1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/oopStorage.hpp" 28 #include "gc/shared/oopStorageSet.hpp" 29 #include "jfr/jfrEvents.hpp" 30 #include "jfr/support/jfrThreadId.hpp" 31 #include "logging/log.hpp" 32 #include "logging/logStream.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/oopHandle.inline.hpp" 38 #include "oops/weakHandle.inline.hpp" 39 #include "prims/jvmtiDeferredUpdates.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "runtime/atomic.hpp" 42 #include "runtime/globals.hpp" 43 #include "runtime/handles.inline.hpp" 44 #include "runtime/interfaceSupport.inline.hpp" 45 #include "runtime/javaThread.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.hpp" 48 #include "runtime/objectMonitor.inline.hpp" 49 #include "runtime/orderAccess.hpp" 50 #include "runtime/osThread.hpp" 51 #include "runtime/perfData.hpp" 52 #include "runtime/safefetch.hpp" 53 #include "runtime/safepointMechanism.inline.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "services/threadService.hpp" 56 #include "utilities/dtrace.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/macros.hpp" 59 #include "utilities/preserveException.hpp" 60 #if INCLUDE_JFR 61 #include "jfr/support/jfrFlush.hpp" 62 #endif 63 64 #ifdef DTRACE_ENABLED 65 66 // Only bother with this argument setup if dtrace is available 67 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 68 69 70 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 71 char* bytes = nullptr; \ 72 int len = 0; \ 73 jlong jtid = SharedRuntime::get_java_tid(thread); \ 74 Symbol* klassname = obj->klass()->name(); \ 75 if (klassname != nullptr) { \ 76 bytes = (char*)klassname->bytes(); \ 77 len = klassname->utf8_length(); \ 78 } 79 80 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 81 { \ 82 if (DTraceMonitorProbes) { \ 83 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 84 HOTSPOT_MONITOR_WAIT(jtid, \ 85 (monitor), bytes, len, (millis)); \ 86 } \ 87 } 88 89 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER 90 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED 91 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT 92 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY 93 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL 94 95 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 96 { \ 97 if (DTraceMonitorProbes) { \ 98 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 99 HOTSPOT_MONITOR_##probe(jtid, \ 100 (uintptr_t)(monitor), bytes, len); \ 101 } \ 102 } 103 104 #else // ndef DTRACE_ENABLED 105 106 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 107 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 108 109 #endif // ndef DTRACE_ENABLED 110 111 // Tunables ... 112 // The knob* variables are effectively final. Once set they should 113 // never be modified hence. Consider using __read_mostly with GCC. 114 115 int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool - 116 117 static int Knob_Bonus = 100; // spin success bonus 118 static int Knob_BonusB = 100; // spin success bonus 119 static int Knob_Penalty = 200; // spin failure penalty 120 static int Knob_Poverty = 1000; 121 static int Knob_FixedSpin = 0; 122 static int Knob_PreSpin = 10; // 20-100 likely better 123 124 DEBUG_ONLY(static volatile bool InitDone = false;) 125 126 OopStorage* ObjectMonitor::_oop_storage = nullptr; 127 128 // ----------------------------------------------------------------------------- 129 // Theory of operations -- Monitors lists, thread residency, etc: 130 // 131 // * A thread acquires ownership of a monitor by successfully 132 // CAS()ing the _owner field from null to non-null. 133 // 134 // * Invariant: A thread appears on at most one monitor list -- 135 // cxq, EntryList or WaitSet -- at any one time. 136 // 137 // * Contending threads "push" themselves onto the cxq with CAS 138 // and then spin/park. 139 // 140 // * After a contending thread eventually acquires the lock it must 141 // dequeue itself from either the EntryList or the cxq. 142 // 143 // * The exiting thread identifies and unparks an "heir presumptive" 144 // tentative successor thread on the EntryList. Critically, the 145 // exiting thread doesn't unlink the successor thread from the EntryList. 146 // After having been unparked, the wakee will recontend for ownership of 147 // the monitor. The successor (wakee) will either acquire the lock or 148 // re-park itself. 149 // 150 // Succession is provided for by a policy of competitive handoff. 151 // The exiting thread does _not_ grant or pass ownership to the 152 // successor thread. (This is also referred to as "handoff" succession"). 153 // Instead the exiting thread releases ownership and possibly wakes 154 // a successor, so the successor can (re)compete for ownership of the lock. 155 // If the EntryList is empty but the cxq is populated the exiting 156 // thread will drain the cxq into the EntryList. It does so by 157 // by detaching the cxq (installing null with CAS) and folding 158 // the threads from the cxq into the EntryList. The EntryList is 159 // doubly linked, while the cxq is singly linked because of the 160 // CAS-based "push" used to enqueue recently arrived threads (RATs). 161 // 162 // * Concurrency invariants: 163 // 164 // -- only the monitor owner may access or mutate the EntryList. 165 // The mutex property of the monitor itself protects the EntryList 166 // from concurrent interference. 167 // -- Only the monitor owner may detach the cxq. 168 // 169 // * The monitor entry list operations avoid locks, but strictly speaking 170 // they're not lock-free. Enter is lock-free, exit is not. 171 // For a description of 'Methods and apparatus providing non-blocking access 172 // to a resource,' see U.S. Pat. No. 7844973. 173 // 174 // * The cxq can have multiple concurrent "pushers" but only one concurrent 175 // detaching thread. This mechanism is immune from the ABA corruption. 176 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious. 177 // 178 // * Taken together, the cxq and the EntryList constitute or form a 179 // single logical queue of threads stalled trying to acquire the lock. 180 // We use two distinct lists to improve the odds of a constant-time 181 // dequeue operation after acquisition (in the ::enter() epilogue) and 182 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm). 183 // A key desideratum is to minimize queue & monitor metadata manipulation 184 // that occurs while holding the monitor lock -- that is, we want to 185 // minimize monitor lock holds times. Note that even a small amount of 186 // fixed spinning will greatly reduce the # of enqueue-dequeue operations 187 // on EntryList|cxq. That is, spinning relieves contention on the "inner" 188 // locks and monitor metadata. 189 // 190 // Cxq points to the set of Recently Arrived Threads attempting entry. 191 // Because we push threads onto _cxq with CAS, the RATs must take the form of 192 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when 193 // the unlocking thread notices that EntryList is null but _cxq is != null. 194 // 195 // The EntryList is ordered by the prevailing queue discipline and 196 // can be organized in any convenient fashion, such as a doubly-linked list or 197 // a circular doubly-linked list. Critically, we want insert and delete operations 198 // to operate in constant-time. If we need a priority queue then something akin 199 // to Solaris' sleepq would work nicely. Viz., 200 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c. 201 // Queue discipline is enforced at ::exit() time, when the unlocking thread 202 // drains the cxq into the EntryList, and orders or reorders the threads on the 203 // EntryList accordingly. 204 // 205 // Barring "lock barging", this mechanism provides fair cyclic ordering, 206 // somewhat similar to an elevator-scan. 207 // 208 // * The monitor synchronization subsystem avoids the use of native 209 // synchronization primitives except for the narrow platform-specific 210 // park-unpark abstraction. See the comments in os_solaris.cpp regarding 211 // the semantics of park-unpark. Put another way, this monitor implementation 212 // depends only on atomic operations and park-unpark. The monitor subsystem 213 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the 214 // underlying OS manages the READY<->RUN transitions. 215 // 216 // * Waiting threads reside on the WaitSet list -- wait() puts 217 // the caller onto the WaitSet. 218 // 219 // * notify() or notifyAll() simply transfers threads from the WaitSet to 220 // either the EntryList or cxq. Subsequent exit() operations will 221 // unpark the notifyee. Unparking a notifee in notify() is inefficient - 222 // it's likely the notifyee would simply impale itself on the lock held 223 // by the notifier. 224 // 225 // * An interesting alternative is to encode cxq as (List,LockByte) where 226 // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary 227 // variable, like _recursions, in the scheme. The threads or Events that form 228 // the list would have to be aligned in 256-byte addresses. A thread would 229 // try to acquire the lock or enqueue itself with CAS, but exiting threads 230 // could use a 1-0 protocol and simply STB to set the LockByte to 0. 231 // Note that is is *not* word-tearing, but it does presume that full-word 232 // CAS operations are coherent with intermix with STB operations. That's true 233 // on most common processors. 234 // 235 // * See also http://blogs.sun.com/dave 236 237 238 // Check that object() and set_object() are called from the right context: 239 static void check_object_context() { 240 #ifdef ASSERT 241 Thread* self = Thread::current(); 242 if (self->is_Java_thread()) { 243 // Mostly called from JavaThreads so sanity check the thread state. 244 JavaThread* jt = JavaThread::cast(self); 245 switch (jt->thread_state()) { 246 case _thread_in_vm: // the usual case 247 case _thread_in_Java: // during deopt 248 break; 249 default: 250 fatal("called from an unsafe thread state"); 251 } 252 assert(jt->is_active_Java_thread(), "must be active JavaThread"); 253 } else { 254 // However, ThreadService::get_current_contended_monitor() 255 // can call here via the VMThread so sanity check it. 256 assert(self->is_VM_thread(), "must be"); 257 } 258 #endif // ASSERT 259 } 260 261 ObjectMonitor::ObjectMonitor(oop object) : 262 _header(markWord::zero()), 263 _object(_oop_storage, object), 264 _owner(nullptr), 265 _previous_owner_tid(0), 266 _next_om(nullptr), 267 _recursions(0), 268 _EntryList(nullptr), 269 _cxq(nullptr), 270 _succ(nullptr), 271 _Responsible(nullptr), 272 _Spinner(0), 273 _SpinDuration(ObjectMonitor::Knob_SpinLimit), 274 _contentions(0), 275 _WaitSet(nullptr), 276 _waiters(0), 277 _WaitSetLock(0) 278 { } 279 280 ObjectMonitor::~ObjectMonitor() { 281 _object.release(_oop_storage); 282 } 283 284 oop ObjectMonitor::object() const { 285 check_object_context(); 286 return _object.resolve(); 287 } 288 289 oop ObjectMonitor::object_peek() const { 290 return _object.peek(); 291 } 292 293 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) { 294 if (current->is_suspended()) { 295 _om->_recursions = 0; 296 _om->_succ = nullptr; 297 // Don't need a full fence after clearing successor here because of the call to exit(). 298 _om->exit(current, false /* not_suspended */); 299 _om_exited = true; 300 301 current->set_current_pending_monitor(_om); 302 } 303 } 304 305 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) { 306 if (current->is_suspended()) { 307 if (_om->_succ == current) { 308 _om->_succ = nullptr; 309 OrderAccess::fence(); // always do a full fence when successor is cleared 310 } 311 } 312 } 313 314 // ----------------------------------------------------------------------------- 315 // Enter support 316 317 bool ObjectMonitor::enter_for(JavaThread* locking_thread) { 318 // Used by ObjectSynchronizer::enter_for to enter for another thread. 319 // The monitor is private to or already owned by locking_thread which must be suspended. 320 // So this code may only contend with deflation. 321 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 322 323 // Block out deflation as soon as possible. 324 add_to_contentions(1); 325 326 bool success = false; 327 if (!is_being_async_deflated()) { 328 void* prev_owner = try_set_owner_from(nullptr, locking_thread); 329 330 if (prev_owner == nullptr) { 331 assert(_recursions == 0, "invariant"); 332 success = true; 333 } else if (prev_owner == locking_thread) { 334 _recursions++; 335 success = true; 336 } else if (prev_owner == DEFLATER_MARKER) { 337 // Racing with deflation. 338 prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread); 339 if (prev_owner == DEFLATER_MARKER) { 340 // Cancelled deflation. Increment contentions as part of the deflation protocol. 341 add_to_contentions(1); 342 success = true; 343 } else if (prev_owner == nullptr) { 344 // At this point we cannot race with deflation as we have both incremented 345 // contentions, seen contention > 0 and seen a DEFLATER_MARKER. 346 // success will only be false if this races with something other than 347 // deflation. 348 prev_owner = try_set_owner_from(nullptr, locking_thread); 349 success = prev_owner == nullptr; 350 } 351 } else if (LockingMode == LM_LEGACY && locking_thread->is_lock_owned((address)prev_owner)) { 352 assert(_recursions == 0, "must be"); 353 _recursions = 1; 354 set_owner_from_BasicLock(prev_owner, locking_thread); 355 success = true; 356 } 357 assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT 358 ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}, observed owner: " INTPTR_FORMAT, 359 p2i(locking_thread), p2i(this), p2i(owner_raw()), p2i(prev_owner)); 360 } else { 361 // Async deflation is in progress and our contentions increment 362 // above lost the race to async deflation. Undo the work and 363 // force the caller to retry. 364 const oop l_object = object(); 365 if (l_object != nullptr) { 366 // Attempt to restore the header/dmw to the object's header so that 367 // we only retry once if the deflater thread happens to be slow. 368 install_displaced_markword_in_object(l_object); 369 } 370 } 371 372 add_to_contentions(-1); 373 374 assert(!success || owner_raw() == locking_thread, "must be"); 375 376 return success; 377 } 378 379 bool ObjectMonitor::enter(JavaThread* current) { 380 assert(current == JavaThread::current(), "must be"); 381 // The following code is ordered to check the most common cases first 382 // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors. 383 384 void* cur = try_set_owner_from(nullptr, current); 385 if (cur == nullptr) { 386 assert(_recursions == 0, "invariant"); 387 return true; 388 } 389 390 if (cur == current) { 391 // TODO-FIXME: check for integer overflow! BUGID 6557169. 392 _recursions++; 393 return true; 394 } 395 396 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 397 assert(_recursions == 0, "internal state error"); 398 _recursions = 1; 399 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 400 return true; 401 } 402 403 // We've encountered genuine contention. 404 assert(current->_Stalled == 0, "invariant"); 405 current->_Stalled = intptr_t(this); 406 407 // Try one round of spinning *before* enqueueing current 408 // and before going through the awkward and expensive state 409 // transitions. The following spin is strictly optional ... 410 // Note that if we acquire the monitor from an initial spin 411 // we forgo posting JVMTI events and firing DTRACE probes. 412 if (TrySpin(current) > 0) { 413 assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw())); 414 assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions); 415 assert(object()->mark() == markWord::encode(this), 416 "object mark must match encoded this: mark=" INTPTR_FORMAT 417 ", encoded this=" INTPTR_FORMAT, object()->mark().value(), 418 markWord::encode(this).value()); 419 current->_Stalled = 0; 420 return true; 421 } 422 423 assert(owner_raw() != current, "invariant"); 424 assert(_succ != current, "invariant"); 425 assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); 426 assert(current->thread_state() != _thread_blocked, "invariant"); 427 428 // Keep track of contention for JVM/TI and M&M queries. 429 add_to_contentions(1); 430 if (is_being_async_deflated()) { 431 // Async deflation is in progress and our contentions increment 432 // above lost the race to async deflation. Undo the work and 433 // force the caller to retry. 434 const oop l_object = object(); 435 if (l_object != nullptr) { 436 // Attempt to restore the header/dmw to the object's header so that 437 // we only retry once if the deflater thread happens to be slow. 438 install_displaced_markword_in_object(l_object); 439 } 440 current->_Stalled = 0; 441 add_to_contentions(-1); 442 return false; 443 } 444 445 JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);) 446 EventJavaMonitorEnter event; 447 if (event.is_started()) { 448 event.set_monitorClass(object()->klass()); 449 // Set an address that is 'unique enough', such that events close in 450 // time and with the same address are likely (but not guaranteed) to 451 // belong to the same object. 452 event.set_address((uintptr_t)this); 453 } 454 455 { // Change java thread status to indicate blocked on monitor enter. 456 JavaThreadBlockedOnMonitorEnterState jtbmes(current, this); 457 458 assert(current->current_pending_monitor() == nullptr, "invariant"); 459 current->set_current_pending_monitor(this); 460 461 DTRACE_MONITOR_PROBE(contended__enter, this, object(), current); 462 if (JvmtiExport::should_post_monitor_contended_enter()) { 463 JvmtiExport::post_monitor_contended_enter(current, this); 464 465 // The current thread does not yet own the monitor and does not 466 // yet appear on any queues that would get it made the successor. 467 // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event 468 // handler cannot accidentally consume an unpark() meant for the 469 // ParkEvent associated with this ObjectMonitor. 470 } 471 472 OSThreadContendState osts(current->osthread()); 473 474 assert(current->thread_state() == _thread_in_vm, "invariant"); 475 476 for (;;) { 477 ExitOnSuspend eos(this); 478 { 479 ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */); 480 EnterI(current); 481 current->set_current_pending_monitor(nullptr); 482 // We can go to a safepoint at the end of this block. If we 483 // do a thread dump during that safepoint, then this thread will show 484 // as having "-locked" the monitor, but the OS and java.lang.Thread 485 // states will still report that the thread is blocked trying to 486 // acquire it. 487 // If there is a suspend request, ExitOnSuspend will exit the OM 488 // and set the OM as pending. 489 } 490 if (!eos.exited()) { 491 // ExitOnSuspend did not exit the OM 492 assert(owner_raw() == current, "invariant"); 493 break; 494 } 495 } 496 497 // We've just gotten past the enter-check-for-suspend dance and we now own 498 // the monitor free and clear. 499 } 500 501 add_to_contentions(-1); 502 assert(contentions() >= 0, "must not be negative: contentions=%d", contentions()); 503 current->_Stalled = 0; 504 505 // Must either set _recursions = 0 or ASSERT _recursions == 0. 506 assert(_recursions == 0, "invariant"); 507 assert(owner_raw() == current, "invariant"); 508 assert(_succ != current, "invariant"); 509 assert(object()->mark() == markWord::encode(this), "invariant"); 510 511 // The thread -- now the owner -- is back in vm mode. 512 // Report the glorious news via TI,DTrace and jvmstat. 513 // The probe effect is non-trivial. All the reportage occurs 514 // while we hold the monitor, increasing the length of the critical 515 // section. Amdahl's parallel speedup law comes vividly into play. 516 // 517 // Another option might be to aggregate the events (thread local or 518 // per-monitor aggregation) and defer reporting until a more opportune 519 // time -- such as next time some thread encounters contention but has 520 // yet to acquire the lock. While spinning that thread could 521 // spinning we could increment JVMStat counters, etc. 522 523 DTRACE_MONITOR_PROBE(contended__entered, this, object(), current); 524 if (JvmtiExport::should_post_monitor_contended_entered()) { 525 JvmtiExport::post_monitor_contended_entered(current, this); 526 527 // The current thread already owns the monitor and is not going to 528 // call park() for the remainder of the monitor enter protocol. So 529 // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED 530 // event handler consumed an unpark() issued by the thread that 531 // just exited the monitor. 532 } 533 if (event.should_commit()) { 534 event.set_previousOwner(_previous_owner_tid); 535 event.commit(); 536 } 537 OM_PERFDATA_OP(ContendedLockAttempts, inc()); 538 return true; 539 } 540 541 // Caveat: TryLock() is not necessarily serializing if it returns failure. 542 // Callers must compensate as needed. 543 544 int ObjectMonitor::TryLock(JavaThread* current) { 545 void* own = owner_raw(); 546 if (own != nullptr) return 0; 547 if (try_set_owner_from(nullptr, current) == nullptr) { 548 assert(_recursions == 0, "invariant"); 549 return 1; 550 } 551 // The lock had been free momentarily, but we lost the race to the lock. 552 // Interference -- the CAS failed. 553 // We can either return -1 or retry. 554 // Retry doesn't make as much sense because the lock was just acquired. 555 return -1; 556 } 557 558 // Deflate the specified ObjectMonitor if not in-use. Returns true if it 559 // was deflated and false otherwise. 560 // 561 // The async deflation protocol sets owner to DEFLATER_MARKER and 562 // makes contentions negative as signals to contending threads that 563 // an async deflation is in progress. There are a number of checks 564 // as part of the protocol to make sure that the calling thread has 565 // not lost the race to a contending thread. 566 // 567 // The ObjectMonitor has been successfully async deflated when: 568 // (contentions < 0) 569 // Contending threads that see that condition know to retry their operation. 570 // 571 bool ObjectMonitor::deflate_monitor() { 572 if (is_busy()) { 573 // Easy checks are first - the ObjectMonitor is busy so no deflation. 574 return false; 575 } 576 577 const oop obj = object_peek(); 578 579 if (obj == nullptr) { 580 // If the object died, we can recycle the monitor without racing with 581 // Java threads. The GC already broke the association with the object. 582 set_owner_from(nullptr, DEFLATER_MARKER); 583 assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions()); 584 _contentions = INT_MIN; // minimum negative int 585 } else { 586 // Attempt async deflation protocol. 587 588 // Set a null owner to DEFLATER_MARKER to force any contending thread 589 // through the slow path. This is just the first part of the async 590 // deflation dance. 591 if (try_set_owner_from(nullptr, DEFLATER_MARKER) != nullptr) { 592 // The owner field is no longer null so we lost the race since the 593 // ObjectMonitor is now busy. 594 return false; 595 } 596 597 if (contentions() > 0 || _waiters != 0) { 598 // Another thread has raced to enter the ObjectMonitor after 599 // is_busy() above or has already entered and waited on 600 // it which makes it busy so no deflation. Restore owner to 601 // null if it is still DEFLATER_MARKER. 602 if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 603 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 604 add_to_contentions(-1); 605 } 606 return false; 607 } 608 609 // Make a zero contentions field negative to force any contending threads 610 // to retry. This is the second part of the async deflation dance. 611 if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) { 612 // Contentions was no longer 0 so we lost the race since the 613 // ObjectMonitor is now busy. Restore owner to null if it is 614 // still DEFLATER_MARKER: 615 if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 616 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 617 add_to_contentions(-1); 618 } 619 return false; 620 } 621 } 622 623 // Sanity checks for the races: 624 guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker"); 625 guarantee(contentions() < 0, "must be negative: contentions=%d", 626 contentions()); 627 guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters); 628 guarantee(_cxq == nullptr, "must be no contending threads: cxq=" 629 INTPTR_FORMAT, p2i(_cxq)); 630 guarantee(_EntryList == nullptr, 631 "must be no entering threads: EntryList=" INTPTR_FORMAT, 632 p2i(_EntryList)); 633 634 if (obj != nullptr) { 635 if (log_is_enabled(Trace, monitorinflation)) { 636 ResourceMark rm; 637 log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT 638 ", mark=" INTPTR_FORMAT ", type='%s'", 639 p2i(obj), obj->mark().value(), 640 obj->klass()->external_name()); 641 } 642 643 // Install the old mark word if nobody else has already done it. 644 install_displaced_markword_in_object(obj); 645 } 646 647 // We leave owner == DEFLATER_MARKER and contentions < 0 648 // to force any racing threads to retry. 649 return true; // Success, ObjectMonitor has been deflated. 650 } 651 652 // Install the displaced mark word (dmw) of a deflating ObjectMonitor 653 // into the header of the object associated with the monitor. This 654 // idempotent method is called by a thread that is deflating a 655 // monitor and by other threads that have detected a race with the 656 // deflation process. 657 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) { 658 // This function must only be called when (owner == DEFLATER_MARKER 659 // && contentions <= 0), but we can't guarantee that here because 660 // those values could change when the ObjectMonitor gets moved from 661 // the global free list to a per-thread free list. 662 663 guarantee(obj != nullptr, "must be non-null"); 664 665 // Separate loads in is_being_async_deflated(), which is almost always 666 // called before this function, from the load of dmw/header below. 667 668 // _contentions and dmw/header may get written by different threads. 669 // Make sure to observe them in the same order when having several observers. 670 OrderAccess::loadload_for_IRIW(); 671 672 const oop l_object = object_peek(); 673 if (l_object == nullptr) { 674 // ObjectMonitor's object ref has already been cleared by async 675 // deflation or GC so we're done here. 676 return; 677 } 678 assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj=" 679 INTPTR_FORMAT, p2i(l_object), p2i(obj)); 680 681 markWord dmw = header(); 682 // The dmw has to be neutral (not null, not locked and not marked). 683 assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value()); 684 685 // Install displaced mark word if the object's header still points 686 // to this ObjectMonitor. More than one racing caller to this function 687 // can rarely reach this point, but only one can win. 688 markWord res = obj->cas_set_mark(dmw, markWord::encode(this)); 689 if (res != markWord::encode(this)) { 690 // This should be rare so log at the Info level when it happens. 691 log_info(monitorinflation)("install_displaced_markword_in_object: " 692 "failed cas_set_mark: new_mark=" INTPTR_FORMAT 693 ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT, 694 dmw.value(), markWord::encode(this).value(), 695 res.value()); 696 } 697 698 // Note: It does not matter which thread restored the header/dmw 699 // into the object's header. The thread deflating the monitor just 700 // wanted the object's header restored and it is. The threads that 701 // detected a race with the deflation process also wanted the 702 // object's header restored before they retry their operation and 703 // because it is restored they will only retry once. 704 } 705 706 // Convert the fields used by is_busy() to a string that can be 707 // used for diagnostic output. 708 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { 709 ss->print("is_busy: waiters=%d, ", _waiters); 710 if (contentions() > 0) { 711 ss->print("contentions=%d, ", contentions()); 712 } else { 713 ss->print("contentions=0"); 714 } 715 if (!owner_is_DEFLATER_MARKER()) { 716 ss->print("owner=" INTPTR_FORMAT, p2i(owner_raw())); 717 } else { 718 // We report null instead of DEFLATER_MARKER here because is_busy() 719 // ignores DEFLATER_MARKER values. 720 ss->print("owner=" INTPTR_FORMAT, NULL_WORD); 721 } 722 ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq), 723 p2i(_EntryList)); 724 return ss->base(); 725 } 726 727 #define MAX_RECHECK_INTERVAL 1000 728 729 void ObjectMonitor::EnterI(JavaThread* current) { 730 assert(current->thread_state() == _thread_blocked, "invariant"); 731 732 // Try the lock - TATAS 733 if (TryLock (current) > 0) { 734 assert(_succ != current, "invariant"); 735 assert(owner_raw() == current, "invariant"); 736 assert(_Responsible != current, "invariant"); 737 return; 738 } 739 740 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 741 // Cancelled the in-progress async deflation by changing owner from 742 // DEFLATER_MARKER to current. As part of the contended enter protocol, 743 // contentions was incremented to a positive value before EnterI() 744 // was called and that prevents the deflater thread from winning the 745 // last part of the 2-part async deflation protocol. After EnterI() 746 // returns to enter(), contentions is decremented because the caller 747 // now owns the monitor. We bump contentions an extra time here to 748 // prevent the deflater thread from winning the last part of the 749 // 2-part async deflation protocol after the regular decrement 750 // occurs in enter(). The deflater thread will decrement contentions 751 // after it recognizes that the async deflation was cancelled. 752 add_to_contentions(1); 753 assert(_succ != current, "invariant"); 754 assert(_Responsible != current, "invariant"); 755 return; 756 } 757 758 assert(InitDone, "Unexpectedly not initialized"); 759 760 // We try one round of spinning *before* enqueueing current. 761 // 762 // If the _owner is ready but OFFPROC we could use a YieldTo() 763 // operation to donate the remainder of this thread's quantum 764 // to the owner. This has subtle but beneficial affinity 765 // effects. 766 767 if (TrySpin(current) > 0) { 768 assert(owner_raw() == current, "invariant"); 769 assert(_succ != current, "invariant"); 770 assert(_Responsible != current, "invariant"); 771 return; 772 } 773 774 // The Spin failed -- Enqueue and park the thread ... 775 assert(_succ != current, "invariant"); 776 assert(owner_raw() != current, "invariant"); 777 assert(_Responsible != current, "invariant"); 778 779 // Enqueue "current" on ObjectMonitor's _cxq. 780 // 781 // Node acts as a proxy for current. 782 // As an aside, if were to ever rewrite the synchronization code mostly 783 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class 784 // Java objects. This would avoid awkward lifecycle and liveness issues, 785 // as well as eliminate a subset of ABA issues. 786 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. 787 788 ObjectWaiter node(current); 789 current->_ParkEvent->reset(); 790 node._prev = (ObjectWaiter*) 0xBAD; 791 node.TState = ObjectWaiter::TS_CXQ; 792 793 // Push "current" onto the front of the _cxq. 794 // Once on cxq/EntryList, current stays on-queue until it acquires the lock. 795 // Note that spinning tends to reduce the rate at which threads 796 // enqueue and dequeue on EntryList|cxq. 797 ObjectWaiter* nxt; 798 for (;;) { 799 node._next = nxt = _cxq; 800 if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break; 801 802 // Interference - the CAS failed because _cxq changed. Just retry. 803 // As an optional optimization we retry the lock. 804 if (TryLock (current) > 0) { 805 assert(_succ != current, "invariant"); 806 assert(owner_raw() == current, "invariant"); 807 assert(_Responsible != current, "invariant"); 808 return; 809 } 810 } 811 812 // Check for cxq|EntryList edge transition to non-null. This indicates 813 // the onset of contention. While contention persists exiting threads 814 // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit 815 // operations revert to the faster 1-0 mode. This enter operation may interleave 816 // (race) a concurrent 1-0 exit operation, resulting in stranding, so we 817 // arrange for one of the contending thread to use a timed park() operations 818 // to detect and recover from the race. (Stranding is form of progress failure 819 // where the monitor is unlocked but all the contending threads remain parked). 820 // That is, at least one of the contended threads will periodically poll _owner. 821 // One of the contending threads will become the designated "Responsible" thread. 822 // The Responsible thread uses a timed park instead of a normal indefinite park 823 // operation -- it periodically wakes and checks for and recovers from potential 824 // strandings admitted by 1-0 exit operations. We need at most one Responsible 825 // thread per-monitor at any given moment. Only threads on cxq|EntryList may 826 // be responsible for a monitor. 827 // 828 // Currently, one of the contended threads takes on the added role of "Responsible". 829 // A viable alternative would be to use a dedicated "stranding checker" thread 830 // that periodically iterated over all the threads (or active monitors) and unparked 831 // successors where there was risk of stranding. This would help eliminate the 832 // timer scalability issues we see on some platforms as we'd only have one thread 833 // -- the checker -- parked on a timer. 834 835 if (nxt == nullptr && _EntryList == nullptr) { 836 // Try to assume the role of responsible thread for the monitor. 837 // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=current } 838 Atomic::replace_if_null(&_Responsible, current); 839 } 840 841 // The lock might have been released while this thread was occupied queueing 842 // itself onto _cxq. To close the race and avoid "stranding" and 843 // progress-liveness failure we must resample-retry _owner before parking. 844 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner. 845 // In this case the ST-MEMBAR is accomplished with CAS(). 846 // 847 // TODO: Defer all thread state transitions until park-time. 848 // Since state transitions are heavy and inefficient we'd like 849 // to defer the state transitions until absolutely necessary, 850 // and in doing so avoid some transitions ... 851 852 int nWakeups = 0; 853 int recheckInterval = 1; 854 855 for (;;) { 856 857 if (TryLock(current) > 0) break; 858 assert(owner_raw() != current, "invariant"); 859 860 // park self 861 if (_Responsible == current) { 862 current->_ParkEvent->park((jlong) recheckInterval); 863 // Increase the recheckInterval, but clamp the value. 864 recheckInterval *= 8; 865 if (recheckInterval > MAX_RECHECK_INTERVAL) { 866 recheckInterval = MAX_RECHECK_INTERVAL; 867 } 868 } else { 869 current->_ParkEvent->park(); 870 } 871 872 if (TryLock(current) > 0) break; 873 874 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 875 // Cancelled the in-progress async deflation by changing owner from 876 // DEFLATER_MARKER to current. As part of the contended enter protocol, 877 // contentions was incremented to a positive value before EnterI() 878 // was called and that prevents the deflater thread from winning the 879 // last part of the 2-part async deflation protocol. After EnterI() 880 // returns to enter(), contentions is decremented because the caller 881 // now owns the monitor. We bump contentions an extra time here to 882 // prevent the deflater thread from winning the last part of the 883 // 2-part async deflation protocol after the regular decrement 884 // occurs in enter(). The deflater thread will decrement contentions 885 // after it recognizes that the async deflation was cancelled. 886 add_to_contentions(1); 887 break; 888 } 889 890 // The lock is still contested. 891 // Keep a tally of the # of futile wakeups. 892 // Note that the counter is not protected by a lock or updated by atomics. 893 // That is by design - we trade "lossy" counters which are exposed to 894 // races during updates for a lower probe effect. 895 896 // This PerfData object can be used in parallel with a safepoint. 897 // See the work around in PerfDataManager::destroy(). 898 OM_PERFDATA_OP(FutileWakeups, inc()); 899 ++nWakeups; 900 901 // Assuming this is not a spurious wakeup we'll normally find _succ == current. 902 // We can defer clearing _succ until after the spin completes 903 // TrySpin() must tolerate being called with _succ == current. 904 // Try yet another round of adaptive spinning. 905 if (TrySpin(current) > 0) break; 906 907 // We can find that we were unpark()ed and redesignated _succ while 908 // we were spinning. That's harmless. If we iterate and call park(), 909 // park() will consume the event and return immediately and we'll 910 // just spin again. This pattern can repeat, leaving _succ to simply 911 // spin on a CPU. 912 913 if (_succ == current) _succ = nullptr; 914 915 // Invariant: after clearing _succ a thread *must* retry _owner before parking. 916 OrderAccess::fence(); 917 } 918 919 // Egress : 920 // current has acquired the lock -- Unlink current from the cxq or EntryList. 921 // Normally we'll find current on the EntryList . 922 // From the perspective of the lock owner (this thread), the 923 // EntryList is stable and cxq is prepend-only. 924 // The head of cxq is volatile but the interior is stable. 925 // In addition, current.TState is stable. 926 927 assert(owner_raw() == current, "invariant"); 928 929 UnlinkAfterAcquire(current, &node); 930 if (_succ == current) _succ = nullptr; 931 932 assert(_succ != current, "invariant"); 933 if (_Responsible == current) { 934 _Responsible = nullptr; 935 OrderAccess::fence(); // Dekker pivot-point 936 937 // We may leave threads on cxq|EntryList without a designated 938 // "Responsible" thread. This is benign. When this thread subsequently 939 // exits the monitor it can "see" such preexisting "old" threads -- 940 // threads that arrived on the cxq|EntryList before the fence, above -- 941 // by LDing cxq|EntryList. Newly arrived threads -- that is, threads 942 // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible 943 // non-null and elect a new "Responsible" timer thread. 944 // 945 // This thread executes: 946 // ST Responsible=null; MEMBAR (in enter epilogue - here) 947 // LD cxq|EntryList (in subsequent exit) 948 // 949 // Entering threads in the slow/contended path execute: 950 // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog) 951 // The (ST cxq; MEMBAR) is accomplished with CAS(). 952 // 953 // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent 954 // exit operation from floating above the ST Responsible=null. 955 } 956 957 // We've acquired ownership with CAS(). 958 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. 959 // But since the CAS() this thread may have also stored into _succ, 960 // EntryList, cxq or Responsible. These meta-data updates must be 961 // visible __before this thread subsequently drops the lock. 962 // Consider what could occur if we didn't enforce this constraint -- 963 // STs to monitor meta-data and user-data could reorder with (become 964 // visible after) the ST in exit that drops ownership of the lock. 965 // Some other thread could then acquire the lock, but observe inconsistent 966 // or old monitor meta-data and heap data. That violates the JMM. 967 // To that end, the 1-0 exit() operation must have at least STST|LDST 968 // "release" barrier semantics. Specifically, there must be at least a 969 // STST|LDST barrier in exit() before the ST of null into _owner that drops 970 // the lock. The barrier ensures that changes to monitor meta-data and data 971 // protected by the lock will be visible before we release the lock, and 972 // therefore before some other thread (CPU) has a chance to acquire the lock. 973 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. 974 // 975 // Critically, any prior STs to _succ or EntryList must be visible before 976 // the ST of null into _owner in the *subsequent* (following) corresponding 977 // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily 978 // execute a serializing instruction. 979 980 return; 981 } 982 983 // ReenterI() is a specialized inline form of the latter half of the 984 // contended slow-path from EnterI(). We use ReenterI() only for 985 // monitor reentry in wait(). 986 // 987 // In the future we should reconcile EnterI() and ReenterI(). 988 989 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) { 990 assert(current != nullptr, "invariant"); 991 assert(currentNode != nullptr, "invariant"); 992 assert(currentNode->_thread == current, "invariant"); 993 assert(_waiters > 0, "invariant"); 994 assert(object()->mark() == markWord::encode(this), "invariant"); 995 996 assert(current->thread_state() != _thread_blocked, "invariant"); 997 998 int nWakeups = 0; 999 for (;;) { 1000 ObjectWaiter::TStates v = currentNode->TState; 1001 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1002 assert(owner_raw() != current, "invariant"); 1003 1004 if (TryLock(current) > 0) break; 1005 if (TrySpin(current) > 0) break; 1006 1007 { 1008 OSThreadContendState osts(current->osthread()); 1009 1010 assert(current->thread_state() == _thread_in_vm, "invariant"); 1011 1012 { 1013 ClearSuccOnSuspend csos(this); 1014 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1015 current->_ParkEvent->park(); 1016 } 1017 } 1018 1019 // Try again, but just so we distinguish between futile wakeups and 1020 // successful wakeups. The following test isn't algorithmically 1021 // necessary, but it helps us maintain sensible statistics. 1022 if (TryLock(current) > 0) break; 1023 1024 // The lock is still contested. 1025 // Keep a tally of the # of futile wakeups. 1026 // Note that the counter is not protected by a lock or updated by atomics. 1027 // That is by design - we trade "lossy" counters which are exposed to 1028 // races during updates for a lower probe effect. 1029 ++nWakeups; 1030 1031 // Assuming this is not a spurious wakeup we'll normally 1032 // find that _succ == current. 1033 if (_succ == current) _succ = nullptr; 1034 1035 // Invariant: after clearing _succ a contending thread 1036 // *must* retry _owner before parking. 1037 OrderAccess::fence(); 1038 1039 // This PerfData object can be used in parallel with a safepoint. 1040 // See the work around in PerfDataManager::destroy(). 1041 OM_PERFDATA_OP(FutileWakeups, inc()); 1042 } 1043 1044 // current has acquired the lock -- Unlink current from the cxq or EntryList . 1045 // Normally we'll find current on the EntryList. 1046 // Unlinking from the EntryList is constant-time and atomic-free. 1047 // From the perspective of the lock owner (this thread), the 1048 // EntryList is stable and cxq is prepend-only. 1049 // The head of cxq is volatile but the interior is stable. 1050 // In addition, current.TState is stable. 1051 1052 assert(owner_raw() == current, "invariant"); 1053 assert(object()->mark() == markWord::encode(this), "invariant"); 1054 UnlinkAfterAcquire(current, currentNode); 1055 if (_succ == current) _succ = nullptr; 1056 assert(_succ != current, "invariant"); 1057 currentNode->TState = ObjectWaiter::TS_RUN; 1058 OrderAccess::fence(); // see comments at the end of EnterI() 1059 } 1060 1061 // By convention we unlink a contending thread from EntryList|cxq immediately 1062 // after the thread acquires the lock in ::enter(). Equally, we could defer 1063 // unlinking the thread until ::exit()-time. 1064 1065 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) { 1066 assert(owner_raw() == current, "invariant"); 1067 assert(currentNode->_thread == current, "invariant"); 1068 1069 if (currentNode->TState == ObjectWaiter::TS_ENTER) { 1070 // Normal case: remove current from the DLL EntryList . 1071 // This is a constant-time operation. 1072 ObjectWaiter* nxt = currentNode->_next; 1073 ObjectWaiter* prv = currentNode->_prev; 1074 if (nxt != nullptr) nxt->_prev = prv; 1075 if (prv != nullptr) prv->_next = nxt; 1076 if (currentNode == _EntryList) _EntryList = nxt; 1077 assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant"); 1078 assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant"); 1079 } else { 1080 assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant"); 1081 // Inopportune interleaving -- current is still on the cxq. 1082 // This usually means the enqueue of self raced an exiting thread. 1083 // Normally we'll find current near the front of the cxq, so 1084 // dequeueing is typically fast. If needbe we can accelerate 1085 // this with some MCS/CHL-like bidirectional list hints and advisory 1086 // back-links so dequeueing from the interior will normally operate 1087 // in constant-time. 1088 // Dequeue current from either the head (with CAS) or from the interior 1089 // with a linear-time scan and normal non-atomic memory operations. 1090 // CONSIDER: if current is on the cxq then simply drain cxq into EntryList 1091 // and then unlink current from EntryList. We have to drain eventually, 1092 // so it might as well be now. 1093 1094 ObjectWaiter* v = _cxq; 1095 assert(v != nullptr, "invariant"); 1096 if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) { 1097 // The CAS above can fail from interference IFF a "RAT" arrived. 1098 // In that case current must be in the interior and can no longer be 1099 // at the head of cxq. 1100 if (v == currentNode) { 1101 assert(_cxq != v, "invariant"); 1102 v = _cxq; // CAS above failed - start scan at head of list 1103 } 1104 ObjectWaiter* p; 1105 ObjectWaiter* q = nullptr; 1106 for (p = v; p != nullptr && p != currentNode; p = p->_next) { 1107 q = p; 1108 assert(p->TState == ObjectWaiter::TS_CXQ, "invariant"); 1109 } 1110 assert(v != currentNode, "invariant"); 1111 assert(p == currentNode, "Node not found on cxq"); 1112 assert(p != _cxq, "invariant"); 1113 assert(q != nullptr, "invariant"); 1114 assert(q->_next == p, "invariant"); 1115 q->_next = p->_next; 1116 } 1117 } 1118 1119 #ifdef ASSERT 1120 // Diagnostic hygiene ... 1121 currentNode->_prev = (ObjectWaiter*) 0xBAD; 1122 currentNode->_next = (ObjectWaiter*) 0xBAD; 1123 currentNode->TState = ObjectWaiter::TS_RUN; 1124 #endif 1125 } 1126 1127 // ----------------------------------------------------------------------------- 1128 // Exit support 1129 // 1130 // exit() 1131 // ~~~~~~ 1132 // Note that the collector can't reclaim the objectMonitor or deflate 1133 // the object out from underneath the thread calling ::exit() as the 1134 // thread calling ::exit() never transitions to a stable state. 1135 // This inhibits GC, which in turn inhibits asynchronous (and 1136 // inopportune) reclamation of "this". 1137 // 1138 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; 1139 // There's one exception to the claim above, however. EnterI() can call 1140 // exit() to drop a lock if the acquirer has been externally suspended. 1141 // In that case exit() is called with _thread_state == _thread_blocked, 1142 // but the monitor's _contentions field is > 0, which inhibits reclamation. 1143 // 1144 // 1-0 exit 1145 // ~~~~~~~~ 1146 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of 1147 // the fast-path operators have been optimized so the common ::exit() 1148 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock(). 1149 // The code emitted by fast_unlock() elides the usual MEMBAR. This 1150 // greatly improves latency -- MEMBAR and CAS having considerable local 1151 // latency on modern processors -- but at the cost of "stranding". Absent the 1152 // MEMBAR, a thread in fast_unlock() can race a thread in the slow 1153 // ::enter() path, resulting in the entering thread being stranding 1154 // and a progress-liveness failure. Stranding is extremely rare. 1155 // We use timers (timed park operations) & periodic polling to detect 1156 // and recover from stranding. Potentially stranded threads periodically 1157 // wake up and poll the lock. See the usage of the _Responsible variable. 1158 // 1159 // The CAS() in enter provides for safety and exclusion, while the CAS or 1160 // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking 1161 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding. 1162 // We detect and recover from stranding with timers. 1163 // 1164 // If a thread transiently strands it'll park until (a) another 1165 // thread acquires the lock and then drops the lock, at which time the 1166 // exiting thread will notice and unpark the stranded thread, or, (b) 1167 // the timer expires. If the lock is high traffic then the stranding latency 1168 // will be low due to (a). If the lock is low traffic then the odds of 1169 // stranding are lower, although the worst-case stranding latency 1170 // is longer. Critically, we don't want to put excessive load in the 1171 // platform's timer subsystem. We want to minimize both the timer injection 1172 // rate (timers created/sec) as well as the number of timers active at 1173 // any one time. (more precisely, we want to minimize timer-seconds, which is 1174 // the integral of the # of active timers at any instant over time). 1175 // Both impinge on OS scalability. Given that, at most one thread parked on 1176 // a monitor will use a timer. 1177 // 1178 // There is also the risk of a futile wake-up. If we drop the lock 1179 // another thread can reacquire the lock immediately, and we can 1180 // then wake a thread unnecessarily. This is benign, and we've 1181 // structured the code so the windows are short and the frequency 1182 // of such futile wakups is low. 1183 1184 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) { 1185 void* cur = owner_raw(); 1186 if (current != cur) { 1187 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1188 assert(_recursions == 0, "invariant"); 1189 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1190 _recursions = 0; 1191 } else { 1192 // Apparent unbalanced locking ... 1193 // Naively we'd like to throw IllegalMonitorStateException. 1194 // As a practical matter we can neither allocate nor throw an 1195 // exception as ::exit() can be called from leaf routines. 1196 // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. 1197 // Upon deeper reflection, however, in a properly run JVM the only 1198 // way we should encounter this situation is in the presence of 1199 // unbalanced JNI locking. TODO: CheckJNICalls. 1200 // See also: CR4414101 1201 #ifdef ASSERT 1202 LogStreamHandle(Error, monitorinflation) lsh; 1203 lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT 1204 " is exiting an ObjectMonitor it does not own.", p2i(current)); 1205 lsh.print_cr("The imbalance is possibly caused by JNI locking."); 1206 print_debug_style_on(&lsh); 1207 assert(false, "Non-balanced monitor enter/exit!"); 1208 #endif 1209 return; 1210 } 1211 } 1212 1213 if (_recursions != 0) { 1214 _recursions--; // this is simple recursive enter 1215 return; 1216 } 1217 1218 // Invariant: after setting Responsible=null an thread must execute 1219 // a MEMBAR or other serializing instruction before fetching EntryList|cxq. 1220 _Responsible = nullptr; 1221 1222 #if INCLUDE_JFR 1223 // get the owner's thread id for the MonitorEnter event 1224 // if it is enabled and the thread isn't suspended 1225 if (not_suspended && EventJavaMonitorEnter::is_enabled()) { 1226 _previous_owner_tid = JFR_THREAD_ID(current); 1227 } 1228 #endif 1229 1230 for (;;) { 1231 assert(current == owner_raw(), "invariant"); 1232 1233 // Drop the lock. 1234 // release semantics: prior loads and stores from within the critical section 1235 // must not float (reorder) past the following store that drops the lock. 1236 // Uses a storeload to separate release_store(owner) from the 1237 // successor check. The try_set_owner() below uses cmpxchg() so 1238 // we get the fence down there. 1239 release_clear_owner(current); 1240 OrderAccess::storeload(); 1241 1242 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) { 1243 return; 1244 } 1245 // Other threads are blocked trying to acquire the lock. 1246 1247 // Normally the exiting thread is responsible for ensuring succession, 1248 // but if other successors are ready or other entering threads are spinning 1249 // then this thread can simply store null into _owner and exit without 1250 // waking a successor. The existence of spinners or ready successors 1251 // guarantees proper succession (liveness). Responsibility passes to the 1252 // ready or running successors. The exiting thread delegates the duty. 1253 // More precisely, if a successor already exists this thread is absolved 1254 // of the responsibility of waking (unparking) one. 1255 // 1256 // The _succ variable is critical to reducing futile wakeup frequency. 1257 // _succ identifies the "heir presumptive" thread that has been made 1258 // ready (unparked) but that has not yet run. We need only one such 1259 // successor thread to guarantee progress. 1260 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf 1261 // section 3.3 "Futile Wakeup Throttling" for details. 1262 // 1263 // Note that spinners in Enter() also set _succ non-null. 1264 // In the current implementation spinners opportunistically set 1265 // _succ so that exiting threads might avoid waking a successor. 1266 // Another less appealing alternative would be for the exiting thread 1267 // to drop the lock and then spin briefly to see if a spinner managed 1268 // to acquire the lock. If so, the exiting thread could exit 1269 // immediately without waking a successor, otherwise the exiting 1270 // thread would need to dequeue and wake a successor. 1271 // (Note that we'd need to make the post-drop spin short, but no 1272 // shorter than the worst-case round-trip cache-line migration time. 1273 // The dropped lock needs to become visible to the spinner, and then 1274 // the acquisition of the lock by the spinner must become visible to 1275 // the exiting thread). 1276 1277 // It appears that an heir-presumptive (successor) must be made ready. 1278 // Only the current lock owner can manipulate the EntryList or 1279 // drain _cxq, so we need to reacquire the lock. If we fail 1280 // to reacquire the lock the responsibility for ensuring succession 1281 // falls to the new owner. 1282 // 1283 if (try_set_owner_from(nullptr, current) != nullptr) { 1284 return; 1285 } 1286 1287 guarantee(owner_raw() == current, "invariant"); 1288 1289 ObjectWaiter* w = nullptr; 1290 1291 w = _EntryList; 1292 if (w != nullptr) { 1293 // I'd like to write: guarantee (w->_thread != current). 1294 // But in practice an exiting thread may find itself on the EntryList. 1295 // Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and 1296 // then calls exit(). Exit release the lock by setting O._owner to null. 1297 // Let's say T1 then stalls. T2 acquires O and calls O.notify(). The 1298 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then 1299 // release the lock "O". T2 resumes immediately after the ST of null into 1300 // _owner, above. T2 notices that the EntryList is populated, so it 1301 // reacquires the lock and then finds itself on the EntryList. 1302 // Given all that, we have to tolerate the circumstance where "w" is 1303 // associated with current. 1304 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1305 ExitEpilog(current, w); 1306 return; 1307 } 1308 1309 // If we find that both _cxq and EntryList are null then just 1310 // re-run the exit protocol from the top. 1311 w = _cxq; 1312 if (w == nullptr) continue; 1313 1314 // Drain _cxq into EntryList - bulk transfer. 1315 // First, detach _cxq. 1316 // The following loop is tantamount to: w = swap(&cxq, nullptr) 1317 for (;;) { 1318 assert(w != nullptr, "Invariant"); 1319 ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr); 1320 if (u == w) break; 1321 w = u; 1322 } 1323 1324 assert(w != nullptr, "invariant"); 1325 assert(_EntryList == nullptr, "invariant"); 1326 1327 // Convert the LIFO SLL anchored by _cxq into a DLL. 1328 // The list reorganization step operates in O(LENGTH(w)) time. 1329 // It's critical that this step operate quickly as 1330 // "current" still holds the outer-lock, restricting parallelism 1331 // and effectively lengthening the critical section. 1332 // Invariant: s chases t chases u. 1333 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so 1334 // we have faster access to the tail. 1335 1336 _EntryList = w; 1337 ObjectWaiter* q = nullptr; 1338 ObjectWaiter* p; 1339 for (p = w; p != nullptr; p = p->_next) { 1340 guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant"); 1341 p->TState = ObjectWaiter::TS_ENTER; 1342 p->_prev = q; 1343 q = p; 1344 } 1345 1346 // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr 1347 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog(). 1348 1349 // See if we can abdicate to a spinner instead of waking a thread. 1350 // A primary goal of the implementation is to reduce the 1351 // context-switch rate. 1352 if (_succ != nullptr) continue; 1353 1354 w = _EntryList; 1355 if (w != nullptr) { 1356 guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1357 ExitEpilog(current, w); 1358 return; 1359 } 1360 } 1361 } 1362 1363 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) { 1364 assert(owner_raw() == current, "invariant"); 1365 1366 // Exit protocol: 1367 // 1. ST _succ = wakee 1368 // 2. membar #loadstore|#storestore; 1369 // 2. ST _owner = nullptr 1370 // 3. unpark(wakee) 1371 1372 _succ = Wakee->_thread; 1373 ParkEvent * Trigger = Wakee->_event; 1374 1375 // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again. 1376 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be 1377 // out-of-scope (non-extant). 1378 Wakee = nullptr; 1379 1380 // Drop the lock. 1381 // Uses a fence to separate release_store(owner) from the LD in unpark(). 1382 release_clear_owner(current); 1383 OrderAccess::fence(); 1384 1385 DTRACE_MONITOR_PROBE(contended__exit, this, object(), current); 1386 Trigger->unpark(); 1387 1388 // Maintain stats and report events to JVMTI 1389 OM_PERFDATA_OP(Parks, inc()); 1390 } 1391 1392 // complete_exit exits a lock returning recursion count 1393 // complete_exit requires an inflated monitor 1394 // The _owner field is not always the Thread addr even with an 1395 // inflated monitor, e.g. the monitor can be inflated by a non-owning 1396 // thread due to contention. 1397 intx ObjectMonitor::complete_exit(JavaThread* current) { 1398 assert(InitDone, "Unexpectedly not initialized"); 1399 1400 void* cur = owner_raw(); 1401 if (current != cur) { 1402 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1403 assert(_recursions == 0, "internal state error"); 1404 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1405 _recursions = 0; 1406 } 1407 } 1408 1409 guarantee(current == owner_raw(), "complete_exit not owner"); 1410 intx save = _recursions; // record the old recursion count 1411 _recursions = 0; // set the recursion level to be 0 1412 exit(current); // exit the monitor 1413 guarantee(owner_raw() != current, "invariant"); 1414 return save; 1415 } 1416 1417 // Checks that the current THREAD owns this monitor and causes an 1418 // immediate return if it doesn't. We don't use the CHECK macro 1419 // because we want the IMSE to be the only exception that is thrown 1420 // from the call site when false is returned. Any other pending 1421 // exception is ignored. 1422 #define CHECK_OWNER() \ 1423 do { \ 1424 if (!check_owner(THREAD)) { \ 1425 assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \ 1426 return; \ 1427 } \ 1428 } while (false) 1429 1430 // Returns true if the specified thread owns the ObjectMonitor. 1431 // Otherwise returns false and throws IllegalMonitorStateException 1432 // (IMSE). If there is a pending exception and the specified thread 1433 // is not the owner, that exception will be replaced by the IMSE. 1434 bool ObjectMonitor::check_owner(TRAPS) { 1435 JavaThread* current = THREAD; 1436 void* cur = owner_raw(); 1437 assert(cur != anon_owner_ptr(), "no anon owner here"); 1438 if (cur == current) { 1439 return true; 1440 } 1441 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1442 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1443 _recursions = 0; 1444 return true; 1445 } 1446 THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(), 1447 "current thread is not owner", false); 1448 } 1449 1450 static inline bool is_excluded(const Klass* monitor_klass) { 1451 assert(monitor_klass != nullptr, "invariant"); 1452 NOT_JFR_RETURN_(false); 1453 JFR_ONLY(return vmSymbols::jfr_chunk_rotation_monitor() == monitor_klass->name()); 1454 } 1455 1456 static void post_monitor_wait_event(EventJavaMonitorWait* event, 1457 ObjectMonitor* monitor, 1458 uint64_t notifier_tid, 1459 jlong timeout, 1460 bool timedout) { 1461 assert(event != nullptr, "invariant"); 1462 assert(monitor != nullptr, "invariant"); 1463 const Klass* monitor_klass = monitor->object()->klass(); 1464 if (is_excluded(monitor_klass)) { 1465 return; 1466 } 1467 event->set_monitorClass(monitor_klass); 1468 event->set_timeout(timeout); 1469 // Set an address that is 'unique enough', such that events close in 1470 // time and with the same address are likely (but not guaranteed) to 1471 // belong to the same object. 1472 event->set_address((uintptr_t)monitor); 1473 event->set_notifier(notifier_tid); 1474 event->set_timedOut(timedout); 1475 event->commit(); 1476 } 1477 1478 // ----------------------------------------------------------------------------- 1479 // Wait/Notify/NotifyAll 1480 // 1481 // Note: a subset of changes to ObjectMonitor::wait() 1482 // will need to be replicated in complete_exit 1483 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) { 1484 JavaThread* current = THREAD; 1485 1486 assert(InitDone, "Unexpectedly not initialized"); 1487 1488 CHECK_OWNER(); // Throws IMSE if not owner. 1489 1490 EventJavaMonitorWait event; 1491 1492 // check for a pending interrupt 1493 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1494 // post monitor waited event. Note that this is past-tense, we are done waiting. 1495 if (JvmtiExport::should_post_monitor_waited()) { 1496 // Note: 'false' parameter is passed here because the 1497 // wait was not timed out due to thread interrupt. 1498 JvmtiExport::post_monitor_waited(current, this, false); 1499 1500 // In this short circuit of the monitor wait protocol, the 1501 // current thread never drops ownership of the monitor and 1502 // never gets added to the wait queue so the current thread 1503 // cannot be made the successor. This means that the 1504 // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally 1505 // consume an unpark() meant for the ParkEvent associated with 1506 // this ObjectMonitor. 1507 } 1508 if (event.should_commit()) { 1509 post_monitor_wait_event(&event, this, 0, millis, false); 1510 } 1511 THROW(vmSymbols::java_lang_InterruptedException()); 1512 return; 1513 } 1514 1515 assert(current->_Stalled == 0, "invariant"); 1516 current->_Stalled = intptr_t(this); 1517 current->set_current_waiting_monitor(this); 1518 1519 // create a node to be put into the queue 1520 // Critically, after we reset() the event but prior to park(), we must check 1521 // for a pending interrupt. 1522 ObjectWaiter node(current); 1523 node.TState = ObjectWaiter::TS_WAIT; 1524 current->_ParkEvent->reset(); 1525 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag 1526 1527 // Enter the waiting queue, which is a circular doubly linked list in this case 1528 // but it could be a priority queue or any data structure. 1529 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only 1530 // by the owner of the monitor *except* in the case where park() 1531 // returns because of a timeout of interrupt. Contention is exceptionally rare 1532 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 1533 1534 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); 1535 AddWaiter(&node); 1536 Thread::SpinRelease(&_WaitSetLock); 1537 1538 _Responsible = nullptr; 1539 1540 intx save = _recursions; // record the old recursion count 1541 _waiters++; // increment the number of waiters 1542 _recursions = 0; // set the recursion level to be 1 1543 exit(current); // exit the monitor 1544 guarantee(owner_raw() != current, "invariant"); 1545 1546 // The thread is on the WaitSet list - now park() it. 1547 // On MP systems it's conceivable that a brief spin before we park 1548 // could be profitable. 1549 // 1550 // TODO-FIXME: change the following logic to a loop of the form 1551 // while (!timeout && !interrupted && _notified == 0) park() 1552 1553 int ret = OS_OK; 1554 int WasNotified = 0; 1555 1556 // Need to check interrupt state whilst still _thread_in_vm 1557 bool interrupted = interruptible && current->is_interrupted(false); 1558 1559 { // State transition wrappers 1560 OSThread* osthread = current->osthread(); 1561 OSThreadWaitState osts(osthread, true); 1562 1563 assert(current->thread_state() == _thread_in_vm, "invariant"); 1564 1565 { 1566 ClearSuccOnSuspend csos(this); 1567 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1568 if (interrupted || HAS_PENDING_EXCEPTION) { 1569 // Intentionally empty 1570 } else if (node._notified == 0) { 1571 if (millis <= 0) { 1572 current->_ParkEvent->park(); 1573 } else { 1574 ret = current->_ParkEvent->park(millis); 1575 } 1576 } 1577 } 1578 1579 // Node may be on the WaitSet, the EntryList (or cxq), or in transition 1580 // from the WaitSet to the EntryList. 1581 // See if we need to remove Node from the WaitSet. 1582 // We use double-checked locking to avoid grabbing _WaitSetLock 1583 // if the thread is not on the wait queue. 1584 // 1585 // Note that we don't need a fence before the fetch of TState. 1586 // In the worst case we'll fetch a old-stale value of TS_WAIT previously 1587 // written by the is thread. (perhaps the fetch might even be satisfied 1588 // by a look-aside into the processor's own store buffer, although given 1589 // the length of the code path between the prior ST and this load that's 1590 // highly unlikely). If the following LD fetches a stale TS_WAIT value 1591 // then we'll acquire the lock and then re-fetch a fresh TState value. 1592 // That is, we fail toward safety. 1593 1594 if (node.TState == ObjectWaiter::TS_WAIT) { 1595 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); 1596 if (node.TState == ObjectWaiter::TS_WAIT) { 1597 DequeueSpecificWaiter(&node); // unlink from WaitSet 1598 assert(node._notified == 0, "invariant"); 1599 node.TState = ObjectWaiter::TS_RUN; 1600 } 1601 Thread::SpinRelease(&_WaitSetLock); 1602 } 1603 1604 // The thread is now either on off-list (TS_RUN), 1605 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ). 1606 // The Node's TState variable is stable from the perspective of this thread. 1607 // No other threads will asynchronously modify TState. 1608 guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant"); 1609 OrderAccess::loadload(); 1610 if (_succ == current) _succ = nullptr; 1611 WasNotified = node._notified; 1612 1613 // Reentry phase -- reacquire the monitor. 1614 // re-enter contended monitor after object.wait(). 1615 // retain OBJECT_WAIT state until re-enter successfully completes 1616 // Thread state is thread_in_vm and oop access is again safe, 1617 // although the raw address of the object may have changed. 1618 // (Don't cache naked oops over safepoints, of course). 1619 1620 // post monitor waited event. Note that this is past-tense, we are done waiting. 1621 if (JvmtiExport::should_post_monitor_waited()) { 1622 JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT); 1623 1624 if (node._notified != 0 && _succ == current) { 1625 // In this part of the monitor wait-notify-reenter protocol it 1626 // is possible (and normal) for another thread to do a fastpath 1627 // monitor enter-exit while this thread is still trying to get 1628 // to the reenter portion of the protocol. 1629 // 1630 // The ObjectMonitor was notified and the current thread is 1631 // the successor which also means that an unpark() has already 1632 // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can 1633 // consume the unpark() that was done when the successor was 1634 // set because the same ParkEvent is shared between Java 1635 // monitors and JVM/TI RawMonitors (for now). 1636 // 1637 // We redo the unpark() to ensure forward progress, i.e., we 1638 // don't want all pending threads hanging (parked) with none 1639 // entering the unlocked monitor. 1640 node._event->unpark(); 1641 } 1642 } 1643 1644 if (event.should_commit()) { 1645 post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); 1646 } 1647 1648 OrderAccess::fence(); 1649 1650 assert(current->_Stalled != 0, "invariant"); 1651 current->_Stalled = 0; 1652 1653 assert(owner_raw() != current, "invariant"); 1654 ObjectWaiter::TStates v = node.TState; 1655 if (v == ObjectWaiter::TS_RUN) { 1656 enter(current); 1657 } else { 1658 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1659 ReenterI(current, &node); 1660 node.wait_reenter_end(this); 1661 } 1662 1663 // current has reacquired the lock. 1664 // Lifecycle - the node representing current must not appear on any queues. 1665 // Node is about to go out-of-scope, but even if it were immortal we wouldn't 1666 // want residual elements associated with this thread left on any lists. 1667 guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant"); 1668 assert(owner_raw() == current, "invariant"); 1669 assert(_succ != current, "invariant"); 1670 } // OSThreadWaitState() 1671 1672 current->set_current_waiting_monitor(nullptr); 1673 1674 guarantee(_recursions == 0, "invariant"); 1675 int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); 1676 _recursions = save // restore the old recursion count 1677 + relock_count; // increased by the deferred relock count 1678 current->inc_held_monitor_count(relock_count); // Deopt never entered these counts. 1679 _waiters--; // decrement the number of waiters 1680 1681 // Verify a few postconditions 1682 assert(owner_raw() == current, "invariant"); 1683 assert(_succ != current, "invariant"); 1684 assert(object()->mark() == markWord::encode(this), "invariant"); 1685 1686 // check if the notification happened 1687 if (!WasNotified) { 1688 // no, it could be timeout or Thread.interrupt() or both 1689 // check for interrupt event, otherwise it is timeout 1690 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1691 THROW(vmSymbols::java_lang_InterruptedException()); 1692 } 1693 } 1694 1695 // NOTE: Spurious wake up will be consider as timeout. 1696 // Monitor notify has precedence over thread interrupt. 1697 } 1698 1699 1700 // Consider: 1701 // If the lock is cool (cxq == null && succ == null) and we're on an MP system 1702 // then instead of transferring a thread from the WaitSet to the EntryList 1703 // we might just dequeue a thread from the WaitSet and directly unpark() it. 1704 1705 void ObjectMonitor::INotify(JavaThread* current) { 1706 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify"); 1707 ObjectWaiter* iterator = DequeueWaiter(); 1708 if (iterator != nullptr) { 1709 guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant"); 1710 guarantee(iterator->_notified == 0, "invariant"); 1711 // Disposition - what might we do with iterator ? 1712 // a. add it directly to the EntryList - either tail (policy == 1) 1713 // or head (policy == 0). 1714 // b. push it onto the front of the _cxq (policy == 2). 1715 // For now we use (b). 1716 1717 iterator->TState = ObjectWaiter::TS_ENTER; 1718 1719 iterator->_notified = 1; 1720 iterator->_notifier_tid = JFR_THREAD_ID(current); 1721 1722 ObjectWaiter* list = _EntryList; 1723 if (list != nullptr) { 1724 assert(list->_prev == nullptr, "invariant"); 1725 assert(list->TState == ObjectWaiter::TS_ENTER, "invariant"); 1726 assert(list != iterator, "invariant"); 1727 } 1728 1729 // prepend to cxq 1730 if (list == nullptr) { 1731 iterator->_next = iterator->_prev = nullptr; 1732 _EntryList = iterator; 1733 } else { 1734 iterator->TState = ObjectWaiter::TS_CXQ; 1735 for (;;) { 1736 ObjectWaiter* front = _cxq; 1737 iterator->_next = front; 1738 if (Atomic::cmpxchg(&_cxq, front, iterator) == front) { 1739 break; 1740 } 1741 } 1742 } 1743 1744 // _WaitSetLock protects the wait queue, not the EntryList. We could 1745 // move the add-to-EntryList operation, above, outside the critical section 1746 // protected by _WaitSetLock. In practice that's not useful. With the 1747 // exception of wait() timeouts and interrupts the monitor owner 1748 // is the only thread that grabs _WaitSetLock. There's almost no contention 1749 // on _WaitSetLock so it's not profitable to reduce the length of the 1750 // critical section. 1751 1752 iterator->wait_reenter_begin(this); 1753 } 1754 Thread::SpinRelease(&_WaitSetLock); 1755 } 1756 1757 // Consider: a not-uncommon synchronization bug is to use notify() when 1758 // notifyAll() is more appropriate, potentially resulting in stranded 1759 // threads; this is one example of a lost wakeup. A useful diagnostic 1760 // option is to force all notify() operations to behave as notifyAll(). 1761 // 1762 // Note: We can also detect many such problems with a "minimum wait". 1763 // When the "minimum wait" is set to a small non-zero timeout value 1764 // and the program does not hang whereas it did absent "minimum wait", 1765 // that suggests a lost wakeup bug. 1766 1767 void ObjectMonitor::notify(TRAPS) { 1768 JavaThread* current = THREAD; 1769 CHECK_OWNER(); // Throws IMSE if not owner. 1770 if (_WaitSet == nullptr) { 1771 return; 1772 } 1773 DTRACE_MONITOR_PROBE(notify, this, object(), current); 1774 INotify(current); 1775 OM_PERFDATA_OP(Notifications, inc(1)); 1776 } 1777 1778 1779 // The current implementation of notifyAll() transfers the waiters one-at-a-time 1780 // from the waitset to the EntryList. This could be done more efficiently with a 1781 // single bulk transfer but in practice it's not time-critical. Beware too, 1782 // that in prepend-mode we invert the order of the waiters. Let's say that the 1783 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend 1784 // mode the waitset will be empty and the EntryList will be "DCBAXYZ". 1785 1786 void ObjectMonitor::notifyAll(TRAPS) { 1787 JavaThread* current = THREAD; 1788 CHECK_OWNER(); // Throws IMSE if not owner. 1789 if (_WaitSet == nullptr) { 1790 return; 1791 } 1792 1793 DTRACE_MONITOR_PROBE(notifyAll, this, object(), current); 1794 int tally = 0; 1795 while (_WaitSet != nullptr) { 1796 tally++; 1797 INotify(current); 1798 } 1799 1800 OM_PERFDATA_OP(Notifications, inc(tally)); 1801 } 1802 1803 // ----------------------------------------------------------------------------- 1804 // Adaptive Spinning Support 1805 // 1806 // Adaptive spin-then-block - rational spinning 1807 // 1808 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS 1809 // algorithm. On high order SMP systems it would be better to start with 1810 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH, 1811 // a contending thread could enqueue itself on the cxq and then spin locally 1812 // on a thread-specific variable such as its ParkEvent._Event flag. 1813 // That's left as an exercise for the reader. Note that global spinning is 1814 // not problematic on Niagara, as the L2 cache serves the interconnect and 1815 // has both low latency and massive bandwidth. 1816 // 1817 // Broadly, we can fix the spin frequency -- that is, the % of contended lock 1818 // acquisition attempts where we opt to spin -- at 100% and vary the spin count 1819 // (duration) or we can fix the count at approximately the duration of 1820 // a context switch and vary the frequency. Of course we could also 1821 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. 1822 // For a description of 'Adaptive spin-then-block mutual exclusion in 1823 // multi-threaded processing,' see U.S. Pat. No. 8046758. 1824 // 1825 // This implementation varies the duration "D", where D varies with 1826 // the success rate of recent spin attempts. (D is capped at approximately 1827 // length of a round-trip context switch). The success rate for recent 1828 // spin attempts is a good predictor of the success rate of future spin 1829 // attempts. The mechanism adapts automatically to varying critical 1830 // section length (lock modality), system load and degree of parallelism. 1831 // D is maintained per-monitor in _SpinDuration and is initialized 1832 // optimistically. Spin frequency is fixed at 100%. 1833 // 1834 // Note that _SpinDuration is volatile, but we update it without locks 1835 // or atomics. The code is designed so that _SpinDuration stays within 1836 // a reasonable range even in the presence of races. The arithmetic 1837 // operations on _SpinDuration are closed over the domain of legal values, 1838 // so at worst a race will install and older but still legal value. 1839 // At the very worst this introduces some apparent non-determinism. 1840 // We might spin when we shouldn't or vice-versa, but since the spin 1841 // count are relatively short, even in the worst case, the effect is harmless. 1842 // 1843 // Care must be taken that a low "D" value does not become an 1844 // an absorbing state. Transient spinning failures -- when spinning 1845 // is overall profitable -- should not cause the system to converge 1846 // on low "D" values. We want spinning to be stable and predictable 1847 // and fairly responsive to change and at the same time we don't want 1848 // it to oscillate, become metastable, be "too" non-deterministic, 1849 // or converge on or enter undesirable stable absorbing states. 1850 // 1851 // We implement a feedback-based control system -- using past behavior 1852 // to predict future behavior. We face two issues: (a) if the 1853 // input signal is random then the spin predictor won't provide optimal 1854 // results, and (b) if the signal frequency is too high then the control 1855 // system, which has some natural response lag, will "chase" the signal. 1856 // (b) can arise from multimodal lock hold times. Transient preemption 1857 // can also result in apparent bimodal lock hold times. 1858 // Although sub-optimal, neither condition is particularly harmful, as 1859 // in the worst-case we'll spin when we shouldn't or vice-versa. 1860 // The maximum spin duration is rather short so the failure modes aren't bad. 1861 // To be conservative, I've tuned the gain in system to bias toward 1862 // _not spinning. Relatedly, the system can sometimes enter a mode where it 1863 // "rings" or oscillates between spinning and not spinning. This happens 1864 // when spinning is just on the cusp of profitability, however, so the 1865 // situation is not dire. The state is benign -- there's no need to add 1866 // hysteresis control to damp the transition rate between spinning and 1867 // not spinning. 1868 1869 // Spinning: Fixed frequency (100%), vary duration 1870 int ObjectMonitor::TrySpin(JavaThread* current) { 1871 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning. 1872 int ctr = Knob_FixedSpin; 1873 if (ctr != 0) { 1874 while (--ctr >= 0) { 1875 if (TryLock(current) > 0) return 1; 1876 SpinPause(); 1877 } 1878 return 0; 1879 } 1880 1881 for (ctr = Knob_PreSpin + 1; --ctr >= 0;) { 1882 if (TryLock(current) > 0) { 1883 // Increase _SpinDuration ... 1884 // Note that we don't clamp SpinDuration precisely at SpinLimit. 1885 // Raising _SpurDuration to the poverty line is key. 1886 int x = _SpinDuration; 1887 if (x < Knob_SpinLimit) { 1888 if (x < Knob_Poverty) x = Knob_Poverty; 1889 _SpinDuration = x + Knob_BonusB; 1890 } 1891 return 1; 1892 } 1893 SpinPause(); 1894 } 1895 1896 // Admission control - verify preconditions for spinning 1897 // 1898 // We always spin a little bit, just to prevent _SpinDuration == 0 from 1899 // becoming an absorbing state. Put another way, we spin briefly to 1900 // sample, just in case the system load, parallelism, contention, or lock 1901 // modality changed. 1902 // 1903 // Consider the following alternative: 1904 // Periodically set _SpinDuration = _SpinLimit and try a long/full 1905 // spin attempt. "Periodically" might mean after a tally of 1906 // the # of failed spin attempts (or iterations) reaches some threshold. 1907 // This takes us into the realm of 1-out-of-N spinning, where we 1908 // hold the duration constant but vary the frequency. 1909 1910 ctr = _SpinDuration; 1911 if (ctr <= 0) return 0; 1912 1913 if (NotRunnable(current, static_cast<JavaThread*>(owner_raw()))) { 1914 return 0; 1915 } 1916 1917 // We're good to spin ... spin ingress. 1918 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades 1919 // when preparing to LD...CAS _owner, etc and the CAS is likely 1920 // to succeed. 1921 if (_succ == nullptr) { 1922 _succ = current; 1923 } 1924 Thread* prv = nullptr; 1925 1926 // There are three ways to exit the following loop: 1927 // 1. A successful spin where this thread has acquired the lock. 1928 // 2. Spin failure with prejudice 1929 // 3. Spin failure without prejudice 1930 1931 while (--ctr >= 0) { 1932 1933 // Periodic polling -- Check for pending GC 1934 // Threads may spin while they're unsafe. 1935 // We don't want spinning threads to delay the JVM from reaching 1936 // a stop-the-world safepoint or to steal cycles from GC. 1937 // If we detect a pending safepoint we abort in order that 1938 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) 1939 // this thread, if safe, doesn't steal cycles from GC. 1940 // This is in keeping with the "no loitering in runtime" rule. 1941 // We periodically check to see if there's a safepoint pending. 1942 if ((ctr & 0xFF) == 0) { 1943 // Can't call SafepointMechanism::should_process() since that 1944 // might update the poll values and we could be in a thread_blocked 1945 // state here which is not allowed so just check the poll. 1946 if (SafepointMechanism::local_poll_armed(current)) { 1947 goto Abort; // abrupt spin egress 1948 } 1949 SpinPause(); 1950 } 1951 1952 // Probe _owner with TATAS 1953 // If this thread observes the monitor transition or flicker 1954 // from locked to unlocked to locked, then the odds that this 1955 // thread will acquire the lock in this spin attempt go down 1956 // considerably. The same argument applies if the CAS fails 1957 // or if we observe _owner change from one non-null value to 1958 // another non-null value. In such cases we might abort 1959 // the spin without prejudice or apply a "penalty" to the 1960 // spin count-down variable "ctr", reducing it by 100, say. 1961 1962 JavaThread* ox = static_cast<JavaThread*>(owner_raw()); 1963 if (ox == nullptr) { 1964 ox = static_cast<JavaThread*>(try_set_owner_from(nullptr, current)); 1965 if (ox == nullptr) { 1966 // The CAS succeeded -- this thread acquired ownership 1967 // Take care of some bookkeeping to exit spin state. 1968 if (_succ == current) { 1969 _succ = nullptr; 1970 } 1971 1972 // Increase _SpinDuration : 1973 // The spin was successful (profitable) so we tend toward 1974 // longer spin attempts in the future. 1975 // CONSIDER: factor "ctr" into the _SpinDuration adjustment. 1976 // If we acquired the lock early in the spin cycle it 1977 // makes sense to increase _SpinDuration proportionally. 1978 // Note that we don't clamp SpinDuration precisely at SpinLimit. 1979 int x = _SpinDuration; 1980 if (x < Knob_SpinLimit) { 1981 if (x < Knob_Poverty) x = Knob_Poverty; 1982 _SpinDuration = x + Knob_Bonus; 1983 } 1984 return 1; 1985 } 1986 1987 // The CAS failed ... we can take any of the following actions: 1988 // * penalize: ctr -= CASPenalty 1989 // * exit spin with prejudice -- goto Abort; 1990 // * exit spin without prejudice. 1991 // * Since CAS is high-latency, retry again immediately. 1992 prv = ox; 1993 goto Abort; 1994 } 1995 1996 // Did lock ownership change hands ? 1997 if (ox != prv && prv != nullptr) { 1998 goto Abort; 1999 } 2000 prv = ox; 2001 2002 // Abort the spin if the owner is not executing. 2003 // The owner must be executing in order to drop the lock. 2004 // Spinning while the owner is OFFPROC is idiocy. 2005 // Consider: ctr -= RunnablePenalty ; 2006 if (NotRunnable(current, ox)) { 2007 goto Abort; 2008 } 2009 if (_succ == nullptr) { 2010 _succ = current; 2011 } 2012 } 2013 2014 // Spin failed with prejudice -- reduce _SpinDuration. 2015 // TODO: Use an AIMD-like policy to adjust _SpinDuration. 2016 // AIMD is globally stable. 2017 { 2018 int x = _SpinDuration; 2019 if (x > 0) { 2020 // Consider an AIMD scheme like: x -= (x >> 3) + 100 2021 // This is globally sample and tends to damp the response. 2022 x -= Knob_Penalty; 2023 if (x < 0) x = 0; 2024 _SpinDuration = x; 2025 } 2026 } 2027 2028 Abort: 2029 if (_succ == current) { 2030 _succ = nullptr; 2031 // Invariant: after setting succ=null a contending thread 2032 // must recheck-retry _owner before parking. This usually happens 2033 // in the normal usage of TrySpin(), but it's safest 2034 // to make TrySpin() as foolproof as possible. 2035 OrderAccess::fence(); 2036 if (TryLock(current) > 0) return 1; 2037 } 2038 return 0; 2039 } 2040 2041 // NotRunnable() -- informed spinning 2042 // 2043 // Don't bother spinning if the owner is not eligible to drop the lock. 2044 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm. 2045 // The thread must be runnable in order to drop the lock in timely fashion. 2046 // If the _owner is not runnable then spinning will not likely be 2047 // successful (profitable). 2048 // 2049 // Beware -- the thread referenced by _owner could have died 2050 // so a simply fetch from _owner->_thread_state might trap. 2051 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state. 2052 // Because of the lifecycle issues, the _thread_state values 2053 // observed by NotRunnable() might be garbage. NotRunnable must 2054 // tolerate this and consider the observed _thread_state value 2055 // as advisory. 2056 // 2057 // Beware too, that _owner is sometimes a BasicLock address and sometimes 2058 // a thread pointer. 2059 // Alternately, we might tag the type (thread pointer vs basiclock pointer) 2060 // with the LSB of _owner. Another option would be to probabilistically probe 2061 // the putative _owner->TypeTag value. 2062 // 2063 // Checking _thread_state isn't perfect. Even if the thread is 2064 // in_java it might be blocked on a page-fault or have been preempted 2065 // and sitting on a ready/dispatch queue. 2066 // 2067 // The return value from NotRunnable() is *advisory* -- the 2068 // result is based on sampling and is not necessarily coherent. 2069 // The caller must tolerate false-negative and false-positive errors. 2070 // Spinning, in general, is probabilistic anyway. 2071 2072 2073 int ObjectMonitor::NotRunnable(JavaThread* current, JavaThread* ox) { 2074 // Check ox->TypeTag == 2BAD. 2075 if (ox == nullptr) return 0; 2076 2077 // Avoid transitive spinning ... 2078 // Say T1 spins or blocks trying to acquire L. T1._Stalled is set to L. 2079 // Immediately after T1 acquires L it's possible that T2, also 2080 // spinning on L, will see L.Owner=T1 and T1._Stalled=L. 2081 // This occurs transiently after T1 acquired L but before 2082 // T1 managed to clear T1.Stalled. T2 does not need to abort 2083 // its spin in this circumstance. 2084 intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1)); 2085 2086 if (BlockedOn == 1) return 1; 2087 if (BlockedOn != 0) { 2088 return BlockedOn != intptr_t(this) && owner_raw() == ox; 2089 } 2090 2091 assert(sizeof(ox->_thread_state == sizeof(int)), "invariant"); 2092 int jst = SafeFetch32((int *) &ox->_thread_state, -1);; 2093 // consider also: jst != _thread_in_Java -- but that's overspecific. 2094 return jst == _thread_blocked || jst == _thread_in_native; 2095 } 2096 2097 2098 // ----------------------------------------------------------------------------- 2099 // WaitSet management ... 2100 2101 ObjectWaiter::ObjectWaiter(JavaThread* current) { 2102 _next = nullptr; 2103 _prev = nullptr; 2104 _notified = 0; 2105 _notifier_tid = 0; 2106 TState = TS_RUN; 2107 _thread = current; 2108 _event = _thread->_ParkEvent; 2109 _active = false; 2110 assert(_event != nullptr, "invariant"); 2111 } 2112 2113 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { 2114 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon); 2115 } 2116 2117 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { 2118 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active); 2119 } 2120 2121 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) { 2122 assert(node != nullptr, "should not add null node"); 2123 assert(node->_prev == nullptr, "node already in list"); 2124 assert(node->_next == nullptr, "node already in list"); 2125 // put node at end of queue (circular doubly linked list) 2126 if (_WaitSet == nullptr) { 2127 _WaitSet = node; 2128 node->_prev = node; 2129 node->_next = node; 2130 } else { 2131 ObjectWaiter* head = _WaitSet; 2132 ObjectWaiter* tail = head->_prev; 2133 assert(tail->_next == head, "invariant check"); 2134 tail->_next = node; 2135 head->_prev = node; 2136 node->_next = head; 2137 node->_prev = tail; 2138 } 2139 } 2140 2141 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() { 2142 // dequeue the very first waiter 2143 ObjectWaiter* waiter = _WaitSet; 2144 if (waiter) { 2145 DequeueSpecificWaiter(waiter); 2146 } 2147 return waiter; 2148 } 2149 2150 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) { 2151 assert(node != nullptr, "should not dequeue nullptr node"); 2152 assert(node->_prev != nullptr, "node already removed from list"); 2153 assert(node->_next != nullptr, "node already removed from list"); 2154 // when the waiter has woken up because of interrupt, 2155 // timeout or other spurious wake-up, dequeue the 2156 // waiter from waiting list 2157 ObjectWaiter* next = node->_next; 2158 if (next == node) { 2159 assert(node->_prev == node, "invariant check"); 2160 _WaitSet = nullptr; 2161 } else { 2162 ObjectWaiter* prev = node->_prev; 2163 assert(prev->_next == node, "invariant check"); 2164 assert(next->_prev == node, "invariant check"); 2165 next->_prev = prev; 2166 prev->_next = next; 2167 if (_WaitSet == node) { 2168 _WaitSet = next; 2169 } 2170 } 2171 node->_next = nullptr; 2172 node->_prev = nullptr; 2173 } 2174 2175 // ----------------------------------------------------------------------------- 2176 // PerfData support 2177 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = nullptr; 2178 PerfCounter * ObjectMonitor::_sync_FutileWakeups = nullptr; 2179 PerfCounter * ObjectMonitor::_sync_Parks = nullptr; 2180 PerfCounter * ObjectMonitor::_sync_Notifications = nullptr; 2181 PerfCounter * ObjectMonitor::_sync_Inflations = nullptr; 2182 PerfCounter * ObjectMonitor::_sync_Deflations = nullptr; 2183 PerfLongVariable * ObjectMonitor::_sync_MonExtant = nullptr; 2184 2185 // One-shot global initialization for the sync subsystem. 2186 // We could also defer initialization and initialize on-demand 2187 // the first time we call ObjectSynchronizer::inflate(). 2188 // Initialization would be protected - like so many things - by 2189 // the MonitorCache_lock. 2190 2191 void ObjectMonitor::Initialize() { 2192 assert(!InitDone, "invariant"); 2193 2194 if (!os::is_MP()) { 2195 Knob_SpinLimit = 0; 2196 Knob_PreSpin = 0; 2197 Knob_FixedSpin = -1; 2198 } 2199 2200 if (UsePerfData) { 2201 EXCEPTION_MARK; 2202 #define NEWPERFCOUNTER(n) \ 2203 { \ 2204 n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events, \ 2205 CHECK); \ 2206 } 2207 #define NEWPERFVARIABLE(n) \ 2208 { \ 2209 n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events, \ 2210 CHECK); \ 2211 } 2212 NEWPERFCOUNTER(_sync_Inflations); 2213 NEWPERFCOUNTER(_sync_Deflations); 2214 NEWPERFCOUNTER(_sync_ContendedLockAttempts); 2215 NEWPERFCOUNTER(_sync_FutileWakeups); 2216 NEWPERFCOUNTER(_sync_Parks); 2217 NEWPERFCOUNTER(_sync_Notifications); 2218 NEWPERFVARIABLE(_sync_MonExtant); 2219 #undef NEWPERFCOUNTER 2220 #undef NEWPERFVARIABLE 2221 } 2222 2223 _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer); 2224 2225 DEBUG_ONLY(InitDone = true;) 2226 } 2227 2228 void ObjectMonitor::print_on(outputStream* st) const { 2229 // The minimal things to print for markWord printing, more can be added for debugging and logging. 2230 st->print("{contentions=0x%08x,waiters=0x%08x" 2231 ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}", 2232 contentions(), waiters(), recursions(), 2233 p2i(owner())); 2234 } 2235 void ObjectMonitor::print() const { print_on(tty); } 2236 2237 #ifdef ASSERT 2238 // Print the ObjectMonitor like a debugger would: 2239 // 2240 // (ObjectMonitor) 0x00007fdfb6012e40 = { 2241 // _header = 0x0000000000000001 2242 // _object = 0x000000070ff45fd0 2243 // _pad_buf0 = { 2244 // [0] = '\0' 2245 // ... 2246 // [43] = '\0' 2247 // } 2248 // _owner = 0x0000000000000000 2249 // _previous_owner_tid = 0 2250 // _pad_buf1 = { 2251 // [0] = '\0' 2252 // ... 2253 // [47] = '\0' 2254 // } 2255 // _next_om = 0x0000000000000000 2256 // _recursions = 0 2257 // _EntryList = 0x0000000000000000 2258 // _cxq = 0x0000000000000000 2259 // _succ = 0x0000000000000000 2260 // _Responsible = 0x0000000000000000 2261 // _Spinner = 0 2262 // _SpinDuration = 5000 2263 // _contentions = 0 2264 // _WaitSet = 0x0000700009756248 2265 // _waiters = 1 2266 // _WaitSetLock = 0 2267 // } 2268 // 2269 void ObjectMonitor::print_debug_style_on(outputStream* st) const { 2270 st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this)); 2271 st->print_cr(" _header = " INTPTR_FORMAT, header().value()); 2272 st->print_cr(" _object = " INTPTR_FORMAT, p2i(object_peek())); 2273 st->print_cr(" _pad_buf0 = {"); 2274 st->print_cr(" [0] = '\\0'"); 2275 st->print_cr(" ..."); 2276 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1); 2277 st->print_cr(" }"); 2278 st->print_cr(" _owner = " INTPTR_FORMAT, p2i(owner_raw())); 2279 st->print_cr(" _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid); 2280 st->print_cr(" _pad_buf1 = {"); 2281 st->print_cr(" [0] = '\\0'"); 2282 st->print_cr(" ..."); 2283 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1); 2284 st->print_cr(" }"); 2285 st->print_cr(" _next_om = " INTPTR_FORMAT, p2i(next_om())); 2286 st->print_cr(" _recursions = " INTX_FORMAT, _recursions); 2287 st->print_cr(" _EntryList = " INTPTR_FORMAT, p2i(_EntryList)); 2288 st->print_cr(" _cxq = " INTPTR_FORMAT, p2i(_cxq)); 2289 st->print_cr(" _succ = " INTPTR_FORMAT, p2i(_succ)); 2290 st->print_cr(" _Responsible = " INTPTR_FORMAT, p2i(_Responsible)); 2291 st->print_cr(" _Spinner = %d", _Spinner); 2292 st->print_cr(" _SpinDuration = %d", _SpinDuration); 2293 st->print_cr(" _contentions = %d", contentions()); 2294 st->print_cr(" _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet)); 2295 st->print_cr(" _waiters = %d", _waiters); 2296 st->print_cr(" _WaitSetLock = %d", _WaitSetLock); 2297 st->print_cr("}"); 2298 } 2299 #endif