1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/oopStorage.hpp"
  28 #include "gc/shared/oopStorageSet.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "jfr/support/jfrThreadId.hpp"
  31 #include "logging/log.hpp"
  32 #include "logging/logStream.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/oopHandle.inline.hpp"
  38 #include "oops/weakHandle.inline.hpp"
  39 #include "prims/jvmtiDeferredUpdates.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/javaThread.inline.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/objectMonitor.hpp"
  47 #include "runtime/objectMonitor.inline.hpp"
  48 #include "runtime/orderAccess.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/perfData.hpp"
  51 #include "runtime/safefetch.hpp"
  52 #include "runtime/safepointMechanism.inline.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "services/threadService.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/preserveException.hpp"
  58 #if INCLUDE_JFR
  59 #include "jfr/support/jfrFlush.hpp"
  60 #endif
  61 
  62 #ifdef DTRACE_ENABLED
  63 
  64 // Only bother with this argument setup if dtrace is available
  65 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  66 
  67 
  68 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  69   char* bytes = nullptr;                                                   \
  70   int len = 0;                                                             \
  71   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  72   Symbol* klassname = obj->klass()->name();                                \
  73   if (klassname != nullptr) {                                              \
  74     bytes = (char*)klassname->bytes();                                     \
  75     len = klassname->utf8_length();                                        \
  76   }
  77 
  78 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  79   {                                                                        \
  80     if (DTraceMonitorProbes) {                                             \
  81       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  82       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  83                            (monitor), bytes, len, (millis));               \
  84     }                                                                      \
  85   }
  86 
  87 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  88 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  89 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  90 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 
  93 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  94   {                                                                        \
  95     if (DTraceMonitorProbes) {                                             \
  96       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  97       HOTSPOT_MONITOR_##probe(jtid,                                        \
  98                               (uintptr_t)(monitor), bytes, len);           \
  99     }                                                                      \
 100   }
 101 
 102 #else //  ndef DTRACE_ENABLED
 103 
 104 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 105 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 106 
 107 #endif // ndef DTRACE_ENABLED
 108 
 109 // Tunables ...
 110 // The knob* variables are effectively final.  Once set they should
 111 // never be modified hence.  Consider using __read_mostly with GCC.
 112 
 113 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 114 
 115 static int Knob_Bonus               = 100;     // spin success bonus
 116 static int Knob_BonusB              = 100;     // spin success bonus
 117 static int Knob_Penalty             = 200;     // spin failure penalty
 118 static int Knob_Poverty             = 1000;
 119 static int Knob_FixedSpin           = 0;
 120 static int Knob_PreSpin             = 10;      // 20-100 likely better
 121 
 122 DEBUG_ONLY(static volatile bool InitDone = false;)
 123 
 124 OopStorage* ObjectMonitor::_oop_storage = nullptr;
 125 
 126 // -----------------------------------------------------------------------------
 127 // Theory of operations -- Monitors lists, thread residency, etc:
 128 //
 129 // * A thread acquires ownership of a monitor by successfully
 130 //   CAS()ing the _owner field from null to non-null.
 131 //
 132 // * Invariant: A thread appears on at most one monitor list --
 133 //   cxq, EntryList or WaitSet -- at any one time.
 134 //
 135 // * Contending threads "push" themselves onto the cxq with CAS
 136 //   and then spin/park.
 137 //
 138 // * After a contending thread eventually acquires the lock it must
 139 //   dequeue itself from either the EntryList or the cxq.
 140 //
 141 // * The exiting thread identifies and unparks an "heir presumptive"
 142 //   tentative successor thread on the EntryList.  Critically, the
 143 //   exiting thread doesn't unlink the successor thread from the EntryList.
 144 //   After having been unparked, the wakee will recontend for ownership of
 145 //   the monitor.   The successor (wakee) will either acquire the lock or
 146 //   re-park itself.
 147 //
 148 //   Succession is provided for by a policy of competitive handoff.
 149 //   The exiting thread does _not_ grant or pass ownership to the
 150 //   successor thread.  (This is also referred to as "handoff" succession").
 151 //   Instead the exiting thread releases ownership and possibly wakes
 152 //   a successor, so the successor can (re)compete for ownership of the lock.
 153 //   If the EntryList is empty but the cxq is populated the exiting
 154 //   thread will drain the cxq into the EntryList.  It does so by
 155 //   by detaching the cxq (installing null with CAS) and folding
 156 //   the threads from the cxq into the EntryList.  The EntryList is
 157 //   doubly linked, while the cxq is singly linked because of the
 158 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 159 //
 160 // * Concurrency invariants:
 161 //
 162 //   -- only the monitor owner may access or mutate the EntryList.
 163 //      The mutex property of the monitor itself protects the EntryList
 164 //      from concurrent interference.
 165 //   -- Only the monitor owner may detach the cxq.
 166 //
 167 // * The monitor entry list operations avoid locks, but strictly speaking
 168 //   they're not lock-free.  Enter is lock-free, exit is not.
 169 //   For a description of 'Methods and apparatus providing non-blocking access
 170 //   to a resource,' see U.S. Pat. No. 7844973.
 171 //
 172 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 173 //   detaching thread.  This mechanism is immune from the ABA corruption.
 174 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 175 //
 176 // * Taken together, the cxq and the EntryList constitute or form a
 177 //   single logical queue of threads stalled trying to acquire the lock.
 178 //   We use two distinct lists to improve the odds of a constant-time
 179 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 180 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 181 //   A key desideratum is to minimize queue & monitor metadata manipulation
 182 //   that occurs while holding the monitor lock -- that is, we want to
 183 //   minimize monitor lock holds times.  Note that even a small amount of
 184 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 185 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 186 //   locks and monitor metadata.
 187 //
 188 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 189 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 190 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 191 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 192 //
 193 //   The EntryList is ordered by the prevailing queue discipline and
 194 //   can be organized in any convenient fashion, such as a doubly-linked list or
 195 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 196 //   to operate in constant-time.  If we need a priority queue then something akin
 197 //   to Solaris' sleepq would work nicely.  Viz.,
 198 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 199 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 200 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 201 //   EntryList accordingly.
 202 //
 203 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 204 //   somewhat similar to an elevator-scan.
 205 //
 206 // * The monitor synchronization subsystem avoids the use of native
 207 //   synchronization primitives except for the narrow platform-specific
 208 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 209 //   the semantics of park-unpark.  Put another way, this monitor implementation
 210 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 211 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 212 //   underlying OS manages the READY<->RUN transitions.
 213 //
 214 // * Waiting threads reside on the WaitSet list -- wait() puts
 215 //   the caller onto the WaitSet.
 216 //
 217 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 218 //   either the EntryList or cxq.  Subsequent exit() operations will
 219 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 220 //   it's likely the notifyee would simply impale itself on the lock held
 221 //   by the notifier.
 222 //
 223 // * An interesting alternative is to encode cxq as (List,LockByte) where
 224 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 225 //   variable, like _recursions, in the scheme.  The threads or Events that form
 226 //   the list would have to be aligned in 256-byte addresses.  A thread would
 227 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 228 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 229 //   Note that is is *not* word-tearing, but it does presume that full-word
 230 //   CAS operations are coherent with intermix with STB operations.  That's true
 231 //   on most common processors.
 232 //
 233 // * See also http://blogs.sun.com/dave
 234 
 235 
 236 // Check that object() and set_object() are called from the right context:
 237 static void check_object_context() {
 238 #ifdef ASSERT
 239   Thread* self = Thread::current();
 240   if (self->is_Java_thread()) {
 241     // Mostly called from JavaThreads so sanity check the thread state.
 242     JavaThread* jt = JavaThread::cast(self);
 243     switch (jt->thread_state()) {
 244     case _thread_in_vm:    // the usual case
 245     case _thread_in_Java:  // during deopt
 246       break;
 247     default:
 248       fatal("called from an unsafe thread state");
 249     }
 250     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 251   } else {
 252     // However, ThreadService::get_current_contended_monitor()
 253     // can call here via the VMThread so sanity check it.
 254     assert(self->is_VM_thread(), "must be");
 255   }
 256 #endif // ASSERT
 257 }
 258 
 259 ObjectMonitor::ObjectMonitor(oop object) :
 260   _header(markWord::zero()),
 261   _object(_oop_storage, object),
 262   _owner(nullptr),
 263   _previous_owner_tid(0),
 264   _next_om(nullptr),
 265   _recursions(0),
 266   _EntryList(nullptr),
 267   _cxq(nullptr),
 268   _succ(nullptr),
 269   _Responsible(nullptr),
 270   _Spinner(0),
 271   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 272   _contentions(0),
 273   _WaitSet(nullptr),
 274   _waiters(0),
 275   _WaitSetLock(0)
 276 { }
 277 
 278 ObjectMonitor::~ObjectMonitor() {
 279   _object.release(_oop_storage);
 280 }
 281 
 282 oop ObjectMonitor::object() const {
 283   check_object_context();
 284   return _object.resolve();
 285 }
 286 
 287 oop ObjectMonitor::object_peek() const {
 288   return _object.peek();
 289 }
 290 
 291 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) {
 292   if (current->is_suspended()) {
 293     _om->_recursions = 0;
 294     _om->_succ = nullptr;
 295     // Don't need a full fence after clearing successor here because of the call to exit().
 296     _om->exit(current, false /* not_suspended */);
 297     _om_exited = true;
 298 
 299     current->set_current_pending_monitor(_om);
 300   }
 301 }
 302 
 303 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) {
 304   if (current->is_suspended()) {
 305     if (_om->_succ == current) {
 306       _om->_succ = nullptr;
 307       OrderAccess::fence(); // always do a full fence when successor is cleared
 308     }
 309   }
 310 }
 311 
 312 // -----------------------------------------------------------------------------
 313 // Enter support
 314 
 315 bool ObjectMonitor::enter(JavaThread* current) {
 316   // The following code is ordered to check the most common cases first
 317   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 318 
 319   void* cur = try_set_owner_from(nullptr, current);
 320   if (cur == nullptr) {
 321     assert(_recursions == 0, "invariant");
 322     return true;
 323   }
 324 
 325   if (cur == current) {
 326     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 327     _recursions++;
 328     return true;
 329   }
 330 
 331   if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
 332     assert(_recursions == 0, "internal state error");
 333     _recursions = 1;
 334     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
 335     return true;
 336   }
 337 
 338   // We've encountered genuine contention.
 339   assert(current->_Stalled == 0, "invariant");
 340   current->_Stalled = intptr_t(this);
 341 
 342   // Try one round of spinning *before* enqueueing current
 343   // and before going through the awkward and expensive state
 344   // transitions.  The following spin is strictly optional ...
 345   // Note that if we acquire the monitor from an initial spin
 346   // we forgo posting JVMTI events and firing DTRACE probes.
 347   if (TrySpin(current) > 0) {
 348     assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw()));
 349     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 350     assert(object()->mark() == markWord::encode(this),
 351            "object mark must match encoded this: mark=" INTPTR_FORMAT
 352            ", encoded this=" INTPTR_FORMAT, object()->mark().value(),
 353            markWord::encode(this).value());
 354     current->_Stalled = 0;
 355     return true;
 356   }
 357 
 358   assert(owner_raw() != current, "invariant");
 359   assert(_succ != current, "invariant");
 360   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 361   assert(current->thread_state() != _thread_blocked, "invariant");
 362 
 363   // Keep track of contention for JVM/TI and M&M queries.
 364   add_to_contentions(1);
 365   if (is_being_async_deflated()) {
 366     // Async deflation is in progress and our contentions increment
 367     // above lost the race to async deflation. Undo the work and
 368     // force the caller to retry.
 369     const oop l_object = object();
 370     if (l_object != nullptr) {
 371       // Attempt to restore the header/dmw to the object's header so that
 372       // we only retry once if the deflater thread happens to be slow.
 373       install_displaced_markword_in_object(l_object);
 374     }
 375     current->_Stalled = 0;
 376     add_to_contentions(-1);
 377     return false;
 378   }
 379 
 380   JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);)
 381   EventJavaMonitorEnter event;
 382   if (event.is_started()) {
 383     event.set_monitorClass(object()->klass());
 384     // Set an address that is 'unique enough', such that events close in
 385     // time and with the same address are likely (but not guaranteed) to
 386     // belong to the same object.
 387     event.set_address((uintptr_t)this);
 388   }
 389 
 390   { // Change java thread status to indicate blocked on monitor enter.
 391     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 392 
 393     assert(current->current_pending_monitor() == nullptr, "invariant");
 394     current->set_current_pending_monitor(this);
 395 
 396     DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 397     if (JvmtiExport::should_post_monitor_contended_enter()) {
 398       JvmtiExport::post_monitor_contended_enter(current, this);
 399 
 400       // The current thread does not yet own the monitor and does not
 401       // yet appear on any queues that would get it made the successor.
 402       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 403       // handler cannot accidentally consume an unpark() meant for the
 404       // ParkEvent associated with this ObjectMonitor.
 405     }
 406 
 407     OSThreadContendState osts(current->osthread());
 408 
 409     assert(current->thread_state() == _thread_in_vm, "invariant");
 410 
 411     for (;;) {
 412       ExitOnSuspend eos(this);
 413       {
 414         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
 415         EnterI(current);
 416         current->set_current_pending_monitor(nullptr);
 417         // We can go to a safepoint at the end of this block. If we
 418         // do a thread dump during that safepoint, then this thread will show
 419         // as having "-locked" the monitor, but the OS and java.lang.Thread
 420         // states will still report that the thread is blocked trying to
 421         // acquire it.
 422         // If there is a suspend request, ExitOnSuspend will exit the OM
 423         // and set the OM as pending.
 424       }
 425       if (!eos.exited()) {
 426         // ExitOnSuspend did not exit the OM
 427         assert(owner_raw() == current, "invariant");
 428         break;
 429       }
 430     }
 431 
 432     // We've just gotten past the enter-check-for-suspend dance and we now own
 433     // the monitor free and clear.
 434   }
 435 
 436   add_to_contentions(-1);
 437   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 438   current->_Stalled = 0;
 439 
 440   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 441   assert(_recursions == 0, "invariant");
 442   assert(owner_raw() == current, "invariant");
 443   assert(_succ != current, "invariant");
 444   assert(object()->mark() == markWord::encode(this), "invariant");
 445 
 446   // The thread -- now the owner -- is back in vm mode.
 447   // Report the glorious news via TI,DTrace and jvmstat.
 448   // The probe effect is non-trivial.  All the reportage occurs
 449   // while we hold the monitor, increasing the length of the critical
 450   // section.  Amdahl's parallel speedup law comes vividly into play.
 451   //
 452   // Another option might be to aggregate the events (thread local or
 453   // per-monitor aggregation) and defer reporting until a more opportune
 454   // time -- such as next time some thread encounters contention but has
 455   // yet to acquire the lock.  While spinning that thread could
 456   // spinning we could increment JVMStat counters, etc.
 457 
 458   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 459   if (JvmtiExport::should_post_monitor_contended_entered()) {
 460     JvmtiExport::post_monitor_contended_entered(current, this);
 461 
 462     // The current thread already owns the monitor and is not going to
 463     // call park() for the remainder of the monitor enter protocol. So
 464     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 465     // event handler consumed an unpark() issued by the thread that
 466     // just exited the monitor.
 467   }
 468   if (event.should_commit()) {
 469     event.set_previousOwner(_previous_owner_tid);
 470     event.commit();
 471   }
 472   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 473   return true;
 474 }
 475 
 476 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 477 // Callers must compensate as needed.
 478 
 479 int ObjectMonitor::TryLock(JavaThread* current) {
 480   void* own = owner_raw();
 481   if (own != nullptr) return 0;
 482   if (try_set_owner_from(nullptr, current) == nullptr) {
 483     assert(_recursions == 0, "invariant");
 484     return 1;
 485   }
 486   // The lock had been free momentarily, but we lost the race to the lock.
 487   // Interference -- the CAS failed.
 488   // We can either return -1 or retry.
 489   // Retry doesn't make as much sense because the lock was just acquired.
 490   return -1;
 491 }
 492 
 493 // Deflate the specified ObjectMonitor if not in-use. Returns true if it
 494 // was deflated and false otherwise.
 495 //
 496 // The async deflation protocol sets owner to DEFLATER_MARKER and
 497 // makes contentions negative as signals to contending threads that
 498 // an async deflation is in progress. There are a number of checks
 499 // as part of the protocol to make sure that the calling thread has
 500 // not lost the race to a contending thread.
 501 //
 502 // The ObjectMonitor has been successfully async deflated when:
 503 //   (contentions < 0)
 504 // Contending threads that see that condition know to retry their operation.
 505 //
 506 bool ObjectMonitor::deflate_monitor() {
 507   if (is_busy()) {
 508     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 509     return false;
 510   }
 511 
 512   const oop obj = object_peek();
 513 
 514   if (obj == nullptr) {
 515     // If the object died, we can recycle the monitor without racing with
 516     // Java threads. The GC already broke the association with the object.
 517     set_owner_from(nullptr, DEFLATER_MARKER);
 518     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 519     _contentions = INT_MIN; // minimum negative int
 520   } else {
 521     // Attempt async deflation protocol.
 522 
 523     // Set a null owner to DEFLATER_MARKER to force any contending thread
 524     // through the slow path. This is just the first part of the async
 525     // deflation dance.
 526     if (try_set_owner_from(nullptr, DEFLATER_MARKER) != nullptr) {
 527       // The owner field is no longer null so we lost the race since the
 528       // ObjectMonitor is now busy.
 529       return false;
 530     }
 531 
 532     if (contentions() > 0 || _waiters != 0) {
 533       // Another thread has raced to enter the ObjectMonitor after
 534       // is_busy() above or has already entered and waited on
 535       // it which makes it busy so no deflation. Restore owner to
 536       // null if it is still DEFLATER_MARKER.
 537       if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 538         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 539         add_to_contentions(-1);
 540       }
 541       return false;
 542     }
 543 
 544     // Make a zero contentions field negative to force any contending threads
 545     // to retry. This is the second part of the async deflation dance.
 546     if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
 547       // Contentions was no longer 0 so we lost the race since the
 548       // ObjectMonitor is now busy. Restore owner to null if it is
 549       // still DEFLATER_MARKER:
 550       if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 551         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 552         add_to_contentions(-1);
 553       }
 554       return false;
 555     }
 556   }
 557 
 558   // Sanity checks for the races:
 559   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 560   guarantee(contentions() < 0, "must be negative: contentions=%d",
 561             contentions());
 562   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 563   guarantee(_cxq == nullptr, "must be no contending threads: cxq="
 564             INTPTR_FORMAT, p2i(_cxq));
 565   guarantee(_EntryList == nullptr,
 566             "must be no entering threads: EntryList=" INTPTR_FORMAT,
 567             p2i(_EntryList));
 568 
 569   if (obj != nullptr) {
 570     if (log_is_enabled(Trace, monitorinflation)) {
 571       ResourceMark rm;
 572       log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT
 573                                   ", mark=" INTPTR_FORMAT ", type='%s'",
 574                                   p2i(obj), obj->mark().value(),
 575                                   obj->klass()->external_name());
 576     }
 577 
 578     // Install the old mark word if nobody else has already done it.
 579     install_displaced_markword_in_object(obj);
 580   }
 581 
 582   // We leave owner == DEFLATER_MARKER and contentions < 0
 583   // to force any racing threads to retry.
 584   return true;  // Success, ObjectMonitor has been deflated.
 585 }
 586 
 587 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 588 // into the header of the object associated with the monitor. This
 589 // idempotent method is called by a thread that is deflating a
 590 // monitor and by other threads that have detected a race with the
 591 // deflation process.
 592 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 593   // This function must only be called when (owner == DEFLATER_MARKER
 594   // && contentions <= 0), but we can't guarantee that here because
 595   // those values could change when the ObjectMonitor gets moved from
 596   // the global free list to a per-thread free list.
 597 
 598   guarantee(obj != nullptr, "must be non-null");
 599 
 600   // Separate loads in is_being_async_deflated(), which is almost always
 601   // called before this function, from the load of dmw/header below.
 602 
 603   // _contentions and dmw/header may get written by different threads.
 604   // Make sure to observe them in the same order when having several observers.
 605   OrderAccess::loadload_for_IRIW();
 606 
 607   const oop l_object = object_peek();
 608   if (l_object == nullptr) {
 609     // ObjectMonitor's object ref has already been cleared by async
 610     // deflation or GC so we're done here.
 611     return;
 612   }
 613   assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 614          INTPTR_FORMAT, p2i(l_object), p2i(obj));
 615 
 616   markWord dmw = header();
 617   // The dmw has to be neutral (not null, not locked and not marked).
 618   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 619 
 620   // Install displaced mark word if the object's header still points
 621   // to this ObjectMonitor. More than one racing caller to this function
 622   // can rarely reach this point, but only one can win.
 623   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 624   if (res != markWord::encode(this)) {
 625     // This should be rare so log at the Info level when it happens.
 626     log_info(monitorinflation)("install_displaced_markword_in_object: "
 627                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 628                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 629                                dmw.value(), markWord::encode(this).value(),
 630                                res.value());
 631   }
 632 
 633   // Note: It does not matter which thread restored the header/dmw
 634   // into the object's header. The thread deflating the monitor just
 635   // wanted the object's header restored and it is. The threads that
 636   // detected a race with the deflation process also wanted the
 637   // object's header restored before they retry their operation and
 638   // because it is restored they will only retry once.
 639 }
 640 
 641 // Convert the fields used by is_busy() to a string that can be
 642 // used for diagnostic output.
 643 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 644   ss->print("is_busy: waiters=%d, ", _waiters);
 645   if (contentions() > 0) {
 646     ss->print("contentions=%d, ", contentions());
 647   } else {
 648     ss->print("contentions=0");
 649   }
 650   if (!owner_is_DEFLATER_MARKER()) {
 651     ss->print("owner=" INTPTR_FORMAT, p2i(owner_raw()));
 652   } else {
 653     // We report null instead of DEFLATER_MARKER here because is_busy()
 654     // ignores DEFLATER_MARKER values.
 655     ss->print("owner=" INTPTR_FORMAT, NULL_WORD);
 656   }
 657   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 658             p2i(_EntryList));
 659   return ss->base();
 660 }
 661 
 662 #define MAX_RECHECK_INTERVAL 1000
 663 
 664 void ObjectMonitor::EnterI(JavaThread* current) {
 665   assert(current->thread_state() == _thread_blocked, "invariant");
 666 
 667   // Try the lock - TATAS
 668   if (TryLock (current) > 0) {
 669     assert(_succ != current, "invariant");
 670     assert(owner_raw() == current, "invariant");
 671     assert(_Responsible != current, "invariant");
 672     return;
 673   }
 674 
 675   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 676     // Cancelled the in-progress async deflation by changing owner from
 677     // DEFLATER_MARKER to current. As part of the contended enter protocol,
 678     // contentions was incremented to a positive value before EnterI()
 679     // was called and that prevents the deflater thread from winning the
 680     // last part of the 2-part async deflation protocol. After EnterI()
 681     // returns to enter(), contentions is decremented because the caller
 682     // now owns the monitor. We bump contentions an extra time here to
 683     // prevent the deflater thread from winning the last part of the
 684     // 2-part async deflation protocol after the regular decrement
 685     // occurs in enter(). The deflater thread will decrement contentions
 686     // after it recognizes that the async deflation was cancelled.
 687     add_to_contentions(1);
 688     assert(_succ != current, "invariant");
 689     assert(_Responsible != current, "invariant");
 690     return;
 691   }
 692 
 693   assert(InitDone, "Unexpectedly not initialized");
 694 
 695   // We try one round of spinning *before* enqueueing current.
 696   //
 697   // If the _owner is ready but OFFPROC we could use a YieldTo()
 698   // operation to donate the remainder of this thread's quantum
 699   // to the owner.  This has subtle but beneficial affinity
 700   // effects.
 701 
 702   if (TrySpin(current) > 0) {
 703     assert(owner_raw() == current, "invariant");
 704     assert(_succ != current, "invariant");
 705     assert(_Responsible != current, "invariant");
 706     return;
 707   }
 708 
 709   // The Spin failed -- Enqueue and park the thread ...
 710   assert(_succ != current, "invariant");
 711   assert(owner_raw() != current, "invariant");
 712   assert(_Responsible != current, "invariant");
 713 
 714   // Enqueue "current" on ObjectMonitor's _cxq.
 715   //
 716   // Node acts as a proxy for current.
 717   // As an aside, if were to ever rewrite the synchronization code mostly
 718   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 719   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 720   // as well as eliminate a subset of ABA issues.
 721   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 722 
 723   ObjectWaiter node(current);
 724   current->_ParkEvent->reset();
 725   node._prev   = (ObjectWaiter*) 0xBAD;
 726   node.TState  = ObjectWaiter::TS_CXQ;
 727 
 728   // Push "current" onto the front of the _cxq.
 729   // Once on cxq/EntryList, current stays on-queue until it acquires the lock.
 730   // Note that spinning tends to reduce the rate at which threads
 731   // enqueue and dequeue on EntryList|cxq.
 732   ObjectWaiter* nxt;
 733   for (;;) {
 734     node._next = nxt = _cxq;
 735     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 736 
 737     // Interference - the CAS failed because _cxq changed.  Just retry.
 738     // As an optional optimization we retry the lock.
 739     if (TryLock (current) > 0) {
 740       assert(_succ != current, "invariant");
 741       assert(owner_raw() == current, "invariant");
 742       assert(_Responsible != current, "invariant");
 743       return;
 744     }
 745   }
 746 
 747   // Check for cxq|EntryList edge transition to non-null.  This indicates
 748   // the onset of contention.  While contention persists exiting threads
 749   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 750   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 751   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 752   // arrange for one of the contending thread to use a timed park() operations
 753   // to detect and recover from the race.  (Stranding is form of progress failure
 754   // where the monitor is unlocked but all the contending threads remain parked).
 755   // That is, at least one of the contended threads will periodically poll _owner.
 756   // One of the contending threads will become the designated "Responsible" thread.
 757   // The Responsible thread uses a timed park instead of a normal indefinite park
 758   // operation -- it periodically wakes and checks for and recovers from potential
 759   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 760   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 761   // be responsible for a monitor.
 762   //
 763   // Currently, one of the contended threads takes on the added role of "Responsible".
 764   // A viable alternative would be to use a dedicated "stranding checker" thread
 765   // that periodically iterated over all the threads (or active monitors) and unparked
 766   // successors where there was risk of stranding.  This would help eliminate the
 767   // timer scalability issues we see on some platforms as we'd only have one thread
 768   // -- the checker -- parked on a timer.
 769 
 770   if (nxt == nullptr && _EntryList == nullptr) {
 771     // Try to assume the role of responsible thread for the monitor.
 772     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=current }
 773     Atomic::replace_if_null(&_Responsible, current);
 774   }
 775 
 776   // The lock might have been released while this thread was occupied queueing
 777   // itself onto _cxq.  To close the race and avoid "stranding" and
 778   // progress-liveness failure we must resample-retry _owner before parking.
 779   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 780   // In this case the ST-MEMBAR is accomplished with CAS().
 781   //
 782   // TODO: Defer all thread state transitions until park-time.
 783   // Since state transitions are heavy and inefficient we'd like
 784   // to defer the state transitions until absolutely necessary,
 785   // and in doing so avoid some transitions ...
 786 
 787   int nWakeups = 0;
 788   int recheckInterval = 1;
 789 
 790   for (;;) {
 791 
 792     if (TryLock(current) > 0) break;
 793     assert(owner_raw() != current, "invariant");
 794 
 795     // park self
 796     if (_Responsible == current) {
 797       current->_ParkEvent->park((jlong) recheckInterval);
 798       // Increase the recheckInterval, but clamp the value.
 799       recheckInterval *= 8;
 800       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 801         recheckInterval = MAX_RECHECK_INTERVAL;
 802       }
 803     } else {
 804       current->_ParkEvent->park();
 805     }
 806 
 807     if (TryLock(current) > 0) break;
 808 
 809     if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 810       // Cancelled the in-progress async deflation by changing owner from
 811       // DEFLATER_MARKER to current. As part of the contended enter protocol,
 812       // contentions was incremented to a positive value before EnterI()
 813       // was called and that prevents the deflater thread from winning the
 814       // last part of the 2-part async deflation protocol. After EnterI()
 815       // returns to enter(), contentions is decremented because the caller
 816       // now owns the monitor. We bump contentions an extra time here to
 817       // prevent the deflater thread from winning the last part of the
 818       // 2-part async deflation protocol after the regular decrement
 819       // occurs in enter(). The deflater thread will decrement contentions
 820       // after it recognizes that the async deflation was cancelled.
 821       add_to_contentions(1);
 822       break;
 823     }
 824 
 825     // The lock is still contested.
 826     // Keep a tally of the # of futile wakeups.
 827     // Note that the counter is not protected by a lock or updated by atomics.
 828     // That is by design - we trade "lossy" counters which are exposed to
 829     // races during updates for a lower probe effect.
 830 
 831     // This PerfData object can be used in parallel with a safepoint.
 832     // See the work around in PerfDataManager::destroy().
 833     OM_PERFDATA_OP(FutileWakeups, inc());
 834     ++nWakeups;
 835 
 836     // Assuming this is not a spurious wakeup we'll normally find _succ == current.
 837     // We can defer clearing _succ until after the spin completes
 838     // TrySpin() must tolerate being called with _succ == current.
 839     // Try yet another round of adaptive spinning.
 840     if (TrySpin(current) > 0) break;
 841 
 842     // We can find that we were unpark()ed and redesignated _succ while
 843     // we were spinning.  That's harmless.  If we iterate and call park(),
 844     // park() will consume the event and return immediately and we'll
 845     // just spin again.  This pattern can repeat, leaving _succ to simply
 846     // spin on a CPU.
 847 
 848     if (_succ == current) _succ = nullptr;
 849 
 850     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 851     OrderAccess::fence();
 852   }
 853 
 854   // Egress :
 855   // current has acquired the lock -- Unlink current from the cxq or EntryList.
 856   // Normally we'll find current on the EntryList .
 857   // From the perspective of the lock owner (this thread), the
 858   // EntryList is stable and cxq is prepend-only.
 859   // The head of cxq is volatile but the interior is stable.
 860   // In addition, current.TState is stable.
 861 
 862   assert(owner_raw() == current, "invariant");
 863 
 864   UnlinkAfterAcquire(current, &node);
 865   if (_succ == current) _succ = nullptr;
 866 
 867   assert(_succ != current, "invariant");
 868   if (_Responsible == current) {
 869     _Responsible = nullptr;
 870     OrderAccess::fence(); // Dekker pivot-point
 871 
 872     // We may leave threads on cxq|EntryList without a designated
 873     // "Responsible" thread.  This is benign.  When this thread subsequently
 874     // exits the monitor it can "see" such preexisting "old" threads --
 875     // threads that arrived on the cxq|EntryList before the fence, above --
 876     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 877     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 878     // non-null and elect a new "Responsible" timer thread.
 879     //
 880     // This thread executes:
 881     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 882     //    LD cxq|EntryList               (in subsequent exit)
 883     //
 884     // Entering threads in the slow/contended path execute:
 885     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 886     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 887     //
 888     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 889     // exit operation from floating above the ST Responsible=null.
 890   }
 891 
 892   // We've acquired ownership with CAS().
 893   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 894   // But since the CAS() this thread may have also stored into _succ,
 895   // EntryList, cxq or Responsible.  These meta-data updates must be
 896   // visible __before this thread subsequently drops the lock.
 897   // Consider what could occur if we didn't enforce this constraint --
 898   // STs to monitor meta-data and user-data could reorder with (become
 899   // visible after) the ST in exit that drops ownership of the lock.
 900   // Some other thread could then acquire the lock, but observe inconsistent
 901   // or old monitor meta-data and heap data.  That violates the JMM.
 902   // To that end, the 1-0 exit() operation must have at least STST|LDST
 903   // "release" barrier semantics.  Specifically, there must be at least a
 904   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 905   // the lock.   The barrier ensures that changes to monitor meta-data and data
 906   // protected by the lock will be visible before we release the lock, and
 907   // therefore before some other thread (CPU) has a chance to acquire the lock.
 908   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 909   //
 910   // Critically, any prior STs to _succ or EntryList must be visible before
 911   // the ST of null into _owner in the *subsequent* (following) corresponding
 912   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 913   // execute a serializing instruction.
 914 
 915   return;
 916 }
 917 
 918 // ReenterI() is a specialized inline form of the latter half of the
 919 // contended slow-path from EnterI().  We use ReenterI() only for
 920 // monitor reentry in wait().
 921 //
 922 // In the future we should reconcile EnterI() and ReenterI().
 923 
 924 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) {
 925   assert(current != nullptr, "invariant");
 926   assert(currentNode != nullptr, "invariant");
 927   assert(currentNode->_thread == current, "invariant");
 928   assert(_waiters > 0, "invariant");
 929   assert(object()->mark() == markWord::encode(this), "invariant");
 930 
 931   assert(current->thread_state() != _thread_blocked, "invariant");
 932 
 933   int nWakeups = 0;
 934   for (;;) {
 935     ObjectWaiter::TStates v = currentNode->TState;
 936     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 937     assert(owner_raw() != current, "invariant");
 938 
 939     if (TryLock(current) > 0) break;
 940     if (TrySpin(current) > 0) break;
 941 
 942     {
 943       OSThreadContendState osts(current->osthread());
 944 
 945       assert(current->thread_state() == _thread_in_vm, "invariant");
 946 
 947       {
 948         ClearSuccOnSuspend csos(this);
 949         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
 950         current->_ParkEvent->park();
 951       }
 952     }
 953 
 954     // Try again, but just so we distinguish between futile wakeups and
 955     // successful wakeups.  The following test isn't algorithmically
 956     // necessary, but it helps us maintain sensible statistics.
 957     if (TryLock(current) > 0) break;
 958 
 959     // The lock is still contested.
 960     // Keep a tally of the # of futile wakeups.
 961     // Note that the counter is not protected by a lock or updated by atomics.
 962     // That is by design - we trade "lossy" counters which are exposed to
 963     // races during updates for a lower probe effect.
 964     ++nWakeups;
 965 
 966     // Assuming this is not a spurious wakeup we'll normally
 967     // find that _succ == current.
 968     if (_succ == current) _succ = nullptr;
 969 
 970     // Invariant: after clearing _succ a contending thread
 971     // *must* retry  _owner before parking.
 972     OrderAccess::fence();
 973 
 974     // This PerfData object can be used in parallel with a safepoint.
 975     // See the work around in PerfDataManager::destroy().
 976     OM_PERFDATA_OP(FutileWakeups, inc());
 977   }
 978 
 979   // current has acquired the lock -- Unlink current from the cxq or EntryList .
 980   // Normally we'll find current on the EntryList.
 981   // Unlinking from the EntryList is constant-time and atomic-free.
 982   // From the perspective of the lock owner (this thread), the
 983   // EntryList is stable and cxq is prepend-only.
 984   // The head of cxq is volatile but the interior is stable.
 985   // In addition, current.TState is stable.
 986 
 987   assert(owner_raw() == current, "invariant");
 988   assert(object()->mark() == markWord::encode(this), "invariant");
 989   UnlinkAfterAcquire(current, currentNode);
 990   if (_succ == current) _succ = nullptr;
 991   assert(_succ != current, "invariant");
 992   currentNode->TState = ObjectWaiter::TS_RUN;
 993   OrderAccess::fence();      // see comments at the end of EnterI()
 994 }
 995 
 996 // By convention we unlink a contending thread from EntryList|cxq immediately
 997 // after the thread acquires the lock in ::enter().  Equally, we could defer
 998 // unlinking the thread until ::exit()-time.
 999 
1000 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) {
1001   assert(owner_raw() == current, "invariant");
1002   assert(currentNode->_thread == current, "invariant");
1003 
1004   if (currentNode->TState == ObjectWaiter::TS_ENTER) {
1005     // Normal case: remove current from the DLL EntryList .
1006     // This is a constant-time operation.
1007     ObjectWaiter* nxt = currentNode->_next;
1008     ObjectWaiter* prv = currentNode->_prev;
1009     if (nxt != nullptr) nxt->_prev = prv;
1010     if (prv != nullptr) prv->_next = nxt;
1011     if (currentNode == _EntryList) _EntryList = nxt;
1012     assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1013     assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1014   } else {
1015     assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant");
1016     // Inopportune interleaving -- current is still on the cxq.
1017     // This usually means the enqueue of self raced an exiting thread.
1018     // Normally we'll find current near the front of the cxq, so
1019     // dequeueing is typically fast.  If needbe we can accelerate
1020     // this with some MCS/CHL-like bidirectional list hints and advisory
1021     // back-links so dequeueing from the interior will normally operate
1022     // in constant-time.
1023     // Dequeue current from either the head (with CAS) or from the interior
1024     // with a linear-time scan and normal non-atomic memory operations.
1025     // CONSIDER: if current is on the cxq then simply drain cxq into EntryList
1026     // and then unlink current from EntryList.  We have to drain eventually,
1027     // so it might as well be now.
1028 
1029     ObjectWaiter* v = _cxq;
1030     assert(v != nullptr, "invariant");
1031     if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) {
1032       // The CAS above can fail from interference IFF a "RAT" arrived.
1033       // In that case current must be in the interior and can no longer be
1034       // at the head of cxq.
1035       if (v == currentNode) {
1036         assert(_cxq != v, "invariant");
1037         v = _cxq;          // CAS above failed - start scan at head of list
1038       }
1039       ObjectWaiter* p;
1040       ObjectWaiter* q = nullptr;
1041       for (p = v; p != nullptr && p != currentNode; p = p->_next) {
1042         q = p;
1043         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
1044       }
1045       assert(v != currentNode, "invariant");
1046       assert(p == currentNode, "Node not found on cxq");
1047       assert(p != _cxq, "invariant");
1048       assert(q != nullptr, "invariant");
1049       assert(q->_next == p, "invariant");
1050       q->_next = p->_next;
1051     }
1052   }
1053 
1054 #ifdef ASSERT
1055   // Diagnostic hygiene ...
1056   currentNode->_prev  = (ObjectWaiter*) 0xBAD;
1057   currentNode->_next  = (ObjectWaiter*) 0xBAD;
1058   currentNode->TState = ObjectWaiter::TS_RUN;
1059 #endif
1060 }
1061 
1062 // -----------------------------------------------------------------------------
1063 // Exit support
1064 //
1065 // exit()
1066 // ~~~~~~
1067 // Note that the collector can't reclaim the objectMonitor or deflate
1068 // the object out from underneath the thread calling ::exit() as the
1069 // thread calling ::exit() never transitions to a stable state.
1070 // This inhibits GC, which in turn inhibits asynchronous (and
1071 // inopportune) reclamation of "this".
1072 //
1073 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
1074 // There's one exception to the claim above, however.  EnterI() can call
1075 // exit() to drop a lock if the acquirer has been externally suspended.
1076 // In that case exit() is called with _thread_state == _thread_blocked,
1077 // but the monitor's _contentions field is > 0, which inhibits reclamation.
1078 //
1079 // 1-0 exit
1080 // ~~~~~~~~
1081 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
1082 // the fast-path operators have been optimized so the common ::exit()
1083 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
1084 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
1085 // greatly improves latency -- MEMBAR and CAS having considerable local
1086 // latency on modern processors -- but at the cost of "stranding".  Absent the
1087 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
1088 // ::enter() path, resulting in the entering thread being stranding
1089 // and a progress-liveness failure.   Stranding is extremely rare.
1090 // We use timers (timed park operations) & periodic polling to detect
1091 // and recover from stranding.  Potentially stranded threads periodically
1092 // wake up and poll the lock.  See the usage of the _Responsible variable.
1093 //
1094 // The CAS() in enter provides for safety and exclusion, while the CAS or
1095 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
1096 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
1097 // We detect and recover from stranding with timers.
1098 //
1099 // If a thread transiently strands it'll park until (a) another
1100 // thread acquires the lock and then drops the lock, at which time the
1101 // exiting thread will notice and unpark the stranded thread, or, (b)
1102 // the timer expires.  If the lock is high traffic then the stranding latency
1103 // will be low due to (a).  If the lock is low traffic then the odds of
1104 // stranding are lower, although the worst-case stranding latency
1105 // is longer.  Critically, we don't want to put excessive load in the
1106 // platform's timer subsystem.  We want to minimize both the timer injection
1107 // rate (timers created/sec) as well as the number of timers active at
1108 // any one time.  (more precisely, we want to minimize timer-seconds, which is
1109 // the integral of the # of active timers at any instant over time).
1110 // Both impinge on OS scalability.  Given that, at most one thread parked on
1111 // a monitor will use a timer.
1112 //
1113 // There is also the risk of a futile wake-up. If we drop the lock
1114 // another thread can reacquire the lock immediately, and we can
1115 // then wake a thread unnecessarily. This is benign, and we've
1116 // structured the code so the windows are short and the frequency
1117 // of such futile wakups is low.
1118 
1119 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1120   void* cur = owner_raw();
1121   if (current != cur) {
1122     if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1123       assert(_recursions == 0, "invariant");
1124       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1125       _recursions = 0;
1126     } else {
1127       // Apparent unbalanced locking ...
1128       // Naively we'd like to throw IllegalMonitorStateException.
1129       // As a practical matter we can neither allocate nor throw an
1130       // exception as ::exit() can be called from leaf routines.
1131       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1132       // Upon deeper reflection, however, in a properly run JVM the only
1133       // way we should encounter this situation is in the presence of
1134       // unbalanced JNI locking. TODO: CheckJNICalls.
1135       // See also: CR4414101
1136 #ifdef ASSERT
1137       LogStreamHandle(Error, monitorinflation) lsh;
1138       lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1139                     " is exiting an ObjectMonitor it does not own.", p2i(current));
1140       lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1141       print_debug_style_on(&lsh);
1142       assert(false, "Non-balanced monitor enter/exit!");
1143 #endif
1144       return;
1145     }
1146   }
1147 
1148   if (_recursions != 0) {
1149     _recursions--;        // this is simple recursive enter
1150     return;
1151   }
1152 
1153   // Invariant: after setting Responsible=null an thread must execute
1154   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1155   _Responsible = nullptr;
1156 
1157 #if INCLUDE_JFR
1158   // get the owner's thread id for the MonitorEnter event
1159   // if it is enabled and the thread isn't suspended
1160   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1161     _previous_owner_tid = JFR_THREAD_ID(current);
1162   }
1163 #endif
1164 
1165   for (;;) {
1166     assert(current == owner_raw(), "invariant");
1167 
1168     // Drop the lock.
1169     // release semantics: prior loads and stores from within the critical section
1170     // must not float (reorder) past the following store that drops the lock.
1171     // Uses a storeload to separate release_store(owner) from the
1172     // successor check. The try_set_owner() below uses cmpxchg() so
1173     // we get the fence down there.
1174     release_clear_owner(current);
1175     OrderAccess::storeload();
1176 
1177     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) {
1178       return;
1179     }
1180     // Other threads are blocked trying to acquire the lock.
1181 
1182     // Normally the exiting thread is responsible for ensuring succession,
1183     // but if other successors are ready or other entering threads are spinning
1184     // then this thread can simply store null into _owner and exit without
1185     // waking a successor.  The existence of spinners or ready successors
1186     // guarantees proper succession (liveness).  Responsibility passes to the
1187     // ready or running successors.  The exiting thread delegates the duty.
1188     // More precisely, if a successor already exists this thread is absolved
1189     // of the responsibility of waking (unparking) one.
1190     //
1191     // The _succ variable is critical to reducing futile wakeup frequency.
1192     // _succ identifies the "heir presumptive" thread that has been made
1193     // ready (unparked) but that has not yet run.  We need only one such
1194     // successor thread to guarantee progress.
1195     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1196     // section 3.3 "Futile Wakeup Throttling" for details.
1197     //
1198     // Note that spinners in Enter() also set _succ non-null.
1199     // In the current implementation spinners opportunistically set
1200     // _succ so that exiting threads might avoid waking a successor.
1201     // Another less appealing alternative would be for the exiting thread
1202     // to drop the lock and then spin briefly to see if a spinner managed
1203     // to acquire the lock.  If so, the exiting thread could exit
1204     // immediately without waking a successor, otherwise the exiting
1205     // thread would need to dequeue and wake a successor.
1206     // (Note that we'd need to make the post-drop spin short, but no
1207     // shorter than the worst-case round-trip cache-line migration time.
1208     // The dropped lock needs to become visible to the spinner, and then
1209     // the acquisition of the lock by the spinner must become visible to
1210     // the exiting thread).
1211 
1212     // It appears that an heir-presumptive (successor) must be made ready.
1213     // Only the current lock owner can manipulate the EntryList or
1214     // drain _cxq, so we need to reacquire the lock.  If we fail
1215     // to reacquire the lock the responsibility for ensuring succession
1216     // falls to the new owner.
1217     //
1218     if (try_set_owner_from(nullptr, current) != nullptr) {
1219       return;
1220     }
1221 
1222     guarantee(owner_raw() == current, "invariant");
1223 
1224     ObjectWaiter* w = nullptr;
1225 
1226     w = _EntryList;
1227     if (w != nullptr) {
1228       // I'd like to write: guarantee (w->_thread != current).
1229       // But in practice an exiting thread may find itself on the EntryList.
1230       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1231       // then calls exit().  Exit release the lock by setting O._owner to null.
1232       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1233       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1234       // release the lock "O".  T2 resumes immediately after the ST of null into
1235       // _owner, above.  T2 notices that the EntryList is populated, so it
1236       // reacquires the lock and then finds itself on the EntryList.
1237       // Given all that, we have to tolerate the circumstance where "w" is
1238       // associated with current.
1239       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1240       ExitEpilog(current, w);
1241       return;
1242     }
1243 
1244     // If we find that both _cxq and EntryList are null then just
1245     // re-run the exit protocol from the top.
1246     w = _cxq;
1247     if (w == nullptr) continue;
1248 
1249     // Drain _cxq into EntryList - bulk transfer.
1250     // First, detach _cxq.
1251     // The following loop is tantamount to: w = swap(&cxq, nullptr)
1252     for (;;) {
1253       assert(w != nullptr, "Invariant");
1254       ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr);
1255       if (u == w) break;
1256       w = u;
1257     }
1258 
1259     assert(w != nullptr, "invariant");
1260     assert(_EntryList == nullptr, "invariant");
1261 
1262     // Convert the LIFO SLL anchored by _cxq into a DLL.
1263     // The list reorganization step operates in O(LENGTH(w)) time.
1264     // It's critical that this step operate quickly as
1265     // "current" still holds the outer-lock, restricting parallelism
1266     // and effectively lengthening the critical section.
1267     // Invariant: s chases t chases u.
1268     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1269     // we have faster access to the tail.
1270 
1271     _EntryList = w;
1272     ObjectWaiter* q = nullptr;
1273     ObjectWaiter* p;
1274     for (p = w; p != nullptr; p = p->_next) {
1275       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1276       p->TState = ObjectWaiter::TS_ENTER;
1277       p->_prev = q;
1278       q = p;
1279     }
1280 
1281     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr
1282     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1283 
1284     // See if we can abdicate to a spinner instead of waking a thread.
1285     // A primary goal of the implementation is to reduce the
1286     // context-switch rate.
1287     if (_succ != nullptr) continue;
1288 
1289     w = _EntryList;
1290     if (w != nullptr) {
1291       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1292       ExitEpilog(current, w);
1293       return;
1294     }
1295   }
1296 }
1297 
1298 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) {
1299   assert(owner_raw() == current, "invariant");
1300 
1301   // Exit protocol:
1302   // 1. ST _succ = wakee
1303   // 2. membar #loadstore|#storestore;
1304   // 2. ST _owner = nullptr
1305   // 3. unpark(wakee)
1306 
1307   _succ = Wakee->_thread;
1308   ParkEvent * Trigger = Wakee->_event;
1309 
1310   // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
1311   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1312   // out-of-scope (non-extant).
1313   Wakee  = nullptr;
1314 
1315   // Drop the lock.
1316   // Uses a fence to separate release_store(owner) from the LD in unpark().
1317   release_clear_owner(current);
1318   OrderAccess::fence();
1319 
1320   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1321   Trigger->unpark();
1322 
1323   // Maintain stats and report events to JVMTI
1324   OM_PERFDATA_OP(Parks, inc());
1325 }
1326 
1327 // complete_exit exits a lock returning recursion count
1328 // complete_exit requires an inflated monitor
1329 // The _owner field is not always the Thread addr even with an
1330 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1331 // thread due to contention.
1332 intx ObjectMonitor::complete_exit(JavaThread* current) {
1333   assert(InitDone, "Unexpectedly not initialized");
1334 
1335   void* cur = owner_raw();
1336   if (current != cur) {
1337     if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1338       assert(_recursions == 0, "internal state error");
1339       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1340       _recursions = 0;
1341     }
1342   }
1343 
1344   guarantee(current == owner_raw(), "complete_exit not owner");
1345   intx save = _recursions; // record the old recursion count
1346   _recursions = 0;         // set the recursion level to be 0
1347   exit(current);           // exit the monitor
1348   guarantee(owner_raw() != current, "invariant");
1349   return save;
1350 }
1351 
1352 // Checks that the current THREAD owns this monitor and causes an
1353 // immediate return if it doesn't. We don't use the CHECK macro
1354 // because we want the IMSE to be the only exception that is thrown
1355 // from the call site when false is returned. Any other pending
1356 // exception is ignored.
1357 #define CHECK_OWNER()                                                  \
1358   do {                                                                 \
1359     if (!check_owner(THREAD)) {                                        \
1360        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1361        return;                                                         \
1362      }                                                                 \
1363   } while (false)
1364 
1365 // Returns true if the specified thread owns the ObjectMonitor.
1366 // Otherwise returns false and throws IllegalMonitorStateException
1367 // (IMSE). If there is a pending exception and the specified thread
1368 // is not the owner, that exception will be replaced by the IMSE.
1369 bool ObjectMonitor::check_owner(TRAPS) {
1370   JavaThread* current = THREAD;
1371   void* cur = owner_raw();
1372   assert(cur != anon_owner_ptr(), "no anon owner here");
1373   if (cur == current) {
1374     return true;
1375   }
1376   if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1377     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1378     _recursions = 0;
1379     return true;
1380   }
1381   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1382              "current thread is not owner", false);
1383 }
1384 
1385 static inline bool is_excluded(const Klass* monitor_klass) {
1386   assert(monitor_klass != nullptr, "invariant");
1387   NOT_JFR_RETURN_(false);
1388   JFR_ONLY(return vmSymbols::jfr_chunk_rotation_monitor() == monitor_klass->name());
1389 }
1390 
1391 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1392                                     ObjectMonitor* monitor,
1393                                     uint64_t notifier_tid,
1394                                     jlong timeout,
1395                                     bool timedout) {
1396   assert(event != nullptr, "invariant");
1397   assert(monitor != nullptr, "invariant");
1398   const Klass* monitor_klass = monitor->object()->klass();
1399   if (is_excluded(monitor_klass)) {
1400     return;
1401   }
1402   event->set_monitorClass(monitor_klass);
1403   event->set_timeout(timeout);
1404   // Set an address that is 'unique enough', such that events close in
1405   // time and with the same address are likely (but not guaranteed) to
1406   // belong to the same object.
1407   event->set_address((uintptr_t)monitor);
1408   event->set_notifier(notifier_tid);
1409   event->set_timedOut(timedout);
1410   event->commit();
1411 }
1412 
1413 // -----------------------------------------------------------------------------
1414 // Wait/Notify/NotifyAll
1415 //
1416 // Note: a subset of changes to ObjectMonitor::wait()
1417 // will need to be replicated in complete_exit
1418 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1419   JavaThread* current = THREAD;
1420 
1421   assert(InitDone, "Unexpectedly not initialized");
1422 
1423   CHECK_OWNER();  // Throws IMSE if not owner.
1424 
1425   EventJavaMonitorWait event;
1426 
1427   // check for a pending interrupt
1428   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1429     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1430     if (JvmtiExport::should_post_monitor_waited()) {
1431       // Note: 'false' parameter is passed here because the
1432       // wait was not timed out due to thread interrupt.
1433       JvmtiExport::post_monitor_waited(current, this, false);
1434 
1435       // In this short circuit of the monitor wait protocol, the
1436       // current thread never drops ownership of the monitor and
1437       // never gets added to the wait queue so the current thread
1438       // cannot be made the successor. This means that the
1439       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1440       // consume an unpark() meant for the ParkEvent associated with
1441       // this ObjectMonitor.
1442     }
1443     if (event.should_commit()) {
1444       post_monitor_wait_event(&event, this, 0, millis, false);
1445     }
1446     THROW(vmSymbols::java_lang_InterruptedException());
1447     return;
1448   }
1449 
1450   assert(current->_Stalled == 0, "invariant");
1451   current->_Stalled = intptr_t(this);
1452   current->set_current_waiting_monitor(this);
1453 
1454   // create a node to be put into the queue
1455   // Critically, after we reset() the event but prior to park(), we must check
1456   // for a pending interrupt.
1457   ObjectWaiter node(current);
1458   node.TState = ObjectWaiter::TS_WAIT;
1459   current->_ParkEvent->reset();
1460   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1461 
1462   // Enter the waiting queue, which is a circular doubly linked list in this case
1463   // but it could be a priority queue or any data structure.
1464   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1465   // by the owner of the monitor *except* in the case where park()
1466   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1467   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1468 
1469   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1470   AddWaiter(&node);
1471   Thread::SpinRelease(&_WaitSetLock);
1472 
1473   _Responsible = nullptr;
1474 
1475   intx save = _recursions;     // record the old recursion count
1476   _waiters++;                  // increment the number of waiters
1477   _recursions = 0;             // set the recursion level to be 1
1478   exit(current);               // exit the monitor
1479   guarantee(owner_raw() != current, "invariant");
1480 
1481   // The thread is on the WaitSet list - now park() it.
1482   // On MP systems it's conceivable that a brief spin before we park
1483   // could be profitable.
1484   //
1485   // TODO-FIXME: change the following logic to a loop of the form
1486   //   while (!timeout && !interrupted && _notified == 0) park()
1487 
1488   int ret = OS_OK;
1489   int WasNotified = 0;
1490 
1491   // Need to check interrupt state whilst still _thread_in_vm
1492   bool interrupted = interruptible && current->is_interrupted(false);
1493 
1494   { // State transition wrappers
1495     OSThread* osthread = current->osthread();
1496     OSThreadWaitState osts(osthread, true);
1497 
1498     assert(current->thread_state() == _thread_in_vm, "invariant");
1499 
1500     {
1501       ClearSuccOnSuspend csos(this);
1502       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1503       if (interrupted || HAS_PENDING_EXCEPTION) {
1504         // Intentionally empty
1505       } else if (node._notified == 0) {
1506         if (millis <= 0) {
1507           current->_ParkEvent->park();
1508         } else {
1509           ret = current->_ParkEvent->park(millis);
1510         }
1511       }
1512     }
1513 
1514     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1515     // from the WaitSet to the EntryList.
1516     // See if we need to remove Node from the WaitSet.
1517     // We use double-checked locking to avoid grabbing _WaitSetLock
1518     // if the thread is not on the wait queue.
1519     //
1520     // Note that we don't need a fence before the fetch of TState.
1521     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1522     // written by the is thread. (perhaps the fetch might even be satisfied
1523     // by a look-aside into the processor's own store buffer, although given
1524     // the length of the code path between the prior ST and this load that's
1525     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1526     // then we'll acquire the lock and then re-fetch a fresh TState value.
1527     // That is, we fail toward safety.
1528 
1529     if (node.TState == ObjectWaiter::TS_WAIT) {
1530       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1531       if (node.TState == ObjectWaiter::TS_WAIT) {
1532         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1533         assert(node._notified == 0, "invariant");
1534         node.TState = ObjectWaiter::TS_RUN;
1535       }
1536       Thread::SpinRelease(&_WaitSetLock);
1537     }
1538 
1539     // The thread is now either on off-list (TS_RUN),
1540     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1541     // The Node's TState variable is stable from the perspective of this thread.
1542     // No other threads will asynchronously modify TState.
1543     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1544     OrderAccess::loadload();
1545     if (_succ == current) _succ = nullptr;
1546     WasNotified = node._notified;
1547 
1548     // Reentry phase -- reacquire the monitor.
1549     // re-enter contended monitor after object.wait().
1550     // retain OBJECT_WAIT state until re-enter successfully completes
1551     // Thread state is thread_in_vm and oop access is again safe,
1552     // although the raw address of the object may have changed.
1553     // (Don't cache naked oops over safepoints, of course).
1554 
1555     // post monitor waited event. Note that this is past-tense, we are done waiting.
1556     if (JvmtiExport::should_post_monitor_waited()) {
1557       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1558 
1559       if (node._notified != 0 && _succ == current) {
1560         // In this part of the monitor wait-notify-reenter protocol it
1561         // is possible (and normal) for another thread to do a fastpath
1562         // monitor enter-exit while this thread is still trying to get
1563         // to the reenter portion of the protocol.
1564         //
1565         // The ObjectMonitor was notified and the current thread is
1566         // the successor which also means that an unpark() has already
1567         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1568         // consume the unpark() that was done when the successor was
1569         // set because the same ParkEvent is shared between Java
1570         // monitors and JVM/TI RawMonitors (for now).
1571         //
1572         // We redo the unpark() to ensure forward progress, i.e., we
1573         // don't want all pending threads hanging (parked) with none
1574         // entering the unlocked monitor.
1575         node._event->unpark();
1576       }
1577     }
1578 
1579     if (event.should_commit()) {
1580       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1581     }
1582 
1583     OrderAccess::fence();
1584 
1585     assert(current->_Stalled != 0, "invariant");
1586     current->_Stalled = 0;
1587 
1588     assert(owner_raw() != current, "invariant");
1589     ObjectWaiter::TStates v = node.TState;
1590     if (v == ObjectWaiter::TS_RUN) {
1591       enter(current);
1592     } else {
1593       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1594       ReenterI(current, &node);
1595       node.wait_reenter_end(this);
1596     }
1597 
1598     // current has reacquired the lock.
1599     // Lifecycle - the node representing current must not appear on any queues.
1600     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1601     // want residual elements associated with this thread left on any lists.
1602     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1603     assert(owner_raw() == current, "invariant");
1604     assert(_succ != current, "invariant");
1605   } // OSThreadWaitState()
1606 
1607   current->set_current_waiting_monitor(nullptr);
1608 
1609   guarantee(_recursions == 0, "invariant");
1610   int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
1611   _recursions =   save          // restore the old recursion count
1612                 + relock_count; //  increased by the deferred relock count
1613   current->inc_held_monitor_count(relock_count); // Deopt never entered these counts.
1614   _waiters--;             // decrement the number of waiters
1615 
1616   // Verify a few postconditions
1617   assert(owner_raw() == current, "invariant");
1618   assert(_succ != current, "invariant");
1619   assert(object()->mark() == markWord::encode(this), "invariant");
1620 
1621   // check if the notification happened
1622   if (!WasNotified) {
1623     // no, it could be timeout or Thread.interrupt() or both
1624     // check for interrupt event, otherwise it is timeout
1625     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1626       THROW(vmSymbols::java_lang_InterruptedException());
1627     }
1628   }
1629 
1630   // NOTE: Spurious wake up will be consider as timeout.
1631   // Monitor notify has precedence over thread interrupt.
1632 }
1633 
1634 
1635 // Consider:
1636 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1637 // then instead of transferring a thread from the WaitSet to the EntryList
1638 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1639 
1640 void ObjectMonitor::INotify(JavaThread* current) {
1641   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1642   ObjectWaiter* iterator = DequeueWaiter();
1643   if (iterator != nullptr) {
1644     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1645     guarantee(iterator->_notified == 0, "invariant");
1646     // Disposition - what might we do with iterator ?
1647     // a.  add it directly to the EntryList - either tail (policy == 1)
1648     //     or head (policy == 0).
1649     // b.  push it onto the front of the _cxq (policy == 2).
1650     // For now we use (b).
1651 
1652     iterator->TState = ObjectWaiter::TS_ENTER;
1653 
1654     iterator->_notified = 1;
1655     iterator->_notifier_tid = JFR_THREAD_ID(current);
1656 
1657     ObjectWaiter* list = _EntryList;
1658     if (list != nullptr) {
1659       assert(list->_prev == nullptr, "invariant");
1660       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1661       assert(list != iterator, "invariant");
1662     }
1663 
1664     // prepend to cxq
1665     if (list == nullptr) {
1666       iterator->_next = iterator->_prev = nullptr;
1667       _EntryList = iterator;
1668     } else {
1669       iterator->TState = ObjectWaiter::TS_CXQ;
1670       for (;;) {
1671         ObjectWaiter* front = _cxq;
1672         iterator->_next = front;
1673         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1674           break;
1675         }
1676       }
1677     }
1678 
1679     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1680     // move the add-to-EntryList operation, above, outside the critical section
1681     // protected by _WaitSetLock.  In practice that's not useful.  With the
1682     // exception of  wait() timeouts and interrupts the monitor owner
1683     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1684     // on _WaitSetLock so it's not profitable to reduce the length of the
1685     // critical section.
1686 
1687     iterator->wait_reenter_begin(this);
1688   }
1689   Thread::SpinRelease(&_WaitSetLock);
1690 }
1691 
1692 // Consider: a not-uncommon synchronization bug is to use notify() when
1693 // notifyAll() is more appropriate, potentially resulting in stranded
1694 // threads; this is one example of a lost wakeup. A useful diagnostic
1695 // option is to force all notify() operations to behave as notifyAll().
1696 //
1697 // Note: We can also detect many such problems with a "minimum wait".
1698 // When the "minimum wait" is set to a small non-zero timeout value
1699 // and the program does not hang whereas it did absent "minimum wait",
1700 // that suggests a lost wakeup bug.
1701 
1702 void ObjectMonitor::notify(TRAPS) {
1703   JavaThread* current = THREAD;
1704   CHECK_OWNER();  // Throws IMSE if not owner.
1705   if (_WaitSet == nullptr) {
1706     return;
1707   }
1708   DTRACE_MONITOR_PROBE(notify, this, object(), current);
1709   INotify(current);
1710   OM_PERFDATA_OP(Notifications, inc(1));
1711 }
1712 
1713 
1714 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1715 // from the waitset to the EntryList. This could be done more efficiently with a
1716 // single bulk transfer but in practice it's not time-critical. Beware too,
1717 // that in prepend-mode we invert the order of the waiters. Let's say that the
1718 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1719 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1720 
1721 void ObjectMonitor::notifyAll(TRAPS) {
1722   JavaThread* current = THREAD;
1723   CHECK_OWNER();  // Throws IMSE if not owner.
1724   if (_WaitSet == nullptr) {
1725     return;
1726   }
1727 
1728   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
1729   int tally = 0;
1730   while (_WaitSet != nullptr) {
1731     tally++;
1732     INotify(current);
1733   }
1734 
1735   OM_PERFDATA_OP(Notifications, inc(tally));
1736 }
1737 
1738 // -----------------------------------------------------------------------------
1739 // Adaptive Spinning Support
1740 //
1741 // Adaptive spin-then-block - rational spinning
1742 //
1743 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1744 // algorithm.  On high order SMP systems it would be better to start with
1745 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1746 // a contending thread could enqueue itself on the cxq and then spin locally
1747 // on a thread-specific variable such as its ParkEvent._Event flag.
1748 // That's left as an exercise for the reader.  Note that global spinning is
1749 // not problematic on Niagara, as the L2 cache serves the interconnect and
1750 // has both low latency and massive bandwidth.
1751 //
1752 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1753 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1754 // (duration) or we can fix the count at approximately the duration of
1755 // a context switch and vary the frequency.   Of course we could also
1756 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1757 // For a description of 'Adaptive spin-then-block mutual exclusion in
1758 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1759 //
1760 // This implementation varies the duration "D", where D varies with
1761 // the success rate of recent spin attempts. (D is capped at approximately
1762 // length of a round-trip context switch).  The success rate for recent
1763 // spin attempts is a good predictor of the success rate of future spin
1764 // attempts.  The mechanism adapts automatically to varying critical
1765 // section length (lock modality), system load and degree of parallelism.
1766 // D is maintained per-monitor in _SpinDuration and is initialized
1767 // optimistically.  Spin frequency is fixed at 100%.
1768 //
1769 // Note that _SpinDuration is volatile, but we update it without locks
1770 // or atomics.  The code is designed so that _SpinDuration stays within
1771 // a reasonable range even in the presence of races.  The arithmetic
1772 // operations on _SpinDuration are closed over the domain of legal values,
1773 // so at worst a race will install and older but still legal value.
1774 // At the very worst this introduces some apparent non-determinism.
1775 // We might spin when we shouldn't or vice-versa, but since the spin
1776 // count are relatively short, even in the worst case, the effect is harmless.
1777 //
1778 // Care must be taken that a low "D" value does not become an
1779 // an absorbing state.  Transient spinning failures -- when spinning
1780 // is overall profitable -- should not cause the system to converge
1781 // on low "D" values.  We want spinning to be stable and predictable
1782 // and fairly responsive to change and at the same time we don't want
1783 // it to oscillate, become metastable, be "too" non-deterministic,
1784 // or converge on or enter undesirable stable absorbing states.
1785 //
1786 // We implement a feedback-based control system -- using past behavior
1787 // to predict future behavior.  We face two issues: (a) if the
1788 // input signal is random then the spin predictor won't provide optimal
1789 // results, and (b) if the signal frequency is too high then the control
1790 // system, which has some natural response lag, will "chase" the signal.
1791 // (b) can arise from multimodal lock hold times.  Transient preemption
1792 // can also result in apparent bimodal lock hold times.
1793 // Although sub-optimal, neither condition is particularly harmful, as
1794 // in the worst-case we'll spin when we shouldn't or vice-versa.
1795 // The maximum spin duration is rather short so the failure modes aren't bad.
1796 // To be conservative, I've tuned the gain in system to bias toward
1797 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1798 // "rings" or oscillates between spinning and not spinning.  This happens
1799 // when spinning is just on the cusp of profitability, however, so the
1800 // situation is not dire.  The state is benign -- there's no need to add
1801 // hysteresis control to damp the transition rate between spinning and
1802 // not spinning.
1803 
1804 // Spinning: Fixed frequency (100%), vary duration
1805 int ObjectMonitor::TrySpin(JavaThread* current) {
1806   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1807   int ctr = Knob_FixedSpin;
1808   if (ctr != 0) {
1809     while (--ctr >= 0) {
1810       if (TryLock(current) > 0) return 1;
1811       SpinPause();
1812     }
1813     return 0;
1814   }
1815 
1816   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1817     if (TryLock(current) > 0) {
1818       // Increase _SpinDuration ...
1819       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1820       // Raising _SpurDuration to the poverty line is key.
1821       int x = _SpinDuration;
1822       if (x < Knob_SpinLimit) {
1823         if (x < Knob_Poverty) x = Knob_Poverty;
1824         _SpinDuration = x + Knob_BonusB;
1825       }
1826       return 1;
1827     }
1828     SpinPause();
1829   }
1830 
1831   // Admission control - verify preconditions for spinning
1832   //
1833   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1834   // becoming an absorbing state.  Put another way, we spin briefly to
1835   // sample, just in case the system load, parallelism, contention, or lock
1836   // modality changed.
1837   //
1838   // Consider the following alternative:
1839   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1840   // spin attempt.  "Periodically" might mean after a tally of
1841   // the # of failed spin attempts (or iterations) reaches some threshold.
1842   // This takes us into the realm of 1-out-of-N spinning, where we
1843   // hold the duration constant but vary the frequency.
1844 
1845   ctr = _SpinDuration;
1846   if (ctr <= 0) return 0;
1847 
1848   if (NotRunnable(current, static_cast<JavaThread*>(owner_raw()))) {
1849     return 0;
1850   }
1851 
1852   // We're good to spin ... spin ingress.
1853   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1854   // when preparing to LD...CAS _owner, etc and the CAS is likely
1855   // to succeed.
1856   if (_succ == nullptr) {
1857     _succ = current;
1858   }
1859   Thread* prv = nullptr;
1860 
1861   // There are three ways to exit the following loop:
1862   // 1.  A successful spin where this thread has acquired the lock.
1863   // 2.  Spin failure with prejudice
1864   // 3.  Spin failure without prejudice
1865 
1866   while (--ctr >= 0) {
1867 
1868     // Periodic polling -- Check for pending GC
1869     // Threads may spin while they're unsafe.
1870     // We don't want spinning threads to delay the JVM from reaching
1871     // a stop-the-world safepoint or to steal cycles from GC.
1872     // If we detect a pending safepoint we abort in order that
1873     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1874     // this thread, if safe, doesn't steal cycles from GC.
1875     // This is in keeping with the "no loitering in runtime" rule.
1876     // We periodically check to see if there's a safepoint pending.
1877     if ((ctr & 0xFF) == 0) {
1878       // Can't call SafepointMechanism::should_process() since that
1879       // might update the poll values and we could be in a thread_blocked
1880       // state here which is not allowed so just check the poll.
1881       if (SafepointMechanism::local_poll_armed(current)) {
1882         goto Abort;           // abrupt spin egress
1883       }
1884       SpinPause();
1885     }
1886 
1887     // Probe _owner with TATAS
1888     // If this thread observes the monitor transition or flicker
1889     // from locked to unlocked to locked, then the odds that this
1890     // thread will acquire the lock in this spin attempt go down
1891     // considerably.  The same argument applies if the CAS fails
1892     // or if we observe _owner change from one non-null value to
1893     // another non-null value.   In such cases we might abort
1894     // the spin without prejudice or apply a "penalty" to the
1895     // spin count-down variable "ctr", reducing it by 100, say.
1896 
1897     JavaThread* ox = static_cast<JavaThread*>(owner_raw());
1898     if (ox == nullptr) {
1899       ox = static_cast<JavaThread*>(try_set_owner_from(nullptr, current));
1900       if (ox == nullptr) {
1901         // The CAS succeeded -- this thread acquired ownership
1902         // Take care of some bookkeeping to exit spin state.
1903         if (_succ == current) {
1904           _succ = nullptr;
1905         }
1906 
1907         // Increase _SpinDuration :
1908         // The spin was successful (profitable) so we tend toward
1909         // longer spin attempts in the future.
1910         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1911         // If we acquired the lock early in the spin cycle it
1912         // makes sense to increase _SpinDuration proportionally.
1913         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1914         int x = _SpinDuration;
1915         if (x < Knob_SpinLimit) {
1916           if (x < Knob_Poverty) x = Knob_Poverty;
1917           _SpinDuration = x + Knob_Bonus;
1918         }
1919         return 1;
1920       }
1921 
1922       // The CAS failed ... we can take any of the following actions:
1923       // * penalize: ctr -= CASPenalty
1924       // * exit spin with prejudice -- goto Abort;
1925       // * exit spin without prejudice.
1926       // * Since CAS is high-latency, retry again immediately.
1927       prv = ox;
1928       goto Abort;
1929     }
1930 
1931     // Did lock ownership change hands ?
1932     if (ox != prv && prv != nullptr) {
1933       goto Abort;
1934     }
1935     prv = ox;
1936 
1937     // Abort the spin if the owner is not executing.
1938     // The owner must be executing in order to drop the lock.
1939     // Spinning while the owner is OFFPROC is idiocy.
1940     // Consider: ctr -= RunnablePenalty ;
1941     if (NotRunnable(current, ox)) {
1942       goto Abort;
1943     }
1944     if (_succ == nullptr) {
1945       _succ = current;
1946     }
1947   }
1948 
1949   // Spin failed with prejudice -- reduce _SpinDuration.
1950   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1951   // AIMD is globally stable.
1952   {
1953     int x = _SpinDuration;
1954     if (x > 0) {
1955       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1956       // This is globally sample and tends to damp the response.
1957       x -= Knob_Penalty;
1958       if (x < 0) x = 0;
1959       _SpinDuration = x;
1960     }
1961   }
1962 
1963  Abort:
1964   if (_succ == current) {
1965     _succ = nullptr;
1966     // Invariant: after setting succ=null a contending thread
1967     // must recheck-retry _owner before parking.  This usually happens
1968     // in the normal usage of TrySpin(), but it's safest
1969     // to make TrySpin() as foolproof as possible.
1970     OrderAccess::fence();
1971     if (TryLock(current) > 0) return 1;
1972   }
1973   return 0;
1974 }
1975 
1976 // NotRunnable() -- informed spinning
1977 //
1978 // Don't bother spinning if the owner is not eligible to drop the lock.
1979 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1980 // The thread must be runnable in order to drop the lock in timely fashion.
1981 // If the _owner is not runnable then spinning will not likely be
1982 // successful (profitable).
1983 //
1984 // Beware -- the thread referenced by _owner could have died
1985 // so a simply fetch from _owner->_thread_state might trap.
1986 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1987 // Because of the lifecycle issues, the _thread_state values
1988 // observed by NotRunnable() might be garbage.  NotRunnable must
1989 // tolerate this and consider the observed _thread_state value
1990 // as advisory.
1991 //
1992 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1993 // a thread pointer.
1994 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1995 // with the LSB of _owner.  Another option would be to probabilistically probe
1996 // the putative _owner->TypeTag value.
1997 //
1998 // Checking _thread_state isn't perfect.  Even if the thread is
1999 // in_java it might be blocked on a page-fault or have been preempted
2000 // and sitting on a ready/dispatch queue.
2001 //
2002 // The return value from NotRunnable() is *advisory* -- the
2003 // result is based on sampling and is not necessarily coherent.
2004 // The caller must tolerate false-negative and false-positive errors.
2005 // Spinning, in general, is probabilistic anyway.
2006 
2007 
2008 int ObjectMonitor::NotRunnable(JavaThread* current, JavaThread* ox) {
2009   // Check ox->TypeTag == 2BAD.
2010   if (ox == nullptr) return 0;
2011 
2012   // Avoid transitive spinning ...
2013   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2014   // Immediately after T1 acquires L it's possible that T2, also
2015   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2016   // This occurs transiently after T1 acquired L but before
2017   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2018   // its spin in this circumstance.
2019   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2020 
2021   if (BlockedOn == 1) return 1;
2022   if (BlockedOn != 0) {
2023     return BlockedOn != intptr_t(this) && owner_raw() == ox;
2024   }
2025 
2026   assert(sizeof(ox->_thread_state == sizeof(int)), "invariant");
2027   int jst = SafeFetch32((int *) &ox->_thread_state, -1);;
2028   // consider also: jst != _thread_in_Java -- but that's overspecific.
2029   return jst == _thread_blocked || jst == _thread_in_native;
2030 }
2031 
2032 
2033 // -----------------------------------------------------------------------------
2034 // WaitSet management ...
2035 
2036 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2037   _next     = nullptr;
2038   _prev     = nullptr;
2039   _notified = 0;
2040   _notifier_tid = 0;
2041   TState    = TS_RUN;
2042   _thread   = current;
2043   _event    = _thread->_ParkEvent;
2044   _active   = false;
2045   assert(_event != nullptr, "invariant");
2046 }
2047 
2048 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2049   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2050 }
2051 
2052 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2053   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2054 }
2055 
2056 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2057   assert(node != nullptr, "should not add null node");
2058   assert(node->_prev == nullptr, "node already in list");
2059   assert(node->_next == nullptr, "node already in list");
2060   // put node at end of queue (circular doubly linked list)
2061   if (_WaitSet == nullptr) {
2062     _WaitSet = node;
2063     node->_prev = node;
2064     node->_next = node;
2065   } else {
2066     ObjectWaiter* head = _WaitSet;
2067     ObjectWaiter* tail = head->_prev;
2068     assert(tail->_next == head, "invariant check");
2069     tail->_next = node;
2070     head->_prev = node;
2071     node->_next = head;
2072     node->_prev = tail;
2073   }
2074 }
2075 
2076 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2077   // dequeue the very first waiter
2078   ObjectWaiter* waiter = _WaitSet;
2079   if (waiter) {
2080     DequeueSpecificWaiter(waiter);
2081   }
2082   return waiter;
2083 }
2084 
2085 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2086   assert(node != nullptr, "should not dequeue nullptr node");
2087   assert(node->_prev != nullptr, "node already removed from list");
2088   assert(node->_next != nullptr, "node already removed from list");
2089   // when the waiter has woken up because of interrupt,
2090   // timeout or other spurious wake-up, dequeue the
2091   // waiter from waiting list
2092   ObjectWaiter* next = node->_next;
2093   if (next == node) {
2094     assert(node->_prev == node, "invariant check");
2095     _WaitSet = nullptr;
2096   } else {
2097     ObjectWaiter* prev = node->_prev;
2098     assert(prev->_next == node, "invariant check");
2099     assert(next->_prev == node, "invariant check");
2100     next->_prev = prev;
2101     prev->_next = next;
2102     if (_WaitSet == node) {
2103       _WaitSet = next;
2104     }
2105   }
2106   node->_next = nullptr;
2107   node->_prev = nullptr;
2108 }
2109 
2110 // -----------------------------------------------------------------------------
2111 // PerfData support
2112 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = nullptr;
2113 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = nullptr;
2114 PerfCounter * ObjectMonitor::_sync_Parks                       = nullptr;
2115 PerfCounter * ObjectMonitor::_sync_Notifications               = nullptr;
2116 PerfCounter * ObjectMonitor::_sync_Inflations                  = nullptr;
2117 PerfCounter * ObjectMonitor::_sync_Deflations                  = nullptr;
2118 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = nullptr;
2119 
2120 // One-shot global initialization for the sync subsystem.
2121 // We could also defer initialization and initialize on-demand
2122 // the first time we call ObjectSynchronizer::inflate().
2123 // Initialization would be protected - like so many things - by
2124 // the MonitorCache_lock.
2125 
2126 void ObjectMonitor::Initialize() {
2127   assert(!InitDone, "invariant");
2128 
2129   if (!os::is_MP()) {
2130     Knob_SpinLimit = 0;
2131     Knob_PreSpin   = 0;
2132     Knob_FixedSpin = -1;
2133   }
2134 
2135   if (UsePerfData) {
2136     EXCEPTION_MARK;
2137 #define NEWPERFCOUNTER(n)                                                \
2138   {                                                                      \
2139     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2140                                         CHECK);                          \
2141   }
2142 #define NEWPERFVARIABLE(n)                                                \
2143   {                                                                       \
2144     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2145                                          CHECK);                          \
2146   }
2147     NEWPERFCOUNTER(_sync_Inflations);
2148     NEWPERFCOUNTER(_sync_Deflations);
2149     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2150     NEWPERFCOUNTER(_sync_FutileWakeups);
2151     NEWPERFCOUNTER(_sync_Parks);
2152     NEWPERFCOUNTER(_sync_Notifications);
2153     NEWPERFVARIABLE(_sync_MonExtant);
2154 #undef NEWPERFCOUNTER
2155 #undef NEWPERFVARIABLE
2156   }
2157 
2158   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2159 
2160   DEBUG_ONLY(InitDone = true;)
2161 }
2162 
2163 void ObjectMonitor::print_on(outputStream* st) const {
2164   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2165   st->print("{contentions=0x%08x,waiters=0x%08x"
2166             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2167             contentions(), waiters(), recursions(),
2168             p2i(owner()));
2169 }
2170 void ObjectMonitor::print() const { print_on(tty); }
2171 
2172 #ifdef ASSERT
2173 // Print the ObjectMonitor like a debugger would:
2174 //
2175 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2176 //   _header = 0x0000000000000001
2177 //   _object = 0x000000070ff45fd0
2178 //   _pad_buf0 = {
2179 //     [0] = '\0'
2180 //     ...
2181 //     [43] = '\0'
2182 //   }
2183 //   _owner = 0x0000000000000000
2184 //   _previous_owner_tid = 0
2185 //   _pad_buf1 = {
2186 //     [0] = '\0'
2187 //     ...
2188 //     [47] = '\0'
2189 //   }
2190 //   _next_om = 0x0000000000000000
2191 //   _recursions = 0
2192 //   _EntryList = 0x0000000000000000
2193 //   _cxq = 0x0000000000000000
2194 //   _succ = 0x0000000000000000
2195 //   _Responsible = 0x0000000000000000
2196 //   _Spinner = 0
2197 //   _SpinDuration = 5000
2198 //   _contentions = 0
2199 //   _WaitSet = 0x0000700009756248
2200 //   _waiters = 1
2201 //   _WaitSetLock = 0
2202 // }
2203 //
2204 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2205   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2206   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2207   st->print_cr("  _object = " INTPTR_FORMAT, p2i(object_peek()));
2208   st->print_cr("  _pad_buf0 = {");
2209   st->print_cr("    [0] = '\\0'");
2210   st->print_cr("    ...");
2211   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2212   st->print_cr("  }");
2213   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(owner_raw()));
2214   st->print_cr("  _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid);
2215   st->print_cr("  _pad_buf1 = {");
2216   st->print_cr("    [0] = '\\0'");
2217   st->print_cr("    ...");
2218   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2219   st->print_cr("  }");
2220   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2221   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2222   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2223   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2224   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2225   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2226   st->print_cr("  _Spinner = %d", _Spinner);
2227   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2228   st->print_cr("  _contentions = %d", contentions());
2229   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2230   st->print_cr("  _waiters = %d", _waiters);
2231   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2232   st->print_cr("}");
2233 }
2234 #endif