1 /* 2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/oopStorage.hpp" 28 #include "gc/shared/oopStorageSet.hpp" 29 #include "jfr/jfrEvents.hpp" 30 #include "jfr/support/jfrThreadId.hpp" 31 #include "logging/log.hpp" 32 #include "logging/logStream.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/oopHandle.inline.hpp" 38 #include "oops/weakHandle.inline.hpp" 39 #include "prims/jvmtiDeferredUpdates.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "runtime/atomic.hpp" 42 #include "runtime/handles.inline.hpp" 43 #include "runtime/interfaceSupport.inline.hpp" 44 #include "runtime/javaThread.inline.hpp" 45 #include "runtime/mutexLocker.hpp" 46 #include "runtime/objectMonitor.hpp" 47 #include "runtime/objectMonitor.inline.hpp" 48 #include "runtime/orderAccess.hpp" 49 #include "runtime/osThread.hpp" 50 #include "runtime/perfData.hpp" 51 #include "runtime/safefetch.hpp" 52 #include "runtime/safepointMechanism.inline.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "services/threadService.hpp" 55 #include "utilities/dtrace.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/preserveException.hpp" 58 #if INCLUDE_JFR 59 #include "jfr/support/jfrFlush.hpp" 60 #endif 61 62 #ifdef DTRACE_ENABLED 63 64 // Only bother with this argument setup if dtrace is available 65 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 66 67 68 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 69 char* bytes = nullptr; \ 70 int len = 0; \ 71 jlong jtid = SharedRuntime::get_java_tid(thread); \ 72 Symbol* klassname = obj->klass()->name(); \ 73 if (klassname != nullptr) { \ 74 bytes = (char*)klassname->bytes(); \ 75 len = klassname->utf8_length(); \ 76 } 77 78 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 79 { \ 80 if (DTraceMonitorProbes) { \ 81 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 82 HOTSPOT_MONITOR_WAIT(jtid, \ 83 (monitor), bytes, len, (millis)); \ 84 } \ 85 } 86 87 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER 88 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED 89 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT 90 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY 91 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL 92 93 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 94 { \ 95 if (DTraceMonitorProbes) { \ 96 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 97 HOTSPOT_MONITOR_##probe(jtid, \ 98 (uintptr_t)(monitor), bytes, len); \ 99 } \ 100 } 101 102 #else // ndef DTRACE_ENABLED 103 104 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 105 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 106 107 #endif // ndef DTRACE_ENABLED 108 109 // Tunables ... 110 // The knob* variables are effectively final. Once set they should 111 // never be modified hence. Consider using __read_mostly with GCC. 112 113 int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool - 114 115 static int Knob_Bonus = 100; // spin success bonus 116 static int Knob_BonusB = 100; // spin success bonus 117 static int Knob_Penalty = 200; // spin failure penalty 118 static int Knob_Poverty = 1000; 119 static int Knob_FixedSpin = 0; 120 static int Knob_PreSpin = 10; // 20-100 likely better 121 122 DEBUG_ONLY(static volatile bool InitDone = false;) 123 124 OopStorage* ObjectMonitor::_oop_storage = nullptr; 125 126 // ----------------------------------------------------------------------------- 127 // Theory of operations -- Monitors lists, thread residency, etc: 128 // 129 // * A thread acquires ownership of a monitor by successfully 130 // CAS()ing the _owner field from null to non-null. 131 // 132 // * Invariant: A thread appears on at most one monitor list -- 133 // cxq, EntryList or WaitSet -- at any one time. 134 // 135 // * Contending threads "push" themselves onto the cxq with CAS 136 // and then spin/park. 137 // 138 // * After a contending thread eventually acquires the lock it must 139 // dequeue itself from either the EntryList or the cxq. 140 // 141 // * The exiting thread identifies and unparks an "heir presumptive" 142 // tentative successor thread on the EntryList. Critically, the 143 // exiting thread doesn't unlink the successor thread from the EntryList. 144 // After having been unparked, the wakee will recontend for ownership of 145 // the monitor. The successor (wakee) will either acquire the lock or 146 // re-park itself. 147 // 148 // Succession is provided for by a policy of competitive handoff. 149 // The exiting thread does _not_ grant or pass ownership to the 150 // successor thread. (This is also referred to as "handoff" succession"). 151 // Instead the exiting thread releases ownership and possibly wakes 152 // a successor, so the successor can (re)compete for ownership of the lock. 153 // If the EntryList is empty but the cxq is populated the exiting 154 // thread will drain the cxq into the EntryList. It does so by 155 // by detaching the cxq (installing null with CAS) and folding 156 // the threads from the cxq into the EntryList. The EntryList is 157 // doubly linked, while the cxq is singly linked because of the 158 // CAS-based "push" used to enqueue recently arrived threads (RATs). 159 // 160 // * Concurrency invariants: 161 // 162 // -- only the monitor owner may access or mutate the EntryList. 163 // The mutex property of the monitor itself protects the EntryList 164 // from concurrent interference. 165 // -- Only the monitor owner may detach the cxq. 166 // 167 // * The monitor entry list operations avoid locks, but strictly speaking 168 // they're not lock-free. Enter is lock-free, exit is not. 169 // For a description of 'Methods and apparatus providing non-blocking access 170 // to a resource,' see U.S. Pat. No. 7844973. 171 // 172 // * The cxq can have multiple concurrent "pushers" but only one concurrent 173 // detaching thread. This mechanism is immune from the ABA corruption. 174 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious. 175 // 176 // * Taken together, the cxq and the EntryList constitute or form a 177 // single logical queue of threads stalled trying to acquire the lock. 178 // We use two distinct lists to improve the odds of a constant-time 179 // dequeue operation after acquisition (in the ::enter() epilogue) and 180 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm). 181 // A key desideratum is to minimize queue & monitor metadata manipulation 182 // that occurs while holding the monitor lock -- that is, we want to 183 // minimize monitor lock holds times. Note that even a small amount of 184 // fixed spinning will greatly reduce the # of enqueue-dequeue operations 185 // on EntryList|cxq. That is, spinning relieves contention on the "inner" 186 // locks and monitor metadata. 187 // 188 // Cxq points to the set of Recently Arrived Threads attempting entry. 189 // Because we push threads onto _cxq with CAS, the RATs must take the form of 190 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when 191 // the unlocking thread notices that EntryList is null but _cxq is != null. 192 // 193 // The EntryList is ordered by the prevailing queue discipline and 194 // can be organized in any convenient fashion, such as a doubly-linked list or 195 // a circular doubly-linked list. Critically, we want insert and delete operations 196 // to operate in constant-time. If we need a priority queue then something akin 197 // to Solaris' sleepq would work nicely. Viz., 198 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c. 199 // Queue discipline is enforced at ::exit() time, when the unlocking thread 200 // drains the cxq into the EntryList, and orders or reorders the threads on the 201 // EntryList accordingly. 202 // 203 // Barring "lock barging", this mechanism provides fair cyclic ordering, 204 // somewhat similar to an elevator-scan. 205 // 206 // * The monitor synchronization subsystem avoids the use of native 207 // synchronization primitives except for the narrow platform-specific 208 // park-unpark abstraction. See the comments in os_solaris.cpp regarding 209 // the semantics of park-unpark. Put another way, this monitor implementation 210 // depends only on atomic operations and park-unpark. The monitor subsystem 211 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the 212 // underlying OS manages the READY<->RUN transitions. 213 // 214 // * Waiting threads reside on the WaitSet list -- wait() puts 215 // the caller onto the WaitSet. 216 // 217 // * notify() or notifyAll() simply transfers threads from the WaitSet to 218 // either the EntryList or cxq. Subsequent exit() operations will 219 // unpark the notifyee. Unparking a notifee in notify() is inefficient - 220 // it's likely the notifyee would simply impale itself on the lock held 221 // by the notifier. 222 // 223 // * An interesting alternative is to encode cxq as (List,LockByte) where 224 // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary 225 // variable, like _recursions, in the scheme. The threads or Events that form 226 // the list would have to be aligned in 256-byte addresses. A thread would 227 // try to acquire the lock or enqueue itself with CAS, but exiting threads 228 // could use a 1-0 protocol and simply STB to set the LockByte to 0. 229 // Note that is is *not* word-tearing, but it does presume that full-word 230 // CAS operations are coherent with intermix with STB operations. That's true 231 // on most common processors. 232 // 233 // * See also http://blogs.sun.com/dave 234 235 236 // Check that object() and set_object() are called from the right context: 237 static void check_object_context() { 238 #ifdef ASSERT 239 Thread* self = Thread::current(); 240 if (self->is_Java_thread()) { 241 // Mostly called from JavaThreads so sanity check the thread state. 242 JavaThread* jt = JavaThread::cast(self); 243 switch (jt->thread_state()) { 244 case _thread_in_vm: // the usual case 245 case _thread_in_Java: // during deopt 246 break; 247 default: 248 fatal("called from an unsafe thread state"); 249 } 250 assert(jt->is_active_Java_thread(), "must be active JavaThread"); 251 } else { 252 // However, ThreadService::get_current_contended_monitor() 253 // can call here via the VMThread so sanity check it. 254 assert(self->is_VM_thread(), "must be"); 255 } 256 #endif // ASSERT 257 } 258 259 ObjectMonitor::ObjectMonitor(oop object) : 260 _header(markWord::zero()), 261 _object(_oop_storage, object), 262 _owner(nullptr), 263 _previous_owner_tid(0), 264 _next_om(nullptr), 265 _recursions(0), 266 _EntryList(nullptr), 267 _cxq(nullptr), 268 _succ(nullptr), 269 _Responsible(nullptr), 270 _Spinner(0), 271 _SpinDuration(ObjectMonitor::Knob_SpinLimit), 272 _contentions(0), 273 _WaitSet(nullptr), 274 _waiters(0), 275 _WaitSetLock(0) 276 { } 277 278 ObjectMonitor::~ObjectMonitor() { 279 _object.release(_oop_storage); 280 } 281 282 oop ObjectMonitor::object() const { 283 check_object_context(); 284 return _object.resolve(); 285 } 286 287 oop ObjectMonitor::object_peek() const { 288 return _object.peek(); 289 } 290 291 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) { 292 if (current->is_suspended()) { 293 _om->_recursions = 0; 294 _om->_succ = nullptr; 295 // Don't need a full fence after clearing successor here because of the call to exit(). 296 _om->exit(current, false /* not_suspended */); 297 _om_exited = true; 298 299 current->set_current_pending_monitor(_om); 300 } 301 } 302 303 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) { 304 if (current->is_suspended()) { 305 if (_om->_succ == current) { 306 _om->_succ = nullptr; 307 OrderAccess::fence(); // always do a full fence when successor is cleared 308 } 309 } 310 } 311 312 // ----------------------------------------------------------------------------- 313 // Enter support 314 315 bool ObjectMonitor::enter(JavaThread* current) { 316 // The following code is ordered to check the most common cases first 317 // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors. 318 319 void* cur = try_set_owner_from(nullptr, current); 320 if (cur == nullptr) { 321 assert(_recursions == 0, "invariant"); 322 return true; 323 } 324 325 if (cur == current) { 326 // TODO-FIXME: check for integer overflow! BUGID 6557169. 327 _recursions++; 328 return true; 329 } 330 331 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 332 assert(_recursions == 0, "internal state error"); 333 _recursions = 1; 334 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 335 return true; 336 } 337 338 // We've encountered genuine contention. 339 assert(current->_Stalled == 0, "invariant"); 340 current->_Stalled = intptr_t(this); 341 342 // Try one round of spinning *before* enqueueing current 343 // and before going through the awkward and expensive state 344 // transitions. The following spin is strictly optional ... 345 // Note that if we acquire the monitor from an initial spin 346 // we forgo posting JVMTI events and firing DTRACE probes. 347 if (TrySpin(current) > 0) { 348 assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw())); 349 assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions); 350 assert(object()->mark() == markWord::encode(this), 351 "object mark must match encoded this: mark=" INTPTR_FORMAT 352 ", encoded this=" INTPTR_FORMAT, object()->mark().value(), 353 markWord::encode(this).value()); 354 current->_Stalled = 0; 355 return true; 356 } 357 358 assert(owner_raw() != current, "invariant"); 359 assert(_succ != current, "invariant"); 360 assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); 361 assert(current->thread_state() != _thread_blocked, "invariant"); 362 363 // Keep track of contention for JVM/TI and M&M queries. 364 add_to_contentions(1); 365 if (is_being_async_deflated()) { 366 // Async deflation is in progress and our contentions increment 367 // above lost the race to async deflation. Undo the work and 368 // force the caller to retry. 369 const oop l_object = object(); 370 if (l_object != nullptr) { 371 // Attempt to restore the header/dmw to the object's header so that 372 // we only retry once if the deflater thread happens to be slow. 373 install_displaced_markword_in_object(l_object); 374 } 375 current->_Stalled = 0; 376 add_to_contentions(-1); 377 return false; 378 } 379 380 JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);) 381 EventJavaMonitorEnter event; 382 if (event.is_started()) { 383 event.set_monitorClass(object()->klass()); 384 // Set an address that is 'unique enough', such that events close in 385 // time and with the same address are likely (but not guaranteed) to 386 // belong to the same object. 387 event.set_address((uintptr_t)this); 388 } 389 390 { // Change java thread status to indicate blocked on monitor enter. 391 JavaThreadBlockedOnMonitorEnterState jtbmes(current, this); 392 393 assert(current->current_pending_monitor() == nullptr, "invariant"); 394 current->set_current_pending_monitor(this); 395 396 DTRACE_MONITOR_PROBE(contended__enter, this, object(), current); 397 if (JvmtiExport::should_post_monitor_contended_enter()) { 398 JvmtiExport::post_monitor_contended_enter(current, this); 399 400 // The current thread does not yet own the monitor and does not 401 // yet appear on any queues that would get it made the successor. 402 // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event 403 // handler cannot accidentally consume an unpark() meant for the 404 // ParkEvent associated with this ObjectMonitor. 405 } 406 407 OSThreadContendState osts(current->osthread()); 408 409 assert(current->thread_state() == _thread_in_vm, "invariant"); 410 411 for (;;) { 412 ExitOnSuspend eos(this); 413 { 414 ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */); 415 EnterI(current); 416 current->set_current_pending_monitor(nullptr); 417 // We can go to a safepoint at the end of this block. If we 418 // do a thread dump during that safepoint, then this thread will show 419 // as having "-locked" the monitor, but the OS and java.lang.Thread 420 // states will still report that the thread is blocked trying to 421 // acquire it. 422 // If there is a suspend request, ExitOnSuspend will exit the OM 423 // and set the OM as pending. 424 } 425 if (!eos.exited()) { 426 // ExitOnSuspend did not exit the OM 427 assert(owner_raw() == current, "invariant"); 428 break; 429 } 430 } 431 432 // We've just gotten past the enter-check-for-suspend dance and we now own 433 // the monitor free and clear. 434 } 435 436 add_to_contentions(-1); 437 assert(contentions() >= 0, "must not be negative: contentions=%d", contentions()); 438 current->_Stalled = 0; 439 440 // Must either set _recursions = 0 or ASSERT _recursions == 0. 441 assert(_recursions == 0, "invariant"); 442 assert(owner_raw() == current, "invariant"); 443 assert(_succ != current, "invariant"); 444 assert(object()->mark() == markWord::encode(this), "invariant"); 445 446 // The thread -- now the owner -- is back in vm mode. 447 // Report the glorious news via TI,DTrace and jvmstat. 448 // The probe effect is non-trivial. All the reportage occurs 449 // while we hold the monitor, increasing the length of the critical 450 // section. Amdahl's parallel speedup law comes vividly into play. 451 // 452 // Another option might be to aggregate the events (thread local or 453 // per-monitor aggregation) and defer reporting until a more opportune 454 // time -- such as next time some thread encounters contention but has 455 // yet to acquire the lock. While spinning that thread could 456 // spinning we could increment JVMStat counters, etc. 457 458 DTRACE_MONITOR_PROBE(contended__entered, this, object(), current); 459 if (JvmtiExport::should_post_monitor_contended_entered()) { 460 JvmtiExport::post_monitor_contended_entered(current, this); 461 462 // The current thread already owns the monitor and is not going to 463 // call park() for the remainder of the monitor enter protocol. So 464 // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED 465 // event handler consumed an unpark() issued by the thread that 466 // just exited the monitor. 467 } 468 if (event.should_commit()) { 469 event.set_previousOwner(_previous_owner_tid); 470 event.commit(); 471 } 472 OM_PERFDATA_OP(ContendedLockAttempts, inc()); 473 return true; 474 } 475 476 // Caveat: TryLock() is not necessarily serializing if it returns failure. 477 // Callers must compensate as needed. 478 479 int ObjectMonitor::TryLock(JavaThread* current) { 480 void* own = owner_raw(); 481 if (own != nullptr) return 0; 482 if (try_set_owner_from(nullptr, current) == nullptr) { 483 assert(_recursions == 0, "invariant"); 484 return 1; 485 } 486 // The lock had been free momentarily, but we lost the race to the lock. 487 // Interference -- the CAS failed. 488 // We can either return -1 or retry. 489 // Retry doesn't make as much sense because the lock was just acquired. 490 return -1; 491 } 492 493 // Deflate the specified ObjectMonitor if not in-use. Returns true if it 494 // was deflated and false otherwise. 495 // 496 // The async deflation protocol sets owner to DEFLATER_MARKER and 497 // makes contentions negative as signals to contending threads that 498 // an async deflation is in progress. There are a number of checks 499 // as part of the protocol to make sure that the calling thread has 500 // not lost the race to a contending thread. 501 // 502 // The ObjectMonitor has been successfully async deflated when: 503 // (contentions < 0) 504 // Contending threads that see that condition know to retry their operation. 505 // 506 bool ObjectMonitor::deflate_monitor() { 507 if (is_busy()) { 508 // Easy checks are first - the ObjectMonitor is busy so no deflation. 509 return false; 510 } 511 512 const oop obj = object_peek(); 513 514 if (obj == nullptr) { 515 // If the object died, we can recycle the monitor without racing with 516 // Java threads. The GC already broke the association with the object. 517 set_owner_from(nullptr, DEFLATER_MARKER); 518 assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions()); 519 _contentions = INT_MIN; // minimum negative int 520 } else { 521 // Attempt async deflation protocol. 522 523 // Set a null owner to DEFLATER_MARKER to force any contending thread 524 // through the slow path. This is just the first part of the async 525 // deflation dance. 526 if (try_set_owner_from(nullptr, DEFLATER_MARKER) != nullptr) { 527 // The owner field is no longer null so we lost the race since the 528 // ObjectMonitor is now busy. 529 return false; 530 } 531 532 if (contentions() > 0 || _waiters != 0) { 533 // Another thread has raced to enter the ObjectMonitor after 534 // is_busy() above or has already entered and waited on 535 // it which makes it busy so no deflation. Restore owner to 536 // null if it is still DEFLATER_MARKER. 537 if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 538 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 539 add_to_contentions(-1); 540 } 541 return false; 542 } 543 544 // Make a zero contentions field negative to force any contending threads 545 // to retry. This is the second part of the async deflation dance. 546 if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) { 547 // Contentions was no longer 0 so we lost the race since the 548 // ObjectMonitor is now busy. Restore owner to null if it is 549 // still DEFLATER_MARKER: 550 if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 551 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 552 add_to_contentions(-1); 553 } 554 return false; 555 } 556 } 557 558 // Sanity checks for the races: 559 guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker"); 560 guarantee(contentions() < 0, "must be negative: contentions=%d", 561 contentions()); 562 guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters); 563 guarantee(_cxq == nullptr, "must be no contending threads: cxq=" 564 INTPTR_FORMAT, p2i(_cxq)); 565 guarantee(_EntryList == nullptr, 566 "must be no entering threads: EntryList=" INTPTR_FORMAT, 567 p2i(_EntryList)); 568 569 if (obj != nullptr) { 570 if (log_is_enabled(Trace, monitorinflation)) { 571 ResourceMark rm; 572 log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT 573 ", mark=" INTPTR_FORMAT ", type='%s'", 574 p2i(obj), obj->mark().value(), 575 obj->klass()->external_name()); 576 } 577 578 // Install the old mark word if nobody else has already done it. 579 install_displaced_markword_in_object(obj); 580 } 581 582 // We leave owner == DEFLATER_MARKER and contentions < 0 583 // to force any racing threads to retry. 584 return true; // Success, ObjectMonitor has been deflated. 585 } 586 587 // Install the displaced mark word (dmw) of a deflating ObjectMonitor 588 // into the header of the object associated with the monitor. This 589 // idempotent method is called by a thread that is deflating a 590 // monitor and by other threads that have detected a race with the 591 // deflation process. 592 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) { 593 // This function must only be called when (owner == DEFLATER_MARKER 594 // && contentions <= 0), but we can't guarantee that here because 595 // those values could change when the ObjectMonitor gets moved from 596 // the global free list to a per-thread free list. 597 598 guarantee(obj != nullptr, "must be non-null"); 599 600 // Separate loads in is_being_async_deflated(), which is almost always 601 // called before this function, from the load of dmw/header below. 602 603 // _contentions and dmw/header may get written by different threads. 604 // Make sure to observe them in the same order when having several observers. 605 OrderAccess::loadload_for_IRIW(); 606 607 const oop l_object = object_peek(); 608 if (l_object == nullptr) { 609 // ObjectMonitor's object ref has already been cleared by async 610 // deflation or GC so we're done here. 611 return; 612 } 613 assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj=" 614 INTPTR_FORMAT, p2i(l_object), p2i(obj)); 615 616 markWord dmw = header(); 617 // The dmw has to be neutral (not null, not locked and not marked). 618 assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value()); 619 620 // Install displaced mark word if the object's header still points 621 // to this ObjectMonitor. More than one racing caller to this function 622 // can rarely reach this point, but only one can win. 623 markWord res = obj->cas_set_mark(dmw, markWord::encode(this)); 624 if (res != markWord::encode(this)) { 625 // This should be rare so log at the Info level when it happens. 626 log_info(monitorinflation)("install_displaced_markword_in_object: " 627 "failed cas_set_mark: new_mark=" INTPTR_FORMAT 628 ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT, 629 dmw.value(), markWord::encode(this).value(), 630 res.value()); 631 } 632 633 // Note: It does not matter which thread restored the header/dmw 634 // into the object's header. The thread deflating the monitor just 635 // wanted the object's header restored and it is. The threads that 636 // detected a race with the deflation process also wanted the 637 // object's header restored before they retry their operation and 638 // because it is restored they will only retry once. 639 } 640 641 // Convert the fields used by is_busy() to a string that can be 642 // used for diagnostic output. 643 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { 644 ss->print("is_busy: waiters=%d, ", _waiters); 645 if (contentions() > 0) { 646 ss->print("contentions=%d, ", contentions()); 647 } else { 648 ss->print("contentions=0"); 649 } 650 if (!owner_is_DEFLATER_MARKER()) { 651 ss->print("owner=" INTPTR_FORMAT, p2i(owner_raw())); 652 } else { 653 // We report null instead of DEFLATER_MARKER here because is_busy() 654 // ignores DEFLATER_MARKER values. 655 ss->print("owner=" INTPTR_FORMAT, NULL_WORD); 656 } 657 ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq), 658 p2i(_EntryList)); 659 return ss->base(); 660 } 661 662 #define MAX_RECHECK_INTERVAL 1000 663 664 void ObjectMonitor::EnterI(JavaThread* current) { 665 assert(current->thread_state() == _thread_blocked, "invariant"); 666 667 // Try the lock - TATAS 668 if (TryLock (current) > 0) { 669 assert(_succ != current, "invariant"); 670 assert(owner_raw() == current, "invariant"); 671 assert(_Responsible != current, "invariant"); 672 return; 673 } 674 675 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 676 // Cancelled the in-progress async deflation by changing owner from 677 // DEFLATER_MARKER to current. As part of the contended enter protocol, 678 // contentions was incremented to a positive value before EnterI() 679 // was called and that prevents the deflater thread from winning the 680 // last part of the 2-part async deflation protocol. After EnterI() 681 // returns to enter(), contentions is decremented because the caller 682 // now owns the monitor. We bump contentions an extra time here to 683 // prevent the deflater thread from winning the last part of the 684 // 2-part async deflation protocol after the regular decrement 685 // occurs in enter(). The deflater thread will decrement contentions 686 // after it recognizes that the async deflation was cancelled. 687 add_to_contentions(1); 688 assert(_succ != current, "invariant"); 689 assert(_Responsible != current, "invariant"); 690 return; 691 } 692 693 assert(InitDone, "Unexpectedly not initialized"); 694 695 // We try one round of spinning *before* enqueueing current. 696 // 697 // If the _owner is ready but OFFPROC we could use a YieldTo() 698 // operation to donate the remainder of this thread's quantum 699 // to the owner. This has subtle but beneficial affinity 700 // effects. 701 702 if (TrySpin(current) > 0) { 703 assert(owner_raw() == current, "invariant"); 704 assert(_succ != current, "invariant"); 705 assert(_Responsible != current, "invariant"); 706 return; 707 } 708 709 // The Spin failed -- Enqueue and park the thread ... 710 assert(_succ != current, "invariant"); 711 assert(owner_raw() != current, "invariant"); 712 assert(_Responsible != current, "invariant"); 713 714 // Enqueue "current" on ObjectMonitor's _cxq. 715 // 716 // Node acts as a proxy for current. 717 // As an aside, if were to ever rewrite the synchronization code mostly 718 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class 719 // Java objects. This would avoid awkward lifecycle and liveness issues, 720 // as well as eliminate a subset of ABA issues. 721 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. 722 723 ObjectWaiter node(current); 724 current->_ParkEvent->reset(); 725 node._prev = (ObjectWaiter*) 0xBAD; 726 node.TState = ObjectWaiter::TS_CXQ; 727 728 // Push "current" onto the front of the _cxq. 729 // Once on cxq/EntryList, current stays on-queue until it acquires the lock. 730 // Note that spinning tends to reduce the rate at which threads 731 // enqueue and dequeue on EntryList|cxq. 732 ObjectWaiter* nxt; 733 for (;;) { 734 node._next = nxt = _cxq; 735 if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break; 736 737 // Interference - the CAS failed because _cxq changed. Just retry. 738 // As an optional optimization we retry the lock. 739 if (TryLock (current) > 0) { 740 assert(_succ != current, "invariant"); 741 assert(owner_raw() == current, "invariant"); 742 assert(_Responsible != current, "invariant"); 743 return; 744 } 745 } 746 747 // Check for cxq|EntryList edge transition to non-null. This indicates 748 // the onset of contention. While contention persists exiting threads 749 // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit 750 // operations revert to the faster 1-0 mode. This enter operation may interleave 751 // (race) a concurrent 1-0 exit operation, resulting in stranding, so we 752 // arrange for one of the contending thread to use a timed park() operations 753 // to detect and recover from the race. (Stranding is form of progress failure 754 // where the monitor is unlocked but all the contending threads remain parked). 755 // That is, at least one of the contended threads will periodically poll _owner. 756 // One of the contending threads will become the designated "Responsible" thread. 757 // The Responsible thread uses a timed park instead of a normal indefinite park 758 // operation -- it periodically wakes and checks for and recovers from potential 759 // strandings admitted by 1-0 exit operations. We need at most one Responsible 760 // thread per-monitor at any given moment. Only threads on cxq|EntryList may 761 // be responsible for a monitor. 762 // 763 // Currently, one of the contended threads takes on the added role of "Responsible". 764 // A viable alternative would be to use a dedicated "stranding checker" thread 765 // that periodically iterated over all the threads (or active monitors) and unparked 766 // successors where there was risk of stranding. This would help eliminate the 767 // timer scalability issues we see on some platforms as we'd only have one thread 768 // -- the checker -- parked on a timer. 769 770 if (nxt == nullptr && _EntryList == nullptr) { 771 // Try to assume the role of responsible thread for the monitor. 772 // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=current } 773 Atomic::replace_if_null(&_Responsible, current); 774 } 775 776 // The lock might have been released while this thread was occupied queueing 777 // itself onto _cxq. To close the race and avoid "stranding" and 778 // progress-liveness failure we must resample-retry _owner before parking. 779 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner. 780 // In this case the ST-MEMBAR is accomplished with CAS(). 781 // 782 // TODO: Defer all thread state transitions until park-time. 783 // Since state transitions are heavy and inefficient we'd like 784 // to defer the state transitions until absolutely necessary, 785 // and in doing so avoid some transitions ... 786 787 int nWakeups = 0; 788 int recheckInterval = 1; 789 790 for (;;) { 791 792 if (TryLock(current) > 0) break; 793 assert(owner_raw() != current, "invariant"); 794 795 // park self 796 if (_Responsible == current) { 797 current->_ParkEvent->park((jlong) recheckInterval); 798 // Increase the recheckInterval, but clamp the value. 799 recheckInterval *= 8; 800 if (recheckInterval > MAX_RECHECK_INTERVAL) { 801 recheckInterval = MAX_RECHECK_INTERVAL; 802 } 803 } else { 804 current->_ParkEvent->park(); 805 } 806 807 if (TryLock(current) > 0) break; 808 809 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 810 // Cancelled the in-progress async deflation by changing owner from 811 // DEFLATER_MARKER to current. As part of the contended enter protocol, 812 // contentions was incremented to a positive value before EnterI() 813 // was called and that prevents the deflater thread from winning the 814 // last part of the 2-part async deflation protocol. After EnterI() 815 // returns to enter(), contentions is decremented because the caller 816 // now owns the monitor. We bump contentions an extra time here to 817 // prevent the deflater thread from winning the last part of the 818 // 2-part async deflation protocol after the regular decrement 819 // occurs in enter(). The deflater thread will decrement contentions 820 // after it recognizes that the async deflation was cancelled. 821 add_to_contentions(1); 822 break; 823 } 824 825 // The lock is still contested. 826 // Keep a tally of the # of futile wakeups. 827 // Note that the counter is not protected by a lock or updated by atomics. 828 // That is by design - we trade "lossy" counters which are exposed to 829 // races during updates for a lower probe effect. 830 831 // This PerfData object can be used in parallel with a safepoint. 832 // See the work around in PerfDataManager::destroy(). 833 OM_PERFDATA_OP(FutileWakeups, inc()); 834 ++nWakeups; 835 836 // Assuming this is not a spurious wakeup we'll normally find _succ == current. 837 // We can defer clearing _succ until after the spin completes 838 // TrySpin() must tolerate being called with _succ == current. 839 // Try yet another round of adaptive spinning. 840 if (TrySpin(current) > 0) break; 841 842 // We can find that we were unpark()ed and redesignated _succ while 843 // we were spinning. That's harmless. If we iterate and call park(), 844 // park() will consume the event and return immediately and we'll 845 // just spin again. This pattern can repeat, leaving _succ to simply 846 // spin on a CPU. 847 848 if (_succ == current) _succ = nullptr; 849 850 // Invariant: after clearing _succ a thread *must* retry _owner before parking. 851 OrderAccess::fence(); 852 } 853 854 // Egress : 855 // current has acquired the lock -- Unlink current from the cxq or EntryList. 856 // Normally we'll find current on the EntryList . 857 // From the perspective of the lock owner (this thread), the 858 // EntryList is stable and cxq is prepend-only. 859 // The head of cxq is volatile but the interior is stable. 860 // In addition, current.TState is stable. 861 862 assert(owner_raw() == current, "invariant"); 863 864 UnlinkAfterAcquire(current, &node); 865 if (_succ == current) _succ = nullptr; 866 867 assert(_succ != current, "invariant"); 868 if (_Responsible == current) { 869 _Responsible = nullptr; 870 OrderAccess::fence(); // Dekker pivot-point 871 872 // We may leave threads on cxq|EntryList without a designated 873 // "Responsible" thread. This is benign. When this thread subsequently 874 // exits the monitor it can "see" such preexisting "old" threads -- 875 // threads that arrived on the cxq|EntryList before the fence, above -- 876 // by LDing cxq|EntryList. Newly arrived threads -- that is, threads 877 // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible 878 // non-null and elect a new "Responsible" timer thread. 879 // 880 // This thread executes: 881 // ST Responsible=null; MEMBAR (in enter epilogue - here) 882 // LD cxq|EntryList (in subsequent exit) 883 // 884 // Entering threads in the slow/contended path execute: 885 // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog) 886 // The (ST cxq; MEMBAR) is accomplished with CAS(). 887 // 888 // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent 889 // exit operation from floating above the ST Responsible=null. 890 } 891 892 // We've acquired ownership with CAS(). 893 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. 894 // But since the CAS() this thread may have also stored into _succ, 895 // EntryList, cxq or Responsible. These meta-data updates must be 896 // visible __before this thread subsequently drops the lock. 897 // Consider what could occur if we didn't enforce this constraint -- 898 // STs to monitor meta-data and user-data could reorder with (become 899 // visible after) the ST in exit that drops ownership of the lock. 900 // Some other thread could then acquire the lock, but observe inconsistent 901 // or old monitor meta-data and heap data. That violates the JMM. 902 // To that end, the 1-0 exit() operation must have at least STST|LDST 903 // "release" barrier semantics. Specifically, there must be at least a 904 // STST|LDST barrier in exit() before the ST of null into _owner that drops 905 // the lock. The barrier ensures that changes to monitor meta-data and data 906 // protected by the lock will be visible before we release the lock, and 907 // therefore before some other thread (CPU) has a chance to acquire the lock. 908 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. 909 // 910 // Critically, any prior STs to _succ or EntryList must be visible before 911 // the ST of null into _owner in the *subsequent* (following) corresponding 912 // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily 913 // execute a serializing instruction. 914 915 return; 916 } 917 918 // ReenterI() is a specialized inline form of the latter half of the 919 // contended slow-path from EnterI(). We use ReenterI() only for 920 // monitor reentry in wait(). 921 // 922 // In the future we should reconcile EnterI() and ReenterI(). 923 924 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) { 925 assert(current != nullptr, "invariant"); 926 assert(currentNode != nullptr, "invariant"); 927 assert(currentNode->_thread == current, "invariant"); 928 assert(_waiters > 0, "invariant"); 929 assert(object()->mark() == markWord::encode(this), "invariant"); 930 931 assert(current->thread_state() != _thread_blocked, "invariant"); 932 933 int nWakeups = 0; 934 for (;;) { 935 ObjectWaiter::TStates v = currentNode->TState; 936 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 937 assert(owner_raw() != current, "invariant"); 938 939 if (TryLock(current) > 0) break; 940 if (TrySpin(current) > 0) break; 941 942 { 943 OSThreadContendState osts(current->osthread()); 944 945 assert(current->thread_state() == _thread_in_vm, "invariant"); 946 947 { 948 ClearSuccOnSuspend csos(this); 949 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 950 current->_ParkEvent->park(); 951 } 952 } 953 954 // Try again, but just so we distinguish between futile wakeups and 955 // successful wakeups. The following test isn't algorithmically 956 // necessary, but it helps us maintain sensible statistics. 957 if (TryLock(current) > 0) break; 958 959 // The lock is still contested. 960 // Keep a tally of the # of futile wakeups. 961 // Note that the counter is not protected by a lock or updated by atomics. 962 // That is by design - we trade "lossy" counters which are exposed to 963 // races during updates for a lower probe effect. 964 ++nWakeups; 965 966 // Assuming this is not a spurious wakeup we'll normally 967 // find that _succ == current. 968 if (_succ == current) _succ = nullptr; 969 970 // Invariant: after clearing _succ a contending thread 971 // *must* retry _owner before parking. 972 OrderAccess::fence(); 973 974 // This PerfData object can be used in parallel with a safepoint. 975 // See the work around in PerfDataManager::destroy(). 976 OM_PERFDATA_OP(FutileWakeups, inc()); 977 } 978 979 // current has acquired the lock -- Unlink current from the cxq or EntryList . 980 // Normally we'll find current on the EntryList. 981 // Unlinking from the EntryList is constant-time and atomic-free. 982 // From the perspective of the lock owner (this thread), the 983 // EntryList is stable and cxq is prepend-only. 984 // The head of cxq is volatile but the interior is stable. 985 // In addition, current.TState is stable. 986 987 assert(owner_raw() == current, "invariant"); 988 assert(object()->mark() == markWord::encode(this), "invariant"); 989 UnlinkAfterAcquire(current, currentNode); 990 if (_succ == current) _succ = nullptr; 991 assert(_succ != current, "invariant"); 992 currentNode->TState = ObjectWaiter::TS_RUN; 993 OrderAccess::fence(); // see comments at the end of EnterI() 994 } 995 996 // By convention we unlink a contending thread from EntryList|cxq immediately 997 // after the thread acquires the lock in ::enter(). Equally, we could defer 998 // unlinking the thread until ::exit()-time. 999 1000 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) { 1001 assert(owner_raw() == current, "invariant"); 1002 assert(currentNode->_thread == current, "invariant"); 1003 1004 if (currentNode->TState == ObjectWaiter::TS_ENTER) { 1005 // Normal case: remove current from the DLL EntryList . 1006 // This is a constant-time operation. 1007 ObjectWaiter* nxt = currentNode->_next; 1008 ObjectWaiter* prv = currentNode->_prev; 1009 if (nxt != nullptr) nxt->_prev = prv; 1010 if (prv != nullptr) prv->_next = nxt; 1011 if (currentNode == _EntryList) _EntryList = nxt; 1012 assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant"); 1013 assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant"); 1014 } else { 1015 assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant"); 1016 // Inopportune interleaving -- current is still on the cxq. 1017 // This usually means the enqueue of self raced an exiting thread. 1018 // Normally we'll find current near the front of the cxq, so 1019 // dequeueing is typically fast. If needbe we can accelerate 1020 // this with some MCS/CHL-like bidirectional list hints and advisory 1021 // back-links so dequeueing from the interior will normally operate 1022 // in constant-time. 1023 // Dequeue current from either the head (with CAS) or from the interior 1024 // with a linear-time scan and normal non-atomic memory operations. 1025 // CONSIDER: if current is on the cxq then simply drain cxq into EntryList 1026 // and then unlink current from EntryList. We have to drain eventually, 1027 // so it might as well be now. 1028 1029 ObjectWaiter* v = _cxq; 1030 assert(v != nullptr, "invariant"); 1031 if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) { 1032 // The CAS above can fail from interference IFF a "RAT" arrived. 1033 // In that case current must be in the interior and can no longer be 1034 // at the head of cxq. 1035 if (v == currentNode) { 1036 assert(_cxq != v, "invariant"); 1037 v = _cxq; // CAS above failed - start scan at head of list 1038 } 1039 ObjectWaiter* p; 1040 ObjectWaiter* q = nullptr; 1041 for (p = v; p != nullptr && p != currentNode; p = p->_next) { 1042 q = p; 1043 assert(p->TState == ObjectWaiter::TS_CXQ, "invariant"); 1044 } 1045 assert(v != currentNode, "invariant"); 1046 assert(p == currentNode, "Node not found on cxq"); 1047 assert(p != _cxq, "invariant"); 1048 assert(q != nullptr, "invariant"); 1049 assert(q->_next == p, "invariant"); 1050 q->_next = p->_next; 1051 } 1052 } 1053 1054 #ifdef ASSERT 1055 // Diagnostic hygiene ... 1056 currentNode->_prev = (ObjectWaiter*) 0xBAD; 1057 currentNode->_next = (ObjectWaiter*) 0xBAD; 1058 currentNode->TState = ObjectWaiter::TS_RUN; 1059 #endif 1060 } 1061 1062 // ----------------------------------------------------------------------------- 1063 // Exit support 1064 // 1065 // exit() 1066 // ~~~~~~ 1067 // Note that the collector can't reclaim the objectMonitor or deflate 1068 // the object out from underneath the thread calling ::exit() as the 1069 // thread calling ::exit() never transitions to a stable state. 1070 // This inhibits GC, which in turn inhibits asynchronous (and 1071 // inopportune) reclamation of "this". 1072 // 1073 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; 1074 // There's one exception to the claim above, however. EnterI() can call 1075 // exit() to drop a lock if the acquirer has been externally suspended. 1076 // In that case exit() is called with _thread_state == _thread_blocked, 1077 // but the monitor's _contentions field is > 0, which inhibits reclamation. 1078 // 1079 // 1-0 exit 1080 // ~~~~~~~~ 1081 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of 1082 // the fast-path operators have been optimized so the common ::exit() 1083 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock(). 1084 // The code emitted by fast_unlock() elides the usual MEMBAR. This 1085 // greatly improves latency -- MEMBAR and CAS having considerable local 1086 // latency on modern processors -- but at the cost of "stranding". Absent the 1087 // MEMBAR, a thread in fast_unlock() can race a thread in the slow 1088 // ::enter() path, resulting in the entering thread being stranding 1089 // and a progress-liveness failure. Stranding is extremely rare. 1090 // We use timers (timed park operations) & periodic polling to detect 1091 // and recover from stranding. Potentially stranded threads periodically 1092 // wake up and poll the lock. See the usage of the _Responsible variable. 1093 // 1094 // The CAS() in enter provides for safety and exclusion, while the CAS or 1095 // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking 1096 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding. 1097 // We detect and recover from stranding with timers. 1098 // 1099 // If a thread transiently strands it'll park until (a) another 1100 // thread acquires the lock and then drops the lock, at which time the 1101 // exiting thread will notice and unpark the stranded thread, or, (b) 1102 // the timer expires. If the lock is high traffic then the stranding latency 1103 // will be low due to (a). If the lock is low traffic then the odds of 1104 // stranding are lower, although the worst-case stranding latency 1105 // is longer. Critically, we don't want to put excessive load in the 1106 // platform's timer subsystem. We want to minimize both the timer injection 1107 // rate (timers created/sec) as well as the number of timers active at 1108 // any one time. (more precisely, we want to minimize timer-seconds, which is 1109 // the integral of the # of active timers at any instant over time). 1110 // Both impinge on OS scalability. Given that, at most one thread parked on 1111 // a monitor will use a timer. 1112 // 1113 // There is also the risk of a futile wake-up. If we drop the lock 1114 // another thread can reacquire the lock immediately, and we can 1115 // then wake a thread unnecessarily. This is benign, and we've 1116 // structured the code so the windows are short and the frequency 1117 // of such futile wakups is low. 1118 1119 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) { 1120 void* cur = owner_raw(); 1121 if (current != cur) { 1122 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1123 assert(_recursions == 0, "invariant"); 1124 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1125 _recursions = 0; 1126 } else { 1127 // Apparent unbalanced locking ... 1128 // Naively we'd like to throw IllegalMonitorStateException. 1129 // As a practical matter we can neither allocate nor throw an 1130 // exception as ::exit() can be called from leaf routines. 1131 // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. 1132 // Upon deeper reflection, however, in a properly run JVM the only 1133 // way we should encounter this situation is in the presence of 1134 // unbalanced JNI locking. TODO: CheckJNICalls. 1135 // See also: CR4414101 1136 #ifdef ASSERT 1137 LogStreamHandle(Error, monitorinflation) lsh; 1138 lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT 1139 " is exiting an ObjectMonitor it does not own.", p2i(current)); 1140 lsh.print_cr("The imbalance is possibly caused by JNI locking."); 1141 print_debug_style_on(&lsh); 1142 assert(false, "Non-balanced monitor enter/exit!"); 1143 #endif 1144 return; 1145 } 1146 } 1147 1148 if (_recursions != 0) { 1149 _recursions--; // this is simple recursive enter 1150 return; 1151 } 1152 1153 // Invariant: after setting Responsible=null an thread must execute 1154 // a MEMBAR or other serializing instruction before fetching EntryList|cxq. 1155 _Responsible = nullptr; 1156 1157 #if INCLUDE_JFR 1158 // get the owner's thread id for the MonitorEnter event 1159 // if it is enabled and the thread isn't suspended 1160 if (not_suspended && EventJavaMonitorEnter::is_enabled()) { 1161 _previous_owner_tid = JFR_THREAD_ID(current); 1162 } 1163 #endif 1164 1165 for (;;) { 1166 assert(current == owner_raw(), "invariant"); 1167 1168 // Drop the lock. 1169 // release semantics: prior loads and stores from within the critical section 1170 // must not float (reorder) past the following store that drops the lock. 1171 // Uses a storeload to separate release_store(owner) from the 1172 // successor check. The try_set_owner() below uses cmpxchg() so 1173 // we get the fence down there. 1174 release_clear_owner(current); 1175 OrderAccess::storeload(); 1176 1177 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) { 1178 return; 1179 } 1180 // Other threads are blocked trying to acquire the lock. 1181 1182 // Normally the exiting thread is responsible for ensuring succession, 1183 // but if other successors are ready or other entering threads are spinning 1184 // then this thread can simply store null into _owner and exit without 1185 // waking a successor. The existence of spinners or ready successors 1186 // guarantees proper succession (liveness). Responsibility passes to the 1187 // ready or running successors. The exiting thread delegates the duty. 1188 // More precisely, if a successor already exists this thread is absolved 1189 // of the responsibility of waking (unparking) one. 1190 // 1191 // The _succ variable is critical to reducing futile wakeup frequency. 1192 // _succ identifies the "heir presumptive" thread that has been made 1193 // ready (unparked) but that has not yet run. We need only one such 1194 // successor thread to guarantee progress. 1195 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf 1196 // section 3.3 "Futile Wakeup Throttling" for details. 1197 // 1198 // Note that spinners in Enter() also set _succ non-null. 1199 // In the current implementation spinners opportunistically set 1200 // _succ so that exiting threads might avoid waking a successor. 1201 // Another less appealing alternative would be for the exiting thread 1202 // to drop the lock and then spin briefly to see if a spinner managed 1203 // to acquire the lock. If so, the exiting thread could exit 1204 // immediately without waking a successor, otherwise the exiting 1205 // thread would need to dequeue and wake a successor. 1206 // (Note that we'd need to make the post-drop spin short, but no 1207 // shorter than the worst-case round-trip cache-line migration time. 1208 // The dropped lock needs to become visible to the spinner, and then 1209 // the acquisition of the lock by the spinner must become visible to 1210 // the exiting thread). 1211 1212 // It appears that an heir-presumptive (successor) must be made ready. 1213 // Only the current lock owner can manipulate the EntryList or 1214 // drain _cxq, so we need to reacquire the lock. If we fail 1215 // to reacquire the lock the responsibility for ensuring succession 1216 // falls to the new owner. 1217 // 1218 if (try_set_owner_from(nullptr, current) != nullptr) { 1219 return; 1220 } 1221 1222 guarantee(owner_raw() == current, "invariant"); 1223 1224 ObjectWaiter* w = nullptr; 1225 1226 w = _EntryList; 1227 if (w != nullptr) { 1228 // I'd like to write: guarantee (w->_thread != current). 1229 // But in practice an exiting thread may find itself on the EntryList. 1230 // Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and 1231 // then calls exit(). Exit release the lock by setting O._owner to null. 1232 // Let's say T1 then stalls. T2 acquires O and calls O.notify(). The 1233 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then 1234 // release the lock "O". T2 resumes immediately after the ST of null into 1235 // _owner, above. T2 notices that the EntryList is populated, so it 1236 // reacquires the lock and then finds itself on the EntryList. 1237 // Given all that, we have to tolerate the circumstance where "w" is 1238 // associated with current. 1239 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1240 ExitEpilog(current, w); 1241 return; 1242 } 1243 1244 // If we find that both _cxq and EntryList are null then just 1245 // re-run the exit protocol from the top. 1246 w = _cxq; 1247 if (w == nullptr) continue; 1248 1249 // Drain _cxq into EntryList - bulk transfer. 1250 // First, detach _cxq. 1251 // The following loop is tantamount to: w = swap(&cxq, nullptr) 1252 for (;;) { 1253 assert(w != nullptr, "Invariant"); 1254 ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr); 1255 if (u == w) break; 1256 w = u; 1257 } 1258 1259 assert(w != nullptr, "invariant"); 1260 assert(_EntryList == nullptr, "invariant"); 1261 1262 // Convert the LIFO SLL anchored by _cxq into a DLL. 1263 // The list reorganization step operates in O(LENGTH(w)) time. 1264 // It's critical that this step operate quickly as 1265 // "current" still holds the outer-lock, restricting parallelism 1266 // and effectively lengthening the critical section. 1267 // Invariant: s chases t chases u. 1268 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so 1269 // we have faster access to the tail. 1270 1271 _EntryList = w; 1272 ObjectWaiter* q = nullptr; 1273 ObjectWaiter* p; 1274 for (p = w; p != nullptr; p = p->_next) { 1275 guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant"); 1276 p->TState = ObjectWaiter::TS_ENTER; 1277 p->_prev = q; 1278 q = p; 1279 } 1280 1281 // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr 1282 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog(). 1283 1284 // See if we can abdicate to a spinner instead of waking a thread. 1285 // A primary goal of the implementation is to reduce the 1286 // context-switch rate. 1287 if (_succ != nullptr) continue; 1288 1289 w = _EntryList; 1290 if (w != nullptr) { 1291 guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1292 ExitEpilog(current, w); 1293 return; 1294 } 1295 } 1296 } 1297 1298 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) { 1299 assert(owner_raw() == current, "invariant"); 1300 1301 // Exit protocol: 1302 // 1. ST _succ = wakee 1303 // 2. membar #loadstore|#storestore; 1304 // 2. ST _owner = nullptr 1305 // 3. unpark(wakee) 1306 1307 _succ = Wakee->_thread; 1308 ParkEvent * Trigger = Wakee->_event; 1309 1310 // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again. 1311 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be 1312 // out-of-scope (non-extant). 1313 Wakee = nullptr; 1314 1315 // Drop the lock. 1316 // Uses a fence to separate release_store(owner) from the LD in unpark(). 1317 release_clear_owner(current); 1318 OrderAccess::fence(); 1319 1320 DTRACE_MONITOR_PROBE(contended__exit, this, object(), current); 1321 Trigger->unpark(); 1322 1323 // Maintain stats and report events to JVMTI 1324 OM_PERFDATA_OP(Parks, inc()); 1325 } 1326 1327 // complete_exit exits a lock returning recursion count 1328 // complete_exit requires an inflated monitor 1329 // The _owner field is not always the Thread addr even with an 1330 // inflated monitor, e.g. the monitor can be inflated by a non-owning 1331 // thread due to contention. 1332 intx ObjectMonitor::complete_exit(JavaThread* current) { 1333 assert(InitDone, "Unexpectedly not initialized"); 1334 1335 void* cur = owner_raw(); 1336 if (current != cur) { 1337 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1338 assert(_recursions == 0, "internal state error"); 1339 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1340 _recursions = 0; 1341 } 1342 } 1343 1344 guarantee(current == owner_raw(), "complete_exit not owner"); 1345 intx save = _recursions; // record the old recursion count 1346 _recursions = 0; // set the recursion level to be 0 1347 exit(current); // exit the monitor 1348 guarantee(owner_raw() != current, "invariant"); 1349 return save; 1350 } 1351 1352 // Checks that the current THREAD owns this monitor and causes an 1353 // immediate return if it doesn't. We don't use the CHECK macro 1354 // because we want the IMSE to be the only exception that is thrown 1355 // from the call site when false is returned. Any other pending 1356 // exception is ignored. 1357 #define CHECK_OWNER() \ 1358 do { \ 1359 if (!check_owner(THREAD)) { \ 1360 assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \ 1361 return; \ 1362 } \ 1363 } while (false) 1364 1365 // Returns true if the specified thread owns the ObjectMonitor. 1366 // Otherwise returns false and throws IllegalMonitorStateException 1367 // (IMSE). If there is a pending exception and the specified thread 1368 // is not the owner, that exception will be replaced by the IMSE. 1369 bool ObjectMonitor::check_owner(TRAPS) { 1370 JavaThread* current = THREAD; 1371 void* cur = owner_raw(); 1372 assert(cur != anon_owner_ptr(), "no anon owner here"); 1373 if (cur == current) { 1374 return true; 1375 } 1376 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1377 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1378 _recursions = 0; 1379 return true; 1380 } 1381 THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(), 1382 "current thread is not owner", false); 1383 } 1384 1385 static inline bool is_excluded(const Klass* monitor_klass) { 1386 assert(monitor_klass != nullptr, "invariant"); 1387 NOT_JFR_RETURN_(false); 1388 JFR_ONLY(return vmSymbols::jfr_chunk_rotation_monitor() == monitor_klass->name()); 1389 } 1390 1391 static void post_monitor_wait_event(EventJavaMonitorWait* event, 1392 ObjectMonitor* monitor, 1393 uint64_t notifier_tid, 1394 jlong timeout, 1395 bool timedout) { 1396 assert(event != nullptr, "invariant"); 1397 assert(monitor != nullptr, "invariant"); 1398 const Klass* monitor_klass = monitor->object()->klass(); 1399 if (is_excluded(monitor_klass)) { 1400 return; 1401 } 1402 event->set_monitorClass(monitor_klass); 1403 event->set_timeout(timeout); 1404 // Set an address that is 'unique enough', such that events close in 1405 // time and with the same address are likely (but not guaranteed) to 1406 // belong to the same object. 1407 event->set_address((uintptr_t)monitor); 1408 event->set_notifier(notifier_tid); 1409 event->set_timedOut(timedout); 1410 event->commit(); 1411 } 1412 1413 // ----------------------------------------------------------------------------- 1414 // Wait/Notify/NotifyAll 1415 // 1416 // Note: a subset of changes to ObjectMonitor::wait() 1417 // will need to be replicated in complete_exit 1418 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) { 1419 JavaThread* current = THREAD; 1420 1421 assert(InitDone, "Unexpectedly not initialized"); 1422 1423 CHECK_OWNER(); // Throws IMSE if not owner. 1424 1425 EventJavaMonitorWait event; 1426 1427 // check for a pending interrupt 1428 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1429 // post monitor waited event. Note that this is past-tense, we are done waiting. 1430 if (JvmtiExport::should_post_monitor_waited()) { 1431 // Note: 'false' parameter is passed here because the 1432 // wait was not timed out due to thread interrupt. 1433 JvmtiExport::post_monitor_waited(current, this, false); 1434 1435 // In this short circuit of the monitor wait protocol, the 1436 // current thread never drops ownership of the monitor and 1437 // never gets added to the wait queue so the current thread 1438 // cannot be made the successor. This means that the 1439 // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally 1440 // consume an unpark() meant for the ParkEvent associated with 1441 // this ObjectMonitor. 1442 } 1443 if (event.should_commit()) { 1444 post_monitor_wait_event(&event, this, 0, millis, false); 1445 } 1446 THROW(vmSymbols::java_lang_InterruptedException()); 1447 return; 1448 } 1449 1450 assert(current->_Stalled == 0, "invariant"); 1451 current->_Stalled = intptr_t(this); 1452 current->set_current_waiting_monitor(this); 1453 1454 // create a node to be put into the queue 1455 // Critically, after we reset() the event but prior to park(), we must check 1456 // for a pending interrupt. 1457 ObjectWaiter node(current); 1458 node.TState = ObjectWaiter::TS_WAIT; 1459 current->_ParkEvent->reset(); 1460 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag 1461 1462 // Enter the waiting queue, which is a circular doubly linked list in this case 1463 // but it could be a priority queue or any data structure. 1464 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only 1465 // by the owner of the monitor *except* in the case where park() 1466 // returns because of a timeout of interrupt. Contention is exceptionally rare 1467 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 1468 1469 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); 1470 AddWaiter(&node); 1471 Thread::SpinRelease(&_WaitSetLock); 1472 1473 _Responsible = nullptr; 1474 1475 intx save = _recursions; // record the old recursion count 1476 _waiters++; // increment the number of waiters 1477 _recursions = 0; // set the recursion level to be 1 1478 exit(current); // exit the monitor 1479 guarantee(owner_raw() != current, "invariant"); 1480 1481 // The thread is on the WaitSet list - now park() it. 1482 // On MP systems it's conceivable that a brief spin before we park 1483 // could be profitable. 1484 // 1485 // TODO-FIXME: change the following logic to a loop of the form 1486 // while (!timeout && !interrupted && _notified == 0) park() 1487 1488 int ret = OS_OK; 1489 int WasNotified = 0; 1490 1491 // Need to check interrupt state whilst still _thread_in_vm 1492 bool interrupted = interruptible && current->is_interrupted(false); 1493 1494 { // State transition wrappers 1495 OSThread* osthread = current->osthread(); 1496 OSThreadWaitState osts(osthread, true); 1497 1498 assert(current->thread_state() == _thread_in_vm, "invariant"); 1499 1500 { 1501 ClearSuccOnSuspend csos(this); 1502 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1503 if (interrupted || HAS_PENDING_EXCEPTION) { 1504 // Intentionally empty 1505 } else if (node._notified == 0) { 1506 if (millis <= 0) { 1507 current->_ParkEvent->park(); 1508 } else { 1509 ret = current->_ParkEvent->park(millis); 1510 } 1511 } 1512 } 1513 1514 // Node may be on the WaitSet, the EntryList (or cxq), or in transition 1515 // from the WaitSet to the EntryList. 1516 // See if we need to remove Node from the WaitSet. 1517 // We use double-checked locking to avoid grabbing _WaitSetLock 1518 // if the thread is not on the wait queue. 1519 // 1520 // Note that we don't need a fence before the fetch of TState. 1521 // In the worst case we'll fetch a old-stale value of TS_WAIT previously 1522 // written by the is thread. (perhaps the fetch might even be satisfied 1523 // by a look-aside into the processor's own store buffer, although given 1524 // the length of the code path between the prior ST and this load that's 1525 // highly unlikely). If the following LD fetches a stale TS_WAIT value 1526 // then we'll acquire the lock and then re-fetch a fresh TState value. 1527 // That is, we fail toward safety. 1528 1529 if (node.TState == ObjectWaiter::TS_WAIT) { 1530 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); 1531 if (node.TState == ObjectWaiter::TS_WAIT) { 1532 DequeueSpecificWaiter(&node); // unlink from WaitSet 1533 assert(node._notified == 0, "invariant"); 1534 node.TState = ObjectWaiter::TS_RUN; 1535 } 1536 Thread::SpinRelease(&_WaitSetLock); 1537 } 1538 1539 // The thread is now either on off-list (TS_RUN), 1540 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ). 1541 // The Node's TState variable is stable from the perspective of this thread. 1542 // No other threads will asynchronously modify TState. 1543 guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant"); 1544 OrderAccess::loadload(); 1545 if (_succ == current) _succ = nullptr; 1546 WasNotified = node._notified; 1547 1548 // Reentry phase -- reacquire the monitor. 1549 // re-enter contended monitor after object.wait(). 1550 // retain OBJECT_WAIT state until re-enter successfully completes 1551 // Thread state is thread_in_vm and oop access is again safe, 1552 // although the raw address of the object may have changed. 1553 // (Don't cache naked oops over safepoints, of course). 1554 1555 // post monitor waited event. Note that this is past-tense, we are done waiting. 1556 if (JvmtiExport::should_post_monitor_waited()) { 1557 JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT); 1558 1559 if (node._notified != 0 && _succ == current) { 1560 // In this part of the monitor wait-notify-reenter protocol it 1561 // is possible (and normal) for another thread to do a fastpath 1562 // monitor enter-exit while this thread is still trying to get 1563 // to the reenter portion of the protocol. 1564 // 1565 // The ObjectMonitor was notified and the current thread is 1566 // the successor which also means that an unpark() has already 1567 // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can 1568 // consume the unpark() that was done when the successor was 1569 // set because the same ParkEvent is shared between Java 1570 // monitors and JVM/TI RawMonitors (for now). 1571 // 1572 // We redo the unpark() to ensure forward progress, i.e., we 1573 // don't want all pending threads hanging (parked) with none 1574 // entering the unlocked monitor. 1575 node._event->unpark(); 1576 } 1577 } 1578 1579 if (event.should_commit()) { 1580 post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); 1581 } 1582 1583 OrderAccess::fence(); 1584 1585 assert(current->_Stalled != 0, "invariant"); 1586 current->_Stalled = 0; 1587 1588 assert(owner_raw() != current, "invariant"); 1589 ObjectWaiter::TStates v = node.TState; 1590 if (v == ObjectWaiter::TS_RUN) { 1591 enter(current); 1592 } else { 1593 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1594 ReenterI(current, &node); 1595 node.wait_reenter_end(this); 1596 } 1597 1598 // current has reacquired the lock. 1599 // Lifecycle - the node representing current must not appear on any queues. 1600 // Node is about to go out-of-scope, but even if it were immortal we wouldn't 1601 // want residual elements associated with this thread left on any lists. 1602 guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant"); 1603 assert(owner_raw() == current, "invariant"); 1604 assert(_succ != current, "invariant"); 1605 } // OSThreadWaitState() 1606 1607 current->set_current_waiting_monitor(nullptr); 1608 1609 guarantee(_recursions == 0, "invariant"); 1610 int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); 1611 _recursions = save // restore the old recursion count 1612 + relock_count; // increased by the deferred relock count 1613 current->inc_held_monitor_count(relock_count); // Deopt never entered these counts. 1614 _waiters--; // decrement the number of waiters 1615 1616 // Verify a few postconditions 1617 assert(owner_raw() == current, "invariant"); 1618 assert(_succ != current, "invariant"); 1619 assert(object()->mark() == markWord::encode(this), "invariant"); 1620 1621 // check if the notification happened 1622 if (!WasNotified) { 1623 // no, it could be timeout or Thread.interrupt() or both 1624 // check for interrupt event, otherwise it is timeout 1625 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1626 THROW(vmSymbols::java_lang_InterruptedException()); 1627 } 1628 } 1629 1630 // NOTE: Spurious wake up will be consider as timeout. 1631 // Monitor notify has precedence over thread interrupt. 1632 } 1633 1634 1635 // Consider: 1636 // If the lock is cool (cxq == null && succ == null) and we're on an MP system 1637 // then instead of transferring a thread from the WaitSet to the EntryList 1638 // we might just dequeue a thread from the WaitSet and directly unpark() it. 1639 1640 void ObjectMonitor::INotify(JavaThread* current) { 1641 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify"); 1642 ObjectWaiter* iterator = DequeueWaiter(); 1643 if (iterator != nullptr) { 1644 guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant"); 1645 guarantee(iterator->_notified == 0, "invariant"); 1646 // Disposition - what might we do with iterator ? 1647 // a. add it directly to the EntryList - either tail (policy == 1) 1648 // or head (policy == 0). 1649 // b. push it onto the front of the _cxq (policy == 2). 1650 // For now we use (b). 1651 1652 iterator->TState = ObjectWaiter::TS_ENTER; 1653 1654 iterator->_notified = 1; 1655 iterator->_notifier_tid = JFR_THREAD_ID(current); 1656 1657 ObjectWaiter* list = _EntryList; 1658 if (list != nullptr) { 1659 assert(list->_prev == nullptr, "invariant"); 1660 assert(list->TState == ObjectWaiter::TS_ENTER, "invariant"); 1661 assert(list != iterator, "invariant"); 1662 } 1663 1664 // prepend to cxq 1665 if (list == nullptr) { 1666 iterator->_next = iterator->_prev = nullptr; 1667 _EntryList = iterator; 1668 } else { 1669 iterator->TState = ObjectWaiter::TS_CXQ; 1670 for (;;) { 1671 ObjectWaiter* front = _cxq; 1672 iterator->_next = front; 1673 if (Atomic::cmpxchg(&_cxq, front, iterator) == front) { 1674 break; 1675 } 1676 } 1677 } 1678 1679 // _WaitSetLock protects the wait queue, not the EntryList. We could 1680 // move the add-to-EntryList operation, above, outside the critical section 1681 // protected by _WaitSetLock. In practice that's not useful. With the 1682 // exception of wait() timeouts and interrupts the monitor owner 1683 // is the only thread that grabs _WaitSetLock. There's almost no contention 1684 // on _WaitSetLock so it's not profitable to reduce the length of the 1685 // critical section. 1686 1687 iterator->wait_reenter_begin(this); 1688 } 1689 Thread::SpinRelease(&_WaitSetLock); 1690 } 1691 1692 // Consider: a not-uncommon synchronization bug is to use notify() when 1693 // notifyAll() is more appropriate, potentially resulting in stranded 1694 // threads; this is one example of a lost wakeup. A useful diagnostic 1695 // option is to force all notify() operations to behave as notifyAll(). 1696 // 1697 // Note: We can also detect many such problems with a "minimum wait". 1698 // When the "minimum wait" is set to a small non-zero timeout value 1699 // and the program does not hang whereas it did absent "minimum wait", 1700 // that suggests a lost wakeup bug. 1701 1702 void ObjectMonitor::notify(TRAPS) { 1703 JavaThread* current = THREAD; 1704 CHECK_OWNER(); // Throws IMSE if not owner. 1705 if (_WaitSet == nullptr) { 1706 return; 1707 } 1708 DTRACE_MONITOR_PROBE(notify, this, object(), current); 1709 INotify(current); 1710 OM_PERFDATA_OP(Notifications, inc(1)); 1711 } 1712 1713 1714 // The current implementation of notifyAll() transfers the waiters one-at-a-time 1715 // from the waitset to the EntryList. This could be done more efficiently with a 1716 // single bulk transfer but in practice it's not time-critical. Beware too, 1717 // that in prepend-mode we invert the order of the waiters. Let's say that the 1718 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend 1719 // mode the waitset will be empty and the EntryList will be "DCBAXYZ". 1720 1721 void ObjectMonitor::notifyAll(TRAPS) { 1722 JavaThread* current = THREAD; 1723 CHECK_OWNER(); // Throws IMSE if not owner. 1724 if (_WaitSet == nullptr) { 1725 return; 1726 } 1727 1728 DTRACE_MONITOR_PROBE(notifyAll, this, object(), current); 1729 int tally = 0; 1730 while (_WaitSet != nullptr) { 1731 tally++; 1732 INotify(current); 1733 } 1734 1735 OM_PERFDATA_OP(Notifications, inc(tally)); 1736 } 1737 1738 // ----------------------------------------------------------------------------- 1739 // Adaptive Spinning Support 1740 // 1741 // Adaptive spin-then-block - rational spinning 1742 // 1743 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS 1744 // algorithm. On high order SMP systems it would be better to start with 1745 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH, 1746 // a contending thread could enqueue itself on the cxq and then spin locally 1747 // on a thread-specific variable such as its ParkEvent._Event flag. 1748 // That's left as an exercise for the reader. Note that global spinning is 1749 // not problematic on Niagara, as the L2 cache serves the interconnect and 1750 // has both low latency and massive bandwidth. 1751 // 1752 // Broadly, we can fix the spin frequency -- that is, the % of contended lock 1753 // acquisition attempts where we opt to spin -- at 100% and vary the spin count 1754 // (duration) or we can fix the count at approximately the duration of 1755 // a context switch and vary the frequency. Of course we could also 1756 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. 1757 // For a description of 'Adaptive spin-then-block mutual exclusion in 1758 // multi-threaded processing,' see U.S. Pat. No. 8046758. 1759 // 1760 // This implementation varies the duration "D", where D varies with 1761 // the success rate of recent spin attempts. (D is capped at approximately 1762 // length of a round-trip context switch). The success rate for recent 1763 // spin attempts is a good predictor of the success rate of future spin 1764 // attempts. The mechanism adapts automatically to varying critical 1765 // section length (lock modality), system load and degree of parallelism. 1766 // D is maintained per-monitor in _SpinDuration and is initialized 1767 // optimistically. Spin frequency is fixed at 100%. 1768 // 1769 // Note that _SpinDuration is volatile, but we update it without locks 1770 // or atomics. The code is designed so that _SpinDuration stays within 1771 // a reasonable range even in the presence of races. The arithmetic 1772 // operations on _SpinDuration are closed over the domain of legal values, 1773 // so at worst a race will install and older but still legal value. 1774 // At the very worst this introduces some apparent non-determinism. 1775 // We might spin when we shouldn't or vice-versa, but since the spin 1776 // count are relatively short, even in the worst case, the effect is harmless. 1777 // 1778 // Care must be taken that a low "D" value does not become an 1779 // an absorbing state. Transient spinning failures -- when spinning 1780 // is overall profitable -- should not cause the system to converge 1781 // on low "D" values. We want spinning to be stable and predictable 1782 // and fairly responsive to change and at the same time we don't want 1783 // it to oscillate, become metastable, be "too" non-deterministic, 1784 // or converge on or enter undesirable stable absorbing states. 1785 // 1786 // We implement a feedback-based control system -- using past behavior 1787 // to predict future behavior. We face two issues: (a) if the 1788 // input signal is random then the spin predictor won't provide optimal 1789 // results, and (b) if the signal frequency is too high then the control 1790 // system, which has some natural response lag, will "chase" the signal. 1791 // (b) can arise from multimodal lock hold times. Transient preemption 1792 // can also result in apparent bimodal lock hold times. 1793 // Although sub-optimal, neither condition is particularly harmful, as 1794 // in the worst-case we'll spin when we shouldn't or vice-versa. 1795 // The maximum spin duration is rather short so the failure modes aren't bad. 1796 // To be conservative, I've tuned the gain in system to bias toward 1797 // _not spinning. Relatedly, the system can sometimes enter a mode where it 1798 // "rings" or oscillates between spinning and not spinning. This happens 1799 // when spinning is just on the cusp of profitability, however, so the 1800 // situation is not dire. The state is benign -- there's no need to add 1801 // hysteresis control to damp the transition rate between spinning and 1802 // not spinning. 1803 1804 // Spinning: Fixed frequency (100%), vary duration 1805 int ObjectMonitor::TrySpin(JavaThread* current) { 1806 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning. 1807 int ctr = Knob_FixedSpin; 1808 if (ctr != 0) { 1809 while (--ctr >= 0) { 1810 if (TryLock(current) > 0) return 1; 1811 SpinPause(); 1812 } 1813 return 0; 1814 } 1815 1816 for (ctr = Knob_PreSpin + 1; --ctr >= 0;) { 1817 if (TryLock(current) > 0) { 1818 // Increase _SpinDuration ... 1819 // Note that we don't clamp SpinDuration precisely at SpinLimit. 1820 // Raising _SpurDuration to the poverty line is key. 1821 int x = _SpinDuration; 1822 if (x < Knob_SpinLimit) { 1823 if (x < Knob_Poverty) x = Knob_Poverty; 1824 _SpinDuration = x + Knob_BonusB; 1825 } 1826 return 1; 1827 } 1828 SpinPause(); 1829 } 1830 1831 // Admission control - verify preconditions for spinning 1832 // 1833 // We always spin a little bit, just to prevent _SpinDuration == 0 from 1834 // becoming an absorbing state. Put another way, we spin briefly to 1835 // sample, just in case the system load, parallelism, contention, or lock 1836 // modality changed. 1837 // 1838 // Consider the following alternative: 1839 // Periodically set _SpinDuration = _SpinLimit and try a long/full 1840 // spin attempt. "Periodically" might mean after a tally of 1841 // the # of failed spin attempts (or iterations) reaches some threshold. 1842 // This takes us into the realm of 1-out-of-N spinning, where we 1843 // hold the duration constant but vary the frequency. 1844 1845 ctr = _SpinDuration; 1846 if (ctr <= 0) return 0; 1847 1848 if (NotRunnable(current, static_cast<JavaThread*>(owner_raw()))) { 1849 return 0; 1850 } 1851 1852 // We're good to spin ... spin ingress. 1853 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades 1854 // when preparing to LD...CAS _owner, etc and the CAS is likely 1855 // to succeed. 1856 if (_succ == nullptr) { 1857 _succ = current; 1858 } 1859 Thread* prv = nullptr; 1860 1861 // There are three ways to exit the following loop: 1862 // 1. A successful spin where this thread has acquired the lock. 1863 // 2. Spin failure with prejudice 1864 // 3. Spin failure without prejudice 1865 1866 while (--ctr >= 0) { 1867 1868 // Periodic polling -- Check for pending GC 1869 // Threads may spin while they're unsafe. 1870 // We don't want spinning threads to delay the JVM from reaching 1871 // a stop-the-world safepoint or to steal cycles from GC. 1872 // If we detect a pending safepoint we abort in order that 1873 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) 1874 // this thread, if safe, doesn't steal cycles from GC. 1875 // This is in keeping with the "no loitering in runtime" rule. 1876 // We periodically check to see if there's a safepoint pending. 1877 if ((ctr & 0xFF) == 0) { 1878 // Can't call SafepointMechanism::should_process() since that 1879 // might update the poll values and we could be in a thread_blocked 1880 // state here which is not allowed so just check the poll. 1881 if (SafepointMechanism::local_poll_armed(current)) { 1882 goto Abort; // abrupt spin egress 1883 } 1884 SpinPause(); 1885 } 1886 1887 // Probe _owner with TATAS 1888 // If this thread observes the monitor transition or flicker 1889 // from locked to unlocked to locked, then the odds that this 1890 // thread will acquire the lock in this spin attempt go down 1891 // considerably. The same argument applies if the CAS fails 1892 // or if we observe _owner change from one non-null value to 1893 // another non-null value. In such cases we might abort 1894 // the spin without prejudice or apply a "penalty" to the 1895 // spin count-down variable "ctr", reducing it by 100, say. 1896 1897 JavaThread* ox = static_cast<JavaThread*>(owner_raw()); 1898 if (ox == nullptr) { 1899 ox = static_cast<JavaThread*>(try_set_owner_from(nullptr, current)); 1900 if (ox == nullptr) { 1901 // The CAS succeeded -- this thread acquired ownership 1902 // Take care of some bookkeeping to exit spin state. 1903 if (_succ == current) { 1904 _succ = nullptr; 1905 } 1906 1907 // Increase _SpinDuration : 1908 // The spin was successful (profitable) so we tend toward 1909 // longer spin attempts in the future. 1910 // CONSIDER: factor "ctr" into the _SpinDuration adjustment. 1911 // If we acquired the lock early in the spin cycle it 1912 // makes sense to increase _SpinDuration proportionally. 1913 // Note that we don't clamp SpinDuration precisely at SpinLimit. 1914 int x = _SpinDuration; 1915 if (x < Knob_SpinLimit) { 1916 if (x < Knob_Poverty) x = Knob_Poverty; 1917 _SpinDuration = x + Knob_Bonus; 1918 } 1919 return 1; 1920 } 1921 1922 // The CAS failed ... we can take any of the following actions: 1923 // * penalize: ctr -= CASPenalty 1924 // * exit spin with prejudice -- goto Abort; 1925 // * exit spin without prejudice. 1926 // * Since CAS is high-latency, retry again immediately. 1927 prv = ox; 1928 goto Abort; 1929 } 1930 1931 // Did lock ownership change hands ? 1932 if (ox != prv && prv != nullptr) { 1933 goto Abort; 1934 } 1935 prv = ox; 1936 1937 // Abort the spin if the owner is not executing. 1938 // The owner must be executing in order to drop the lock. 1939 // Spinning while the owner is OFFPROC is idiocy. 1940 // Consider: ctr -= RunnablePenalty ; 1941 if (NotRunnable(current, ox)) { 1942 goto Abort; 1943 } 1944 if (_succ == nullptr) { 1945 _succ = current; 1946 } 1947 } 1948 1949 // Spin failed with prejudice -- reduce _SpinDuration. 1950 // TODO: Use an AIMD-like policy to adjust _SpinDuration. 1951 // AIMD is globally stable. 1952 { 1953 int x = _SpinDuration; 1954 if (x > 0) { 1955 // Consider an AIMD scheme like: x -= (x >> 3) + 100 1956 // This is globally sample and tends to damp the response. 1957 x -= Knob_Penalty; 1958 if (x < 0) x = 0; 1959 _SpinDuration = x; 1960 } 1961 } 1962 1963 Abort: 1964 if (_succ == current) { 1965 _succ = nullptr; 1966 // Invariant: after setting succ=null a contending thread 1967 // must recheck-retry _owner before parking. This usually happens 1968 // in the normal usage of TrySpin(), but it's safest 1969 // to make TrySpin() as foolproof as possible. 1970 OrderAccess::fence(); 1971 if (TryLock(current) > 0) return 1; 1972 } 1973 return 0; 1974 } 1975 1976 // NotRunnable() -- informed spinning 1977 // 1978 // Don't bother spinning if the owner is not eligible to drop the lock. 1979 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm. 1980 // The thread must be runnable in order to drop the lock in timely fashion. 1981 // If the _owner is not runnable then spinning will not likely be 1982 // successful (profitable). 1983 // 1984 // Beware -- the thread referenced by _owner could have died 1985 // so a simply fetch from _owner->_thread_state might trap. 1986 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state. 1987 // Because of the lifecycle issues, the _thread_state values 1988 // observed by NotRunnable() might be garbage. NotRunnable must 1989 // tolerate this and consider the observed _thread_state value 1990 // as advisory. 1991 // 1992 // Beware too, that _owner is sometimes a BasicLock address and sometimes 1993 // a thread pointer. 1994 // Alternately, we might tag the type (thread pointer vs basiclock pointer) 1995 // with the LSB of _owner. Another option would be to probabilistically probe 1996 // the putative _owner->TypeTag value. 1997 // 1998 // Checking _thread_state isn't perfect. Even if the thread is 1999 // in_java it might be blocked on a page-fault or have been preempted 2000 // and sitting on a ready/dispatch queue. 2001 // 2002 // The return value from NotRunnable() is *advisory* -- the 2003 // result is based on sampling and is not necessarily coherent. 2004 // The caller must tolerate false-negative and false-positive errors. 2005 // Spinning, in general, is probabilistic anyway. 2006 2007 2008 int ObjectMonitor::NotRunnable(JavaThread* current, JavaThread* ox) { 2009 // Check ox->TypeTag == 2BAD. 2010 if (ox == nullptr) return 0; 2011 2012 // Avoid transitive spinning ... 2013 // Say T1 spins or blocks trying to acquire L. T1._Stalled is set to L. 2014 // Immediately after T1 acquires L it's possible that T2, also 2015 // spinning on L, will see L.Owner=T1 and T1._Stalled=L. 2016 // This occurs transiently after T1 acquired L but before 2017 // T1 managed to clear T1.Stalled. T2 does not need to abort 2018 // its spin in this circumstance. 2019 intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1)); 2020 2021 if (BlockedOn == 1) return 1; 2022 if (BlockedOn != 0) { 2023 return BlockedOn != intptr_t(this) && owner_raw() == ox; 2024 } 2025 2026 assert(sizeof(ox->_thread_state == sizeof(int)), "invariant"); 2027 int jst = SafeFetch32((int *) &ox->_thread_state, -1);; 2028 // consider also: jst != _thread_in_Java -- but that's overspecific. 2029 return jst == _thread_blocked || jst == _thread_in_native; 2030 } 2031 2032 2033 // ----------------------------------------------------------------------------- 2034 // WaitSet management ... 2035 2036 ObjectWaiter::ObjectWaiter(JavaThread* current) { 2037 _next = nullptr; 2038 _prev = nullptr; 2039 _notified = 0; 2040 _notifier_tid = 0; 2041 TState = TS_RUN; 2042 _thread = current; 2043 _event = _thread->_ParkEvent; 2044 _active = false; 2045 assert(_event != nullptr, "invariant"); 2046 } 2047 2048 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { 2049 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon); 2050 } 2051 2052 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { 2053 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active); 2054 } 2055 2056 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) { 2057 assert(node != nullptr, "should not add null node"); 2058 assert(node->_prev == nullptr, "node already in list"); 2059 assert(node->_next == nullptr, "node already in list"); 2060 // put node at end of queue (circular doubly linked list) 2061 if (_WaitSet == nullptr) { 2062 _WaitSet = node; 2063 node->_prev = node; 2064 node->_next = node; 2065 } else { 2066 ObjectWaiter* head = _WaitSet; 2067 ObjectWaiter* tail = head->_prev; 2068 assert(tail->_next == head, "invariant check"); 2069 tail->_next = node; 2070 head->_prev = node; 2071 node->_next = head; 2072 node->_prev = tail; 2073 } 2074 } 2075 2076 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() { 2077 // dequeue the very first waiter 2078 ObjectWaiter* waiter = _WaitSet; 2079 if (waiter) { 2080 DequeueSpecificWaiter(waiter); 2081 } 2082 return waiter; 2083 } 2084 2085 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) { 2086 assert(node != nullptr, "should not dequeue nullptr node"); 2087 assert(node->_prev != nullptr, "node already removed from list"); 2088 assert(node->_next != nullptr, "node already removed from list"); 2089 // when the waiter has woken up because of interrupt, 2090 // timeout or other spurious wake-up, dequeue the 2091 // waiter from waiting list 2092 ObjectWaiter* next = node->_next; 2093 if (next == node) { 2094 assert(node->_prev == node, "invariant check"); 2095 _WaitSet = nullptr; 2096 } else { 2097 ObjectWaiter* prev = node->_prev; 2098 assert(prev->_next == node, "invariant check"); 2099 assert(next->_prev == node, "invariant check"); 2100 next->_prev = prev; 2101 prev->_next = next; 2102 if (_WaitSet == node) { 2103 _WaitSet = next; 2104 } 2105 } 2106 node->_next = nullptr; 2107 node->_prev = nullptr; 2108 } 2109 2110 // ----------------------------------------------------------------------------- 2111 // PerfData support 2112 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = nullptr; 2113 PerfCounter * ObjectMonitor::_sync_FutileWakeups = nullptr; 2114 PerfCounter * ObjectMonitor::_sync_Parks = nullptr; 2115 PerfCounter * ObjectMonitor::_sync_Notifications = nullptr; 2116 PerfCounter * ObjectMonitor::_sync_Inflations = nullptr; 2117 PerfCounter * ObjectMonitor::_sync_Deflations = nullptr; 2118 PerfLongVariable * ObjectMonitor::_sync_MonExtant = nullptr; 2119 2120 // One-shot global initialization for the sync subsystem. 2121 // We could also defer initialization and initialize on-demand 2122 // the first time we call ObjectSynchronizer::inflate(). 2123 // Initialization would be protected - like so many things - by 2124 // the MonitorCache_lock. 2125 2126 void ObjectMonitor::Initialize() { 2127 assert(!InitDone, "invariant"); 2128 2129 if (!os::is_MP()) { 2130 Knob_SpinLimit = 0; 2131 Knob_PreSpin = 0; 2132 Knob_FixedSpin = -1; 2133 } 2134 2135 if (UsePerfData) { 2136 EXCEPTION_MARK; 2137 #define NEWPERFCOUNTER(n) \ 2138 { \ 2139 n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events, \ 2140 CHECK); \ 2141 } 2142 #define NEWPERFVARIABLE(n) \ 2143 { \ 2144 n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events, \ 2145 CHECK); \ 2146 } 2147 NEWPERFCOUNTER(_sync_Inflations); 2148 NEWPERFCOUNTER(_sync_Deflations); 2149 NEWPERFCOUNTER(_sync_ContendedLockAttempts); 2150 NEWPERFCOUNTER(_sync_FutileWakeups); 2151 NEWPERFCOUNTER(_sync_Parks); 2152 NEWPERFCOUNTER(_sync_Notifications); 2153 NEWPERFVARIABLE(_sync_MonExtant); 2154 #undef NEWPERFCOUNTER 2155 #undef NEWPERFVARIABLE 2156 } 2157 2158 _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer); 2159 2160 DEBUG_ONLY(InitDone = true;) 2161 } 2162 2163 void ObjectMonitor::print_on(outputStream* st) const { 2164 // The minimal things to print for markWord printing, more can be added for debugging and logging. 2165 st->print("{contentions=0x%08x,waiters=0x%08x" 2166 ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}", 2167 contentions(), waiters(), recursions(), 2168 p2i(owner())); 2169 } 2170 void ObjectMonitor::print() const { print_on(tty); } 2171 2172 #ifdef ASSERT 2173 // Print the ObjectMonitor like a debugger would: 2174 // 2175 // (ObjectMonitor) 0x00007fdfb6012e40 = { 2176 // _header = 0x0000000000000001 2177 // _object = 0x000000070ff45fd0 2178 // _pad_buf0 = { 2179 // [0] = '\0' 2180 // ... 2181 // [43] = '\0' 2182 // } 2183 // _owner = 0x0000000000000000 2184 // _previous_owner_tid = 0 2185 // _pad_buf1 = { 2186 // [0] = '\0' 2187 // ... 2188 // [47] = '\0' 2189 // } 2190 // _next_om = 0x0000000000000000 2191 // _recursions = 0 2192 // _EntryList = 0x0000000000000000 2193 // _cxq = 0x0000000000000000 2194 // _succ = 0x0000000000000000 2195 // _Responsible = 0x0000000000000000 2196 // _Spinner = 0 2197 // _SpinDuration = 5000 2198 // _contentions = 0 2199 // _WaitSet = 0x0000700009756248 2200 // _waiters = 1 2201 // _WaitSetLock = 0 2202 // } 2203 // 2204 void ObjectMonitor::print_debug_style_on(outputStream* st) const { 2205 st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this)); 2206 st->print_cr(" _header = " INTPTR_FORMAT, header().value()); 2207 st->print_cr(" _object = " INTPTR_FORMAT, p2i(object_peek())); 2208 st->print_cr(" _pad_buf0 = {"); 2209 st->print_cr(" [0] = '\\0'"); 2210 st->print_cr(" ..."); 2211 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1); 2212 st->print_cr(" }"); 2213 st->print_cr(" _owner = " INTPTR_FORMAT, p2i(owner_raw())); 2214 st->print_cr(" _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid); 2215 st->print_cr(" _pad_buf1 = {"); 2216 st->print_cr(" [0] = '\\0'"); 2217 st->print_cr(" ..."); 2218 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1); 2219 st->print_cr(" }"); 2220 st->print_cr(" _next_om = " INTPTR_FORMAT, p2i(next_om())); 2221 st->print_cr(" _recursions = " INTX_FORMAT, _recursions); 2222 st->print_cr(" _EntryList = " INTPTR_FORMAT, p2i(_EntryList)); 2223 st->print_cr(" _cxq = " INTPTR_FORMAT, p2i(_cxq)); 2224 st->print_cr(" _succ = " INTPTR_FORMAT, p2i(_succ)); 2225 st->print_cr(" _Responsible = " INTPTR_FORMAT, p2i(_Responsible)); 2226 st->print_cr(" _Spinner = %d", _Spinner); 2227 st->print_cr(" _SpinDuration = %d", _SpinDuration); 2228 st->print_cr(" _contentions = %d", contentions()); 2229 st->print_cr(" _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet)); 2230 st->print_cr(" _waiters = %d", _waiters); 2231 st->print_cr(" _WaitSetLock = %d", _WaitSetLock); 2232 st->print_cr("}"); 2233 } 2234 #endif