1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/icBuffer.hpp" 33 #include "code/compiledMethod.inline.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/abstractCompiler.hpp" 37 #include "compiler/compileBroker.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jvm.h" 45 #include "jfr/jfrEvents.hpp" 46 #include "logging/log.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "metaprogramming/primitiveConversions.hpp" 50 #include "oops/compiledICHolder.inline.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/atomic.hpp" 61 #include "runtime/frame.inline.hpp" 62 #include "runtime/handles.inline.hpp" 63 #include "runtime/init.hpp" 64 #include "runtime/interfaceSupport.inline.hpp" 65 #include "runtime/java.hpp" 66 #include "runtime/javaCalls.hpp" 67 #include "runtime/jniHandles.inline.hpp" 68 #include "runtime/sharedRuntime.hpp" 69 #include "runtime/stackWatermarkSet.hpp" 70 #include "runtime/stubRoutines.hpp" 71 #include "runtime/synchronizer.hpp" 72 #include "runtime/vframe.inline.hpp" 73 #include "runtime/vframeArray.hpp" 74 #include "runtime/vm_version.hpp" 75 #include "utilities/copy.hpp" 76 #include "utilities/dtrace.hpp" 77 #include "utilities/events.hpp" 78 #include "utilities/resourceHash.hpp" 79 #include "utilities/macros.hpp" 80 #include "utilities/xmlstream.hpp" 81 #ifdef COMPILER1 82 #include "c1/c1_Runtime1.hpp" 83 #endif 84 85 // Shared stub locations 86 RuntimeStub* SharedRuntime::_wrong_method_blob; 87 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 88 RuntimeStub* SharedRuntime::_ic_miss_blob; 89 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 90 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 91 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 92 address SharedRuntime::_resolve_static_call_entry; 93 94 DeoptimizationBlob* SharedRuntime::_deopt_blob; 95 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 96 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 97 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 98 99 #ifdef COMPILER2 100 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 101 #endif // COMPILER2 102 103 nmethod* SharedRuntime::_cont_doYield_stub; 104 105 //----------------------------generate_stubs----------------------------------- 106 void SharedRuntime::generate_stubs() { 107 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 108 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 109 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 110 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 111 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 112 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 113 _resolve_static_call_entry = _resolve_static_call_blob->entry_point(); 114 115 AdapterHandlerLibrary::initialize(); 116 117 #if COMPILER2_OR_JVMCI 118 // Vectors are generated only by C2 and JVMCI. 119 bool support_wide = is_wide_vector(MaxVectorSize); 120 if (support_wide) { 121 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 122 } 123 #endif // COMPILER2_OR_JVMCI 124 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 125 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 126 127 generate_deopt_blob(); 128 129 #ifdef COMPILER2 130 generate_uncommon_trap_blob(); 131 #endif // COMPILER2 132 } 133 134 #include <math.h> 135 136 // Implementation of SharedRuntime 137 138 #ifndef PRODUCT 139 // For statistics 140 int SharedRuntime::_ic_miss_ctr = 0; 141 int SharedRuntime::_wrong_method_ctr = 0; 142 int SharedRuntime::_resolve_static_ctr = 0; 143 int SharedRuntime::_resolve_virtual_ctr = 0; 144 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 145 int SharedRuntime::_implicit_null_throws = 0; 146 int SharedRuntime::_implicit_div0_throws = 0; 147 148 int64_t SharedRuntime::_nof_normal_calls = 0; 149 int64_t SharedRuntime::_nof_inlined_calls = 0; 150 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 151 int64_t SharedRuntime::_nof_static_calls = 0; 152 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 153 int64_t SharedRuntime::_nof_interface_calls = 0; 154 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 155 156 int SharedRuntime::_new_instance_ctr=0; 157 int SharedRuntime::_new_array_ctr=0; 158 int SharedRuntime::_multi2_ctr=0; 159 int SharedRuntime::_multi3_ctr=0; 160 int SharedRuntime::_multi4_ctr=0; 161 int SharedRuntime::_multi5_ctr=0; 162 int SharedRuntime::_mon_enter_stub_ctr=0; 163 int SharedRuntime::_mon_exit_stub_ctr=0; 164 int SharedRuntime::_mon_enter_ctr=0; 165 int SharedRuntime::_mon_exit_ctr=0; 166 int SharedRuntime::_partial_subtype_ctr=0; 167 int SharedRuntime::_jbyte_array_copy_ctr=0; 168 int SharedRuntime::_jshort_array_copy_ctr=0; 169 int SharedRuntime::_jint_array_copy_ctr=0; 170 int SharedRuntime::_jlong_array_copy_ctr=0; 171 int SharedRuntime::_oop_array_copy_ctr=0; 172 int SharedRuntime::_checkcast_array_copy_ctr=0; 173 int SharedRuntime::_unsafe_array_copy_ctr=0; 174 int SharedRuntime::_generic_array_copy_ctr=0; 175 int SharedRuntime::_slow_array_copy_ctr=0; 176 int SharedRuntime::_find_handler_ctr=0; 177 int SharedRuntime::_rethrow_ctr=0; 178 179 int SharedRuntime::_ICmiss_index = 0; 180 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 181 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 182 183 184 void SharedRuntime::trace_ic_miss(address at) { 185 for (int i = 0; i < _ICmiss_index; i++) { 186 if (_ICmiss_at[i] == at) { 187 _ICmiss_count[i]++; 188 return; 189 } 190 } 191 int index = _ICmiss_index++; 192 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 193 _ICmiss_at[index] = at; 194 _ICmiss_count[index] = 1; 195 } 196 197 void SharedRuntime::print_ic_miss_histogram() { 198 if (ICMissHistogram) { 199 tty->print_cr("IC Miss Histogram:"); 200 int tot_misses = 0; 201 for (int i = 0; i < _ICmiss_index; i++) { 202 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 203 tot_misses += _ICmiss_count[i]; 204 } 205 tty->print_cr("Total IC misses: %7d", tot_misses); 206 } 207 } 208 #endif // PRODUCT 209 210 211 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 212 return x * y; 213 JRT_END 214 215 216 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 217 if (x == min_jlong && y == CONST64(-1)) { 218 return x; 219 } else { 220 return x / y; 221 } 222 JRT_END 223 224 225 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 226 if (x == min_jlong && y == CONST64(-1)) { 227 return 0; 228 } else { 229 return x % y; 230 } 231 JRT_END 232 233 234 #ifdef _WIN64 235 const juint float_sign_mask = 0x7FFFFFFF; 236 const juint float_infinity = 0x7F800000; 237 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 238 const julong double_infinity = CONST64(0x7FF0000000000000); 239 #endif 240 241 #if !defined(X86) || !defined(TARGET_COMPILER_gcc) || defined(_WIN64) 242 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 243 #ifdef _WIN64 244 // 64-bit Windows on amd64 returns the wrong values for 245 // infinity operands. 246 juint xbits = PrimitiveConversions::cast<juint>(x); 247 juint ybits = PrimitiveConversions::cast<juint>(y); 248 // x Mod Infinity == x unless x is infinity 249 if (((xbits & float_sign_mask) != float_infinity) && 250 ((ybits & float_sign_mask) == float_infinity) ) { 251 return x; 252 } 253 return ((jfloat)fmod_winx64((double)x, (double)y)); 254 #else 255 return ((jfloat)fmod((double)x,(double)y)); 256 #endif 257 JRT_END 258 259 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 260 #ifdef _WIN64 261 julong xbits = PrimitiveConversions::cast<julong>(x); 262 julong ybits = PrimitiveConversions::cast<julong>(y); 263 // x Mod Infinity == x unless x is infinity 264 if (((xbits & double_sign_mask) != double_infinity) && 265 ((ybits & double_sign_mask) == double_infinity) ) { 266 return x; 267 } 268 return ((jdouble)fmod_winx64((double)x, (double)y)); 269 #else 270 return ((jdouble)fmod((double)x,(double)y)); 271 #endif 272 JRT_END 273 #endif // !X86 || !TARGET_COMPILER_gcc || _WIN64 274 275 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 276 return (jfloat)x; 277 JRT_END 278 279 #ifdef __SOFTFP__ 280 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 281 return x + y; 282 JRT_END 283 284 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 285 return x - y; 286 JRT_END 287 288 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 289 return x * y; 290 JRT_END 291 292 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 293 return x / y; 294 JRT_END 295 296 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 297 return x + y; 298 JRT_END 299 300 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 301 return x - y; 302 JRT_END 303 304 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 305 return x * y; 306 JRT_END 307 308 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 309 return x / y; 310 JRT_END 311 312 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 313 return (jdouble)x; 314 JRT_END 315 316 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 317 return (jdouble)x; 318 JRT_END 319 320 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 321 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 322 JRT_END 323 324 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 325 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 326 JRT_END 327 328 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 329 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 330 JRT_END 331 332 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 333 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 334 JRT_END 335 336 // Functions to return the opposite of the aeabi functions for nan. 337 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 338 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 339 JRT_END 340 341 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 342 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 343 JRT_END 344 345 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 346 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 347 JRT_END 348 349 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 350 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 351 JRT_END 352 353 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 354 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 355 JRT_END 356 357 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 358 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 359 JRT_END 360 361 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 362 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 363 JRT_END 364 365 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 366 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 367 JRT_END 368 369 // Intrinsics make gcc generate code for these. 370 float SharedRuntime::fneg(float f) { 371 return -f; 372 } 373 374 double SharedRuntime::dneg(double f) { 375 return -f; 376 } 377 378 #endif // __SOFTFP__ 379 380 #if defined(__SOFTFP__) || defined(E500V2) 381 // Intrinsics make gcc generate code for these. 382 double SharedRuntime::dabs(double f) { 383 return (f <= (double)0.0) ? (double)0.0 - f : f; 384 } 385 386 #endif 387 388 #if defined(__SOFTFP__) || defined(PPC) 389 double SharedRuntime::dsqrt(double f) { 390 return sqrt(f); 391 } 392 #endif 393 394 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 395 if (g_isnan(x)) 396 return 0; 397 if (x >= (jfloat) max_jint) 398 return max_jint; 399 if (x <= (jfloat) min_jint) 400 return min_jint; 401 return (jint) x; 402 JRT_END 403 404 405 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 406 if (g_isnan(x)) 407 return 0; 408 if (x >= (jfloat) max_jlong) 409 return max_jlong; 410 if (x <= (jfloat) min_jlong) 411 return min_jlong; 412 return (jlong) x; 413 JRT_END 414 415 416 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 417 if (g_isnan(x)) 418 return 0; 419 if (x >= (jdouble) max_jint) 420 return max_jint; 421 if (x <= (jdouble) min_jint) 422 return min_jint; 423 return (jint) x; 424 JRT_END 425 426 427 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 428 if (g_isnan(x)) 429 return 0; 430 if (x >= (jdouble) max_jlong) 431 return max_jlong; 432 if (x <= (jdouble) min_jlong) 433 return min_jlong; 434 return (jlong) x; 435 JRT_END 436 437 438 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 439 return (jfloat)x; 440 JRT_END 441 442 443 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 444 return (jfloat)x; 445 JRT_END 446 447 448 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 449 return (jdouble)x; 450 JRT_END 451 452 453 // Exception handling across interpreter/compiler boundaries 454 // 455 // exception_handler_for_return_address(...) returns the continuation address. 456 // The continuation address is the entry point of the exception handler of the 457 // previous frame depending on the return address. 458 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 460 // Note: This is called when we have unwound the frame of the callee that did 461 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 462 // Notably, the stack is not walkable at this point, and hence the check must 463 // be deferred until later. Specifically, any of the handlers returned here in 464 // this function, will get dispatched to, and call deferred checks to 465 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 466 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 467 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 468 469 // Reset method handle flag. 470 current->set_is_method_handle_return(false); 471 472 #if INCLUDE_JVMCI 473 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 474 // and other exception handler continuations do not read it 475 current->set_exception_pc(nullptr); 476 #endif // INCLUDE_JVMCI 477 478 if (Continuation::is_return_barrier_entry(return_address)) { 479 return StubRoutines::cont_returnBarrierExc(); 480 } 481 482 // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc 483 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 484 485 // The fastest case first 486 CodeBlob* blob = CodeCache::find_blob(return_address); 487 CompiledMethod* nm = (blob != nullptr) ? blob->as_compiled_method_or_null() : nullptr; 488 if (nm != nullptr) { 489 // Set flag if return address is a method handle call site. 490 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 491 // native nmethods don't have exception handlers 492 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 493 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 494 if (nm->is_deopt_pc(return_address)) { 495 // If we come here because of a stack overflow, the stack may be 496 // unguarded. Reguard the stack otherwise if we return to the 497 // deopt blob and the stack bang causes a stack overflow we 498 // crash. 499 StackOverflow* overflow_state = current->stack_overflow_state(); 500 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 501 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 502 overflow_state->set_reserved_stack_activation(current->stack_base()); 503 } 504 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 505 // The deferred StackWatermarkSet::after_unwind check will be performed in 506 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 507 return SharedRuntime::deopt_blob()->unpack_with_exception(); 508 } else { 509 // The deferred StackWatermarkSet::after_unwind check will be performed in 510 // * OptoRuntime::handle_exception_C_helper for C2 code 511 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 512 return nm->exception_begin(); 513 } 514 } 515 516 // Entry code 517 if (StubRoutines::returns_to_call_stub(return_address)) { 518 // The deferred StackWatermarkSet::after_unwind check will be performed in 519 // JavaCallWrapper::~JavaCallWrapper 520 return StubRoutines::catch_exception_entry(); 521 } 522 if (blob != nullptr && blob->is_upcall_stub()) { 523 return ((UpcallStub*)blob)->exception_handler(); 524 } 525 // Interpreted code 526 if (Interpreter::contains(return_address)) { 527 // The deferred StackWatermarkSet::after_unwind check will be performed in 528 // InterpreterRuntime::exception_handler_for_exception 529 return Interpreter::rethrow_exception_entry(); 530 } 531 532 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 533 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 534 535 #ifndef PRODUCT 536 { ResourceMark rm; 537 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 538 os::print_location(tty, (intptr_t)return_address); 539 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 540 tty->print_cr("b) other problem"); 541 } 542 #endif // PRODUCT 543 544 ShouldNotReachHere(); 545 return nullptr; 546 } 547 548 549 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 550 return raw_exception_handler_for_return_address(current, return_address); 551 JRT_END 552 553 554 address SharedRuntime::get_poll_stub(address pc) { 555 address stub; 556 // Look up the code blob 557 CodeBlob *cb = CodeCache::find_blob(pc); 558 559 // Should be an nmethod 560 guarantee(cb != nullptr && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod"); 561 562 // Look up the relocation information 563 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc), 564 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 565 566 #ifdef ASSERT 567 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 568 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 569 Disassembler::decode(cb); 570 fatal("Only polling locations are used for safepoint"); 571 } 572 #endif 573 574 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc); 575 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors(); 576 if (at_poll_return) { 577 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 578 "polling page return stub not created yet"); 579 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 580 } else if (has_wide_vectors) { 581 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 582 "polling page vectors safepoint stub not created yet"); 583 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 584 } else { 585 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 586 "polling page safepoint stub not created yet"); 587 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 588 } 589 log_debug(safepoint)("... found polling page %s exception at pc = " 590 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 591 at_poll_return ? "return" : "loop", 592 (intptr_t)pc, (intptr_t)stub); 593 return stub; 594 } 595 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 597 if (JvmtiExport::can_post_on_exceptions()) { 598 vframeStream vfst(current, true); 599 methodHandle method = methodHandle(current, vfst.method()); 600 address bcp = method()->bcp_from(vfst.bci()); 601 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 602 } 603 604 #if INCLUDE_JVMCI 605 if (EnableJVMCI && UseJVMCICompiler) { 606 vframeStream vfst(current, true); 607 methodHandle method = methodHandle(current, vfst.method()); 608 int bci = vfst.bci(); 609 MethodData* trap_mdo = method->method_data(); 610 if (trap_mdo != nullptr) { 611 // Set exception_seen if the exceptional bytecode is an invoke 612 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 613 if (call.is_valid()) { 614 ResourceMark rm(current); 615 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 616 if (pdata != nullptr && pdata->is_BitData()) { 617 BitData* bit_data = (BitData*) pdata; 618 bit_data->set_exception_seen(); 619 } 620 } 621 } 622 } 623 #endif 624 625 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 626 } 627 628 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 629 Handle h_exception = Exceptions::new_exception(current, name, message); 630 throw_and_post_jvmti_exception(current, h_exception); 631 } 632 633 #if INCLUDE_JVMTI 634 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 635 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 636 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 637 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 638 JNIHandles::destroy_local(vthread); 639 JRT_END 640 641 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 642 assert(hide == JNI_TRUE, "must be VTMS transition start"); 643 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 644 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 645 JNIHandles::destroy_local(vthread); 646 JRT_END 647 648 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 649 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 650 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 651 JNIHandles::destroy_local(vthread); 652 JRT_END 653 654 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 655 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 656 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 657 JNIHandles::destroy_local(vthread); 658 JRT_END 659 #endif // INCLUDE_JVMTI 660 661 // The interpreter code to call this tracing function is only 662 // called/generated when UL is on for redefine, class and has the right level 663 // and tags. Since obsolete methods are never compiled, we don't have 664 // to modify the compilers to generate calls to this function. 665 // 666 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 667 JavaThread* thread, Method* method)) 668 if (method->is_obsolete()) { 669 // We are calling an obsolete method, but this is not necessarily 670 // an error. Our method could have been redefined just after we 671 // fetched the Method* from the constant pool. 672 ResourceMark rm; 673 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 674 } 675 return 0; 676 JRT_END 677 678 // ret_pc points into caller; we are returning caller's exception handler 679 // for given exception 680 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception, 681 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 682 assert(cm != nullptr, "must exist"); 683 ResourceMark rm; 684 685 #if INCLUDE_JVMCI 686 if (cm->is_compiled_by_jvmci()) { 687 // lookup exception handler for this pc 688 int catch_pco = ret_pc - cm->code_begin(); 689 ExceptionHandlerTable table(cm); 690 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 691 if (t != nullptr) { 692 return cm->code_begin() + t->pco(); 693 } else { 694 return Deoptimization::deoptimize_for_missing_exception_handler(cm); 695 } 696 } 697 #endif // INCLUDE_JVMCI 698 699 nmethod* nm = cm->as_nmethod(); 700 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 701 // determine handler bci, if any 702 EXCEPTION_MARK; 703 704 int handler_bci = -1; 705 int scope_depth = 0; 706 if (!force_unwind) { 707 int bci = sd->bci(); 708 bool recursive_exception = false; 709 do { 710 bool skip_scope_increment = false; 711 // exception handler lookup 712 Klass* ek = exception->klass(); 713 methodHandle mh(THREAD, sd->method()); 714 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 715 if (HAS_PENDING_EXCEPTION) { 716 recursive_exception = true; 717 // We threw an exception while trying to find the exception handler. 718 // Transfer the new exception to the exception handle which will 719 // be set into thread local storage, and do another lookup for an 720 // exception handler for this exception, this time starting at the 721 // BCI of the exception handler which caused the exception to be 722 // thrown (bugs 4307310 and 4546590). Set "exception" reference 723 // argument to ensure that the correct exception is thrown (4870175). 724 recursive_exception_occurred = true; 725 exception = Handle(THREAD, PENDING_EXCEPTION); 726 CLEAR_PENDING_EXCEPTION; 727 if (handler_bci >= 0) { 728 bci = handler_bci; 729 handler_bci = -1; 730 skip_scope_increment = true; 731 } 732 } 733 else { 734 recursive_exception = false; 735 } 736 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 737 sd = sd->sender(); 738 if (sd != nullptr) { 739 bci = sd->bci(); 740 } 741 ++scope_depth; 742 } 743 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 744 } 745 746 // found handling method => lookup exception handler 747 int catch_pco = ret_pc - nm->code_begin(); 748 749 ExceptionHandlerTable table(nm); 750 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 751 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 752 // Allow abbreviated catch tables. The idea is to allow a method 753 // to materialize its exceptions without committing to the exact 754 // routing of exceptions. In particular this is needed for adding 755 // a synthetic handler to unlock monitors when inlining 756 // synchronized methods since the unlock path isn't represented in 757 // the bytecodes. 758 t = table.entry_for(catch_pco, -1, 0); 759 } 760 761 #ifdef COMPILER1 762 if (t == nullptr && nm->is_compiled_by_c1()) { 763 assert(nm->unwind_handler_begin() != nullptr, ""); 764 return nm->unwind_handler_begin(); 765 } 766 #endif 767 768 if (t == nullptr) { 769 ttyLocker ttyl; 770 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 771 tty->print_cr(" Exception:"); 772 exception->print(); 773 tty->cr(); 774 tty->print_cr(" Compiled exception table :"); 775 table.print(); 776 nm->print(); 777 nm->print_code(); 778 guarantee(false, "missing exception handler"); 779 return nullptr; 780 } 781 782 return nm->code_begin() + t->pco(); 783 } 784 785 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 786 // These errors occur only at call sites 787 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 788 JRT_END 789 790 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 791 // These errors occur only at call sites 792 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 793 JRT_END 794 795 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 796 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 797 JRT_END 798 799 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 800 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 801 JRT_END 802 803 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 804 // This entry point is effectively only used for NullPointerExceptions which occur at inline 805 // cache sites (when the callee activation is not yet set up) so we are at a call site 806 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 807 JRT_END 808 809 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 810 throw_StackOverflowError_common(current, false); 811 JRT_END 812 813 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 814 throw_StackOverflowError_common(current, true); 815 JRT_END 816 817 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 818 // We avoid using the normal exception construction in this case because 819 // it performs an upcall to Java, and we're already out of stack space. 820 JavaThread* THREAD = current; // For exception macros. 821 Klass* k = vmClasses::StackOverflowError_klass(); 822 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 823 if (delayed) { 824 java_lang_Throwable::set_message(exception_oop, 825 Universe::delayed_stack_overflow_error_message()); 826 } 827 Handle exception (current, exception_oop); 828 if (StackTraceInThrowable) { 829 java_lang_Throwable::fill_in_stack_trace(exception); 830 } 831 // Remove the ScopedValue bindings in case we got a 832 // StackOverflowError while we were trying to remove ScopedValue 833 // bindings. 834 current->clear_scopedValueBindings(); 835 // Increment counter for hs_err file reporting 836 Atomic::inc(&Exceptions::_stack_overflow_errors); 837 throw_and_post_jvmti_exception(current, exception); 838 } 839 840 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 841 address pc, 842 ImplicitExceptionKind exception_kind) 843 { 844 address target_pc = nullptr; 845 846 if (Interpreter::contains(pc)) { 847 switch (exception_kind) { 848 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 849 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 850 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 851 default: ShouldNotReachHere(); 852 } 853 } else { 854 switch (exception_kind) { 855 case STACK_OVERFLOW: { 856 // Stack overflow only occurs upon frame setup; the callee is 857 // going to be unwound. Dispatch to a shared runtime stub 858 // which will cause the StackOverflowError to be fabricated 859 // and processed. 860 // Stack overflow should never occur during deoptimization: 861 // the compiled method bangs the stack by as much as the 862 // interpreter would need in case of a deoptimization. The 863 // deoptimization blob and uncommon trap blob bang the stack 864 // in a debug VM to verify the correctness of the compiled 865 // method stack banging. 866 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 867 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 868 return StubRoutines::throw_StackOverflowError_entry(); 869 } 870 871 case IMPLICIT_NULL: { 872 if (VtableStubs::contains(pc)) { 873 // We haven't yet entered the callee frame. Fabricate an 874 // exception and begin dispatching it in the caller. Since 875 // the caller was at a call site, it's safe to destroy all 876 // caller-saved registers, as these entry points do. 877 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 878 879 // If vt_stub is null, then return null to signal handler to report the SEGV error. 880 if (vt_stub == nullptr) return nullptr; 881 882 if (vt_stub->is_abstract_method_error(pc)) { 883 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 884 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 885 // Instead of throwing the abstract method error here directly, we re-resolve 886 // and will throw the AbstractMethodError during resolve. As a result, we'll 887 // get a more detailed error message. 888 return SharedRuntime::get_handle_wrong_method_stub(); 889 } else { 890 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 891 // Assert that the signal comes from the expected location in stub code. 892 assert(vt_stub->is_null_pointer_exception(pc), 893 "obtained signal from unexpected location in stub code"); 894 return StubRoutines::throw_NullPointerException_at_call_entry(); 895 } 896 } else { 897 CodeBlob* cb = CodeCache::find_blob(pc); 898 899 // If code blob is null, then return null to signal handler to report the SEGV error. 900 if (cb == nullptr) return nullptr; 901 902 // Exception happened in CodeCache. Must be either: 903 // 1. Inline-cache check in C2I handler blob, 904 // 2. Inline-cache check in nmethod, or 905 // 3. Implicit null exception in nmethod 906 907 if (!cb->is_compiled()) { 908 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 909 if (!is_in_blob) { 910 // Allow normal crash reporting to handle this 911 return nullptr; 912 } 913 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 914 // There is no handler here, so we will simply unwind. 915 return StubRoutines::throw_NullPointerException_at_call_entry(); 916 } 917 918 // Otherwise, it's a compiled method. Consult its exception handlers. 919 CompiledMethod* cm = (CompiledMethod*)cb; 920 if (cm->inlinecache_check_contains(pc)) { 921 // exception happened inside inline-cache check code 922 // => the nmethod is not yet active (i.e., the frame 923 // is not set up yet) => use return address pushed by 924 // caller => don't push another return address 925 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 926 return StubRoutines::throw_NullPointerException_at_call_entry(); 927 } 928 929 if (cm->method()->is_method_handle_intrinsic()) { 930 // exception happened inside MH dispatch code, similar to a vtable stub 931 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 932 return StubRoutines::throw_NullPointerException_at_call_entry(); 933 } 934 935 #ifndef PRODUCT 936 _implicit_null_throws++; 937 #endif 938 target_pc = cm->continuation_for_implicit_null_exception(pc); 939 // If there's an unexpected fault, target_pc might be null, 940 // in which case we want to fall through into the normal 941 // error handling code. 942 } 943 944 break; // fall through 945 } 946 947 948 case IMPLICIT_DIVIDE_BY_ZERO: { 949 CompiledMethod* cm = CodeCache::find_compiled(pc); 950 guarantee(cm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 951 #ifndef PRODUCT 952 _implicit_div0_throws++; 953 #endif 954 target_pc = cm->continuation_for_implicit_div0_exception(pc); 955 // If there's an unexpected fault, target_pc might be null, 956 // in which case we want to fall through into the normal 957 // error handling code. 958 break; // fall through 959 } 960 961 default: ShouldNotReachHere(); 962 } 963 964 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 965 966 if (exception_kind == IMPLICIT_NULL) { 967 #ifndef PRODUCT 968 // for AbortVMOnException flag 969 Exceptions::debug_check_abort("java.lang.NullPointerException"); 970 #endif //PRODUCT 971 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 972 } else { 973 #ifndef PRODUCT 974 // for AbortVMOnException flag 975 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 976 #endif //PRODUCT 977 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 978 } 979 return target_pc; 980 } 981 982 ShouldNotReachHere(); 983 return nullptr; 984 } 985 986 987 /** 988 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 989 * installed in the native function entry of all native Java methods before 990 * they get linked to their actual native methods. 991 * 992 * \note 993 * This method actually never gets called! The reason is because 994 * the interpreter's native entries call NativeLookup::lookup() which 995 * throws the exception when the lookup fails. The exception is then 996 * caught and forwarded on the return from NativeLookup::lookup() call 997 * before the call to the native function. This might change in the future. 998 */ 999 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1000 { 1001 // We return a bad value here to make sure that the exception is 1002 // forwarded before we look at the return value. 1003 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1004 } 1005 JNI_END 1006 1007 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1008 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1009 } 1010 1011 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1012 #if INCLUDE_JVMCI 1013 if (!obj->klass()->has_finalizer()) { 1014 return; 1015 } 1016 #endif // INCLUDE_JVMCI 1017 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1018 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1019 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1020 JRT_END 1021 1022 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1023 assert(thread != nullptr, "No thread"); 1024 if (thread == nullptr) { 1025 return 0; 1026 } 1027 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1028 "current cannot touch oops after its GC barrier is detached."); 1029 oop obj = thread->threadObj(); 1030 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1031 } 1032 1033 /** 1034 * This function ought to be a void function, but cannot be because 1035 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1036 * 6254741. Once that is fixed we can remove the dummy return value. 1037 */ 1038 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1039 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1040 } 1041 1042 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1043 return dtrace_object_alloc(thread, o, o->size()); 1044 } 1045 1046 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1047 assert(DTraceAllocProbes, "wrong call"); 1048 Klass* klass = o->klass(); 1049 Symbol* name = klass->name(); 1050 HOTSPOT_OBJECT_ALLOC( 1051 get_java_tid(thread), 1052 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1053 return 0; 1054 } 1055 1056 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1057 JavaThread* current, Method* method)) 1058 assert(current == JavaThread::current(), "pre-condition"); 1059 1060 assert(DTraceMethodProbes, "wrong call"); 1061 Symbol* kname = method->klass_name(); 1062 Symbol* name = method->name(); 1063 Symbol* sig = method->signature(); 1064 HOTSPOT_METHOD_ENTRY( 1065 get_java_tid(current), 1066 (char *) kname->bytes(), kname->utf8_length(), 1067 (char *) name->bytes(), name->utf8_length(), 1068 (char *) sig->bytes(), sig->utf8_length()); 1069 return 0; 1070 JRT_END 1071 1072 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1073 JavaThread* current, Method* method)) 1074 assert(current == JavaThread::current(), "pre-condition"); 1075 assert(DTraceMethodProbes, "wrong call"); 1076 Symbol* kname = method->klass_name(); 1077 Symbol* name = method->name(); 1078 Symbol* sig = method->signature(); 1079 HOTSPOT_METHOD_RETURN( 1080 get_java_tid(current), 1081 (char *) kname->bytes(), kname->utf8_length(), 1082 (char *) name->bytes(), name->utf8_length(), 1083 (char *) sig->bytes(), sig->utf8_length()); 1084 return 0; 1085 JRT_END 1086 1087 1088 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1089 // for a call current in progress, i.e., arguments has been pushed on stack 1090 // put callee has not been invoked yet. Used by: resolve virtual/static, 1091 // vtable updates, etc. Caller frame must be compiled. 1092 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1093 JavaThread* current = THREAD; 1094 ResourceMark rm(current); 1095 1096 // last java frame on stack (which includes native call frames) 1097 vframeStream vfst(current, true); // Do not skip and javaCalls 1098 1099 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1100 } 1101 1102 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1103 CompiledMethod* caller = vfst.nm(); 1104 1105 address pc = vfst.frame_pc(); 1106 { // Get call instruction under lock because another thread may be busy patching it. 1107 CompiledICLocker ic_locker(caller); 1108 return caller->attached_method_before_pc(pc); 1109 } 1110 return nullptr; 1111 } 1112 1113 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1114 // for a call current in progress, i.e., arguments has been pushed on stack 1115 // but callee has not been invoked yet. Caller frame must be compiled. 1116 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1117 CallInfo& callinfo, TRAPS) { 1118 Handle receiver; 1119 Handle nullHandle; // create a handy null handle for exception returns 1120 JavaThread* current = THREAD; 1121 1122 assert(!vfst.at_end(), "Java frame must exist"); 1123 1124 // Find caller and bci from vframe 1125 methodHandle caller(current, vfst.method()); 1126 int bci = vfst.bci(); 1127 1128 if (caller->is_continuation_enter_intrinsic()) { 1129 bc = Bytecodes::_invokestatic; 1130 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1131 return receiver; 1132 } 1133 1134 Bytecode_invoke bytecode(caller, bci); 1135 int bytecode_index = bytecode.index(); 1136 bc = bytecode.invoke_code(); 1137 1138 methodHandle attached_method(current, extract_attached_method(vfst)); 1139 if (attached_method.not_null()) { 1140 Method* callee = bytecode.static_target(CHECK_NH); 1141 vmIntrinsics::ID id = callee->intrinsic_id(); 1142 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1143 // it attaches statically resolved method to the call site. 1144 if (MethodHandles::is_signature_polymorphic(id) && 1145 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1146 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1147 1148 // Adjust invocation mode according to the attached method. 1149 switch (bc) { 1150 case Bytecodes::_invokevirtual: 1151 if (attached_method->method_holder()->is_interface()) { 1152 bc = Bytecodes::_invokeinterface; 1153 } 1154 break; 1155 case Bytecodes::_invokeinterface: 1156 if (!attached_method->method_holder()->is_interface()) { 1157 bc = Bytecodes::_invokevirtual; 1158 } 1159 break; 1160 case Bytecodes::_invokehandle: 1161 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1162 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1163 : Bytecodes::_invokevirtual; 1164 } 1165 break; 1166 default: 1167 break; 1168 } 1169 } 1170 } 1171 1172 assert(bc != Bytecodes::_illegal, "not initialized"); 1173 1174 bool has_receiver = bc != Bytecodes::_invokestatic && 1175 bc != Bytecodes::_invokedynamic && 1176 bc != Bytecodes::_invokehandle; 1177 1178 // Find receiver for non-static call 1179 if (has_receiver) { 1180 // This register map must be update since we need to find the receiver for 1181 // compiled frames. The receiver might be in a register. 1182 RegisterMap reg_map2(current, 1183 RegisterMap::UpdateMap::include, 1184 RegisterMap::ProcessFrames::include, 1185 RegisterMap::WalkContinuation::skip); 1186 frame stubFrame = current->last_frame(); 1187 // Caller-frame is a compiled frame 1188 frame callerFrame = stubFrame.sender(®_map2); 1189 1190 if (attached_method.is_null()) { 1191 Method* callee = bytecode.static_target(CHECK_NH); 1192 if (callee == nullptr) { 1193 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1194 } 1195 } 1196 1197 // Retrieve from a compiled argument list 1198 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1199 assert(oopDesc::is_oop_or_null(receiver()), ""); 1200 1201 if (receiver.is_null()) { 1202 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1203 } 1204 } 1205 1206 // Resolve method 1207 if (attached_method.not_null()) { 1208 // Parameterized by attached method. 1209 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1210 } else { 1211 // Parameterized by bytecode. 1212 constantPoolHandle constants(current, caller->constants()); 1213 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1214 } 1215 1216 #ifdef ASSERT 1217 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1218 if (has_receiver) { 1219 assert(receiver.not_null(), "should have thrown exception"); 1220 Klass* receiver_klass = receiver->klass(); 1221 Klass* rk = nullptr; 1222 if (attached_method.not_null()) { 1223 // In case there's resolved method attached, use its holder during the check. 1224 rk = attached_method->method_holder(); 1225 } else { 1226 // Klass is already loaded. 1227 constantPoolHandle constants(current, caller->constants()); 1228 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1229 } 1230 Klass* static_receiver_klass = rk; 1231 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1232 "actual receiver must be subclass of static receiver klass"); 1233 if (receiver_klass->is_instance_klass()) { 1234 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1235 tty->print_cr("ERROR: Klass not yet initialized!!"); 1236 receiver_klass->print(); 1237 } 1238 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1239 } 1240 } 1241 #endif 1242 1243 return receiver; 1244 } 1245 1246 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1247 JavaThread* current = THREAD; 1248 ResourceMark rm(current); 1249 // We need first to check if any Java activations (compiled, interpreted) 1250 // exist on the stack since last JavaCall. If not, we need 1251 // to get the target method from the JavaCall wrapper. 1252 vframeStream vfst(current, true); // Do not skip any javaCalls 1253 methodHandle callee_method; 1254 if (vfst.at_end()) { 1255 // No Java frames were found on stack since we did the JavaCall. 1256 // Hence the stack can only contain an entry_frame. We need to 1257 // find the target method from the stub frame. 1258 RegisterMap reg_map(current, 1259 RegisterMap::UpdateMap::skip, 1260 RegisterMap::ProcessFrames::include, 1261 RegisterMap::WalkContinuation::skip); 1262 frame fr = current->last_frame(); 1263 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1264 fr = fr.sender(®_map); 1265 assert(fr.is_entry_frame(), "must be"); 1266 // fr is now pointing to the entry frame. 1267 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1268 } else { 1269 Bytecodes::Code bc; 1270 CallInfo callinfo; 1271 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1272 callee_method = methodHandle(current, callinfo.selected_method()); 1273 } 1274 assert(callee_method()->is_method(), "must be"); 1275 return callee_method; 1276 } 1277 1278 // Resolves a call. 1279 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1280 methodHandle callee_method; 1281 callee_method = resolve_sub_helper(is_virtual, is_optimized, THREAD); 1282 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1283 int retry_count = 0; 1284 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1285 callee_method->method_holder() != vmClasses::Object_klass()) { 1286 // If has a pending exception then there is no need to re-try to 1287 // resolve this method. 1288 // If the method has been redefined, we need to try again. 1289 // Hack: we have no way to update the vtables of arrays, so don't 1290 // require that java.lang.Object has been updated. 1291 1292 // It is very unlikely that method is redefined more than 100 times 1293 // in the middle of resolve. If it is looping here more than 100 times 1294 // means then there could be a bug here. 1295 guarantee((retry_count++ < 100), 1296 "Could not resolve to latest version of redefined method"); 1297 // method is redefined in the middle of resolve so re-try. 1298 callee_method = resolve_sub_helper(is_virtual, is_optimized, THREAD); 1299 } 1300 } 1301 return callee_method; 1302 } 1303 1304 // This fails if resolution required refilling of IC stubs 1305 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame, 1306 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized, 1307 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) { 1308 StaticCallInfo static_call_info; 1309 CompiledICInfo virtual_call_info; 1310 1311 // Make sure the callee nmethod does not get deoptimized and removed before 1312 // we are done patching the code. 1313 CompiledMethod* callee = callee_method->code(); 1314 1315 if (callee != nullptr) { 1316 assert(callee->is_compiled(), "must be nmethod for patching"); 1317 } 1318 1319 if (callee != nullptr && !callee->is_in_use()) { 1320 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. 1321 callee = nullptr; 1322 } 1323 #ifdef ASSERT 1324 address dest_entry_point = callee == nullptr ? 0 : callee->entry_point(); // used below 1325 #endif 1326 1327 bool is_nmethod = caller_nm->is_nmethod(); 1328 1329 if (is_virtual) { 1330 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); 1331 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1332 Klass* klass = invoke_code == Bytecodes::_invokehandle ? nullptr : receiver->klass(); 1333 CompiledIC::compute_monomorphic_entry(callee_method, klass, 1334 is_optimized, static_bound, is_nmethod, virtual_call_info, 1335 CHECK_false); 1336 } else { 1337 // static call 1338 CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info); 1339 } 1340 1341 // grab lock, check for deoptimization and potentially patch caller 1342 { 1343 CompiledICLocker ml(caller_nm); 1344 1345 // Lock blocks for safepoint during which both nmethods can change state. 1346 1347 // Now that we are ready to patch if the Method* was redefined then 1348 // don't update call site and let the caller retry. 1349 // Don't update call site if callee nmethod was unloaded or deoptimized. 1350 // Don't update call site if callee nmethod was replaced by an other nmethod 1351 // which may happen when multiply alive nmethod (tiered compilation) 1352 // will be supported. 1353 if (!callee_method->is_old() && 1354 (callee == nullptr || (callee->is_in_use() && callee_method->code() == callee))) { 1355 NoSafepointVerifier nsv; 1356 #ifdef ASSERT 1357 // We must not try to patch to jump to an already unloaded method. 1358 if (dest_entry_point != 0) { 1359 CodeBlob* cb = CodeCache::find_blob(dest_entry_point); 1360 assert((cb != nullptr) && cb->is_compiled() && (((CompiledMethod*)cb) == callee), 1361 "should not call unloaded nmethod"); 1362 } 1363 #endif 1364 if (is_virtual) { 1365 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1366 if (inline_cache->is_clean()) { 1367 if (!inline_cache->set_to_monomorphic(virtual_call_info)) { 1368 return false; 1369 } 1370 } 1371 } else { 1372 if (VM_Version::supports_fast_class_init_checks() && 1373 invoke_code == Bytecodes::_invokestatic && 1374 callee_method->needs_clinit_barrier() && 1375 callee != nullptr && callee->is_compiled_by_jvmci()) { 1376 return true; // skip patching for JVMCI 1377 } 1378 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc()); 1379 if (is_nmethod && caller_nm->method()->is_continuation_enter_intrinsic()) { 1380 ssc->compute_entry_for_continuation_entry(callee_method, static_call_info); 1381 } 1382 if (ssc->is_clean()) ssc->set(static_call_info); 1383 } 1384 } 1385 } // unlock CompiledICLocker 1386 return true; 1387 } 1388 1389 // Resolves a call. The compilers generate code for calls that go here 1390 // and are patched with the real destination of the call. 1391 methodHandle SharedRuntime::resolve_sub_helper(bool is_virtual, bool is_optimized, TRAPS) { 1392 JavaThread* current = THREAD; 1393 ResourceMark rm(current); 1394 RegisterMap cbl_map(current, 1395 RegisterMap::UpdateMap::skip, 1396 RegisterMap::ProcessFrames::include, 1397 RegisterMap::WalkContinuation::skip); 1398 frame caller_frame = current->last_frame().sender(&cbl_map); 1399 1400 CodeBlob* caller_cb = caller_frame.cb(); 1401 guarantee(caller_cb != nullptr && caller_cb->is_compiled(), "must be called from compiled method"); 1402 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null(); 1403 1404 // determine call info & receiver 1405 // note: a) receiver is null for static calls 1406 // b) an exception is thrown if receiver is null for non-static calls 1407 CallInfo call_info; 1408 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1409 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1410 methodHandle callee_method(current, call_info.selected_method()); 1411 1412 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1413 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1414 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1415 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1416 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1417 1418 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1419 1420 #ifndef PRODUCT 1421 // tracing/debugging/statistics 1422 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1423 (is_virtual) ? (&_resolve_virtual_ctr) : 1424 (&_resolve_static_ctr); 1425 Atomic::inc(addr); 1426 1427 if (TraceCallFixup) { 1428 ResourceMark rm(current); 1429 tty->print("resolving %s%s (%s) call to", 1430 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1431 Bytecodes::name(invoke_code)); 1432 callee_method->print_short_name(tty); 1433 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1434 p2i(caller_frame.pc()), p2i(callee_method->code())); 1435 } 1436 #endif 1437 1438 if (invoke_code == Bytecodes::_invokestatic) { 1439 assert(callee_method->method_holder()->is_initialized() || 1440 callee_method->method_holder()->is_reentrant_initialization(current), 1441 "invalid class initialization state for invoke_static"); 1442 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1443 // In order to keep class initialization check, do not patch call 1444 // site for static call when the class is not fully initialized. 1445 // Proper check is enforced by call site re-resolution on every invocation. 1446 // 1447 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1448 // explicit class initialization check is put in nmethod entry (VEP). 1449 assert(callee_method->method_holder()->is_linked(), "must be"); 1450 return callee_method; 1451 } 1452 } 1453 1454 // JSR 292 key invariant: 1455 // If the resolved method is a MethodHandle invoke target, the call 1456 // site must be a MethodHandle call site, because the lambda form might tail-call 1457 // leaving the stack in a state unknown to either caller or callee 1458 // TODO detune for now but we might need it again 1459 // assert(!callee_method->is_compiled_lambda_form() || 1460 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1461 1462 // Compute entry points. This might require generation of C2I converter 1463 // frames, so we cannot be holding any locks here. Furthermore, the 1464 // computation of the entry points is independent of patching the call. We 1465 // always return the entry-point, but we only patch the stub if the call has 1466 // not been deoptimized. Return values: For a virtual call this is an 1467 // (cached_oop, destination address) pair. For a static call/optimized 1468 // virtual this is just a destination address. 1469 1470 // Patching IC caches may fail if we run out if transition stubs. 1471 // We refill the ic stubs then and try again. 1472 for (;;) { 1473 ICRefillVerifier ic_refill_verifier; 1474 bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm, 1475 is_virtual, is_optimized, receiver, 1476 call_info, invoke_code, CHECK_(methodHandle())); 1477 if (successful) { 1478 return callee_method; 1479 } else { 1480 InlineCacheBuffer::refill_ic_stubs(); 1481 } 1482 } 1483 1484 } 1485 1486 1487 // Inline caches exist only in compiled code 1488 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1489 #ifdef ASSERT 1490 RegisterMap reg_map(current, 1491 RegisterMap::UpdateMap::skip, 1492 RegisterMap::ProcessFrames::include, 1493 RegisterMap::WalkContinuation::skip); 1494 frame stub_frame = current->last_frame(); 1495 assert(stub_frame.is_runtime_frame(), "sanity check"); 1496 frame caller_frame = stub_frame.sender(®_map); 1497 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1498 #endif /* ASSERT */ 1499 1500 methodHandle callee_method; 1501 JRT_BLOCK 1502 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1503 // Return Method* through TLS 1504 current->set_vm_result_2(callee_method()); 1505 JRT_BLOCK_END 1506 // return compiled code entry point after potential safepoints 1507 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1508 return callee_method->verified_code_entry(); 1509 JRT_END 1510 1511 1512 // Handle call site that has been made non-entrant 1513 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1514 // 6243940 We might end up in here if the callee is deoptimized 1515 // as we race to call it. We don't want to take a safepoint if 1516 // the caller was interpreted because the caller frame will look 1517 // interpreted to the stack walkers and arguments are now 1518 // "compiled" so it is much better to make this transition 1519 // invisible to the stack walking code. The i2c path will 1520 // place the callee method in the callee_target. It is stashed 1521 // there because if we try and find the callee by normal means a 1522 // safepoint is possible and have trouble gc'ing the compiled args. 1523 RegisterMap reg_map(current, 1524 RegisterMap::UpdateMap::skip, 1525 RegisterMap::ProcessFrames::include, 1526 RegisterMap::WalkContinuation::skip); 1527 frame stub_frame = current->last_frame(); 1528 assert(stub_frame.is_runtime_frame(), "sanity check"); 1529 frame caller_frame = stub_frame.sender(®_map); 1530 1531 if (caller_frame.is_interpreted_frame() || 1532 caller_frame.is_entry_frame() || 1533 caller_frame.is_upcall_stub_frame()) { 1534 Method* callee = current->callee_target(); 1535 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1536 current->set_vm_result_2(callee); 1537 current->set_callee_target(nullptr); 1538 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1539 // Bypass class initialization checks in c2i when caller is in native. 1540 // JNI calls to static methods don't have class initialization checks. 1541 // Fast class initialization checks are present in c2i adapters and call into 1542 // SharedRuntime::handle_wrong_method() on the slow path. 1543 // 1544 // JVM upcalls may land here as well, but there's a proper check present in 1545 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1546 // so bypassing it in c2i adapter is benign. 1547 return callee->get_c2i_no_clinit_check_entry(); 1548 } else { 1549 return callee->get_c2i_entry(); 1550 } 1551 } 1552 1553 // Must be compiled to compiled path which is safe to stackwalk 1554 methodHandle callee_method; 1555 JRT_BLOCK 1556 // Force resolving of caller (if we called from compiled frame) 1557 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1558 current->set_vm_result_2(callee_method()); 1559 JRT_BLOCK_END 1560 // return compiled code entry point after potential safepoints 1561 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1562 return callee_method->verified_code_entry(); 1563 JRT_END 1564 1565 // Handle abstract method call 1566 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1567 // Verbose error message for AbstractMethodError. 1568 // Get the called method from the invoke bytecode. 1569 vframeStream vfst(current, true); 1570 assert(!vfst.at_end(), "Java frame must exist"); 1571 methodHandle caller(current, vfst.method()); 1572 Bytecode_invoke invoke(caller, vfst.bci()); 1573 DEBUG_ONLY( invoke.verify(); ) 1574 1575 // Find the compiled caller frame. 1576 RegisterMap reg_map(current, 1577 RegisterMap::UpdateMap::include, 1578 RegisterMap::ProcessFrames::include, 1579 RegisterMap::WalkContinuation::skip); 1580 frame stubFrame = current->last_frame(); 1581 assert(stubFrame.is_runtime_frame(), "must be"); 1582 frame callerFrame = stubFrame.sender(®_map); 1583 assert(callerFrame.is_compiled_frame(), "must be"); 1584 1585 // Install exception and return forward entry. 1586 address res = StubRoutines::throw_AbstractMethodError_entry(); 1587 JRT_BLOCK 1588 methodHandle callee(current, invoke.static_target(current)); 1589 if (!callee.is_null()) { 1590 oop recv = callerFrame.retrieve_receiver(®_map); 1591 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1592 res = StubRoutines::forward_exception_entry(); 1593 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1594 } 1595 JRT_BLOCK_END 1596 return res; 1597 JRT_END 1598 1599 1600 // resolve a static call and patch code 1601 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1602 methodHandle callee_method; 1603 bool enter_special = false; 1604 JRT_BLOCK 1605 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1606 current->set_vm_result_2(callee_method()); 1607 1608 if (current->is_interp_only_mode()) { 1609 RegisterMap reg_map(current, 1610 RegisterMap::UpdateMap::skip, 1611 RegisterMap::ProcessFrames::include, 1612 RegisterMap::WalkContinuation::skip); 1613 frame stub_frame = current->last_frame(); 1614 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1615 frame caller = stub_frame.sender(®_map); 1616 enter_special = caller.cb() != nullptr && caller.cb()->is_compiled() 1617 && caller.cb()->as_compiled_method()->method()->is_continuation_enter_intrinsic(); 1618 } 1619 JRT_BLOCK_END 1620 1621 if (current->is_interp_only_mode() && enter_special) { 1622 // enterSpecial is compiled and calls this method to resolve the call to Continuation::enter 1623 // but in interp_only_mode we need to go to the interpreted entry 1624 // The c2i won't patch in this mode -- see fixup_callers_callsite 1625 // 1626 // This should probably be done in all cases, not just enterSpecial (see JDK-8218403), 1627 // but that's part of a larger fix, and the situation is worse for enterSpecial, as it has no 1628 // interpreted version. 1629 return callee_method->get_c2i_entry(); 1630 } 1631 1632 // return compiled code entry point after potential safepoints 1633 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1634 return callee_method->verified_code_entry(); 1635 JRT_END 1636 1637 1638 // resolve virtual call and update inline cache to monomorphic 1639 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1640 methodHandle callee_method; 1641 JRT_BLOCK 1642 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1643 current->set_vm_result_2(callee_method()); 1644 JRT_BLOCK_END 1645 // return compiled code entry point after potential safepoints 1646 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1647 return callee_method->verified_code_entry(); 1648 JRT_END 1649 1650 1651 // Resolve a virtual call that can be statically bound (e.g., always 1652 // monomorphic, so it has no inline cache). Patch code to resolved target. 1653 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1654 methodHandle callee_method; 1655 JRT_BLOCK 1656 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1657 current->set_vm_result_2(callee_method()); 1658 JRT_BLOCK_END 1659 // return compiled code entry point after potential safepoints 1660 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1661 return callee_method->verified_code_entry(); 1662 JRT_END 1663 1664 // The handle_ic_miss_helper_internal function returns false if it failed due 1665 // to either running out of vtable stubs or ic stubs due to IC transitions 1666 // to transitional states. The needs_ic_stub_refill value will be set if 1667 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper 1668 // refills the IC stubs and tries again. 1669 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm, 1670 const frame& caller_frame, methodHandle callee_method, 1671 Bytecodes::Code bc, CallInfo& call_info, 1672 bool& needs_ic_stub_refill, TRAPS) { 1673 CompiledICLocker ml(caller_nm); 1674 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1675 bool should_be_mono = false; 1676 if (inline_cache->is_optimized()) { 1677 if (TraceCallFixup) { 1678 ResourceMark rm(THREAD); 1679 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1680 callee_method->print_short_name(tty); 1681 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1682 } 1683 should_be_mono = true; 1684 } else if (inline_cache->is_icholder_call()) { 1685 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1686 if (ic_oop != nullptr) { 1687 if (!ic_oop->is_loader_alive()) { 1688 // Deferred IC cleaning due to concurrent class unloading 1689 if (!inline_cache->set_to_clean()) { 1690 needs_ic_stub_refill = true; 1691 return false; 1692 } 1693 } else if (receiver()->klass() == ic_oop->holder_klass()) { 1694 // This isn't a real miss. We must have seen that compiled code 1695 // is now available and we want the call site converted to a 1696 // monomorphic compiled call site. 1697 // We can't assert for callee_method->code() != nullptr because it 1698 // could have been deoptimized in the meantime 1699 if (TraceCallFixup) { 1700 ResourceMark rm(THREAD); 1701 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1702 callee_method->print_short_name(tty); 1703 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1704 } 1705 should_be_mono = true; 1706 } 1707 } 1708 } 1709 1710 if (should_be_mono) { 1711 // We have a path that was monomorphic but was going interpreted 1712 // and now we have (or had) a compiled entry. We correct the IC 1713 // by using a new icBuffer. 1714 CompiledICInfo info; 1715 Klass* receiver_klass = receiver()->klass(); 1716 inline_cache->compute_monomorphic_entry(callee_method, 1717 receiver_klass, 1718 inline_cache->is_optimized(), 1719 false, caller_nm->is_nmethod(), 1720 info, CHECK_false); 1721 if (!inline_cache->set_to_monomorphic(info)) { 1722 needs_ic_stub_refill = true; 1723 return false; 1724 } 1725 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1726 // Potential change to megamorphic 1727 1728 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false); 1729 if (needs_ic_stub_refill) { 1730 return false; 1731 } 1732 if (!successful) { 1733 if (!inline_cache->set_to_clean()) { 1734 needs_ic_stub_refill = true; 1735 return false; 1736 } 1737 } 1738 } else { 1739 // Either clean or megamorphic 1740 } 1741 return true; 1742 } 1743 1744 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1745 JavaThread* current = THREAD; 1746 ResourceMark rm(current); 1747 CallInfo call_info; 1748 Bytecodes::Code bc; 1749 1750 // receiver is null for static calls. An exception is thrown for null 1751 // receivers for non-static calls 1752 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1753 // Compiler1 can produce virtual call sites that can actually be statically bound 1754 // If we fell thru to below we would think that the site was going megamorphic 1755 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1756 // we'd try and do a vtable dispatch however methods that can be statically bound 1757 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1758 // reresolution of the call site (as if we did a handle_wrong_method and not an 1759 // plain ic_miss) and the site will be converted to an optimized virtual call site 1760 // never to miss again. I don't believe C2 will produce code like this but if it 1761 // did this would still be the correct thing to do for it too, hence no ifdef. 1762 // 1763 if (call_info.resolved_method()->can_be_statically_bound()) { 1764 methodHandle callee_method = SharedRuntime::reresolve_call_site(CHECK_(methodHandle())); 1765 if (TraceCallFixup) { 1766 RegisterMap reg_map(current, 1767 RegisterMap::UpdateMap::skip, 1768 RegisterMap::ProcessFrames::include, 1769 RegisterMap::WalkContinuation::skip); 1770 frame caller_frame = current->last_frame().sender(®_map); 1771 ResourceMark rm(current); 1772 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1773 callee_method->print_short_name(tty); 1774 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc())); 1775 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1776 } 1777 return callee_method; 1778 } 1779 1780 methodHandle callee_method(current, call_info.selected_method()); 1781 1782 #ifndef PRODUCT 1783 Atomic::inc(&_ic_miss_ctr); 1784 1785 // Statistics & Tracing 1786 if (TraceCallFixup) { 1787 ResourceMark rm(current); 1788 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1789 callee_method->print_short_name(tty); 1790 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1791 } 1792 1793 if (ICMissHistogram) { 1794 MutexLocker m(VMStatistic_lock); 1795 RegisterMap reg_map(current, 1796 RegisterMap::UpdateMap::skip, 1797 RegisterMap::ProcessFrames::include, 1798 RegisterMap::WalkContinuation::skip); 1799 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1800 // produce statistics under the lock 1801 trace_ic_miss(f.pc()); 1802 } 1803 #endif 1804 1805 // install an event collector so that when a vtable stub is created the 1806 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1807 // event can't be posted when the stub is created as locks are held 1808 // - instead the event will be deferred until the event collector goes 1809 // out of scope. 1810 JvmtiDynamicCodeEventCollector event_collector; 1811 1812 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1813 // Transitioning IC caches may require transition stubs. If we run out 1814 // of transition stubs, we have to drop locks and perform a safepoint 1815 // that refills them. 1816 RegisterMap reg_map(current, 1817 RegisterMap::UpdateMap::skip, 1818 RegisterMap::ProcessFrames::include, 1819 RegisterMap::WalkContinuation::skip); 1820 frame caller_frame = current->last_frame().sender(®_map); 1821 CodeBlob* cb = caller_frame.cb(); 1822 CompiledMethod* caller_nm = cb->as_compiled_method(); 1823 1824 for (;;) { 1825 ICRefillVerifier ic_refill_verifier; 1826 bool needs_ic_stub_refill = false; 1827 bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method, 1828 bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle())); 1829 if (successful || !needs_ic_stub_refill) { 1830 return callee_method; 1831 } else { 1832 InlineCacheBuffer::refill_ic_stubs(); 1833 } 1834 } 1835 } 1836 1837 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) { 1838 CompiledICLocker ml(caller_nm); 1839 if (is_static_call) { 1840 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr); 1841 if (!ssc->is_clean()) { 1842 return ssc->set_to_clean(); 1843 } 1844 } else { 1845 // compiled, dispatched call (which used to call an interpreted method) 1846 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1847 if (!inline_cache->is_clean()) { 1848 return inline_cache->set_to_clean(); 1849 } 1850 } 1851 return true; 1852 } 1853 1854 // 1855 // Resets a call-site in compiled code so it will get resolved again. 1856 // This routines handles both virtual call sites, optimized virtual call 1857 // sites, and static call sites. Typically used to change a call sites 1858 // destination from compiled to interpreted. 1859 // 1860 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1861 JavaThread* current = THREAD; 1862 ResourceMark rm(current); 1863 RegisterMap reg_map(current, 1864 RegisterMap::UpdateMap::skip, 1865 RegisterMap::ProcessFrames::include, 1866 RegisterMap::WalkContinuation::skip); 1867 frame stub_frame = current->last_frame(); 1868 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1869 frame caller = stub_frame.sender(®_map); 1870 1871 // Do nothing if the frame isn't a live compiled frame. 1872 // nmethod could be deoptimized by the time we get here 1873 // so no update to the caller is needed. 1874 1875 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1876 (caller.is_native_frame() && ((CompiledMethod*)caller.cb())->method()->is_continuation_enter_intrinsic())) { 1877 1878 address pc = caller.pc(); 1879 1880 // Check for static or virtual call 1881 bool is_static_call = false; 1882 CompiledMethod* caller_nm = CodeCache::find_compiled(pc); 1883 1884 // Default call_addr is the location of the "basic" call. 1885 // Determine the address of the call we a reresolving. With 1886 // Inline Caches we will always find a recognizable call. 1887 // With Inline Caches disabled we may or may not find a 1888 // recognizable call. We will always find a call for static 1889 // calls and for optimized virtual calls. For vanilla virtual 1890 // calls it depends on the state of the UseInlineCaches switch. 1891 // 1892 // With Inline Caches disabled we can get here for a virtual call 1893 // for two reasons: 1894 // 1 - calling an abstract method. The vtable for abstract methods 1895 // will run us thru handle_wrong_method and we will eventually 1896 // end up in the interpreter to throw the ame. 1897 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1898 // call and between the time we fetch the entry address and 1899 // we jump to it the target gets deoptimized. Similar to 1 1900 // we will wind up in the interprter (thru a c2i with c2). 1901 // 1902 address call_addr = nullptr; 1903 { 1904 // Get call instruction under lock because another thread may be 1905 // busy patching it. 1906 CompiledICLocker ml(caller_nm); 1907 // Location of call instruction 1908 call_addr = caller_nm->call_instruction_address(pc); 1909 } 1910 1911 // Check relocations for the matching call to 1) avoid false positives, 1912 // and 2) determine the type. 1913 if (call_addr != nullptr) { 1914 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1915 // bytes back in the instruction stream so we must also check for reloc info. 1916 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1917 bool ret = iter.next(); // Get item 1918 if (ret) { 1919 bool is_static_call = false; 1920 switch (iter.type()) { 1921 case relocInfo::static_call_type: 1922 is_static_call = true; 1923 1924 case relocInfo::virtual_call_type: 1925 case relocInfo::opt_virtual_call_type: 1926 // Cleaning the inline cache will force a new resolve. This is more robust 1927 // than directly setting it to the new destination, since resolving of calls 1928 // is always done through the same code path. (experience shows that it 1929 // leads to very hard to track down bugs, if an inline cache gets updated 1930 // to a wrong method). It should not be performance critical, since the 1931 // resolve is only done once. 1932 guarantee(iter.addr() == call_addr, "must find call"); 1933 for (;;) { 1934 ICRefillVerifier ic_refill_verifier; 1935 if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) { 1936 InlineCacheBuffer::refill_ic_stubs(); 1937 } else { 1938 break; 1939 } 1940 } 1941 break; 1942 default: 1943 break; 1944 } 1945 } 1946 } 1947 } 1948 1949 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1950 1951 1952 #ifndef PRODUCT 1953 Atomic::inc(&_wrong_method_ctr); 1954 1955 if (TraceCallFixup) { 1956 ResourceMark rm(current); 1957 tty->print("handle_wrong_method reresolving call to"); 1958 callee_method->print_short_name(tty); 1959 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1960 } 1961 #endif 1962 1963 return callee_method; 1964 } 1965 1966 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1967 // The faulting unsafe accesses should be changed to throw the error 1968 // synchronously instead. Meanwhile the faulting instruction will be 1969 // skipped over (effectively turning it into a no-op) and an 1970 // asynchronous exception will be raised which the thread will 1971 // handle at a later point. If the instruction is a load it will 1972 // return garbage. 1973 1974 // Request an async exception. 1975 thread->set_pending_unsafe_access_error(); 1976 1977 // Return address of next instruction to execute. 1978 return next_pc; 1979 } 1980 1981 #ifdef ASSERT 1982 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1983 const BasicType* sig_bt, 1984 const VMRegPair* regs) { 1985 ResourceMark rm; 1986 const int total_args_passed = method->size_of_parameters(); 1987 const VMRegPair* regs_with_member_name = regs; 1988 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1989 1990 const int member_arg_pos = total_args_passed - 1; 1991 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1992 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1993 1994 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1995 1996 for (int i = 0; i < member_arg_pos; i++) { 1997 VMReg a = regs_with_member_name[i].first(); 1998 VMReg b = regs_without_member_name[i].first(); 1999 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 2000 } 2001 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 2002 } 2003 #endif 2004 2005 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) { 2006 if (destination != entry_point) { 2007 CodeBlob* callee = CodeCache::find_blob(destination); 2008 // callee == cb seems weird. It means calling interpreter thru stub. 2009 if (callee != nullptr && (callee == cb || callee->is_adapter_blob())) { 2010 // static call or optimized virtual 2011 if (TraceCallFixup) { 2012 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 2013 moop->print_short_name(tty); 2014 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 2015 } 2016 return true; 2017 } else { 2018 if (TraceCallFixup) { 2019 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 2020 moop->print_short_name(tty); 2021 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 2022 } 2023 // assert is too strong could also be resolve destinations. 2024 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 2025 } 2026 } else { 2027 if (TraceCallFixup) { 2028 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 2029 moop->print_short_name(tty); 2030 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 2031 } 2032 } 2033 return false; 2034 } 2035 2036 // --------------------------------------------------------------------------- 2037 // We are calling the interpreter via a c2i. Normally this would mean that 2038 // we were called by a compiled method. However we could have lost a race 2039 // where we went int -> i2c -> c2i and so the caller could in fact be 2040 // interpreted. If the caller is compiled we attempt to patch the caller 2041 // so he no longer calls into the interpreter. 2042 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 2043 Method* moop(method); 2044 2045 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 2046 2047 // It's possible that deoptimization can occur at a call site which hasn't 2048 // been resolved yet, in which case this function will be called from 2049 // an nmethod that has been patched for deopt and we can ignore the 2050 // request for a fixup. 2051 // Also it is possible that we lost a race in that from_compiled_entry 2052 // is now back to the i2c in that case we don't need to patch and if 2053 // we did we'd leap into space because the callsite needs to use 2054 // "to interpreter" stub in order to load up the Method*. Don't 2055 // ask me how I know this... 2056 2057 // Result from nmethod::is_unloading is not stable across safepoints. 2058 NoSafepointVerifier nsv; 2059 2060 CompiledMethod* callee = moop->code(); 2061 if (callee == nullptr) { 2062 return; 2063 } 2064 2065 // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc 2066 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 2067 2068 CodeBlob* cb = CodeCache::find_blob(caller_pc); 2069 if (cb == nullptr || !cb->is_compiled() || callee->is_unloading()) { 2070 return; 2071 } 2072 2073 // The check above makes sure this is a nmethod. 2074 CompiledMethod* nm = cb->as_compiled_method_or_null(); 2075 assert(nm, "must be"); 2076 2077 // Get the return PC for the passed caller PC. 2078 address return_pc = caller_pc + frame::pc_return_offset; 2079 2080 // There is a benign race here. We could be attempting to patch to a compiled 2081 // entry point at the same time the callee is being deoptimized. If that is 2082 // the case then entry_point may in fact point to a c2i and we'd patch the 2083 // call site with the same old data. clear_code will set code() to null 2084 // at the end of it. If we happen to see that null then we can skip trying 2085 // to patch. If we hit the window where the callee has a c2i in the 2086 // from_compiled_entry and the null isn't present yet then we lose the race 2087 // and patch the code with the same old data. Asi es la vida. 2088 2089 if (moop->code() == nullptr) return; 2090 2091 if (nm->is_in_use()) { 2092 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 2093 CompiledICLocker ic_locker(nm); 2094 if (NativeCall::is_call_before(return_pc)) { 2095 ResourceMark mark; 2096 NativeCallWrapper* call = nm->call_wrapper_before(return_pc); 2097 // 2098 // bug 6281185. We might get here after resolving a call site to a vanilla 2099 // virtual call. Because the resolvee uses the verified entry it may then 2100 // see compiled code and attempt to patch the site by calling us. This would 2101 // then incorrectly convert the call site to optimized and its downhill from 2102 // there. If you're lucky you'll get the assert in the bugid, if not you've 2103 // just made a call site that could be megamorphic into a monomorphic site 2104 // for the rest of its life! Just another racing bug in the life of 2105 // fixup_callers_callsite ... 2106 // 2107 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 2108 iter.next(); 2109 assert(iter.has_current(), "must have a reloc at java call site"); 2110 relocInfo::relocType typ = iter.reloc()->type(); 2111 if (typ != relocInfo::static_call_type && 2112 typ != relocInfo::opt_virtual_call_type && 2113 typ != relocInfo::static_stub_type) { 2114 return; 2115 } 2116 if (nm->method()->is_continuation_enter_intrinsic()) { 2117 if (ContinuationEntry::is_interpreted_call(call->instruction_address())) { 2118 return; 2119 } 2120 } 2121 address destination = call->destination(); 2122 address entry_point = callee->verified_entry_point(); 2123 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) { 2124 call->set_destination_mt_safe(entry_point); 2125 } 2126 } 2127 } 2128 JRT_END 2129 2130 2131 // same as JVM_Arraycopy, but called directly from compiled code 2132 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 2133 oopDesc* dest, jint dest_pos, 2134 jint length, 2135 JavaThread* current)) { 2136 #ifndef PRODUCT 2137 _slow_array_copy_ctr++; 2138 #endif 2139 // Check if we have null pointers 2140 if (src == nullptr || dest == nullptr) { 2141 THROW(vmSymbols::java_lang_NullPointerException()); 2142 } 2143 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 2144 // even though the copy_array API also performs dynamic checks to ensure 2145 // that src and dest are truly arrays (and are conformable). 2146 // The copy_array mechanism is awkward and could be removed, but 2147 // the compilers don't call this function except as a last resort, 2148 // so it probably doesn't matter. 2149 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 2150 (arrayOopDesc*)dest, dest_pos, 2151 length, current); 2152 } 2153 JRT_END 2154 2155 // The caller of generate_class_cast_message() (or one of its callers) 2156 // must use a ResourceMark in order to correctly free the result. 2157 char* SharedRuntime::generate_class_cast_message( 2158 JavaThread* thread, Klass* caster_klass) { 2159 2160 // Get target class name from the checkcast instruction 2161 vframeStream vfst(thread, true); 2162 assert(!vfst.at_end(), "Java frame must exist"); 2163 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 2164 constantPoolHandle cpool(thread, vfst.method()->constants()); 2165 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 2166 Symbol* target_klass_name = nullptr; 2167 if (target_klass == nullptr) { 2168 // This klass should be resolved, but just in case, get the name in the klass slot. 2169 target_klass_name = cpool->klass_name_at(cc.index()); 2170 } 2171 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 2172 } 2173 2174 2175 // The caller of generate_class_cast_message() (or one of its callers) 2176 // must use a ResourceMark in order to correctly free the result. 2177 char* SharedRuntime::generate_class_cast_message( 2178 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 2179 const char* caster_name = caster_klass->external_name(); 2180 2181 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 2182 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 2183 target_klass->external_name(); 2184 2185 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 2186 2187 const char* caster_klass_description = ""; 2188 const char* target_klass_description = ""; 2189 const char* klass_separator = ""; 2190 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 2191 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 2192 } else { 2193 caster_klass_description = caster_klass->class_in_module_of_loader(); 2194 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 2195 klass_separator = (target_klass != nullptr) ? "; " : ""; 2196 } 2197 2198 // add 3 for parenthesis and preceding space 2199 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2200 2201 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2202 if (message == nullptr) { 2203 // Shouldn't happen, but don't cause even more problems if it does 2204 message = const_cast<char*>(caster_klass->external_name()); 2205 } else { 2206 jio_snprintf(message, 2207 msglen, 2208 "class %s cannot be cast to class %s (%s%s%s)", 2209 caster_name, 2210 target_name, 2211 caster_klass_description, 2212 klass_separator, 2213 target_klass_description 2214 ); 2215 } 2216 return message; 2217 } 2218 2219 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2220 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2221 JRT_END 2222 2223 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2224 if (!SafepointSynchronize::is_synchronizing()) { 2225 // Only try quick_enter() if we're not trying to reach a safepoint 2226 // so that the calling thread reaches the safepoint more quickly. 2227 if (ObjectSynchronizer::quick_enter(obj, current, lock)) { 2228 return; 2229 } 2230 } 2231 // NO_ASYNC required because an async exception on the state transition destructor 2232 // would leave you with the lock held and it would never be released. 2233 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2234 // and the model is that an exception implies the method failed. 2235 JRT_BLOCK_NO_ASYNC 2236 Handle h_obj(THREAD, obj); 2237 ObjectSynchronizer::enter(h_obj, lock, current); 2238 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2239 JRT_BLOCK_END 2240 } 2241 2242 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2243 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2244 SharedRuntime::monitor_enter_helper(obj, lock, current); 2245 JRT_END 2246 2247 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2248 assert(JavaThread::current() == current, "invariant"); 2249 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2250 ExceptionMark em(current); 2251 // The object could become unlocked through a JNI call, which we have no other checks for. 2252 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2253 if (obj->is_unlocked()) { 2254 if (CheckJNICalls) { 2255 fatal("Object has been unlocked by JNI"); 2256 } 2257 return; 2258 } 2259 ObjectSynchronizer::exit(obj, lock, current); 2260 } 2261 2262 // Handles the uncommon cases of monitor unlocking in compiled code 2263 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2264 assert(current == JavaThread::current(), "pre-condition"); 2265 SharedRuntime::monitor_exit_helper(obj, lock, current); 2266 JRT_END 2267 2268 #ifndef PRODUCT 2269 2270 void SharedRuntime::print_statistics() { 2271 ttyLocker ttyl; 2272 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2273 2274 SharedRuntime::print_ic_miss_histogram(); 2275 2276 // Dump the JRT_ENTRY counters 2277 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 2278 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr); 2279 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 2280 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 2281 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 2282 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 2283 2284 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr); 2285 tty->print_cr("%5d wrong method", _wrong_method_ctr); 2286 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr); 2287 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr); 2288 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2289 2290 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr); 2291 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr); 2292 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr); 2293 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr); 2294 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr); 2295 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr); 2296 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr); 2297 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr); 2298 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr); 2299 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr); 2300 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr); 2301 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr); 2302 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr); 2303 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr); 2304 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr); 2305 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr); 2306 2307 AdapterHandlerLibrary::print_statistics(); 2308 2309 if (xtty != nullptr) xtty->tail("statistics"); 2310 } 2311 2312 inline double percent(int64_t x, int64_t y) { 2313 return 100.0 * x / MAX2(y, (int64_t)1); 2314 } 2315 2316 class MethodArityHistogram { 2317 public: 2318 enum { MAX_ARITY = 256 }; 2319 private: 2320 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2321 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2322 static uint64_t _total_compiled_calls; 2323 static uint64_t _max_compiled_calls_per_method; 2324 static int _max_arity; // max. arity seen 2325 static int _max_size; // max. arg size seen 2326 2327 static void add_method_to_histogram(nmethod* nm) { 2328 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2329 if (method != nullptr) { 2330 ArgumentCount args(method->signature()); 2331 int arity = args.size() + (method->is_static() ? 0 : 1); 2332 int argsize = method->size_of_parameters(); 2333 arity = MIN2(arity, MAX_ARITY-1); 2334 argsize = MIN2(argsize, MAX_ARITY-1); 2335 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2336 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2337 _total_compiled_calls += count; 2338 _arity_histogram[arity] += count; 2339 _size_histogram[argsize] += count; 2340 _max_arity = MAX2(_max_arity, arity); 2341 _max_size = MAX2(_max_size, argsize); 2342 } 2343 } 2344 2345 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2346 const int N = MIN2(9, n); 2347 double sum = 0; 2348 double weighted_sum = 0; 2349 for (int i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 2350 if (sum >= 1.0) { // prevent divide by zero or divide overflow 2351 double rest = sum; 2352 double percent = sum / 100; 2353 for (int i = 0; i <= N; i++) { 2354 rest -= histo[i]; 2355 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], histo[i] / percent); 2356 } 2357 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2358 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2359 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2360 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2361 } else { 2362 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2363 } 2364 } 2365 2366 void print_histogram() { 2367 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2368 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2369 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2370 print_histogram_helper(_max_size, _size_histogram, "size"); 2371 tty->cr(); 2372 } 2373 2374 public: 2375 MethodArityHistogram() { 2376 // Take the Compile_lock to protect against changes in the CodeBlob structures 2377 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2378 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2379 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2380 _max_arity = _max_size = 0; 2381 _total_compiled_calls = 0; 2382 _max_compiled_calls_per_method = 0; 2383 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2384 CodeCache::nmethods_do(add_method_to_histogram); 2385 print_histogram(); 2386 } 2387 }; 2388 2389 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2390 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2391 uint64_t MethodArityHistogram::_total_compiled_calls; 2392 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2393 int MethodArityHistogram::_max_arity; 2394 int MethodArityHistogram::_max_size; 2395 2396 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2397 tty->print_cr("Calls from compiled code:"); 2398 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2399 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2400 int64_t mono_i = _nof_interface_calls; 2401 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2402 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2403 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2404 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2405 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2406 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2407 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2408 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2409 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2410 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2411 tty->cr(); 2412 tty->print_cr("Note 1: counter updates are not MT-safe."); 2413 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2414 tty->print_cr(" %% in nested categories are relative to their category"); 2415 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2416 tty->cr(); 2417 2418 MethodArityHistogram h; 2419 } 2420 #endif 2421 2422 #ifndef PRODUCT 2423 static int _lookups; // number of calls to lookup 2424 static int _equals; // number of buckets checked with matching hash 2425 static int _hits; // number of successful lookups 2426 static int _compact; // number of equals calls with compact signature 2427 #endif 2428 2429 // A simple wrapper class around the calling convention information 2430 // that allows sharing of adapters for the same calling convention. 2431 class AdapterFingerPrint : public CHeapObj<mtCode> { 2432 private: 2433 enum { 2434 _basic_type_bits = 4, 2435 _basic_type_mask = right_n_bits(_basic_type_bits), 2436 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2437 _compact_int_count = 3 2438 }; 2439 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2440 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2441 2442 union { 2443 int _compact[_compact_int_count]; 2444 int* _fingerprint; 2445 } _value; 2446 int _length; // A negative length indicates the fingerprint is in the compact form, 2447 // Otherwise _value._fingerprint is the array. 2448 2449 // Remap BasicTypes that are handled equivalently by the adapters. 2450 // These are correct for the current system but someday it might be 2451 // necessary to make this mapping platform dependent. 2452 static int adapter_encoding(BasicType in) { 2453 switch (in) { 2454 case T_BOOLEAN: 2455 case T_BYTE: 2456 case T_SHORT: 2457 case T_CHAR: 2458 // There are all promoted to T_INT in the calling convention 2459 return T_INT; 2460 2461 case T_OBJECT: 2462 case T_ARRAY: 2463 // In other words, we assume that any register good enough for 2464 // an int or long is good enough for a managed pointer. 2465 #ifdef _LP64 2466 return T_LONG; 2467 #else 2468 return T_INT; 2469 #endif 2470 2471 case T_INT: 2472 case T_LONG: 2473 case T_FLOAT: 2474 case T_DOUBLE: 2475 case T_VOID: 2476 return in; 2477 2478 default: 2479 ShouldNotReachHere(); 2480 return T_CONFLICT; 2481 } 2482 } 2483 2484 public: 2485 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2486 // The fingerprint is based on the BasicType signature encoded 2487 // into an array of ints with eight entries per int. 2488 int* ptr; 2489 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2490 if (len <= _compact_int_count) { 2491 assert(_compact_int_count == 3, "else change next line"); 2492 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2493 // Storing the signature encoded as signed chars hits about 98% 2494 // of the time. 2495 _length = -len; 2496 ptr = _value._compact; 2497 } else { 2498 _length = len; 2499 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2500 ptr = _value._fingerprint; 2501 } 2502 2503 // Now pack the BasicTypes with 8 per int 2504 int sig_index = 0; 2505 for (int index = 0; index < len; index++) { 2506 int value = 0; 2507 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2508 int bt = adapter_encoding(sig_bt[sig_index++]); 2509 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2510 value = (value << _basic_type_bits) | bt; 2511 } 2512 ptr[index] = value; 2513 } 2514 } 2515 2516 ~AdapterFingerPrint() { 2517 if (_length > 0) { 2518 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2519 } 2520 } 2521 2522 int value(int index) { 2523 if (_length < 0) { 2524 return _value._compact[index]; 2525 } 2526 return _value._fingerprint[index]; 2527 } 2528 int length() { 2529 if (_length < 0) return -_length; 2530 return _length; 2531 } 2532 2533 bool is_compact() { 2534 return _length <= 0; 2535 } 2536 2537 unsigned int compute_hash() { 2538 int hash = 0; 2539 for (int i = 0; i < length(); i++) { 2540 int v = value(i); 2541 hash = (hash << 8) ^ v ^ (hash >> 5); 2542 } 2543 return (unsigned int)hash; 2544 } 2545 2546 const char* as_string() { 2547 stringStream st; 2548 st.print("0x"); 2549 for (int i = 0; i < length(); i++) { 2550 st.print("%x", value(i)); 2551 } 2552 return st.as_string(); 2553 } 2554 2555 #ifndef PRODUCT 2556 // Reconstitutes the basic type arguments from the fingerprint, 2557 // producing strings like LIJDF 2558 const char* as_basic_args_string() { 2559 stringStream st; 2560 bool long_prev = false; 2561 for (int i = 0; i < length(); i++) { 2562 unsigned val = (unsigned)value(i); 2563 // args are packed so that first/lower arguments are in the highest 2564 // bits of each int value, so iterate from highest to the lowest 2565 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2566 unsigned v = (val >> j) & _basic_type_mask; 2567 if (v == 0) { 2568 assert(i == length() - 1, "Only expect zeroes in the last word"); 2569 continue; 2570 } 2571 if (long_prev) { 2572 long_prev = false; 2573 if (v == T_VOID) { 2574 st.print("J"); 2575 } else { 2576 st.print("L"); 2577 } 2578 } 2579 switch (v) { 2580 case T_INT: st.print("I"); break; 2581 case T_LONG: long_prev = true; break; 2582 case T_FLOAT: st.print("F"); break; 2583 case T_DOUBLE: st.print("D"); break; 2584 case T_VOID: break; 2585 default: ShouldNotReachHere(); 2586 } 2587 } 2588 } 2589 if (long_prev) { 2590 st.print("L"); 2591 } 2592 return st.as_string(); 2593 } 2594 #endif // !product 2595 2596 bool equals(AdapterFingerPrint* other) { 2597 if (other->_length != _length) { 2598 return false; 2599 } 2600 if (_length < 0) { 2601 assert(_compact_int_count == 3, "else change next line"); 2602 return _value._compact[0] == other->_value._compact[0] && 2603 _value._compact[1] == other->_value._compact[1] && 2604 _value._compact[2] == other->_value._compact[2]; 2605 } else { 2606 for (int i = 0; i < _length; i++) { 2607 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2608 return false; 2609 } 2610 } 2611 } 2612 return true; 2613 } 2614 2615 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2616 NOT_PRODUCT(_equals++); 2617 return fp1->equals(fp2); 2618 } 2619 2620 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2621 return fp->compute_hash(); 2622 } 2623 }; 2624 2625 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2626 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2627 AnyObj::C_HEAP, mtCode, 2628 AdapterFingerPrint::compute_hash, 2629 AdapterFingerPrint::equals>; 2630 static AdapterHandlerTable* _adapter_handler_table; 2631 2632 // Find a entry with the same fingerprint if it exists 2633 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2634 NOT_PRODUCT(_lookups++); 2635 assert_lock_strong(AdapterHandlerLibrary_lock); 2636 AdapterFingerPrint fp(total_args_passed, sig_bt); 2637 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2638 if (entry != nullptr) { 2639 #ifndef PRODUCT 2640 if (fp.is_compact()) _compact++; 2641 _hits++; 2642 #endif 2643 return *entry; 2644 } 2645 return nullptr; 2646 } 2647 2648 #ifndef PRODUCT 2649 static void print_table_statistics() { 2650 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2651 return sizeof(*key) + sizeof(*a); 2652 }; 2653 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2654 ts.print(tty, "AdapterHandlerTable"); 2655 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2656 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2657 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2658 _lookups, _equals, _hits, _compact); 2659 } 2660 #endif 2661 2662 // --------------------------------------------------------------------------- 2663 // Implementation of AdapterHandlerLibrary 2664 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2665 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2666 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2667 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2668 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2669 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2670 const int AdapterHandlerLibrary_size = 16*K; 2671 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2672 2673 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2674 return _buffer; 2675 } 2676 2677 static void post_adapter_creation(const AdapterBlob* new_adapter, 2678 const AdapterHandlerEntry* entry) { 2679 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2680 char blob_id[256]; 2681 jio_snprintf(blob_id, 2682 sizeof(blob_id), 2683 "%s(%s)", 2684 new_adapter->name(), 2685 entry->fingerprint()->as_string()); 2686 if (Forte::is_enabled()) { 2687 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2688 } 2689 2690 if (JvmtiExport::should_post_dynamic_code_generated()) { 2691 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2692 } 2693 } 2694 } 2695 2696 void AdapterHandlerLibrary::initialize() { 2697 ResourceMark rm; 2698 AdapterBlob* no_arg_blob = nullptr; 2699 AdapterBlob* int_arg_blob = nullptr; 2700 AdapterBlob* obj_arg_blob = nullptr; 2701 AdapterBlob* obj_int_arg_blob = nullptr; 2702 AdapterBlob* obj_obj_arg_blob = nullptr; 2703 { 2704 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2705 MutexLocker mu(AdapterHandlerLibrary_lock); 2706 2707 // Create a special handler for abstract methods. Abstract methods 2708 // are never compiled so an i2c entry is somewhat meaningless, but 2709 // throw AbstractMethodError just in case. 2710 // Pass wrong_method_abstract for the c2i transitions to return 2711 // AbstractMethodError for invalid invocations. 2712 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2713 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr), 2714 StubRoutines::throw_AbstractMethodError_entry(), 2715 wrong_method_abstract, wrong_method_abstract); 2716 2717 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2718 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true); 2719 2720 BasicType obj_args[] = { T_OBJECT }; 2721 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true); 2722 2723 BasicType int_args[] = { T_INT }; 2724 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true); 2725 2726 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2727 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true); 2728 2729 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2730 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true); 2731 2732 assert(no_arg_blob != nullptr && 2733 obj_arg_blob != nullptr && 2734 int_arg_blob != nullptr && 2735 obj_int_arg_blob != nullptr && 2736 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2737 } 2738 2739 // Outside of the lock 2740 post_adapter_creation(no_arg_blob, _no_arg_handler); 2741 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2742 post_adapter_creation(int_arg_blob, _int_arg_handler); 2743 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2744 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2745 } 2746 2747 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2748 address i2c_entry, 2749 address c2i_entry, 2750 address c2i_unverified_entry, 2751 address c2i_no_clinit_check_entry) { 2752 // Insert an entry into the table 2753 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, 2754 c2i_no_clinit_check_entry); 2755 } 2756 2757 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2758 if (method->is_abstract()) { 2759 return _abstract_method_handler; 2760 } 2761 int total_args_passed = method->size_of_parameters(); // All args on stack 2762 if (total_args_passed == 0) { 2763 return _no_arg_handler; 2764 } else if (total_args_passed == 1) { 2765 if (!method->is_static()) { 2766 return _obj_arg_handler; 2767 } 2768 switch (method->signature()->char_at(1)) { 2769 case JVM_SIGNATURE_CLASS: 2770 case JVM_SIGNATURE_ARRAY: 2771 return _obj_arg_handler; 2772 case JVM_SIGNATURE_INT: 2773 case JVM_SIGNATURE_BOOLEAN: 2774 case JVM_SIGNATURE_CHAR: 2775 case JVM_SIGNATURE_BYTE: 2776 case JVM_SIGNATURE_SHORT: 2777 return _int_arg_handler; 2778 } 2779 } else if (total_args_passed == 2 && 2780 !method->is_static()) { 2781 switch (method->signature()->char_at(1)) { 2782 case JVM_SIGNATURE_CLASS: 2783 case JVM_SIGNATURE_ARRAY: 2784 return _obj_obj_arg_handler; 2785 case JVM_SIGNATURE_INT: 2786 case JVM_SIGNATURE_BOOLEAN: 2787 case JVM_SIGNATURE_CHAR: 2788 case JVM_SIGNATURE_BYTE: 2789 case JVM_SIGNATURE_SHORT: 2790 return _obj_int_arg_handler; 2791 } 2792 } 2793 return nullptr; 2794 } 2795 2796 class AdapterSignatureIterator : public SignatureIterator { 2797 private: 2798 BasicType stack_sig_bt[16]; 2799 BasicType* sig_bt; 2800 int index; 2801 2802 public: 2803 AdapterSignatureIterator(Symbol* signature, 2804 fingerprint_t fingerprint, 2805 bool is_static, 2806 int total_args_passed) : 2807 SignatureIterator(signature, fingerprint), 2808 index(0) 2809 { 2810 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2811 if (!is_static) { // Pass in receiver first 2812 sig_bt[index++] = T_OBJECT; 2813 } 2814 do_parameters_on(this); 2815 } 2816 2817 BasicType* basic_types() { 2818 return sig_bt; 2819 } 2820 2821 #ifdef ASSERT 2822 int slots() { 2823 return index; 2824 } 2825 #endif 2826 2827 private: 2828 2829 friend class SignatureIterator; // so do_parameters_on can call do_type 2830 void do_type(BasicType type) { 2831 sig_bt[index++] = type; 2832 if (type == T_LONG || type == T_DOUBLE) { 2833 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2834 } 2835 } 2836 }; 2837 2838 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2839 // Use customized signature handler. Need to lock around updates to 2840 // the _adapter_handler_table (it is not safe for concurrent readers 2841 // and a single writer: this could be fixed if it becomes a 2842 // problem). 2843 2844 // Fast-path for trivial adapters 2845 AdapterHandlerEntry* entry = get_simple_adapter(method); 2846 if (entry != nullptr) { 2847 return entry; 2848 } 2849 2850 ResourceMark rm; 2851 AdapterBlob* new_adapter = nullptr; 2852 2853 // Fill in the signature array, for the calling-convention call. 2854 int total_args_passed = method->size_of_parameters(); // All args on stack 2855 2856 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2857 method->is_static(), total_args_passed); 2858 assert(si.slots() == total_args_passed, ""); 2859 BasicType* sig_bt = si.basic_types(); 2860 { 2861 MutexLocker mu(AdapterHandlerLibrary_lock); 2862 2863 // Lookup method signature's fingerprint 2864 entry = lookup(total_args_passed, sig_bt); 2865 2866 if (entry != nullptr) { 2867 #ifdef ASSERT 2868 if (VerifyAdapterSharing) { 2869 AdapterBlob* comparison_blob = nullptr; 2870 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false); 2871 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2872 assert(comparison_entry->compare_code(entry), "code must match"); 2873 // Release the one just created and return the original 2874 delete comparison_entry; 2875 } 2876 #endif 2877 return entry; 2878 } 2879 2880 entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true); 2881 } 2882 2883 // Outside of the lock 2884 if (new_adapter != nullptr) { 2885 post_adapter_creation(new_adapter, entry); 2886 } 2887 return entry; 2888 } 2889 2890 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2891 int total_args_passed, 2892 BasicType* sig_bt, 2893 bool allocate_code_blob) { 2894 2895 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 2896 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 2897 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 2898 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 2899 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 2900 2901 VMRegPair stack_regs[16]; 2902 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2903 2904 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2905 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2906 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2907 CodeBuffer buffer(buf); 2908 short buffer_locs[20]; 2909 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2910 sizeof(buffer_locs)/sizeof(relocInfo)); 2911 2912 // Make a C heap allocated version of the fingerprint to store in the adapter 2913 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2914 MacroAssembler _masm(&buffer); 2915 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2916 total_args_passed, 2917 comp_args_on_stack, 2918 sig_bt, 2919 regs, 2920 fingerprint); 2921 2922 #ifdef ASSERT 2923 if (VerifyAdapterSharing) { 2924 entry->save_code(buf->code_begin(), buffer.insts_size()); 2925 if (!allocate_code_blob) { 2926 return entry; 2927 } 2928 } 2929 #endif 2930 2931 new_adapter = AdapterBlob::create(&buffer); 2932 NOT_PRODUCT(int insts_size = buffer.insts_size()); 2933 if (new_adapter == nullptr) { 2934 // CodeCache is full, disable compilation 2935 // Ought to log this but compile log is only per compile thread 2936 // and we're some non descript Java thread. 2937 return nullptr; 2938 } 2939 entry->relocate(new_adapter->content_begin()); 2940 #ifndef PRODUCT 2941 // debugging support 2942 if (PrintAdapterHandlers || PrintStubCode) { 2943 ttyLocker ttyl; 2944 entry->print_adapter_on(tty); 2945 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2946 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 2947 fingerprint->as_string(), insts_size); 2948 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 2949 if (Verbose || PrintStubCode) { 2950 address first_pc = entry->base_address(); 2951 if (first_pc != nullptr) { 2952 Disassembler::decode(first_pc, first_pc + insts_size, tty 2953 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 2954 tty->cr(); 2955 } 2956 } 2957 } 2958 #endif 2959 2960 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2961 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2962 if (contains_all_checks || !VerifyAdapterCalls) { 2963 assert_lock_strong(AdapterHandlerLibrary_lock); 2964 _adapter_handler_table->put(fingerprint, entry); 2965 } 2966 return entry; 2967 } 2968 2969 address AdapterHandlerEntry::base_address() { 2970 address base = _i2c_entry; 2971 if (base == nullptr) base = _c2i_entry; 2972 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 2973 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 2974 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 2975 return base; 2976 } 2977 2978 void AdapterHandlerEntry::relocate(address new_base) { 2979 address old_base = base_address(); 2980 assert(old_base != nullptr, ""); 2981 ptrdiff_t delta = new_base - old_base; 2982 if (_i2c_entry != nullptr) 2983 _i2c_entry += delta; 2984 if (_c2i_entry != nullptr) 2985 _c2i_entry += delta; 2986 if (_c2i_unverified_entry != nullptr) 2987 _c2i_unverified_entry += delta; 2988 if (_c2i_no_clinit_check_entry != nullptr) 2989 _c2i_no_clinit_check_entry += delta; 2990 assert(base_address() == new_base, ""); 2991 } 2992 2993 2994 AdapterHandlerEntry::~AdapterHandlerEntry() { 2995 delete _fingerprint; 2996 #ifdef ASSERT 2997 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2998 #endif 2999 } 3000 3001 3002 #ifdef ASSERT 3003 // Capture the code before relocation so that it can be compared 3004 // against other versions. If the code is captured after relocation 3005 // then relative instructions won't be equivalent. 3006 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3007 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3008 _saved_code_length = length; 3009 memcpy(_saved_code, buffer, length); 3010 } 3011 3012 3013 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3014 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3015 3016 if (other->_saved_code_length != _saved_code_length) { 3017 return false; 3018 } 3019 3020 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3021 } 3022 #endif 3023 3024 3025 /** 3026 * Create a native wrapper for this native method. The wrapper converts the 3027 * Java-compiled calling convention to the native convention, handles 3028 * arguments, and transitions to native. On return from the native we transition 3029 * back to java blocking if a safepoint is in progress. 3030 */ 3031 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3032 ResourceMark rm; 3033 nmethod* nm = nullptr; 3034 3035 // Check if memory should be freed before allocation 3036 CodeCache::gc_on_allocation(); 3037 3038 assert(method->is_native(), "must be native"); 3039 assert(method->is_special_native_intrinsic() || 3040 method->has_native_function(), "must have something valid to call!"); 3041 3042 { 3043 // Perform the work while holding the lock, but perform any printing outside the lock 3044 MutexLocker mu(AdapterHandlerLibrary_lock); 3045 // See if somebody beat us to it 3046 if (method->code() != nullptr) { 3047 return; 3048 } 3049 3050 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3051 assert(compile_id > 0, "Must generate native wrapper"); 3052 3053 3054 ResourceMark rm; 3055 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3056 if (buf != nullptr) { 3057 CodeBuffer buffer(buf); 3058 3059 if (method->is_continuation_enter_intrinsic()) { 3060 buffer.initialize_stubs_size(192); 3061 } 3062 3063 struct { double data[20]; } locs_buf; 3064 struct { double data[20]; } stubs_locs_buf; 3065 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3066 #if defined(AARCH64) || defined(PPC64) 3067 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3068 // in the constant pool to ensure ordering between the barrier and oops 3069 // accesses. For native_wrappers we need a constant. 3070 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3071 // static java call that is resolved in the runtime. 3072 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3073 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3074 } 3075 #endif 3076 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3077 MacroAssembler _masm(&buffer); 3078 3079 // Fill in the signature array, for the calling-convention call. 3080 const int total_args_passed = method->size_of_parameters(); 3081 3082 VMRegPair stack_regs[16]; 3083 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3084 3085 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3086 method->is_static(), total_args_passed); 3087 BasicType* sig_bt = si.basic_types(); 3088 assert(si.slots() == total_args_passed, ""); 3089 BasicType ret_type = si.return_type(); 3090 3091 // Now get the compiled-Java arguments layout. 3092 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3093 3094 // Generate the compiled-to-native wrapper code 3095 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3096 3097 if (nm != nullptr) { 3098 { 3099 MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag); 3100 if (nm->make_in_use()) { 3101 method->set_code(method, nm); 3102 } 3103 } 3104 3105 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple)); 3106 if (directive->PrintAssemblyOption) { 3107 nm->print_code(); 3108 } 3109 DirectivesStack::release(directive); 3110 } 3111 } 3112 } // Unlock AdapterHandlerLibrary_lock 3113 3114 3115 // Install the generated code. 3116 if (nm != nullptr) { 3117 const char *msg = method->is_static() ? "(static)" : ""; 3118 CompileTask::print_ul(nm, msg); 3119 if (PrintCompilation) { 3120 ttyLocker ttyl; 3121 CompileTask::print(tty, nm, msg); 3122 } 3123 nm->post_compiled_method_load_event(); 3124 } 3125 } 3126 3127 // ------------------------------------------------------------------------- 3128 // Java-Java calling convention 3129 // (what you use when Java calls Java) 3130 3131 //------------------------------name_for_receiver---------------------------------- 3132 // For a given signature, return the VMReg for parameter 0. 3133 VMReg SharedRuntime::name_for_receiver() { 3134 VMRegPair regs; 3135 BasicType sig_bt = T_OBJECT; 3136 (void) java_calling_convention(&sig_bt, ®s, 1); 3137 // Return argument 0 register. In the LP64 build pointers 3138 // take 2 registers, but the VM wants only the 'main' name. 3139 return regs.first(); 3140 } 3141 3142 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3143 // This method is returning a data structure allocating as a 3144 // ResourceObject, so do not put any ResourceMarks in here. 3145 3146 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3147 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3148 int cnt = 0; 3149 if (has_receiver) { 3150 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3151 } 3152 3153 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3154 BasicType type = ss.type(); 3155 sig_bt[cnt++] = type; 3156 if (is_double_word_type(type)) 3157 sig_bt[cnt++] = T_VOID; 3158 } 3159 3160 if (has_appendix) { 3161 sig_bt[cnt++] = T_OBJECT; 3162 } 3163 3164 assert(cnt < 256, "grow table size"); 3165 3166 int comp_args_on_stack; 3167 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3168 3169 // the calling convention doesn't count out_preserve_stack_slots so 3170 // we must add that in to get "true" stack offsets. 3171 3172 if (comp_args_on_stack) { 3173 for (int i = 0; i < cnt; i++) { 3174 VMReg reg1 = regs[i].first(); 3175 if (reg1->is_stack()) { 3176 // Yuck 3177 reg1 = reg1->bias(out_preserve_stack_slots()); 3178 } 3179 VMReg reg2 = regs[i].second(); 3180 if (reg2->is_stack()) { 3181 // Yuck 3182 reg2 = reg2->bias(out_preserve_stack_slots()); 3183 } 3184 regs[i].set_pair(reg2, reg1); 3185 } 3186 } 3187 3188 // results 3189 *arg_size = cnt; 3190 return regs; 3191 } 3192 3193 // OSR Migration Code 3194 // 3195 // This code is used convert interpreter frames into compiled frames. It is 3196 // called from very start of a compiled OSR nmethod. A temp array is 3197 // allocated to hold the interesting bits of the interpreter frame. All 3198 // active locks are inflated to allow them to move. The displaced headers and 3199 // active interpreter locals are copied into the temp buffer. Then we return 3200 // back to the compiled code. The compiled code then pops the current 3201 // interpreter frame off the stack and pushes a new compiled frame. Then it 3202 // copies the interpreter locals and displaced headers where it wants. 3203 // Finally it calls back to free the temp buffer. 3204 // 3205 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3206 3207 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3208 assert(current == JavaThread::current(), "pre-condition"); 3209 3210 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3211 // frame. The stack watermark code below ensures that the interpreted frame is processed 3212 // before it gets unwound. This is helpful as the size of the compiled frame could be 3213 // larger than the interpreted frame, which could result in the new frame not being 3214 // processed correctly. 3215 StackWatermarkSet::before_unwind(current); 3216 3217 // 3218 // This code is dependent on the memory layout of the interpreter local 3219 // array and the monitors. On all of our platforms the layout is identical 3220 // so this code is shared. If some platform lays the their arrays out 3221 // differently then this code could move to platform specific code or 3222 // the code here could be modified to copy items one at a time using 3223 // frame accessor methods and be platform independent. 3224 3225 frame fr = current->last_frame(); 3226 assert(fr.is_interpreted_frame(), ""); 3227 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3228 3229 // Figure out how many monitors are active. 3230 int active_monitor_count = 0; 3231 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3232 kptr < fr.interpreter_frame_monitor_begin(); 3233 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3234 if (kptr->obj() != nullptr) active_monitor_count++; 3235 } 3236 3237 // QQQ we could place number of active monitors in the array so that compiled code 3238 // could double check it. 3239 3240 Method* moop = fr.interpreter_frame_method(); 3241 int max_locals = moop->max_locals(); 3242 // Allocate temp buffer, 1 word per local & 2 per active monitor 3243 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3244 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3245 3246 // Copy the locals. Order is preserved so that loading of longs works. 3247 // Since there's no GC I can copy the oops blindly. 3248 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3249 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3250 (HeapWord*)&buf[0], 3251 max_locals); 3252 3253 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3254 int i = max_locals; 3255 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3256 kptr2 < fr.interpreter_frame_monitor_begin(); 3257 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3258 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3259 BasicLock *lock = kptr2->lock(); 3260 if (LockingMode == LM_LEGACY) { 3261 // Inflate so the object's header no longer refers to the BasicLock. 3262 if (lock->displaced_header().is_unlocked()) { 3263 // The object is locked and the resulting ObjectMonitor* will also be 3264 // locked so it can't be async deflated until ownership is dropped. 3265 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3266 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3267 } 3268 // Now the displaced header is free to move because the 3269 // object's header no longer refers to it. 3270 buf[i] = (intptr_t)lock->displaced_header().value(); 3271 } 3272 #ifdef ASSERT 3273 else { 3274 buf[i] = badDispHeaderOSR; 3275 } 3276 #endif 3277 i++; 3278 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3279 } 3280 } 3281 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3282 3283 RegisterMap map(current, 3284 RegisterMap::UpdateMap::skip, 3285 RegisterMap::ProcessFrames::include, 3286 RegisterMap::WalkContinuation::skip); 3287 frame sender = fr.sender(&map); 3288 if (sender.is_interpreted_frame()) { 3289 current->push_cont_fastpath(sender.sp()); 3290 } 3291 3292 return buf; 3293 JRT_END 3294 3295 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3296 FREE_C_HEAP_ARRAY(intptr_t, buf); 3297 JRT_END 3298 3299 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3300 bool found = false; 3301 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3302 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3303 }; 3304 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3305 _adapter_handler_table->iterate(findblob); 3306 return found; 3307 } 3308 3309 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3310 bool found = false; 3311 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3312 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3313 found = true; 3314 st->print("Adapter for signature: "); 3315 a->print_adapter_on(st); 3316 return true; 3317 } else { 3318 return false; // keep looking 3319 } 3320 }; 3321 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3322 _adapter_handler_table->iterate(findblob); 3323 assert(found, "Should have found handler"); 3324 } 3325 3326 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3327 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3328 if (get_i2c_entry() != nullptr) { 3329 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3330 } 3331 if (get_c2i_entry() != nullptr) { 3332 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3333 } 3334 if (get_c2i_unverified_entry() != nullptr) { 3335 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3336 } 3337 if (get_c2i_no_clinit_check_entry() != nullptr) { 3338 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3339 } 3340 st->cr(); 3341 } 3342 3343 #ifndef PRODUCT 3344 3345 void AdapterHandlerLibrary::print_statistics() { 3346 print_table_statistics(); 3347 } 3348 3349 #endif /* PRODUCT */ 3350 3351 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3352 assert(current == JavaThread::current(), "pre-condition"); 3353 StackOverflow* overflow_state = current->stack_overflow_state(); 3354 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3355 overflow_state->set_reserved_stack_activation(current->stack_base()); 3356 JRT_END 3357 3358 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3359 ResourceMark rm(current); 3360 frame activation; 3361 CompiledMethod* nm = nullptr; 3362 int count = 1; 3363 3364 assert(fr.is_java_frame(), "Must start on Java frame"); 3365 3366 RegisterMap map(JavaThread::current(), 3367 RegisterMap::UpdateMap::skip, 3368 RegisterMap::ProcessFrames::skip, 3369 RegisterMap::WalkContinuation::skip); // don't walk continuations 3370 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3371 if (!fr.is_java_frame()) { 3372 continue; 3373 } 3374 3375 Method* method = nullptr; 3376 bool found = false; 3377 if (fr.is_interpreted_frame()) { 3378 method = fr.interpreter_frame_method(); 3379 if (method != nullptr && method->has_reserved_stack_access()) { 3380 found = true; 3381 } 3382 } else { 3383 CodeBlob* cb = fr.cb(); 3384 if (cb != nullptr && cb->is_compiled()) { 3385 nm = cb->as_compiled_method(); 3386 method = nm->method(); 3387 // scope_desc_near() must be used, instead of scope_desc_at() because on 3388 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3389 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3390 method = sd->method(); 3391 if (method != nullptr && method->has_reserved_stack_access()) { 3392 found = true; 3393 } 3394 } 3395 } 3396 } 3397 if (found) { 3398 activation = fr; 3399 warning("Potentially dangerous stack overflow in " 3400 "ReservedStackAccess annotated method %s [%d]", 3401 method->name_and_sig_as_C_string(), count++); 3402 EventReservedStackActivation event; 3403 if (event.should_commit()) { 3404 event.set_method(method); 3405 event.commit(); 3406 } 3407 } 3408 } 3409 return activation; 3410 } 3411 3412 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3413 // After any safepoint, just before going back to compiled code, 3414 // we inform the GC that we will be doing initializing writes to 3415 // this object in the future without emitting card-marks, so 3416 // GC may take any compensating steps. 3417 3418 oop new_obj = current->vm_result(); 3419 if (new_obj == nullptr) return; 3420 3421 BarrierSet *bs = BarrierSet::barrier_set(); 3422 bs->on_slowpath_allocation_exit(current, new_obj); 3423 }