / type2size[ak->element_type()]; 1253 obj = ak->allocate(len, THREAD); 1254 } else if (k->is_objArray_klass()) { 1255 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 1256 obj = ak->allocate(sv->field_size(), THREAD); 1257 } 1258 1259 if (obj == nullptr) { 1260 failures = true; 1261 } 1262 1263 assert(sv->value().is_null(), "redundant reallocation"); 1264 assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception"); 1265 CLEAR_PENDING_EXCEPTION; 1266 sv->set_value(obj); 1267 } 1268 1269 if (failures) { 1270 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1271 } else if (pending_exception.not_null()) { 1272 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1273 } 1274 1275 return failures; 1276 } 1277 1278 #if INCLUDE_JVMCI 1279 /** 1280 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1281 * we need to somehow be able to recover the actual kind to be able to write the correct 1282 * amount of bytes. 1283 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1284 * the entries at index n + 1 to n + i are 'markers'. 1285 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1286 * expected form of the array would be: 1287 * 1288 * {b0, b1, b2, b3, INT, marker, b6, b7} 1289 * 1290 * Thus, in order to get back the size of the entry, we simply need to count the number 1291 * of marked entries 1292 * 1293 * @param virtualArray the virtualized byte array 1294 * @param i index of the virtual entry we are recovering 1295 * @return The number of bytes the entry spans 1296 */ 1297 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1298 int index = i; 1299 while (++index < virtualArray->field_size() && 1300 virtualArray->field_at(index)->is_marker()) {} 1301 return index - i; 1302 } 1303 1304 /** 1305 * If there was a guarantee for byte array to always start aligned to a long, we could 1306 * do a simple check on the parity of the index. Unfortunately, that is not always the 1307 * case. Thus, we check alignment of the actual address we are writing to. 1308 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1309 * write a long to index 3. 1310 */ 1311 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1312 jbyte* res = obj->byte_at_addr(index); 1313 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1314 return res; 1315 } 1316 1317 static void byte_array_put(typeArrayOop obj, intptr_t val, int index, int byte_count) { 1318 switch (byte_count) { 1319 case 1: 1320 obj->byte_at_put(index, (jbyte) *((jint *) &val)); 1321 break; 1322 case 2: 1323 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) *((jint *) &val); 1324 break; 1325 case 4: 1326 *((jint *) check_alignment_get_addr(obj, index, 4)) = (jint) *((jint *) &val); 1327 break; 1328 case 8: 1329 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) *((jlong *) &val); 1330 break; 1331 default: 1332 ShouldNotReachHere(); 1333 } 1334 } 1335 #endif // INCLUDE_JVMCI 1336 1337 1338 // restore elements of an eliminated type array 1339 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1340 int index = 0; 1341 intptr_t val; 1342 1343 for (int i = 0; i < sv->field_size(); i++) { 1344 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1345 switch(type) { 1346 case T_LONG: case T_DOUBLE: { 1347 assert(value->type() == T_INT, "Agreement."); 1348 StackValue* low = 1349 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1350 #ifdef _LP64 1351 jlong res = (jlong)low->get_int(); 1352 #else 1353 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1354 #endif 1355 obj->long_at_put(index, res); 1356 break; 1357 } 1358 1359 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1360 case T_INT: case T_FLOAT: { // 4 bytes. 1361 assert(value->type() == T_INT, "Agreement."); 1362 bool big_value = false; 1363 if (i + 1 < sv->field_size() && type == T_INT) { 1364 if (sv->field_at(i)->is_location()) { 1365 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1366 if (type == Location::dbl || type == Location::lng) { 1367 big_value = true; 1368 } 1369 } else if (sv->field_at(i)->is_constant_int()) { 1370 ScopeValue* next_scope_field = sv->field_at(i + 1); 1371 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1372 big_value = true; 1373 } 1374 } 1375 } 1376 1377 if (big_value) { 1378 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1379 #ifdef _LP64 1380 jlong res = (jlong)low->get_int(); 1381 #else 1382 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1383 #endif 1384 obj->int_at_put(index, (jint)*((jint*)&res)); 1385 obj->int_at_put(++index, (jint)*(((jint*)&res) + 1)); 1386 } else { 1387 val = value->get_int(); 1388 obj->int_at_put(index, (jint)*((jint*)&val)); 1389 } 1390 break; 1391 } 1392 1393 case T_SHORT: 1394 assert(value->type() == T_INT, "Agreement."); 1395 val = value->get_int(); 1396 obj->short_at_put(index, (jshort)*((jint*)&val)); 1397 break; 1398 1399 case T_CHAR: 1400 assert(value->type() == T_INT, "Agreement."); 1401 val = value->get_int(); 1402 obj->char_at_put(index, (jchar)*((jint*)&val)); 1403 break; 1404 1405 case T_BYTE: { 1406 assert(value->type() == T_INT, "Agreement."); 1407 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1408 val = value->get_int(); 1409 #if INCLUDE_JVMCI 1410 int byte_count = count_number_of_bytes_for_entry(sv, i); 1411 byte_array_put(obj, val, index, byte_count); 1412 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1413 i += byte_count - 1; // Balance the loop counter. 1414 index += byte_count; 1415 // index has been updated so continue at top of loop 1416 continue; 1417 #else 1418 obj->byte_at_put(index, (jbyte)*((jint*)&val)); 1419 break; 1420 #endif // INCLUDE_JVMCI 1421 } 1422 1423 case T_BOOLEAN: { 1424 assert(value->type() == T_INT, "Agreement."); 1425 val = value->get_int(); 1426 obj->bool_at_put(index, (jboolean)*((jint*)&val)); 1427 break; 1428 } 1429 1430 default: 1431 ShouldNotReachHere(); 1432 } 1433 index++; 1434 } 1435 } 1436 1437 // restore fields of an eliminated object array 1438 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1439 for (int i = 0; i < sv->field_size(); i++) { 1440 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1441 assert(value->type() == T_OBJECT, "object element expected"); 1442 obj->obj_at_put(i, value->get_obj()()); 1443 } 1444 } 1445 1446 class ReassignedField { 1447 public: 1448 int _offset; 1449 BasicType _type; 1450 public: 1451 ReassignedField() { 1452 _offset = 0; 1453 _type = T_ILLEGAL; 1454 } 1455 }; 1456 1457 int compare(ReassignedField* left, ReassignedField* right) { 1458 return left->_offset - right->_offset; 1459 } 1460 1461 // Restore fields of an eliminated instance object using the same field order 1462 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true) 1463 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) { 1464 GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>(); 1465 InstanceKlass* ik = klass; 1466 while (ik != nullptr) { 1467 for (AllFieldStream fs(ik); !fs.done(); fs.next()) { 1468 if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) { 1469 ReassignedField field; 1470 field._offset = fs.offset(); 1471 field._type = Signature::basic_type(fs.signature()); 1472 fields->append(field); 1473 } 1474 } 1475 ik = ik->superklass(); 1476 } 1477 fields->sort(compare); 1478 for (int i = 0; i < fields->length(); i++) { 1479 intptr_t val; 1480 ScopeValue* scope_field = sv->field_at(svIndex); 1481 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1482 int offset = fields->at(i)._offset; 1483 BasicType type = fields->at(i)._type; 1484 switch (type) { 1485 case T_OBJECT: case T_ARRAY: 1486 assert(value->type() == T_OBJECT, "Agreement."); 1487 obj->obj_field_put(offset, value->get_obj()()); 1488 break; 1489 1490 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1491 case T_INT: case T_FLOAT: { // 4 bytes. 1492 assert(value->type() == T_INT, "Agreement."); 1493 bool big_value = false; 1494 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1495 if (scope_field->is_location()) { 1496 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1497 if (type == Location::dbl || type == Location::lng) { 1498 big_value = true; 1499 } 1500 } 1501 if (scope_field->is_constant_int()) { 1502 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1503 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1504 big_value = true; 1505 } 1506 } 1507 } 1508 1509 if (big_value) { 1510 i++; 1511 assert(i < fields->length(), "second T_INT field needed"); 1512 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1513 } else { 1514 val = value->get_int(); 1515 obj->int_field_put(offset, (jint)*((jint*)&val)); 1516 break; 1517 } 1518 } 1519 /* no break */ 1520 1521 case T_LONG: case T_DOUBLE: { 1522 assert(value->type() == T_INT, "Agreement."); 1523 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1524 #ifdef _LP64 1525 jlong res = (jlong)low->get_int(); 1526 #else 1527 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1528 #endif 1529 obj->long_field_put(offset, res); 1530 break; 1531 } 1532 1533 case T_SHORT: 1534 assert(value->type() == T_INT, "Agreement."); 1535 val = value->get_int(); 1536 obj->short_field_put(offset, (jshort)*((jint*)&val)); 1537 break; 1538 1539 case T_CHAR: 1540 assert(value->type() == T_INT, "Agreement."); 1541 val = value->get_int(); 1542 obj->char_field_put(offset, (jchar)*((jint*)&val)); 1543 break; 1544 1545 case T_BYTE: 1546 assert(value->type() == T_INT, "Agreement."); 1547 val = value->get_int(); 1548 obj->byte_field_put(offset, (jbyte)*((jint*)&val)); 1549 break; 1550 1551 case T_BOOLEAN: 1552 assert(value->type() == T_INT, "Agreement."); 1553 val = value->get_int(); 1554 obj->bool_field_put(offset, (jboolean)*((jint*)&val)); 1555 break; 1556 1557 default: 1558 ShouldNotReachHere(); 1559 } 1560 svIndex++; 1561 } 1562 return svIndex; 1563 } 1564 1565 // restore fields of all eliminated objects and arrays 1566 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) { 1567 for (int i = 0; i < objects->length(); i++) { 1568 ObjectValue* sv = (ObjectValue*) objects->at(i); 1569 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1570 Handle obj = sv->value(); 1571 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1572 #ifndef PRODUCT 1573 if (PrintDeoptimizationDetails) { 1574 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1575 } 1576 #endif // !PRODUCT 1577 1578 if (obj.is_null()) { 1579 continue; 1580 } 1581 1582 #if INCLUDE_JVMCI 1583 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1584 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1585 continue; 1586 } 1587 #endif // INCLUDE_JVMCI 1588 #ifdef COMPILER2 1589 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1590 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1591 ScopeValue* payload = sv->field_at(0); 1592 if (payload->is_location() && 1593 payload->as_LocationValue()->location().type() == Location::vector) { 1594 #ifndef PRODUCT 1595 if (PrintDeoptimizationDetails) { 1596 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1597 if (Verbose) { 1598 Handle obj = sv->value(); 1599 k->oop_print_on(obj(), tty); 1600 } 1601 } 1602 #endif // !PRODUCT 1603 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1604 } 1605 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1606 // which could be restored after vector object allocation. 1607 } 1608 #endif /* !COMPILER2 */ 1609 if (k->is_instance_klass()) { 1610 InstanceKlass* ik = InstanceKlass::cast(k); 1611 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal); 1612 } else if (k->is_typeArray_klass()) { 1613 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1614 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1615 } else if (k->is_objArray_klass()) { 1616 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1617 } 1618 } 1619 // These objects may escape when we return to Interpreter after deoptimization. 1620 // We need barrier so that stores that initialize these objects can't be reordered 1621 // with subsequent stores that make these objects accessible by other threads. 1622 OrderAccess::storestore(); 1623 } 1624 1625 1626 // relock objects for which synchronization was eliminated 1627 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1628 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1629 bool relocked_objects = false; 1630 for (int i = 0; i < monitors->length(); i++) { 1631 MonitorInfo* mon_info = monitors->at(i); 1632 if (mon_info->eliminated()) { 1633 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1634 relocked_objects = true; 1635 if (!mon_info->owner_is_scalar_replaced()) { 1636 Handle obj(thread, mon_info->owner()); 1637 markWord mark = obj->mark(); 1638 if (exec_mode == Unpack_none) { 1639 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1640 // With exec_mode == Unpack_none obj may be thread local and locked in 1641 // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header. 1642 markWord dmw = mark.displaced_mark_helper(); 1643 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr)); 1644 obj->set_mark(dmw); 1645 } 1646 if (mark.has_monitor()) { 1647 // defer relocking if the deoptee thread is currently waiting for obj 1648 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1649 if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) { 1650 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1651 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1652 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1653 continue; 1654 } 1655 } 1656 } 1657 if (LockingMode == LM_LIGHTWEIGHT && exec_mode == Unpack_none) { 1658 // We have lost information about the correct state of the lock stack. 1659 // Inflate the locks instead. Enter then inflate to avoid races with 1660 // deflation. 1661 ObjectSynchronizer::enter(obj, nullptr, deoptee_thread); 1662 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1663 ObjectMonitor* mon = ObjectSynchronizer::inflate(deoptee_thread, obj(), ObjectSynchronizer::inflate_cause_vm_internal); 1664 assert(mon->owner() == deoptee_thread, "must be"); 1665 } else { 1666 BasicLock* lock = mon_info->lock(); 1667 ObjectSynchronizer::enter(obj, lock, deoptee_thread); 1668 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1669 } 1670 } 1671 } 1672 } 1673 return relocked_objects; 1674 } 1675 #endif // COMPILER2_OR_JVMCI 1676 1677 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1678 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1679 1680 // Register map for next frame (used for stack crawl). We capture 1681 // the state of the deopt'ing frame's caller. Thus if we need to 1682 // stuff a C2I adapter we can properly fill in the callee-save 1683 // register locations. 1684 frame caller = fr.sender(reg_map); 1685 int frame_size = caller.sp() - fr.sp(); 1686 1687 frame sender = caller; 1688 1689 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1690 // the vframeArray containing the unpacking information is allocated in the C heap. 1691 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1692 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1693 1694 // Compare the vframeArray to the collected vframes 1695 assert(array->structural_compare(thread, chunk), "just checking"); 1696 1697 if (TraceDeoptimization) { 1698 ResourceMark rm; 1699 stringStream st; 1700 st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array)); 1701 st.print(" "); 1702 fr.print_on(&st); 1703 st.print_cr(" Virtual frames (innermost/newest first):"); 1704 for (int index = 0; index < chunk->length(); index++) { 1705 compiledVFrame* vf = chunk->at(index); 1706 int bci = vf->raw_bci(); 1707 const char* code_name; 1708 if (bci == SynchronizationEntryBCI) { 1709 code_name = "sync entry"; 1710 } else { 1711 Bytecodes::Code code = vf->method()->code_at(bci); 1712 code_name = Bytecodes::name(code); 1713 } 1714 1715 st.print(" VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf)); 1716 st.print(" - %s", vf->method()->name_and_sig_as_C_string()); 1717 st.print(" - %s", code_name); 1718 st.print_cr(" @ bci=%d ", bci); 1719 } 1720 tty->print_raw(st.freeze()); 1721 tty->cr(); 1722 } 1723 1724 return array; 1725 } 1726 1727 #if COMPILER2_OR_JVMCI 1728 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1729 // Reallocation of some scalar replaced objects failed. Record 1730 // that we need to pop all the interpreter frames for the 1731 // deoptimized compiled frame. 1732 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1733 thread->set_frames_to_pop_failed_realloc(array->frames()); 1734 // Unlock all monitors here otherwise the interpreter will see a 1735 // mix of locked and unlocked monitors (because of failed 1736 // reallocations of synchronized objects) and be confused. 1737 for (int i = 0; i < array->frames(); i++) { 1738 MonitorChunk* monitors = array->element(i)->monitors(); 1739 if (monitors != nullptr) { 1740 // Unlock in reverse order starting from most nested monitor. 1741 for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) { 1742 BasicObjectLock* src = monitors->at(j); 1743 if (src->obj() != nullptr) { 1744 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1745 } 1746 } 1747 array->element(i)->free_monitors(); 1748 #ifdef ASSERT 1749 array->element(i)->set_removed_monitors(); 1750 #endif 1751 } 1752 } 1753 } 1754 #endif 1755 1756 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1757 assert(fr.can_be_deoptimized(), "checking frame type"); 1758 1759 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1760 1761 if (LogCompilation && xtty != nullptr) { 1762 CompiledMethod* cm = fr.cb()->as_compiled_method_or_null(); 1763 assert(cm != nullptr, "only compiled methods can deopt"); 1764 1765 ttyLocker ttyl; 1766 xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1767 cm->log_identity(xtty); 1768 xtty->end_head(); 1769 for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1770 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1771 xtty->method(sd->method()); 1772 xtty->end_elem(); 1773 if (sd->is_top()) break; 1774 } 1775 xtty->tail("deoptimized"); 1776 } 1777 1778 Continuation::notify_deopt(thread, fr.sp()); 1779 1780 // Patch the compiled method so that when execution returns to it we will 1781 // deopt the execution state and return to the interpreter. 1782 fr.deoptimize(thread); 1783 } 1784 1785 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1786 // Deoptimize only if the frame comes from compile code. 1787 // Do not deoptimize the frame which is already patched 1788 // during the execution of the loops below. 1789 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1790 return; 1791 } 1792 ResourceMark rm; 1793 deoptimize_single_frame(thread, fr, reason); 1794 } 1795 1796 #if INCLUDE_JVMCI 1797 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) { 1798 // there is no exception handler for this pc => deoptimize 1799 cm->make_not_entrant(); 1800 1801 // Use Deoptimization::deoptimize for all of its side-effects: 1802 // gathering traps statistics, logging... 1803 // it also patches the return pc but we do not care about that 1804 // since we return a continuation to the deopt_blob below. 1805 JavaThread* thread = JavaThread::current(); 1806 RegisterMap reg_map(thread, 1807 RegisterMap::UpdateMap::skip, 1808 RegisterMap::ProcessFrames::include, 1809 RegisterMap::WalkContinuation::skip); 1810 frame runtime_frame = thread->last_frame(); 1811 frame caller_frame = runtime_frame.sender(®_map); 1812 assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method"); 1813 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1814 compiledVFrame* cvf = compiledVFrame::cast(vf); 1815 ScopeDesc* imm_scope = cvf->scope(); 1816 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1817 if (imm_mdo != nullptr) { 1818 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr); 1819 if (pdata != nullptr && pdata->is_BitData()) { 1820 BitData* bit_data = (BitData*) pdata; 1821 bit_data->set_exception_seen(); 1822 } 1823 } 1824 1825 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1826 1827 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, cm->method()), true); 1828 if (trap_mdo != nullptr) { 1829 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1830 } 1831 1832 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1833 } 1834 #endif 1835 1836 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1837 assert(thread == Thread::current() || 1838 thread->is_handshake_safe_for(Thread::current()) || 1839 SafepointSynchronize::is_at_safepoint(), 1840 "can only deoptimize other thread at a safepoint/handshake"); 1841 // Compute frame and register map based on thread and sp. 1842 RegisterMap reg_map(thread, 1843 RegisterMap::UpdateMap::skip, 1844 RegisterMap::ProcessFrames::include, 1845 RegisterMap::WalkContinuation::skip); 1846 frame fr = thread->last_frame(); 1847 while (fr.id() != id) { 1848 fr = fr.sender(®_map); 1849 } 1850 deoptimize(thread, fr, reason); 1851 } 1852 1853 1854 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1855 Thread* current = Thread::current(); 1856 if (thread == current || thread->is_handshake_safe_for(current)) { 1857 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1858 } else { 1859 VM_DeoptimizeFrame deopt(thread, id, reason); 1860 VMThread::execute(&deopt); 1861 } 1862 } 1863 1864 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1865 deoptimize_frame(thread, id, Reason_constraint); 1866 } 1867 1868 // JVMTI PopFrame support 1869 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 1870 { 1871 assert(thread == JavaThread::current(), "pre-condition"); 1872 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 1873 } 1874 JRT_END 1875 1876 MethodData* 1877 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 1878 bool create_if_missing) { 1879 JavaThread* THREAD = thread; // For exception macros. 1880 MethodData* mdo = m()->method_data(); 1881 if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) { 1882 // Build an MDO. Ignore errors like OutOfMemory; 1883 // that simply means we won't have an MDO to update. 1884 Method::build_profiling_method_data(m, THREAD); 1885 if (HAS_PENDING_EXCEPTION) { 1886 // Only metaspace OOM is expected. No Java code executed. 1887 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1888 CLEAR_PENDING_EXCEPTION; 1889 } 1890 mdo = m()->method_data(); 1891 } 1892 return mdo; 1893 } 1894 1895 #if COMPILER2_OR_JVMCI 1896 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 1897 // In case of an unresolved klass entry, load the class. 1898 // This path is exercised from case _ldc in Parse::do_one_bytecode, 1899 // and probably nowhere else. 1900 // Even that case would benefit from simply re-interpreting the 1901 // bytecode, without paying special attention to the class index. 1902 // So this whole "class index" feature should probably be removed. 1903 1904 if (constant_pool->tag_at(index).is_unresolved_klass()) { 1905 Klass* tk = constant_pool->klass_at(index, THREAD); 1906 if (HAS_PENDING_EXCEPTION) { 1907 // Exception happened during classloading. We ignore the exception here, since it 1908 // is going to be rethrown since the current activation is going to be deoptimized and 1909 // the interpreter will re-execute the bytecode. 1910 // Do not clear probable Async Exceptions. 1911 CLEAR_PENDING_NONASYNC_EXCEPTION; 1912 // Class loading called java code which may have caused a stack 1913 // overflow. If the exception was thrown right before the return 1914 // to the runtime the stack is no longer guarded. Reguard the 1915 // stack otherwise if we return to the uncommon trap blob and the 1916 // stack bang causes a stack overflow we crash. 1917 JavaThread* jt = THREAD; 1918 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 1919 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 1920 } 1921 return; 1922 } 1923 1924 assert(!constant_pool->tag_at(index).is_symbol(), 1925 "no symbolic names here, please"); 1926 } 1927 1928 #if INCLUDE_JFR 1929 1930 class DeoptReasonSerializer : public JfrSerializer { 1931 public: 1932 void serialize(JfrCheckpointWriter& writer) { 1933 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 1934 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 1935 writer.write_key((u8)i); 1936 writer.write(Deoptimization::trap_reason_name(i)); 1937 } 1938 } 1939 }; 1940 1941 class DeoptActionSerializer : public JfrSerializer { 1942 public: 1943 void serialize(JfrCheckpointWriter& writer) { 1944 static const u4 nof_actions = Deoptimization::Action_LIMIT; 1945 writer.write_count(nof_actions); 1946 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 1947 writer.write_key(i); 1948 writer.write(Deoptimization::trap_action_name((int)i)); 1949 } 1950 } 1951 }; 1952 1953 static void register_serializers() { 1954 static int critical_section = 0; 1955 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 1956 return; 1957 } 1958 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 1959 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 1960 } 1961 1962 static void post_deoptimization_event(CompiledMethod* nm, 1963 const Method* method, 1964 int trap_bci, 1965 int instruction, 1966 Deoptimization::DeoptReason reason, 1967 Deoptimization::DeoptAction action) { 1968 assert(nm != nullptr, "invariant"); 1969 assert(method != nullptr, "invariant"); 1970 if (EventDeoptimization::is_enabled()) { 1971 static bool serializers_registered = false; 1972 if (!serializers_registered) { 1973 register_serializers(); 1974 serializers_registered = true; 1975 } 1976 EventDeoptimization event; 1977 event.set_compileId(nm->compile_id()); 1978 event.set_compiler(nm->compiler_type()); 1979 event.set_method(method); 1980 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 1981 event.set_bci(trap_bci); 1982 event.set_instruction(instruction); 1983 event.set_reason(reason); 1984 event.set_action(action); 1985 event.commit(); 1986 } 1987 } 1988 1989 #endif // INCLUDE_JFR 1990 1991 static void log_deopt(CompiledMethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci, 1992 const char* reason_name, const char* reason_action) { 1993 LogTarget(Debug, deoptimization) lt; 1994 if (lt.is_enabled()) { 1995 LogStream ls(lt); 1996 bool is_osr = nm->is_osr_method(); 1997 ls.print("cid=%4d %s level=%d", 1998 nm->compile_id(), (is_osr ? "osr" : " "), nm->comp_level()); 1999 ls.print(" %s", tm->name_and_sig_as_C_string()); 2000 ls.print(" trap_bci=%d ", trap_bci); 2001 if (is_osr) { 2002 ls.print("osr_bci=%d ", nm->osr_entry_bci()); 2003 } 2004 ls.print("%s ", reason_name); 2005 ls.print("%s ", reason_action); 2006 ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT, 2007 pc, fr.pc() - nm->code_begin()); 2008 } 2009 } 2010 2011 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 2012 HandleMark hm(current); 2013 2014 // uncommon_trap() is called at the beginning of the uncommon trap 2015 // handler. Note this fact before we start generating temporary frames 2016 // that can confuse an asynchronous stack walker. This counter is 2017 // decremented at the end of unpack_frames(). 2018 2019 current->inc_in_deopt_handler(); 2020 2021 #if INCLUDE_JVMCI 2022 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 2023 RegisterMap reg_map(current, 2024 RegisterMap::UpdateMap::include, 2025 RegisterMap::ProcessFrames::include, 2026 RegisterMap::WalkContinuation::skip); 2027 #else 2028 RegisterMap reg_map(current, 2029 RegisterMap::UpdateMap::skip, 2030 RegisterMap::ProcessFrames::include, 2031 RegisterMap::WalkContinuation::skip); 2032 #endif 2033 frame stub_frame = current->last_frame(); 2034 frame fr = stub_frame.sender(®_map); 2035 2036 // Log a message 2037 Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 2038 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 2039 2040 { 2041 ResourceMark rm; 2042 2043 DeoptReason reason = trap_request_reason(trap_request); 2044 DeoptAction action = trap_request_action(trap_request); 2045 #if INCLUDE_JVMCI 2046 int debug_id = trap_request_debug_id(trap_request); 2047 #endif 2048 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 2049 2050 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 2051 compiledVFrame* cvf = compiledVFrame::cast(vf); 2052 2053 CompiledMethod* nm = cvf->code(); 2054 2055 ScopeDesc* trap_scope = cvf->scope(); 2056 2057 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 2058 2059 if (is_receiver_constraint_failure) { 2060 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), 2061 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 2062 JVMCI_ONLY(COMMA debug_id)); 2063 } 2064 2065 methodHandle trap_method(current, trap_scope->method()); 2066 int trap_bci = trap_scope->bci(); 2067 #if INCLUDE_JVMCI 2068 jlong speculation = current->pending_failed_speculation(); 2069 if (nm->is_compiled_by_jvmci()) { 2070 nm->as_nmethod()->update_speculation(current); 2071 } else { 2072 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2073 } 2074 2075 if (trap_bci == SynchronizationEntryBCI) { 2076 trap_bci = 0; 2077 current->set_pending_monitorenter(true); 2078 } 2079 2080 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2081 current->set_pending_transfer_to_interpreter(true); 2082 } 2083 #endif 2084 2085 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2086 // Record this event in the histogram. 2087 gather_statistics(reason, action, trap_bc); 2088 2089 // Ensure that we can record deopt. history: 2090 // Need MDO to record RTM code generation state. 2091 bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking ); 2092 2093 methodHandle profiled_method; 2094 #if INCLUDE_JVMCI 2095 if (nm->is_compiled_by_jvmci()) { 2096 profiled_method = methodHandle(current, nm->method()); 2097 } else { 2098 profiled_method = trap_method; 2099 } 2100 #else 2101 profiled_method = trap_method; 2102 #endif 2103 2104 MethodData* trap_mdo = 2105 get_method_data(current, profiled_method, create_if_missing); 2106 2107 { // Log Deoptimization event for JFR, UL and event system 2108 Method* tm = trap_method(); 2109 const char* reason_name = trap_reason_name(reason); 2110 const char* reason_action = trap_action_name(action); 2111 intptr_t pc = p2i(fr.pc()); 2112 2113 JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);) 2114 log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action); 2115 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2116 reason_name, reason_action, pc, 2117 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2118 } 2119 2120 // Print a bunch of diagnostics, if requested. 2121 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2122 ResourceMark rm; 2123 ttyLocker ttyl; 2124 char buf[100]; 2125 if (xtty != nullptr) { 2126 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s", 2127 os::current_thread_id(), 2128 format_trap_request(buf, sizeof(buf), trap_request)); 2129 #if INCLUDE_JVMCI 2130 if (speculation != 0) { 2131 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2132 } 2133 #endif 2134 nm->log_identity(xtty); 2135 } 2136 Symbol* class_name = nullptr; 2137 bool unresolved = false; 2138 if (unloaded_class_index >= 0) { 2139 constantPoolHandle constants (current, trap_method->constants()); 2140 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2141 class_name = constants->klass_name_at(unloaded_class_index); 2142 unresolved = true; 2143 if (xtty != nullptr) 2144 xtty->print(" unresolved='1'"); 2145 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2146 class_name = constants->symbol_at(unloaded_class_index); 2147 } 2148 if (xtty != nullptr) 2149 xtty->name(class_name); 2150 } 2151 if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) { 2152 // Dump the relevant MDO state. 2153 // This is the deopt count for the current reason, any previous 2154 // reasons or recompiles seen at this point. 2155 int dcnt = trap_mdo->trap_count(reason); 2156 if (dcnt != 0) 2157 xtty->print(" count='%d'", dcnt); 2158 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2159 int dos = (pdata == nullptr)? 0: pdata->trap_state(); 2160 if (dos != 0) { 2161 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2162 if (trap_state_is_recompiled(dos)) { 2163 int recnt2 = trap_mdo->overflow_recompile_count(); 2164 if (recnt2 != 0) 2165 xtty->print(" recompiles2='%d'", recnt2); 2166 } 2167 } 2168 } 2169 if (xtty != nullptr) { 2170 xtty->stamp(); 2171 xtty->end_head(); 2172 } 2173 if (TraceDeoptimization) { // make noise on the tty 2174 stringStream st; 2175 st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string()); 2176 st.print(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"), 2177 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id)); 2178 st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2179 #if INCLUDE_JVMCI 2180 if (nm->is_nmethod()) { 2181 const char* installed_code_name = nm->as_nmethod()->jvmci_name(); 2182 if (installed_code_name != nullptr) { 2183 st.print(" (JVMCI: installed code name=%s) ", installed_code_name); 2184 } 2185 } 2186 #endif 2187 st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2188 p2i(fr.pc()), 2189 os::current_thread_id(), 2190 trap_reason_name(reason), 2191 trap_action_name(action), 2192 unloaded_class_index 2193 #if INCLUDE_JVMCI 2194 , debug_id 2195 #endif 2196 ); 2197 if (class_name != nullptr) { 2198 st.print(unresolved ? " unresolved class: " : " symbol: "); 2199 class_name->print_symbol_on(&st); 2200 } 2201 st.cr(); 2202 tty->print_raw(st.freeze()); 2203 } 2204 if (xtty != nullptr) { 2205 // Log the precise location of the trap. 2206 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2207 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2208 xtty->method(sd->method()); 2209 xtty->end_elem(); 2210 if (sd->is_top()) break; 2211 } 2212 xtty->tail("uncommon_trap"); 2213 } 2214 } 2215 // (End diagnostic printout.) 2216 2217 if (is_receiver_constraint_failure) { 2218 fatal("missing receiver type check"); 2219 } 2220 2221 // Load class if necessary 2222 if (unloaded_class_index >= 0) { 2223 constantPoolHandle constants(current, trap_method->constants()); 2224 load_class_by_index(constants, unloaded_class_index, THREAD); 2225 } 2226 2227 // Flush the nmethod if necessary and desirable. 2228 // 2229 // We need to avoid situations where we are re-flushing the nmethod 2230 // because of a hot deoptimization site. Repeated flushes at the same 2231 // point need to be detected by the compiler and avoided. If the compiler 2232 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2233 // module must take measures to avoid an infinite cycle of recompilation 2234 // and deoptimization. There are several such measures: 2235 // 2236 // 1. If a recompilation is ordered a second time at some site X 2237 // and for the same reason R, the action is adjusted to 'reinterpret', 2238 // to give the interpreter time to exercise the method more thoroughly. 2239 // If this happens, the method's overflow_recompile_count is incremented. 2240 // 2241 // 2. If the compiler fails to reduce the deoptimization rate, then 2242 // the method's overflow_recompile_count will begin to exceed the set 2243 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2244 // is adjusted to 'make_not_compilable', and the method is abandoned 2245 // to the interpreter. This is a performance hit for hot methods, 2246 // but is better than a disastrous infinite cycle of recompilations. 2247 // (Actually, only the method containing the site X is abandoned.) 2248 // 2249 // 3. In parallel with the previous measures, if the total number of 2250 // recompilations of a method exceeds the much larger set limit 2251 // PerMethodRecompilationCutoff, the method is abandoned. 2252 // This should only happen if the method is very large and has 2253 // many "lukewarm" deoptimizations. The code which enforces this 2254 // limit is elsewhere (class nmethod, class Method). 2255 // 2256 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2257 // to recompile at each bytecode independently of the per-BCI cutoff. 2258 // 2259 // The decision to update code is up to the compiler, and is encoded 2260 // in the Action_xxx code. If the compiler requests Action_none 2261 // no trap state is changed, no compiled code is changed, and the 2262 // computation suffers along in the interpreter. 2263 // 2264 // The other action codes specify various tactics for decompilation 2265 // and recompilation. Action_maybe_recompile is the loosest, and 2266 // allows the compiled code to stay around until enough traps are seen, 2267 // and until the compiler gets around to recompiling the trapping method. 2268 // 2269 // The other actions cause immediate removal of the present code. 2270 2271 // Traps caused by injected profile shouldn't pollute trap counts. 2272 bool injected_profile_trap = trap_method->has_injected_profile() && 2273 (reason == Reason_intrinsic || reason == Reason_unreached); 2274 2275 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2276 bool make_not_entrant = false; 2277 bool make_not_compilable = false; 2278 bool reprofile = false; 2279 switch (action) { 2280 case Action_none: 2281 // Keep the old code. 2282 update_trap_state = false; 2283 break; 2284 case Action_maybe_recompile: 2285 // Do not need to invalidate the present code, but we can 2286 // initiate another 2287 // Start compiler without (necessarily) invalidating the nmethod. 2288 // The system will tolerate the old code, but new code should be 2289 // generated when possible. 2290 break; 2291 case Action_reinterpret: 2292 // Go back into the interpreter for a while, and then consider 2293 // recompiling form scratch. 2294 make_not_entrant = true; 2295 // Reset invocation counter for outer most method. 2296 // This will allow the interpreter to exercise the bytecodes 2297 // for a while before recompiling. 2298 // By contrast, Action_make_not_entrant is immediate. 2299 // 2300 // Note that the compiler will track null_check, null_assert, 2301 // range_check, and class_check events and log them as if they 2302 // had been traps taken from compiled code. This will update 2303 // the MDO trap history so that the next compilation will 2304 // properly detect hot trap sites. 2305 reprofile = true; 2306 break; 2307 case Action_make_not_entrant: 2308 // Request immediate recompilation, and get rid of the old code. 2309 // Make them not entrant, so next time they are called they get 2310 // recompiled. Unloaded classes are loaded now so recompile before next 2311 // time they are called. Same for uninitialized. The interpreter will 2312 // link the missing class, if any. 2313 make_not_entrant = true; 2314 break; 2315 case Action_make_not_compilable: 2316 // Give up on compiling this method at all. 2317 make_not_entrant = true; 2318 make_not_compilable = true; 2319 break; 2320 default: 2321 ShouldNotReachHere(); 2322 } 2323 2324 // Setting +ProfileTraps fixes the following, on all platforms: 2325 // 4852688: ProfileInterpreter is off by default for ia64. The result is 2326 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2327 // recompile relies on a MethodData* to record heroic opt failures. 2328 2329 // Whether the interpreter is producing MDO data or not, we also need 2330 // to use the MDO to detect hot deoptimization points and control 2331 // aggressive optimization. 2332 bool inc_recompile_count = false; 2333 ProfileData* pdata = nullptr; 2334 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) { 2335 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2336 uint this_trap_count = 0; 2337 bool maybe_prior_trap = false; 2338 bool maybe_prior_recompile = false; 2339 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2340 #if INCLUDE_JVMCI 2341 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2342 #endif 2343 nm->method(), 2344 //outputs: 2345 this_trap_count, 2346 maybe_prior_trap, 2347 maybe_prior_recompile); 2348 // Because the interpreter also counts null, div0, range, and class 2349 // checks, these traps from compiled code are double-counted. 2350 // This is harmless; it just means that the PerXTrapLimit values 2351 // are in effect a little smaller than they look. 2352 2353 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2354 if (per_bc_reason != Reason_none) { 2355 // Now take action based on the partially known per-BCI history. 2356 if (maybe_prior_trap 2357 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2358 // If there are too many traps at this BCI, force a recompile. 2359 // This will allow the compiler to see the limit overflow, and 2360 // take corrective action, if possible. The compiler generally 2361 // does not use the exact PerBytecodeTrapLimit value, but instead 2362 // changes its tactics if it sees any traps at all. This provides 2363 // a little hysteresis, delaying a recompile until a trap happens 2364 // several times. 2365 // 2366 // Actually, since there is only one bit of counter per BCI, 2367 // the possible per-BCI counts are {0,1,(per-method count)}. 2368 // This produces accurate results if in fact there is only 2369 // one hot trap site, but begins to get fuzzy if there are 2370 // many sites. For example, if there are ten sites each 2371 // trapping two or more times, they each get the blame for 2372 // all of their traps. 2373 make_not_entrant = true; 2374 } 2375 2376 // Detect repeated recompilation at the same BCI, and enforce a limit. 2377 if (make_not_entrant && maybe_prior_recompile) { 2378 // More than one recompile at this point. 2379 inc_recompile_count = maybe_prior_trap; 2380 } 2381 } else { 2382 // For reasons which are not recorded per-bytecode, we simply 2383 // force recompiles unconditionally. 2384 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2385 make_not_entrant = true; 2386 } 2387 2388 // Go back to the compiler if there are too many traps in this method. 2389 if (this_trap_count >= per_method_trap_limit(reason)) { 2390 // If there are too many traps in this method, force a recompile. 2391 // This will allow the compiler to see the limit overflow, and 2392 // take corrective action, if possible. 2393 // (This condition is an unlikely backstop only, because the 2394 // PerBytecodeTrapLimit is more likely to take effect first, 2395 // if it is applicable.) 2396 make_not_entrant = true; 2397 } 2398 2399 // Here's more hysteresis: If there has been a recompile at 2400 // this trap point already, run the method in the interpreter 2401 // for a while to exercise it more thoroughly. 2402 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2403 reprofile = true; 2404 } 2405 } 2406 2407 // Take requested actions on the method: 2408 2409 // Recompile 2410 if (make_not_entrant) { 2411 if (!nm->make_not_entrant()) { 2412 return; // the call did not change nmethod's state 2413 } 2414 2415 if (pdata != nullptr) { 2416 // Record the recompilation event, if any. 2417 int tstate0 = pdata->trap_state(); 2418 int tstate1 = trap_state_set_recompiled(tstate0, true); 2419 if (tstate1 != tstate0) 2420 pdata->set_trap_state(tstate1); 2421 } 2422 2423 #if INCLUDE_RTM_OPT 2424 // Restart collecting RTM locking abort statistic if the method 2425 // is recompiled for a reason other than RTM state change. 2426 // Assume that in new recompiled code the statistic could be different, 2427 // for example, due to different inlining. 2428 if ((reason != Reason_rtm_state_change) && (trap_mdo != nullptr) && 2429 UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) { 2430 trap_mdo->atomic_set_rtm_state(ProfileRTM); 2431 } 2432 #endif 2433 // For code aging we count traps separately here, using make_not_entrant() 2434 // as a guard against simultaneous deopts in multiple threads. 2435 if (reason == Reason_tenured && trap_mdo != nullptr) { 2436 trap_mdo->inc_tenure_traps(); 2437 } 2438 } 2439 2440 if (inc_recompile_count) { 2441 trap_mdo->inc_overflow_recompile_count(); 2442 if ((uint)trap_mdo->overflow_recompile_count() > 2443 (uint)PerBytecodeRecompilationCutoff) { 2444 // Give up on the method containing the bad BCI. 2445 if (trap_method() == nm->method()) { 2446 make_not_compilable = true; 2447 } else { 2448 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2449 // But give grace to the enclosing nm->method(). 2450 } 2451 } 2452 } 2453 2454 // Reprofile 2455 if (reprofile) { 2456 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2457 } 2458 2459 // Give up compiling 2460 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2461 assert(make_not_entrant, "consistent"); 2462 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2463 } 2464 2465 } // Free marked resources 2466 2467 } 2468 JRT_END 2469 2470 ProfileData* 2471 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2472 int trap_bci, 2473 Deoptimization::DeoptReason reason, 2474 bool update_total_trap_count, 2475 #if INCLUDE_JVMCI 2476 bool is_osr, 2477 #endif 2478 Method* compiled_method, 2479 //outputs: 2480 uint& ret_this_trap_count, 2481 bool& ret_maybe_prior_trap, 2482 bool& ret_maybe_prior_recompile) { 2483 bool maybe_prior_trap = false; 2484 bool maybe_prior_recompile = false; 2485 uint this_trap_count = 0; 2486 if (update_total_trap_count) { 2487 uint idx = reason; 2488 #if INCLUDE_JVMCI 2489 if (is_osr) { 2490 // Upper half of history array used for traps in OSR compilations 2491 idx += Reason_TRAP_HISTORY_LENGTH; 2492 } 2493 #endif 2494 uint prior_trap_count = trap_mdo->trap_count(idx); 2495 this_trap_count = trap_mdo->inc_trap_count(idx); 2496 2497 // If the runtime cannot find a place to store trap history, 2498 // it is estimated based on the general condition of the method. 2499 // If the method has ever been recompiled, or has ever incurred 2500 // a trap with the present reason , then this BCI is assumed 2501 // (pessimistically) to be the culprit. 2502 maybe_prior_trap = (prior_trap_count != 0); 2503 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2504 } 2505 ProfileData* pdata = nullptr; 2506 2507 2508 // For reasons which are recorded per bytecode, we check per-BCI data. 2509 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2510 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2511 if (per_bc_reason != Reason_none) { 2512 // Find the profile data for this BCI. If there isn't one, 2513 // try to allocate one from the MDO's set of spares. 2514 // This will let us detect a repeated trap at this point. 2515 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr); 2516 2517 if (pdata != nullptr) { 2518 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2519 if (LogCompilation && xtty != nullptr) { 2520 ttyLocker ttyl; 2521 // no more room for speculative traps in this MDO 2522 xtty->elem("speculative_traps_oom"); 2523 } 2524 } 2525 // Query the trap state of this profile datum. 2526 int tstate0 = pdata->trap_state(); 2527 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2528 maybe_prior_trap = false; 2529 if (!trap_state_is_recompiled(tstate0)) 2530 maybe_prior_recompile = false; 2531 2532 // Update the trap state of this profile datum. 2533 int tstate1 = tstate0; 2534 // Record the reason. 2535 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2536 // Store the updated state on the MDO, for next time. 2537 if (tstate1 != tstate0) 2538 pdata->set_trap_state(tstate1); 2539 } else { 2540 if (LogCompilation && xtty != nullptr) { 2541 ttyLocker ttyl; 2542 // Missing MDP? Leave a small complaint in the log. 2543 xtty->elem("missing_mdp bci='%d'", trap_bci); 2544 } 2545 } 2546 } 2547 2548 // Return results: 2549 ret_this_trap_count = this_trap_count; 2550 ret_maybe_prior_trap = maybe_prior_trap; 2551 ret_maybe_prior_recompile = maybe_prior_recompile; 2552 return pdata; 2553 } 2554 2555 void 2556 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2557 ResourceMark rm; 2558 // Ignored outputs: 2559 uint ignore_this_trap_count; 2560 bool ignore_maybe_prior_trap; 2561 bool ignore_maybe_prior_recompile; 2562 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2563 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2564 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2565 query_update_method_data(trap_mdo, trap_bci, 2566 (DeoptReason)reason, 2567 update_total_counts, 2568 #if INCLUDE_JVMCI 2569 false, 2570 #endif 2571 nullptr, 2572 ignore_this_trap_count, 2573 ignore_maybe_prior_trap, 2574 ignore_maybe_prior_recompile); 2575 } 2576 2577 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2578 // Enable WXWrite: current function is called from methods compiled by C2 directly 2579 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2580 2581 // Still in Java no safepoints 2582 { 2583 // This enters VM and may safepoint 2584 uncommon_trap_inner(current, trap_request); 2585 } 2586 HandleMark hm(current); 2587 return fetch_unroll_info_helper(current, exec_mode); 2588 } 2589 2590 // Local derived constants. 2591 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2592 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2593 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2594 2595 //---------------------------trap_state_reason--------------------------------- 2596 Deoptimization::DeoptReason 2597 Deoptimization::trap_state_reason(int trap_state) { 2598 // This assert provides the link between the width of DataLayout::trap_bits 2599 // and the encoding of "recorded" reasons. It ensures there are enough 2600 // bits to store all needed reasons in the per-BCI MDO profile. 2601 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2602 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2603 trap_state -= recompile_bit; 2604 if (trap_state == DS_REASON_MASK) { 2605 return Reason_many; 2606 } else { 2607 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2608 return (DeoptReason)trap_state; 2609 } 2610 } 2611 //-------------------------trap_state_has_reason------------------------------- 2612 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2613 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2614 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2615 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2616 trap_state -= recompile_bit; 2617 if (trap_state == DS_REASON_MASK) { 2618 return -1; // true, unspecifically (bottom of state lattice) 2619 } else if (trap_state == reason) { 2620 return 1; // true, definitely 2621 } else if (trap_state == 0) { 2622 return 0; // false, definitely (top of state lattice) 2623 } else { 2624 return 0; // false, definitely 2625 } 2626 } 2627 //-------------------------trap_state_add_reason------------------------------- 2628 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2629 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2630 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2631 trap_state -= recompile_bit; 2632 if (trap_state == DS_REASON_MASK) { 2633 return trap_state + recompile_bit; // already at state lattice bottom 2634 } else if (trap_state == reason) { 2635 return trap_state + recompile_bit; // the condition is already true 2636 } else if (trap_state == 0) { 2637 return reason + recompile_bit; // no condition has yet been true 2638 } else { 2639 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2640 } 2641 } 2642 //-----------------------trap_state_is_recompiled------------------------------ 2643 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2644 return (trap_state & DS_RECOMPILE_BIT) != 0; 2645 } 2646 //-----------------------trap_state_set_recompiled----------------------------- 2647 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2648 if (z) return trap_state | DS_RECOMPILE_BIT; 2649 else return trap_state & ~DS_RECOMPILE_BIT; 2650 } 2651 //---------------------------format_trap_state--------------------------------- 2652 // This is used for debugging and diagnostics, including LogFile output. 2653 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2654 int trap_state) { 2655 assert(buflen > 0, "sanity"); 2656 DeoptReason reason = trap_state_reason(trap_state); 2657 bool recomp_flag = trap_state_is_recompiled(trap_state); 2658 // Re-encode the state from its decoded components. 2659 int decoded_state = 0; 2660 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2661 decoded_state = trap_state_add_reason(decoded_state, reason); 2662 if (recomp_flag) 2663 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2664 // If the state re-encodes properly, format it symbolically. 2665 // Because this routine is used for debugging and diagnostics, 2666 // be robust even if the state is a strange value. 2667 size_t len; 2668 if (decoded_state != trap_state) { 2669 // Random buggy state that doesn't decode?? 2670 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2671 } else { 2672 len = jio_snprintf(buf, buflen, "%s%s", 2673 trap_reason_name(reason), 2674 recomp_flag ? " recompiled" : ""); 2675 } 2676 return buf; 2677 } 2678 2679 2680 //--------------------------------statics-------------------------------------- 2681 const char* Deoptimization::_trap_reason_name[] = { 2682 // Note: Keep this in sync. with enum DeoptReason. 2683 "none", 2684 "null_check", 2685 "null_assert" JVMCI_ONLY("_or_unreached0"), 2686 "range_check", 2687 "class_check", 2688 "array_check", 2689 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2690 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2691 "profile_predicate", 2692 "unloaded", 2693 "uninitialized", 2694 "initialized", 2695 "unreached", 2696 "unhandled", 2697 "constraint", 2698 "div0_check", 2699 "age", 2700 "predicate", 2701 "loop_limit_check", 2702 "speculate_class_check", 2703 "speculate_null_check", 2704 "speculate_null_assert", 2705 "rtm_state_change", 2706 "unstable_if", 2707 "unstable_fused_if", 2708 "receiver_constraint", 2709 #if INCLUDE_JVMCI 2710 "aliasing", 2711 "transfer_to_interpreter", 2712 "not_compiled_exception_handler", 2713 "unresolved", 2714 "jsr_mismatch", 2715 #endif 2716 "tenured" 2717 }; 2718 const char* Deoptimization::_trap_action_name[] = { 2719 // Note: Keep this in sync. with enum DeoptAction. 2720 "none", 2721 "maybe_recompile", 2722 "reinterpret", 2723 "make_not_entrant", 2724 "make_not_compilable" 2725 }; 2726 2727 const char* Deoptimization::trap_reason_name(int reason) { 2728 // Check that every reason has a name 2729 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2730 2731 if (reason == Reason_many) return "many"; 2732 if ((uint)reason < Reason_LIMIT) 2733 return _trap_reason_name[reason]; 2734 static char buf[20]; 2735 os::snprintf_checked(buf, sizeof(buf), "reason%d", reason); 2736 return buf; 2737 } 2738 const char* Deoptimization::trap_action_name(int action) { 2739 // Check that every action has a name 2740 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2741 2742 if ((uint)action < Action_LIMIT) 2743 return _trap_action_name[action]; 2744 static char buf[20]; 2745 os::snprintf_checked(buf, sizeof(buf), "action%d", action); 2746 return buf; 2747 } 2748 2749 // This is used for debugging and diagnostics, including LogFile output. 2750 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2751 int trap_request) { 2752 jint unloaded_class_index = trap_request_index(trap_request); 2753 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2754 const char* action = trap_action_name(trap_request_action(trap_request)); 2755 #if INCLUDE_JVMCI 2756 int debug_id = trap_request_debug_id(trap_request); 2757 #endif 2758 size_t len; 2759 if (unloaded_class_index < 0) { 2760 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2761 reason, action 2762 #if INCLUDE_JVMCI 2763 ,debug_id 2764 #endif 2765 ); 2766 } else { 2767 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2768 reason, action, unloaded_class_index 2769 #if INCLUDE_JVMCI 2770 ,debug_id 2771 #endif 2772 ); 2773 } 2774 return buf; 2775 } 2776 2777 juint Deoptimization::_deoptimization_hist 2778 [Deoptimization::Reason_LIMIT] 2779 [1 + Deoptimization::Action_LIMIT] 2780 [Deoptimization::BC_CASE_LIMIT] 2781 = {0}; 2782 2783 enum { 2784 LSB_BITS = 8, 2785 LSB_MASK = right_n_bits(LSB_BITS) 2786 }; 2787 2788 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2789 Bytecodes::Code bc) { 2790 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2791 assert(action >= 0 && action < Action_LIMIT, "oob"); 2792 _deoptimization_hist[Reason_none][0][0] += 1; // total 2793 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2794 juint* cases = _deoptimization_hist[reason][1+action]; 2795 juint* bc_counter_addr = nullptr; 2796 juint bc_counter = 0; 2797 // Look for an unused counter, or an exact match to this BC. 2798 if (bc != Bytecodes::_illegal) { 2799 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2800 juint* counter_addr = &cases[bc_case]; 2801 juint counter = *counter_addr; 2802 if ((counter == 0 && bc_counter_addr == nullptr) 2803 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2804 // this counter is either free or is already devoted to this BC 2805 bc_counter_addr = counter_addr; 2806 bc_counter = counter | bc; 2807 } 2808 } 2809 } 2810 if (bc_counter_addr == nullptr) { 2811 // Overflow, or no given bytecode. 2812 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2813 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2814 } 2815 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2816 } 2817 2818 jint Deoptimization::total_deoptimization_count() { 2819 return _deoptimization_hist[Reason_none][0][0]; 2820 } 2821 2822 // Get the deopt count for a specific reason and a specific action. If either 2823 // one of 'reason' or 'action' is null, the method returns the sum of all 2824 // deoptimizations with the specific 'action' or 'reason' respectively. 2825 // If both arguments are null, the method returns the total deopt count. 2826 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2827 if (reason_str == nullptr && action_str == nullptr) { 2828 return total_deoptimization_count(); 2829 } 2830 juint counter = 0; 2831 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2832 if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) { 2833 for (int action = 0; action < Action_LIMIT; action++) { 2834 if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) { 2835 juint* cases = _deoptimization_hist[reason][1+action]; 2836 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2837 counter += cases[bc_case] >> LSB_BITS; 2838 } 2839 } 2840 } 2841 } 2842 } 2843 return counter; 2844 } 2845 2846 void Deoptimization::print_statistics() { 2847 juint total = total_deoptimization_count(); 2848 juint account = total; 2849 if (total != 0) { 2850 ttyLocker ttyl; 2851 if (xtty != nullptr) xtty->head("statistics type='deoptimization'"); 2852 tty->print_cr("Deoptimization traps recorded:"); 2853 #define PRINT_STAT_LINE(name, r) \ 2854 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 2855 PRINT_STAT_LINE("total", total); 2856 // For each non-zero entry in the histogram, print the reason, 2857 // the action, and (if specifically known) the type of bytecode. 2858 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2859 for (int action = 0; action < Action_LIMIT; action++) { 2860 juint* cases = _deoptimization_hist[reason][1+action]; 2861 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2862 juint counter = cases[bc_case]; 2863 if (counter != 0) { 2864 char name[1*K]; 2865 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 2866 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 2867 bc = Bytecodes::_illegal; 2868 os::snprintf_checked(name, sizeof(name), "%s/%s/%s", 2869 trap_reason_name(reason), 2870 trap_action_name(action), 2871 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 2872 juint r = counter >> LSB_BITS; 2873 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 2874 account -= r; 2875 } 2876 } 2877 } 2878 } 2879 if (account != 0) { 2880 PRINT_STAT_LINE("unaccounted", account); 2881 } 2882 #undef PRINT_STAT_LINE 2883 if (xtty != nullptr) xtty->tail("statistics"); 2884 } 2885 } 2886 2887 #else // COMPILER2_OR_JVMCI 2888 2889 2890 // Stubs for C1 only system. 2891 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2892 return false; 2893 } 2894 2895 const char* Deoptimization::trap_reason_name(int reason) { 2896 return "unknown"; 2897 } 2898 2899 jint Deoptimization::total_deoptimization_count() { 2900 return 0; 2901 } 2902 2903 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2904 return 0; 2905 } 2906 2907 void Deoptimization::print_statistics() { 2908 // no output 2909 } 2910 2911 void 2912 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2913 // no update 2914 } 2915 2916 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2917 return 0; 2918 } 2919 2920 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2921 Bytecodes::Code bc) { 2922 // no update 2923 } 2924 2925 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2926 int trap_state) { 2927 jio_snprintf(buf, buflen, "#%d", trap_state); 2928 return buf; 2929 } 2930 2931 #endif // COMPILER2_OR_JVMCI