1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "compiler/compilationPolicy.hpp" 36 #include "compiler/compilerDefinitions.inline.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "interpreter/bytecode.hpp" 39 #include "interpreter/interpreter.hpp" 40 #include "interpreter/oopMapCache.hpp" 41 #include "jvm.h" 42 #include "logging/log.hpp" 43 #include "logging/logLevel.hpp" 44 #include "logging/logMessage.hpp" 45 #include "logging/logStream.hpp" 46 #include "memory/allocation.inline.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/constantPool.hpp" 51 #include "oops/fieldStreams.inline.hpp" 52 #include "oops/method.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/objArrayOop.inline.hpp" 55 #include "oops/oop.inline.hpp" 56 #include "oops/typeArrayOop.inline.hpp" 57 #include "oops/verifyOopClosure.hpp" 58 #include "prims/jvmtiDeferredUpdates.hpp" 59 #include "prims/jvmtiExport.hpp" 60 #include "prims/jvmtiThreadState.hpp" 61 #include "prims/methodHandles.hpp" 62 #include "prims/vectorSupport.hpp" 63 #include "runtime/atomic.hpp" 64 #include "runtime/continuation.hpp" 65 #include "runtime/continuationEntry.inline.hpp" 66 #include "runtime/deoptimization.hpp" 67 #include "runtime/escapeBarrier.hpp" 68 #include "runtime/fieldDescriptor.hpp" 69 #include "runtime/fieldDescriptor.inline.hpp" 70 #include "runtime/frame.inline.hpp" 71 #include "runtime/handles.inline.hpp" 72 #include "runtime/interfaceSupport.inline.hpp" 73 #include "runtime/javaThread.hpp" 74 #include "runtime/jniHandles.inline.hpp" 75 #include "runtime/keepStackGCProcessed.hpp" 76 #include "runtime/objectMonitor.inline.hpp" 77 #include "runtime/osThread.hpp" 78 #include "runtime/safepointVerifiers.hpp" 79 #include "runtime/sharedRuntime.hpp" 80 #include "runtime/signature.hpp" 81 #include "runtime/stackFrameStream.inline.hpp" 82 #include "runtime/stackValue.hpp" 83 #include "runtime/stackWatermarkSet.hpp" 84 #include "runtime/stubRoutines.hpp" 85 #include "runtime/synchronizer.hpp" 86 #include "runtime/threadSMR.hpp" 87 #include "runtime/threadWXSetters.inline.hpp" 88 #include "runtime/vframe.hpp" 89 #include "runtime/vframeArray.hpp" 90 #include "runtime/vframe_hp.hpp" 91 #include "runtime/vmOperations.hpp" 92 #include "utilities/events.hpp" 93 #include "utilities/growableArray.hpp" 94 #include "utilities/macros.hpp" 95 #include "utilities/preserveException.hpp" 96 #include "utilities/xmlstream.hpp" 97 #if INCLUDE_JFR 98 #include "jfr/jfrEvents.hpp" 99 #include "jfr/metadata/jfrSerializer.hpp" 100 #endif 101 102 uint64_t DeoptimizationScope::_committed_deopt_gen = 0; 103 uint64_t DeoptimizationScope::_active_deopt_gen = 1; 104 bool DeoptimizationScope::_committing_in_progress = false; 105 106 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) { 107 DEBUG_ONLY(_deopted = false;) 108 109 MutexLocker ml(CompiledMethod_lock, Mutex::_no_safepoint_check_flag); 110 // If there is nothing to deopt _required_gen is the same as comitted. 111 _required_gen = DeoptimizationScope::_committed_deopt_gen; 112 } 113 114 DeoptimizationScope::~DeoptimizationScope() { 115 assert(_deopted, "Deopt not executed"); 116 } 117 118 void DeoptimizationScope::mark(CompiledMethod* cm, bool inc_recompile_counts) { 119 MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock, 120 Mutex::_no_safepoint_check_flag); 121 122 // If it's already marked but we still need it to be deopted. 123 if (cm->is_marked_for_deoptimization()) { 124 dependent(cm); 125 return; 126 } 127 128 CompiledMethod::DeoptimizationStatus status = 129 inc_recompile_counts ? CompiledMethod::deoptimize : CompiledMethod::deoptimize_noupdate; 130 Atomic::store(&cm->_deoptimization_status, status); 131 132 // Make sure active is not committed 133 assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be"); 134 assert(cm->_deoptimization_generation == 0, "Is already marked"); 135 136 cm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen; 137 _required_gen = DeoptimizationScope::_active_deopt_gen; 138 } 139 140 void DeoptimizationScope::dependent(CompiledMethod* cm) { 141 MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock, 142 Mutex::_no_safepoint_check_flag); 143 // A method marked by someone else may have a _required_gen lower than what we marked with. 144 // Therefore only store it if it's higher than _required_gen. 145 if (_required_gen < cm->_deoptimization_generation) { 146 _required_gen = cm->_deoptimization_generation; 147 } 148 } 149 150 void DeoptimizationScope::deoptimize_marked() { 151 assert(!_deopted, "Already deopted"); 152 153 // We are not alive yet. 154 if (!Universe::is_fully_initialized()) { 155 DEBUG_ONLY(_deopted = true;) 156 return; 157 } 158 159 // Safepoints are a special case, handled here. 160 if (SafepointSynchronize::is_at_safepoint()) { 161 DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen; 162 DeoptimizationScope::_active_deopt_gen++; 163 Deoptimization::deoptimize_all_marked(); 164 DEBUG_ONLY(_deopted = true;) 165 return; 166 } 167 168 uint64_t comitting = 0; 169 bool wait = false; 170 while (true) { 171 { 172 MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock, 173 Mutex::_no_safepoint_check_flag); 174 // First we check if we or someone else already deopted the gen we want. 175 if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) { 176 DEBUG_ONLY(_deopted = true;) 177 return; 178 } 179 if (!_committing_in_progress) { 180 // The version we are about to commit. 181 comitting = DeoptimizationScope::_active_deopt_gen; 182 // Make sure new marks use a higher gen. 183 DeoptimizationScope::_active_deopt_gen++; 184 _committing_in_progress = true; 185 wait = false; 186 } else { 187 // Another thread is handshaking and committing a gen. 188 wait = true; 189 } 190 } 191 if (wait) { 192 // Wait and let the concurrent handshake be performed. 193 ThreadBlockInVM tbivm(JavaThread::current()); 194 os::naked_yield(); 195 } else { 196 // Performs the handshake. 197 Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred. 198 DEBUG_ONLY(_deopted = true;) 199 { 200 MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock, 201 Mutex::_no_safepoint_check_flag); 202 // Make sure that committed doesn't go backwards. 203 // Should only happen if we did a deopt during a safepoint above. 204 if (DeoptimizationScope::_committed_deopt_gen < comitting) { 205 DeoptimizationScope::_committed_deopt_gen = comitting; 206 } 207 _committing_in_progress = false; 208 209 assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be"); 210 211 return; 212 } 213 } 214 } 215 } 216 217 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 218 int caller_adjustment, 219 int caller_actual_parameters, 220 int number_of_frames, 221 intptr_t* frame_sizes, 222 address* frame_pcs, 223 BasicType return_type, 224 int exec_mode) { 225 _size_of_deoptimized_frame = size_of_deoptimized_frame; 226 _caller_adjustment = caller_adjustment; 227 _caller_actual_parameters = caller_actual_parameters; 228 _number_of_frames = number_of_frames; 229 _frame_sizes = frame_sizes; 230 _frame_pcs = frame_pcs; 231 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 232 _return_type = return_type; 233 _initial_info = 0; 234 // PD (x86 only) 235 _counter_temp = 0; 236 _unpack_kind = exec_mode; 237 _sender_sp_temp = 0; 238 239 _total_frame_sizes = size_of_frames(); 240 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 241 } 242 243 Deoptimization::UnrollBlock::~UnrollBlock() { 244 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 245 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 246 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 247 } 248 249 int Deoptimization::UnrollBlock::size_of_frames() const { 250 // Account first for the adjustment of the initial frame 251 int result = _caller_adjustment; 252 for (int index = 0; index < number_of_frames(); index++) { 253 result += frame_sizes()[index]; 254 } 255 return result; 256 } 257 258 void Deoptimization::UnrollBlock::print() { 259 ResourceMark rm; 260 stringStream st; 261 st.print_cr("UnrollBlock"); 262 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 263 st.print( " frame_sizes: "); 264 for (int index = 0; index < number_of_frames(); index++) { 265 st.print(INTX_FORMAT " ", frame_sizes()[index]); 266 } 267 st.cr(); 268 tty->print_raw(st.freeze()); 269 } 270 271 // In order to make fetch_unroll_info work properly with escape 272 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 273 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 274 // which is called from the method fetch_unroll_info_helper below. 275 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 276 // fetch_unroll_info() is called at the beginning of the deoptimization 277 // handler. Note this fact before we start generating temporary frames 278 // that can confuse an asynchronous stack walker. This counter is 279 // decremented at the end of unpack_frames(). 280 current->inc_in_deopt_handler(); 281 282 if (exec_mode == Unpack_exception) { 283 // When we get here, a callee has thrown an exception into a deoptimized 284 // frame. That throw might have deferred stack watermark checking until 285 // after unwinding. So we deal with such deferred requests here. 286 StackWatermarkSet::after_unwind(current); 287 } 288 289 return fetch_unroll_info_helper(current, exec_mode); 290 JRT_END 291 292 #if COMPILER2_OR_JVMCI 293 // print information about reallocated objects 294 static void print_objects(JavaThread* deoptee_thread, 295 GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 296 ResourceMark rm; 297 stringStream st; // change to logStream with logging 298 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 299 fieldDescriptor fd; 300 301 for (int i = 0; i < objects->length(); i++) { 302 ObjectValue* sv = (ObjectValue*) objects->at(i); 303 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 304 Handle obj = sv->value(); 305 306 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 307 k->print_value_on(&st); 308 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 309 if (obj.is_null()) { 310 st.print(" allocation failed"); 311 } else { 312 st.print(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize); 313 } 314 st.cr(); 315 316 if (Verbose && !obj.is_null()) { 317 k->oop_print_on(obj(), &st); 318 } 319 } 320 tty->print_raw(st.freeze()); 321 } 322 323 static bool rematerialize_objects(JavaThread* thread, int exec_mode, CompiledMethod* compiled_method, 324 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 325 bool& deoptimized_objects) { 326 bool realloc_failures = false; 327 assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames"); 328 329 JavaThread* deoptee_thread = chunk->at(0)->thread(); 330 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 331 "a frame can only be deoptimized by the owner thread"); 332 333 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects(); 334 335 // The flag return_oop() indicates call sites which return oop 336 // in compiled code. Such sites include java method calls, 337 // runtime calls (for example, used to allocate new objects/arrays 338 // on slow code path) and any other calls generated in compiled code. 339 // It is not guaranteed that we can get such information here only 340 // by analyzing bytecode in deoptimized frames. This is why this flag 341 // is set during method compilation (see Compile::Process_OopMap_Node()). 342 // If the previous frame was popped or if we are dispatching an exception, 343 // we don't have an oop result. 344 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 345 Handle return_value; 346 if (save_oop_result) { 347 // Reallocation may trigger GC. If deoptimization happened on return from 348 // call which returns oop we need to save it since it is not in oopmap. 349 oop result = deoptee.saved_oop_result(&map); 350 assert(oopDesc::is_oop_or_null(result), "must be oop"); 351 return_value = Handle(thread, result); 352 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 353 if (TraceDeoptimization) { 354 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 355 tty->cr(); 356 } 357 } 358 if (objects != nullptr) { 359 if (exec_mode == Deoptimization::Unpack_none) { 360 assert(thread->thread_state() == _thread_in_vm, "assumption"); 361 JavaThread* THREAD = thread; // For exception macros. 362 // Clear pending OOM if reallocation fails and return true indicating allocation failure 363 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 364 deoptimized_objects = true; 365 } else { 366 JavaThread* current = thread; // For JRT_BLOCK 367 JRT_BLOCK 368 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 369 JRT_END 370 } 371 bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci(); 372 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal); 373 if (TraceDeoptimization) { 374 print_objects(deoptee_thread, objects, realloc_failures); 375 } 376 } 377 if (save_oop_result) { 378 // Restore result. 379 deoptee.set_saved_oop_result(&map, return_value()); 380 } 381 return realloc_failures; 382 } 383 384 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 385 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 386 JavaThread* deoptee_thread = chunk->at(0)->thread(); 387 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 388 assert(thread == Thread::current(), "should be"); 389 HandleMark hm(thread); 390 #ifndef PRODUCT 391 bool first = true; 392 #endif // !PRODUCT 393 DEBUG_ONLY(GrowableArray<oop> lock_order{0};) 394 // Start locking from outermost/oldest frame 395 for (int i = (chunk->length() - 1); i >= 0; i--) { 396 compiledVFrame* cvf = chunk->at(i); 397 assert (cvf->scope() != nullptr,"expect only compiled java frames"); 398 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 399 if (monitors->is_nonempty()) { 400 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 401 exec_mode, realloc_failures); 402 deoptimized_objects = deoptimized_objects || relocked; 403 #ifdef ASSERT 404 if (LockingMode == LM_LIGHTWEIGHT && !realloc_failures) { 405 for (MonitorInfo* mi : *monitors) { 406 lock_order.push(mi->owner()); 407 } 408 } 409 #endif // ASSERT 410 #ifndef PRODUCT 411 if (PrintDeoptimizationDetails) { 412 ResourceMark rm; 413 stringStream st; 414 for (int j = 0; j < monitors->length(); j++) { 415 MonitorInfo* mi = monitors->at(j); 416 if (mi->eliminated()) { 417 if (first) { 418 first = false; 419 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 420 } 421 if (exec_mode == Deoptimization::Unpack_none) { 422 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 423 if (monitor != nullptr && monitor->object() == mi->owner()) { 424 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 425 continue; 426 } 427 } 428 if (mi->owner_is_scalar_replaced()) { 429 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 430 st.print_cr(" failed reallocation for klass %s", k->external_name()); 431 } else { 432 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 433 } 434 } 435 } 436 tty->print_raw(st.freeze()); 437 } 438 #endif // !PRODUCT 439 } 440 } 441 #ifdef ASSERT 442 if (LockingMode == LM_LIGHTWEIGHT && !realloc_failures) { 443 deoptee_thread->lock_stack().verify_consistent_lock_order(lock_order, exec_mode != Deoptimization::Unpack_none); 444 } 445 #endif // ASSERT 446 } 447 448 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 449 // The given vframes cover one physical frame. 450 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 451 bool& realloc_failures) { 452 frame deoptee = chunk->at(0)->fr(); 453 JavaThread* deoptee_thread = chunk->at(0)->thread(); 454 CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null(); 455 RegisterMap map(chunk->at(0)->register_map()); 456 bool deoptimized_objects = false; 457 458 bool const jvmci_enabled = JVMCI_ONLY(UseJVMCICompiler) NOT_JVMCI(false); 459 460 // Reallocate the non-escaping objects and restore their fields. 461 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 462 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 463 realloc_failures = rematerialize_objects(thread, Unpack_none, cm, deoptee, map, chunk, deoptimized_objects); 464 } 465 466 // MonitorInfo structures used in eliminate_locks are not GC safe. 467 NoSafepointVerifier no_safepoint; 468 469 // Now relock objects if synchronization on them was eliminated. 470 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 471 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 472 } 473 return deoptimized_objects; 474 } 475 #endif // COMPILER2_OR_JVMCI 476 477 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 478 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 479 // When we get here we are about to unwind the deoptee frame. In order to 480 // catch not yet safe to use frames, the following stack watermark barrier 481 // poll will make such frames safe to use. 482 StackWatermarkSet::before_unwind(current); 483 484 // Note: there is a safepoint safety issue here. No matter whether we enter 485 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 486 // the vframeArray is created. 487 // 488 489 // Allocate our special deoptimization ResourceMark 490 DeoptResourceMark* dmark = new DeoptResourceMark(current); 491 assert(current->deopt_mark() == nullptr, "Pending deopt!"); 492 current->set_deopt_mark(dmark); 493 494 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 495 RegisterMap map(current, 496 RegisterMap::UpdateMap::include, 497 RegisterMap::ProcessFrames::include, 498 RegisterMap::WalkContinuation::skip); 499 RegisterMap dummy_map(current, 500 RegisterMap::UpdateMap::skip, 501 RegisterMap::ProcessFrames::include, 502 RegisterMap::WalkContinuation::skip); 503 // Now get the deoptee with a valid map 504 frame deoptee = stub_frame.sender(&map); 505 // Set the deoptee nmethod 506 assert(current->deopt_compiled_method() == nullptr, "Pending deopt!"); 507 CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null(); 508 current->set_deopt_compiled_method(cm); 509 510 if (VerifyStack) { 511 current->validate_frame_layout(); 512 } 513 514 // Create a growable array of VFrames where each VFrame represents an inlined 515 // Java frame. This storage is allocated with the usual system arena. 516 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 517 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 518 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 519 while (!vf->is_top()) { 520 assert(vf->is_compiled_frame(), "Wrong frame type"); 521 chunk->push(compiledVFrame::cast(vf)); 522 vf = vf->sender(); 523 } 524 assert(vf->is_compiled_frame(), "Wrong frame type"); 525 chunk->push(compiledVFrame::cast(vf)); 526 527 bool realloc_failures = false; 528 529 #if COMPILER2_OR_JVMCI 530 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 531 532 // Reallocate the non-escaping objects and restore their fields. Then 533 // relock objects if synchronization on them was eliminated. 534 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 535 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 536 bool unused; 537 realloc_failures = rematerialize_objects(current, exec_mode, cm, deoptee, map, chunk, unused); 538 } 539 #endif // COMPILER2_OR_JVMCI 540 541 // Ensure that no safepoint is taken after pointers have been stored 542 // in fields of rematerialized objects. If a safepoint occurs from here on 543 // out the java state residing in the vframeArray will be missed. 544 // Locks may be rebaised in a safepoint. 545 NoSafepointVerifier no_safepoint; 546 547 #if COMPILER2_OR_JVMCI 548 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 549 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 550 bool unused = false; 551 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 552 } 553 #endif // COMPILER2_OR_JVMCI 554 555 ScopeDesc* trap_scope = chunk->at(0)->scope(); 556 Handle exceptionObject; 557 if (trap_scope->rethrow_exception()) { 558 #ifndef PRODUCT 559 if (PrintDeoptimizationDetails) { 560 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 561 } 562 #endif // !PRODUCT 563 564 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 565 guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw"); 566 ScopeValue* topOfStack = expressions->top(); 567 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 568 guarantee(exceptionObject() != nullptr, "exception oop can not be null"); 569 } 570 571 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 572 #if COMPILER2_OR_JVMCI 573 if (realloc_failures) { 574 // This destroys all ScopedValue bindings. 575 current->clear_scopedValueBindings(); 576 pop_frames_failed_reallocs(current, array); 577 } 578 #endif 579 580 assert(current->vframe_array_head() == nullptr, "Pending deopt!"); 581 current->set_vframe_array_head(array); 582 583 // Now that the vframeArray has been created if we have any deferred local writes 584 // added by jvmti then we can free up that structure as the data is now in the 585 // vframeArray 586 587 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 588 589 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 590 CodeBlob* cb = stub_frame.cb(); 591 // Verify we have the right vframeArray 592 assert(cb->frame_size() >= 0, "Unexpected frame size"); 593 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 594 595 // If the deopt call site is a MethodHandle invoke call site we have 596 // to adjust the unpack_sp. 597 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 598 if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc())) 599 unpack_sp = deoptee.unextended_sp(); 600 601 #ifdef ASSERT 602 assert(cb->is_deoptimization_stub() || 603 cb->is_uncommon_trap_stub() || 604 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 605 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 606 "unexpected code blob: %s", cb->name()); 607 #endif 608 609 // This is a guarantee instead of an assert because if vframe doesn't match 610 // we will unpack the wrong deoptimized frame and wind up in strange places 611 // where it will be very difficult to figure out what went wrong. Better 612 // to die an early death here than some very obscure death later when the 613 // trail is cold. 614 // Note: on ia64 this guarantee can be fooled by frames with no memory stack 615 // in that it will fail to detect a problem when there is one. This needs 616 // more work in tiger timeframe. 617 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 618 619 int number_of_frames = array->frames(); 620 621 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 622 // virtual activation, which is the reverse of the elements in the vframes array. 623 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 624 // +1 because we always have an interpreter return address for the final slot. 625 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 626 int popframe_extra_args = 0; 627 // Create an interpreter return address for the stub to use as its return 628 // address so the skeletal frames are perfectly walkable 629 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 630 631 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 632 // activation be put back on the expression stack of the caller for reexecution 633 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 634 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 635 } 636 637 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 638 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 639 // than simply use array->sender.pc(). This requires us to walk the current set of frames 640 // 641 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 642 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 643 644 // It's possible that the number of parameters at the call site is 645 // different than number of arguments in the callee when method 646 // handles are used. If the caller is interpreted get the real 647 // value so that the proper amount of space can be added to it's 648 // frame. 649 bool caller_was_method_handle = false; 650 if (deopt_sender.is_interpreted_frame()) { 651 methodHandle method(current, deopt_sender.interpreter_frame_method()); 652 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci()); 653 if (cur.is_invokedynamic() || cur.is_invokehandle()) { 654 // Method handle invokes may involve fairly arbitrary chains of 655 // calls so it's impossible to know how much actual space the 656 // caller has for locals. 657 caller_was_method_handle = true; 658 } 659 } 660 661 // 662 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 663 // frame_sizes/frame_pcs[1] next oldest frame (int) 664 // frame_sizes/frame_pcs[n] youngest frame (int) 665 // 666 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 667 // owns the space for the return address to it's caller). Confusing ain't it. 668 // 669 // The vframe array can address vframes with indices running from 670 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 671 // When we create the skeletal frames we need the oldest frame to be in the zero slot 672 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 673 // so things look a little strange in this loop. 674 // 675 int callee_parameters = 0; 676 int callee_locals = 0; 677 for (int index = 0; index < array->frames(); index++ ) { 678 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 679 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 680 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 681 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 682 callee_locals, 683 index == 0, 684 popframe_extra_args); 685 // This pc doesn't have to be perfect just good enough to identify the frame 686 // as interpreted so the skeleton frame will be walkable 687 // The correct pc will be set when the skeleton frame is completely filled out 688 // The final pc we store in the loop is wrong and will be overwritten below 689 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 690 691 callee_parameters = array->element(index)->method()->size_of_parameters(); 692 callee_locals = array->element(index)->method()->max_locals(); 693 popframe_extra_args = 0; 694 } 695 696 // Compute whether the root vframe returns a float or double value. 697 BasicType return_type; 698 { 699 methodHandle method(current, array->element(0)->method()); 700 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 701 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 702 } 703 704 // Compute information for handling adapters and adjusting the frame size of the caller. 705 int caller_adjustment = 0; 706 707 // Compute the amount the oldest interpreter frame will have to adjust 708 // its caller's stack by. If the caller is a compiled frame then 709 // we pretend that the callee has no parameters so that the 710 // extension counts for the full amount of locals and not just 711 // locals-parms. This is because without a c2i adapter the parm 712 // area as created by the compiled frame will not be usable by 713 // the interpreter. (Depending on the calling convention there 714 // may not even be enough space). 715 716 // QQQ I'd rather see this pushed down into last_frame_adjust 717 // and have it take the sender (aka caller). 718 719 if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) { 720 caller_adjustment = last_frame_adjust(0, callee_locals); 721 } else if (callee_locals > callee_parameters) { 722 // The caller frame may need extending to accommodate 723 // non-parameter locals of the first unpacked interpreted frame. 724 // Compute that adjustment. 725 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 726 } 727 728 // If the sender is deoptimized the we must retrieve the address of the handler 729 // since the frame will "magically" show the original pc before the deopt 730 // and we'd undo the deopt. 731 732 frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc(); 733 if (Continuation::is_continuation_enterSpecial(deopt_sender)) { 734 ContinuationEntry::from_frame(deopt_sender)->set_argsize(0); 735 } 736 737 assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc"); 738 739 #if INCLUDE_JVMCI 740 if (exceptionObject() != nullptr) { 741 current->set_exception_oop(exceptionObject()); 742 exec_mode = Unpack_exception; 743 } 744 #endif 745 746 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 747 assert(current->has_pending_exception(), "should have thrown OOME"); 748 current->set_exception_oop(current->pending_exception()); 749 current->clear_pending_exception(); 750 exec_mode = Unpack_exception; 751 } 752 753 #if INCLUDE_JVMCI 754 if (current->frames_to_pop_failed_realloc() > 0) { 755 current->set_pending_monitorenter(false); 756 } 757 #endif 758 759 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 760 caller_adjustment * BytesPerWord, 761 caller_was_method_handle ? 0 : callee_parameters, 762 number_of_frames, 763 frame_sizes, 764 frame_pcs, 765 return_type, 766 exec_mode); 767 // On some platforms, we need a way to pass some platform dependent 768 // information to the unpacking code so the skeletal frames come out 769 // correct (initial fp value, unextended sp, ...) 770 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 771 772 if (array->frames() > 1) { 773 if (VerifyStack && TraceDeoptimization) { 774 tty->print_cr("Deoptimizing method containing inlining"); 775 } 776 } 777 778 array->set_unroll_block(info); 779 return info; 780 } 781 782 // Called to cleanup deoptimization data structures in normal case 783 // after unpacking to stack and when stack overflow error occurs 784 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 785 vframeArray *array) { 786 787 // Get array if coming from exception 788 if (array == nullptr) { 789 array = thread->vframe_array_head(); 790 } 791 thread->set_vframe_array_head(nullptr); 792 793 // Free the previous UnrollBlock 794 vframeArray* old_array = thread->vframe_array_last(); 795 thread->set_vframe_array_last(array); 796 797 if (old_array != nullptr) { 798 UnrollBlock* old_info = old_array->unroll_block(); 799 old_array->set_unroll_block(nullptr); 800 delete old_info; 801 delete old_array; 802 } 803 804 // Deallocate any resource creating in this routine and any ResourceObjs allocated 805 // inside the vframeArray (StackValueCollections) 806 807 delete thread->deopt_mark(); 808 thread->set_deopt_mark(nullptr); 809 thread->set_deopt_compiled_method(nullptr); 810 811 812 if (JvmtiExport::can_pop_frame()) { 813 // Regardless of whether we entered this routine with the pending 814 // popframe condition bit set, we should always clear it now 815 thread->clear_popframe_condition(); 816 } 817 818 // unpack_frames() is called at the end of the deoptimization handler 819 // and (in C2) at the end of the uncommon trap handler. Note this fact 820 // so that an asynchronous stack walker can work again. This counter is 821 // incremented at the beginning of fetch_unroll_info() and (in C2) at 822 // the beginning of uncommon_trap(). 823 thread->dec_in_deopt_handler(); 824 } 825 826 // Moved from cpu directories because none of the cpus has callee save values. 827 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 828 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 829 830 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 831 // the days we had adapter frames. When we deoptimize a situation where a 832 // compiled caller calls a compiled caller will have registers it expects 833 // to survive the call to the callee. If we deoptimize the callee the only 834 // way we can restore these registers is to have the oldest interpreter 835 // frame that we create restore these values. That is what this routine 836 // will accomplish. 837 838 // At the moment we have modified c2 to not have any callee save registers 839 // so this problem does not exist and this routine is just a place holder. 840 841 assert(f->is_interpreted_frame(), "must be interpreted"); 842 } 843 844 #ifndef PRODUCT 845 static bool falls_through(Bytecodes::Code bc) { 846 switch (bc) { 847 // List may be incomplete. Here we really only care about bytecodes where compiled code 848 // can deoptimize. 849 case Bytecodes::_goto: 850 case Bytecodes::_goto_w: 851 case Bytecodes::_athrow: 852 return false; 853 default: 854 return true; 855 } 856 } 857 #endif 858 859 // Return BasicType of value being returned 860 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 861 assert(thread == JavaThread::current(), "pre-condition"); 862 863 // We are already active in the special DeoptResourceMark any ResourceObj's we 864 // allocate will be freed at the end of the routine. 865 866 // JRT_LEAF methods don't normally allocate handles and there is a 867 // NoHandleMark to enforce that. It is actually safe to use Handles 868 // in a JRT_LEAF method, and sometimes desirable, but to do so we 869 // must use ResetNoHandleMark to bypass the NoHandleMark, and 870 // then use a HandleMark to ensure any Handles we do create are 871 // cleaned up in this scope. 872 ResetNoHandleMark rnhm; 873 HandleMark hm(thread); 874 875 frame stub_frame = thread->last_frame(); 876 877 Continuation::notify_deopt(thread, stub_frame.sp()); 878 879 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 880 // must point to the vframeArray for the unpack frame. 881 vframeArray* array = thread->vframe_array_head(); 882 UnrollBlock* info = array->unroll_block(); 883 884 // We set the last_Java frame. But the stack isn't really parsable here. So we 885 // clear it to make sure JFR understands not to try and walk stacks from events 886 // in here. 887 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 888 thread->frame_anchor()->set_last_Java_sp(nullptr); 889 890 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 891 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 892 893 thread->frame_anchor()->set_last_Java_sp(sp); 894 895 BasicType bt = info->return_type(); 896 897 // If we have an exception pending, claim that the return type is an oop 898 // so the deopt_blob does not overwrite the exception_oop. 899 900 if (exec_mode == Unpack_exception) 901 bt = T_OBJECT; 902 903 // Cleanup thread deopt data 904 cleanup_deopt_info(thread, array); 905 906 #ifndef PRODUCT 907 if (VerifyStack) { 908 ResourceMark res_mark; 909 // Clear pending exception to not break verification code (restored afterwards) 910 PreserveExceptionMark pm(thread); 911 912 thread->validate_frame_layout(); 913 914 // Verify that the just-unpacked frames match the interpreter's 915 // notions of expression stack and locals 916 vframeArray* cur_array = thread->vframe_array_last(); 917 RegisterMap rm(thread, 918 RegisterMap::UpdateMap::skip, 919 RegisterMap::ProcessFrames::include, 920 RegisterMap::WalkContinuation::skip); 921 rm.set_include_argument_oops(false); 922 bool is_top_frame = true; 923 int callee_size_of_parameters = 0; 924 int callee_max_locals = 0; 925 for (int i = 0; i < cur_array->frames(); i++) { 926 vframeArrayElement* el = cur_array->element(i); 927 frame* iframe = el->iframe(); 928 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 929 930 // Get the oop map for this bci 931 InterpreterOopMap mask; 932 int cur_invoke_parameter_size = 0; 933 bool try_next_mask = false; 934 int next_mask_expression_stack_size = -1; 935 int top_frame_expression_stack_adjustment = 0; 936 methodHandle mh(thread, iframe->interpreter_frame_method()); 937 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 938 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 939 int max_bci = mh->code_size(); 940 // Get to the next bytecode if possible 941 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 942 // Check to see if we can grab the number of outgoing arguments 943 // at an uncommon trap for an invoke (where the compiler 944 // generates debug info before the invoke has executed) 945 Bytecodes::Code cur_code = str.next(); 946 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 947 if (Bytecodes::is_invoke(cur_code)) { 948 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 949 cur_invoke_parameter_size = invoke.size_of_parameters(); 950 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) { 951 callee_size_of_parameters++; 952 } 953 } 954 if (str.bci() < max_bci) { 955 next_code = str.next(); 956 if (next_code >= 0) { 957 // The interpreter oop map generator reports results before 958 // the current bytecode has executed except in the case of 959 // calls. It seems to be hard to tell whether the compiler 960 // has emitted debug information matching the "state before" 961 // a given bytecode or the state after, so we try both 962 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 963 // Get expression stack size for the next bytecode 964 InterpreterOopMap next_mask; 965 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 966 next_mask_expression_stack_size = next_mask.expression_stack_size(); 967 if (Bytecodes::is_invoke(next_code)) { 968 Bytecode_invoke invoke(mh, str.bci()); 969 next_mask_expression_stack_size += invoke.size_of_parameters(); 970 } 971 // Need to subtract off the size of the result type of 972 // the bytecode because this is not described in the 973 // debug info but returned to the interpreter in the TOS 974 // caching register 975 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 976 if (bytecode_result_type != T_ILLEGAL) { 977 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 978 } 979 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 980 try_next_mask = true; 981 } 982 } 983 } 984 985 // Verify stack depth and oops in frame 986 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 987 if (!( 988 /* SPARC */ 989 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 990 /* x86 */ 991 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 992 (try_next_mask && 993 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 994 top_frame_expression_stack_adjustment))) || 995 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 996 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 997 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 998 )) { 999 { 1000 // Print out some information that will help us debug the problem 1001 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 1002 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 1003 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 1004 if (try_next_mask) { 1005 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 1006 } 1007 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 1008 iframe->interpreter_frame_expression_stack_size()); 1009 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 1010 tty->print_cr(" try_next_mask = %d", try_next_mask); 1011 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 1012 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 1013 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 1014 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 1015 tty->print_cr(" exec_mode = %d", exec_mode); 1016 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 1017 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 1018 tty->print_cr(" Interpreted frames:"); 1019 for (int k = 0; k < cur_array->frames(); k++) { 1020 vframeArrayElement* el = cur_array->element(k); 1021 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 1022 } 1023 cur_array->print_on_2(tty); 1024 } 1025 guarantee(false, "wrong number of expression stack elements during deopt"); 1026 } 1027 VerifyOopClosure verify; 1028 iframe->oops_interpreted_do(&verify, &rm, false); 1029 callee_size_of_parameters = mh->size_of_parameters(); 1030 callee_max_locals = mh->max_locals(); 1031 is_top_frame = false; 1032 } 1033 } 1034 #endif // !PRODUCT 1035 1036 return bt; 1037 JRT_END 1038 1039 class DeoptimizeMarkedClosure : public HandshakeClosure { 1040 public: 1041 DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {} 1042 void do_thread(Thread* thread) { 1043 JavaThread* jt = JavaThread::cast(thread); 1044 jt->deoptimize_marked_methods(); 1045 } 1046 }; 1047 1048 void Deoptimization::deoptimize_all_marked() { 1049 ResourceMark rm; 1050 1051 // Make the dependent methods not entrant 1052 CodeCache::make_marked_nmethods_deoptimized(); 1053 1054 DeoptimizeMarkedClosure deopt; 1055 if (SafepointSynchronize::is_at_safepoint()) { 1056 Threads::java_threads_do(&deopt); 1057 } else { 1058 Handshake::execute(&deopt); 1059 } 1060 } 1061 1062 Deoptimization::DeoptAction Deoptimization::_unloaded_action 1063 = Deoptimization::Action_reinterpret; 1064 1065 #if INCLUDE_JVMCI 1066 template<typename CacheType> 1067 class BoxCacheBase : public CHeapObj<mtCompiler> { 1068 protected: 1069 static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) { 1070 ResourceMark rm(thread); 1071 char* klass_name_str = klass_name->as_C_string(); 1072 InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle()); 1073 guarantee(ik != nullptr, "%s must be loaded", klass_name_str); 1074 if (!ik->is_in_error_state()) { 1075 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 1076 CacheType::compute_offsets(ik); 1077 } 1078 return ik; 1079 } 1080 }; 1081 1082 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 1083 PrimitiveType _low; 1084 PrimitiveType _high; 1085 jobject _cache; 1086 protected: 1087 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 1088 BoxCache(Thread* thread) { 1089 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol()); 1090 if (ik->is_in_error_state()) { 1091 _low = 1; 1092 _high = 0; 1093 _cache = nullptr; 1094 } else { 1095 objArrayOop cache = CacheType::cache(ik); 1096 assert(cache->length() > 0, "Empty cache"); 1097 _low = BoxType::value(cache->obj_at(0)); 1098 _high = _low + cache->length() - 1; 1099 _cache = JNIHandles::make_global(Handle(thread, cache)); 1100 } 1101 } 1102 ~BoxCache() { 1103 JNIHandles::destroy_global(_cache); 1104 } 1105 public: 1106 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 1107 if (_singleton == nullptr) { 1108 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 1109 if (!Atomic::replace_if_null(&_singleton, s)) { 1110 delete s; 1111 } 1112 } 1113 return _singleton; 1114 } 1115 oop lookup(PrimitiveType value) { 1116 if (_low <= value && value <= _high) { 1117 int offset = value - _low; 1118 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 1119 } 1120 return nullptr; 1121 } 1122 oop lookup_raw(intptr_t raw_value, bool& cache_init_error) { 1123 if (_cache == nullptr) { 1124 cache_init_error = true; 1125 return nullptr; 1126 } 1127 // Have to cast to avoid little/big-endian problems. 1128 if (sizeof(PrimitiveType) > sizeof(jint)) { 1129 jlong value = (jlong)raw_value; 1130 return lookup(value); 1131 } 1132 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1133 return lookup(value); 1134 } 1135 }; 1136 1137 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1138 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1139 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1140 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1141 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1142 1143 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr; 1144 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr; 1145 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr; 1146 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr; 1147 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr; 1148 1149 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1150 jobject _true_cache; 1151 jobject _false_cache; 1152 protected: 1153 static BooleanBoxCache *_singleton; 1154 BooleanBoxCache(Thread *thread) { 1155 InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol()); 1156 if (ik->is_in_error_state()) { 1157 _true_cache = nullptr; 1158 _false_cache = nullptr; 1159 } else { 1160 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1161 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1162 } 1163 } 1164 ~BooleanBoxCache() { 1165 JNIHandles::destroy_global(_true_cache); 1166 JNIHandles::destroy_global(_false_cache); 1167 } 1168 public: 1169 static BooleanBoxCache* singleton(Thread* thread) { 1170 if (_singleton == nullptr) { 1171 BooleanBoxCache* s = new BooleanBoxCache(thread); 1172 if (!Atomic::replace_if_null(&_singleton, s)) { 1173 delete s; 1174 } 1175 } 1176 return _singleton; 1177 } 1178 oop lookup_raw(intptr_t raw_value, bool& cache_in_error) { 1179 if (_true_cache == nullptr) { 1180 cache_in_error = true; 1181 return nullptr; 1182 } 1183 // Have to cast to avoid little/big-endian problems. 1184 jboolean value = (jboolean)*((jint*)&raw_value); 1185 return lookup(value); 1186 } 1187 oop lookup(jboolean value) { 1188 if (value != 0) { 1189 return JNIHandles::resolve_non_null(_true_cache); 1190 } 1191 return JNIHandles::resolve_non_null(_false_cache); 1192 } 1193 }; 1194 1195 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr; 1196 1197 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) { 1198 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1199 BasicType box_type = vmClasses::box_klass_type(k); 1200 if (box_type != T_OBJECT) { 1201 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1202 switch(box_type) { 1203 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1204 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1205 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1206 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1207 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1208 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error); 1209 default:; 1210 } 1211 } 1212 return nullptr; 1213 } 1214 #endif // INCLUDE_JVMCI 1215 1216 #if COMPILER2_OR_JVMCI 1217 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1218 Handle pending_exception(THREAD, thread->pending_exception()); 1219 const char* exception_file = thread->exception_file(); 1220 int exception_line = thread->exception_line(); 1221 thread->clear_pending_exception(); 1222 1223 bool failures = false; 1224 1225 for (int i = 0; i < objects->length(); i++) { 1226 assert(objects->at(i)->is_object(), "invalid debug information"); 1227 ObjectValue* sv = (ObjectValue*) objects->at(i); 1228 1229 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1230 oop obj = nullptr; 1231 1232 bool cache_init_error = false; 1233 if (k->is_instance_klass()) { 1234 #if INCLUDE_JVMCI 1235 CompiledMethod* cm = fr->cb()->as_compiled_method_or_null(); 1236 if (cm->is_compiled_by_jvmci() && sv->is_auto_box()) { 1237 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1238 obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD); 1239 if (obj != nullptr) { 1240 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1241 abv->set_cached(true); 1242 } else if (cache_init_error) { 1243 // Results in an OOME which is valid (as opposed to a class initialization error) 1244 // and is fine for the rare case a cache initialization failing. 1245 failures = true; 1246 } 1247 } 1248 #endif // INCLUDE_JVMCI 1249 1250 InstanceKlass* ik = InstanceKlass::cast(k); 1251 if (obj == nullptr && !cache_init_error) { 1252 #ifdef COMPILER2 1253 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1254 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1255 } else { 1256 obj = ik->allocate_instance(THREAD); 1257 } 1258 #else 1259 obj = ik->allocate_instance(THREAD); 1260 #endif // COMPILER2 1261 } 1262 } else if (k->is_typeArray_klass()) { 1263 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1264 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1265 int len = sv->field_size() / type2size[ak->element_type()]; 1266 obj = ak->allocate(len, THREAD); 1267 } else if (k->is_objArray_klass()) { 1268 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 1269 obj = ak->allocate(sv->field_size(), THREAD); 1270 } 1271 1272 if (obj == nullptr) { 1273 failures = true; 1274 } 1275 1276 assert(sv->value().is_null(), "redundant reallocation"); 1277 assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception"); 1278 CLEAR_PENDING_EXCEPTION; 1279 sv->set_value(obj); 1280 } 1281 1282 if (failures) { 1283 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1284 } else if (pending_exception.not_null()) { 1285 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1286 } 1287 1288 return failures; 1289 } 1290 1291 #if INCLUDE_JVMCI 1292 /** 1293 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1294 * we need to somehow be able to recover the actual kind to be able to write the correct 1295 * amount of bytes. 1296 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1297 * the entries at index n + 1 to n + i are 'markers'. 1298 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1299 * expected form of the array would be: 1300 * 1301 * {b0, b1, b2, b3, INT, marker, b6, b7} 1302 * 1303 * Thus, in order to get back the size of the entry, we simply need to count the number 1304 * of marked entries 1305 * 1306 * @param virtualArray the virtualized byte array 1307 * @param i index of the virtual entry we are recovering 1308 * @return The number of bytes the entry spans 1309 */ 1310 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1311 int index = i; 1312 while (++index < virtualArray->field_size() && 1313 virtualArray->field_at(index)->is_marker()) {} 1314 return index - i; 1315 } 1316 1317 /** 1318 * If there was a guarantee for byte array to always start aligned to a long, we could 1319 * do a simple check on the parity of the index. Unfortunately, that is not always the 1320 * case. Thus, we check alignment of the actual address we are writing to. 1321 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1322 * write a long to index 3. 1323 */ 1324 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1325 jbyte* res = obj->byte_at_addr(index); 1326 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1327 return res; 1328 } 1329 1330 static void byte_array_put(typeArrayOop obj, intptr_t val, int index, int byte_count) { 1331 switch (byte_count) { 1332 case 1: 1333 obj->byte_at_put(index, (jbyte) *((jint *) &val)); 1334 break; 1335 case 2: 1336 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) *((jint *) &val); 1337 break; 1338 case 4: 1339 *((jint *) check_alignment_get_addr(obj, index, 4)) = (jint) *((jint *) &val); 1340 break; 1341 case 8: 1342 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) *((jlong *) &val); 1343 break; 1344 default: 1345 ShouldNotReachHere(); 1346 } 1347 } 1348 #endif // INCLUDE_JVMCI 1349 1350 1351 // restore elements of an eliminated type array 1352 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1353 int index = 0; 1354 intptr_t val; 1355 1356 for (int i = 0; i < sv->field_size(); i++) { 1357 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1358 switch(type) { 1359 case T_LONG: case T_DOUBLE: { 1360 assert(value->type() == T_INT, "Agreement."); 1361 StackValue* low = 1362 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1363 #ifdef _LP64 1364 jlong res = (jlong)low->get_int(); 1365 #else 1366 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1367 #endif 1368 obj->long_at_put(index, res); 1369 break; 1370 } 1371 1372 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1373 case T_INT: case T_FLOAT: { // 4 bytes. 1374 assert(value->type() == T_INT, "Agreement."); 1375 bool big_value = false; 1376 if (i + 1 < sv->field_size() && type == T_INT) { 1377 if (sv->field_at(i)->is_location()) { 1378 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1379 if (type == Location::dbl || type == Location::lng) { 1380 big_value = true; 1381 } 1382 } else if (sv->field_at(i)->is_constant_int()) { 1383 ScopeValue* next_scope_field = sv->field_at(i + 1); 1384 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1385 big_value = true; 1386 } 1387 } 1388 } 1389 1390 if (big_value) { 1391 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1392 #ifdef _LP64 1393 jlong res = (jlong)low->get_int(); 1394 #else 1395 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1396 #endif 1397 obj->int_at_put(index, (jint)*((jint*)&res)); 1398 obj->int_at_put(++index, (jint)*(((jint*)&res) + 1)); 1399 } else { 1400 val = value->get_int(); 1401 obj->int_at_put(index, (jint)*((jint*)&val)); 1402 } 1403 break; 1404 } 1405 1406 case T_SHORT: 1407 assert(value->type() == T_INT, "Agreement."); 1408 val = value->get_int(); 1409 obj->short_at_put(index, (jshort)*((jint*)&val)); 1410 break; 1411 1412 case T_CHAR: 1413 assert(value->type() == T_INT, "Agreement."); 1414 val = value->get_int(); 1415 obj->char_at_put(index, (jchar)*((jint*)&val)); 1416 break; 1417 1418 case T_BYTE: { 1419 assert(value->type() == T_INT, "Agreement."); 1420 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1421 val = value->get_int(); 1422 #if INCLUDE_JVMCI 1423 int byte_count = count_number_of_bytes_for_entry(sv, i); 1424 byte_array_put(obj, val, index, byte_count); 1425 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1426 i += byte_count - 1; // Balance the loop counter. 1427 index += byte_count; 1428 // index has been updated so continue at top of loop 1429 continue; 1430 #else 1431 obj->byte_at_put(index, (jbyte)*((jint*)&val)); 1432 break; 1433 #endif // INCLUDE_JVMCI 1434 } 1435 1436 case T_BOOLEAN: { 1437 assert(value->type() == T_INT, "Agreement."); 1438 val = value->get_int(); 1439 obj->bool_at_put(index, (jboolean)*((jint*)&val)); 1440 break; 1441 } 1442 1443 default: 1444 ShouldNotReachHere(); 1445 } 1446 index++; 1447 } 1448 } 1449 1450 // restore fields of an eliminated object array 1451 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1452 for (int i = 0; i < sv->field_size(); i++) { 1453 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1454 assert(value->type() == T_OBJECT, "object element expected"); 1455 obj->obj_at_put(i, value->get_obj()()); 1456 } 1457 } 1458 1459 class ReassignedField { 1460 public: 1461 int _offset; 1462 BasicType _type; 1463 public: 1464 ReassignedField() { 1465 _offset = 0; 1466 _type = T_ILLEGAL; 1467 } 1468 }; 1469 1470 int compare(ReassignedField* left, ReassignedField* right) { 1471 return left->_offset - right->_offset; 1472 } 1473 1474 // Restore fields of an eliminated instance object using the same field order 1475 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true) 1476 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) { 1477 GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>(); 1478 InstanceKlass* ik = klass; 1479 while (ik != nullptr) { 1480 for (AllFieldStream fs(ik); !fs.done(); fs.next()) { 1481 if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) { 1482 ReassignedField field; 1483 field._offset = fs.offset(); 1484 field._type = Signature::basic_type(fs.signature()); 1485 fields->append(field); 1486 } 1487 } 1488 ik = ik->superklass(); 1489 } 1490 fields->sort(compare); 1491 for (int i = 0; i < fields->length(); i++) { 1492 intptr_t val; 1493 ScopeValue* scope_field = sv->field_at(svIndex); 1494 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1495 int offset = fields->at(i)._offset; 1496 BasicType type = fields->at(i)._type; 1497 switch (type) { 1498 case T_OBJECT: case T_ARRAY: 1499 assert(value->type() == T_OBJECT, "Agreement."); 1500 obj->obj_field_put(offset, value->get_obj()()); 1501 break; 1502 1503 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1504 case T_INT: case T_FLOAT: { // 4 bytes. 1505 assert(value->type() == T_INT, "Agreement."); 1506 bool big_value = false; 1507 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1508 if (scope_field->is_location()) { 1509 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1510 if (type == Location::dbl || type == Location::lng) { 1511 big_value = true; 1512 } 1513 } 1514 if (scope_field->is_constant_int()) { 1515 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1516 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1517 big_value = true; 1518 } 1519 } 1520 } 1521 1522 if (big_value) { 1523 i++; 1524 assert(i < fields->length(), "second T_INT field needed"); 1525 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1526 } else { 1527 val = value->get_int(); 1528 obj->int_field_put(offset, (jint)*((jint*)&val)); 1529 break; 1530 } 1531 } 1532 /* no break */ 1533 1534 case T_LONG: case T_DOUBLE: { 1535 assert(value->type() == T_INT, "Agreement."); 1536 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1537 #ifdef _LP64 1538 jlong res = (jlong)low->get_int(); 1539 #else 1540 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1541 #endif 1542 obj->long_field_put(offset, res); 1543 break; 1544 } 1545 1546 case T_SHORT: 1547 assert(value->type() == T_INT, "Agreement."); 1548 val = value->get_int(); 1549 obj->short_field_put(offset, (jshort)*((jint*)&val)); 1550 break; 1551 1552 case T_CHAR: 1553 assert(value->type() == T_INT, "Agreement."); 1554 val = value->get_int(); 1555 obj->char_field_put(offset, (jchar)*((jint*)&val)); 1556 break; 1557 1558 case T_BYTE: 1559 assert(value->type() == T_INT, "Agreement."); 1560 val = value->get_int(); 1561 obj->byte_field_put(offset, (jbyte)*((jint*)&val)); 1562 break; 1563 1564 case T_BOOLEAN: 1565 assert(value->type() == T_INT, "Agreement."); 1566 val = value->get_int(); 1567 obj->bool_field_put(offset, (jboolean)*((jint*)&val)); 1568 break; 1569 1570 default: 1571 ShouldNotReachHere(); 1572 } 1573 svIndex++; 1574 } 1575 return svIndex; 1576 } 1577 1578 // restore fields of all eliminated objects and arrays 1579 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) { 1580 for (int i = 0; i < objects->length(); i++) { 1581 ObjectValue* sv = (ObjectValue*) objects->at(i); 1582 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1583 Handle obj = sv->value(); 1584 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1585 #ifndef PRODUCT 1586 if (PrintDeoptimizationDetails) { 1587 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1588 } 1589 #endif // !PRODUCT 1590 1591 if (obj.is_null()) { 1592 continue; 1593 } 1594 1595 #if INCLUDE_JVMCI 1596 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1597 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1598 continue; 1599 } 1600 #endif // INCLUDE_JVMCI 1601 #ifdef COMPILER2 1602 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1603 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1604 ScopeValue* payload = sv->field_at(0); 1605 if (payload->is_location() && 1606 payload->as_LocationValue()->location().type() == Location::vector) { 1607 #ifndef PRODUCT 1608 if (PrintDeoptimizationDetails) { 1609 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1610 if (Verbose) { 1611 Handle obj = sv->value(); 1612 k->oop_print_on(obj(), tty); 1613 } 1614 } 1615 #endif // !PRODUCT 1616 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1617 } 1618 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1619 // which could be restored after vector object allocation. 1620 } 1621 #endif /* !COMPILER2 */ 1622 if (k->is_instance_klass()) { 1623 InstanceKlass* ik = InstanceKlass::cast(k); 1624 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal); 1625 } else if (k->is_typeArray_klass()) { 1626 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1627 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1628 } else if (k->is_objArray_klass()) { 1629 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1630 } 1631 } 1632 // These objects may escape when we return to Interpreter after deoptimization. 1633 // We need barrier so that stores that initialize these objects can't be reordered 1634 // with subsequent stores that make these objects accessible by other threads. 1635 OrderAccess::storestore(); 1636 } 1637 1638 1639 // relock objects for which synchronization was eliminated 1640 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1641 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1642 bool relocked_objects = false; 1643 for (int i = 0; i < monitors->length(); i++) { 1644 MonitorInfo* mon_info = monitors->at(i); 1645 if (mon_info->eliminated()) { 1646 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1647 relocked_objects = true; 1648 if (!mon_info->owner_is_scalar_replaced()) { 1649 Handle obj(thread, mon_info->owner()); 1650 markWord mark = obj->mark(); 1651 if (exec_mode == Unpack_none) { 1652 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1653 // With exec_mode == Unpack_none obj may be thread local and locked in 1654 // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header. 1655 markWord dmw = mark.displaced_mark_helper(); 1656 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr)); 1657 obj->set_mark(dmw); 1658 } 1659 if (mark.has_monitor()) { 1660 // defer relocking if the deoptee thread is currently waiting for obj 1661 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1662 if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) { 1663 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1664 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1665 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1666 continue; 1667 } 1668 } 1669 } 1670 if (LockingMode == LM_LIGHTWEIGHT) { 1671 // We have lost information about the correct state of the lock stack. 1672 // Inflate the locks instead. Enter then inflate to avoid races with 1673 // deflation. 1674 ObjectSynchronizer::enter_for(obj, nullptr, deoptee_thread); 1675 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1676 ObjectMonitor* mon = ObjectSynchronizer::inflate_for(deoptee_thread, obj(), ObjectSynchronizer::inflate_cause_vm_internal); 1677 assert(mon->owner() == deoptee_thread, "must be"); 1678 } else { 1679 BasicLock* lock = mon_info->lock(); 1680 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1681 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1682 } 1683 } 1684 } 1685 } 1686 return relocked_objects; 1687 } 1688 #endif // COMPILER2_OR_JVMCI 1689 1690 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1691 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1692 1693 // Register map for next frame (used for stack crawl). We capture 1694 // the state of the deopt'ing frame's caller. Thus if we need to 1695 // stuff a C2I adapter we can properly fill in the callee-save 1696 // register locations. 1697 frame caller = fr.sender(reg_map); 1698 int frame_size = caller.sp() - fr.sp(); 1699 1700 frame sender = caller; 1701 1702 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1703 // the vframeArray containing the unpacking information is allocated in the C heap. 1704 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1705 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1706 1707 // Compare the vframeArray to the collected vframes 1708 assert(array->structural_compare(thread, chunk), "just checking"); 1709 1710 if (TraceDeoptimization) { 1711 ResourceMark rm; 1712 stringStream st; 1713 st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array)); 1714 st.print(" "); 1715 fr.print_on(&st); 1716 st.print_cr(" Virtual frames (innermost/newest first):"); 1717 for (int index = 0; index < chunk->length(); index++) { 1718 compiledVFrame* vf = chunk->at(index); 1719 int bci = vf->raw_bci(); 1720 const char* code_name; 1721 if (bci == SynchronizationEntryBCI) { 1722 code_name = "sync entry"; 1723 } else { 1724 Bytecodes::Code code = vf->method()->code_at(bci); 1725 code_name = Bytecodes::name(code); 1726 } 1727 1728 st.print(" VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf)); 1729 st.print(" - %s", vf->method()->name_and_sig_as_C_string()); 1730 st.print(" - %s", code_name); 1731 st.print_cr(" @ bci=%d ", bci); 1732 } 1733 tty->print_raw(st.freeze()); 1734 tty->cr(); 1735 } 1736 1737 return array; 1738 } 1739 1740 #if COMPILER2_OR_JVMCI 1741 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1742 // Reallocation of some scalar replaced objects failed. Record 1743 // that we need to pop all the interpreter frames for the 1744 // deoptimized compiled frame. 1745 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1746 thread->set_frames_to_pop_failed_realloc(array->frames()); 1747 // Unlock all monitors here otherwise the interpreter will see a 1748 // mix of locked and unlocked monitors (because of failed 1749 // reallocations of synchronized objects) and be confused. 1750 for (int i = 0; i < array->frames(); i++) { 1751 MonitorChunk* monitors = array->element(i)->monitors(); 1752 if (monitors != nullptr) { 1753 // Unlock in reverse order starting from most nested monitor. 1754 for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) { 1755 BasicObjectLock* src = monitors->at(j); 1756 if (src->obj() != nullptr) { 1757 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1758 } 1759 } 1760 array->element(i)->free_monitors(); 1761 #ifdef ASSERT 1762 array->element(i)->set_removed_monitors(); 1763 #endif 1764 } 1765 } 1766 } 1767 #endif 1768 1769 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1770 assert(fr.can_be_deoptimized(), "checking frame type"); 1771 1772 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1773 1774 if (LogCompilation && xtty != nullptr) { 1775 CompiledMethod* cm = fr.cb()->as_compiled_method_or_null(); 1776 assert(cm != nullptr, "only compiled methods can deopt"); 1777 1778 ttyLocker ttyl; 1779 xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1780 cm->log_identity(xtty); 1781 xtty->end_head(); 1782 for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1783 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1784 xtty->method(sd->method()); 1785 xtty->end_elem(); 1786 if (sd->is_top()) break; 1787 } 1788 xtty->tail("deoptimized"); 1789 } 1790 1791 Continuation::notify_deopt(thread, fr.sp()); 1792 1793 // Patch the compiled method so that when execution returns to it we will 1794 // deopt the execution state and return to the interpreter. 1795 fr.deoptimize(thread); 1796 } 1797 1798 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1799 // Deoptimize only if the frame comes from compile code. 1800 // Do not deoptimize the frame which is already patched 1801 // during the execution of the loops below. 1802 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1803 return; 1804 } 1805 ResourceMark rm; 1806 deoptimize_single_frame(thread, fr, reason); 1807 } 1808 1809 #if INCLUDE_JVMCI 1810 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) { 1811 // there is no exception handler for this pc => deoptimize 1812 cm->make_not_entrant(); 1813 1814 // Use Deoptimization::deoptimize for all of its side-effects: 1815 // gathering traps statistics, logging... 1816 // it also patches the return pc but we do not care about that 1817 // since we return a continuation to the deopt_blob below. 1818 JavaThread* thread = JavaThread::current(); 1819 RegisterMap reg_map(thread, 1820 RegisterMap::UpdateMap::skip, 1821 RegisterMap::ProcessFrames::include, 1822 RegisterMap::WalkContinuation::skip); 1823 frame runtime_frame = thread->last_frame(); 1824 frame caller_frame = runtime_frame.sender(®_map); 1825 assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method"); 1826 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1827 compiledVFrame* cvf = compiledVFrame::cast(vf); 1828 ScopeDesc* imm_scope = cvf->scope(); 1829 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1830 if (imm_mdo != nullptr) { 1831 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr); 1832 if (pdata != nullptr && pdata->is_BitData()) { 1833 BitData* bit_data = (BitData*) pdata; 1834 bit_data->set_exception_seen(); 1835 } 1836 } 1837 1838 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1839 1840 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, cm->method()), true); 1841 if (trap_mdo != nullptr) { 1842 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1843 } 1844 1845 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1846 } 1847 #endif 1848 1849 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1850 assert(thread == Thread::current() || 1851 thread->is_handshake_safe_for(Thread::current()) || 1852 SafepointSynchronize::is_at_safepoint(), 1853 "can only deoptimize other thread at a safepoint/handshake"); 1854 // Compute frame and register map based on thread and sp. 1855 RegisterMap reg_map(thread, 1856 RegisterMap::UpdateMap::skip, 1857 RegisterMap::ProcessFrames::include, 1858 RegisterMap::WalkContinuation::skip); 1859 frame fr = thread->last_frame(); 1860 while (fr.id() != id) { 1861 fr = fr.sender(®_map); 1862 } 1863 deoptimize(thread, fr, reason); 1864 } 1865 1866 1867 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1868 Thread* current = Thread::current(); 1869 if (thread == current || thread->is_handshake_safe_for(current)) { 1870 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1871 } else { 1872 VM_DeoptimizeFrame deopt(thread, id, reason); 1873 VMThread::execute(&deopt); 1874 } 1875 } 1876 1877 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1878 deoptimize_frame(thread, id, Reason_constraint); 1879 } 1880 1881 // JVMTI PopFrame support 1882 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 1883 { 1884 assert(thread == JavaThread::current(), "pre-condition"); 1885 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 1886 } 1887 JRT_END 1888 1889 MethodData* 1890 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 1891 bool create_if_missing) { 1892 JavaThread* THREAD = thread; // For exception macros. 1893 MethodData* mdo = m()->method_data(); 1894 if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) { 1895 // Build an MDO. Ignore errors like OutOfMemory; 1896 // that simply means we won't have an MDO to update. 1897 Method::build_profiling_method_data(m, THREAD); 1898 if (HAS_PENDING_EXCEPTION) { 1899 // Only metaspace OOM is expected. No Java code executed. 1900 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1901 CLEAR_PENDING_EXCEPTION; 1902 } 1903 mdo = m()->method_data(); 1904 } 1905 return mdo; 1906 } 1907 1908 #if COMPILER2_OR_JVMCI 1909 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 1910 // In case of an unresolved klass entry, load the class. 1911 // This path is exercised from case _ldc in Parse::do_one_bytecode, 1912 // and probably nowhere else. 1913 // Even that case would benefit from simply re-interpreting the 1914 // bytecode, without paying special attention to the class index. 1915 // So this whole "class index" feature should probably be removed. 1916 1917 if (constant_pool->tag_at(index).is_unresolved_klass()) { 1918 Klass* tk = constant_pool->klass_at(index, THREAD); 1919 if (HAS_PENDING_EXCEPTION) { 1920 // Exception happened during classloading. We ignore the exception here, since it 1921 // is going to be rethrown since the current activation is going to be deoptimized and 1922 // the interpreter will re-execute the bytecode. 1923 // Do not clear probable Async Exceptions. 1924 CLEAR_PENDING_NONASYNC_EXCEPTION; 1925 // Class loading called java code which may have caused a stack 1926 // overflow. If the exception was thrown right before the return 1927 // to the runtime the stack is no longer guarded. Reguard the 1928 // stack otherwise if we return to the uncommon trap blob and the 1929 // stack bang causes a stack overflow we crash. 1930 JavaThread* jt = THREAD; 1931 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 1932 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 1933 } 1934 return; 1935 } 1936 1937 assert(!constant_pool->tag_at(index).is_symbol(), 1938 "no symbolic names here, please"); 1939 } 1940 1941 #if INCLUDE_JFR 1942 1943 class DeoptReasonSerializer : public JfrSerializer { 1944 public: 1945 void serialize(JfrCheckpointWriter& writer) { 1946 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 1947 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 1948 writer.write_key((u8)i); 1949 writer.write(Deoptimization::trap_reason_name(i)); 1950 } 1951 } 1952 }; 1953 1954 class DeoptActionSerializer : public JfrSerializer { 1955 public: 1956 void serialize(JfrCheckpointWriter& writer) { 1957 static const u4 nof_actions = Deoptimization::Action_LIMIT; 1958 writer.write_count(nof_actions); 1959 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 1960 writer.write_key(i); 1961 writer.write(Deoptimization::trap_action_name((int)i)); 1962 } 1963 } 1964 }; 1965 1966 static void register_serializers() { 1967 static int critical_section = 0; 1968 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 1969 return; 1970 } 1971 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 1972 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 1973 } 1974 1975 static void post_deoptimization_event(CompiledMethod* nm, 1976 const Method* method, 1977 int trap_bci, 1978 int instruction, 1979 Deoptimization::DeoptReason reason, 1980 Deoptimization::DeoptAction action) { 1981 assert(nm != nullptr, "invariant"); 1982 assert(method != nullptr, "invariant"); 1983 if (EventDeoptimization::is_enabled()) { 1984 static bool serializers_registered = false; 1985 if (!serializers_registered) { 1986 register_serializers(); 1987 serializers_registered = true; 1988 } 1989 EventDeoptimization event; 1990 event.set_compileId(nm->compile_id()); 1991 event.set_compiler(nm->compiler_type()); 1992 event.set_method(method); 1993 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 1994 event.set_bci(trap_bci); 1995 event.set_instruction(instruction); 1996 event.set_reason(reason); 1997 event.set_action(action); 1998 event.commit(); 1999 } 2000 } 2001 2002 #endif // INCLUDE_JFR 2003 2004 static void log_deopt(CompiledMethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci, 2005 const char* reason_name, const char* reason_action) { 2006 LogTarget(Debug, deoptimization) lt; 2007 if (lt.is_enabled()) { 2008 LogStream ls(lt); 2009 bool is_osr = nm->is_osr_method(); 2010 ls.print("cid=%4d %s level=%d", 2011 nm->compile_id(), (is_osr ? "osr" : " "), nm->comp_level()); 2012 ls.print(" %s", tm->name_and_sig_as_C_string()); 2013 ls.print(" trap_bci=%d ", trap_bci); 2014 if (is_osr) { 2015 ls.print("osr_bci=%d ", nm->osr_entry_bci()); 2016 } 2017 ls.print("%s ", reason_name); 2018 ls.print("%s ", reason_action); 2019 ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT, 2020 pc, fr.pc() - nm->code_begin()); 2021 } 2022 } 2023 2024 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 2025 HandleMark hm(current); 2026 2027 // uncommon_trap() is called at the beginning of the uncommon trap 2028 // handler. Note this fact before we start generating temporary frames 2029 // that can confuse an asynchronous stack walker. This counter is 2030 // decremented at the end of unpack_frames(). 2031 2032 current->inc_in_deopt_handler(); 2033 2034 #if INCLUDE_JVMCI 2035 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 2036 RegisterMap reg_map(current, 2037 RegisterMap::UpdateMap::include, 2038 RegisterMap::ProcessFrames::include, 2039 RegisterMap::WalkContinuation::skip); 2040 #else 2041 RegisterMap reg_map(current, 2042 RegisterMap::UpdateMap::skip, 2043 RegisterMap::ProcessFrames::include, 2044 RegisterMap::WalkContinuation::skip); 2045 #endif 2046 frame stub_frame = current->last_frame(); 2047 frame fr = stub_frame.sender(®_map); 2048 2049 // Log a message 2050 Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 2051 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 2052 2053 { 2054 ResourceMark rm; 2055 2056 DeoptReason reason = trap_request_reason(trap_request); 2057 DeoptAction action = trap_request_action(trap_request); 2058 #if INCLUDE_JVMCI 2059 int debug_id = trap_request_debug_id(trap_request); 2060 #endif 2061 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 2062 2063 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 2064 compiledVFrame* cvf = compiledVFrame::cast(vf); 2065 2066 CompiledMethod* nm = cvf->code(); 2067 2068 ScopeDesc* trap_scope = cvf->scope(); 2069 2070 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 2071 2072 if (is_receiver_constraint_failure) { 2073 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), 2074 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 2075 JVMCI_ONLY(COMMA debug_id)); 2076 } 2077 2078 methodHandle trap_method(current, trap_scope->method()); 2079 int trap_bci = trap_scope->bci(); 2080 #if INCLUDE_JVMCI 2081 jlong speculation = current->pending_failed_speculation(); 2082 if (nm->is_compiled_by_jvmci()) { 2083 nm->as_nmethod()->update_speculation(current); 2084 } else { 2085 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2086 } 2087 2088 if (trap_bci == SynchronizationEntryBCI) { 2089 trap_bci = 0; 2090 current->set_pending_monitorenter(true); 2091 } 2092 2093 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2094 current->set_pending_transfer_to_interpreter(true); 2095 } 2096 #endif 2097 2098 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2099 // Record this event in the histogram. 2100 gather_statistics(reason, action, trap_bc); 2101 2102 // Ensure that we can record deopt. history: 2103 // Need MDO to record RTM code generation state. 2104 bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking ); 2105 2106 methodHandle profiled_method; 2107 #if INCLUDE_JVMCI 2108 if (nm->is_compiled_by_jvmci()) { 2109 profiled_method = methodHandle(current, nm->method()); 2110 } else { 2111 profiled_method = trap_method; 2112 } 2113 #else 2114 profiled_method = trap_method; 2115 #endif 2116 2117 MethodData* trap_mdo = 2118 get_method_data(current, profiled_method, create_if_missing); 2119 2120 { // Log Deoptimization event for JFR, UL and event system 2121 Method* tm = trap_method(); 2122 const char* reason_name = trap_reason_name(reason); 2123 const char* reason_action = trap_action_name(action); 2124 intptr_t pc = p2i(fr.pc()); 2125 2126 JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);) 2127 log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action); 2128 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2129 reason_name, reason_action, pc, 2130 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2131 } 2132 2133 // Print a bunch of diagnostics, if requested. 2134 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2135 ResourceMark rm; 2136 ttyLocker ttyl; 2137 char buf[100]; 2138 if (xtty != nullptr) { 2139 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s", 2140 os::current_thread_id(), 2141 format_trap_request(buf, sizeof(buf), trap_request)); 2142 #if INCLUDE_JVMCI 2143 if (speculation != 0) { 2144 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2145 } 2146 #endif 2147 nm->log_identity(xtty); 2148 } 2149 Symbol* class_name = nullptr; 2150 bool unresolved = false; 2151 if (unloaded_class_index >= 0) { 2152 constantPoolHandle constants (current, trap_method->constants()); 2153 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2154 class_name = constants->klass_name_at(unloaded_class_index); 2155 unresolved = true; 2156 if (xtty != nullptr) 2157 xtty->print(" unresolved='1'"); 2158 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2159 class_name = constants->symbol_at(unloaded_class_index); 2160 } 2161 if (xtty != nullptr) 2162 xtty->name(class_name); 2163 } 2164 if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) { 2165 // Dump the relevant MDO state. 2166 // This is the deopt count for the current reason, any previous 2167 // reasons or recompiles seen at this point. 2168 int dcnt = trap_mdo->trap_count(reason); 2169 if (dcnt != 0) 2170 xtty->print(" count='%d'", dcnt); 2171 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2172 int dos = (pdata == nullptr)? 0: pdata->trap_state(); 2173 if (dos != 0) { 2174 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2175 if (trap_state_is_recompiled(dos)) { 2176 int recnt2 = trap_mdo->overflow_recompile_count(); 2177 if (recnt2 != 0) 2178 xtty->print(" recompiles2='%d'", recnt2); 2179 } 2180 } 2181 } 2182 if (xtty != nullptr) { 2183 xtty->stamp(); 2184 xtty->end_head(); 2185 } 2186 if (TraceDeoptimization) { // make noise on the tty 2187 stringStream st; 2188 st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string()); 2189 st.print(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"), 2190 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id)); 2191 st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2192 #if INCLUDE_JVMCI 2193 if (nm->is_nmethod()) { 2194 const char* installed_code_name = nm->as_nmethod()->jvmci_name(); 2195 if (installed_code_name != nullptr) { 2196 st.print(" (JVMCI: installed code name=%s) ", installed_code_name); 2197 } 2198 } 2199 #endif 2200 st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2201 p2i(fr.pc()), 2202 os::current_thread_id(), 2203 trap_reason_name(reason), 2204 trap_action_name(action), 2205 unloaded_class_index 2206 #if INCLUDE_JVMCI 2207 , debug_id 2208 #endif 2209 ); 2210 if (class_name != nullptr) { 2211 st.print(unresolved ? " unresolved class: " : " symbol: "); 2212 class_name->print_symbol_on(&st); 2213 } 2214 st.cr(); 2215 tty->print_raw(st.freeze()); 2216 } 2217 if (xtty != nullptr) { 2218 // Log the precise location of the trap. 2219 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2220 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2221 xtty->method(sd->method()); 2222 xtty->end_elem(); 2223 if (sd->is_top()) break; 2224 } 2225 xtty->tail("uncommon_trap"); 2226 } 2227 } 2228 // (End diagnostic printout.) 2229 2230 if (is_receiver_constraint_failure) { 2231 fatal("missing receiver type check"); 2232 } 2233 2234 // Load class if necessary 2235 if (unloaded_class_index >= 0) { 2236 constantPoolHandle constants(current, trap_method->constants()); 2237 load_class_by_index(constants, unloaded_class_index, THREAD); 2238 } 2239 2240 // Flush the nmethod if necessary and desirable. 2241 // 2242 // We need to avoid situations where we are re-flushing the nmethod 2243 // because of a hot deoptimization site. Repeated flushes at the same 2244 // point need to be detected by the compiler and avoided. If the compiler 2245 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2246 // module must take measures to avoid an infinite cycle of recompilation 2247 // and deoptimization. There are several such measures: 2248 // 2249 // 1. If a recompilation is ordered a second time at some site X 2250 // and for the same reason R, the action is adjusted to 'reinterpret', 2251 // to give the interpreter time to exercise the method more thoroughly. 2252 // If this happens, the method's overflow_recompile_count is incremented. 2253 // 2254 // 2. If the compiler fails to reduce the deoptimization rate, then 2255 // the method's overflow_recompile_count will begin to exceed the set 2256 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2257 // is adjusted to 'make_not_compilable', and the method is abandoned 2258 // to the interpreter. This is a performance hit for hot methods, 2259 // but is better than a disastrous infinite cycle of recompilations. 2260 // (Actually, only the method containing the site X is abandoned.) 2261 // 2262 // 3. In parallel with the previous measures, if the total number of 2263 // recompilations of a method exceeds the much larger set limit 2264 // PerMethodRecompilationCutoff, the method is abandoned. 2265 // This should only happen if the method is very large and has 2266 // many "lukewarm" deoptimizations. The code which enforces this 2267 // limit is elsewhere (class nmethod, class Method). 2268 // 2269 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2270 // to recompile at each bytecode independently of the per-BCI cutoff. 2271 // 2272 // The decision to update code is up to the compiler, and is encoded 2273 // in the Action_xxx code. If the compiler requests Action_none 2274 // no trap state is changed, no compiled code is changed, and the 2275 // computation suffers along in the interpreter. 2276 // 2277 // The other action codes specify various tactics for decompilation 2278 // and recompilation. Action_maybe_recompile is the loosest, and 2279 // allows the compiled code to stay around until enough traps are seen, 2280 // and until the compiler gets around to recompiling the trapping method. 2281 // 2282 // The other actions cause immediate removal of the present code. 2283 2284 // Traps caused by injected profile shouldn't pollute trap counts. 2285 bool injected_profile_trap = trap_method->has_injected_profile() && 2286 (reason == Reason_intrinsic || reason == Reason_unreached); 2287 2288 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2289 bool make_not_entrant = false; 2290 bool make_not_compilable = false; 2291 bool reprofile = false; 2292 switch (action) { 2293 case Action_none: 2294 // Keep the old code. 2295 update_trap_state = false; 2296 break; 2297 case Action_maybe_recompile: 2298 // Do not need to invalidate the present code, but we can 2299 // initiate another 2300 // Start compiler without (necessarily) invalidating the nmethod. 2301 // The system will tolerate the old code, but new code should be 2302 // generated when possible. 2303 break; 2304 case Action_reinterpret: 2305 // Go back into the interpreter for a while, and then consider 2306 // recompiling form scratch. 2307 make_not_entrant = true; 2308 // Reset invocation counter for outer most method. 2309 // This will allow the interpreter to exercise the bytecodes 2310 // for a while before recompiling. 2311 // By contrast, Action_make_not_entrant is immediate. 2312 // 2313 // Note that the compiler will track null_check, null_assert, 2314 // range_check, and class_check events and log them as if they 2315 // had been traps taken from compiled code. This will update 2316 // the MDO trap history so that the next compilation will 2317 // properly detect hot trap sites. 2318 reprofile = true; 2319 break; 2320 case Action_make_not_entrant: 2321 // Request immediate recompilation, and get rid of the old code. 2322 // Make them not entrant, so next time they are called they get 2323 // recompiled. Unloaded classes are loaded now so recompile before next 2324 // time they are called. Same for uninitialized. The interpreter will 2325 // link the missing class, if any. 2326 make_not_entrant = true; 2327 break; 2328 case Action_make_not_compilable: 2329 // Give up on compiling this method at all. 2330 make_not_entrant = true; 2331 make_not_compilable = true; 2332 break; 2333 default: 2334 ShouldNotReachHere(); 2335 } 2336 2337 // Setting +ProfileTraps fixes the following, on all platforms: 2338 // 4852688: ProfileInterpreter is off by default for ia64. The result is 2339 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2340 // recompile relies on a MethodData* to record heroic opt failures. 2341 2342 // Whether the interpreter is producing MDO data or not, we also need 2343 // to use the MDO to detect hot deoptimization points and control 2344 // aggressive optimization. 2345 bool inc_recompile_count = false; 2346 ProfileData* pdata = nullptr; 2347 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) { 2348 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2349 uint this_trap_count = 0; 2350 bool maybe_prior_trap = false; 2351 bool maybe_prior_recompile = false; 2352 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2353 #if INCLUDE_JVMCI 2354 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2355 #endif 2356 nm->method(), 2357 //outputs: 2358 this_trap_count, 2359 maybe_prior_trap, 2360 maybe_prior_recompile); 2361 // Because the interpreter also counts null, div0, range, and class 2362 // checks, these traps from compiled code are double-counted. 2363 // This is harmless; it just means that the PerXTrapLimit values 2364 // are in effect a little smaller than they look. 2365 2366 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2367 if (per_bc_reason != Reason_none) { 2368 // Now take action based on the partially known per-BCI history. 2369 if (maybe_prior_trap 2370 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2371 // If there are too many traps at this BCI, force a recompile. 2372 // This will allow the compiler to see the limit overflow, and 2373 // take corrective action, if possible. The compiler generally 2374 // does not use the exact PerBytecodeTrapLimit value, but instead 2375 // changes its tactics if it sees any traps at all. This provides 2376 // a little hysteresis, delaying a recompile until a trap happens 2377 // several times. 2378 // 2379 // Actually, since there is only one bit of counter per BCI, 2380 // the possible per-BCI counts are {0,1,(per-method count)}. 2381 // This produces accurate results if in fact there is only 2382 // one hot trap site, but begins to get fuzzy if there are 2383 // many sites. For example, if there are ten sites each 2384 // trapping two or more times, they each get the blame for 2385 // all of their traps. 2386 make_not_entrant = true; 2387 } 2388 2389 // Detect repeated recompilation at the same BCI, and enforce a limit. 2390 if (make_not_entrant && maybe_prior_recompile) { 2391 // More than one recompile at this point. 2392 inc_recompile_count = maybe_prior_trap; 2393 } 2394 } else { 2395 // For reasons which are not recorded per-bytecode, we simply 2396 // force recompiles unconditionally. 2397 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2398 make_not_entrant = true; 2399 } 2400 2401 // Go back to the compiler if there are too many traps in this method. 2402 if (this_trap_count >= per_method_trap_limit(reason)) { 2403 // If there are too many traps in this method, force a recompile. 2404 // This will allow the compiler to see the limit overflow, and 2405 // take corrective action, if possible. 2406 // (This condition is an unlikely backstop only, because the 2407 // PerBytecodeTrapLimit is more likely to take effect first, 2408 // if it is applicable.) 2409 make_not_entrant = true; 2410 } 2411 2412 // Here's more hysteresis: If there has been a recompile at 2413 // this trap point already, run the method in the interpreter 2414 // for a while to exercise it more thoroughly. 2415 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2416 reprofile = true; 2417 } 2418 } 2419 2420 // Take requested actions on the method: 2421 2422 // Recompile 2423 if (make_not_entrant) { 2424 if (!nm->make_not_entrant()) { 2425 return; // the call did not change nmethod's state 2426 } 2427 2428 if (pdata != nullptr) { 2429 // Record the recompilation event, if any. 2430 int tstate0 = pdata->trap_state(); 2431 int tstate1 = trap_state_set_recompiled(tstate0, true); 2432 if (tstate1 != tstate0) 2433 pdata->set_trap_state(tstate1); 2434 } 2435 2436 #if INCLUDE_RTM_OPT 2437 // Restart collecting RTM locking abort statistic if the method 2438 // is recompiled for a reason other than RTM state change. 2439 // Assume that in new recompiled code the statistic could be different, 2440 // for example, due to different inlining. 2441 if ((reason != Reason_rtm_state_change) && (trap_mdo != nullptr) && 2442 UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) { 2443 trap_mdo->atomic_set_rtm_state(ProfileRTM); 2444 } 2445 #endif 2446 // For code aging we count traps separately here, using make_not_entrant() 2447 // as a guard against simultaneous deopts in multiple threads. 2448 if (reason == Reason_tenured && trap_mdo != nullptr) { 2449 trap_mdo->inc_tenure_traps(); 2450 } 2451 } 2452 2453 if (inc_recompile_count) { 2454 trap_mdo->inc_overflow_recompile_count(); 2455 if ((uint)trap_mdo->overflow_recompile_count() > 2456 (uint)PerBytecodeRecompilationCutoff) { 2457 // Give up on the method containing the bad BCI. 2458 if (trap_method() == nm->method()) { 2459 make_not_compilable = true; 2460 } else { 2461 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2462 // But give grace to the enclosing nm->method(). 2463 } 2464 } 2465 } 2466 2467 // Reprofile 2468 if (reprofile) { 2469 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2470 } 2471 2472 // Give up compiling 2473 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2474 assert(make_not_entrant, "consistent"); 2475 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2476 } 2477 2478 } // Free marked resources 2479 2480 } 2481 JRT_END 2482 2483 ProfileData* 2484 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2485 int trap_bci, 2486 Deoptimization::DeoptReason reason, 2487 bool update_total_trap_count, 2488 #if INCLUDE_JVMCI 2489 bool is_osr, 2490 #endif 2491 Method* compiled_method, 2492 //outputs: 2493 uint& ret_this_trap_count, 2494 bool& ret_maybe_prior_trap, 2495 bool& ret_maybe_prior_recompile) { 2496 bool maybe_prior_trap = false; 2497 bool maybe_prior_recompile = false; 2498 uint this_trap_count = 0; 2499 if (update_total_trap_count) { 2500 uint idx = reason; 2501 #if INCLUDE_JVMCI 2502 if (is_osr) { 2503 // Upper half of history array used for traps in OSR compilations 2504 idx += Reason_TRAP_HISTORY_LENGTH; 2505 } 2506 #endif 2507 uint prior_trap_count = trap_mdo->trap_count(idx); 2508 this_trap_count = trap_mdo->inc_trap_count(idx); 2509 2510 // If the runtime cannot find a place to store trap history, 2511 // it is estimated based on the general condition of the method. 2512 // If the method has ever been recompiled, or has ever incurred 2513 // a trap with the present reason , then this BCI is assumed 2514 // (pessimistically) to be the culprit. 2515 maybe_prior_trap = (prior_trap_count != 0); 2516 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2517 } 2518 ProfileData* pdata = nullptr; 2519 2520 2521 // For reasons which are recorded per bytecode, we check per-BCI data. 2522 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2523 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2524 if (per_bc_reason != Reason_none) { 2525 // Find the profile data for this BCI. If there isn't one, 2526 // try to allocate one from the MDO's set of spares. 2527 // This will let us detect a repeated trap at this point. 2528 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr); 2529 2530 if (pdata != nullptr) { 2531 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2532 if (LogCompilation && xtty != nullptr) { 2533 ttyLocker ttyl; 2534 // no more room for speculative traps in this MDO 2535 xtty->elem("speculative_traps_oom"); 2536 } 2537 } 2538 // Query the trap state of this profile datum. 2539 int tstate0 = pdata->trap_state(); 2540 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2541 maybe_prior_trap = false; 2542 if (!trap_state_is_recompiled(tstate0)) 2543 maybe_prior_recompile = false; 2544 2545 // Update the trap state of this profile datum. 2546 int tstate1 = tstate0; 2547 // Record the reason. 2548 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2549 // Store the updated state on the MDO, for next time. 2550 if (tstate1 != tstate0) 2551 pdata->set_trap_state(tstate1); 2552 } else { 2553 if (LogCompilation && xtty != nullptr) { 2554 ttyLocker ttyl; 2555 // Missing MDP? Leave a small complaint in the log. 2556 xtty->elem("missing_mdp bci='%d'", trap_bci); 2557 } 2558 } 2559 } 2560 2561 // Return results: 2562 ret_this_trap_count = this_trap_count; 2563 ret_maybe_prior_trap = maybe_prior_trap; 2564 ret_maybe_prior_recompile = maybe_prior_recompile; 2565 return pdata; 2566 } 2567 2568 void 2569 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2570 ResourceMark rm; 2571 // Ignored outputs: 2572 uint ignore_this_trap_count; 2573 bool ignore_maybe_prior_trap; 2574 bool ignore_maybe_prior_recompile; 2575 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2576 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2577 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2578 query_update_method_data(trap_mdo, trap_bci, 2579 (DeoptReason)reason, 2580 update_total_counts, 2581 #if INCLUDE_JVMCI 2582 false, 2583 #endif 2584 nullptr, 2585 ignore_this_trap_count, 2586 ignore_maybe_prior_trap, 2587 ignore_maybe_prior_recompile); 2588 } 2589 2590 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2591 // Enable WXWrite: current function is called from methods compiled by C2 directly 2592 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2593 2594 // Still in Java no safepoints 2595 { 2596 // This enters VM and may safepoint 2597 uncommon_trap_inner(current, trap_request); 2598 } 2599 HandleMark hm(current); 2600 return fetch_unroll_info_helper(current, exec_mode); 2601 } 2602 2603 // Local derived constants. 2604 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2605 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2606 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2607 2608 //---------------------------trap_state_reason--------------------------------- 2609 Deoptimization::DeoptReason 2610 Deoptimization::trap_state_reason(int trap_state) { 2611 // This assert provides the link between the width of DataLayout::trap_bits 2612 // and the encoding of "recorded" reasons. It ensures there are enough 2613 // bits to store all needed reasons in the per-BCI MDO profile. 2614 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2615 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2616 trap_state -= recompile_bit; 2617 if (trap_state == DS_REASON_MASK) { 2618 return Reason_many; 2619 } else { 2620 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2621 return (DeoptReason)trap_state; 2622 } 2623 } 2624 //-------------------------trap_state_has_reason------------------------------- 2625 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2626 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2627 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2628 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2629 trap_state -= recompile_bit; 2630 if (trap_state == DS_REASON_MASK) { 2631 return -1; // true, unspecifically (bottom of state lattice) 2632 } else if (trap_state == reason) { 2633 return 1; // true, definitely 2634 } else if (trap_state == 0) { 2635 return 0; // false, definitely (top of state lattice) 2636 } else { 2637 return 0; // false, definitely 2638 } 2639 } 2640 //-------------------------trap_state_add_reason------------------------------- 2641 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2642 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2643 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2644 trap_state -= recompile_bit; 2645 if (trap_state == DS_REASON_MASK) { 2646 return trap_state + recompile_bit; // already at state lattice bottom 2647 } else if (trap_state == reason) { 2648 return trap_state + recompile_bit; // the condition is already true 2649 } else if (trap_state == 0) { 2650 return reason + recompile_bit; // no condition has yet been true 2651 } else { 2652 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2653 } 2654 } 2655 //-----------------------trap_state_is_recompiled------------------------------ 2656 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2657 return (trap_state & DS_RECOMPILE_BIT) != 0; 2658 } 2659 //-----------------------trap_state_set_recompiled----------------------------- 2660 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2661 if (z) return trap_state | DS_RECOMPILE_BIT; 2662 else return trap_state & ~DS_RECOMPILE_BIT; 2663 } 2664 //---------------------------format_trap_state--------------------------------- 2665 // This is used for debugging and diagnostics, including LogFile output. 2666 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2667 int trap_state) { 2668 assert(buflen > 0, "sanity"); 2669 DeoptReason reason = trap_state_reason(trap_state); 2670 bool recomp_flag = trap_state_is_recompiled(trap_state); 2671 // Re-encode the state from its decoded components. 2672 int decoded_state = 0; 2673 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2674 decoded_state = trap_state_add_reason(decoded_state, reason); 2675 if (recomp_flag) 2676 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2677 // If the state re-encodes properly, format it symbolically. 2678 // Because this routine is used for debugging and diagnostics, 2679 // be robust even if the state is a strange value. 2680 size_t len; 2681 if (decoded_state != trap_state) { 2682 // Random buggy state that doesn't decode?? 2683 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2684 } else { 2685 len = jio_snprintf(buf, buflen, "%s%s", 2686 trap_reason_name(reason), 2687 recomp_flag ? " recompiled" : ""); 2688 } 2689 return buf; 2690 } 2691 2692 2693 //--------------------------------statics-------------------------------------- 2694 const char* Deoptimization::_trap_reason_name[] = { 2695 // Note: Keep this in sync. with enum DeoptReason. 2696 "none", 2697 "null_check", 2698 "null_assert" JVMCI_ONLY("_or_unreached0"), 2699 "range_check", 2700 "class_check", 2701 "array_check", 2702 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2703 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2704 "profile_predicate", 2705 "unloaded", 2706 "uninitialized", 2707 "initialized", 2708 "unreached", 2709 "unhandled", 2710 "constraint", 2711 "div0_check", 2712 "age", 2713 "predicate", 2714 "loop_limit_check", 2715 "speculate_class_check", 2716 "speculate_null_check", 2717 "speculate_null_assert", 2718 "rtm_state_change", 2719 "unstable_if", 2720 "unstable_fused_if", 2721 "receiver_constraint", 2722 #if INCLUDE_JVMCI 2723 "aliasing", 2724 "transfer_to_interpreter", 2725 "not_compiled_exception_handler", 2726 "unresolved", 2727 "jsr_mismatch", 2728 #endif 2729 "tenured" 2730 }; 2731 const char* Deoptimization::_trap_action_name[] = { 2732 // Note: Keep this in sync. with enum DeoptAction. 2733 "none", 2734 "maybe_recompile", 2735 "reinterpret", 2736 "make_not_entrant", 2737 "make_not_compilable" 2738 }; 2739 2740 const char* Deoptimization::trap_reason_name(int reason) { 2741 // Check that every reason has a name 2742 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2743 2744 if (reason == Reason_many) return "many"; 2745 if ((uint)reason < Reason_LIMIT) 2746 return _trap_reason_name[reason]; 2747 static char buf[20]; 2748 os::snprintf_checked(buf, sizeof(buf), "reason%d", reason); 2749 return buf; 2750 } 2751 const char* Deoptimization::trap_action_name(int action) { 2752 // Check that every action has a name 2753 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2754 2755 if ((uint)action < Action_LIMIT) 2756 return _trap_action_name[action]; 2757 static char buf[20]; 2758 os::snprintf_checked(buf, sizeof(buf), "action%d", action); 2759 return buf; 2760 } 2761 2762 // This is used for debugging and diagnostics, including LogFile output. 2763 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2764 int trap_request) { 2765 jint unloaded_class_index = trap_request_index(trap_request); 2766 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2767 const char* action = trap_action_name(trap_request_action(trap_request)); 2768 #if INCLUDE_JVMCI 2769 int debug_id = trap_request_debug_id(trap_request); 2770 #endif 2771 size_t len; 2772 if (unloaded_class_index < 0) { 2773 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2774 reason, action 2775 #if INCLUDE_JVMCI 2776 ,debug_id 2777 #endif 2778 ); 2779 } else { 2780 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2781 reason, action, unloaded_class_index 2782 #if INCLUDE_JVMCI 2783 ,debug_id 2784 #endif 2785 ); 2786 } 2787 return buf; 2788 } 2789 2790 juint Deoptimization::_deoptimization_hist 2791 [Deoptimization::Reason_LIMIT] 2792 [1 + Deoptimization::Action_LIMIT] 2793 [Deoptimization::BC_CASE_LIMIT] 2794 = {0}; 2795 2796 enum { 2797 LSB_BITS = 8, 2798 LSB_MASK = right_n_bits(LSB_BITS) 2799 }; 2800 2801 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2802 Bytecodes::Code bc) { 2803 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2804 assert(action >= 0 && action < Action_LIMIT, "oob"); 2805 _deoptimization_hist[Reason_none][0][0] += 1; // total 2806 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2807 juint* cases = _deoptimization_hist[reason][1+action]; 2808 juint* bc_counter_addr = nullptr; 2809 juint bc_counter = 0; 2810 // Look for an unused counter, or an exact match to this BC. 2811 if (bc != Bytecodes::_illegal) { 2812 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2813 juint* counter_addr = &cases[bc_case]; 2814 juint counter = *counter_addr; 2815 if ((counter == 0 && bc_counter_addr == nullptr) 2816 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2817 // this counter is either free or is already devoted to this BC 2818 bc_counter_addr = counter_addr; 2819 bc_counter = counter | bc; 2820 } 2821 } 2822 } 2823 if (bc_counter_addr == nullptr) { 2824 // Overflow, or no given bytecode. 2825 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2826 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2827 } 2828 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2829 } 2830 2831 jint Deoptimization::total_deoptimization_count() { 2832 return _deoptimization_hist[Reason_none][0][0]; 2833 } 2834 2835 // Get the deopt count for a specific reason and a specific action. If either 2836 // one of 'reason' or 'action' is null, the method returns the sum of all 2837 // deoptimizations with the specific 'action' or 'reason' respectively. 2838 // If both arguments are null, the method returns the total deopt count. 2839 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2840 if (reason_str == nullptr && action_str == nullptr) { 2841 return total_deoptimization_count(); 2842 } 2843 juint counter = 0; 2844 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2845 if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) { 2846 for (int action = 0; action < Action_LIMIT; action++) { 2847 if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) { 2848 juint* cases = _deoptimization_hist[reason][1+action]; 2849 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2850 counter += cases[bc_case] >> LSB_BITS; 2851 } 2852 } 2853 } 2854 } 2855 } 2856 return counter; 2857 } 2858 2859 void Deoptimization::print_statistics() { 2860 juint total = total_deoptimization_count(); 2861 juint account = total; 2862 if (total != 0) { 2863 ttyLocker ttyl; 2864 if (xtty != nullptr) xtty->head("statistics type='deoptimization'"); 2865 tty->print_cr("Deoptimization traps recorded:"); 2866 #define PRINT_STAT_LINE(name, r) \ 2867 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 2868 PRINT_STAT_LINE("total", total); 2869 // For each non-zero entry in the histogram, print the reason, 2870 // the action, and (if specifically known) the type of bytecode. 2871 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2872 for (int action = 0; action < Action_LIMIT; action++) { 2873 juint* cases = _deoptimization_hist[reason][1+action]; 2874 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2875 juint counter = cases[bc_case]; 2876 if (counter != 0) { 2877 char name[1*K]; 2878 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 2879 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 2880 bc = Bytecodes::_illegal; 2881 os::snprintf_checked(name, sizeof(name), "%s/%s/%s", 2882 trap_reason_name(reason), 2883 trap_action_name(action), 2884 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 2885 juint r = counter >> LSB_BITS; 2886 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 2887 account -= r; 2888 } 2889 } 2890 } 2891 } 2892 if (account != 0) { 2893 PRINT_STAT_LINE("unaccounted", account); 2894 } 2895 #undef PRINT_STAT_LINE 2896 if (xtty != nullptr) xtty->tail("statistics"); 2897 } 2898 } 2899 2900 #else // COMPILER2_OR_JVMCI 2901 2902 2903 // Stubs for C1 only system. 2904 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2905 return false; 2906 } 2907 2908 const char* Deoptimization::trap_reason_name(int reason) { 2909 return "unknown"; 2910 } 2911 2912 jint Deoptimization::total_deoptimization_count() { 2913 return 0; 2914 } 2915 2916 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2917 return 0; 2918 } 2919 2920 void Deoptimization::print_statistics() { 2921 // no output 2922 } 2923 2924 void 2925 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2926 // no update 2927 } 2928 2929 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2930 return 0; 2931 } 2932 2933 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2934 Bytecodes::Code bc) { 2935 // no update 2936 } 2937 2938 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2939 int trap_state) { 2940 jio_snprintf(buf, buflen, "#%d", trap_state); 2941 return buf; 2942 } 2943 2944 #endif // COMPILER2_OR_JVMCI