1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/oopStorage.hpp"
  28 #include "gc/shared/oopStorageSet.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "jfr/support/jfrThreadId.hpp"
  31 #include "logging/log.hpp"
  32 #include "logging/logStream.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/oopHandle.inline.hpp"
  38 #include "oops/weakHandle.inline.hpp"
  39 #include "prims/jvmtiDeferredUpdates.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/javaThread.inline.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/objectMonitor.hpp"
  47 #include "runtime/objectMonitor.inline.hpp"
  48 #include "runtime/orderAccess.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/perfData.hpp"
  51 #include "runtime/safefetch.hpp"
  52 #include "runtime/safepointMechanism.inline.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "services/threadService.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/preserveException.hpp"
  58 #if INCLUDE_JFR
  59 #include "jfr/support/jfrFlush.hpp"
  60 #endif
  61 
  62 #ifdef DTRACE_ENABLED
  63 
  64 // Only bother with this argument setup if dtrace is available
  65 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  66 
  67 
  68 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  69   char* bytes = nullptr;                                                   \
  70   int len = 0;                                                             \
  71   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  72   Symbol* klassname = obj->klass()->name();                                \
  73   if (klassname != nullptr) {                                              \
  74     bytes = (char*)klassname->bytes();                                     \
  75     len = klassname->utf8_length();                                        \
  76   }
  77 
  78 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  79   {                                                                        \
  80     if (DTraceMonitorProbes) {                                             \
  81       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  82       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  83                            (monitor), bytes, len, (millis));               \
  84     }                                                                      \
  85   }
  86 
  87 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  88 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  89 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  90 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 
  93 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  94   {                                                                        \
  95     if (DTraceMonitorProbes) {                                             \
  96       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  97       HOTSPOT_MONITOR_##probe(jtid,                                        \
  98                               (uintptr_t)(monitor), bytes, len);           \
  99     }                                                                      \
 100   }
 101 
 102 #else //  ndef DTRACE_ENABLED
 103 
 104 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 105 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 106 
 107 #endif // ndef DTRACE_ENABLED
 108 
 109 // Tunables ...
 110 // The knob* variables are effectively final.  Once set they should
 111 // never be modified hence.  Consider using __read_mostly with GCC.
 112 
 113 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 114 
 115 static int Knob_Bonus               = 100;     // spin success bonus
 116 static int Knob_BonusB              = 100;     // spin success bonus
 117 static int Knob_Penalty             = 200;     // spin failure penalty
 118 static int Knob_Poverty             = 1000;
 119 static int Knob_FixedSpin           = 0;
 120 static int Knob_PreSpin             = 10;      // 20-100 likely better
 121 
 122 DEBUG_ONLY(static volatile bool InitDone = false;)
 123 
 124 OopStorage* ObjectMonitor::_oop_storage = nullptr;
 125 
 126 // -----------------------------------------------------------------------------
 127 // Theory of operations -- Monitors lists, thread residency, etc:
 128 //
 129 // * A thread acquires ownership of a monitor by successfully
 130 //   CAS()ing the _owner field from null to non-null.
 131 //
 132 // * Invariant: A thread appears on at most one monitor list --
 133 //   cxq, EntryList or WaitSet -- at any one time.
 134 //
 135 // * Contending threads "push" themselves onto the cxq with CAS
 136 //   and then spin/park.
 137 //
 138 // * After a contending thread eventually acquires the lock it must
 139 //   dequeue itself from either the EntryList or the cxq.
 140 //
 141 // * The exiting thread identifies and unparks an "heir presumptive"
 142 //   tentative successor thread on the EntryList.  Critically, the
 143 //   exiting thread doesn't unlink the successor thread from the EntryList.
 144 //   After having been unparked, the wakee will recontend for ownership of
 145 //   the monitor.   The successor (wakee) will either acquire the lock or
 146 //   re-park itself.
 147 //
 148 //   Succession is provided for by a policy of competitive handoff.
 149 //   The exiting thread does _not_ grant or pass ownership to the
 150 //   successor thread.  (This is also referred to as "handoff" succession").
 151 //   Instead the exiting thread releases ownership and possibly wakes
 152 //   a successor, so the successor can (re)compete for ownership of the lock.
 153 //   If the EntryList is empty but the cxq is populated the exiting
 154 //   thread will drain the cxq into the EntryList.  It does so by
 155 //   by detaching the cxq (installing null with CAS) and folding
 156 //   the threads from the cxq into the EntryList.  The EntryList is
 157 //   doubly linked, while the cxq is singly linked because of the
 158 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 159 //
 160 // * Concurrency invariants:
 161 //
 162 //   -- only the monitor owner may access or mutate the EntryList.
 163 //      The mutex property of the monitor itself protects the EntryList
 164 //      from concurrent interference.
 165 //   -- Only the monitor owner may detach the cxq.
 166 //
 167 // * The monitor entry list operations avoid locks, but strictly speaking
 168 //   they're not lock-free.  Enter is lock-free, exit is not.
 169 //   For a description of 'Methods and apparatus providing non-blocking access
 170 //   to a resource,' see U.S. Pat. No. 7844973.
 171 //
 172 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 173 //   detaching thread.  This mechanism is immune from the ABA corruption.
 174 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 175 //
 176 // * Taken together, the cxq and the EntryList constitute or form a
 177 //   single logical queue of threads stalled trying to acquire the lock.
 178 //   We use two distinct lists to improve the odds of a constant-time
 179 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 180 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 181 //   A key desideratum is to minimize queue & monitor metadata manipulation
 182 //   that occurs while holding the monitor lock -- that is, we want to
 183 //   minimize monitor lock holds times.  Note that even a small amount of
 184 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 185 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 186 //   locks and monitor metadata.
 187 //
 188 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 189 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 190 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 191 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 192 //
 193 //   The EntryList is ordered by the prevailing queue discipline and
 194 //   can be organized in any convenient fashion, such as a doubly-linked list or
 195 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 196 //   to operate in constant-time.  If we need a priority queue then something akin
 197 //   to Solaris' sleepq would work nicely.  Viz.,
 198 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 199 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 200 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 201 //   EntryList accordingly.
 202 //
 203 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 204 //   somewhat similar to an elevator-scan.
 205 //
 206 // * The monitor synchronization subsystem avoids the use of native
 207 //   synchronization primitives except for the narrow platform-specific
 208 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 209 //   the semantics of park-unpark.  Put another way, this monitor implementation
 210 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 211 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 212 //   underlying OS manages the READY<->RUN transitions.
 213 //
 214 // * Waiting threads reside on the WaitSet list -- wait() puts
 215 //   the caller onto the WaitSet.
 216 //
 217 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 218 //   either the EntryList or cxq.  Subsequent exit() operations will
 219 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 220 //   it's likely the notifyee would simply impale itself on the lock held
 221 //   by the notifier.
 222 //
 223 // * An interesting alternative is to encode cxq as (List,LockByte) where
 224 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 225 //   variable, like _recursions, in the scheme.  The threads or Events that form
 226 //   the list would have to be aligned in 256-byte addresses.  A thread would
 227 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 228 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 229 //   Note that is is *not* word-tearing, but it does presume that full-word
 230 //   CAS operations are coherent with intermix with STB operations.  That's true
 231 //   on most common processors.
 232 //
 233 // * See also http://blogs.sun.com/dave
 234 
 235 
 236 // Check that object() and set_object() are called from the right context:
 237 static void check_object_context() {
 238 #ifdef ASSERT
 239   Thread* self = Thread::current();
 240   if (self->is_Java_thread()) {
 241     // Mostly called from JavaThreads so sanity check the thread state.
 242     JavaThread* jt = JavaThread::cast(self);
 243     switch (jt->thread_state()) {
 244     case _thread_in_vm:    // the usual case
 245     case _thread_in_Java:  // during deopt
 246       break;
 247     default:
 248       fatal("called from an unsafe thread state");
 249     }
 250     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 251   } else {
 252     // However, ThreadService::get_current_contended_monitor()
 253     // can call here via the VMThread so sanity check it.
 254     assert(self->is_VM_thread(), "must be");
 255   }
 256 #endif // ASSERT
 257 }
 258 
 259 ObjectMonitor::ObjectMonitor(oop object) :
 260   _header(markWord::zero()),
 261   _object(_oop_storage, object),
 262   _owner(nullptr),
 263   _previous_owner_tid(0),
 264   _next_om(nullptr),
 265   _recursions(0),
 266   _EntryList(nullptr),
 267   _cxq(nullptr),
 268   _succ(nullptr),
 269   _Responsible(nullptr),
 270   _Spinner(0),
 271   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 272   _contentions(0),
 273   _WaitSet(nullptr),
 274   _waiters(0),
 275   _WaitSetLock(0)
 276 { }
 277 
 278 ObjectMonitor::~ObjectMonitor() {
 279   _object.release(_oop_storage);
 280 }
 281 
 282 oop ObjectMonitor::object() const {
 283   check_object_context();
 284   return _object.resolve();
 285 }
 286 
 287 oop ObjectMonitor::object_peek() const {
 288   return _object.peek();
 289 }
 290 
 291 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) {
 292   if (current->is_suspended()) {
 293     _om->_recursions = 0;
 294     _om->_succ = nullptr;
 295     // Don't need a full fence after clearing successor here because of the call to exit().
 296     _om->exit(current, false /* not_suspended */);
 297     _om_exited = true;
 298 
 299     current->set_current_pending_monitor(_om);
 300   }
 301 }
 302 
 303 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) {
 304   if (current->is_suspended()) {
 305     if (_om->_succ == current) {
 306       _om->_succ = nullptr;
 307       OrderAccess::fence(); // always do a full fence when successor is cleared
 308     }
 309   }
 310 }
 311 
 312 // -----------------------------------------------------------------------------
 313 // Enter support
 314 
 315 bool ObjectMonitor::enter(JavaThread* current) {
 316   // The following code is ordered to check the most common cases first
 317   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 318 
 319   void* cur = try_set_owner_from(nullptr, current);
 320   if (cur == nullptr) {
 321     assert(_recursions == 0, "invariant");
 322     return true;
 323   }
 324 
 325   if (cur == current) {
 326     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 327     _recursions++;
 328     return true;
 329   }
 330 
 331   if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
 332     assert(_recursions == 0, "internal state error");
 333     _recursions = 1;
 334     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
 335     return true;
 336   }
 337 
 338   // We've encountered genuine contention.
 339   assert(current->_Stalled == 0, "invariant");
 340   current->_Stalled = intptr_t(this);
 341 
 342   // Try one round of spinning *before* enqueueing current
 343   // and before going through the awkward and expensive state
 344   // transitions.  The following spin is strictly optional ...
 345   // Note that if we acquire the monitor from an initial spin
 346   // we forgo posting JVMTI events and firing DTRACE probes.
 347   if (TrySpin(current) > 0) {
 348     assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw()));
 349     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 350     assert(object()->mark() == markWord::encode(this),
 351            "object mark must match encoded this: mark=" INTPTR_FORMAT
 352            ", encoded this=" INTPTR_FORMAT, object()->mark().value(),
 353            markWord::encode(this).value());
 354     current->_Stalled = 0;
 355     return true;
 356   }
 357 
 358   assert(owner_raw() != current, "invariant");
 359   assert(_succ != current, "invariant");
 360   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 361   assert(current->thread_state() != _thread_blocked, "invariant");
 362 
 363   // Keep track of contention for JVM/TI and M&M queries.
 364   add_to_contentions(1);
 365   if (is_being_async_deflated()) {
 366     // Async deflation is in progress and our contentions increment
 367     // above lost the race to async deflation. Undo the work and
 368     // force the caller to retry.
 369     const oop l_object = object();
 370     if (l_object != nullptr) {
 371       // Attempt to restore the header/dmw to the object's header so that
 372       // we only retry once if the deflater thread happens to be slow.
 373       install_displaced_markword_in_object(l_object);
 374     }
 375     current->_Stalled = 0;
 376     add_to_contentions(-1);
 377     return false;
 378   }
 379 
 380   JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);)
 381   EventJavaMonitorEnter event;
 382   if (event.is_started()) {
 383     event.set_monitorClass(object()->klass());
 384     // Set an address that is 'unique enough', such that events close in
 385     // time and with the same address are likely (but not guaranteed) to
 386     // belong to the same object.
 387     event.set_address((uintptr_t)this);
 388   }
 389 
 390   { // Change java thread status to indicate blocked on monitor enter.
 391     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 392 
 393     assert(current->current_pending_monitor() == nullptr, "invariant");
 394     current->set_current_pending_monitor(this);
 395 
 396     DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 397     if (JvmtiExport::should_post_monitor_contended_enter()) {
 398       JvmtiExport::post_monitor_contended_enter(current, this);
 399 
 400       // The current thread does not yet own the monitor and does not
 401       // yet appear on any queues that would get it made the successor.
 402       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 403       // handler cannot accidentally consume an unpark() meant for the
 404       // ParkEvent associated with this ObjectMonitor.
 405     }
 406 
 407     OSThreadContendState osts(current->osthread());
 408 
 409     assert(current->thread_state() == _thread_in_vm, "invariant");
 410 
 411     for (;;) {
 412       ExitOnSuspend eos(this);
 413       {
 414         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
 415         EnterI(current);
 416         current->set_current_pending_monitor(nullptr);
 417         // We can go to a safepoint at the end of this block. If we
 418         // do a thread dump during that safepoint, then this thread will show
 419         // as having "-locked" the monitor, but the OS and java.lang.Thread
 420         // states will still report that the thread is blocked trying to
 421         // acquire it.
 422         // If there is a suspend request, ExitOnSuspend will exit the OM
 423         // and set the OM as pending.
 424       }
 425       if (!eos.exited()) {
 426         // ExitOnSuspend did not exit the OM
 427         assert(owner_raw() == current, "invariant");
 428         break;
 429       }
 430     }
 431 
 432     // We've just gotten past the enter-check-for-suspend dance and we now own
 433     // the monitor free and clear.
 434   }
 435 
 436   add_to_contentions(-1);
 437   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 438   current->_Stalled = 0;
 439 
 440   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 441   assert(_recursions == 0, "invariant");
 442   assert(owner_raw() == current, "invariant");
 443   assert(_succ != current, "invariant");
 444   assert(object()->mark() == markWord::encode(this), "invariant");
 445 
 446   // The thread -- now the owner -- is back in vm mode.
 447   // Report the glorious news via TI,DTrace and jvmstat.
 448   // The probe effect is non-trivial.  All the reportage occurs
 449   // while we hold the monitor, increasing the length of the critical
 450   // section.  Amdahl's parallel speedup law comes vividly into play.
 451   //
 452   // Another option might be to aggregate the events (thread local or
 453   // per-monitor aggregation) and defer reporting until a more opportune
 454   // time -- such as next time some thread encounters contention but has
 455   // yet to acquire the lock.  While spinning that thread could
 456   // spinning we could increment JVMStat counters, etc.
 457 
 458   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 459   if (JvmtiExport::should_post_monitor_contended_entered()) {
 460     JvmtiExport::post_monitor_contended_entered(current, this);
 461 
 462     // The current thread already owns the monitor and is not going to
 463     // call park() for the remainder of the monitor enter protocol. So
 464     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 465     // event handler consumed an unpark() issued by the thread that
 466     // just exited the monitor.
 467   }
 468   if (event.should_commit()) {
 469     event.set_previousOwner(_previous_owner_tid);
 470     event.commit();
 471   }
 472   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 473   return true;
 474 }
 475 
 476 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 477 // Callers must compensate as needed.
 478 
 479 int ObjectMonitor::TryLock(JavaThread* current) {
 480   void* own = owner_raw();
 481   if (own != nullptr) return 0;
 482   if (try_set_owner_from(nullptr, current) == nullptr) {
 483     assert(_recursions == 0, "invariant");
 484     return 1;
 485   }
 486   // The lock had been free momentarily, but we lost the race to the lock.
 487   // Interference -- the CAS failed.
 488   // We can either return -1 or retry.
 489   // Retry doesn't make as much sense because the lock was just acquired.
 490   return -1;
 491 }
 492 
 493 // Deflate the specified ObjectMonitor if not in-use. Returns true if it
 494 // was deflated and false otherwise.
 495 //
 496 // The async deflation protocol sets owner to DEFLATER_MARKER and
 497 // makes contentions negative as signals to contending threads that
 498 // an async deflation is in progress. There are a number of checks
 499 // as part of the protocol to make sure that the calling thread has
 500 // not lost the race to a contending thread.
 501 //
 502 // The ObjectMonitor has been successfully async deflated when:
 503 //   (contentions < 0)
 504 // Contending threads that see that condition know to retry their operation.
 505 //
 506 bool ObjectMonitor::deflate_monitor() {
 507   if (is_busy()) {
 508     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 509     return false;
 510   }
 511 
 512   if (ObjectSynchronizer::is_final_audit() && owner_is_DEFLATER_MARKER()) {
 513     // The final audit can see an already deflated ObjectMonitor on the
 514     // in-use list because MonitorList::unlink_deflated() might have
 515     // blocked for the final safepoint before unlinking all the deflated
 516     // monitors.
 517     assert(contentions() < 0, "must be negative: contentions=%d", contentions());
 518     // Already returned 'true' when it was originally deflated.
 519     return false;
 520   }
 521 
 522   const oop obj = object_peek();
 523 
 524   if (obj == nullptr) {
 525     // If the object died, we can recycle the monitor without racing with
 526     // Java threads. The GC already broke the association with the object.
 527     set_owner_from(nullptr, DEFLATER_MARKER);
 528     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 529     _contentions = INT_MIN; // minimum negative int
 530   } else {
 531     // Attempt async deflation protocol.
 532 
 533     // Set a null owner to DEFLATER_MARKER to force any contending thread
 534     // through the slow path. This is just the first part of the async
 535     // deflation dance.
 536     if (try_set_owner_from(nullptr, DEFLATER_MARKER) != nullptr) {
 537       // The owner field is no longer null so we lost the race since the
 538       // ObjectMonitor is now busy.
 539       return false;
 540     }
 541 
 542     if (contentions() > 0 || _waiters != 0) {
 543       // Another thread has raced to enter the ObjectMonitor after
 544       // is_busy() above or has already entered and waited on
 545       // it which makes it busy so no deflation. Restore owner to
 546       // null if it is still DEFLATER_MARKER.
 547       if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 548         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 549         add_to_contentions(-1);
 550       }
 551       return false;
 552     }
 553 
 554     // Make a zero contentions field negative to force any contending threads
 555     // to retry. This is the second part of the async deflation dance.
 556     if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
 557       // Contentions was no longer 0 so we lost the race since the
 558       // ObjectMonitor is now busy. Restore owner to null if it is
 559       // still DEFLATER_MARKER:
 560       if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 561         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 562         add_to_contentions(-1);
 563       }
 564       return false;
 565     }
 566   }
 567 
 568   // Sanity checks for the races:
 569   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 570   guarantee(contentions() < 0, "must be negative: contentions=%d",
 571             contentions());
 572   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 573   guarantee(_cxq == nullptr, "must be no contending threads: cxq="
 574             INTPTR_FORMAT, p2i(_cxq));
 575   guarantee(_EntryList == nullptr,
 576             "must be no entering threads: EntryList=" INTPTR_FORMAT,
 577             p2i(_EntryList));
 578 
 579   if (obj != nullptr) {
 580     if (log_is_enabled(Trace, monitorinflation)) {
 581       ResourceMark rm;
 582       log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT
 583                                   ", mark=" INTPTR_FORMAT ", type='%s'",
 584                                   p2i(obj), obj->mark().value(),
 585                                   obj->klass()->external_name());
 586     }
 587 
 588     // Install the old mark word if nobody else has already done it.
 589     install_displaced_markword_in_object(obj);
 590   }
 591 
 592   // We leave owner == DEFLATER_MARKER and contentions < 0
 593   // to force any racing threads to retry.
 594   return true;  // Success, ObjectMonitor has been deflated.
 595 }
 596 
 597 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 598 // into the header of the object associated with the monitor. This
 599 // idempotent method is called by a thread that is deflating a
 600 // monitor and by other threads that have detected a race with the
 601 // deflation process.
 602 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 603   // This function must only be called when (owner == DEFLATER_MARKER
 604   // && contentions <= 0), but we can't guarantee that here because
 605   // those values could change when the ObjectMonitor gets moved from
 606   // the global free list to a per-thread free list.
 607 
 608   guarantee(obj != nullptr, "must be non-null");
 609 
 610   // Separate loads in is_being_async_deflated(), which is almost always
 611   // called before this function, from the load of dmw/header below.
 612 
 613   // _contentions and dmw/header may get written by different threads.
 614   // Make sure to observe them in the same order when having several observers.
 615   OrderAccess::loadload_for_IRIW();
 616 
 617   const oop l_object = object_peek();
 618   if (l_object == nullptr) {
 619     // ObjectMonitor's object ref has already been cleared by async
 620     // deflation or GC so we're done here.
 621     return;
 622   }
 623   assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 624          INTPTR_FORMAT, p2i(l_object), p2i(obj));
 625 
 626   markWord dmw = header();
 627   // The dmw has to be neutral (not null, not locked and not marked).
 628   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 629 
 630   // Install displaced mark word if the object's header still points
 631   // to this ObjectMonitor. More than one racing caller to this function
 632   // can rarely reach this point, but only one can win.
 633   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 634   if (res != markWord::encode(this)) {
 635     // This should be rare so log at the Info level when it happens.
 636     log_info(monitorinflation)("install_displaced_markword_in_object: "
 637                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 638                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 639                                dmw.value(), markWord::encode(this).value(),
 640                                res.value());
 641   }
 642 
 643   // Note: It does not matter which thread restored the header/dmw
 644   // into the object's header. The thread deflating the monitor just
 645   // wanted the object's header restored and it is. The threads that
 646   // detected a race with the deflation process also wanted the
 647   // object's header restored before they retry their operation and
 648   // because it is restored they will only retry once.
 649 }
 650 
 651 // Convert the fields used by is_busy() to a string that can be
 652 // used for diagnostic output.
 653 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 654   ss->print("is_busy: waiters=%d, ", _waiters);
 655   if (contentions() > 0) {
 656     ss->print("contentions=%d, ", contentions());
 657   } else {
 658     ss->print("contentions=0");
 659   }
 660   if (!owner_is_DEFLATER_MARKER()) {
 661     ss->print("owner=" INTPTR_FORMAT, p2i(owner_raw()));
 662   } else {
 663     // We report null instead of DEFLATER_MARKER here because is_busy()
 664     // ignores DEFLATER_MARKER values.
 665     ss->print("owner=" INTPTR_FORMAT, NULL_WORD);
 666   }
 667   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 668             p2i(_EntryList));
 669   return ss->base();
 670 }
 671 
 672 #define MAX_RECHECK_INTERVAL 1000
 673 
 674 void ObjectMonitor::EnterI(JavaThread* current) {
 675   assert(current->thread_state() == _thread_blocked, "invariant");
 676 
 677   // Try the lock - TATAS
 678   if (TryLock (current) > 0) {
 679     assert(_succ != current, "invariant");
 680     assert(owner_raw() == current, "invariant");
 681     assert(_Responsible != current, "invariant");
 682     return;
 683   }
 684 
 685   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 686     // Cancelled the in-progress async deflation by changing owner from
 687     // DEFLATER_MARKER to current. As part of the contended enter protocol,
 688     // contentions was incremented to a positive value before EnterI()
 689     // was called and that prevents the deflater thread from winning the
 690     // last part of the 2-part async deflation protocol. After EnterI()
 691     // returns to enter(), contentions is decremented because the caller
 692     // now owns the monitor. We bump contentions an extra time here to
 693     // prevent the deflater thread from winning the last part of the
 694     // 2-part async deflation protocol after the regular decrement
 695     // occurs in enter(). The deflater thread will decrement contentions
 696     // after it recognizes that the async deflation was cancelled.
 697     add_to_contentions(1);
 698     assert(_succ != current, "invariant");
 699     assert(_Responsible != current, "invariant");
 700     return;
 701   }
 702 
 703   assert(InitDone, "Unexpectedly not initialized");
 704 
 705   // We try one round of spinning *before* enqueueing current.
 706   //
 707   // If the _owner is ready but OFFPROC we could use a YieldTo()
 708   // operation to donate the remainder of this thread's quantum
 709   // to the owner.  This has subtle but beneficial affinity
 710   // effects.
 711 
 712   if (TrySpin(current) > 0) {
 713     assert(owner_raw() == current, "invariant");
 714     assert(_succ != current, "invariant");
 715     assert(_Responsible != current, "invariant");
 716     return;
 717   }
 718 
 719   // The Spin failed -- Enqueue and park the thread ...
 720   assert(_succ != current, "invariant");
 721   assert(owner_raw() != current, "invariant");
 722   assert(_Responsible != current, "invariant");
 723 
 724   // Enqueue "current" on ObjectMonitor's _cxq.
 725   //
 726   // Node acts as a proxy for current.
 727   // As an aside, if were to ever rewrite the synchronization code mostly
 728   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 729   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 730   // as well as eliminate a subset of ABA issues.
 731   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 732 
 733   ObjectWaiter node(current);
 734   current->_ParkEvent->reset();
 735   node._prev   = (ObjectWaiter*) 0xBAD;
 736   node.TState  = ObjectWaiter::TS_CXQ;
 737 
 738   // Push "current" onto the front of the _cxq.
 739   // Once on cxq/EntryList, current stays on-queue until it acquires the lock.
 740   // Note that spinning tends to reduce the rate at which threads
 741   // enqueue and dequeue on EntryList|cxq.
 742   ObjectWaiter* nxt;
 743   for (;;) {
 744     node._next = nxt = _cxq;
 745     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 746 
 747     // Interference - the CAS failed because _cxq changed.  Just retry.
 748     // As an optional optimization we retry the lock.
 749     if (TryLock (current) > 0) {
 750       assert(_succ != current, "invariant");
 751       assert(owner_raw() == current, "invariant");
 752       assert(_Responsible != current, "invariant");
 753       return;
 754     }
 755   }
 756 
 757   // Check for cxq|EntryList edge transition to non-null.  This indicates
 758   // the onset of contention.  While contention persists exiting threads
 759   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 760   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 761   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 762   // arrange for one of the contending thread to use a timed park() operations
 763   // to detect and recover from the race.  (Stranding is form of progress failure
 764   // where the monitor is unlocked but all the contending threads remain parked).
 765   // That is, at least one of the contended threads will periodically poll _owner.
 766   // One of the contending threads will become the designated "Responsible" thread.
 767   // The Responsible thread uses a timed park instead of a normal indefinite park
 768   // operation -- it periodically wakes and checks for and recovers from potential
 769   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 770   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 771   // be responsible for a monitor.
 772   //
 773   // Currently, one of the contended threads takes on the added role of "Responsible".
 774   // A viable alternative would be to use a dedicated "stranding checker" thread
 775   // that periodically iterated over all the threads (or active monitors) and unparked
 776   // successors where there was risk of stranding.  This would help eliminate the
 777   // timer scalability issues we see on some platforms as we'd only have one thread
 778   // -- the checker -- parked on a timer.
 779 
 780   if (nxt == nullptr && _EntryList == nullptr) {
 781     // Try to assume the role of responsible thread for the monitor.
 782     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=current }
 783     Atomic::replace_if_null(&_Responsible, current);
 784   }
 785 
 786   // The lock might have been released while this thread was occupied queueing
 787   // itself onto _cxq.  To close the race and avoid "stranding" and
 788   // progress-liveness failure we must resample-retry _owner before parking.
 789   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 790   // In this case the ST-MEMBAR is accomplished with CAS().
 791   //
 792   // TODO: Defer all thread state transitions until park-time.
 793   // Since state transitions are heavy and inefficient we'd like
 794   // to defer the state transitions until absolutely necessary,
 795   // and in doing so avoid some transitions ...
 796 
 797   int nWakeups = 0;
 798   int recheckInterval = 1;
 799 
 800   for (;;) {
 801 
 802     if (TryLock(current) > 0) break;
 803     assert(owner_raw() != current, "invariant");
 804 
 805     // park self
 806     if (_Responsible == current) {
 807       current->_ParkEvent->park((jlong) recheckInterval);
 808       // Increase the recheckInterval, but clamp the value.
 809       recheckInterval *= 8;
 810       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 811         recheckInterval = MAX_RECHECK_INTERVAL;
 812       }
 813     } else {
 814       current->_ParkEvent->park();
 815     }
 816 
 817     if (TryLock(current) > 0) break;
 818 
 819     if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 820       // Cancelled the in-progress async deflation by changing owner from
 821       // DEFLATER_MARKER to current. As part of the contended enter protocol,
 822       // contentions was incremented to a positive value before EnterI()
 823       // was called and that prevents the deflater thread from winning the
 824       // last part of the 2-part async deflation protocol. After EnterI()
 825       // returns to enter(), contentions is decremented because the caller
 826       // now owns the monitor. We bump contentions an extra time here to
 827       // prevent the deflater thread from winning the last part of the
 828       // 2-part async deflation protocol after the regular decrement
 829       // occurs in enter(). The deflater thread will decrement contentions
 830       // after it recognizes that the async deflation was cancelled.
 831       add_to_contentions(1);
 832       break;
 833     }
 834 
 835     // The lock is still contested.
 836     // Keep a tally of the # of futile wakeups.
 837     // Note that the counter is not protected by a lock or updated by atomics.
 838     // That is by design - we trade "lossy" counters which are exposed to
 839     // races during updates for a lower probe effect.
 840 
 841     // This PerfData object can be used in parallel with a safepoint.
 842     // See the work around in PerfDataManager::destroy().
 843     OM_PERFDATA_OP(FutileWakeups, inc());
 844     ++nWakeups;
 845 
 846     // Assuming this is not a spurious wakeup we'll normally find _succ == current.
 847     // We can defer clearing _succ until after the spin completes
 848     // TrySpin() must tolerate being called with _succ == current.
 849     // Try yet another round of adaptive spinning.
 850     if (TrySpin(current) > 0) break;
 851 
 852     // We can find that we were unpark()ed and redesignated _succ while
 853     // we were spinning.  That's harmless.  If we iterate and call park(),
 854     // park() will consume the event and return immediately and we'll
 855     // just spin again.  This pattern can repeat, leaving _succ to simply
 856     // spin on a CPU.
 857 
 858     if (_succ == current) _succ = nullptr;
 859 
 860     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 861     OrderAccess::fence();
 862   }
 863 
 864   // Egress :
 865   // current has acquired the lock -- Unlink current from the cxq or EntryList.
 866   // Normally we'll find current on the EntryList .
 867   // From the perspective of the lock owner (this thread), the
 868   // EntryList is stable and cxq is prepend-only.
 869   // The head of cxq is volatile but the interior is stable.
 870   // In addition, current.TState is stable.
 871 
 872   assert(owner_raw() == current, "invariant");
 873 
 874   UnlinkAfterAcquire(current, &node);
 875   if (_succ == current) _succ = nullptr;
 876 
 877   assert(_succ != current, "invariant");
 878   if (_Responsible == current) {
 879     _Responsible = nullptr;
 880     OrderAccess::fence(); // Dekker pivot-point
 881 
 882     // We may leave threads on cxq|EntryList without a designated
 883     // "Responsible" thread.  This is benign.  When this thread subsequently
 884     // exits the monitor it can "see" such preexisting "old" threads --
 885     // threads that arrived on the cxq|EntryList before the fence, above --
 886     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 887     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 888     // non-null and elect a new "Responsible" timer thread.
 889     //
 890     // This thread executes:
 891     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 892     //    LD cxq|EntryList               (in subsequent exit)
 893     //
 894     // Entering threads in the slow/contended path execute:
 895     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 896     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 897     //
 898     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 899     // exit operation from floating above the ST Responsible=null.
 900   }
 901 
 902   // We've acquired ownership with CAS().
 903   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 904   // But since the CAS() this thread may have also stored into _succ,
 905   // EntryList, cxq or Responsible.  These meta-data updates must be
 906   // visible __before this thread subsequently drops the lock.
 907   // Consider what could occur if we didn't enforce this constraint --
 908   // STs to monitor meta-data and user-data could reorder with (become
 909   // visible after) the ST in exit that drops ownership of the lock.
 910   // Some other thread could then acquire the lock, but observe inconsistent
 911   // or old monitor meta-data and heap data.  That violates the JMM.
 912   // To that end, the 1-0 exit() operation must have at least STST|LDST
 913   // "release" barrier semantics.  Specifically, there must be at least a
 914   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 915   // the lock.   The barrier ensures that changes to monitor meta-data and data
 916   // protected by the lock will be visible before we release the lock, and
 917   // therefore before some other thread (CPU) has a chance to acquire the lock.
 918   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 919   //
 920   // Critically, any prior STs to _succ or EntryList must be visible before
 921   // the ST of null into _owner in the *subsequent* (following) corresponding
 922   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 923   // execute a serializing instruction.
 924 
 925   return;
 926 }
 927 
 928 // ReenterI() is a specialized inline form of the latter half of the
 929 // contended slow-path from EnterI().  We use ReenterI() only for
 930 // monitor reentry in wait().
 931 //
 932 // In the future we should reconcile EnterI() and ReenterI().
 933 
 934 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) {
 935   assert(current != nullptr, "invariant");
 936   assert(currentNode != nullptr, "invariant");
 937   assert(currentNode->_thread == current, "invariant");
 938   assert(_waiters > 0, "invariant");
 939   assert(object()->mark() == markWord::encode(this), "invariant");
 940 
 941   assert(current->thread_state() != _thread_blocked, "invariant");
 942 
 943   int nWakeups = 0;
 944   for (;;) {
 945     ObjectWaiter::TStates v = currentNode->TState;
 946     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 947     assert(owner_raw() != current, "invariant");
 948 
 949     if (TryLock(current) > 0) break;
 950     if (TrySpin(current) > 0) break;
 951 
 952     {
 953       OSThreadContendState osts(current->osthread());
 954 
 955       assert(current->thread_state() == _thread_in_vm, "invariant");
 956 
 957       {
 958         ClearSuccOnSuspend csos(this);
 959         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
 960         current->_ParkEvent->park();
 961       }
 962     }
 963 
 964     // Try again, but just so we distinguish between futile wakeups and
 965     // successful wakeups.  The following test isn't algorithmically
 966     // necessary, but it helps us maintain sensible statistics.
 967     if (TryLock(current) > 0) break;
 968 
 969     // The lock is still contested.
 970     // Keep a tally of the # of futile wakeups.
 971     // Note that the counter is not protected by a lock or updated by atomics.
 972     // That is by design - we trade "lossy" counters which are exposed to
 973     // races during updates for a lower probe effect.
 974     ++nWakeups;
 975 
 976     // Assuming this is not a spurious wakeup we'll normally
 977     // find that _succ == current.
 978     if (_succ == current) _succ = nullptr;
 979 
 980     // Invariant: after clearing _succ a contending thread
 981     // *must* retry  _owner before parking.
 982     OrderAccess::fence();
 983 
 984     // This PerfData object can be used in parallel with a safepoint.
 985     // See the work around in PerfDataManager::destroy().
 986     OM_PERFDATA_OP(FutileWakeups, inc());
 987   }
 988 
 989   // current has acquired the lock -- Unlink current from the cxq or EntryList .
 990   // Normally we'll find current on the EntryList.
 991   // Unlinking from the EntryList is constant-time and atomic-free.
 992   // From the perspective of the lock owner (this thread), the
 993   // EntryList is stable and cxq is prepend-only.
 994   // The head of cxq is volatile but the interior is stable.
 995   // In addition, current.TState is stable.
 996 
 997   assert(owner_raw() == current, "invariant");
 998   assert(object()->mark() == markWord::encode(this), "invariant");
 999   UnlinkAfterAcquire(current, currentNode);
1000   if (_succ == current) _succ = nullptr;
1001   assert(_succ != current, "invariant");
1002   currentNode->TState = ObjectWaiter::TS_RUN;
1003   OrderAccess::fence();      // see comments at the end of EnterI()
1004 }
1005 
1006 // By convention we unlink a contending thread from EntryList|cxq immediately
1007 // after the thread acquires the lock in ::enter().  Equally, we could defer
1008 // unlinking the thread until ::exit()-time.
1009 
1010 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) {
1011   assert(owner_raw() == current, "invariant");
1012   assert(currentNode->_thread == current, "invariant");
1013 
1014   if (currentNode->TState == ObjectWaiter::TS_ENTER) {
1015     // Normal case: remove current from the DLL EntryList .
1016     // This is a constant-time operation.
1017     ObjectWaiter* nxt = currentNode->_next;
1018     ObjectWaiter* prv = currentNode->_prev;
1019     if (nxt != nullptr) nxt->_prev = prv;
1020     if (prv != nullptr) prv->_next = nxt;
1021     if (currentNode == _EntryList) _EntryList = nxt;
1022     assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1023     assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1024   } else {
1025     assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant");
1026     // Inopportune interleaving -- current is still on the cxq.
1027     // This usually means the enqueue of self raced an exiting thread.
1028     // Normally we'll find current near the front of the cxq, so
1029     // dequeueing is typically fast.  If needbe we can accelerate
1030     // this with some MCS/CHL-like bidirectional list hints and advisory
1031     // back-links so dequeueing from the interior will normally operate
1032     // in constant-time.
1033     // Dequeue current from either the head (with CAS) or from the interior
1034     // with a linear-time scan and normal non-atomic memory operations.
1035     // CONSIDER: if current is on the cxq then simply drain cxq into EntryList
1036     // and then unlink current from EntryList.  We have to drain eventually,
1037     // so it might as well be now.
1038 
1039     ObjectWaiter* v = _cxq;
1040     assert(v != nullptr, "invariant");
1041     if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) {
1042       // The CAS above can fail from interference IFF a "RAT" arrived.
1043       // In that case current must be in the interior and can no longer be
1044       // at the head of cxq.
1045       if (v == currentNode) {
1046         assert(_cxq != v, "invariant");
1047         v = _cxq;          // CAS above failed - start scan at head of list
1048       }
1049       ObjectWaiter* p;
1050       ObjectWaiter* q = nullptr;
1051       for (p = v; p != nullptr && p != currentNode; p = p->_next) {
1052         q = p;
1053         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
1054       }
1055       assert(v != currentNode, "invariant");
1056       assert(p == currentNode, "Node not found on cxq");
1057       assert(p != _cxq, "invariant");
1058       assert(q != nullptr, "invariant");
1059       assert(q->_next == p, "invariant");
1060       q->_next = p->_next;
1061     }
1062   }
1063 
1064 #ifdef ASSERT
1065   // Diagnostic hygiene ...
1066   currentNode->_prev  = (ObjectWaiter*) 0xBAD;
1067   currentNode->_next  = (ObjectWaiter*) 0xBAD;
1068   currentNode->TState = ObjectWaiter::TS_RUN;
1069 #endif
1070 }
1071 
1072 // -----------------------------------------------------------------------------
1073 // Exit support
1074 //
1075 // exit()
1076 // ~~~~~~
1077 // Note that the collector can't reclaim the objectMonitor or deflate
1078 // the object out from underneath the thread calling ::exit() as the
1079 // thread calling ::exit() never transitions to a stable state.
1080 // This inhibits GC, which in turn inhibits asynchronous (and
1081 // inopportune) reclamation of "this".
1082 //
1083 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
1084 // There's one exception to the claim above, however.  EnterI() can call
1085 // exit() to drop a lock if the acquirer has been externally suspended.
1086 // In that case exit() is called with _thread_state == _thread_blocked,
1087 // but the monitor's _contentions field is > 0, which inhibits reclamation.
1088 //
1089 // 1-0 exit
1090 // ~~~~~~~~
1091 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
1092 // the fast-path operators have been optimized so the common ::exit()
1093 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
1094 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
1095 // greatly improves latency -- MEMBAR and CAS having considerable local
1096 // latency on modern processors -- but at the cost of "stranding".  Absent the
1097 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
1098 // ::enter() path, resulting in the entering thread being stranding
1099 // and a progress-liveness failure.   Stranding is extremely rare.
1100 // We use timers (timed park operations) & periodic polling to detect
1101 // and recover from stranding.  Potentially stranded threads periodically
1102 // wake up and poll the lock.  See the usage of the _Responsible variable.
1103 //
1104 // The CAS() in enter provides for safety and exclusion, while the CAS or
1105 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
1106 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
1107 // We detect and recover from stranding with timers.
1108 //
1109 // If a thread transiently strands it'll park until (a) another
1110 // thread acquires the lock and then drops the lock, at which time the
1111 // exiting thread will notice and unpark the stranded thread, or, (b)
1112 // the timer expires.  If the lock is high traffic then the stranding latency
1113 // will be low due to (a).  If the lock is low traffic then the odds of
1114 // stranding are lower, although the worst-case stranding latency
1115 // is longer.  Critically, we don't want to put excessive load in the
1116 // platform's timer subsystem.  We want to minimize both the timer injection
1117 // rate (timers created/sec) as well as the number of timers active at
1118 // any one time.  (more precisely, we want to minimize timer-seconds, which is
1119 // the integral of the # of active timers at any instant over time).
1120 // Both impinge on OS scalability.  Given that, at most one thread parked on
1121 // a monitor will use a timer.
1122 //
1123 // There is also the risk of a futile wake-up. If we drop the lock
1124 // another thread can reacquire the lock immediately, and we can
1125 // then wake a thread unnecessarily. This is benign, and we've
1126 // structured the code so the windows are short and the frequency
1127 // of such futile wakups is low.
1128 
1129 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1130   void* cur = owner_raw();
1131   if (current != cur) {
1132     if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1133       assert(_recursions == 0, "invariant");
1134       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1135       _recursions = 0;
1136     } else {
1137       // Apparent unbalanced locking ...
1138       // Naively we'd like to throw IllegalMonitorStateException.
1139       // As a practical matter we can neither allocate nor throw an
1140       // exception as ::exit() can be called from leaf routines.
1141       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1142       // Upon deeper reflection, however, in a properly run JVM the only
1143       // way we should encounter this situation is in the presence of
1144       // unbalanced JNI locking. TODO: CheckJNICalls.
1145       // See also: CR4414101
1146 #ifdef ASSERT
1147       LogStreamHandle(Error, monitorinflation) lsh;
1148       lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1149                     " is exiting an ObjectMonitor it does not own.", p2i(current));
1150       lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1151       print_debug_style_on(&lsh);
1152       assert(false, "Non-balanced monitor enter/exit!");
1153 #endif
1154       return;
1155     }
1156   }
1157 
1158   if (_recursions != 0) {
1159     _recursions--;        // this is simple recursive enter
1160     return;
1161   }
1162 
1163   // Invariant: after setting Responsible=null an thread must execute
1164   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1165   _Responsible = nullptr;
1166 
1167 #if INCLUDE_JFR
1168   // get the owner's thread id for the MonitorEnter event
1169   // if it is enabled and the thread isn't suspended
1170   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1171     _previous_owner_tid = JFR_THREAD_ID(current);
1172   }
1173 #endif
1174 
1175   for (;;) {
1176     assert(current == owner_raw(), "invariant");
1177 
1178     // Drop the lock.
1179     // release semantics: prior loads and stores from within the critical section
1180     // must not float (reorder) past the following store that drops the lock.
1181     // Uses a storeload to separate release_store(owner) from the
1182     // successor check. The try_set_owner() below uses cmpxchg() so
1183     // we get the fence down there.
1184     release_clear_owner(current);
1185     OrderAccess::storeload();
1186 
1187     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) {
1188       return;
1189     }
1190     // Other threads are blocked trying to acquire the lock.
1191 
1192     // Normally the exiting thread is responsible for ensuring succession,
1193     // but if other successors are ready or other entering threads are spinning
1194     // then this thread can simply store null into _owner and exit without
1195     // waking a successor.  The existence of spinners or ready successors
1196     // guarantees proper succession (liveness).  Responsibility passes to the
1197     // ready or running successors.  The exiting thread delegates the duty.
1198     // More precisely, if a successor already exists this thread is absolved
1199     // of the responsibility of waking (unparking) one.
1200     //
1201     // The _succ variable is critical to reducing futile wakeup frequency.
1202     // _succ identifies the "heir presumptive" thread that has been made
1203     // ready (unparked) but that has not yet run.  We need only one such
1204     // successor thread to guarantee progress.
1205     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1206     // section 3.3 "Futile Wakeup Throttling" for details.
1207     //
1208     // Note that spinners in Enter() also set _succ non-null.
1209     // In the current implementation spinners opportunistically set
1210     // _succ so that exiting threads might avoid waking a successor.
1211     // Another less appealing alternative would be for the exiting thread
1212     // to drop the lock and then spin briefly to see if a spinner managed
1213     // to acquire the lock.  If so, the exiting thread could exit
1214     // immediately without waking a successor, otherwise the exiting
1215     // thread would need to dequeue and wake a successor.
1216     // (Note that we'd need to make the post-drop spin short, but no
1217     // shorter than the worst-case round-trip cache-line migration time.
1218     // The dropped lock needs to become visible to the spinner, and then
1219     // the acquisition of the lock by the spinner must become visible to
1220     // the exiting thread).
1221 
1222     // It appears that an heir-presumptive (successor) must be made ready.
1223     // Only the current lock owner can manipulate the EntryList or
1224     // drain _cxq, so we need to reacquire the lock.  If we fail
1225     // to reacquire the lock the responsibility for ensuring succession
1226     // falls to the new owner.
1227     //
1228     if (try_set_owner_from(nullptr, current) != nullptr) {
1229       return;
1230     }
1231 
1232     guarantee(owner_raw() == current, "invariant");
1233 
1234     ObjectWaiter* w = nullptr;
1235 
1236     w = _EntryList;
1237     if (w != nullptr) {
1238       // I'd like to write: guarantee (w->_thread != current).
1239       // But in practice an exiting thread may find itself on the EntryList.
1240       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1241       // then calls exit().  Exit release the lock by setting O._owner to null.
1242       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1243       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1244       // release the lock "O".  T2 resumes immediately after the ST of null into
1245       // _owner, above.  T2 notices that the EntryList is populated, so it
1246       // reacquires the lock and then finds itself on the EntryList.
1247       // Given all that, we have to tolerate the circumstance where "w" is
1248       // associated with current.
1249       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1250       ExitEpilog(current, w);
1251       return;
1252     }
1253 
1254     // If we find that both _cxq and EntryList are null then just
1255     // re-run the exit protocol from the top.
1256     w = _cxq;
1257     if (w == nullptr) continue;
1258 
1259     // Drain _cxq into EntryList - bulk transfer.
1260     // First, detach _cxq.
1261     // The following loop is tantamount to: w = swap(&cxq, nullptr)
1262     for (;;) {
1263       assert(w != nullptr, "Invariant");
1264       ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr);
1265       if (u == w) break;
1266       w = u;
1267     }
1268 
1269     assert(w != nullptr, "invariant");
1270     assert(_EntryList == nullptr, "invariant");
1271 
1272     // Convert the LIFO SLL anchored by _cxq into a DLL.
1273     // The list reorganization step operates in O(LENGTH(w)) time.
1274     // It's critical that this step operate quickly as
1275     // "current" still holds the outer-lock, restricting parallelism
1276     // and effectively lengthening the critical section.
1277     // Invariant: s chases t chases u.
1278     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1279     // we have faster access to the tail.
1280 
1281     _EntryList = w;
1282     ObjectWaiter* q = nullptr;
1283     ObjectWaiter* p;
1284     for (p = w; p != nullptr; p = p->_next) {
1285       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1286       p->TState = ObjectWaiter::TS_ENTER;
1287       p->_prev = q;
1288       q = p;
1289     }
1290 
1291     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr
1292     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1293 
1294     // See if we can abdicate to a spinner instead of waking a thread.
1295     // A primary goal of the implementation is to reduce the
1296     // context-switch rate.
1297     if (_succ != nullptr) continue;
1298 
1299     w = _EntryList;
1300     if (w != nullptr) {
1301       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1302       ExitEpilog(current, w);
1303       return;
1304     }
1305   }
1306 }
1307 
1308 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) {
1309   assert(owner_raw() == current, "invariant");
1310 
1311   // Exit protocol:
1312   // 1. ST _succ = wakee
1313   // 2. membar #loadstore|#storestore;
1314   // 2. ST _owner = nullptr
1315   // 3. unpark(wakee)
1316 
1317   _succ = Wakee->_thread;
1318   ParkEvent * Trigger = Wakee->_event;
1319 
1320   // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
1321   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1322   // out-of-scope (non-extant).
1323   Wakee  = nullptr;
1324 
1325   // Drop the lock.
1326   // Uses a fence to separate release_store(owner) from the LD in unpark().
1327   release_clear_owner(current);
1328   OrderAccess::fence();
1329 
1330   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1331   Trigger->unpark();
1332 
1333   // Maintain stats and report events to JVMTI
1334   OM_PERFDATA_OP(Parks, inc());
1335 }
1336 
1337 // complete_exit exits a lock returning recursion count
1338 // complete_exit requires an inflated monitor
1339 // The _owner field is not always the Thread addr even with an
1340 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1341 // thread due to contention.
1342 intx ObjectMonitor::complete_exit(JavaThread* current) {
1343   assert(InitDone, "Unexpectedly not initialized");
1344 
1345   void* cur = owner_raw();
1346   if (current != cur) {
1347     if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1348       assert(_recursions == 0, "internal state error");
1349       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1350       _recursions = 0;
1351     }
1352   }
1353 
1354   guarantee(current == owner_raw(), "complete_exit not owner");
1355   intx save = _recursions; // record the old recursion count
1356   _recursions = 0;         // set the recursion level to be 0
1357   exit(current);           // exit the monitor
1358   guarantee(owner_raw() != current, "invariant");
1359   return save;
1360 }
1361 
1362 // Checks that the current THREAD owns this monitor and causes an
1363 // immediate return if it doesn't. We don't use the CHECK macro
1364 // because we want the IMSE to be the only exception that is thrown
1365 // from the call site when false is returned. Any other pending
1366 // exception is ignored.
1367 #define CHECK_OWNER()                                                  \
1368   do {                                                                 \
1369     if (!check_owner(THREAD)) {                                        \
1370        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1371        return;                                                         \
1372      }                                                                 \
1373   } while (false)
1374 
1375 // Returns true if the specified thread owns the ObjectMonitor.
1376 // Otherwise returns false and throws IllegalMonitorStateException
1377 // (IMSE). If there is a pending exception and the specified thread
1378 // is not the owner, that exception will be replaced by the IMSE.
1379 bool ObjectMonitor::check_owner(TRAPS) {
1380   JavaThread* current = THREAD;
1381   void* cur = owner_raw();
1382   assert(cur != anon_owner_ptr(), "no anon owner here");
1383   if (cur == current) {
1384     return true;
1385   }
1386   if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1387     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1388     _recursions = 0;
1389     return true;
1390   }
1391   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1392              "current thread is not owner", false);
1393 }
1394 
1395 static inline bool is_excluded(const Klass* monitor_klass) {
1396   assert(monitor_klass != nullptr, "invariant");
1397   NOT_JFR_RETURN_(false);
1398   JFR_ONLY(return vmSymbols::jfr_chunk_rotation_monitor() == monitor_klass->name());
1399 }
1400 
1401 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1402                                     ObjectMonitor* monitor,
1403                                     uint64_t notifier_tid,
1404                                     jlong timeout,
1405                                     bool timedout) {
1406   assert(event != nullptr, "invariant");
1407   assert(monitor != nullptr, "invariant");
1408   const Klass* monitor_klass = monitor->object()->klass();
1409   if (is_excluded(monitor_klass)) {
1410     return;
1411   }
1412   event->set_monitorClass(monitor_klass);
1413   event->set_timeout(timeout);
1414   // Set an address that is 'unique enough', such that events close in
1415   // time and with the same address are likely (but not guaranteed) to
1416   // belong to the same object.
1417   event->set_address((uintptr_t)monitor);
1418   event->set_notifier(notifier_tid);
1419   event->set_timedOut(timedout);
1420   event->commit();
1421 }
1422 
1423 // -----------------------------------------------------------------------------
1424 // Wait/Notify/NotifyAll
1425 //
1426 // Note: a subset of changes to ObjectMonitor::wait()
1427 // will need to be replicated in complete_exit
1428 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1429   JavaThread* current = THREAD;
1430 
1431   assert(InitDone, "Unexpectedly not initialized");
1432 
1433   CHECK_OWNER();  // Throws IMSE if not owner.
1434 
1435   EventJavaMonitorWait event;
1436 
1437   // check for a pending interrupt
1438   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1439     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1440     if (JvmtiExport::should_post_monitor_waited()) {
1441       // Note: 'false' parameter is passed here because the
1442       // wait was not timed out due to thread interrupt.
1443       JvmtiExport::post_monitor_waited(current, this, false);
1444 
1445       // In this short circuit of the monitor wait protocol, the
1446       // current thread never drops ownership of the monitor and
1447       // never gets added to the wait queue so the current thread
1448       // cannot be made the successor. This means that the
1449       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1450       // consume an unpark() meant for the ParkEvent associated with
1451       // this ObjectMonitor.
1452     }
1453     if (event.should_commit()) {
1454       post_monitor_wait_event(&event, this, 0, millis, false);
1455     }
1456     THROW(vmSymbols::java_lang_InterruptedException());
1457     return;
1458   }
1459 
1460   assert(current->_Stalled == 0, "invariant");
1461   current->_Stalled = intptr_t(this);
1462   current->set_current_waiting_monitor(this);
1463 
1464   // create a node to be put into the queue
1465   // Critically, after we reset() the event but prior to park(), we must check
1466   // for a pending interrupt.
1467   ObjectWaiter node(current);
1468   node.TState = ObjectWaiter::TS_WAIT;
1469   current->_ParkEvent->reset();
1470   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1471 
1472   // Enter the waiting queue, which is a circular doubly linked list in this case
1473   // but it could be a priority queue or any data structure.
1474   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1475   // by the owner of the monitor *except* in the case where park()
1476   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1477   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1478 
1479   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1480   AddWaiter(&node);
1481   Thread::SpinRelease(&_WaitSetLock);
1482 
1483   _Responsible = nullptr;
1484 
1485   intx save = _recursions;     // record the old recursion count
1486   _waiters++;                  // increment the number of waiters
1487   _recursions = 0;             // set the recursion level to be 1
1488   exit(current);               // exit the monitor
1489   guarantee(owner_raw() != current, "invariant");
1490 
1491   // The thread is on the WaitSet list - now park() it.
1492   // On MP systems it's conceivable that a brief spin before we park
1493   // could be profitable.
1494   //
1495   // TODO-FIXME: change the following logic to a loop of the form
1496   //   while (!timeout && !interrupted && _notified == 0) park()
1497 
1498   int ret = OS_OK;
1499   int WasNotified = 0;
1500 
1501   // Need to check interrupt state whilst still _thread_in_vm
1502   bool interrupted = interruptible && current->is_interrupted(false);
1503 
1504   { // State transition wrappers
1505     OSThread* osthread = current->osthread();
1506     OSThreadWaitState osts(osthread, true);
1507 
1508     assert(current->thread_state() == _thread_in_vm, "invariant");
1509 
1510     {
1511       ClearSuccOnSuspend csos(this);
1512       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1513       if (interrupted || HAS_PENDING_EXCEPTION) {
1514         // Intentionally empty
1515       } else if (node._notified == 0) {
1516         if (millis <= 0) {
1517           current->_ParkEvent->park();
1518         } else {
1519           ret = current->_ParkEvent->park(millis);
1520         }
1521       }
1522     }
1523 
1524     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1525     // from the WaitSet to the EntryList.
1526     // See if we need to remove Node from the WaitSet.
1527     // We use double-checked locking to avoid grabbing _WaitSetLock
1528     // if the thread is not on the wait queue.
1529     //
1530     // Note that we don't need a fence before the fetch of TState.
1531     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1532     // written by the is thread. (perhaps the fetch might even be satisfied
1533     // by a look-aside into the processor's own store buffer, although given
1534     // the length of the code path between the prior ST and this load that's
1535     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1536     // then we'll acquire the lock and then re-fetch a fresh TState value.
1537     // That is, we fail toward safety.
1538 
1539     if (node.TState == ObjectWaiter::TS_WAIT) {
1540       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1541       if (node.TState == ObjectWaiter::TS_WAIT) {
1542         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1543         assert(node._notified == 0, "invariant");
1544         node.TState = ObjectWaiter::TS_RUN;
1545       }
1546       Thread::SpinRelease(&_WaitSetLock);
1547     }
1548 
1549     // The thread is now either on off-list (TS_RUN),
1550     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1551     // The Node's TState variable is stable from the perspective of this thread.
1552     // No other threads will asynchronously modify TState.
1553     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1554     OrderAccess::loadload();
1555     if (_succ == current) _succ = nullptr;
1556     WasNotified = node._notified;
1557 
1558     // Reentry phase -- reacquire the monitor.
1559     // re-enter contended monitor after object.wait().
1560     // retain OBJECT_WAIT state until re-enter successfully completes
1561     // Thread state is thread_in_vm and oop access is again safe,
1562     // although the raw address of the object may have changed.
1563     // (Don't cache naked oops over safepoints, of course).
1564 
1565     // post monitor waited event. Note that this is past-tense, we are done waiting.
1566     if (JvmtiExport::should_post_monitor_waited()) {
1567       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1568 
1569       if (node._notified != 0 && _succ == current) {
1570         // In this part of the monitor wait-notify-reenter protocol it
1571         // is possible (and normal) for another thread to do a fastpath
1572         // monitor enter-exit while this thread is still trying to get
1573         // to the reenter portion of the protocol.
1574         //
1575         // The ObjectMonitor was notified and the current thread is
1576         // the successor which also means that an unpark() has already
1577         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1578         // consume the unpark() that was done when the successor was
1579         // set because the same ParkEvent is shared between Java
1580         // monitors and JVM/TI RawMonitors (for now).
1581         //
1582         // We redo the unpark() to ensure forward progress, i.e., we
1583         // don't want all pending threads hanging (parked) with none
1584         // entering the unlocked monitor.
1585         node._event->unpark();
1586       }
1587     }
1588 
1589     if (event.should_commit()) {
1590       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1591     }
1592 
1593     OrderAccess::fence();
1594 
1595     assert(current->_Stalled != 0, "invariant");
1596     current->_Stalled = 0;
1597 
1598     assert(owner_raw() != current, "invariant");
1599     ObjectWaiter::TStates v = node.TState;
1600     if (v == ObjectWaiter::TS_RUN) {
1601       enter(current);
1602     } else {
1603       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1604       ReenterI(current, &node);
1605       node.wait_reenter_end(this);
1606     }
1607 
1608     // current has reacquired the lock.
1609     // Lifecycle - the node representing current must not appear on any queues.
1610     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1611     // want residual elements associated with this thread left on any lists.
1612     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1613     assert(owner_raw() == current, "invariant");
1614     assert(_succ != current, "invariant");
1615   } // OSThreadWaitState()
1616 
1617   current->set_current_waiting_monitor(nullptr);
1618 
1619   guarantee(_recursions == 0, "invariant");
1620   int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
1621   _recursions =   save          // restore the old recursion count
1622                 + relock_count; //  increased by the deferred relock count
1623   current->inc_held_monitor_count(relock_count); // Deopt never entered these counts.
1624   _waiters--;             // decrement the number of waiters
1625 
1626   // Verify a few postconditions
1627   assert(owner_raw() == current, "invariant");
1628   assert(_succ != current, "invariant");
1629   assert(object()->mark() == markWord::encode(this), "invariant");
1630 
1631   // check if the notification happened
1632   if (!WasNotified) {
1633     // no, it could be timeout or Thread.interrupt() or both
1634     // check for interrupt event, otherwise it is timeout
1635     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1636       THROW(vmSymbols::java_lang_InterruptedException());
1637     }
1638   }
1639 
1640   // NOTE: Spurious wake up will be consider as timeout.
1641   // Monitor notify has precedence over thread interrupt.
1642 }
1643 
1644 
1645 // Consider:
1646 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1647 // then instead of transferring a thread from the WaitSet to the EntryList
1648 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1649 
1650 void ObjectMonitor::INotify(JavaThread* current) {
1651   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1652   ObjectWaiter* iterator = DequeueWaiter();
1653   if (iterator != nullptr) {
1654     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1655     guarantee(iterator->_notified == 0, "invariant");
1656     // Disposition - what might we do with iterator ?
1657     // a.  add it directly to the EntryList - either tail (policy == 1)
1658     //     or head (policy == 0).
1659     // b.  push it onto the front of the _cxq (policy == 2).
1660     // For now we use (b).
1661 
1662     iterator->TState = ObjectWaiter::TS_ENTER;
1663 
1664     iterator->_notified = 1;
1665     iterator->_notifier_tid = JFR_THREAD_ID(current);
1666 
1667     ObjectWaiter* list = _EntryList;
1668     if (list != nullptr) {
1669       assert(list->_prev == nullptr, "invariant");
1670       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1671       assert(list != iterator, "invariant");
1672     }
1673 
1674     // prepend to cxq
1675     if (list == nullptr) {
1676       iterator->_next = iterator->_prev = nullptr;
1677       _EntryList = iterator;
1678     } else {
1679       iterator->TState = ObjectWaiter::TS_CXQ;
1680       for (;;) {
1681         ObjectWaiter* front = _cxq;
1682         iterator->_next = front;
1683         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1684           break;
1685         }
1686       }
1687     }
1688 
1689     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1690     // move the add-to-EntryList operation, above, outside the critical section
1691     // protected by _WaitSetLock.  In practice that's not useful.  With the
1692     // exception of  wait() timeouts and interrupts the monitor owner
1693     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1694     // on _WaitSetLock so it's not profitable to reduce the length of the
1695     // critical section.
1696 
1697     iterator->wait_reenter_begin(this);
1698   }
1699   Thread::SpinRelease(&_WaitSetLock);
1700 }
1701 
1702 // Consider: a not-uncommon synchronization bug is to use notify() when
1703 // notifyAll() is more appropriate, potentially resulting in stranded
1704 // threads; this is one example of a lost wakeup. A useful diagnostic
1705 // option is to force all notify() operations to behave as notifyAll().
1706 //
1707 // Note: We can also detect many such problems with a "minimum wait".
1708 // When the "minimum wait" is set to a small non-zero timeout value
1709 // and the program does not hang whereas it did absent "minimum wait",
1710 // that suggests a lost wakeup bug.
1711 
1712 void ObjectMonitor::notify(TRAPS) {
1713   JavaThread* current = THREAD;
1714   CHECK_OWNER();  // Throws IMSE if not owner.
1715   if (_WaitSet == nullptr) {
1716     return;
1717   }
1718   DTRACE_MONITOR_PROBE(notify, this, object(), current);
1719   INotify(current);
1720   OM_PERFDATA_OP(Notifications, inc(1));
1721 }
1722 
1723 
1724 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1725 // from the waitset to the EntryList. This could be done more efficiently with a
1726 // single bulk transfer but in practice it's not time-critical. Beware too,
1727 // that in prepend-mode we invert the order of the waiters. Let's say that the
1728 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1729 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1730 
1731 void ObjectMonitor::notifyAll(TRAPS) {
1732   JavaThread* current = THREAD;
1733   CHECK_OWNER();  // Throws IMSE if not owner.
1734   if (_WaitSet == nullptr) {
1735     return;
1736   }
1737 
1738   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
1739   int tally = 0;
1740   while (_WaitSet != nullptr) {
1741     tally++;
1742     INotify(current);
1743   }
1744 
1745   OM_PERFDATA_OP(Notifications, inc(tally));
1746 }
1747 
1748 // -----------------------------------------------------------------------------
1749 // Adaptive Spinning Support
1750 //
1751 // Adaptive spin-then-block - rational spinning
1752 //
1753 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1754 // algorithm.  On high order SMP systems it would be better to start with
1755 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1756 // a contending thread could enqueue itself on the cxq and then spin locally
1757 // on a thread-specific variable such as its ParkEvent._Event flag.
1758 // That's left as an exercise for the reader.  Note that global spinning is
1759 // not problematic on Niagara, as the L2 cache serves the interconnect and
1760 // has both low latency and massive bandwidth.
1761 //
1762 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1763 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1764 // (duration) or we can fix the count at approximately the duration of
1765 // a context switch and vary the frequency.   Of course we could also
1766 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1767 // For a description of 'Adaptive spin-then-block mutual exclusion in
1768 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1769 //
1770 // This implementation varies the duration "D", where D varies with
1771 // the success rate of recent spin attempts. (D is capped at approximately
1772 // length of a round-trip context switch).  The success rate for recent
1773 // spin attempts is a good predictor of the success rate of future spin
1774 // attempts.  The mechanism adapts automatically to varying critical
1775 // section length (lock modality), system load and degree of parallelism.
1776 // D is maintained per-monitor in _SpinDuration and is initialized
1777 // optimistically.  Spin frequency is fixed at 100%.
1778 //
1779 // Note that _SpinDuration is volatile, but we update it without locks
1780 // or atomics.  The code is designed so that _SpinDuration stays within
1781 // a reasonable range even in the presence of races.  The arithmetic
1782 // operations on _SpinDuration are closed over the domain of legal values,
1783 // so at worst a race will install and older but still legal value.
1784 // At the very worst this introduces some apparent non-determinism.
1785 // We might spin when we shouldn't or vice-versa, but since the spin
1786 // count are relatively short, even in the worst case, the effect is harmless.
1787 //
1788 // Care must be taken that a low "D" value does not become an
1789 // an absorbing state.  Transient spinning failures -- when spinning
1790 // is overall profitable -- should not cause the system to converge
1791 // on low "D" values.  We want spinning to be stable and predictable
1792 // and fairly responsive to change and at the same time we don't want
1793 // it to oscillate, become metastable, be "too" non-deterministic,
1794 // or converge on or enter undesirable stable absorbing states.
1795 //
1796 // We implement a feedback-based control system -- using past behavior
1797 // to predict future behavior.  We face two issues: (a) if the
1798 // input signal is random then the spin predictor won't provide optimal
1799 // results, and (b) if the signal frequency is too high then the control
1800 // system, which has some natural response lag, will "chase" the signal.
1801 // (b) can arise from multimodal lock hold times.  Transient preemption
1802 // can also result in apparent bimodal lock hold times.
1803 // Although sub-optimal, neither condition is particularly harmful, as
1804 // in the worst-case we'll spin when we shouldn't or vice-versa.
1805 // The maximum spin duration is rather short so the failure modes aren't bad.
1806 // To be conservative, I've tuned the gain in system to bias toward
1807 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1808 // "rings" or oscillates between spinning and not spinning.  This happens
1809 // when spinning is just on the cusp of profitability, however, so the
1810 // situation is not dire.  The state is benign -- there's no need to add
1811 // hysteresis control to damp the transition rate between spinning and
1812 // not spinning.
1813 
1814 // Spinning: Fixed frequency (100%), vary duration
1815 int ObjectMonitor::TrySpin(JavaThread* current) {
1816   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1817   int ctr = Knob_FixedSpin;
1818   if (ctr != 0) {
1819     while (--ctr >= 0) {
1820       if (TryLock(current) > 0) return 1;
1821       SpinPause();
1822     }
1823     return 0;
1824   }
1825 
1826   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1827     if (TryLock(current) > 0) {
1828       // Increase _SpinDuration ...
1829       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1830       // Raising _SpurDuration to the poverty line is key.
1831       int x = _SpinDuration;
1832       if (x < Knob_SpinLimit) {
1833         if (x < Knob_Poverty) x = Knob_Poverty;
1834         _SpinDuration = x + Knob_BonusB;
1835       }
1836       return 1;
1837     }
1838     SpinPause();
1839   }
1840 
1841   // Admission control - verify preconditions for spinning
1842   //
1843   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1844   // becoming an absorbing state.  Put another way, we spin briefly to
1845   // sample, just in case the system load, parallelism, contention, or lock
1846   // modality changed.
1847   //
1848   // Consider the following alternative:
1849   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1850   // spin attempt.  "Periodically" might mean after a tally of
1851   // the # of failed spin attempts (or iterations) reaches some threshold.
1852   // This takes us into the realm of 1-out-of-N spinning, where we
1853   // hold the duration constant but vary the frequency.
1854 
1855   ctr = _SpinDuration;
1856   if (ctr <= 0) return 0;
1857 
1858   if (NotRunnable(current, static_cast<JavaThread*>(owner_raw()))) {
1859     return 0;
1860   }
1861 
1862   // We're good to spin ... spin ingress.
1863   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1864   // when preparing to LD...CAS _owner, etc and the CAS is likely
1865   // to succeed.
1866   if (_succ == nullptr) {
1867     _succ = current;
1868   }
1869   Thread* prv = nullptr;
1870 
1871   // There are three ways to exit the following loop:
1872   // 1.  A successful spin where this thread has acquired the lock.
1873   // 2.  Spin failure with prejudice
1874   // 3.  Spin failure without prejudice
1875 
1876   while (--ctr >= 0) {
1877 
1878     // Periodic polling -- Check for pending GC
1879     // Threads may spin while they're unsafe.
1880     // We don't want spinning threads to delay the JVM from reaching
1881     // a stop-the-world safepoint or to steal cycles from GC.
1882     // If we detect a pending safepoint we abort in order that
1883     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1884     // this thread, if safe, doesn't steal cycles from GC.
1885     // This is in keeping with the "no loitering in runtime" rule.
1886     // We periodically check to see if there's a safepoint pending.
1887     if ((ctr & 0xFF) == 0) {
1888       // Can't call SafepointMechanism::should_process() since that
1889       // might update the poll values and we could be in a thread_blocked
1890       // state here which is not allowed so just check the poll.
1891       if (SafepointMechanism::local_poll_armed(current)) {
1892         goto Abort;           // abrupt spin egress
1893       }
1894       SpinPause();
1895     }
1896 
1897     // Probe _owner with TATAS
1898     // If this thread observes the monitor transition or flicker
1899     // from locked to unlocked to locked, then the odds that this
1900     // thread will acquire the lock in this spin attempt go down
1901     // considerably.  The same argument applies if the CAS fails
1902     // or if we observe _owner change from one non-null value to
1903     // another non-null value.   In such cases we might abort
1904     // the spin without prejudice or apply a "penalty" to the
1905     // spin count-down variable "ctr", reducing it by 100, say.
1906 
1907     JavaThread* ox = static_cast<JavaThread*>(owner_raw());
1908     if (ox == nullptr) {
1909       ox = static_cast<JavaThread*>(try_set_owner_from(nullptr, current));
1910       if (ox == nullptr) {
1911         // The CAS succeeded -- this thread acquired ownership
1912         // Take care of some bookkeeping to exit spin state.
1913         if (_succ == current) {
1914           _succ = nullptr;
1915         }
1916 
1917         // Increase _SpinDuration :
1918         // The spin was successful (profitable) so we tend toward
1919         // longer spin attempts in the future.
1920         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1921         // If we acquired the lock early in the spin cycle it
1922         // makes sense to increase _SpinDuration proportionally.
1923         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1924         int x = _SpinDuration;
1925         if (x < Knob_SpinLimit) {
1926           if (x < Knob_Poverty) x = Knob_Poverty;
1927           _SpinDuration = x + Knob_Bonus;
1928         }
1929         return 1;
1930       }
1931 
1932       // The CAS failed ... we can take any of the following actions:
1933       // * penalize: ctr -= CASPenalty
1934       // * exit spin with prejudice -- goto Abort;
1935       // * exit spin without prejudice.
1936       // * Since CAS is high-latency, retry again immediately.
1937       prv = ox;
1938       goto Abort;
1939     }
1940 
1941     // Did lock ownership change hands ?
1942     if (ox != prv && prv != nullptr) {
1943       goto Abort;
1944     }
1945     prv = ox;
1946 
1947     // Abort the spin if the owner is not executing.
1948     // The owner must be executing in order to drop the lock.
1949     // Spinning while the owner is OFFPROC is idiocy.
1950     // Consider: ctr -= RunnablePenalty ;
1951     if (NotRunnable(current, ox)) {
1952       goto Abort;
1953     }
1954     if (_succ == nullptr) {
1955       _succ = current;
1956     }
1957   }
1958 
1959   // Spin failed with prejudice -- reduce _SpinDuration.
1960   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1961   // AIMD is globally stable.
1962   {
1963     int x = _SpinDuration;
1964     if (x > 0) {
1965       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1966       // This is globally sample and tends to damp the response.
1967       x -= Knob_Penalty;
1968       if (x < 0) x = 0;
1969       _SpinDuration = x;
1970     }
1971   }
1972 
1973  Abort:
1974   if (_succ == current) {
1975     _succ = nullptr;
1976     // Invariant: after setting succ=null a contending thread
1977     // must recheck-retry _owner before parking.  This usually happens
1978     // in the normal usage of TrySpin(), but it's safest
1979     // to make TrySpin() as foolproof as possible.
1980     OrderAccess::fence();
1981     if (TryLock(current) > 0) return 1;
1982   }
1983   return 0;
1984 }
1985 
1986 // NotRunnable() -- informed spinning
1987 //
1988 // Don't bother spinning if the owner is not eligible to drop the lock.
1989 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1990 // The thread must be runnable in order to drop the lock in timely fashion.
1991 // If the _owner is not runnable then spinning will not likely be
1992 // successful (profitable).
1993 //
1994 // Beware -- the thread referenced by _owner could have died
1995 // so a simply fetch from _owner->_thread_state might trap.
1996 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1997 // Because of the lifecycle issues, the _thread_state values
1998 // observed by NotRunnable() might be garbage.  NotRunnable must
1999 // tolerate this and consider the observed _thread_state value
2000 // as advisory.
2001 //
2002 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2003 // a thread pointer.
2004 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2005 // with the LSB of _owner.  Another option would be to probabilistically probe
2006 // the putative _owner->TypeTag value.
2007 //
2008 // Checking _thread_state isn't perfect.  Even if the thread is
2009 // in_java it might be blocked on a page-fault or have been preempted
2010 // and sitting on a ready/dispatch queue.
2011 //
2012 // The return value from NotRunnable() is *advisory* -- the
2013 // result is based on sampling and is not necessarily coherent.
2014 // The caller must tolerate false-negative and false-positive errors.
2015 // Spinning, in general, is probabilistic anyway.
2016 
2017 
2018 int ObjectMonitor::NotRunnable(JavaThread* current, JavaThread* ox) {
2019   // Check ox->TypeTag == 2BAD.
2020   if (ox == nullptr) return 0;
2021 
2022   // Avoid transitive spinning ...
2023   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2024   // Immediately after T1 acquires L it's possible that T2, also
2025   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2026   // This occurs transiently after T1 acquired L but before
2027   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2028   // its spin in this circumstance.
2029   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2030 
2031   if (BlockedOn == 1) return 1;
2032   if (BlockedOn != 0) {
2033     return BlockedOn != intptr_t(this) && owner_raw() == ox;
2034   }
2035 
2036   assert(sizeof(ox->_thread_state == sizeof(int)), "invariant");
2037   int jst = SafeFetch32((int *) &ox->_thread_state, -1);;
2038   // consider also: jst != _thread_in_Java -- but that's overspecific.
2039   return jst == _thread_blocked || jst == _thread_in_native;
2040 }
2041 
2042 
2043 // -----------------------------------------------------------------------------
2044 // WaitSet management ...
2045 
2046 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2047   _next     = nullptr;
2048   _prev     = nullptr;
2049   _notified = 0;
2050   _notifier_tid = 0;
2051   TState    = TS_RUN;
2052   _thread   = current;
2053   _event    = _thread->_ParkEvent;
2054   _active   = false;
2055   assert(_event != nullptr, "invariant");
2056 }
2057 
2058 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2059   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2060 }
2061 
2062 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2063   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2064 }
2065 
2066 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2067   assert(node != nullptr, "should not add null node");
2068   assert(node->_prev == nullptr, "node already in list");
2069   assert(node->_next == nullptr, "node already in list");
2070   // put node at end of queue (circular doubly linked list)
2071   if (_WaitSet == nullptr) {
2072     _WaitSet = node;
2073     node->_prev = node;
2074     node->_next = node;
2075   } else {
2076     ObjectWaiter* head = _WaitSet;
2077     ObjectWaiter* tail = head->_prev;
2078     assert(tail->_next == head, "invariant check");
2079     tail->_next = node;
2080     head->_prev = node;
2081     node->_next = head;
2082     node->_prev = tail;
2083   }
2084 }
2085 
2086 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2087   // dequeue the very first waiter
2088   ObjectWaiter* waiter = _WaitSet;
2089   if (waiter) {
2090     DequeueSpecificWaiter(waiter);
2091   }
2092   return waiter;
2093 }
2094 
2095 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2096   assert(node != nullptr, "should not dequeue nullptr node");
2097   assert(node->_prev != nullptr, "node already removed from list");
2098   assert(node->_next != nullptr, "node already removed from list");
2099   // when the waiter has woken up because of interrupt,
2100   // timeout or other spurious wake-up, dequeue the
2101   // waiter from waiting list
2102   ObjectWaiter* next = node->_next;
2103   if (next == node) {
2104     assert(node->_prev == node, "invariant check");
2105     _WaitSet = nullptr;
2106   } else {
2107     ObjectWaiter* prev = node->_prev;
2108     assert(prev->_next == node, "invariant check");
2109     assert(next->_prev == node, "invariant check");
2110     next->_prev = prev;
2111     prev->_next = next;
2112     if (_WaitSet == node) {
2113       _WaitSet = next;
2114     }
2115   }
2116   node->_next = nullptr;
2117   node->_prev = nullptr;
2118 }
2119 
2120 // -----------------------------------------------------------------------------
2121 // PerfData support
2122 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = nullptr;
2123 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = nullptr;
2124 PerfCounter * ObjectMonitor::_sync_Parks                       = nullptr;
2125 PerfCounter * ObjectMonitor::_sync_Notifications               = nullptr;
2126 PerfCounter * ObjectMonitor::_sync_Inflations                  = nullptr;
2127 PerfCounter * ObjectMonitor::_sync_Deflations                  = nullptr;
2128 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = nullptr;
2129 
2130 // One-shot global initialization for the sync subsystem.
2131 // We could also defer initialization and initialize on-demand
2132 // the first time we call ObjectSynchronizer::inflate().
2133 // Initialization would be protected - like so many things - by
2134 // the MonitorCache_lock.
2135 
2136 void ObjectMonitor::Initialize() {
2137   assert(!InitDone, "invariant");
2138 
2139   if (!os::is_MP()) {
2140     Knob_SpinLimit = 0;
2141     Knob_PreSpin   = 0;
2142     Knob_FixedSpin = -1;
2143   }
2144 
2145   if (UsePerfData) {
2146     EXCEPTION_MARK;
2147 #define NEWPERFCOUNTER(n)                                                \
2148   {                                                                      \
2149     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2150                                         CHECK);                          \
2151   }
2152 #define NEWPERFVARIABLE(n)                                                \
2153   {                                                                       \
2154     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2155                                          CHECK);                          \
2156   }
2157     NEWPERFCOUNTER(_sync_Inflations);
2158     NEWPERFCOUNTER(_sync_Deflations);
2159     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2160     NEWPERFCOUNTER(_sync_FutileWakeups);
2161     NEWPERFCOUNTER(_sync_Parks);
2162     NEWPERFCOUNTER(_sync_Notifications);
2163     NEWPERFVARIABLE(_sync_MonExtant);
2164 #undef NEWPERFCOUNTER
2165 #undef NEWPERFVARIABLE
2166   }
2167 
2168   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2169 
2170   DEBUG_ONLY(InitDone = true;)
2171 }
2172 
2173 void ObjectMonitor::print_on(outputStream* st) const {
2174   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2175   st->print("{contentions=0x%08x,waiters=0x%08x"
2176             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2177             contentions(), waiters(), recursions(),
2178             p2i(owner()));
2179 }
2180 void ObjectMonitor::print() const { print_on(tty); }
2181 
2182 #ifdef ASSERT
2183 // Print the ObjectMonitor like a debugger would:
2184 //
2185 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2186 //   _header = 0x0000000000000001
2187 //   _object = 0x000000070ff45fd0
2188 //   _pad_buf0 = {
2189 //     [0] = '\0'
2190 //     ...
2191 //     [43] = '\0'
2192 //   }
2193 //   _owner = 0x0000000000000000
2194 //   _previous_owner_tid = 0
2195 //   _pad_buf1 = {
2196 //     [0] = '\0'
2197 //     ...
2198 //     [47] = '\0'
2199 //   }
2200 //   _next_om = 0x0000000000000000
2201 //   _recursions = 0
2202 //   _EntryList = 0x0000000000000000
2203 //   _cxq = 0x0000000000000000
2204 //   _succ = 0x0000000000000000
2205 //   _Responsible = 0x0000000000000000
2206 //   _Spinner = 0
2207 //   _SpinDuration = 5000
2208 //   _contentions = 0
2209 //   _WaitSet = 0x0000700009756248
2210 //   _waiters = 1
2211 //   _WaitSetLock = 0
2212 // }
2213 //
2214 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2215   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2216   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2217   st->print_cr("  _object = " INTPTR_FORMAT, p2i(object_peek()));
2218   st->print_cr("  _pad_buf0 = {");
2219   st->print_cr("    [0] = '\\0'");
2220   st->print_cr("    ...");
2221   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2222   st->print_cr("  }");
2223   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(owner_raw()));
2224   st->print_cr("  _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid);
2225   st->print_cr("  _pad_buf1 = {");
2226   st->print_cr("    [0] = '\\0'");
2227   st->print_cr("    ...");
2228   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2229   st->print_cr("  }");
2230   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2231   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2232   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2233   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2234   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2235   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2236   st->print_cr("  _Spinner = %d", _Spinner);
2237   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2238   st->print_cr("  _contentions = %d", contentions());
2239   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2240   st->print_cr("  _waiters = %d", _waiters);
2241   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2242   st->print_cr("}");
2243 }
2244 #endif