1 /* 2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "jfr/jfrEvents.hpp" 29 #include "logging/log.hpp" 30 #include "logging/logStream.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/padded.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "runtime/atomic.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/handles.inline.hpp" 40 #include "runtime/handshake.hpp" 41 #include "runtime/interfaceSupport.inline.hpp" 42 #include "runtime/javaThread.hpp" 43 #include "runtime/lockStack.inline.hpp" 44 #include "runtime/mutexLocker.hpp" 45 #include "runtime/objectMonitor.hpp" 46 #include "runtime/objectMonitor.inline.hpp" 47 #include "runtime/os.inline.hpp" 48 #include "runtime/osThread.hpp" 49 #include "runtime/perfData.hpp" 50 #include "runtime/safepointMechanism.inline.hpp" 51 #include "runtime/safepointVerifiers.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "runtime/synchronizer.hpp" 55 #include "runtime/threads.hpp" 56 #include "runtime/timer.hpp" 57 #include "runtime/trimNativeHeap.hpp" 58 #include "runtime/vframe.hpp" 59 #include "runtime/vmThread.hpp" 60 #include "utilities/align.hpp" 61 #include "utilities/dtrace.hpp" 62 #include "utilities/events.hpp" 63 #include "utilities/linkedlist.hpp" 64 #include "utilities/preserveException.hpp" 65 66 void MonitorList::add(ObjectMonitor* m) { 67 ObjectMonitor* head; 68 do { 69 head = Atomic::load(&_head); 70 m->set_next_om(head); 71 } while (Atomic::cmpxchg(&_head, head, m) != head); 72 73 size_t count = Atomic::add(&_count, 1u); 74 if (count > max()) { 75 Atomic::inc(&_max); 76 } 77 } 78 79 size_t MonitorList::count() const { 80 return Atomic::load(&_count); 81 } 82 83 size_t MonitorList::max() const { 84 return Atomic::load(&_max); 85 } 86 87 // Walk the in-use list and unlink deflated ObjectMonitors. 88 // Returns the number of unlinked ObjectMonitors. 89 size_t MonitorList::unlink_deflated(Thread* current, LogStream* ls, 90 elapsedTimer* timer_p, 91 size_t deflated_count, 92 GrowableArray<ObjectMonitor*>* unlinked_list) { 93 size_t unlinked_count = 0; 94 ObjectMonitor* prev = nullptr; 95 ObjectMonitor* m = Atomic::load_acquire(&_head); 96 97 // The in-use list head can be null during the final audit. 98 while (m != nullptr) { 99 if (m->is_being_async_deflated()) { 100 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 101 // modify the list once per batch. The batch starts at "m". 102 size_t unlinked_batch = 0; 103 ObjectMonitor* next = m; 104 // Look for at most MonitorUnlinkBatch monitors, or the number of 105 // deflated and not unlinked monitors, whatever comes first. 106 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 107 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 108 do { 109 ObjectMonitor* next_next = next->next_om(); 110 unlinked_batch++; 111 unlinked_list->append(next); 112 next = next_next; 113 if (unlinked_batch >= unlinked_batch_limit) { 114 // Reached the max batch, so bail out of the gathering loop. 115 break; 116 } 117 if (prev == nullptr && Atomic::load(&_head) != m) { 118 // Current batch used to be at head, but it is not at head anymore. 119 // Bail out and figure out where we currently are. This avoids long 120 // walks searching for new prev during unlink under heavy list inserts. 121 break; 122 } 123 } while (next != nullptr && next->is_being_async_deflated()); 124 125 // Unlink the found batch. 126 if (prev == nullptr) { 127 // The current batch is the first batch, so there is a chance that it starts at head. 128 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 129 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 130 if (prev_head != m) { 131 // Something must have updated the head. Figure out the actual prev for this batch. 132 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 133 prev = n; 134 } 135 assert(prev != nullptr, "Should have found the prev for the current batch"); 136 prev->set_next_om(next); 137 } 138 } else { 139 // The current batch is preceded by another batch. This guarantees the current batch 140 // does not start at head. Unlink the entire current batch without updating the head. 141 assert(Atomic::load(&_head) != m, "Sanity"); 142 prev->set_next_om(next); 143 } 144 145 unlinked_count += unlinked_batch; 146 if (unlinked_count >= deflated_count) { 147 // Reached the max so bail out of the searching loop. 148 // There should be no more deflated monitors left. 149 break; 150 } 151 m = next; 152 } else { 153 prev = m; 154 m = m->next_om(); 155 } 156 157 if (current->is_Java_thread()) { 158 // A JavaThread must check for a safepoint/handshake and honor it. 159 ObjectSynchronizer::chk_for_block_req(JavaThread::cast(current), "unlinking", 160 "unlinked_count", unlinked_count, 161 ls, timer_p); 162 } 163 } 164 165 #ifdef ASSERT 166 // Invariant: the code above should unlink all deflated monitors. 167 // The code that runs after this unlinking does not expect deflated monitors. 168 // Notably, attempting to deflate the already deflated monitor would break. 169 { 170 ObjectMonitor* m = Atomic::load_acquire(&_head); 171 while (m != nullptr) { 172 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 173 m = m->next_om(); 174 } 175 } 176 #endif 177 178 Atomic::sub(&_count, unlinked_count); 179 return unlinked_count; 180 } 181 182 MonitorList::Iterator MonitorList::iterator() const { 183 return Iterator(Atomic::load_acquire(&_head)); 184 } 185 186 ObjectMonitor* MonitorList::Iterator::next() { 187 ObjectMonitor* current = _current; 188 _current = current->next_om(); 189 return current; 190 } 191 192 // The "core" versions of monitor enter and exit reside in this file. 193 // The interpreter and compilers contain specialized transliterated 194 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 195 // fast_lock(...) for instance. If you make changes here, make sure to modify the 196 // interpreter, and both C1 and C2 fast-path inline locking code emission. 197 // 198 // ----------------------------------------------------------------------------- 199 200 #ifdef DTRACE_ENABLED 201 202 // Only bother with this argument setup if dtrace is available 203 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 204 205 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 206 char* bytes = nullptr; \ 207 int len = 0; \ 208 jlong jtid = SharedRuntime::get_java_tid(thread); \ 209 Symbol* klassname = obj->klass()->name(); \ 210 if (klassname != nullptr) { \ 211 bytes = (char*)klassname->bytes(); \ 212 len = klassname->utf8_length(); \ 213 } 214 215 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 216 { \ 217 if (DTraceMonitorProbes) { \ 218 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 219 HOTSPOT_MONITOR_WAIT(jtid, \ 220 (uintptr_t)(monitor), bytes, len, (millis)); \ 221 } \ 222 } 223 224 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 225 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 226 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 227 228 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 229 { \ 230 if (DTraceMonitorProbes) { \ 231 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 232 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 233 (uintptr_t)(monitor), bytes, len); \ 234 } \ 235 } 236 237 #else // ndef DTRACE_ENABLED 238 239 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 240 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 241 242 #endif // ndef DTRACE_ENABLED 243 244 // This exists only as a workaround of dtrace bug 6254741 245 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 246 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 247 return 0; 248 } 249 250 static constexpr size_t inflation_lock_count() { 251 return 256; 252 } 253 254 // Static storage for an array of PlatformMutex. 255 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 256 257 static inline PlatformMutex* inflation_lock(size_t index) { 258 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 259 } 260 261 void ObjectSynchronizer::initialize() { 262 for (size_t i = 0; i < inflation_lock_count(); i++) { 263 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 264 } 265 // Start the ceiling with the estimate for one thread. 266 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 267 268 // Start the timer for deflations, so it does not trigger immediately. 269 _last_async_deflation_time_ns = os::javaTimeNanos(); 270 } 271 272 MonitorList ObjectSynchronizer::_in_use_list; 273 // monitors_used_above_threshold() policy is as follows: 274 // 275 // The ratio of the current _in_use_list count to the ceiling is used 276 // to determine if we are above MonitorUsedDeflationThreshold and need 277 // to do an async monitor deflation cycle. The ceiling is increased by 278 // AvgMonitorsPerThreadEstimate when a thread is added to the system 279 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 280 // removed from the system. 281 // 282 // Note: If the _in_use_list max exceeds the ceiling, then 283 // monitors_used_above_threshold() will use the in_use_list max instead 284 // of the thread count derived ceiling because we have used more 285 // ObjectMonitors than the estimated average. 286 // 287 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 288 // no-progress async monitor deflation cycles in a row, then the ceiling 289 // is adjusted upwards by monitors_used_above_threshold(). 290 // 291 // Start the ceiling with the estimate for one thread in initialize() 292 // which is called after cmd line options are processed. 293 static size_t _in_use_list_ceiling = 0; 294 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 295 bool volatile ObjectSynchronizer::_is_final_audit = false; 296 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 297 static uintx _no_progress_cnt = 0; 298 static bool _no_progress_skip_increment = false; 299 300 // =====================> Quick functions 301 302 // The quick_* forms are special fast-path variants used to improve 303 // performance. In the simplest case, a "quick_*" implementation could 304 // simply return false, in which case the caller will perform the necessary 305 // state transitions and call the slow-path form. 306 // The fast-path is designed to handle frequently arising cases in an efficient 307 // manner and is just a degenerate "optimistic" variant of the slow-path. 308 // returns true -- to indicate the call was satisfied. 309 // returns false -- to indicate the call needs the services of the slow-path. 310 // A no-loitering ordinance is in effect for code in the quick_* family 311 // operators: safepoints or indefinite blocking (blocking that might span a 312 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 313 // entry. 314 // 315 // Consider: An interesting optimization is to have the JIT recognize the 316 // following common idiom: 317 // synchronized (someobj) { .... ; notify(); } 318 // That is, we find a notify() or notifyAll() call that immediately precedes 319 // the monitorexit operation. In that case the JIT could fuse the operations 320 // into a single notifyAndExit() runtime primitive. 321 322 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 323 assert(current->thread_state() == _thread_in_Java, "invariant"); 324 NoSafepointVerifier nsv; 325 if (obj == nullptr) return false; // slow-path for invalid obj 326 const markWord mark = obj->mark(); 327 328 if (LockingMode == LM_LIGHTWEIGHT) { 329 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 330 // Degenerate notify 331 // fast-locked by caller so by definition the implied waitset is empty. 332 return true; 333 } 334 } else if (LockingMode == LM_LEGACY) { 335 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 336 // Degenerate notify 337 // stack-locked by caller so by definition the implied waitset is empty. 338 return true; 339 } 340 } 341 342 if (mark.has_monitor()) { 343 ObjectMonitor* const mon = mark.monitor(); 344 assert(mon->object() == oop(obj), "invariant"); 345 if (mon->owner() != current) return false; // slow-path for IMS exception 346 347 if (mon->first_waiter() != nullptr) { 348 // We have one or more waiters. Since this is an inflated monitor 349 // that we own, we can transfer one or more threads from the waitset 350 // to the entrylist here and now, avoiding the slow-path. 351 if (all) { 352 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 353 } else { 354 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 355 } 356 int free_count = 0; 357 do { 358 mon->INotify(current); 359 ++free_count; 360 } while (mon->first_waiter() != nullptr && all); 361 OM_PERFDATA_OP(Notifications, inc(free_count)); 362 } 363 return true; 364 } 365 366 // other IMS exception states take the slow-path 367 return false; 368 } 369 370 371 // The LockNode emitted directly at the synchronization site would have 372 // been too big if it were to have included support for the cases of inflated 373 // recursive enter and exit, so they go here instead. 374 // Note that we can't safely call AsyncPrintJavaStack() from within 375 // quick_enter() as our thread state remains _in_Java. 376 377 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current, 378 BasicLock * lock) { 379 assert(current->thread_state() == _thread_in_Java, "invariant"); 380 NoSafepointVerifier nsv; 381 if (obj == nullptr) return false; // Need to throw NPE 382 383 if (obj->klass()->is_value_based()) { 384 return false; 385 } 386 387 const markWord mark = obj->mark(); 388 389 if (mark.has_monitor()) { 390 ObjectMonitor* const m = mark.monitor(); 391 // An async deflation or GC can race us before we manage to make 392 // the ObjectMonitor busy by setting the owner below. If we detect 393 // that race we just bail out to the slow-path here. 394 if (m->object_peek() == nullptr) { 395 return false; 396 } 397 JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw()); 398 399 // Lock contention and Transactional Lock Elision (TLE) diagnostics 400 // and observability 401 // Case: light contention possibly amenable to TLE 402 // Case: TLE inimical operations such as nested/recursive synchronization 403 404 if (owner == current) { 405 m->_recursions++; 406 current->inc_held_monitor_count(); 407 return true; 408 } 409 410 if (LockingMode != LM_LIGHTWEIGHT) { 411 // This Java Monitor is inflated so obj's header will never be 412 // displaced to this thread's BasicLock. Make the displaced header 413 // non-null so this BasicLock is not seen as recursive nor as 414 // being locked. We do this unconditionally so that this thread's 415 // BasicLock cannot be mis-interpreted by any stack walkers. For 416 // performance reasons, stack walkers generally first check for 417 // stack-locking in the object's header, the second check is for 418 // recursive stack-locking in the displaced header in the BasicLock, 419 // and last are the inflated Java Monitor (ObjectMonitor) checks. 420 lock->set_displaced_header(markWord::unused_mark()); 421 } 422 423 if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) { 424 assert(m->_recursions == 0, "invariant"); 425 current->inc_held_monitor_count(); 426 return true; 427 } 428 } 429 430 // Note that we could inflate in quick_enter. 431 // This is likely a useful optimization 432 // Critically, in quick_enter() we must not: 433 // -- block indefinitely, or 434 // -- reach a safepoint 435 436 return false; // revert to slow-path 437 } 438 439 // Handle notifications when synchronizing on value based classes 440 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* current) { 441 frame last_frame = current->last_frame(); 442 bool bcp_was_adjusted = false; 443 // Don't decrement bcp if it points to the frame's first instruction. This happens when 444 // handle_sync_on_value_based_class() is called because of a synchronized method. There 445 // is no actual monitorenter instruction in the byte code in this case. 446 if (last_frame.is_interpreted_frame() && 447 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 448 // adjust bcp to point back to monitorenter so that we print the correct line numbers 449 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 450 bcp_was_adjusted = true; 451 } 452 453 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 454 ResourceMark rm(current); 455 stringStream ss; 456 current->print_active_stack_on(&ss); 457 char* base = (char*)strstr(ss.base(), "at"); 458 char* newline = (char*)strchr(ss.base(), '\n'); 459 if (newline != nullptr) { 460 *newline = '\0'; 461 } 462 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 463 } else { 464 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 465 ResourceMark rm(current); 466 Log(valuebasedclasses) vblog; 467 468 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 469 if (current->has_last_Java_frame()) { 470 LogStream info_stream(vblog.info()); 471 current->print_active_stack_on(&info_stream); 472 } else { 473 vblog.info("Cannot find the last Java frame"); 474 } 475 476 EventSyncOnValueBasedClass event; 477 if (event.should_commit()) { 478 event.set_valueBasedClass(obj->klass()); 479 event.commit(); 480 } 481 } 482 483 if (bcp_was_adjusted) { 484 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 485 } 486 } 487 488 static bool useHeavyMonitors() { 489 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 490 return LockingMode == LM_MONITOR; 491 #else 492 return false; 493 #endif 494 } 495 496 // ----------------------------------------------------------------------------- 497 // Monitor Enter/Exit 498 // The interpreter and compiler assembly code tries to lock using the fast path 499 // of this algorithm. Make sure to update that code if the following function is 500 // changed. The implementation is extremely sensitive to race condition. Be careful. 501 502 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) { 503 if (obj->klass()->is_value_based()) { 504 handle_sync_on_value_based_class(obj, current); 505 } 506 507 current->inc_held_monitor_count(); 508 509 if (!useHeavyMonitors()) { 510 if (LockingMode == LM_LIGHTWEIGHT) { 511 // Fast-locking does not use the 'lock' argument. 512 LockStack& lock_stack = current->lock_stack(); 513 if (lock_stack.can_push()) { 514 markWord mark = obj()->mark_acquire(); 515 while (mark.is_neutral()) { 516 // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications. 517 // Try to swing into 'fast-locked' state. 518 assert(!lock_stack.contains(obj()), "thread must not already hold the lock"); 519 const markWord locked_mark = mark.set_fast_locked(); 520 const markWord old_mark = obj()->cas_set_mark(locked_mark, mark); 521 if (old_mark == mark) { 522 // Successfully fast-locked, push object to lock-stack and return. 523 lock_stack.push(obj()); 524 return; 525 } 526 mark = old_mark; 527 } 528 } 529 // All other paths fall-through to inflate-enter. 530 } else if (LockingMode == LM_LEGACY) { 531 markWord mark = obj->mark(); 532 if (mark.is_neutral()) { 533 // Anticipate successful CAS -- the ST of the displaced mark must 534 // be visible <= the ST performed by the CAS. 535 lock->set_displaced_header(mark); 536 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 537 return; 538 } 539 // Fall through to inflate() ... 540 } else if (mark.has_locker() && 541 current->is_lock_owned((address) mark.locker())) { 542 assert(lock != mark.locker(), "must not re-lock the same lock"); 543 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 544 lock->set_displaced_header(markWord::from_pointer(nullptr)); 545 return; 546 } 547 548 // The object header will never be displaced to this lock, 549 // so it does not matter what the value is, except that it 550 // must be non-zero to avoid looking like a re-entrant lock, 551 // and must not look locked either. 552 lock->set_displaced_header(markWord::unused_mark()); 553 } 554 } else if (VerifyHeavyMonitors) { 555 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 556 } 557 558 // An async deflation can race after the inflate() call and before 559 // enter() can make the ObjectMonitor busy. enter() returns false if 560 // we have lost the race to async deflation and we simply try again. 561 while (true) { 562 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 563 if (monitor->enter(current)) { 564 return; 565 } 566 } 567 } 568 569 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) { 570 current->dec_held_monitor_count(); 571 572 if (!useHeavyMonitors()) { 573 markWord mark = object->mark(); 574 if (LockingMode == LM_LIGHTWEIGHT) { 575 // Fast-locking does not use the 'lock' argument. 576 while (mark.is_fast_locked()) { 577 // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications. 578 const markWord unlocked_mark = mark.set_unlocked(); 579 const markWord old_mark = object->cas_set_mark(unlocked_mark, mark); 580 if (old_mark == mark) { 581 current->lock_stack().remove(object); 582 return; 583 } 584 mark = old_mark; 585 } 586 } else if (LockingMode == LM_LEGACY) { 587 markWord dhw = lock->displaced_header(); 588 if (dhw.value() == 0) { 589 // If the displaced header is null, then this exit matches up with 590 // a recursive enter. No real work to do here except for diagnostics. 591 #ifndef PRODUCT 592 if (mark != markWord::INFLATING()) { 593 // Only do diagnostics if we are not racing an inflation. Simply 594 // exiting a recursive enter of a Java Monitor that is being 595 // inflated is safe; see the has_monitor() comment below. 596 assert(!mark.is_neutral(), "invariant"); 597 assert(!mark.has_locker() || 598 current->is_lock_owned((address)mark.locker()), "invariant"); 599 if (mark.has_monitor()) { 600 // The BasicLock's displaced_header is marked as a recursive 601 // enter and we have an inflated Java Monitor (ObjectMonitor). 602 // This is a special case where the Java Monitor was inflated 603 // after this thread entered the stack-lock recursively. When a 604 // Java Monitor is inflated, we cannot safely walk the Java 605 // Monitor owner's stack and update the BasicLocks because a 606 // Java Monitor can be asynchronously inflated by a thread that 607 // does not own the Java Monitor. 608 ObjectMonitor* m = mark.monitor(); 609 assert(m->object()->mark() == mark, "invariant"); 610 assert(m->is_entered(current), "invariant"); 611 } 612 } 613 #endif 614 return; 615 } 616 617 if (mark == markWord::from_pointer(lock)) { 618 // If the object is stack-locked by the current thread, try to 619 // swing the displaced header from the BasicLock back to the mark. 620 assert(dhw.is_neutral(), "invariant"); 621 if (object->cas_set_mark(dhw, mark) == mark) { 622 return; 623 } 624 } 625 } 626 } else if (VerifyHeavyMonitors) { 627 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 628 } 629 630 // We have to take the slow-path of possible inflation and then exit. 631 // The ObjectMonitor* can't be async deflated until ownership is 632 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 633 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 634 if (LockingMode == LM_LIGHTWEIGHT && monitor->is_owner_anonymous()) { 635 // It must be owned by us. Pop lock object from lock stack. 636 LockStack& lock_stack = current->lock_stack(); 637 oop popped = lock_stack.pop(); 638 assert(popped == object, "must be owned by this thread"); 639 monitor->set_owner_from_anonymous(current); 640 } 641 monitor->exit(current); 642 } 643 644 // ----------------------------------------------------------------------------- 645 // JNI locks on java objects 646 // NOTE: must use heavy weight monitor to handle jni monitor enter 647 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 648 if (obj->klass()->is_value_based()) { 649 handle_sync_on_value_based_class(obj, current); 650 } 651 652 // the current locking is from JNI instead of Java code 653 current->set_current_pending_monitor_is_from_java(false); 654 // An async deflation can race after the inflate() call and before 655 // enter() can make the ObjectMonitor busy. enter() returns false if 656 // we have lost the race to async deflation and we simply try again. 657 while (true) { 658 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter); 659 if (monitor->enter(current)) { 660 current->inc_held_monitor_count(1, true); 661 break; 662 } 663 } 664 current->set_current_pending_monitor_is_from_java(true); 665 } 666 667 // NOTE: must use heavy weight monitor to handle jni monitor exit 668 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 669 JavaThread* current = THREAD; 670 671 // The ObjectMonitor* can't be async deflated until ownership is 672 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 673 ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit); 674 // If this thread has locked the object, exit the monitor. We 675 // intentionally do not use CHECK on check_owner because we must exit the 676 // monitor even if an exception was already pending. 677 if (monitor->check_owner(THREAD)) { 678 monitor->exit(current); 679 current->dec_held_monitor_count(1, true); 680 } 681 } 682 683 // ----------------------------------------------------------------------------- 684 // Internal VM locks on java objects 685 // standard constructor, allows locking failures 686 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) { 687 _thread = thread; 688 _thread->check_for_valid_safepoint_state(); 689 _obj = obj; 690 691 if (_obj() != nullptr) { 692 ObjectSynchronizer::enter(_obj, &_lock, _thread); 693 } 694 } 695 696 ObjectLocker::~ObjectLocker() { 697 if (_obj() != nullptr) { 698 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 699 } 700 } 701 702 703 // ----------------------------------------------------------------------------- 704 // Wait/Notify/NotifyAll 705 // NOTE: must use heavy weight monitor to handle wait() 706 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 707 JavaThread* current = THREAD; 708 if (millis < 0) { 709 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 710 } 711 // The ObjectMonitor* can't be async deflated because the _waiters 712 // field is incremented before ownership is dropped and decremented 713 // after ownership is regained. 714 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait); 715 716 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 717 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 718 719 // This dummy call is in place to get around dtrace bug 6254741. Once 720 // that's fixed we can uncomment the following line, remove the call 721 // and change this function back into a "void" func. 722 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 723 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 724 return ret_code; 725 } 726 727 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 728 if (millis < 0) { 729 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 730 } 731 ObjectSynchronizer::inflate(THREAD, 732 obj(), 733 inflate_cause_wait)->wait(millis, false, THREAD); 734 } 735 736 737 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 738 JavaThread* current = THREAD; 739 740 markWord mark = obj->mark(); 741 if (LockingMode == LM_LIGHTWEIGHT) { 742 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 743 // Not inflated so there can't be any waiters to notify. 744 return; 745 } 746 } else if (LockingMode == LM_LEGACY) { 747 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 748 // Not inflated so there can't be any waiters to notify. 749 return; 750 } 751 } 752 // The ObjectMonitor* can't be async deflated until ownership is 753 // dropped by the calling thread. 754 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify); 755 monitor->notify(CHECK); 756 } 757 758 // NOTE: see comment of notify() 759 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 760 JavaThread* current = THREAD; 761 762 markWord mark = obj->mark(); 763 if (LockingMode == LM_LIGHTWEIGHT) { 764 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 765 // Not inflated so there can't be any waiters to notify. 766 return; 767 } 768 } else if (LockingMode == LM_LEGACY) { 769 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 770 // Not inflated so there can't be any waiters to notify. 771 return; 772 } 773 } 774 // The ObjectMonitor* can't be async deflated until ownership is 775 // dropped by the calling thread. 776 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify); 777 monitor->notifyAll(CHECK); 778 } 779 780 // ----------------------------------------------------------------------------- 781 // Hash Code handling 782 783 struct SharedGlobals { 784 char _pad_prefix[OM_CACHE_LINE_SIZE]; 785 // This is a highly shared mostly-read variable. 786 // To avoid false-sharing it needs to be the sole occupant of a cache line. 787 volatile int stw_random; 788 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 789 // Hot RW variable -- Sequester to avoid false-sharing 790 volatile int hc_sequence; 791 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 792 }; 793 794 static SharedGlobals GVars; 795 796 static markWord read_stable_mark(oop obj) { 797 markWord mark = obj->mark_acquire(); 798 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 799 // New lightweight locking does not use the markWord::INFLATING() protocol. 800 return mark; // normal fast-path return 801 } 802 803 int its = 0; 804 for (;;) { 805 markWord mark = obj->mark_acquire(); 806 if (!mark.is_being_inflated()) { 807 return mark; // normal fast-path return 808 } 809 810 // The object is being inflated by some other thread. 811 // The caller of read_stable_mark() must wait for inflation to complete. 812 // Avoid live-lock. 813 814 ++its; 815 if (its > 10000 || !os::is_MP()) { 816 if (its & 1) { 817 os::naked_yield(); 818 } else { 819 // Note that the following code attenuates the livelock problem but is not 820 // a complete remedy. A more complete solution would require that the inflating 821 // thread hold the associated inflation lock. The following code simply restricts 822 // the number of spinners to at most one. We'll have N-2 threads blocked 823 // on the inflationlock, 1 thread holding the inflation lock and using 824 // a yield/park strategy, and 1 thread in the midst of inflation. 825 // A more refined approach would be to change the encoding of INFLATING 826 // to allow encapsulation of a native thread pointer. Threads waiting for 827 // inflation to complete would use CAS to push themselves onto a singly linked 828 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 829 // and calling park(). When inflation was complete the thread that accomplished inflation 830 // would detach the list and set the markword to inflated with a single CAS and 831 // then for each thread on the list, set the flag and unpark() the thread. 832 833 // Index into the lock array based on the current object address. 834 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 835 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 836 int YieldThenBlock = 0; 837 assert(ix < inflation_lock_count(), "invariant"); 838 inflation_lock(ix)->lock(); 839 while (obj->mark_acquire() == markWord::INFLATING()) { 840 // Beware: naked_yield() is advisory and has almost no effect on some platforms 841 // so we periodically call current->_ParkEvent->park(1). 842 // We use a mixed spin/yield/block mechanism. 843 if ((YieldThenBlock++) >= 16) { 844 Thread::current()->_ParkEvent->park(1); 845 } else { 846 os::naked_yield(); 847 } 848 } 849 inflation_lock(ix)->unlock(); 850 } 851 } else { 852 SpinPause(); // SMP-polite spinning 853 } 854 } 855 } 856 857 // hashCode() generation : 858 // 859 // Possibilities: 860 // * MD5Digest of {obj,stw_random} 861 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 862 // * A DES- or AES-style SBox[] mechanism 863 // * One of the Phi-based schemes, such as: 864 // 2654435761 = 2^32 * Phi (golden ratio) 865 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 866 // * A variation of Marsaglia's shift-xor RNG scheme. 867 // * (obj ^ stw_random) is appealing, but can result 868 // in undesirable regularity in the hashCode values of adjacent objects 869 // (objects allocated back-to-back, in particular). This could potentially 870 // result in hashtable collisions and reduced hashtable efficiency. 871 // There are simple ways to "diffuse" the middle address bits over the 872 // generated hashCode values: 873 874 static inline intptr_t get_next_hash(Thread* current, oop obj) { 875 intptr_t value = 0; 876 if (hashCode == 0) { 877 // This form uses global Park-Miller RNG. 878 // On MP system we'll have lots of RW access to a global, so the 879 // mechanism induces lots of coherency traffic. 880 value = os::random(); 881 } else if (hashCode == 1) { 882 // This variation has the property of being stable (idempotent) 883 // between STW operations. This can be useful in some of the 1-0 884 // synchronization schemes. 885 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 886 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 887 } else if (hashCode == 2) { 888 value = 1; // for sensitivity testing 889 } else if (hashCode == 3) { 890 value = ++GVars.hc_sequence; 891 } else if (hashCode == 4) { 892 value = cast_from_oop<intptr_t>(obj); 893 } else { 894 // Marsaglia's xor-shift scheme with thread-specific state 895 // This is probably the best overall implementation -- we'll 896 // likely make this the default in future releases. 897 unsigned t = current->_hashStateX; 898 t ^= (t << 11); 899 current->_hashStateX = current->_hashStateY; 900 current->_hashStateY = current->_hashStateZ; 901 current->_hashStateZ = current->_hashStateW; 902 unsigned v = current->_hashStateW; 903 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 904 current->_hashStateW = v; 905 value = v; 906 } 907 908 value &= markWord::hash_mask; 909 if (value == 0) value = 0xBAD; 910 assert(value != markWord::no_hash, "invariant"); 911 return value; 912 } 913 914 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 915 916 while (true) { 917 ObjectMonitor* monitor = nullptr; 918 markWord temp, test; 919 intptr_t hash; 920 markWord mark = read_stable_mark(obj); 921 if (VerifyHeavyMonitors) { 922 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 923 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 924 } 925 if (mark.is_neutral() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 926 hash = mark.hash(); 927 if (hash != 0) { // if it has a hash, just return it 928 return hash; 929 } 930 hash = get_next_hash(current, obj); // get a new hash 931 temp = mark.copy_set_hash(hash); // merge the hash into header 932 // try to install the hash 933 test = obj->cas_set_mark(temp, mark); 934 if (test == mark) { // if the hash was installed, return it 935 return hash; 936 } 937 if (LockingMode == LM_LIGHTWEIGHT) { 938 // CAS failed, retry 939 continue; 940 } 941 // Failed to install the hash. It could be that another thread 942 // installed the hash just before our attempt or inflation has 943 // occurred or... so we fall thru to inflate the monitor for 944 // stability and then install the hash. 945 } else if (mark.has_monitor()) { 946 monitor = mark.monitor(); 947 temp = monitor->header(); 948 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 949 hash = temp.hash(); 950 if (hash != 0) { 951 // It has a hash. 952 953 // Separate load of dmw/header above from the loads in 954 // is_being_async_deflated(). 955 956 // dmw/header and _contentions may get written by different threads. 957 // Make sure to observe them in the same order when having several observers. 958 OrderAccess::loadload_for_IRIW(); 959 960 if (monitor->is_being_async_deflated()) { 961 // But we can't safely use the hash if we detect that async 962 // deflation has occurred. So we attempt to restore the 963 // header/dmw to the object's header so that we only retry 964 // once if the deflater thread happens to be slow. 965 monitor->install_displaced_markword_in_object(obj); 966 continue; 967 } 968 return hash; 969 } 970 // Fall thru so we only have one place that installs the hash in 971 // the ObjectMonitor. 972 } else if (LockingMode == LM_LEGACY && mark.has_locker() 973 && current->is_Java_thread() 974 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 975 // This is a stack-lock owned by the calling thread so fetch the 976 // displaced markWord from the BasicLock on the stack. 977 temp = mark.displaced_mark_helper(); 978 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 979 hash = temp.hash(); 980 if (hash != 0) { // if it has a hash, just return it 981 return hash; 982 } 983 // WARNING: 984 // The displaced header in the BasicLock on a thread's stack 985 // is strictly immutable. It CANNOT be changed in ANY cases. 986 // So we have to inflate the stack-lock into an ObjectMonitor 987 // even if the current thread owns the lock. The BasicLock on 988 // a thread's stack can be asynchronously read by other threads 989 // during an inflate() call so any change to that stack memory 990 // may not propagate to other threads correctly. 991 } 992 993 // Inflate the monitor to set the hash. 994 995 // An async deflation can race after the inflate() call and before we 996 // can update the ObjectMonitor's header with the hash value below. 997 monitor = inflate(current, obj, inflate_cause_hash_code); 998 // Load ObjectMonitor's header/dmw field and see if it has a hash. 999 mark = monitor->header(); 1000 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1001 hash = mark.hash(); 1002 if (hash == 0) { // if it does not have a hash 1003 hash = get_next_hash(current, obj); // get a new hash 1004 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1005 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1006 uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value()); 1007 test = markWord(v); 1008 if (test != mark) { 1009 // The attempt to update the ObjectMonitor's header/dmw field 1010 // did not work. This can happen if another thread managed to 1011 // merge in the hash just before our cmpxchg(). 1012 // If we add any new usages of the header/dmw field, this code 1013 // will need to be updated. 1014 hash = test.hash(); 1015 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1016 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1017 } 1018 if (monitor->is_being_async_deflated()) { 1019 // If we detect that async deflation has occurred, then we 1020 // attempt to restore the header/dmw to the object's header 1021 // so that we only retry once if the deflater thread happens 1022 // to be slow. 1023 monitor->install_displaced_markword_in_object(obj); 1024 continue; 1025 } 1026 } 1027 // We finally get the hash. 1028 return hash; 1029 } 1030 } 1031 1032 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1033 Handle h_obj) { 1034 assert(current == JavaThread::current(), "Can only be called on current thread"); 1035 oop obj = h_obj(); 1036 1037 markWord mark = read_stable_mark(obj); 1038 1039 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1040 // stack-locked case, header points into owner's stack 1041 return current->is_lock_owned((address)mark.locker()); 1042 } 1043 1044 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1045 // fast-locking case, see if lock is in current's lock stack 1046 return current->lock_stack().contains(h_obj()); 1047 } 1048 1049 if (mark.has_monitor()) { 1050 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1051 // The first stage of async deflation does not affect any field 1052 // used by this comparison so the ObjectMonitor* is usable here. 1053 ObjectMonitor* monitor = mark.monitor(); 1054 return monitor->is_entered(current) != 0; 1055 } 1056 // Unlocked case, header in place 1057 assert(mark.is_neutral(), "sanity check"); 1058 return false; 1059 } 1060 1061 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1062 oop obj = h_obj(); 1063 markWord mark = read_stable_mark(obj); 1064 1065 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1066 // stack-locked so header points into owner's stack. 1067 // owning_thread_from_monitor_owner() may also return null here: 1068 return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker()); 1069 } 1070 1071 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1072 // fast-locked so get owner from the object. 1073 // owning_thread_from_object() may also return null here: 1074 return Threads::owning_thread_from_object(t_list, h_obj()); 1075 } 1076 1077 if (mark.has_monitor()) { 1078 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1079 // The first stage of async deflation does not affect any field 1080 // used by this comparison so the ObjectMonitor* is usable here. 1081 ObjectMonitor* monitor = mark.monitor(); 1082 assert(monitor != nullptr, "monitor should be non-null"); 1083 // owning_thread_from_monitor() may also return null here: 1084 return Threads::owning_thread_from_monitor(t_list, monitor); 1085 } 1086 1087 // Unlocked case, header in place 1088 // Cannot have assertion since this object may have been 1089 // locked by another thread when reaching here. 1090 // assert(mark.is_neutral(), "sanity check"); 1091 1092 return nullptr; 1093 } 1094 1095 // Visitors ... 1096 1097 // Iterate over all ObjectMonitors. 1098 template <typename Function> 1099 void ObjectSynchronizer::monitors_iterate(Function function) { 1100 MonitorList::Iterator iter = _in_use_list.iterator(); 1101 while (iter.has_next()) { 1102 ObjectMonitor* monitor = iter.next(); 1103 function(monitor); 1104 } 1105 } 1106 1107 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1108 // returns true. 1109 template <typename OwnerFilter> 1110 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1111 monitors_iterate([&](ObjectMonitor* monitor) { 1112 // This function is only called at a safepoint or when the 1113 // target thread is suspended or when the target thread is 1114 // operating on itself. The current closures in use today are 1115 // only interested in an owned ObjectMonitor and ownership 1116 // cannot be dropped under the calling contexts so the 1117 // ObjectMonitor cannot be async deflated. 1118 if (monitor->has_owner() && filter(monitor->owner_raw())) { 1119 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1120 1121 closure->do_monitor(monitor); 1122 } 1123 }); 1124 } 1125 1126 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1127 // ObjectMonitors where owner is set to a stack-lock address in thread. 1128 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1129 auto thread_filter = [&](void* owner) { return owner == thread; }; 1130 return owned_monitors_iterate_filtered(closure, thread_filter); 1131 } 1132 1133 // Iterate ObjectMonitors owned by any thread. 1134 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1135 auto all_filter = [&](void* owner) { return true; }; 1136 return owned_monitors_iterate_filtered(closure, all_filter); 1137 } 1138 1139 static bool monitors_used_above_threshold(MonitorList* list) { 1140 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1141 return false; 1142 } 1143 // Start with ceiling based on a per-thread estimate: 1144 size_t ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1145 size_t old_ceiling = ceiling; 1146 if (ceiling < list->max()) { 1147 // The max used by the system has exceeded the ceiling so use that: 1148 ceiling = list->max(); 1149 } 1150 size_t monitors_used = list->count(); 1151 if (monitors_used == 0) { // empty list is easy 1152 return false; 1153 } 1154 if (NoAsyncDeflationProgressMax != 0 && 1155 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1156 float remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1157 size_t new_ceiling = ceiling + (ceiling * remainder) + 1; 1158 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1159 log_info(monitorinflation)("Too many deflations without progress; " 1160 "bumping in_use_list_ceiling from " SIZE_FORMAT 1161 " to " SIZE_FORMAT, old_ceiling, new_ceiling); 1162 _no_progress_cnt = 0; 1163 ceiling = new_ceiling; 1164 } 1165 1166 // Check if our monitor usage is above the threshold: 1167 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1168 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1169 log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT 1170 ", monitor_usage=" SIZE_FORMAT ", threshold=" INTX_FORMAT, 1171 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1172 return true; 1173 } 1174 1175 return false; 1176 } 1177 1178 size_t ObjectSynchronizer::in_use_list_ceiling() { 1179 return _in_use_list_ceiling; 1180 } 1181 1182 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1183 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1184 } 1185 1186 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1187 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1188 } 1189 1190 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1191 _in_use_list_ceiling = new_value; 1192 } 1193 1194 bool ObjectSynchronizer::is_async_deflation_needed() { 1195 if (is_async_deflation_requested()) { 1196 // Async deflation request. 1197 log_info(monitorinflation)("Async deflation needed: explicit request"); 1198 return true; 1199 } 1200 1201 jlong time_since_last = time_since_last_async_deflation_ms(); 1202 1203 if (AsyncDeflationInterval > 0 && 1204 time_since_last > AsyncDeflationInterval && 1205 monitors_used_above_threshold(&_in_use_list)) { 1206 // It's been longer than our specified deflate interval and there 1207 // are too many monitors in use. We don't deflate more frequently 1208 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1209 // in order to not swamp the MonitorDeflationThread. 1210 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1211 return true; 1212 } 1213 1214 if (GuaranteedAsyncDeflationInterval > 0 && 1215 time_since_last > GuaranteedAsyncDeflationInterval) { 1216 // It's been longer than our specified guaranteed deflate interval. 1217 // We need to clean up the used monitors even if the threshold is 1218 // not reached, to keep the memory utilization at bay when many threads 1219 // touched many monitors. 1220 log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) " 1221 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1222 GuaranteedAsyncDeflationInterval, time_since_last); 1223 1224 // If this deflation has no progress, then it should not affect the no-progress 1225 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1226 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1227 // the generic code would bump the no-progress counter, and we compensate for that 1228 // by telling it to skip the update. 1229 // 1230 // If this deflation has progress, then it should let non-progress tracking 1231 // know about this, otherwise the threshold heuristics would kick in, potentially 1232 // experience no-progress due to aggressive cleanup by this deflation, and think 1233 // it is still in no-progress stride. In this "progress" case, the generic code would 1234 // zero the counter, and we allow it to happen. 1235 _no_progress_skip_increment = true; 1236 1237 return true; 1238 } 1239 1240 return false; 1241 } 1242 1243 void ObjectSynchronizer::request_deflate_idle_monitors() { 1244 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1245 set_is_async_deflation_requested(true); 1246 ml.notify_all(); 1247 } 1248 1249 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1250 JavaThread* current = JavaThread::current(); 1251 bool ret_code = false; 1252 1253 jlong last_time = last_async_deflation_time_ns(); 1254 1255 request_deflate_idle_monitors(); 1256 1257 const int N_CHECKS = 5; 1258 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1259 if (last_async_deflation_time_ns() > last_time) { 1260 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1261 ret_code = true; 1262 break; 1263 } 1264 { 1265 // JavaThread has to honor the blocking protocol. 1266 ThreadBlockInVM tbivm(current); 1267 os::naked_short_sleep(999); // sleep for almost 1 second 1268 } 1269 } 1270 if (!ret_code) { 1271 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1272 } 1273 1274 return ret_code; 1275 } 1276 1277 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1278 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1279 } 1280 1281 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1282 const oop obj, 1283 ObjectSynchronizer::InflateCause cause) { 1284 assert(event != nullptr, "invariant"); 1285 event->set_monitorClass(obj->klass()); 1286 event->set_address((uintptr_t)(void*)obj); 1287 event->set_cause((u1)cause); 1288 event->commit(); 1289 } 1290 1291 // Fast path code shared by multiple functions 1292 void ObjectSynchronizer::inflate_helper(oop obj) { 1293 markWord mark = obj->mark_acquire(); 1294 if (mark.has_monitor()) { 1295 ObjectMonitor* monitor = mark.monitor(); 1296 markWord dmw = monitor->header(); 1297 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1298 return; 1299 } 1300 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1301 } 1302 1303 // Can be called from non JavaThreads (e.g., VMThread) for FastHashCode 1304 // calculations as part of JVM/TI tagging. 1305 static bool is_lock_owned(Thread* thread, oop obj) { 1306 assert(LockingMode == LM_LIGHTWEIGHT, "only call this with new lightweight locking enabled"); 1307 return thread->is_Java_thread() ? JavaThread::cast(thread)->lock_stack().contains(obj) : false; 1308 } 1309 1310 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop object, 1311 const InflateCause cause) { 1312 EventJavaMonitorInflate event; 1313 1314 for (;;) { 1315 const markWord mark = object->mark_acquire(); 1316 1317 // The mark can be in one of the following states: 1318 // * inflated - Just return if using stack-locking. 1319 // If using fast-locking and the ObjectMonitor owner 1320 // is anonymous and the current thread owns the 1321 // object lock, then we make the current thread the 1322 // ObjectMonitor owner and remove the lock from the 1323 // current thread's lock stack. 1324 // * fast-locked - Coerce it to inflated from fast-locked. 1325 // * stack-locked - Coerce it to inflated from stack-locked. 1326 // * INFLATING - Busy wait for conversion from stack-locked to 1327 // inflated. 1328 // * neutral - Aggressively inflate the object. 1329 1330 // CASE: inflated 1331 if (mark.has_monitor()) { 1332 ObjectMonitor* inf = mark.monitor(); 1333 markWord dmw = inf->header(); 1334 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1335 if (LockingMode == LM_LIGHTWEIGHT && inf->is_owner_anonymous() && is_lock_owned(current, object)) { 1336 inf->set_owner_from_anonymous(current); 1337 JavaThread::cast(current)->lock_stack().remove(object); 1338 } 1339 return inf; 1340 } 1341 1342 if (LockingMode != LM_LIGHTWEIGHT) { 1343 // New lightweight locking does not use INFLATING. 1344 // CASE: inflation in progress - inflating over a stack-lock. 1345 // Some other thread is converting from stack-locked to inflated. 1346 // Only that thread can complete inflation -- other threads must wait. 1347 // The INFLATING value is transient. 1348 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1349 // We could always eliminate polling by parking the thread on some auxiliary list. 1350 if (mark == markWord::INFLATING()) { 1351 read_stable_mark(object); 1352 continue; 1353 } 1354 } 1355 1356 // CASE: fast-locked 1357 // Could be fast-locked either by current or by some other thread. 1358 // 1359 // Note that we allocate the ObjectMonitor speculatively, _before_ 1360 // attempting to set the object's mark to the new ObjectMonitor. If 1361 // this thread owns the monitor, then we set the ObjectMonitor's 1362 // owner to this thread. Otherwise, we set the ObjectMonitor's owner 1363 // to anonymous. If we lose the race to set the object's mark to the 1364 // new ObjectMonitor, then we just delete it and loop around again. 1365 // 1366 LogStreamHandle(Trace, monitorinflation) lsh; 1367 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1368 ObjectMonitor* monitor = new ObjectMonitor(object); 1369 monitor->set_header(mark.set_unlocked()); 1370 bool own = is_lock_owned(current, object); 1371 if (own) { 1372 // Owned by us. 1373 monitor->set_owner_from(nullptr, current); 1374 } else { 1375 // Owned by somebody else. 1376 monitor->set_owner_anonymous(); 1377 } 1378 markWord monitor_mark = markWord::encode(monitor); 1379 markWord old_mark = object->cas_set_mark(monitor_mark, mark); 1380 if (old_mark == mark) { 1381 // Success! Return inflated monitor. 1382 if (own) { 1383 JavaThread::cast(current)->lock_stack().remove(object); 1384 } 1385 // Once the ObjectMonitor is configured and object is associated 1386 // with the ObjectMonitor, it is safe to allow async deflation: 1387 _in_use_list.add(monitor); 1388 1389 // Hopefully the performance counters are allocated on distinct 1390 // cache lines to avoid false sharing on MP systems ... 1391 OM_PERFDATA_OP(Inflations, inc()); 1392 if (log_is_enabled(Trace, monitorinflation)) { 1393 ResourceMark rm(current); 1394 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1395 INTPTR_FORMAT ", type='%s'", p2i(object), 1396 object->mark().value(), object->klass()->external_name()); 1397 } 1398 if (event.should_commit()) { 1399 post_monitor_inflate_event(&event, object, cause); 1400 } 1401 return monitor; 1402 } else { 1403 delete monitor; 1404 continue; // Interference -- just retry 1405 } 1406 } 1407 1408 // CASE: stack-locked 1409 // Could be stack-locked either by current or by some other thread. 1410 // 1411 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1412 // to install INFLATING into the mark word. We originally installed INFLATING, 1413 // allocated the ObjectMonitor, and then finally STed the address of the 1414 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1415 // the interval in which INFLATING appeared in the mark, thus increasing 1416 // the odds of inflation contention. If we lose the race to set INFLATING, 1417 // then we just delete the ObjectMonitor and loop around again. 1418 // 1419 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1420 assert(LockingMode != LM_LIGHTWEIGHT, "cannot happen with new lightweight locking"); 1421 ObjectMonitor* m = new ObjectMonitor(object); 1422 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1423 // We do this before the CAS in order to minimize the length of time 1424 // in which INFLATING appears in the mark. 1425 1426 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1427 if (cmp != mark) { 1428 delete m; 1429 continue; // Interference -- just retry 1430 } 1431 1432 // We've successfully installed INFLATING (0) into the mark-word. 1433 // This is the only case where 0 will appear in a mark-word. 1434 // Only the singular thread that successfully swings the mark-word 1435 // to 0 can perform (or more precisely, complete) inflation. 1436 // 1437 // Why do we CAS a 0 into the mark-word instead of just CASing the 1438 // mark-word from the stack-locked value directly to the new inflated state? 1439 // Consider what happens when a thread unlocks a stack-locked object. 1440 // It attempts to use CAS to swing the displaced header value from the 1441 // on-stack BasicLock back into the object header. Recall also that the 1442 // header value (hash code, etc) can reside in (a) the object header, or 1443 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1444 // header in an ObjectMonitor. The inflate() routine must copy the header 1445 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1446 // the while preserving the hashCode stability invariants. If the owner 1447 // decides to release the lock while the value is 0, the unlock will fail 1448 // and control will eventually pass from slow_exit() to inflate. The owner 1449 // will then spin, waiting for the 0 value to disappear. Put another way, 1450 // the 0 causes the owner to stall if the owner happens to try to 1451 // drop the lock (restoring the header from the BasicLock to the object) 1452 // while inflation is in-progress. This protocol avoids races that might 1453 // would otherwise permit hashCode values to change or "flicker" for an object. 1454 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1455 // 0 serves as a "BUSY" inflate-in-progress indicator. 1456 1457 1458 // fetch the displaced mark from the owner's stack. 1459 // The owner can't die or unwind past the lock while our INFLATING 1460 // object is in the mark. Furthermore the owner can't complete 1461 // an unlock on the object, either. 1462 markWord dmw = mark.displaced_mark_helper(); 1463 // Catch if the object's header is not neutral (not locked and 1464 // not marked is what we care about here). 1465 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1466 1467 // Setup monitor fields to proper values -- prepare the monitor 1468 m->set_header(dmw); 1469 1470 // Optimization: if the mark.locker stack address is associated 1471 // with this thread we could simply set m->_owner = current. 1472 // Note that a thread can inflate an object 1473 // that it has stack-locked -- as might happen in wait() -- directly 1474 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1475 m->set_owner_from(nullptr, mark.locker()); 1476 // TODO-FIXME: assert BasicLock->dhw != 0. 1477 1478 // Must preserve store ordering. The monitor state must 1479 // be stable at the time of publishing the monitor address. 1480 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1481 // Release semantics so that above set_object() is seen first. 1482 object->release_set_mark(markWord::encode(m)); 1483 1484 // Once ObjectMonitor is configured and the object is associated 1485 // with the ObjectMonitor, it is safe to allow async deflation: 1486 _in_use_list.add(m); 1487 1488 // Hopefully the performance counters are allocated on distinct cache lines 1489 // to avoid false sharing on MP systems ... 1490 OM_PERFDATA_OP(Inflations, inc()); 1491 if (log_is_enabled(Trace, monitorinflation)) { 1492 ResourceMark rm(current); 1493 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1494 INTPTR_FORMAT ", type='%s'", p2i(object), 1495 object->mark().value(), object->klass()->external_name()); 1496 } 1497 if (event.should_commit()) { 1498 post_monitor_inflate_event(&event, object, cause); 1499 } 1500 return m; 1501 } 1502 1503 // CASE: neutral 1504 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1505 // If we know we're inflating for entry it's better to inflate by swinging a 1506 // pre-locked ObjectMonitor pointer into the object header. A successful 1507 // CAS inflates the object *and* confers ownership to the inflating thread. 1508 // In the current implementation we use a 2-step mechanism where we CAS() 1509 // to inflate and then CAS() again to try to swing _owner from null to current. 1510 // An inflateTry() method that we could call from enter() would be useful. 1511 1512 // Catch if the object's header is not neutral (not locked and 1513 // not marked is what we care about here). 1514 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1515 ObjectMonitor* m = new ObjectMonitor(object); 1516 // prepare m for installation - set monitor to initial state 1517 m->set_header(mark); 1518 1519 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1520 delete m; 1521 m = nullptr; 1522 continue; 1523 // interference - the markword changed - just retry. 1524 // The state-transitions are one-way, so there's no chance of 1525 // live-lock -- "Inflated" is an absorbing state. 1526 } 1527 1528 // Once the ObjectMonitor is configured and object is associated 1529 // with the ObjectMonitor, it is safe to allow async deflation: 1530 _in_use_list.add(m); 1531 1532 // Hopefully the performance counters are allocated on distinct 1533 // cache lines to avoid false sharing on MP systems ... 1534 OM_PERFDATA_OP(Inflations, inc()); 1535 if (log_is_enabled(Trace, monitorinflation)) { 1536 ResourceMark rm(current); 1537 lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark=" 1538 INTPTR_FORMAT ", type='%s'", p2i(object), 1539 object->mark().value(), object->klass()->external_name()); 1540 } 1541 if (event.should_commit()) { 1542 post_monitor_inflate_event(&event, object, cause); 1543 } 1544 return m; 1545 } 1546 } 1547 1548 void ObjectSynchronizer::chk_for_block_req(JavaThread* current, const char* op_name, 1549 const char* cnt_name, size_t cnt, 1550 LogStream* ls, elapsedTimer* timer_p) { 1551 if (!SafepointMechanism::should_process(current)) { 1552 return; 1553 } 1554 1555 // A safepoint/handshake has started. 1556 if (ls != nullptr) { 1557 timer_p->stop(); 1558 ls->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling=" 1559 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1560 op_name, cnt_name, cnt, in_use_list_ceiling(), 1561 _in_use_list.count(), _in_use_list.max()); 1562 } 1563 1564 { 1565 // Honor block request. 1566 ThreadBlockInVM tbivm(current); 1567 } 1568 1569 if (ls != nullptr) { 1570 ls->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT 1571 ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name, 1572 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1573 timer_p->start(); 1574 } 1575 } 1576 1577 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1578 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1579 // 1580 size_t ObjectSynchronizer::deflate_monitor_list(Thread* current, LogStream* ls, 1581 elapsedTimer* timer_p) { 1582 MonitorList::Iterator iter = _in_use_list.iterator(); 1583 size_t deflated_count = 0; 1584 1585 while (iter.has_next()) { 1586 if (deflated_count >= (size_t)MonitorDeflationMax) { 1587 break; 1588 } 1589 ObjectMonitor* mid = iter.next(); 1590 if (mid->deflate_monitor()) { 1591 deflated_count++; 1592 } 1593 1594 if (current->is_Java_thread()) { 1595 // A JavaThread must check for a safepoint/handshake and honor it. 1596 chk_for_block_req(JavaThread::cast(current), "deflation", "deflated_count", 1597 deflated_count, ls, timer_p); 1598 } 1599 } 1600 1601 return deflated_count; 1602 } 1603 1604 class HandshakeForDeflation : public HandshakeClosure { 1605 public: 1606 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1607 1608 void do_thread(Thread* thread) { 1609 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1610 INTPTR_FORMAT, p2i(thread)); 1611 } 1612 }; 1613 1614 class VM_RendezvousGCThreads : public VM_Operation { 1615 public: 1616 bool evaluate_at_safepoint() const override { return false; } 1617 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1618 void doit() override { 1619 Universe::heap()->safepoint_synchronize_begin(); 1620 Universe::heap()->safepoint_synchronize_end(); 1621 }; 1622 }; 1623 1624 static size_t delete_monitors(Thread* current, GrowableArray<ObjectMonitor*>* delete_list, 1625 LogStream* ls, elapsedTimer* timer_p) { 1626 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1627 size_t deleted_count = 0; 1628 for (ObjectMonitor* monitor: *delete_list) { 1629 delete monitor; 1630 deleted_count++; 1631 if (current->is_Java_thread()) { 1632 // A JavaThread must check for a safepoint/handshake and honor it. 1633 ObjectSynchronizer::chk_for_block_req(JavaThread::cast(current), "deletion", "deleted_count", 1634 deleted_count, ls, timer_p); 1635 } 1636 } 1637 return deleted_count; 1638 } 1639 1640 // This function is called by the MonitorDeflationThread to deflate 1641 // ObjectMonitors. 1642 size_t ObjectSynchronizer::deflate_idle_monitors() { 1643 Thread* current = Thread::current(); 1644 if (current->is_Java_thread()) { 1645 // The async deflation request has been processed. 1646 _last_async_deflation_time_ns = os::javaTimeNanos(); 1647 set_is_async_deflation_requested(false); 1648 } 1649 1650 LogStreamHandle(Debug, monitorinflation) lsh_debug; 1651 LogStreamHandle(Info, monitorinflation) lsh_info; 1652 LogStream* ls = nullptr; 1653 if (log_is_enabled(Debug, monitorinflation)) { 1654 ls = &lsh_debug; 1655 } else if (log_is_enabled(Info, monitorinflation)) { 1656 ls = &lsh_info; 1657 } 1658 1659 elapsedTimer timer; 1660 if (ls != nullptr) { 1661 ls->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1662 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1663 timer.start(); 1664 } 1665 1666 // Deflate some idle ObjectMonitors. 1667 size_t deflated_count = deflate_monitor_list(current, ls, &timer); 1668 size_t unlinked_count = 0; 1669 size_t deleted_count = 0; 1670 if (deflated_count > 0) { 1671 // There are ObjectMonitors that have been deflated. 1672 1673 // Unlink deflated ObjectMonitors from the in-use list. 1674 ResourceMark rm; 1675 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1676 unlinked_count = _in_use_list.unlink_deflated(current, ls, &timer, deflated_count, &delete_list); 1677 if (current->is_monitor_deflation_thread()) { 1678 if (ls != nullptr) { 1679 timer.stop(); 1680 ls->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT 1681 ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" 1682 SIZE_FORMAT ", max=" SIZE_FORMAT, 1683 unlinked_count, in_use_list_ceiling(), 1684 _in_use_list.count(), _in_use_list.max()); 1685 } 1686 1687 // A JavaThread needs to handshake in order to safely free the 1688 // ObjectMonitors that were deflated in this cycle. 1689 HandshakeForDeflation hfd_hc; 1690 Handshake::execute(&hfd_hc); 1691 // Also, we sync and desync GC threads around the handshake, so that they can 1692 // safely read the mark-word and look-through to the object-monitor, without 1693 // being afraid that the object-monitor is going away. 1694 VM_RendezvousGCThreads sync_gc; 1695 VMThread::execute(&sync_gc); 1696 1697 if (ls != nullptr) { 1698 ls->print_cr("after handshaking: in_use_list stats: ceiling=" 1699 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1700 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1701 timer.start(); 1702 } 1703 } else { 1704 // This is not a monitor deflation thread. 1705 // No handshake or rendezvous is needed when we are already at safepoint. 1706 assert_at_safepoint(); 1707 } 1708 1709 // After the handshake, safely free the ObjectMonitors that were 1710 // deflated and unlinked in this cycle. 1711 deleted_count = delete_monitors(current, &delete_list, ls, &timer); 1712 assert(unlinked_count == deleted_count, "must be"); 1713 } 1714 1715 if (ls != nullptr) { 1716 timer.stop(); 1717 if (deflated_count != 0 || unlinked_count != 0 || log_is_enabled(Debug, monitorinflation)) { 1718 ls->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs", 1719 deflated_count, unlinked_count, timer.seconds()); 1720 } 1721 ls->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1722 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1723 } 1724 1725 OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count())); 1726 OM_PERFDATA_OP(Deflations, inc(deflated_count)); 1727 1728 GVars.stw_random = os::random(); 1729 1730 if (deflated_count != 0) { 1731 _no_progress_cnt = 0; 1732 } else if (_no_progress_skip_increment) { 1733 _no_progress_skip_increment = false; 1734 } else { 1735 _no_progress_cnt++; 1736 } 1737 1738 return deflated_count; 1739 } 1740 1741 // Monitor cleanup on JavaThread::exit 1742 1743 // Iterate through monitor cache and attempt to release thread's monitors 1744 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1745 private: 1746 JavaThread* _thread; 1747 1748 public: 1749 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1750 void do_monitor(ObjectMonitor* mid) { 1751 intx rec = mid->complete_exit(_thread); 1752 _thread->dec_held_monitor_count(rec + 1); 1753 } 1754 }; 1755 1756 // Release all inflated monitors owned by current thread. Lightweight monitors are 1757 // ignored. This is meant to be called during JNI thread detach which assumes 1758 // all remaining monitors are heavyweight. All exceptions are swallowed. 1759 // Scanning the extant monitor list can be time consuming. 1760 // A simple optimization is to add a per-thread flag that indicates a thread 1761 // called jni_monitorenter() during its lifetime. 1762 // 1763 // Instead of NoSafepointVerifier it might be cheaper to 1764 // use an idiom of the form: 1765 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1766 // <code that must not run at safepoint> 1767 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1768 // Since the tests are extremely cheap we could leave them enabled 1769 // for normal product builds. 1770 1771 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1772 assert(current == JavaThread::current(), "must be current Java thread"); 1773 NoSafepointVerifier nsv; 1774 ReleaseJavaMonitorsClosure rjmc(current); 1775 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1776 assert(!current->has_pending_exception(), "Should not be possible"); 1777 current->clear_pending_exception(); 1778 assert(current->held_monitor_count() == 0, "Should not be possible"); 1779 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1780 current->clear_jni_monitor_count(); 1781 } 1782 1783 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1784 switch (cause) { 1785 case inflate_cause_vm_internal: return "VM Internal"; 1786 case inflate_cause_monitor_enter: return "Monitor Enter"; 1787 case inflate_cause_wait: return "Monitor Wait"; 1788 case inflate_cause_notify: return "Monitor Notify"; 1789 case inflate_cause_hash_code: return "Monitor Hash Code"; 1790 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1791 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1792 default: 1793 ShouldNotReachHere(); 1794 } 1795 return "Unknown"; 1796 } 1797 1798 //------------------------------------------------------------------------------ 1799 // Debugging code 1800 1801 u_char* ObjectSynchronizer::get_gvars_addr() { 1802 return (u_char*)&GVars; 1803 } 1804 1805 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1806 return (u_char*)&GVars.hc_sequence; 1807 } 1808 1809 size_t ObjectSynchronizer::get_gvars_size() { 1810 return sizeof(SharedGlobals); 1811 } 1812 1813 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1814 return (u_char*)&GVars.stw_random; 1815 } 1816 1817 // Do the final audit and print of ObjectMonitor stats; must be done 1818 // by the VMThread at VM exit time. 1819 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1820 assert(Thread::current()->is_VM_thread(), "sanity check"); 1821 1822 if (is_final_audit()) { // Only do the audit once. 1823 return; 1824 } 1825 set_is_final_audit(); 1826 log_info(monitorinflation)("Starting the final audit."); 1827 1828 if (log_is_enabled(Info, monitorinflation)) { 1829 // The other audit_and_print_stats() call is done at the Debug 1830 // level at a safepoint in SafepointSynchronize::do_cleanup_tasks. 1831 audit_and_print_stats(true /* on_exit */); 1832 } 1833 } 1834 1835 // This function can be called at a safepoint or it can be called when 1836 // we are trying to exit the VM. When we are trying to exit the VM, the 1837 // list walker functions can run in parallel with the other list 1838 // operations so spin-locking is used for safety. 1839 // 1840 // Calls to this function can be added in various places as a debugging 1841 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor 1842 // details logged at the Info level and 'false' for the 'on_exit' 1843 // parameter to have in-use monitor details logged at the Trace level. 1844 // 1845 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) { 1846 assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant"); 1847 1848 LogStreamHandle(Debug, monitorinflation) lsh_debug; 1849 LogStreamHandle(Info, monitorinflation) lsh_info; 1850 LogStreamHandle(Trace, monitorinflation) lsh_trace; 1851 LogStream* ls = nullptr; 1852 if (log_is_enabled(Trace, monitorinflation)) { 1853 ls = &lsh_trace; 1854 } else if (log_is_enabled(Debug, monitorinflation)) { 1855 ls = &lsh_debug; 1856 } else if (log_is_enabled(Info, monitorinflation)) { 1857 ls = &lsh_info; 1858 } 1859 assert(ls != nullptr, "sanity check"); 1860 1861 int error_cnt = 0; 1862 1863 ls->print_cr("Checking in_use_list:"); 1864 chk_in_use_list(ls, &error_cnt); 1865 1866 if (error_cnt == 0) { 1867 ls->print_cr("No errors found in in_use_list checks."); 1868 } else { 1869 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1870 } 1871 1872 if ((on_exit && log_is_enabled(Info, monitorinflation)) || 1873 (!on_exit && log_is_enabled(Trace, monitorinflation))) { 1874 // When exiting this log output is at the Info level. When called 1875 // at a safepoint, this log output is at the Trace level since 1876 // there can be a lot of it. 1877 log_in_use_monitor_details(ls, !on_exit /* log_all */); 1878 } 1879 1880 ls->flush(); 1881 1882 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 1883 } 1884 1885 // Check the in_use_list; log the results of the checks. 1886 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 1887 size_t l_in_use_count = _in_use_list.count(); 1888 size_t l_in_use_max = _in_use_list.max(); 1889 out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count, 1890 l_in_use_max); 1891 1892 size_t ck_in_use_count = 0; 1893 MonitorList::Iterator iter = _in_use_list.iterator(); 1894 while (iter.has_next()) { 1895 ObjectMonitor* mid = iter.next(); 1896 chk_in_use_entry(mid, out, error_cnt_p); 1897 ck_in_use_count++; 1898 } 1899 1900 if (l_in_use_count == ck_in_use_count) { 1901 out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count=" 1902 SIZE_FORMAT, l_in_use_count, ck_in_use_count); 1903 } else { 1904 out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to " 1905 "ck_in_use_count=" SIZE_FORMAT, l_in_use_count, 1906 ck_in_use_count); 1907 } 1908 1909 size_t ck_in_use_max = _in_use_list.max(); 1910 if (l_in_use_max == ck_in_use_max) { 1911 out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max=" 1912 SIZE_FORMAT, l_in_use_max, ck_in_use_max); 1913 } else { 1914 out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to " 1915 "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max); 1916 } 1917 } 1918 1919 // Check an in-use monitor entry; log any errors. 1920 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 1921 int* error_cnt_p) { 1922 if (n->owner_is_DEFLATER_MARKER()) { 1923 // This could happen when monitor deflation blocks for a safepoint. 1924 return; 1925 } 1926 1927 if (n->header().value() == 0) { 1928 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 1929 "have non-null _header field.", p2i(n)); 1930 *error_cnt_p = *error_cnt_p + 1; 1931 } 1932 const oop obj = n->object_peek(); 1933 if (obj != nullptr) { 1934 const markWord mark = obj->mark(); 1935 if (!mark.has_monitor()) { 1936 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 1937 "object does not think it has a monitor: obj=" 1938 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 1939 p2i(obj), mark.value()); 1940 *error_cnt_p = *error_cnt_p + 1; 1941 } 1942 ObjectMonitor* const obj_mon = mark.monitor(); 1943 if (n != obj_mon) { 1944 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 1945 "object does not refer to the same monitor: obj=" 1946 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 1947 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 1948 *error_cnt_p = *error_cnt_p + 1; 1949 } 1950 } 1951 } 1952 1953 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 1954 // flags indicate why the entry is in-use, 'object' and 'object type' 1955 // indicate the associated object and its type. 1956 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 1957 if (_in_use_list.count() > 0) { 1958 stringStream ss; 1959 out->print_cr("In-use monitor info:"); 1960 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 1961 out->print_cr("%18s %s %18s %18s", 1962 "monitor", "BHL", "object", "object type"); 1963 out->print_cr("================== === ================== =================="); 1964 1965 auto is_interesting = [&](ObjectMonitor* monitor) { 1966 return log_all || monitor->has_owner() || monitor->is_busy(); 1967 }; 1968 1969 monitors_iterate([&](ObjectMonitor* monitor) { 1970 if (is_interesting(monitor)) { 1971 const oop obj = monitor->object_peek(); 1972 const markWord mark = monitor->header(); 1973 ResourceMark rm; 1974 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 1975 monitor->is_busy(), mark.hash() != 0, monitor->owner() != nullptr, 1976 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 1977 if (monitor->is_busy()) { 1978 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 1979 ss.reset(); 1980 } 1981 out->cr(); 1982 } 1983 }); 1984 } 1985 1986 out->flush(); 1987 }