1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "interpreter/bytecode.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvm.h"
  42 #include "logging/log.hpp"
  43 #include "logging/logLevel.hpp"
  44 #include "logging/logMessage.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/constantPool.hpp"
  51 #include "oops/fieldStreams.inline.hpp"
  52 #include "oops/method.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/objArrayOop.inline.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/typeArrayOop.inline.hpp"
  57 #include "oops/verifyOopClosure.hpp"
  58 #include "prims/jvmtiDeferredUpdates.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/jvmtiThreadState.hpp"
  61 #include "prims/methodHandles.hpp"
  62 #include "prims/vectorSupport.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/continuation.hpp"
  65 #include "runtime/continuationEntry.inline.hpp"
  66 #include "runtime/deoptimization.hpp"
  67 #include "runtime/escapeBarrier.hpp"
  68 #include "runtime/fieldDescriptor.hpp"
  69 #include "runtime/fieldDescriptor.inline.hpp"
  70 #include "runtime/frame.inline.hpp"
  71 #include "runtime/handles.inline.hpp"
  72 #include "runtime/interfaceSupport.inline.hpp"
  73 #include "runtime/javaThread.hpp"
  74 #include "runtime/jniHandles.inline.hpp"
  75 #include "runtime/keepStackGCProcessed.hpp"
  76 #include "runtime/objectMonitor.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepointVerifiers.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/signature.hpp"
  81 #include "runtime/stackFrameStream.inline.hpp"
  82 #include "runtime/stackValue.hpp"
  83 #include "runtime/stackWatermarkSet.hpp"
  84 #include "runtime/stubRoutines.hpp"
  85 #include "runtime/synchronizer.hpp"
  86 #include "runtime/threadSMR.hpp"
  87 #include "runtime/threadWXSetters.inline.hpp"
  88 #include "runtime/vframe.hpp"
  89 #include "runtime/vframeArray.hpp"
  90 #include "runtime/vframe_hp.hpp"
  91 #include "runtime/vmOperations.hpp"
  92 #include "utilities/events.hpp"
  93 #include "utilities/growableArray.hpp"
  94 #include "utilities/macros.hpp"
  95 #include "utilities/preserveException.hpp"
  96 #include "utilities/xmlstream.hpp"
  97 #if INCLUDE_JFR
  98 #include "jfr/jfrEvents.hpp"
  99 #include "jfr/metadata/jfrSerializer.hpp"
 100 #endif
 101 
 102 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 103 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 104 bool     DeoptimizationScope::_committing_in_progress = false;
 105 
 106 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 107   DEBUG_ONLY(_deopted = false;)
 108 
 109   MutexLocker ml(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
 110   // If there is nothing to deopt _required_gen is the same as comitted.
 111   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 112 }
 113 
 114 DeoptimizationScope::~DeoptimizationScope() {
 115   assert(_deopted, "Deopt not executed");
 116 }
 117 
 118 void DeoptimizationScope::mark(CompiledMethod* cm, bool inc_recompile_counts) {
 119   MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock,
 120                  Mutex::_no_safepoint_check_flag);
 121 
 122   // If it's already marked but we still need it to be deopted.
 123   if (cm->is_marked_for_deoptimization()) {
 124     dependent(cm);
 125     return;
 126   }
 127 
 128   CompiledMethod::DeoptimizationStatus status =
 129     inc_recompile_counts ? CompiledMethod::deoptimize : CompiledMethod::deoptimize_noupdate;
 130   Atomic::store(&cm->_deoptimization_status, status);
 131 
 132   // Make sure active is not committed
 133   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 134   assert(cm->_deoptimization_generation == 0, "Is already marked");
 135 
 136   cm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 137   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 138 }
 139 
 140 void DeoptimizationScope::dependent(CompiledMethod* cm) {
 141   MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock,
 142                  Mutex::_no_safepoint_check_flag);
 143   // A method marked by someone else may have a _required_gen lower than what we marked with.
 144   // Therefore only store it if it's higher than _required_gen.
 145   if (_required_gen < cm->_deoptimization_generation) {
 146     _required_gen = cm->_deoptimization_generation;
 147   }
 148 }
 149 
 150 void DeoptimizationScope::deoptimize_marked() {
 151   assert(!_deopted, "Already deopted");
 152 
 153   // We are not alive yet.
 154   if (!Universe::is_fully_initialized()) {
 155     DEBUG_ONLY(_deopted = true;)
 156     return;
 157   }
 158 
 159   // Safepoints are a special case, handled here.
 160   if (SafepointSynchronize::is_at_safepoint()) {
 161     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 162     DeoptimizationScope::_active_deopt_gen++;
 163     Deoptimization::deoptimize_all_marked();
 164     DEBUG_ONLY(_deopted = true;)
 165     return;
 166   }
 167 
 168   uint64_t comitting = 0;
 169   bool wait = false;
 170   while (true) {
 171     {
 172       MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock,
 173                  Mutex::_no_safepoint_check_flag);
 174       // First we check if we or someone else already deopted the gen we want.
 175       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 176         DEBUG_ONLY(_deopted = true;)
 177         return;
 178       }
 179       if (!_committing_in_progress) {
 180         // The version we are about to commit.
 181         comitting = DeoptimizationScope::_active_deopt_gen;
 182         // Make sure new marks use a higher gen.
 183         DeoptimizationScope::_active_deopt_gen++;
 184         _committing_in_progress = true;
 185         wait = false;
 186       } else {
 187         // Another thread is handshaking and committing a gen.
 188         wait = true;
 189       }
 190     }
 191     if (wait) {
 192       // Wait and let the concurrent handshake be performed.
 193       ThreadBlockInVM tbivm(JavaThread::current());
 194       os::naked_yield();
 195     } else {
 196       // Performs the handshake.
 197       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 198       DEBUG_ONLY(_deopted = true;)
 199       {
 200         MutexLocker ml(CompiledMethod_lock->owned_by_self() ? nullptr : CompiledMethod_lock,
 201                        Mutex::_no_safepoint_check_flag);
 202         // Make sure that committed doesn't go backwards.
 203         // Should only happen if we did a deopt during a safepoint above.
 204         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 205           DeoptimizationScope::_committed_deopt_gen = comitting;
 206         }
 207         _committing_in_progress = false;
 208 
 209         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 210 
 211         return;
 212       }
 213     }
 214   }
 215 }
 216 
 217 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 218                                          int  caller_adjustment,
 219                                          int  caller_actual_parameters,
 220                                          int  number_of_frames,
 221                                          intptr_t* frame_sizes,
 222                                          address* frame_pcs,
 223                                          BasicType return_type,
 224                                          int exec_mode) {
 225   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 226   _caller_adjustment         = caller_adjustment;
 227   _caller_actual_parameters  = caller_actual_parameters;
 228   _number_of_frames          = number_of_frames;
 229   _frame_sizes               = frame_sizes;
 230   _frame_pcs                 = frame_pcs;
 231   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 232   _return_type               = return_type;
 233   _initial_info              = 0;
 234   // PD (x86 only)
 235   _counter_temp              = 0;
 236   _unpack_kind               = exec_mode;
 237   _sender_sp_temp            = 0;
 238 
 239   _total_frame_sizes         = size_of_frames();
 240   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 241 }
 242 
 243 Deoptimization::UnrollBlock::~UnrollBlock() {
 244   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 245   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 246   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 247 }
 248 
 249 int Deoptimization::UnrollBlock::size_of_frames() const {
 250   // Account first for the adjustment of the initial frame
 251   int result = _caller_adjustment;
 252   for (int index = 0; index < number_of_frames(); index++) {
 253     result += frame_sizes()[index];
 254   }
 255   return result;
 256 }
 257 
 258 void Deoptimization::UnrollBlock::print() {
 259   ResourceMark rm;
 260   stringStream st;
 261   st.print_cr("UnrollBlock");
 262   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 263   st.print(   "  frame_sizes: ");
 264   for (int index = 0; index < number_of_frames(); index++) {
 265     st.print(INTX_FORMAT " ", frame_sizes()[index]);
 266   }
 267   st.cr();
 268   tty->print_raw(st.freeze());
 269 }
 270 
 271 // In order to make fetch_unroll_info work properly with escape
 272 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 273 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 274 // which is called from the method fetch_unroll_info_helper below.
 275 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 276   // fetch_unroll_info() is called at the beginning of the deoptimization
 277   // handler. Note this fact before we start generating temporary frames
 278   // that can confuse an asynchronous stack walker. This counter is
 279   // decremented at the end of unpack_frames().
 280   current->inc_in_deopt_handler();
 281 
 282   if (exec_mode == Unpack_exception) {
 283     // When we get here, a callee has thrown an exception into a deoptimized
 284     // frame. That throw might have deferred stack watermark checking until
 285     // after unwinding. So we deal with such deferred requests here.
 286     StackWatermarkSet::after_unwind(current);
 287   }
 288 
 289   return fetch_unroll_info_helper(current, exec_mode);
 290 JRT_END
 291 
 292 #if COMPILER2_OR_JVMCI
 293 // print information about reallocated objects
 294 static void print_objects(JavaThread* deoptee_thread,
 295                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 296   ResourceMark rm;
 297   stringStream st;  // change to logStream with logging
 298   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 299   fieldDescriptor fd;
 300 
 301   for (int i = 0; i < objects->length(); i++) {
 302     ObjectValue* sv = (ObjectValue*) objects->at(i);
 303     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 304     Handle obj = sv->value();
 305 
 306     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 307     k->print_value_on(&st);
 308     assert(obj.not_null() || realloc_failures, "reallocation was missed");
 309     if (obj.is_null()) {
 310       st.print(" allocation failed");
 311     } else {
 312       st.print(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize);
 313     }
 314     st.cr();
 315 
 316     if (Verbose && !obj.is_null()) {
 317       k->oop_print_on(obj(), &st);
 318     }
 319   }
 320   tty->print_raw(st.freeze());
 321 }
 322 
 323 static bool rematerialize_objects(JavaThread* thread, int exec_mode, CompiledMethod* compiled_method,
 324                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 325                                   bool& deoptimized_objects) {
 326   bool realloc_failures = false;
 327   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 328 
 329   JavaThread* deoptee_thread = chunk->at(0)->thread();
 330   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 331          "a frame can only be deoptimized by the owner thread");
 332 
 333   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 334 
 335   // The flag return_oop() indicates call sites which return oop
 336   // in compiled code. Such sites include java method calls,
 337   // runtime calls (for example, used to allocate new objects/arrays
 338   // on slow code path) and any other calls generated in compiled code.
 339   // It is not guaranteed that we can get such information here only
 340   // by analyzing bytecode in deoptimized frames. This is why this flag
 341   // is set during method compilation (see Compile::Process_OopMap_Node()).
 342   // If the previous frame was popped or if we are dispatching an exception,
 343   // we don't have an oop result.
 344   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 345   Handle return_value;
 346   if (save_oop_result) {
 347     // Reallocation may trigger GC. If deoptimization happened on return from
 348     // call which returns oop we need to save it since it is not in oopmap.
 349     oop result = deoptee.saved_oop_result(&map);
 350     assert(oopDesc::is_oop_or_null(result), "must be oop");
 351     return_value = Handle(thread, result);
 352     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 353     if (TraceDeoptimization) {
 354       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 355       tty->cr();
 356     }
 357   }
 358   if (objects != nullptr) {
 359     if (exec_mode == Deoptimization::Unpack_none) {
 360       assert(thread->thread_state() == _thread_in_vm, "assumption");
 361       JavaThread* THREAD = thread; // For exception macros.
 362       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 363       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 364       deoptimized_objects = true;
 365     } else {
 366       JavaThread* current = thread; // For JRT_BLOCK
 367       JRT_BLOCK
 368       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 369       JRT_END
 370     }
 371     bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 372     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 373     if (TraceDeoptimization) {
 374       print_objects(deoptee_thread, objects, realloc_failures);
 375     }
 376   }
 377   if (save_oop_result) {
 378     // Restore result.
 379     deoptee.set_saved_oop_result(&map, return_value());
 380   }
 381   return realloc_failures;
 382 }
 383 
 384 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 385                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 386   JavaThread* deoptee_thread = chunk->at(0)->thread();
 387   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 388   assert(thread == Thread::current(), "should be");
 389   HandleMark hm(thread);
 390 #ifndef PRODUCT
 391   bool first = true;
 392 #endif // !PRODUCT
 393   DEBUG_ONLY(GrowableArray<oop> lock_order{0};)
 394   // Start locking from outermost/oldest frame
 395   for (int i = (chunk->length() - 1); i >= 0; i--) {
 396     compiledVFrame* cvf = chunk->at(i);
 397     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 398     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 399     if (monitors->is_nonempty()) {
 400       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 401                                                      exec_mode, realloc_failures);
 402       deoptimized_objects = deoptimized_objects || relocked;
 403 #ifdef ASSERT
 404       if (LockingMode == LM_LIGHTWEIGHT && !realloc_failures) {
 405         for (MonitorInfo* mi : *monitors) {
 406           lock_order.push(mi->owner());
 407         }
 408       }
 409 #endif // ASSERT
 410 #ifndef PRODUCT
 411       if (PrintDeoptimizationDetails) {
 412         ResourceMark rm;
 413         stringStream st;
 414         for (int j = 0; j < monitors->length(); j++) {
 415           MonitorInfo* mi = monitors->at(j);
 416           if (mi->eliminated()) {
 417             if (first) {
 418               first = false;
 419               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 420             }
 421             if (exec_mode == Deoptimization::Unpack_none) {
 422               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 423               if (monitor != nullptr && monitor->object() == mi->owner()) {
 424                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 425                 continue;
 426               }
 427             }
 428             if (mi->owner_is_scalar_replaced()) {
 429               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 430               st.print_cr("     failed reallocation for klass %s", k->external_name());
 431             } else {
 432               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 433             }
 434           }
 435         }
 436         tty->print_raw(st.freeze());
 437       }
 438 #endif // !PRODUCT
 439     }
 440   }
 441 #ifdef ASSERT
 442   if (LockingMode == LM_LIGHTWEIGHT && !realloc_failures) {
 443     deoptee_thread->lock_stack().verify_consistent_lock_order(lock_order, exec_mode != Deoptimization::Unpack_none);
 444   }
 445 #endif // ASSERT
 446 }
 447 
 448 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 449 // The given vframes cover one physical frame.
 450 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 451                                                  bool& realloc_failures) {
 452   frame deoptee = chunk->at(0)->fr();
 453   JavaThread* deoptee_thread = chunk->at(0)->thread();
 454   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 455   RegisterMap map(chunk->at(0)->register_map());
 456   bool deoptimized_objects = false;
 457 
 458   bool const jvmci_enabled = JVMCI_ONLY(UseJVMCICompiler) NOT_JVMCI(false);
 459 
 460   // Reallocate the non-escaping objects and restore their fields.
 461   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 462                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 463     realloc_failures = rematerialize_objects(thread, Unpack_none, cm, deoptee, map, chunk, deoptimized_objects);
 464   }
 465 
 466   // MonitorInfo structures used in eliminate_locks are not GC safe.
 467   NoSafepointVerifier no_safepoint;
 468 
 469   // Now relock objects if synchronization on them was eliminated.
 470   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 471     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 472   }
 473   return deoptimized_objects;
 474 }
 475 #endif // COMPILER2_OR_JVMCI
 476 
 477 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 478 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 479   // When we get here we are about to unwind the deoptee frame. In order to
 480   // catch not yet safe to use frames, the following stack watermark barrier
 481   // poll will make such frames safe to use.
 482   StackWatermarkSet::before_unwind(current);
 483 
 484   // Note: there is a safepoint safety issue here. No matter whether we enter
 485   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 486   // the vframeArray is created.
 487   //
 488 
 489   // Allocate our special deoptimization ResourceMark
 490   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 491   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 492   current->set_deopt_mark(dmark);
 493 
 494   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 495   RegisterMap map(current,
 496                   RegisterMap::UpdateMap::include,
 497                   RegisterMap::ProcessFrames::include,
 498                   RegisterMap::WalkContinuation::skip);
 499   RegisterMap dummy_map(current,
 500                         RegisterMap::UpdateMap::skip,
 501                         RegisterMap::ProcessFrames::include,
 502                         RegisterMap::WalkContinuation::skip);
 503   // Now get the deoptee with a valid map
 504   frame deoptee = stub_frame.sender(&map);
 505   // Set the deoptee nmethod
 506   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 507   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 508   current->set_deopt_compiled_method(cm);
 509 
 510   if (VerifyStack) {
 511     current->validate_frame_layout();
 512   }
 513 
 514   // Create a growable array of VFrames where each VFrame represents an inlined
 515   // Java frame.  This storage is allocated with the usual system arena.
 516   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 517   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 518   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 519   while (!vf->is_top()) {
 520     assert(vf->is_compiled_frame(), "Wrong frame type");
 521     chunk->push(compiledVFrame::cast(vf));
 522     vf = vf->sender();
 523   }
 524   assert(vf->is_compiled_frame(), "Wrong frame type");
 525   chunk->push(compiledVFrame::cast(vf));
 526 
 527   bool realloc_failures = false;
 528 
 529 #if COMPILER2_OR_JVMCI
 530   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 531 
 532   // Reallocate the non-escaping objects and restore their fields. Then
 533   // relock objects if synchronization on them was eliminated.
 534   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 535                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 536     bool unused;
 537     realloc_failures = rematerialize_objects(current, exec_mode, cm, deoptee, map, chunk, unused);
 538   }
 539 #endif // COMPILER2_OR_JVMCI
 540 
 541   // Ensure that no safepoint is taken after pointers have been stored
 542   // in fields of rematerialized objects.  If a safepoint occurs from here on
 543   // out the java state residing in the vframeArray will be missed.
 544   // Locks may be rebaised in a safepoint.
 545   NoSafepointVerifier no_safepoint;
 546 
 547 #if COMPILER2_OR_JVMCI
 548   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 549       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 550     bool unused = false;
 551     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 552   }
 553 #endif // COMPILER2_OR_JVMCI
 554 
 555   ScopeDesc* trap_scope = chunk->at(0)->scope();
 556   Handle exceptionObject;
 557   if (trap_scope->rethrow_exception()) {
 558 #ifndef PRODUCT
 559     if (PrintDeoptimizationDetails) {
 560       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 561     }
 562 #endif // !PRODUCT
 563 
 564     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 565     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 566     ScopeValue* topOfStack = expressions->top();
 567     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 568     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 569   }
 570 
 571   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 572 #if COMPILER2_OR_JVMCI
 573   if (realloc_failures) {
 574     // This destroys all ScopedValue bindings.
 575     current->clear_scopedValueBindings();
 576     pop_frames_failed_reallocs(current, array);
 577   }
 578 #endif
 579 
 580   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 581   current->set_vframe_array_head(array);
 582 
 583   // Now that the vframeArray has been created if we have any deferred local writes
 584   // added by jvmti then we can free up that structure as the data is now in the
 585   // vframeArray
 586 
 587   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 588 
 589   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 590   CodeBlob* cb = stub_frame.cb();
 591   // Verify we have the right vframeArray
 592   assert(cb->frame_size() >= 0, "Unexpected frame size");
 593   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 594 
 595   // If the deopt call site is a MethodHandle invoke call site we have
 596   // to adjust the unpack_sp.
 597   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 598   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 599     unpack_sp = deoptee.unextended_sp();
 600 
 601 #ifdef ASSERT
 602   assert(cb->is_deoptimization_stub() ||
 603          cb->is_uncommon_trap_stub() ||
 604          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 605          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 606          "unexpected code blob: %s", cb->name());
 607 #endif
 608 
 609   // This is a guarantee instead of an assert because if vframe doesn't match
 610   // we will unpack the wrong deoptimized frame and wind up in strange places
 611   // where it will be very difficult to figure out what went wrong. Better
 612   // to die an early death here than some very obscure death later when the
 613   // trail is cold.
 614   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 615   // in that it will fail to detect a problem when there is one. This needs
 616   // more work in tiger timeframe.
 617   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 618 
 619   int number_of_frames = array->frames();
 620 
 621   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 622   // virtual activation, which is the reverse of the elements in the vframes array.
 623   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 624   // +1 because we always have an interpreter return address for the final slot.
 625   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 626   int popframe_extra_args = 0;
 627   // Create an interpreter return address for the stub to use as its return
 628   // address so the skeletal frames are perfectly walkable
 629   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 630 
 631   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 632   // activation be put back on the expression stack of the caller for reexecution
 633   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 634     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 635   }
 636 
 637   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 638   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 639   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 640   //
 641   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 642   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 643 
 644   // It's possible that the number of parameters at the call site is
 645   // different than number of arguments in the callee when method
 646   // handles are used.  If the caller is interpreted get the real
 647   // value so that the proper amount of space can be added to it's
 648   // frame.
 649   bool caller_was_method_handle = false;
 650   if (deopt_sender.is_interpreted_frame()) {
 651     methodHandle method(current, deopt_sender.interpreter_frame_method());
 652     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 653     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 654       // Method handle invokes may involve fairly arbitrary chains of
 655       // calls so it's impossible to know how much actual space the
 656       // caller has for locals.
 657       caller_was_method_handle = true;
 658     }
 659   }
 660 
 661   //
 662   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 663   // frame_sizes/frame_pcs[1] next oldest frame (int)
 664   // frame_sizes/frame_pcs[n] youngest frame (int)
 665   //
 666   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 667   // owns the space for the return address to it's caller).  Confusing ain't it.
 668   //
 669   // The vframe array can address vframes with indices running from
 670   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 671   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 672   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 673   // so things look a little strange in this loop.
 674   //
 675   int callee_parameters = 0;
 676   int callee_locals = 0;
 677   for (int index = 0; index < array->frames(); index++ ) {
 678     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 679     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 680     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 681     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 682                                                                                                     callee_locals,
 683                                                                                                     index == 0,
 684                                                                                                     popframe_extra_args);
 685     // This pc doesn't have to be perfect just good enough to identify the frame
 686     // as interpreted so the skeleton frame will be walkable
 687     // The correct pc will be set when the skeleton frame is completely filled out
 688     // The final pc we store in the loop is wrong and will be overwritten below
 689     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 690 
 691     callee_parameters = array->element(index)->method()->size_of_parameters();
 692     callee_locals = array->element(index)->method()->max_locals();
 693     popframe_extra_args = 0;
 694   }
 695 
 696   // Compute whether the root vframe returns a float or double value.
 697   BasicType return_type;
 698   {
 699     methodHandle method(current, array->element(0)->method());
 700     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 701     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 702   }
 703 
 704   // Compute information for handling adapters and adjusting the frame size of the caller.
 705   int caller_adjustment = 0;
 706 
 707   // Compute the amount the oldest interpreter frame will have to adjust
 708   // its caller's stack by. If the caller is a compiled frame then
 709   // we pretend that the callee has no parameters so that the
 710   // extension counts for the full amount of locals and not just
 711   // locals-parms. This is because without a c2i adapter the parm
 712   // area as created by the compiled frame will not be usable by
 713   // the interpreter. (Depending on the calling convention there
 714   // may not even be enough space).
 715 
 716   // QQQ I'd rather see this pushed down into last_frame_adjust
 717   // and have it take the sender (aka caller).
 718 
 719   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 720     caller_adjustment = last_frame_adjust(0, callee_locals);
 721   } else if (callee_locals > callee_parameters) {
 722     // The caller frame may need extending to accommodate
 723     // non-parameter locals of the first unpacked interpreted frame.
 724     // Compute that adjustment.
 725     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 726   }
 727 
 728   // If the sender is deoptimized the we must retrieve the address of the handler
 729   // since the frame will "magically" show the original pc before the deopt
 730   // and we'd undo the deopt.
 731 
 732   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 733   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 734     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 735   }
 736 
 737   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 738 
 739 #if INCLUDE_JVMCI
 740   if (exceptionObject() != nullptr) {
 741     current->set_exception_oop(exceptionObject());
 742     exec_mode = Unpack_exception;
 743   }
 744 #endif
 745 
 746   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 747     assert(current->has_pending_exception(), "should have thrown OOME");
 748     current->set_exception_oop(current->pending_exception());
 749     current->clear_pending_exception();
 750     exec_mode = Unpack_exception;
 751   }
 752 
 753 #if INCLUDE_JVMCI
 754   if (current->frames_to_pop_failed_realloc() > 0) {
 755     current->set_pending_monitorenter(false);
 756   }
 757 #endif
 758 
 759   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 760                                       caller_adjustment * BytesPerWord,
 761                                       caller_was_method_handle ? 0 : callee_parameters,
 762                                       number_of_frames,
 763                                       frame_sizes,
 764                                       frame_pcs,
 765                                       return_type,
 766                                       exec_mode);
 767   // On some platforms, we need a way to pass some platform dependent
 768   // information to the unpacking code so the skeletal frames come out
 769   // correct (initial fp value, unextended sp, ...)
 770   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 771 
 772   if (array->frames() > 1) {
 773     if (VerifyStack && TraceDeoptimization) {
 774       tty->print_cr("Deoptimizing method containing inlining");
 775     }
 776   }
 777 
 778   array->set_unroll_block(info);
 779   return info;
 780 }
 781 
 782 // Called to cleanup deoptimization data structures in normal case
 783 // after unpacking to stack and when stack overflow error occurs
 784 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 785                                         vframeArray *array) {
 786 
 787   // Get array if coming from exception
 788   if (array == nullptr) {
 789     array = thread->vframe_array_head();
 790   }
 791   thread->set_vframe_array_head(nullptr);
 792 
 793   // Free the previous UnrollBlock
 794   vframeArray* old_array = thread->vframe_array_last();
 795   thread->set_vframe_array_last(array);
 796 
 797   if (old_array != nullptr) {
 798     UnrollBlock* old_info = old_array->unroll_block();
 799     old_array->set_unroll_block(nullptr);
 800     delete old_info;
 801     delete old_array;
 802   }
 803 
 804   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 805   // inside the vframeArray (StackValueCollections)
 806 
 807   delete thread->deopt_mark();
 808   thread->set_deopt_mark(nullptr);
 809   thread->set_deopt_compiled_method(nullptr);
 810 
 811 
 812   if (JvmtiExport::can_pop_frame()) {
 813     // Regardless of whether we entered this routine with the pending
 814     // popframe condition bit set, we should always clear it now
 815     thread->clear_popframe_condition();
 816   }
 817 
 818   // unpack_frames() is called at the end of the deoptimization handler
 819   // and (in C2) at the end of the uncommon trap handler. Note this fact
 820   // so that an asynchronous stack walker can work again. This counter is
 821   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 822   // the beginning of uncommon_trap().
 823   thread->dec_in_deopt_handler();
 824 }
 825 
 826 // Moved from cpu directories because none of the cpus has callee save values.
 827 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 828 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 829 
 830   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 831   // the days we had adapter frames. When we deoptimize a situation where a
 832   // compiled caller calls a compiled caller will have registers it expects
 833   // to survive the call to the callee. If we deoptimize the callee the only
 834   // way we can restore these registers is to have the oldest interpreter
 835   // frame that we create restore these values. That is what this routine
 836   // will accomplish.
 837 
 838   // At the moment we have modified c2 to not have any callee save registers
 839   // so this problem does not exist and this routine is just a place holder.
 840 
 841   assert(f->is_interpreted_frame(), "must be interpreted");
 842 }
 843 
 844 #ifndef PRODUCT
 845 static bool falls_through(Bytecodes::Code bc) {
 846   switch (bc) {
 847     // List may be incomplete.  Here we really only care about bytecodes where compiled code
 848     // can deoptimize.
 849     case Bytecodes::_goto:
 850     case Bytecodes::_goto_w:
 851     case Bytecodes::_athrow:
 852       return false;
 853     default:
 854       return true;
 855   }
 856 }
 857 #endif
 858 
 859 // Return BasicType of value being returned
 860 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 861   assert(thread == JavaThread::current(), "pre-condition");
 862 
 863   // We are already active in the special DeoptResourceMark any ResourceObj's we
 864   // allocate will be freed at the end of the routine.
 865 
 866   // JRT_LEAF methods don't normally allocate handles and there is a
 867   // NoHandleMark to enforce that. It is actually safe to use Handles
 868   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 869   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 870   // then use a HandleMark to ensure any Handles we do create are
 871   // cleaned up in this scope.
 872   ResetNoHandleMark rnhm;
 873   HandleMark hm(thread);
 874 
 875   frame stub_frame = thread->last_frame();
 876 
 877   Continuation::notify_deopt(thread, stub_frame.sp());
 878 
 879   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 880   // must point to the vframeArray for the unpack frame.
 881   vframeArray* array = thread->vframe_array_head();
 882   UnrollBlock* info = array->unroll_block();
 883 
 884   // We set the last_Java frame. But the stack isn't really parsable here. So we
 885   // clear it to make sure JFR understands not to try and walk stacks from events
 886   // in here.
 887   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 888   thread->frame_anchor()->set_last_Java_sp(nullptr);
 889 
 890   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 891   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 892 
 893   thread->frame_anchor()->set_last_Java_sp(sp);
 894 
 895   BasicType bt = info->return_type();
 896 
 897   // If we have an exception pending, claim that the return type is an oop
 898   // so the deopt_blob does not overwrite the exception_oop.
 899 
 900   if (exec_mode == Unpack_exception)
 901     bt = T_OBJECT;
 902 
 903   // Cleanup thread deopt data
 904   cleanup_deopt_info(thread, array);
 905 
 906 #ifndef PRODUCT
 907   if (VerifyStack) {
 908     ResourceMark res_mark;
 909     // Clear pending exception to not break verification code (restored afterwards)
 910     PreserveExceptionMark pm(thread);
 911 
 912     thread->validate_frame_layout();
 913 
 914     // Verify that the just-unpacked frames match the interpreter's
 915     // notions of expression stack and locals
 916     vframeArray* cur_array = thread->vframe_array_last();
 917     RegisterMap rm(thread,
 918                    RegisterMap::UpdateMap::skip,
 919                    RegisterMap::ProcessFrames::include,
 920                    RegisterMap::WalkContinuation::skip);
 921     rm.set_include_argument_oops(false);
 922     bool is_top_frame = true;
 923     int callee_size_of_parameters = 0;
 924     int callee_max_locals = 0;
 925     for (int i = 0; i < cur_array->frames(); i++) {
 926       vframeArrayElement* el = cur_array->element(i);
 927       frame* iframe = el->iframe();
 928       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 929 
 930       // Get the oop map for this bci
 931       InterpreterOopMap mask;
 932       int cur_invoke_parameter_size = 0;
 933       bool try_next_mask = false;
 934       int next_mask_expression_stack_size = -1;
 935       int top_frame_expression_stack_adjustment = 0;
 936       methodHandle mh(thread, iframe->interpreter_frame_method());
 937       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 938       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 939       int max_bci = mh->code_size();
 940       // Get to the next bytecode if possible
 941       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 942       // Check to see if we can grab the number of outgoing arguments
 943       // at an uncommon trap for an invoke (where the compiler
 944       // generates debug info before the invoke has executed)
 945       Bytecodes::Code cur_code = str.next();
 946       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 947       if (Bytecodes::is_invoke(cur_code)) {
 948         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 949         cur_invoke_parameter_size = invoke.size_of_parameters();
 950         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 951           callee_size_of_parameters++;
 952         }
 953       }
 954       if (str.bci() < max_bci) {
 955         next_code = str.next();
 956         if (next_code >= 0) {
 957           // The interpreter oop map generator reports results before
 958           // the current bytecode has executed except in the case of
 959           // calls. It seems to be hard to tell whether the compiler
 960           // has emitted debug information matching the "state before"
 961           // a given bytecode or the state after, so we try both
 962           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 963             // Get expression stack size for the next bytecode
 964             InterpreterOopMap next_mask;
 965             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 966             next_mask_expression_stack_size = next_mask.expression_stack_size();
 967             if (Bytecodes::is_invoke(next_code)) {
 968               Bytecode_invoke invoke(mh, str.bci());
 969               next_mask_expression_stack_size += invoke.size_of_parameters();
 970             }
 971             // Need to subtract off the size of the result type of
 972             // the bytecode because this is not described in the
 973             // debug info but returned to the interpreter in the TOS
 974             // caching register
 975             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 976             if (bytecode_result_type != T_ILLEGAL) {
 977               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 978             }
 979             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 980             try_next_mask = true;
 981           }
 982         }
 983       }
 984 
 985       // Verify stack depth and oops in frame
 986       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 987       if (!(
 988             /* SPARC */
 989             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 990             /* x86 */
 991             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 992             (try_next_mask &&
 993              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 994                                                                     top_frame_expression_stack_adjustment))) ||
 995             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 996             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 997              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 998             )) {
 999         {
1000           // Print out some information that will help us debug the problem
1001           tty->print_cr("Wrong number of expression stack elements during deoptimization");
1002           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
1003           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
1004           if (try_next_mask) {
1005             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
1006           }
1007           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1008                         iframe->interpreter_frame_expression_stack_size());
1009           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1010           tty->print_cr("  try_next_mask = %d", try_next_mask);
1011           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
1012           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1013           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1014           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1015           tty->print_cr("  exec_mode = %d", exec_mode);
1016           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1017           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1018           tty->print_cr("  Interpreted frames:");
1019           for (int k = 0; k < cur_array->frames(); k++) {
1020             vframeArrayElement* el = cur_array->element(k);
1021             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1022           }
1023           cur_array->print_on_2(tty);
1024         }
1025         guarantee(false, "wrong number of expression stack elements during deopt");
1026       }
1027       VerifyOopClosure verify;
1028       iframe->oops_interpreted_do(&verify, &rm, false);
1029       callee_size_of_parameters = mh->size_of_parameters();
1030       callee_max_locals = mh->max_locals();
1031       is_top_frame = false;
1032     }
1033   }
1034 #endif // !PRODUCT
1035 
1036   return bt;
1037 JRT_END
1038 
1039 class DeoptimizeMarkedClosure : public HandshakeClosure {
1040  public:
1041   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1042   void do_thread(Thread* thread) {
1043     JavaThread* jt = JavaThread::cast(thread);
1044     jt->deoptimize_marked_methods();
1045   }
1046 };
1047 
1048 void Deoptimization::deoptimize_all_marked() {
1049   ResourceMark rm;
1050 
1051   // Make the dependent methods not entrant
1052   CodeCache::make_marked_nmethods_deoptimized();
1053 
1054   DeoptimizeMarkedClosure deopt;
1055   if (SafepointSynchronize::is_at_safepoint()) {
1056     Threads::java_threads_do(&deopt);
1057   } else {
1058     Handshake::execute(&deopt);
1059   }
1060 }
1061 
1062 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1063   = Deoptimization::Action_reinterpret;
1064 
1065 #if INCLUDE_JVMCI
1066 template<typename CacheType>
1067 class BoxCacheBase : public CHeapObj<mtCompiler> {
1068 protected:
1069   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1070     ResourceMark rm(thread);
1071     char* klass_name_str = klass_name->as_C_string();
1072     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle());
1073     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1074     if (!ik->is_in_error_state()) {
1075       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1076       CacheType::compute_offsets(ik);
1077     }
1078     return ik;
1079   }
1080 };
1081 
1082 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1083   PrimitiveType _low;
1084   PrimitiveType _high;
1085   jobject _cache;
1086 protected:
1087   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1088   BoxCache(Thread* thread) {
1089     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1090     if (ik->is_in_error_state()) {
1091       _low = 1;
1092       _high = 0;
1093       _cache = nullptr;
1094     } else {
1095       objArrayOop cache = CacheType::cache(ik);
1096       assert(cache->length() > 0, "Empty cache");
1097       _low = BoxType::value(cache->obj_at(0));
1098       _high = _low + cache->length() - 1;
1099       _cache = JNIHandles::make_global(Handle(thread, cache));
1100     }
1101   }
1102   ~BoxCache() {
1103     JNIHandles::destroy_global(_cache);
1104   }
1105 public:
1106   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1107     if (_singleton == nullptr) {
1108       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1109       if (!Atomic::replace_if_null(&_singleton, s)) {
1110         delete s;
1111       }
1112     }
1113     return _singleton;
1114   }
1115   oop lookup(PrimitiveType value) {
1116     if (_low <= value && value <= _high) {
1117       int offset = value - _low;
1118       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1119     }
1120     return nullptr;
1121   }
1122   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1123     if (_cache == nullptr) {
1124       cache_init_error = true;
1125       return nullptr;
1126     }
1127     // Have to cast to avoid little/big-endian problems.
1128     if (sizeof(PrimitiveType) > sizeof(jint)) {
1129       jlong value = (jlong)raw_value;
1130       return lookup(value);
1131     }
1132     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1133     return lookup(value);
1134   }
1135 };
1136 
1137 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1138 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1139 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1140 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1141 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1142 
1143 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1144 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1145 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1146 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1147 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1148 
1149 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1150   jobject _true_cache;
1151   jobject _false_cache;
1152 protected:
1153   static BooleanBoxCache *_singleton;
1154   BooleanBoxCache(Thread *thread) {
1155     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1156     if (ik->is_in_error_state()) {
1157       _true_cache = nullptr;
1158       _false_cache = nullptr;
1159     } else {
1160       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1161       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1162     }
1163   }
1164   ~BooleanBoxCache() {
1165     JNIHandles::destroy_global(_true_cache);
1166     JNIHandles::destroy_global(_false_cache);
1167   }
1168 public:
1169   static BooleanBoxCache* singleton(Thread* thread) {
1170     if (_singleton == nullptr) {
1171       BooleanBoxCache* s = new BooleanBoxCache(thread);
1172       if (!Atomic::replace_if_null(&_singleton, s)) {
1173         delete s;
1174       }
1175     }
1176     return _singleton;
1177   }
1178   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1179     if (_true_cache == nullptr) {
1180       cache_in_error = true;
1181       return nullptr;
1182     }
1183     // Have to cast to avoid little/big-endian problems.
1184     jboolean value = (jboolean)*((jint*)&raw_value);
1185     return lookup(value);
1186   }
1187   oop lookup(jboolean value) {
1188     if (value != 0) {
1189       return JNIHandles::resolve_non_null(_true_cache);
1190     }
1191     return JNIHandles::resolve_non_null(_false_cache);
1192   }
1193 };
1194 
1195 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1196 
1197 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1198    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1199    BasicType box_type = vmClasses::box_klass_type(k);
1200    if (box_type != T_OBJECT) {
1201      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1202      switch(box_type) {
1203        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1204        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1205        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1206        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1207        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1208        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int(), cache_init_error);
1209        default:;
1210      }
1211    }
1212    return nullptr;
1213 }
1214 #endif // INCLUDE_JVMCI
1215 
1216 #if COMPILER2_OR_JVMCI
1217 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1218   Handle pending_exception(THREAD, thread->pending_exception());
1219   const char* exception_file = thread->exception_file();
1220   int exception_line = thread->exception_line();
1221   thread->clear_pending_exception();
1222 
1223   bool failures = false;
1224 
1225   for (int i = 0; i < objects->length(); i++) {
1226     assert(objects->at(i)->is_object(), "invalid debug information");
1227     ObjectValue* sv = (ObjectValue*) objects->at(i);
1228 
1229     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1230     oop obj = nullptr;
1231 
1232     bool cache_init_error = false;
1233     if (k->is_instance_klass()) {
1234 #if INCLUDE_JVMCI
1235       CompiledMethod* cm = fr->cb()->as_compiled_method_or_null();
1236       if (cm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1237         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1238         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1239         if (obj != nullptr) {
1240           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1241           abv->set_cached(true);
1242         } else if (cache_init_error) {
1243           // Results in an OOME which is valid (as opposed to a class initialization error)
1244           // and is fine for the rare case a cache initialization failing.
1245           failures = true;
1246         }
1247       }
1248 #endif // INCLUDE_JVMCI
1249 
1250       InstanceKlass* ik = InstanceKlass::cast(k);
1251       if (obj == nullptr && !cache_init_error) {
1252 #ifdef COMPILER2
1253         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1254           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1255         } else {
1256           obj = ik->allocate_instance(THREAD);
1257         }
1258 #else
1259         obj = ik->allocate_instance(THREAD);
1260 #endif // COMPILER2
1261       }
1262     } else if (k->is_typeArray_klass()) {
1263       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1264       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1265       int len = sv->field_size() / type2size[ak->element_type()];
1266       obj = ak->allocate(len, THREAD);
1267     } else if (k->is_objArray_klass()) {
1268       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1269       obj = ak->allocate(sv->field_size(), THREAD);
1270     }
1271 
1272     if (obj == nullptr) {
1273       failures = true;
1274     }
1275 
1276     assert(sv->value().is_null(), "redundant reallocation");
1277     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1278     CLEAR_PENDING_EXCEPTION;
1279     sv->set_value(obj);
1280   }
1281 
1282   if (failures) {
1283     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1284   } else if (pending_exception.not_null()) {
1285     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1286   }
1287 
1288   return failures;
1289 }
1290 
1291 #if INCLUDE_JVMCI
1292 /**
1293  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1294  * we need to somehow be able to recover the actual kind to be able to write the correct
1295  * amount of bytes.
1296  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1297  * the entries at index n + 1 to n + i are 'markers'.
1298  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1299  * expected form of the array would be:
1300  *
1301  * {b0, b1, b2, b3, INT, marker, b6, b7}
1302  *
1303  * Thus, in order to get back the size of the entry, we simply need to count the number
1304  * of marked entries
1305  *
1306  * @param virtualArray the virtualized byte array
1307  * @param i index of the virtual entry we are recovering
1308  * @return The number of bytes the entry spans
1309  */
1310 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1311   int index = i;
1312   while (++index < virtualArray->field_size() &&
1313            virtualArray->field_at(index)->is_marker()) {}
1314   return index - i;
1315 }
1316 
1317 /**
1318  * If there was a guarantee for byte array to always start aligned to a long, we could
1319  * do a simple check on the parity of the index. Unfortunately, that is not always the
1320  * case. Thus, we check alignment of the actual address we are writing to.
1321  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1322  * write a long to index 3.
1323  */
1324 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1325     jbyte* res = obj->byte_at_addr(index);
1326     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1327     return res;
1328 }
1329 
1330 static void byte_array_put(typeArrayOop obj, intptr_t val, int index, int byte_count) {
1331   switch (byte_count) {
1332     case 1:
1333       obj->byte_at_put(index, (jbyte) *((jint *) &val));
1334       break;
1335     case 2:
1336       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) *((jint *) &val);
1337       break;
1338     case 4:
1339       *((jint *) check_alignment_get_addr(obj, index, 4)) = (jint) *((jint *) &val);
1340       break;
1341     case 8:
1342       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) *((jlong *) &val);
1343       break;
1344     default:
1345       ShouldNotReachHere();
1346   }
1347 }
1348 #endif // INCLUDE_JVMCI
1349 
1350 
1351 // restore elements of an eliminated type array
1352 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1353   int index = 0;
1354   intptr_t val;
1355 
1356   for (int i = 0; i < sv->field_size(); i++) {
1357     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1358     switch(type) {
1359     case T_LONG: case T_DOUBLE: {
1360       assert(value->type() == T_INT, "Agreement.");
1361       StackValue* low =
1362         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1363 #ifdef _LP64
1364       jlong res = (jlong)low->get_int();
1365 #else
1366       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1367 #endif
1368       obj->long_at_put(index, res);
1369       break;
1370     }
1371 
1372     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1373     case T_INT: case T_FLOAT: { // 4 bytes.
1374       assert(value->type() == T_INT, "Agreement.");
1375       bool big_value = false;
1376       if (i + 1 < sv->field_size() && type == T_INT) {
1377         if (sv->field_at(i)->is_location()) {
1378           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1379           if (type == Location::dbl || type == Location::lng) {
1380             big_value = true;
1381           }
1382         } else if (sv->field_at(i)->is_constant_int()) {
1383           ScopeValue* next_scope_field = sv->field_at(i + 1);
1384           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1385             big_value = true;
1386           }
1387         }
1388       }
1389 
1390       if (big_value) {
1391         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1392   #ifdef _LP64
1393         jlong res = (jlong)low->get_int();
1394   #else
1395         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1396   #endif
1397         obj->int_at_put(index, (jint)*((jint*)&res));
1398         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
1399       } else {
1400         val = value->get_int();
1401         obj->int_at_put(index, (jint)*((jint*)&val));
1402       }
1403       break;
1404     }
1405 
1406     case T_SHORT:
1407       assert(value->type() == T_INT, "Agreement.");
1408       val = value->get_int();
1409       obj->short_at_put(index, (jshort)*((jint*)&val));
1410       break;
1411 
1412     case T_CHAR:
1413       assert(value->type() == T_INT, "Agreement.");
1414       val = value->get_int();
1415       obj->char_at_put(index, (jchar)*((jint*)&val));
1416       break;
1417 
1418     case T_BYTE: {
1419       assert(value->type() == T_INT, "Agreement.");
1420       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1421       val = value->get_int();
1422 #if INCLUDE_JVMCI
1423       int byte_count = count_number_of_bytes_for_entry(sv, i);
1424       byte_array_put(obj, val, index, byte_count);
1425       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1426       i += byte_count - 1; // Balance the loop counter.
1427       index += byte_count;
1428       // index has been updated so continue at top of loop
1429       continue;
1430 #else
1431       obj->byte_at_put(index, (jbyte)*((jint*)&val));
1432       break;
1433 #endif // INCLUDE_JVMCI
1434     }
1435 
1436     case T_BOOLEAN: {
1437       assert(value->type() == T_INT, "Agreement.");
1438       val = value->get_int();
1439       obj->bool_at_put(index, (jboolean)*((jint*)&val));
1440       break;
1441     }
1442 
1443       default:
1444         ShouldNotReachHere();
1445     }
1446     index++;
1447   }
1448 }
1449 
1450 // restore fields of an eliminated object array
1451 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1452   for (int i = 0; i < sv->field_size(); i++) {
1453     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1454     assert(value->type() == T_OBJECT, "object element expected");
1455     obj->obj_at_put(i, value->get_obj()());
1456   }
1457 }
1458 
1459 class ReassignedField {
1460 public:
1461   int _offset;
1462   BasicType _type;
1463 public:
1464   ReassignedField() {
1465     _offset = 0;
1466     _type = T_ILLEGAL;
1467   }
1468 };
1469 
1470 int compare(ReassignedField* left, ReassignedField* right) {
1471   return left->_offset - right->_offset;
1472 }
1473 
1474 // Restore fields of an eliminated instance object using the same field order
1475 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1476 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1477   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1478   InstanceKlass* ik = klass;
1479   while (ik != nullptr) {
1480     for (AllFieldStream fs(ik); !fs.done(); fs.next()) {
1481       if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) {
1482         ReassignedField field;
1483         field._offset = fs.offset();
1484         field._type = Signature::basic_type(fs.signature());
1485         fields->append(field);
1486       }
1487     }
1488     ik = ik->superklass();
1489   }
1490   fields->sort(compare);
1491   for (int i = 0; i < fields->length(); i++) {
1492     intptr_t val;
1493     ScopeValue* scope_field = sv->field_at(svIndex);
1494     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1495     int offset = fields->at(i)._offset;
1496     BasicType type = fields->at(i)._type;
1497     switch (type) {
1498       case T_OBJECT: case T_ARRAY:
1499         assert(value->type() == T_OBJECT, "Agreement.");
1500         obj->obj_field_put(offset, value->get_obj()());
1501         break;
1502 
1503       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1504       case T_INT: case T_FLOAT: { // 4 bytes.
1505         assert(value->type() == T_INT, "Agreement.");
1506         bool big_value = false;
1507         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1508           if (scope_field->is_location()) {
1509             Location::Type type = ((LocationValue*) scope_field)->location().type();
1510             if (type == Location::dbl || type == Location::lng) {
1511               big_value = true;
1512             }
1513           }
1514           if (scope_field->is_constant_int()) {
1515             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1516             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1517               big_value = true;
1518             }
1519           }
1520         }
1521 
1522         if (big_value) {
1523           i++;
1524           assert(i < fields->length(), "second T_INT field needed");
1525           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1526         } else {
1527           val = value->get_int();
1528           obj->int_field_put(offset, (jint)*((jint*)&val));
1529           break;
1530         }
1531       }
1532         /* no break */
1533 
1534       case T_LONG: case T_DOUBLE: {
1535         assert(value->type() == T_INT, "Agreement.");
1536         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1537 #ifdef _LP64
1538         jlong res = (jlong)low->get_int();
1539 #else
1540         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1541 #endif
1542         obj->long_field_put(offset, res);
1543         break;
1544       }
1545 
1546       case T_SHORT:
1547         assert(value->type() == T_INT, "Agreement.");
1548         val = value->get_int();
1549         obj->short_field_put(offset, (jshort)*((jint*)&val));
1550         break;
1551 
1552       case T_CHAR:
1553         assert(value->type() == T_INT, "Agreement.");
1554         val = value->get_int();
1555         obj->char_field_put(offset, (jchar)*((jint*)&val));
1556         break;
1557 
1558       case T_BYTE:
1559         assert(value->type() == T_INT, "Agreement.");
1560         val = value->get_int();
1561         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1562         break;
1563 
1564       case T_BOOLEAN:
1565         assert(value->type() == T_INT, "Agreement.");
1566         val = value->get_int();
1567         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1568         break;
1569 
1570       default:
1571         ShouldNotReachHere();
1572     }
1573     svIndex++;
1574   }
1575   return svIndex;
1576 }
1577 
1578 // restore fields of all eliminated objects and arrays
1579 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1580   for (int i = 0; i < objects->length(); i++) {
1581     ObjectValue* sv = (ObjectValue*) objects->at(i);
1582     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1583     Handle obj = sv->value();
1584     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1585 #ifndef PRODUCT
1586     if (PrintDeoptimizationDetails) {
1587       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1588     }
1589 #endif // !PRODUCT
1590 
1591     if (obj.is_null()) {
1592       continue;
1593     }
1594 
1595 #if INCLUDE_JVMCI
1596     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1597     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1598       continue;
1599     }
1600 #endif // INCLUDE_JVMCI
1601 #ifdef COMPILER2
1602     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1603       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1604       ScopeValue* payload = sv->field_at(0);
1605       if (payload->is_location() &&
1606           payload->as_LocationValue()->location().type() == Location::vector) {
1607 #ifndef PRODUCT
1608         if (PrintDeoptimizationDetails) {
1609           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1610           if (Verbose) {
1611             Handle obj = sv->value();
1612             k->oop_print_on(obj(), tty);
1613           }
1614         }
1615 #endif // !PRODUCT
1616         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1617       }
1618       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1619       // which could be restored after vector object allocation.
1620     }
1621 #endif /* !COMPILER2 */
1622     if (k->is_instance_klass()) {
1623       InstanceKlass* ik = InstanceKlass::cast(k);
1624       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1625     } else if (k->is_typeArray_klass()) {
1626       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1627       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1628     } else if (k->is_objArray_klass()) {
1629       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1630     }
1631   }
1632   // These objects may escape when we return to Interpreter after deoptimization.
1633   // We need barrier so that stores that initialize these objects can't be reordered
1634   // with subsequent stores that make these objects accessible by other threads.
1635   OrderAccess::storestore();
1636 }
1637 
1638 
1639 // relock objects for which synchronization was eliminated
1640 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1641                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1642   bool relocked_objects = false;
1643   for (int i = 0; i < monitors->length(); i++) {
1644     MonitorInfo* mon_info = monitors->at(i);
1645     if (mon_info->eliminated()) {
1646       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1647       relocked_objects = true;
1648       if (!mon_info->owner_is_scalar_replaced()) {
1649         Handle obj(thread, mon_info->owner());
1650         markWord mark = obj->mark();
1651         if (exec_mode == Unpack_none) {
1652           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1653             // With exec_mode == Unpack_none obj may be thread local and locked in
1654             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1655             markWord dmw = mark.displaced_mark_helper();
1656             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1657             obj->set_mark(dmw);
1658           }
1659           if (mark.has_monitor()) {
1660             // defer relocking if the deoptee thread is currently waiting for obj
1661             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1662             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1663               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1664               mon_info->lock()->set_displaced_header(markWord::unused_mark());
1665               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1666               continue;
1667             }
1668           }
1669         }
1670         if (LockingMode == LM_LIGHTWEIGHT) {
1671           // We have lost information about the correct state of the lock stack.
1672           // Inflate the locks instead. Enter then inflate to avoid races with
1673           // deflation.
1674           ObjectSynchronizer::enter_for(obj, nullptr, deoptee_thread);
1675           assert(mon_info->owner()->is_locked(), "object must be locked now");
1676           ObjectMonitor* mon = ObjectSynchronizer::inflate_for(deoptee_thread, obj(), ObjectSynchronizer::inflate_cause_vm_internal);
1677           assert(mon->owner() == deoptee_thread, "must be");
1678         } else {
1679           BasicLock* lock = mon_info->lock();
1680           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1681           assert(mon_info->owner()->is_locked(), "object must be locked now");
1682         }
1683       }
1684     }
1685   }
1686   return relocked_objects;
1687 }
1688 #endif // COMPILER2_OR_JVMCI
1689 
1690 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1691   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1692 
1693   // Register map for next frame (used for stack crawl).  We capture
1694   // the state of the deopt'ing frame's caller.  Thus if we need to
1695   // stuff a C2I adapter we can properly fill in the callee-save
1696   // register locations.
1697   frame caller = fr.sender(reg_map);
1698   int frame_size = caller.sp() - fr.sp();
1699 
1700   frame sender = caller;
1701 
1702   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1703   // the vframeArray containing the unpacking information is allocated in the C heap.
1704   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1705   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1706 
1707   // Compare the vframeArray to the collected vframes
1708   assert(array->structural_compare(thread, chunk), "just checking");
1709 
1710   if (TraceDeoptimization) {
1711     ResourceMark rm;
1712     stringStream st;
1713     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1714     st.print("   ");
1715     fr.print_on(&st);
1716     st.print_cr("   Virtual frames (innermost/newest first):");
1717     for (int index = 0; index < chunk->length(); index++) {
1718       compiledVFrame* vf = chunk->at(index);
1719       int bci = vf->raw_bci();
1720       const char* code_name;
1721       if (bci == SynchronizationEntryBCI) {
1722         code_name = "sync entry";
1723       } else {
1724         Bytecodes::Code code = vf->method()->code_at(bci);
1725         code_name = Bytecodes::name(code);
1726       }
1727 
1728       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1729       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1730       st.print(" - %s", code_name);
1731       st.print_cr(" @ bci=%d ", bci);
1732     }
1733     tty->print_raw(st.freeze());
1734     tty->cr();
1735   }
1736 
1737   return array;
1738 }
1739 
1740 #if COMPILER2_OR_JVMCI
1741 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1742   // Reallocation of some scalar replaced objects failed. Record
1743   // that we need to pop all the interpreter frames for the
1744   // deoptimized compiled frame.
1745   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1746   thread->set_frames_to_pop_failed_realloc(array->frames());
1747   // Unlock all monitors here otherwise the interpreter will see a
1748   // mix of locked and unlocked monitors (because of failed
1749   // reallocations of synchronized objects) and be confused.
1750   for (int i = 0; i < array->frames(); i++) {
1751     MonitorChunk* monitors = array->element(i)->monitors();
1752     if (monitors != nullptr) {
1753       // Unlock in reverse order starting from most nested monitor.
1754       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1755         BasicObjectLock* src = monitors->at(j);
1756         if (src->obj() != nullptr) {
1757           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1758         }
1759       }
1760       array->element(i)->free_monitors();
1761 #ifdef ASSERT
1762       array->element(i)->set_removed_monitors();
1763 #endif
1764     }
1765   }
1766 }
1767 #endif
1768 
1769 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1770   assert(fr.can_be_deoptimized(), "checking frame type");
1771 
1772   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1773 
1774   if (LogCompilation && xtty != nullptr) {
1775     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1776     assert(cm != nullptr, "only compiled methods can deopt");
1777 
1778     ttyLocker ttyl;
1779     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1780     cm->log_identity(xtty);
1781     xtty->end_head();
1782     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1783       xtty->begin_elem("jvms bci='%d'", sd->bci());
1784       xtty->method(sd->method());
1785       xtty->end_elem();
1786       if (sd->is_top())  break;
1787     }
1788     xtty->tail("deoptimized");
1789   }
1790 
1791   Continuation::notify_deopt(thread, fr.sp());
1792 
1793   // Patch the compiled method so that when execution returns to it we will
1794   // deopt the execution state and return to the interpreter.
1795   fr.deoptimize(thread);
1796 }
1797 
1798 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1799   // Deoptimize only if the frame comes from compile code.
1800   // Do not deoptimize the frame which is already patched
1801   // during the execution of the loops below.
1802   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1803     return;
1804   }
1805   ResourceMark rm;
1806   deoptimize_single_frame(thread, fr, reason);
1807 }
1808 
1809 #if INCLUDE_JVMCI
1810 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1811   // there is no exception handler for this pc => deoptimize
1812   cm->make_not_entrant();
1813 
1814   // Use Deoptimization::deoptimize for all of its side-effects:
1815   // gathering traps statistics, logging...
1816   // it also patches the return pc but we do not care about that
1817   // since we return a continuation to the deopt_blob below.
1818   JavaThread* thread = JavaThread::current();
1819   RegisterMap reg_map(thread,
1820                       RegisterMap::UpdateMap::skip,
1821                       RegisterMap::ProcessFrames::include,
1822                       RegisterMap::WalkContinuation::skip);
1823   frame runtime_frame = thread->last_frame();
1824   frame caller_frame = runtime_frame.sender(&reg_map);
1825   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1826   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1827   compiledVFrame* cvf = compiledVFrame::cast(vf);
1828   ScopeDesc* imm_scope = cvf->scope();
1829   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1830   if (imm_mdo != nullptr) {
1831     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1832     if (pdata != nullptr && pdata->is_BitData()) {
1833       BitData* bit_data = (BitData*) pdata;
1834       bit_data->set_exception_seen();
1835     }
1836   }
1837 
1838   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1839 
1840   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, cm->method()), true);
1841   if (trap_mdo != nullptr) {
1842     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1843   }
1844 
1845   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1846 }
1847 #endif
1848 
1849 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1850   assert(thread == Thread::current() ||
1851          thread->is_handshake_safe_for(Thread::current()) ||
1852          SafepointSynchronize::is_at_safepoint(),
1853          "can only deoptimize other thread at a safepoint/handshake");
1854   // Compute frame and register map based on thread and sp.
1855   RegisterMap reg_map(thread,
1856                       RegisterMap::UpdateMap::skip,
1857                       RegisterMap::ProcessFrames::include,
1858                       RegisterMap::WalkContinuation::skip);
1859   frame fr = thread->last_frame();
1860   while (fr.id() != id) {
1861     fr = fr.sender(&reg_map);
1862   }
1863   deoptimize(thread, fr, reason);
1864 }
1865 
1866 
1867 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1868   Thread* current = Thread::current();
1869   if (thread == current || thread->is_handshake_safe_for(current)) {
1870     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1871   } else {
1872     VM_DeoptimizeFrame deopt(thread, id, reason);
1873     VMThread::execute(&deopt);
1874   }
1875 }
1876 
1877 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1878   deoptimize_frame(thread, id, Reason_constraint);
1879 }
1880 
1881 // JVMTI PopFrame support
1882 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1883 {
1884   assert(thread == JavaThread::current(), "pre-condition");
1885   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1886 }
1887 JRT_END
1888 
1889 MethodData*
1890 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1891                                 bool create_if_missing) {
1892   JavaThread* THREAD = thread; // For exception macros.
1893   MethodData* mdo = m()->method_data();
1894   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1895     // Build an MDO.  Ignore errors like OutOfMemory;
1896     // that simply means we won't have an MDO to update.
1897     Method::build_profiling_method_data(m, THREAD);
1898     if (HAS_PENDING_EXCEPTION) {
1899       // Only metaspace OOM is expected. No Java code executed.
1900       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1901       CLEAR_PENDING_EXCEPTION;
1902     }
1903     mdo = m()->method_data();
1904   }
1905   return mdo;
1906 }
1907 
1908 #if COMPILER2_OR_JVMCI
1909 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1910   // In case of an unresolved klass entry, load the class.
1911   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1912   // and probably nowhere else.
1913   // Even that case would benefit from simply re-interpreting the
1914   // bytecode, without paying special attention to the class index.
1915   // So this whole "class index" feature should probably be removed.
1916 
1917   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1918     Klass* tk = constant_pool->klass_at(index, THREAD);
1919     if (HAS_PENDING_EXCEPTION) {
1920       // Exception happened during classloading. We ignore the exception here, since it
1921       // is going to be rethrown since the current activation is going to be deoptimized and
1922       // the interpreter will re-execute the bytecode.
1923       // Do not clear probable Async Exceptions.
1924       CLEAR_PENDING_NONASYNC_EXCEPTION;
1925       // Class loading called java code which may have caused a stack
1926       // overflow. If the exception was thrown right before the return
1927       // to the runtime the stack is no longer guarded. Reguard the
1928       // stack otherwise if we return to the uncommon trap blob and the
1929       // stack bang causes a stack overflow we crash.
1930       JavaThread* jt = THREAD;
1931       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1932       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1933     }
1934     return;
1935   }
1936 
1937   assert(!constant_pool->tag_at(index).is_symbol(),
1938          "no symbolic names here, please");
1939 }
1940 
1941 #if INCLUDE_JFR
1942 
1943 class DeoptReasonSerializer : public JfrSerializer {
1944  public:
1945   void serialize(JfrCheckpointWriter& writer) {
1946     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1947     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1948       writer.write_key((u8)i);
1949       writer.write(Deoptimization::trap_reason_name(i));
1950     }
1951   }
1952 };
1953 
1954 class DeoptActionSerializer : public JfrSerializer {
1955  public:
1956   void serialize(JfrCheckpointWriter& writer) {
1957     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1958     writer.write_count(nof_actions);
1959     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1960       writer.write_key(i);
1961       writer.write(Deoptimization::trap_action_name((int)i));
1962     }
1963   }
1964 };
1965 
1966 static void register_serializers() {
1967   static int critical_section = 0;
1968   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1969     return;
1970   }
1971   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1972   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1973 }
1974 
1975 static void post_deoptimization_event(CompiledMethod* nm,
1976                                       const Method* method,
1977                                       int trap_bci,
1978                                       int instruction,
1979                                       Deoptimization::DeoptReason reason,
1980                                       Deoptimization::DeoptAction action) {
1981   assert(nm != nullptr, "invariant");
1982   assert(method != nullptr, "invariant");
1983   if (EventDeoptimization::is_enabled()) {
1984     static bool serializers_registered = false;
1985     if (!serializers_registered) {
1986       register_serializers();
1987       serializers_registered = true;
1988     }
1989     EventDeoptimization event;
1990     event.set_compileId(nm->compile_id());
1991     event.set_compiler(nm->compiler_type());
1992     event.set_method(method);
1993     event.set_lineNumber(method->line_number_from_bci(trap_bci));
1994     event.set_bci(trap_bci);
1995     event.set_instruction(instruction);
1996     event.set_reason(reason);
1997     event.set_action(action);
1998     event.commit();
1999   }
2000 }
2001 
2002 #endif // INCLUDE_JFR
2003 
2004 static void log_deopt(CompiledMethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2005                               const char* reason_name, const char* reason_action) {
2006   LogTarget(Debug, deoptimization) lt;
2007   if (lt.is_enabled()) {
2008     LogStream ls(lt);
2009     bool is_osr = nm->is_osr_method();
2010     ls.print("cid=%4d %s level=%d",
2011              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
2012     ls.print(" %s", tm->name_and_sig_as_C_string());
2013     ls.print(" trap_bci=%d ", trap_bci);
2014     if (is_osr) {
2015       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2016     }
2017     ls.print("%s ", reason_name);
2018     ls.print("%s ", reason_action);
2019     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2020              pc, fr.pc() - nm->code_begin());
2021   }
2022 }
2023 
2024 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2025   HandleMark hm(current);
2026 
2027   // uncommon_trap() is called at the beginning of the uncommon trap
2028   // handler. Note this fact before we start generating temporary frames
2029   // that can confuse an asynchronous stack walker. This counter is
2030   // decremented at the end of unpack_frames().
2031 
2032   current->inc_in_deopt_handler();
2033 
2034 #if INCLUDE_JVMCI
2035   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2036   RegisterMap reg_map(current,
2037                       RegisterMap::UpdateMap::include,
2038                       RegisterMap::ProcessFrames::include,
2039                       RegisterMap::WalkContinuation::skip);
2040 #else
2041   RegisterMap reg_map(current,
2042                       RegisterMap::UpdateMap::skip,
2043                       RegisterMap::ProcessFrames::include,
2044                       RegisterMap::WalkContinuation::skip);
2045 #endif
2046   frame stub_frame = current->last_frame();
2047   frame fr = stub_frame.sender(&reg_map);
2048 
2049   // Log a message
2050   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2051               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2052 
2053   {
2054     ResourceMark rm;
2055 
2056     DeoptReason reason = trap_request_reason(trap_request);
2057     DeoptAction action = trap_request_action(trap_request);
2058 #if INCLUDE_JVMCI
2059     int debug_id = trap_request_debug_id(trap_request);
2060 #endif
2061     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2062 
2063     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2064     compiledVFrame* cvf = compiledVFrame::cast(vf);
2065 
2066     CompiledMethod* nm = cvf->code();
2067 
2068     ScopeDesc*      trap_scope  = cvf->scope();
2069 
2070     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2071 
2072     if (is_receiver_constraint_failure) {
2073       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2074                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2075                     JVMCI_ONLY(COMMA debug_id));
2076     }
2077 
2078     methodHandle    trap_method(current, trap_scope->method());
2079     int             trap_bci    = trap_scope->bci();
2080 #if INCLUDE_JVMCI
2081     jlong           speculation = current->pending_failed_speculation();
2082     if (nm->is_compiled_by_jvmci()) {
2083       nm->as_nmethod()->update_speculation(current);
2084     } else {
2085       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2086     }
2087 
2088     if (trap_bci == SynchronizationEntryBCI) {
2089       trap_bci = 0;
2090       current->set_pending_monitorenter(true);
2091     }
2092 
2093     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2094       current->set_pending_transfer_to_interpreter(true);
2095     }
2096 #endif
2097 
2098     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2099     // Record this event in the histogram.
2100     gather_statistics(reason, action, trap_bc);
2101 
2102     // Ensure that we can record deopt. history:
2103     // Need MDO to record RTM code generation state.
2104     bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
2105 
2106     methodHandle profiled_method;
2107 #if INCLUDE_JVMCI
2108     if (nm->is_compiled_by_jvmci()) {
2109       profiled_method = methodHandle(current, nm->method());
2110     } else {
2111       profiled_method = trap_method;
2112     }
2113 #else
2114     profiled_method = trap_method;
2115 #endif
2116 
2117     MethodData* trap_mdo =
2118       get_method_data(current, profiled_method, create_if_missing);
2119 
2120     { // Log Deoptimization event for JFR, UL and event system
2121       Method* tm = trap_method();
2122       const char* reason_name = trap_reason_name(reason);
2123       const char* reason_action = trap_action_name(action);
2124       intptr_t pc = p2i(fr.pc());
2125 
2126       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2127       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2128       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2129                                 reason_name, reason_action, pc,
2130                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2131     }
2132 
2133     // Print a bunch of diagnostics, if requested.
2134     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2135       ResourceMark rm;
2136       ttyLocker ttyl;
2137       char buf[100];
2138       if (xtty != nullptr) {
2139         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
2140                          os::current_thread_id(),
2141                          format_trap_request(buf, sizeof(buf), trap_request));
2142 #if INCLUDE_JVMCI
2143         if (speculation != 0) {
2144           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2145         }
2146 #endif
2147         nm->log_identity(xtty);
2148       }
2149       Symbol* class_name = nullptr;
2150       bool unresolved = false;
2151       if (unloaded_class_index >= 0) {
2152         constantPoolHandle constants (current, trap_method->constants());
2153         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2154           class_name = constants->klass_name_at(unloaded_class_index);
2155           unresolved = true;
2156           if (xtty != nullptr)
2157             xtty->print(" unresolved='1'");
2158         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2159           class_name = constants->symbol_at(unloaded_class_index);
2160         }
2161         if (xtty != nullptr)
2162           xtty->name(class_name);
2163       }
2164       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2165         // Dump the relevant MDO state.
2166         // This is the deopt count for the current reason, any previous
2167         // reasons or recompiles seen at this point.
2168         int dcnt = trap_mdo->trap_count(reason);
2169         if (dcnt != 0)
2170           xtty->print(" count='%d'", dcnt);
2171         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2172         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2173         if (dos != 0) {
2174           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2175           if (trap_state_is_recompiled(dos)) {
2176             int recnt2 = trap_mdo->overflow_recompile_count();
2177             if (recnt2 != 0)
2178               xtty->print(" recompiles2='%d'", recnt2);
2179           }
2180         }
2181       }
2182       if (xtty != nullptr) {
2183         xtty->stamp();
2184         xtty->end_head();
2185       }
2186       if (TraceDeoptimization) {  // make noise on the tty
2187         stringStream st;
2188         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2189         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2190                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2191         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2192 #if INCLUDE_JVMCI
2193         if (nm->is_nmethod()) {
2194           const char* installed_code_name = nm->as_nmethod()->jvmci_name();
2195           if (installed_code_name != nullptr) {
2196             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2197           }
2198         }
2199 #endif
2200         st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2201                    p2i(fr.pc()),
2202                    os::current_thread_id(),
2203                    trap_reason_name(reason),
2204                    trap_action_name(action),
2205                    unloaded_class_index
2206 #if INCLUDE_JVMCI
2207                    , debug_id
2208 #endif
2209                    );
2210         if (class_name != nullptr) {
2211           st.print(unresolved ? " unresolved class: " : " symbol: ");
2212           class_name->print_symbol_on(&st);
2213         }
2214         st.cr();
2215         tty->print_raw(st.freeze());
2216       }
2217       if (xtty != nullptr) {
2218         // Log the precise location of the trap.
2219         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2220           xtty->begin_elem("jvms bci='%d'", sd->bci());
2221           xtty->method(sd->method());
2222           xtty->end_elem();
2223           if (sd->is_top())  break;
2224         }
2225         xtty->tail("uncommon_trap");
2226       }
2227     }
2228     // (End diagnostic printout.)
2229 
2230     if (is_receiver_constraint_failure) {
2231       fatal("missing receiver type check");
2232     }
2233 
2234     // Load class if necessary
2235     if (unloaded_class_index >= 0) {
2236       constantPoolHandle constants(current, trap_method->constants());
2237       load_class_by_index(constants, unloaded_class_index, THREAD);
2238     }
2239 
2240     // Flush the nmethod if necessary and desirable.
2241     //
2242     // We need to avoid situations where we are re-flushing the nmethod
2243     // because of a hot deoptimization site.  Repeated flushes at the same
2244     // point need to be detected by the compiler and avoided.  If the compiler
2245     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2246     // module must take measures to avoid an infinite cycle of recompilation
2247     // and deoptimization.  There are several such measures:
2248     //
2249     //   1. If a recompilation is ordered a second time at some site X
2250     //   and for the same reason R, the action is adjusted to 'reinterpret',
2251     //   to give the interpreter time to exercise the method more thoroughly.
2252     //   If this happens, the method's overflow_recompile_count is incremented.
2253     //
2254     //   2. If the compiler fails to reduce the deoptimization rate, then
2255     //   the method's overflow_recompile_count will begin to exceed the set
2256     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2257     //   is adjusted to 'make_not_compilable', and the method is abandoned
2258     //   to the interpreter.  This is a performance hit for hot methods,
2259     //   but is better than a disastrous infinite cycle of recompilations.
2260     //   (Actually, only the method containing the site X is abandoned.)
2261     //
2262     //   3. In parallel with the previous measures, if the total number of
2263     //   recompilations of a method exceeds the much larger set limit
2264     //   PerMethodRecompilationCutoff, the method is abandoned.
2265     //   This should only happen if the method is very large and has
2266     //   many "lukewarm" deoptimizations.  The code which enforces this
2267     //   limit is elsewhere (class nmethod, class Method).
2268     //
2269     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2270     // to recompile at each bytecode independently of the per-BCI cutoff.
2271     //
2272     // The decision to update code is up to the compiler, and is encoded
2273     // in the Action_xxx code.  If the compiler requests Action_none
2274     // no trap state is changed, no compiled code is changed, and the
2275     // computation suffers along in the interpreter.
2276     //
2277     // The other action codes specify various tactics for decompilation
2278     // and recompilation.  Action_maybe_recompile is the loosest, and
2279     // allows the compiled code to stay around until enough traps are seen,
2280     // and until the compiler gets around to recompiling the trapping method.
2281     //
2282     // The other actions cause immediate removal of the present code.
2283 
2284     // Traps caused by injected profile shouldn't pollute trap counts.
2285     bool injected_profile_trap = trap_method->has_injected_profile() &&
2286                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2287 
2288     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2289     bool make_not_entrant = false;
2290     bool make_not_compilable = false;
2291     bool reprofile = false;
2292     switch (action) {
2293     case Action_none:
2294       // Keep the old code.
2295       update_trap_state = false;
2296       break;
2297     case Action_maybe_recompile:
2298       // Do not need to invalidate the present code, but we can
2299       // initiate another
2300       // Start compiler without (necessarily) invalidating the nmethod.
2301       // The system will tolerate the old code, but new code should be
2302       // generated when possible.
2303       break;
2304     case Action_reinterpret:
2305       // Go back into the interpreter for a while, and then consider
2306       // recompiling form scratch.
2307       make_not_entrant = true;
2308       // Reset invocation counter for outer most method.
2309       // This will allow the interpreter to exercise the bytecodes
2310       // for a while before recompiling.
2311       // By contrast, Action_make_not_entrant is immediate.
2312       //
2313       // Note that the compiler will track null_check, null_assert,
2314       // range_check, and class_check events and log them as if they
2315       // had been traps taken from compiled code.  This will update
2316       // the MDO trap history so that the next compilation will
2317       // properly detect hot trap sites.
2318       reprofile = true;
2319       break;
2320     case Action_make_not_entrant:
2321       // Request immediate recompilation, and get rid of the old code.
2322       // Make them not entrant, so next time they are called they get
2323       // recompiled.  Unloaded classes are loaded now so recompile before next
2324       // time they are called.  Same for uninitialized.  The interpreter will
2325       // link the missing class, if any.
2326       make_not_entrant = true;
2327       break;
2328     case Action_make_not_compilable:
2329       // Give up on compiling this method at all.
2330       make_not_entrant = true;
2331       make_not_compilable = true;
2332       break;
2333     default:
2334       ShouldNotReachHere();
2335     }
2336 
2337     // Setting +ProfileTraps fixes the following, on all platforms:
2338     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
2339     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2340     // recompile relies on a MethodData* to record heroic opt failures.
2341 
2342     // Whether the interpreter is producing MDO data or not, we also need
2343     // to use the MDO to detect hot deoptimization points and control
2344     // aggressive optimization.
2345     bool inc_recompile_count = false;
2346     ProfileData* pdata = nullptr;
2347     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2348       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2349       uint this_trap_count = 0;
2350       bool maybe_prior_trap = false;
2351       bool maybe_prior_recompile = false;
2352       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2353 #if INCLUDE_JVMCI
2354                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2355 #endif
2356                                    nm->method(),
2357                                    //outputs:
2358                                    this_trap_count,
2359                                    maybe_prior_trap,
2360                                    maybe_prior_recompile);
2361       // Because the interpreter also counts null, div0, range, and class
2362       // checks, these traps from compiled code are double-counted.
2363       // This is harmless; it just means that the PerXTrapLimit values
2364       // are in effect a little smaller than they look.
2365 
2366       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2367       if (per_bc_reason != Reason_none) {
2368         // Now take action based on the partially known per-BCI history.
2369         if (maybe_prior_trap
2370             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2371           // If there are too many traps at this BCI, force a recompile.
2372           // This will allow the compiler to see the limit overflow, and
2373           // take corrective action, if possible.  The compiler generally
2374           // does not use the exact PerBytecodeTrapLimit value, but instead
2375           // changes its tactics if it sees any traps at all.  This provides
2376           // a little hysteresis, delaying a recompile until a trap happens
2377           // several times.
2378           //
2379           // Actually, since there is only one bit of counter per BCI,
2380           // the possible per-BCI counts are {0,1,(per-method count)}.
2381           // This produces accurate results if in fact there is only
2382           // one hot trap site, but begins to get fuzzy if there are
2383           // many sites.  For example, if there are ten sites each
2384           // trapping two or more times, they each get the blame for
2385           // all of their traps.
2386           make_not_entrant = true;
2387         }
2388 
2389         // Detect repeated recompilation at the same BCI, and enforce a limit.
2390         if (make_not_entrant && maybe_prior_recompile) {
2391           // More than one recompile at this point.
2392           inc_recompile_count = maybe_prior_trap;
2393         }
2394       } else {
2395         // For reasons which are not recorded per-bytecode, we simply
2396         // force recompiles unconditionally.
2397         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2398         make_not_entrant = true;
2399       }
2400 
2401       // Go back to the compiler if there are too many traps in this method.
2402       if (this_trap_count >= per_method_trap_limit(reason)) {
2403         // If there are too many traps in this method, force a recompile.
2404         // This will allow the compiler to see the limit overflow, and
2405         // take corrective action, if possible.
2406         // (This condition is an unlikely backstop only, because the
2407         // PerBytecodeTrapLimit is more likely to take effect first,
2408         // if it is applicable.)
2409         make_not_entrant = true;
2410       }
2411 
2412       // Here's more hysteresis:  If there has been a recompile at
2413       // this trap point already, run the method in the interpreter
2414       // for a while to exercise it more thoroughly.
2415       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2416         reprofile = true;
2417       }
2418     }
2419 
2420     // Take requested actions on the method:
2421 
2422     // Recompile
2423     if (make_not_entrant) {
2424       if (!nm->make_not_entrant()) {
2425         return; // the call did not change nmethod's state
2426       }
2427 
2428       if (pdata != nullptr) {
2429         // Record the recompilation event, if any.
2430         int tstate0 = pdata->trap_state();
2431         int tstate1 = trap_state_set_recompiled(tstate0, true);
2432         if (tstate1 != tstate0)
2433           pdata->set_trap_state(tstate1);
2434       }
2435 
2436 #if INCLUDE_RTM_OPT
2437       // Restart collecting RTM locking abort statistic if the method
2438       // is recompiled for a reason other than RTM state change.
2439       // Assume that in new recompiled code the statistic could be different,
2440       // for example, due to different inlining.
2441       if ((reason != Reason_rtm_state_change) && (trap_mdo != nullptr) &&
2442           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
2443         trap_mdo->atomic_set_rtm_state(ProfileRTM);
2444       }
2445 #endif
2446       // For code aging we count traps separately here, using make_not_entrant()
2447       // as a guard against simultaneous deopts in multiple threads.
2448       if (reason == Reason_tenured && trap_mdo != nullptr) {
2449         trap_mdo->inc_tenure_traps();
2450       }
2451     }
2452 
2453     if (inc_recompile_count) {
2454       trap_mdo->inc_overflow_recompile_count();
2455       if ((uint)trap_mdo->overflow_recompile_count() >
2456           (uint)PerBytecodeRecompilationCutoff) {
2457         // Give up on the method containing the bad BCI.
2458         if (trap_method() == nm->method()) {
2459           make_not_compilable = true;
2460         } else {
2461           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2462           // But give grace to the enclosing nm->method().
2463         }
2464       }
2465     }
2466 
2467     // Reprofile
2468     if (reprofile) {
2469       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2470     }
2471 
2472     // Give up compiling
2473     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2474       assert(make_not_entrant, "consistent");
2475       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2476     }
2477 
2478   } // Free marked resources
2479 
2480 }
2481 JRT_END
2482 
2483 ProfileData*
2484 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2485                                          int trap_bci,
2486                                          Deoptimization::DeoptReason reason,
2487                                          bool update_total_trap_count,
2488 #if INCLUDE_JVMCI
2489                                          bool is_osr,
2490 #endif
2491                                          Method* compiled_method,
2492                                          //outputs:
2493                                          uint& ret_this_trap_count,
2494                                          bool& ret_maybe_prior_trap,
2495                                          bool& ret_maybe_prior_recompile) {
2496   bool maybe_prior_trap = false;
2497   bool maybe_prior_recompile = false;
2498   uint this_trap_count = 0;
2499   if (update_total_trap_count) {
2500     uint idx = reason;
2501 #if INCLUDE_JVMCI
2502     if (is_osr) {
2503       // Upper half of history array used for traps in OSR compilations
2504       idx += Reason_TRAP_HISTORY_LENGTH;
2505     }
2506 #endif
2507     uint prior_trap_count = trap_mdo->trap_count(idx);
2508     this_trap_count  = trap_mdo->inc_trap_count(idx);
2509 
2510     // If the runtime cannot find a place to store trap history,
2511     // it is estimated based on the general condition of the method.
2512     // If the method has ever been recompiled, or has ever incurred
2513     // a trap with the present reason , then this BCI is assumed
2514     // (pessimistically) to be the culprit.
2515     maybe_prior_trap      = (prior_trap_count != 0);
2516     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2517   }
2518   ProfileData* pdata = nullptr;
2519 
2520 
2521   // For reasons which are recorded per bytecode, we check per-BCI data.
2522   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2523   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2524   if (per_bc_reason != Reason_none) {
2525     // Find the profile data for this BCI.  If there isn't one,
2526     // try to allocate one from the MDO's set of spares.
2527     // This will let us detect a repeated trap at this point.
2528     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2529 
2530     if (pdata != nullptr) {
2531       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2532         if (LogCompilation && xtty != nullptr) {
2533           ttyLocker ttyl;
2534           // no more room for speculative traps in this MDO
2535           xtty->elem("speculative_traps_oom");
2536         }
2537       }
2538       // Query the trap state of this profile datum.
2539       int tstate0 = pdata->trap_state();
2540       if (!trap_state_has_reason(tstate0, per_bc_reason))
2541         maybe_prior_trap = false;
2542       if (!trap_state_is_recompiled(tstate0))
2543         maybe_prior_recompile = false;
2544 
2545       // Update the trap state of this profile datum.
2546       int tstate1 = tstate0;
2547       // Record the reason.
2548       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2549       // Store the updated state on the MDO, for next time.
2550       if (tstate1 != tstate0)
2551         pdata->set_trap_state(tstate1);
2552     } else {
2553       if (LogCompilation && xtty != nullptr) {
2554         ttyLocker ttyl;
2555         // Missing MDP?  Leave a small complaint in the log.
2556         xtty->elem("missing_mdp bci='%d'", trap_bci);
2557       }
2558     }
2559   }
2560 
2561   // Return results:
2562   ret_this_trap_count = this_trap_count;
2563   ret_maybe_prior_trap = maybe_prior_trap;
2564   ret_maybe_prior_recompile = maybe_prior_recompile;
2565   return pdata;
2566 }
2567 
2568 void
2569 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2570   ResourceMark rm;
2571   // Ignored outputs:
2572   uint ignore_this_trap_count;
2573   bool ignore_maybe_prior_trap;
2574   bool ignore_maybe_prior_recompile;
2575   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2576   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2577   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2578   query_update_method_data(trap_mdo, trap_bci,
2579                            (DeoptReason)reason,
2580                            update_total_counts,
2581 #if INCLUDE_JVMCI
2582                            false,
2583 #endif
2584                            nullptr,
2585                            ignore_this_trap_count,
2586                            ignore_maybe_prior_trap,
2587                            ignore_maybe_prior_recompile);
2588 }
2589 
2590 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) {
2591   // Enable WXWrite: current function is called from methods compiled by C2 directly
2592   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2593 
2594   // Still in Java no safepoints
2595   {
2596     // This enters VM and may safepoint
2597     uncommon_trap_inner(current, trap_request);
2598   }
2599   HandleMark hm(current);
2600   return fetch_unroll_info_helper(current, exec_mode);
2601 }
2602 
2603 // Local derived constants.
2604 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2605 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2606 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2607 
2608 //---------------------------trap_state_reason---------------------------------
2609 Deoptimization::DeoptReason
2610 Deoptimization::trap_state_reason(int trap_state) {
2611   // This assert provides the link between the width of DataLayout::trap_bits
2612   // and the encoding of "recorded" reasons.  It ensures there are enough
2613   // bits to store all needed reasons in the per-BCI MDO profile.
2614   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2615   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2616   trap_state -= recompile_bit;
2617   if (trap_state == DS_REASON_MASK) {
2618     return Reason_many;
2619   } else {
2620     assert((int)Reason_none == 0, "state=0 => Reason_none");
2621     return (DeoptReason)trap_state;
2622   }
2623 }
2624 //-------------------------trap_state_has_reason-------------------------------
2625 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2626   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2627   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2628   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2629   trap_state -= recompile_bit;
2630   if (trap_state == DS_REASON_MASK) {
2631     return -1;  // true, unspecifically (bottom of state lattice)
2632   } else if (trap_state == reason) {
2633     return 1;   // true, definitely
2634   } else if (trap_state == 0) {
2635     return 0;   // false, definitely (top of state lattice)
2636   } else {
2637     return 0;   // false, definitely
2638   }
2639 }
2640 //-------------------------trap_state_add_reason-------------------------------
2641 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2642   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2643   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2644   trap_state -= recompile_bit;
2645   if (trap_state == DS_REASON_MASK) {
2646     return trap_state + recompile_bit;     // already at state lattice bottom
2647   } else if (trap_state == reason) {
2648     return trap_state + recompile_bit;     // the condition is already true
2649   } else if (trap_state == 0) {
2650     return reason + recompile_bit;          // no condition has yet been true
2651   } else {
2652     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2653   }
2654 }
2655 //-----------------------trap_state_is_recompiled------------------------------
2656 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2657   return (trap_state & DS_RECOMPILE_BIT) != 0;
2658 }
2659 //-----------------------trap_state_set_recompiled-----------------------------
2660 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2661   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2662   else    return trap_state & ~DS_RECOMPILE_BIT;
2663 }
2664 //---------------------------format_trap_state---------------------------------
2665 // This is used for debugging and diagnostics, including LogFile output.
2666 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2667                                               int trap_state) {
2668   assert(buflen > 0, "sanity");
2669   DeoptReason reason      = trap_state_reason(trap_state);
2670   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2671   // Re-encode the state from its decoded components.
2672   int decoded_state = 0;
2673   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2674     decoded_state = trap_state_add_reason(decoded_state, reason);
2675   if (recomp_flag)
2676     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2677   // If the state re-encodes properly, format it symbolically.
2678   // Because this routine is used for debugging and diagnostics,
2679   // be robust even if the state is a strange value.
2680   size_t len;
2681   if (decoded_state != trap_state) {
2682     // Random buggy state that doesn't decode??
2683     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2684   } else {
2685     len = jio_snprintf(buf, buflen, "%s%s",
2686                        trap_reason_name(reason),
2687                        recomp_flag ? " recompiled" : "");
2688   }
2689   return buf;
2690 }
2691 
2692 
2693 //--------------------------------statics--------------------------------------
2694 const char* Deoptimization::_trap_reason_name[] = {
2695   // Note:  Keep this in sync. with enum DeoptReason.
2696   "none",
2697   "null_check",
2698   "null_assert" JVMCI_ONLY("_or_unreached0"),
2699   "range_check",
2700   "class_check",
2701   "array_check",
2702   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2703   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2704   "profile_predicate",
2705   "unloaded",
2706   "uninitialized",
2707   "initialized",
2708   "unreached",
2709   "unhandled",
2710   "constraint",
2711   "div0_check",
2712   "age",
2713   "predicate",
2714   "loop_limit_check",
2715   "speculate_class_check",
2716   "speculate_null_check",
2717   "speculate_null_assert",
2718   "rtm_state_change",
2719   "unstable_if",
2720   "unstable_fused_if",
2721   "receiver_constraint",
2722 #if INCLUDE_JVMCI
2723   "aliasing",
2724   "transfer_to_interpreter",
2725   "not_compiled_exception_handler",
2726   "unresolved",
2727   "jsr_mismatch",
2728 #endif
2729   "tenured"
2730 };
2731 const char* Deoptimization::_trap_action_name[] = {
2732   // Note:  Keep this in sync. with enum DeoptAction.
2733   "none",
2734   "maybe_recompile",
2735   "reinterpret",
2736   "make_not_entrant",
2737   "make_not_compilable"
2738 };
2739 
2740 const char* Deoptimization::trap_reason_name(int reason) {
2741   // Check that every reason has a name
2742   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2743 
2744   if (reason == Reason_many)  return "many";
2745   if ((uint)reason < Reason_LIMIT)
2746     return _trap_reason_name[reason];
2747   static char buf[20];
2748   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2749   return buf;
2750 }
2751 const char* Deoptimization::trap_action_name(int action) {
2752   // Check that every action has a name
2753   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2754 
2755   if ((uint)action < Action_LIMIT)
2756     return _trap_action_name[action];
2757   static char buf[20];
2758   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2759   return buf;
2760 }
2761 
2762 // This is used for debugging and diagnostics, including LogFile output.
2763 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2764                                                 int trap_request) {
2765   jint unloaded_class_index = trap_request_index(trap_request);
2766   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2767   const char* action = trap_action_name(trap_request_action(trap_request));
2768 #if INCLUDE_JVMCI
2769   int debug_id = trap_request_debug_id(trap_request);
2770 #endif
2771   size_t len;
2772   if (unloaded_class_index < 0) {
2773     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2774                        reason, action
2775 #if INCLUDE_JVMCI
2776                        ,debug_id
2777 #endif
2778                        );
2779   } else {
2780     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2781                        reason, action, unloaded_class_index
2782 #if INCLUDE_JVMCI
2783                        ,debug_id
2784 #endif
2785                        );
2786   }
2787   return buf;
2788 }
2789 
2790 juint Deoptimization::_deoptimization_hist
2791         [Deoptimization::Reason_LIMIT]
2792     [1 + Deoptimization::Action_LIMIT]
2793         [Deoptimization::BC_CASE_LIMIT]
2794   = {0};
2795 
2796 enum {
2797   LSB_BITS = 8,
2798   LSB_MASK = right_n_bits(LSB_BITS)
2799 };
2800 
2801 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2802                                        Bytecodes::Code bc) {
2803   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2804   assert(action >= 0 && action < Action_LIMIT, "oob");
2805   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2806   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2807   juint* cases = _deoptimization_hist[reason][1+action];
2808   juint* bc_counter_addr = nullptr;
2809   juint  bc_counter      = 0;
2810   // Look for an unused counter, or an exact match to this BC.
2811   if (bc != Bytecodes::_illegal) {
2812     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2813       juint* counter_addr = &cases[bc_case];
2814       juint  counter = *counter_addr;
2815       if ((counter == 0 && bc_counter_addr == nullptr)
2816           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2817         // this counter is either free or is already devoted to this BC
2818         bc_counter_addr = counter_addr;
2819         bc_counter = counter | bc;
2820       }
2821     }
2822   }
2823   if (bc_counter_addr == nullptr) {
2824     // Overflow, or no given bytecode.
2825     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2826     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2827   }
2828   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2829 }
2830 
2831 jint Deoptimization::total_deoptimization_count() {
2832   return _deoptimization_hist[Reason_none][0][0];
2833 }
2834 
2835 // Get the deopt count for a specific reason and a specific action. If either
2836 // one of 'reason' or 'action' is null, the method returns the sum of all
2837 // deoptimizations with the specific 'action' or 'reason' respectively.
2838 // If both arguments are null, the method returns the total deopt count.
2839 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2840   if (reason_str == nullptr && action_str == nullptr) {
2841     return total_deoptimization_count();
2842   }
2843   juint counter = 0;
2844   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2845     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2846       for (int action = 0; action < Action_LIMIT; action++) {
2847         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2848           juint* cases = _deoptimization_hist[reason][1+action];
2849           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2850             counter += cases[bc_case] >> LSB_BITS;
2851           }
2852         }
2853       }
2854     }
2855   }
2856   return counter;
2857 }
2858 
2859 void Deoptimization::print_statistics() {
2860   juint total = total_deoptimization_count();
2861   juint account = total;
2862   if (total != 0) {
2863     ttyLocker ttyl;
2864     if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2865     tty->print_cr("Deoptimization traps recorded:");
2866     #define PRINT_STAT_LINE(name, r) \
2867       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2868     PRINT_STAT_LINE("total", total);
2869     // For each non-zero entry in the histogram, print the reason,
2870     // the action, and (if specifically known) the type of bytecode.
2871     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2872       for (int action = 0; action < Action_LIMIT; action++) {
2873         juint* cases = _deoptimization_hist[reason][1+action];
2874         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2875           juint counter = cases[bc_case];
2876           if (counter != 0) {
2877             char name[1*K];
2878             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2879             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2880               bc = Bytecodes::_illegal;
2881             os::snprintf_checked(name, sizeof(name), "%s/%s/%s",
2882                     trap_reason_name(reason),
2883                     trap_action_name(action),
2884                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2885             juint r = counter >> LSB_BITS;
2886             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2887             account -= r;
2888           }
2889         }
2890       }
2891     }
2892     if (account != 0) {
2893       PRINT_STAT_LINE("unaccounted", account);
2894     }
2895     #undef PRINT_STAT_LINE
2896     if (xtty != nullptr)  xtty->tail("statistics");
2897   }
2898 }
2899 
2900 #else // COMPILER2_OR_JVMCI
2901 
2902 
2903 // Stubs for C1 only system.
2904 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2905   return false;
2906 }
2907 
2908 const char* Deoptimization::trap_reason_name(int reason) {
2909   return "unknown";
2910 }
2911 
2912 jint Deoptimization::total_deoptimization_count() {
2913   return 0;
2914 }
2915 
2916 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2917   return 0;
2918 }
2919 
2920 void Deoptimization::print_statistics() {
2921   // no output
2922 }
2923 
2924 void
2925 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2926   // no update
2927 }
2928 
2929 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2930   return 0;
2931 }
2932 
2933 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2934                                        Bytecodes::Code bc) {
2935   // no update
2936 }
2937 
2938 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2939                                               int trap_state) {
2940   jio_snprintf(buf, buflen, "#%d", trap_state);
2941   return buf;
2942 }
2943 
2944 #endif // COMPILER2_OR_JVMCI