1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "jfr/jfrEvents.hpp" 29 #include "logging/log.hpp" 30 #include "logging/logStream.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/padded.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "runtime/atomic.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lockStack.inline.hpp" 45 #include "runtime/mutexLocker.hpp" 46 #include "runtime/objectMonitor.hpp" 47 #include "runtime/objectMonitor.inline.hpp" 48 #include "runtime/os.inline.hpp" 49 #include "runtime/osThread.hpp" 50 #include "runtime/perfData.hpp" 51 #include "runtime/safepointMechanism.inline.hpp" 52 #include "runtime/safepointVerifiers.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.hpp" 56 #include "runtime/threads.hpp" 57 #include "runtime/timer.hpp" 58 #include "runtime/trimNativeHeap.hpp" 59 #include "runtime/vframe.hpp" 60 #include "runtime/vmThread.hpp" 61 #include "utilities/align.hpp" 62 #include "utilities/dtrace.hpp" 63 #include "utilities/events.hpp" 64 #include "utilities/globalDefinitions.hpp" 65 #include "utilities/linkedlist.hpp" 66 #include "utilities/preserveException.hpp" 67 68 void MonitorList::add(ObjectMonitor* m) { 69 ObjectMonitor* head; 70 do { 71 head = Atomic::load(&_head); 72 m->set_next_om(head); 73 } while (Atomic::cmpxchg(&_head, head, m) != head); 74 75 size_t count = Atomic::add(&_count, 1u); 76 if (count > max()) { 77 Atomic::inc(&_max); 78 } 79 } 80 81 size_t MonitorList::count() const { 82 return Atomic::load(&_count); 83 } 84 85 size_t MonitorList::max() const { 86 return Atomic::load(&_max); 87 } 88 89 // Walk the in-use list and unlink deflated ObjectMonitors. 90 // Returns the number of unlinked ObjectMonitors. 91 size_t MonitorList::unlink_deflated(Thread* current, LogStream* ls, 92 elapsedTimer* timer_p, 93 size_t deflated_count, 94 GrowableArray<ObjectMonitor*>* unlinked_list) { 95 size_t unlinked_count = 0; 96 ObjectMonitor* prev = nullptr; 97 ObjectMonitor* m = Atomic::load_acquire(&_head); 98 99 // The in-use list head can be null during the final audit. 100 while (m != nullptr) { 101 if (m->is_being_async_deflated()) { 102 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 103 // modify the list once per batch. The batch starts at "m". 104 size_t unlinked_batch = 0; 105 ObjectMonitor* next = m; 106 // Look for at most MonitorUnlinkBatch monitors, or the number of 107 // deflated and not unlinked monitors, whatever comes first. 108 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 109 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 110 do { 111 ObjectMonitor* next_next = next->next_om(); 112 unlinked_batch++; 113 unlinked_list->append(next); 114 next = next_next; 115 if (unlinked_batch >= unlinked_batch_limit) { 116 // Reached the max batch, so bail out of the gathering loop. 117 break; 118 } 119 if (prev == nullptr && Atomic::load(&_head) != m) { 120 // Current batch used to be at head, but it is not at head anymore. 121 // Bail out and figure out where we currently are. This avoids long 122 // walks searching for new prev during unlink under heavy list inserts. 123 break; 124 } 125 } while (next != nullptr && next->is_being_async_deflated()); 126 127 // Unlink the found batch. 128 if (prev == nullptr) { 129 // The current batch is the first batch, so there is a chance that it starts at head. 130 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 131 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 132 if (prev_head != m) { 133 // Something must have updated the head. Figure out the actual prev for this batch. 134 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 135 prev = n; 136 } 137 assert(prev != nullptr, "Should have found the prev for the current batch"); 138 prev->set_next_om(next); 139 } 140 } else { 141 // The current batch is preceded by another batch. This guarantees the current batch 142 // does not start at head. Unlink the entire current batch without updating the head. 143 assert(Atomic::load(&_head) != m, "Sanity"); 144 prev->set_next_om(next); 145 } 146 147 unlinked_count += unlinked_batch; 148 if (unlinked_count >= deflated_count) { 149 // Reached the max so bail out of the searching loop. 150 // There should be no more deflated monitors left. 151 break; 152 } 153 m = next; 154 } else { 155 prev = m; 156 m = m->next_om(); 157 } 158 159 if (current->is_Java_thread()) { 160 // A JavaThread must check for a safepoint/handshake and honor it. 161 ObjectSynchronizer::chk_for_block_req(JavaThread::cast(current), "unlinking", 162 "unlinked_count", unlinked_count, 163 ls, timer_p); 164 } 165 } 166 167 #ifdef ASSERT 168 // Invariant: the code above should unlink all deflated monitors. 169 // The code that runs after this unlinking does not expect deflated monitors. 170 // Notably, attempting to deflate the already deflated monitor would break. 171 { 172 ObjectMonitor* m = Atomic::load_acquire(&_head); 173 while (m != nullptr) { 174 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 175 m = m->next_om(); 176 } 177 } 178 #endif 179 180 Atomic::sub(&_count, unlinked_count); 181 return unlinked_count; 182 } 183 184 MonitorList::Iterator MonitorList::iterator() const { 185 return Iterator(Atomic::load_acquire(&_head)); 186 } 187 188 ObjectMonitor* MonitorList::Iterator::next() { 189 ObjectMonitor* current = _current; 190 _current = current->next_om(); 191 return current; 192 } 193 194 // The "core" versions of monitor enter and exit reside in this file. 195 // The interpreter and compilers contain specialized transliterated 196 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 197 // fast_lock(...) for instance. If you make changes here, make sure to modify the 198 // interpreter, and both C1 and C2 fast-path inline locking code emission. 199 // 200 // ----------------------------------------------------------------------------- 201 202 #ifdef DTRACE_ENABLED 203 204 // Only bother with this argument setup if dtrace is available 205 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 206 207 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 208 char* bytes = nullptr; \ 209 int len = 0; \ 210 jlong jtid = SharedRuntime::get_java_tid(thread); \ 211 Symbol* klassname = obj->klass()->name(); \ 212 if (klassname != nullptr) { \ 213 bytes = (char*)klassname->bytes(); \ 214 len = klassname->utf8_length(); \ 215 } 216 217 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 218 { \ 219 if (DTraceMonitorProbes) { \ 220 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 221 HOTSPOT_MONITOR_WAIT(jtid, \ 222 (uintptr_t)(monitor), bytes, len, (millis)); \ 223 } \ 224 } 225 226 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 227 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 228 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 229 230 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 231 { \ 232 if (DTraceMonitorProbes) { \ 233 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 234 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 235 (uintptr_t)(monitor), bytes, len); \ 236 } \ 237 } 238 239 #else // ndef DTRACE_ENABLED 240 241 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 242 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 243 244 #endif // ndef DTRACE_ENABLED 245 246 // This exists only as a workaround of dtrace bug 6254741 247 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 248 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 249 return 0; 250 } 251 252 static constexpr size_t inflation_lock_count() { 253 return 256; 254 } 255 256 // Static storage for an array of PlatformMutex. 257 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 258 259 static inline PlatformMutex* inflation_lock(size_t index) { 260 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 261 } 262 263 void ObjectSynchronizer::initialize() { 264 for (size_t i = 0; i < inflation_lock_count(); i++) { 265 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 266 } 267 // Start the ceiling with the estimate for one thread. 268 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 269 270 // Start the timer for deflations, so it does not trigger immediately. 271 _last_async_deflation_time_ns = os::javaTimeNanos(); 272 } 273 274 MonitorList ObjectSynchronizer::_in_use_list; 275 // monitors_used_above_threshold() policy is as follows: 276 // 277 // The ratio of the current _in_use_list count to the ceiling is used 278 // to determine if we are above MonitorUsedDeflationThreshold and need 279 // to do an async monitor deflation cycle. The ceiling is increased by 280 // AvgMonitorsPerThreadEstimate when a thread is added to the system 281 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 282 // removed from the system. 283 // 284 // Note: If the _in_use_list max exceeds the ceiling, then 285 // monitors_used_above_threshold() will use the in_use_list max instead 286 // of the thread count derived ceiling because we have used more 287 // ObjectMonitors than the estimated average. 288 // 289 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 290 // no-progress async monitor deflation cycles in a row, then the ceiling 291 // is adjusted upwards by monitors_used_above_threshold(). 292 // 293 // Start the ceiling with the estimate for one thread in initialize() 294 // which is called after cmd line options are processed. 295 static size_t _in_use_list_ceiling = 0; 296 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 297 bool volatile ObjectSynchronizer::_is_final_audit = false; 298 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 299 static uintx _no_progress_cnt = 0; 300 static bool _no_progress_skip_increment = false; 301 302 // =====================> Quick functions 303 304 // The quick_* forms are special fast-path variants used to improve 305 // performance. In the simplest case, a "quick_*" implementation could 306 // simply return false, in which case the caller will perform the necessary 307 // state transitions and call the slow-path form. 308 // The fast-path is designed to handle frequently arising cases in an efficient 309 // manner and is just a degenerate "optimistic" variant of the slow-path. 310 // returns true -- to indicate the call was satisfied. 311 // returns false -- to indicate the call needs the services of the slow-path. 312 // A no-loitering ordinance is in effect for code in the quick_* family 313 // operators: safepoints or indefinite blocking (blocking that might span a 314 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 315 // entry. 316 // 317 // Consider: An interesting optimization is to have the JIT recognize the 318 // following common idiom: 319 // synchronized (someobj) { .... ; notify(); } 320 // That is, we find a notify() or notifyAll() call that immediately precedes 321 // the monitorexit operation. In that case the JIT could fuse the operations 322 // into a single notifyAndExit() runtime primitive. 323 324 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 325 assert(current->thread_state() == _thread_in_Java, "invariant"); 326 NoSafepointVerifier nsv; 327 if (obj == nullptr) return false; // slow-path for invalid obj 328 const markWord mark = obj->mark(); 329 330 if (LockingMode == LM_LIGHTWEIGHT) { 331 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 332 // Degenerate notify 333 // fast-locked by caller so by definition the implied waitset is empty. 334 return true; 335 } 336 } else if (LockingMode == LM_LEGACY) { 337 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 338 // Degenerate notify 339 // stack-locked by caller so by definition the implied waitset is empty. 340 return true; 341 } 342 } 343 344 if (mark.has_monitor()) { 345 ObjectMonitor* const mon = mark.monitor(); 346 assert(mon->object() == oop(obj), "invariant"); 347 if (mon->owner() != current) return false; // slow-path for IMS exception 348 349 if (mon->first_waiter() != nullptr) { 350 // We have one or more waiters. Since this is an inflated monitor 351 // that we own, we can transfer one or more threads from the waitset 352 // to the entrylist here and now, avoiding the slow-path. 353 if (all) { 354 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 355 } else { 356 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 357 } 358 int free_count = 0; 359 do { 360 mon->INotify(current); 361 ++free_count; 362 } while (mon->first_waiter() != nullptr && all); 363 OM_PERFDATA_OP(Notifications, inc(free_count)); 364 } 365 return true; 366 } 367 368 // other IMS exception states take the slow-path 369 return false; 370 } 371 372 373 // The LockNode emitted directly at the synchronization site would have 374 // been too big if it were to have included support for the cases of inflated 375 // recursive enter and exit, so they go here instead. 376 // Note that we can't safely call AsyncPrintJavaStack() from within 377 // quick_enter() as our thread state remains _in_Java. 378 379 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current, 380 BasicLock * lock) { 381 assert(current->thread_state() == _thread_in_Java, "invariant"); 382 NoSafepointVerifier nsv; 383 if (obj == nullptr) return false; // Need to throw NPE 384 385 if (obj->klass()->is_value_based()) { 386 return false; 387 } 388 389 if (LockingMode == LM_LIGHTWEIGHT) { 390 LockStack& lock_stack = current->lock_stack(); 391 if (lock_stack.is_full()) { 392 // Always go into runtime if the lock stack is full. 393 return false; 394 } 395 if (lock_stack.try_recursive_enter(obj)) { 396 // Recursive lock successful. 397 current->inc_held_monitor_count(); 398 return true; 399 } 400 } 401 402 const markWord mark = obj->mark(); 403 404 if (mark.has_monitor()) { 405 ObjectMonitor* const m = mark.monitor(); 406 // An async deflation or GC can race us before we manage to make 407 // the ObjectMonitor busy by setting the owner below. If we detect 408 // that race we just bail out to the slow-path here. 409 if (m->object_peek() == nullptr) { 410 return false; 411 } 412 JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw()); 413 414 // Lock contention and Transactional Lock Elision (TLE) diagnostics 415 // and observability 416 // Case: light contention possibly amenable to TLE 417 // Case: TLE inimical operations such as nested/recursive synchronization 418 419 if (owner == current) { 420 m->_recursions++; 421 current->inc_held_monitor_count(); 422 return true; 423 } 424 425 if (LockingMode != LM_LIGHTWEIGHT) { 426 // This Java Monitor is inflated so obj's header will never be 427 // displaced to this thread's BasicLock. Make the displaced header 428 // non-null so this BasicLock is not seen as recursive nor as 429 // being locked. We do this unconditionally so that this thread's 430 // BasicLock cannot be mis-interpreted by any stack walkers. For 431 // performance reasons, stack walkers generally first check for 432 // stack-locking in the object's header, the second check is for 433 // recursive stack-locking in the displaced header in the BasicLock, 434 // and last are the inflated Java Monitor (ObjectMonitor) checks. 435 lock->set_displaced_header(markWord::unused_mark()); 436 } 437 438 if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) { 439 assert(m->_recursions == 0, "invariant"); 440 current->inc_held_monitor_count(); 441 return true; 442 } 443 } 444 445 // Note that we could inflate in quick_enter. 446 // This is likely a useful optimization 447 // Critically, in quick_enter() we must not: 448 // -- block indefinitely, or 449 // -- reach a safepoint 450 451 return false; // revert to slow-path 452 } 453 454 // Handle notifications when synchronizing on value based classes 455 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 456 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 457 frame last_frame = locking_thread->last_frame(); 458 bool bcp_was_adjusted = false; 459 // Don't decrement bcp if it points to the frame's first instruction. This happens when 460 // handle_sync_on_value_based_class() is called because of a synchronized method. There 461 // is no actual monitorenter instruction in the byte code in this case. 462 if (last_frame.is_interpreted_frame() && 463 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 464 // adjust bcp to point back to monitorenter so that we print the correct line numbers 465 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 466 bcp_was_adjusted = true; 467 } 468 469 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 470 ResourceMark rm; 471 stringStream ss; 472 locking_thread->print_active_stack_on(&ss); 473 char* base = (char*)strstr(ss.base(), "at"); 474 char* newline = (char*)strchr(ss.base(), '\n'); 475 if (newline != nullptr) { 476 *newline = '\0'; 477 } 478 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 479 } else { 480 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 481 ResourceMark rm; 482 Log(valuebasedclasses) vblog; 483 484 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 485 if (locking_thread->has_last_Java_frame()) { 486 LogStream info_stream(vblog.info()); 487 locking_thread->print_active_stack_on(&info_stream); 488 } else { 489 vblog.info("Cannot find the last Java frame"); 490 } 491 492 EventSyncOnValueBasedClass event; 493 if (event.should_commit()) { 494 event.set_valueBasedClass(obj->klass()); 495 event.commit(); 496 } 497 } 498 499 if (bcp_was_adjusted) { 500 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 501 } 502 } 503 504 static bool useHeavyMonitors() { 505 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 506 return LockingMode == LM_MONITOR; 507 #else 508 return false; 509 #endif 510 } 511 512 // ----------------------------------------------------------------------------- 513 // Monitor Enter/Exit 514 515 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 516 // When called with locking_thread != Thread::current() some mechanism must synchronize 517 // the locking_thread with respect to the current thread. Currently only used when 518 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 519 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 520 if (!enter_fast_impl(obj, lock, locking_thread)) { 521 // Inflated ObjectMonitor::enter_for is required 522 523 // An async deflation can race after the inflate_for() call and before 524 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 525 // if we have lost the race to async deflation and we simply try again. 526 while (true) { 527 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 528 if (monitor->enter_for(locking_thread)) { 529 return; 530 } 531 assert(monitor->is_being_async_deflated(), "must be"); 532 } 533 } 534 } 535 536 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) { 537 assert(current == Thread::current(), "must be"); 538 if (!enter_fast_impl(obj, lock, current)) { 539 // Inflated ObjectMonitor::enter is required 540 541 // An async deflation can race after the inflate() call and before 542 // enter() can make the ObjectMonitor busy. enter() returns false if 543 // we have lost the race to async deflation and we simply try again. 544 while (true) { 545 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 546 if (monitor->enter(current)) { 547 return; 548 } 549 } 550 } 551 } 552 553 // The interpreter and compiler assembly code tries to lock using the fast path 554 // of this algorithm. Make sure to update that code if the following function is 555 // changed. The implementation is extremely sensitive to race condition. Be careful. 556 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 557 558 if (obj->klass()->is_value_based()) { 559 handle_sync_on_value_based_class(obj, locking_thread); 560 } 561 562 locking_thread->inc_held_monitor_count(); 563 564 if (!useHeavyMonitors()) { 565 if (LockingMode == LM_LIGHTWEIGHT) { 566 // Fast-locking does not use the 'lock' argument. 567 LockStack& lock_stack = locking_thread->lock_stack(); 568 if (lock_stack.is_full()) { 569 // We unconditionally make room on the lock stack by inflating 570 // the least recently locked object on the lock stack. 571 572 // About the choice to inflate least recently locked object. 573 // First we must chose to inflate a lock, either some lock on 574 // the lock-stack or the lock that is currently being entered 575 // (which may or may not be on the lock-stack). 576 // Second the best lock to inflate is a lock which is entered 577 // in a control flow where there are only a very few locks being 578 // used, as the costly part of inflated locking is inflation, 579 // not locking. But this property is entirely program dependent. 580 // Third inflating the lock currently being entered on when it 581 // is not present on the lock-stack will result in a still full 582 // lock-stack. This creates a scenario where every deeper nested 583 // monitorenter must call into the runtime. 584 // The rational here is as follows: 585 // Because we cannot (currently) figure out the second, and want 586 // to avoid the third, we inflate a lock on the lock-stack. 587 // The least recently locked lock is chosen as it is the lock 588 // with the longest critical section. 589 590 log_info(monitorinflation)("LockStack capacity exceeded, inflating."); 591 ObjectMonitor* monitor = inflate_for(locking_thread, lock_stack.bottom(), inflate_cause_vm_internal); 592 assert(monitor->owner() == Thread::current(), "must be owner=" PTR_FORMAT " current=" PTR_FORMAT " mark=" PTR_FORMAT, 593 p2i(monitor->owner()), p2i(Thread::current()), monitor->object()->mark_acquire().value()); 594 assert(!lock_stack.is_full(), "must have made room here"); 595 } 596 597 markWord mark = obj()->mark_acquire(); 598 while (mark.is_neutral()) { 599 // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications. 600 // Try to swing into 'fast-locked' state. 601 assert(!lock_stack.contains(obj()), "thread must not already hold the lock"); 602 const markWord locked_mark = mark.set_fast_locked(); 603 const markWord old_mark = obj()->cas_set_mark(locked_mark, mark); 604 if (old_mark == mark) { 605 // Successfully fast-locked, push object to lock-stack and return. 606 lock_stack.push(obj()); 607 return true; 608 } 609 mark = old_mark; 610 } 611 612 if (mark.is_fast_locked() && lock_stack.try_recursive_enter(obj())) { 613 // Recursive lock successful. 614 return true; 615 } 616 617 // Failed to fast lock. 618 return false; 619 } else if (LockingMode == LM_LEGACY) { 620 markWord mark = obj->mark(); 621 if (mark.is_neutral()) { 622 // Anticipate successful CAS -- the ST of the displaced mark must 623 // be visible <= the ST performed by the CAS. 624 lock->set_displaced_header(mark); 625 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 626 return true; 627 } 628 } else if (mark.has_locker() && 629 locking_thread->is_lock_owned((address) mark.locker())) { 630 assert(lock != mark.locker(), "must not re-lock the same lock"); 631 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 632 lock->set_displaced_header(markWord::from_pointer(nullptr)); 633 return true; 634 } 635 636 // The object header will never be displaced to this lock, 637 // so it does not matter what the value is, except that it 638 // must be non-zero to avoid looking like a re-entrant lock, 639 // and must not look locked either. 640 lock->set_displaced_header(markWord::unused_mark()); 641 642 // Failed to fast lock. 643 return false; 644 } 645 } else if (VerifyHeavyMonitors) { 646 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 647 } 648 649 return false; 650 } 651 652 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) { 653 current->dec_held_monitor_count(); 654 655 if (!useHeavyMonitors()) { 656 markWord mark = object->mark(); 657 if (LockingMode == LM_LIGHTWEIGHT) { 658 // Fast-locking does not use the 'lock' argument. 659 LockStack& lock_stack = current->lock_stack(); 660 if (mark.is_fast_locked() && lock_stack.try_recursive_exit(object)) { 661 // Recursively unlocked. 662 return; 663 } 664 665 if (mark.is_fast_locked() && lock_stack.is_recursive(object)) { 666 // This lock is recursive but is not at the top of the lock stack so we're 667 // doing an unbalanced exit. We have to fall thru to inflation below and 668 // let ObjectMonitor::exit() do the unlock. 669 } else { 670 while (mark.is_fast_locked()) { 671 // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications. 672 const markWord unlocked_mark = mark.set_unlocked(); 673 const markWord old_mark = object->cas_set_mark(unlocked_mark, mark); 674 if (old_mark == mark) { 675 size_t recursions = lock_stack.remove(object) - 1; 676 assert(recursions == 0, "must not be recursive here"); 677 return; 678 } 679 mark = old_mark; 680 } 681 } 682 } else if (LockingMode == LM_LEGACY) { 683 markWord dhw = lock->displaced_header(); 684 if (dhw.value() == 0) { 685 // If the displaced header is null, then this exit matches up with 686 // a recursive enter. No real work to do here except for diagnostics. 687 #ifndef PRODUCT 688 if (mark != markWord::INFLATING()) { 689 // Only do diagnostics if we are not racing an inflation. Simply 690 // exiting a recursive enter of a Java Monitor that is being 691 // inflated is safe; see the has_monitor() comment below. 692 assert(!mark.is_neutral(), "invariant"); 693 assert(!mark.has_locker() || 694 current->is_lock_owned((address)mark.locker()), "invariant"); 695 if (mark.has_monitor()) { 696 // The BasicLock's displaced_header is marked as a recursive 697 // enter and we have an inflated Java Monitor (ObjectMonitor). 698 // This is a special case where the Java Monitor was inflated 699 // after this thread entered the stack-lock recursively. When a 700 // Java Monitor is inflated, we cannot safely walk the Java 701 // Monitor owner's stack and update the BasicLocks because a 702 // Java Monitor can be asynchronously inflated by a thread that 703 // does not own the Java Monitor. 704 ObjectMonitor* m = mark.monitor(); 705 assert(m->object()->mark() == mark, "invariant"); 706 assert(m->is_entered(current), "invariant"); 707 } 708 } 709 #endif 710 return; 711 } 712 713 if (mark == markWord::from_pointer(lock)) { 714 // If the object is stack-locked by the current thread, try to 715 // swing the displaced header from the BasicLock back to the mark. 716 assert(dhw.is_neutral(), "invariant"); 717 if (object->cas_set_mark(dhw, mark) == mark) { 718 return; 719 } 720 } 721 } 722 } else if (VerifyHeavyMonitors) { 723 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 724 } 725 726 // We have to take the slow-path of possible inflation and then exit. 727 // The ObjectMonitor* can't be async deflated until ownership is 728 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 729 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 730 assert(!monitor->is_owner_anonymous(), "must not be"); 731 monitor->exit(current); 732 } 733 734 // ----------------------------------------------------------------------------- 735 // JNI locks on java objects 736 // NOTE: must use heavy weight monitor to handle jni monitor enter 737 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 738 if (obj->klass()->is_value_based()) { 739 handle_sync_on_value_based_class(obj, current); 740 } 741 742 // the current locking is from JNI instead of Java code 743 current->set_current_pending_monitor_is_from_java(false); 744 // An async deflation can race after the inflate() call and before 745 // enter() can make the ObjectMonitor busy. enter() returns false if 746 // we have lost the race to async deflation and we simply try again. 747 while (true) { 748 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter); 749 if (monitor->enter(current)) { 750 current->inc_held_monitor_count(1, true); 751 break; 752 } 753 } 754 current->set_current_pending_monitor_is_from_java(true); 755 } 756 757 // NOTE: must use heavy weight monitor to handle jni monitor exit 758 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 759 JavaThread* current = THREAD; 760 761 // The ObjectMonitor* can't be async deflated until ownership is 762 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 763 ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit); 764 // If this thread has locked the object, exit the monitor. We 765 // intentionally do not use CHECK on check_owner because we must exit the 766 // monitor even if an exception was already pending. 767 if (monitor->check_owner(THREAD)) { 768 monitor->exit(current); 769 current->dec_held_monitor_count(1, true); 770 } 771 } 772 773 // ----------------------------------------------------------------------------- 774 // Internal VM locks on java objects 775 // standard constructor, allows locking failures 776 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) { 777 _thread = thread; 778 _thread->check_for_valid_safepoint_state(); 779 _obj = obj; 780 781 if (_obj() != nullptr) { 782 ObjectSynchronizer::enter(_obj, &_lock, _thread); 783 } 784 } 785 786 ObjectLocker::~ObjectLocker() { 787 if (_obj() != nullptr) { 788 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 789 } 790 } 791 792 793 // ----------------------------------------------------------------------------- 794 // Wait/Notify/NotifyAll 795 // NOTE: must use heavy weight monitor to handle wait() 796 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 797 JavaThread* current = THREAD; 798 if (millis < 0) { 799 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 800 } 801 // The ObjectMonitor* can't be async deflated because the _waiters 802 // field is incremented before ownership is dropped and decremented 803 // after ownership is regained. 804 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait); 805 806 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 807 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 808 809 // This dummy call is in place to get around dtrace bug 6254741. Once 810 // that's fixed we can uncomment the following line, remove the call 811 // and change this function back into a "void" func. 812 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 813 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 814 return ret_code; 815 } 816 817 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 818 if (millis < 0) { 819 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 820 } 821 ObjectSynchronizer::inflate(THREAD, 822 obj(), 823 inflate_cause_wait)->wait(millis, false, THREAD); 824 } 825 826 827 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 828 JavaThread* current = THREAD; 829 830 markWord mark = obj->mark(); 831 if (LockingMode == LM_LIGHTWEIGHT) { 832 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 833 // Not inflated so there can't be any waiters to notify. 834 return; 835 } 836 } else if (LockingMode == LM_LEGACY) { 837 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 838 // Not inflated so there can't be any waiters to notify. 839 return; 840 } 841 } 842 // The ObjectMonitor* can't be async deflated until ownership is 843 // dropped by the calling thread. 844 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify); 845 monitor->notify(CHECK); 846 } 847 848 // NOTE: see comment of notify() 849 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 850 JavaThread* current = THREAD; 851 852 markWord mark = obj->mark(); 853 if (LockingMode == LM_LIGHTWEIGHT) { 854 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 855 // Not inflated so there can't be any waiters to notify. 856 return; 857 } 858 } else if (LockingMode == LM_LEGACY) { 859 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 860 // Not inflated so there can't be any waiters to notify. 861 return; 862 } 863 } 864 // The ObjectMonitor* can't be async deflated until ownership is 865 // dropped by the calling thread. 866 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify); 867 monitor->notifyAll(CHECK); 868 } 869 870 // ----------------------------------------------------------------------------- 871 // Hash Code handling 872 873 struct SharedGlobals { 874 char _pad_prefix[OM_CACHE_LINE_SIZE]; 875 // This is a highly shared mostly-read variable. 876 // To avoid false-sharing it needs to be the sole occupant of a cache line. 877 volatile int stw_random; 878 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 879 // Hot RW variable -- Sequester to avoid false-sharing 880 volatile int hc_sequence; 881 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 882 }; 883 884 static SharedGlobals GVars; 885 886 static markWord read_stable_mark(oop obj) { 887 markWord mark = obj->mark_acquire(); 888 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 889 // New lightweight locking does not use the markWord::INFLATING() protocol. 890 return mark; // normal fast-path return 891 } 892 893 int its = 0; 894 for (;;) { 895 markWord mark = obj->mark_acquire(); 896 if (!mark.is_being_inflated()) { 897 return mark; // normal fast-path return 898 } 899 900 // The object is being inflated by some other thread. 901 // The caller of read_stable_mark() must wait for inflation to complete. 902 // Avoid live-lock. 903 904 ++its; 905 if (its > 10000 || !os::is_MP()) { 906 if (its & 1) { 907 os::naked_yield(); 908 } else { 909 // Note that the following code attenuates the livelock problem but is not 910 // a complete remedy. A more complete solution would require that the inflating 911 // thread hold the associated inflation lock. The following code simply restricts 912 // the number of spinners to at most one. We'll have N-2 threads blocked 913 // on the inflationlock, 1 thread holding the inflation lock and using 914 // a yield/park strategy, and 1 thread in the midst of inflation. 915 // A more refined approach would be to change the encoding of INFLATING 916 // to allow encapsulation of a native thread pointer. Threads waiting for 917 // inflation to complete would use CAS to push themselves onto a singly linked 918 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 919 // and calling park(). When inflation was complete the thread that accomplished inflation 920 // would detach the list and set the markword to inflated with a single CAS and 921 // then for each thread on the list, set the flag and unpark() the thread. 922 923 // Index into the lock array based on the current object address. 924 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 925 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 926 int YieldThenBlock = 0; 927 assert(ix < inflation_lock_count(), "invariant"); 928 inflation_lock(ix)->lock(); 929 while (obj->mark_acquire() == markWord::INFLATING()) { 930 // Beware: naked_yield() is advisory and has almost no effect on some platforms 931 // so we periodically call current->_ParkEvent->park(1). 932 // We use a mixed spin/yield/block mechanism. 933 if ((YieldThenBlock++) >= 16) { 934 Thread::current()->_ParkEvent->park(1); 935 } else { 936 os::naked_yield(); 937 } 938 } 939 inflation_lock(ix)->unlock(); 940 } 941 } else { 942 SpinPause(); // SMP-polite spinning 943 } 944 } 945 } 946 947 // hashCode() generation : 948 // 949 // Possibilities: 950 // * MD5Digest of {obj,stw_random} 951 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 952 // * A DES- or AES-style SBox[] mechanism 953 // * One of the Phi-based schemes, such as: 954 // 2654435761 = 2^32 * Phi (golden ratio) 955 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 956 // * A variation of Marsaglia's shift-xor RNG scheme. 957 // * (obj ^ stw_random) is appealing, but can result 958 // in undesirable regularity in the hashCode values of adjacent objects 959 // (objects allocated back-to-back, in particular). This could potentially 960 // result in hashtable collisions and reduced hashtable efficiency. 961 // There are simple ways to "diffuse" the middle address bits over the 962 // generated hashCode values: 963 964 static inline intptr_t get_next_hash(Thread* current, oop obj) { 965 intptr_t value = 0; 966 if (hashCode == 0) { 967 // This form uses global Park-Miller RNG. 968 // On MP system we'll have lots of RW access to a global, so the 969 // mechanism induces lots of coherency traffic. 970 value = os::random(); 971 } else if (hashCode == 1) { 972 // This variation has the property of being stable (idempotent) 973 // between STW operations. This can be useful in some of the 1-0 974 // synchronization schemes. 975 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 976 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 977 } else if (hashCode == 2) { 978 value = 1; // for sensitivity testing 979 } else if (hashCode == 3) { 980 value = ++GVars.hc_sequence; 981 } else if (hashCode == 4) { 982 value = cast_from_oop<intptr_t>(obj); 983 } else { 984 // Marsaglia's xor-shift scheme with thread-specific state 985 // This is probably the best overall implementation -- we'll 986 // likely make this the default in future releases. 987 unsigned t = current->_hashStateX; 988 t ^= (t << 11); 989 current->_hashStateX = current->_hashStateY; 990 current->_hashStateY = current->_hashStateZ; 991 current->_hashStateZ = current->_hashStateW; 992 unsigned v = current->_hashStateW; 993 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 994 current->_hashStateW = v; 995 value = v; 996 } 997 998 value &= UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask; 999 if (value == 0) value = 0xBAD; 1000 assert(value != markWord::no_hash, "invariant"); 1001 return value; 1002 } 1003 1004 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 1005 1006 while (true) { 1007 ObjectMonitor* monitor = nullptr; 1008 markWord temp, test; 1009 intptr_t hash; 1010 markWord mark = read_stable_mark(obj); 1011 if (VerifyHeavyMonitors) { 1012 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1013 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1014 } 1015 if (mark.is_neutral() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1016 hash = mark.hash(); 1017 if (hash != 0) { // if it has a hash, just return it 1018 return hash; 1019 } 1020 hash = get_next_hash(current, obj); // get a new hash 1021 temp = mark.copy_set_hash(hash); // merge the hash into header 1022 // try to install the hash 1023 test = obj->cas_set_mark(temp, mark); 1024 if (test == mark) { // if the hash was installed, return it 1025 return hash; 1026 } 1027 if (LockingMode == LM_LIGHTWEIGHT) { 1028 // CAS failed, retry 1029 continue; 1030 } 1031 // Failed to install the hash. It could be that another thread 1032 // installed the hash just before our attempt or inflation has 1033 // occurred or... so we fall thru to inflate the monitor for 1034 // stability and then install the hash. 1035 } else if (mark.has_monitor()) { 1036 monitor = mark.monitor(); 1037 temp = monitor->header(); 1038 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1039 hash = temp.hash(); 1040 if (hash != 0) { 1041 // It has a hash. 1042 1043 // Separate load of dmw/header above from the loads in 1044 // is_being_async_deflated(). 1045 1046 // dmw/header and _contentions may get written by different threads. 1047 // Make sure to observe them in the same order when having several observers. 1048 OrderAccess::loadload_for_IRIW(); 1049 1050 if (monitor->is_being_async_deflated()) { 1051 // But we can't safely use the hash if we detect that async 1052 // deflation has occurred. So we attempt to restore the 1053 // header/dmw to the object's header so that we only retry 1054 // once if the deflater thread happens to be slow. 1055 monitor->install_displaced_markword_in_object(obj); 1056 continue; 1057 } 1058 return hash; 1059 } 1060 // Fall thru so we only have one place that installs the hash in 1061 // the ObjectMonitor. 1062 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1063 && current->is_Java_thread() 1064 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1065 // This is a stack-lock owned by the calling thread so fetch the 1066 // displaced markWord from the BasicLock on the stack. 1067 temp = mark.displaced_mark_helper(); 1068 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1069 hash = temp.hash(); 1070 if (hash != 0) { // if it has a hash, just return it 1071 return hash; 1072 } 1073 // WARNING: 1074 // The displaced header in the BasicLock on a thread's stack 1075 // is strictly immutable. It CANNOT be changed in ANY cases. 1076 // So we have to inflate the stack-lock into an ObjectMonitor 1077 // even if the current thread owns the lock. The BasicLock on 1078 // a thread's stack can be asynchronously read by other threads 1079 // during an inflate() call so any change to that stack memory 1080 // may not propagate to other threads correctly. 1081 } 1082 1083 // Inflate the monitor to set the hash. 1084 1085 // An async deflation can race after the inflate() call and before we 1086 // can update the ObjectMonitor's header with the hash value below. 1087 monitor = inflate(current, obj, inflate_cause_hash_code); 1088 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1089 mark = monitor->header(); 1090 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1091 hash = mark.hash(); 1092 if (hash == 0) { // if it does not have a hash 1093 hash = get_next_hash(current, obj); // get a new hash 1094 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1095 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1096 uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value()); 1097 test = markWord(v); 1098 if (test != mark) { 1099 // The attempt to update the ObjectMonitor's header/dmw field 1100 // did not work. This can happen if another thread managed to 1101 // merge in the hash just before our cmpxchg(). 1102 // If we add any new usages of the header/dmw field, this code 1103 // will need to be updated. 1104 hash = test.hash(); 1105 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1106 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1107 } 1108 if (monitor->is_being_async_deflated()) { 1109 // If we detect that async deflation has occurred, then we 1110 // attempt to restore the header/dmw to the object's header 1111 // so that we only retry once if the deflater thread happens 1112 // to be slow. 1113 monitor->install_displaced_markword_in_object(obj); 1114 continue; 1115 } 1116 } 1117 // We finally get the hash. 1118 return hash; 1119 } 1120 } 1121 1122 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1123 Handle h_obj) { 1124 assert(current == JavaThread::current(), "Can only be called on current thread"); 1125 oop obj = h_obj(); 1126 1127 markWord mark = read_stable_mark(obj); 1128 1129 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1130 // stack-locked case, header points into owner's stack 1131 return current->is_lock_owned((address)mark.locker()); 1132 } 1133 1134 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1135 // fast-locking case, see if lock is in current's lock stack 1136 return current->lock_stack().contains(h_obj()); 1137 } 1138 1139 if (mark.has_monitor()) { 1140 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1141 // The first stage of async deflation does not affect any field 1142 // used by this comparison so the ObjectMonitor* is usable here. 1143 ObjectMonitor* monitor = mark.monitor(); 1144 return monitor->is_entered(current) != 0; 1145 } 1146 // Unlocked case, header in place 1147 assert(mark.is_neutral(), "sanity check"); 1148 return false; 1149 } 1150 1151 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1152 oop obj = h_obj(); 1153 markWord mark = read_stable_mark(obj); 1154 1155 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1156 // stack-locked so header points into owner's stack. 1157 // owning_thread_from_monitor_owner() may also return null here: 1158 return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker()); 1159 } 1160 1161 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1162 // fast-locked so get owner from the object. 1163 // owning_thread_from_object() may also return null here: 1164 return Threads::owning_thread_from_object(t_list, h_obj()); 1165 } 1166 1167 if (mark.has_monitor()) { 1168 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1169 // The first stage of async deflation does not affect any field 1170 // used by this comparison so the ObjectMonitor* is usable here. 1171 ObjectMonitor* monitor = mark.monitor(); 1172 assert(monitor != nullptr, "monitor should be non-null"); 1173 // owning_thread_from_monitor() may also return null here: 1174 return Threads::owning_thread_from_monitor(t_list, monitor); 1175 } 1176 1177 // Unlocked case, header in place 1178 // Cannot have assertion since this object may have been 1179 // locked by another thread when reaching here. 1180 // assert(mark.is_neutral(), "sanity check"); 1181 1182 return nullptr; 1183 } 1184 1185 // Visitors ... 1186 1187 // Iterate over all ObjectMonitors. 1188 template <typename Function> 1189 void ObjectSynchronizer::monitors_iterate(Function function) { 1190 MonitorList::Iterator iter = _in_use_list.iterator(); 1191 while (iter.has_next()) { 1192 ObjectMonitor* monitor = iter.next(); 1193 function(monitor); 1194 } 1195 } 1196 1197 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1198 // returns true. 1199 template <typename OwnerFilter> 1200 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1201 monitors_iterate([&](ObjectMonitor* monitor) { 1202 // This function is only called at a safepoint or when the 1203 // target thread is suspended or when the target thread is 1204 // operating on itself. The current closures in use today are 1205 // only interested in an owned ObjectMonitor and ownership 1206 // cannot be dropped under the calling contexts so the 1207 // ObjectMonitor cannot be async deflated. 1208 if (monitor->has_owner() && filter(monitor->owner_raw())) { 1209 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1210 1211 closure->do_monitor(monitor); 1212 } 1213 }); 1214 } 1215 1216 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1217 // ObjectMonitors where owner is set to a stack-lock address in thread. 1218 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1219 auto thread_filter = [&](void* owner) { return owner == thread; }; 1220 return owned_monitors_iterate_filtered(closure, thread_filter); 1221 } 1222 1223 // Iterate ObjectMonitors owned by any thread. 1224 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1225 auto all_filter = [&](void* owner) { return true; }; 1226 return owned_monitors_iterate_filtered(closure, all_filter); 1227 } 1228 1229 static bool monitors_used_above_threshold(MonitorList* list) { 1230 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1231 return false; 1232 } 1233 // Start with ceiling based on a per-thread estimate: 1234 size_t ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1235 size_t old_ceiling = ceiling; 1236 if (ceiling < list->max()) { 1237 // The max used by the system has exceeded the ceiling so use that: 1238 ceiling = list->max(); 1239 } 1240 size_t monitors_used = list->count(); 1241 if (monitors_used == 0) { // empty list is easy 1242 return false; 1243 } 1244 if (NoAsyncDeflationProgressMax != 0 && 1245 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1246 float remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1247 size_t new_ceiling = ceiling + (ceiling * remainder) + 1; 1248 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1249 log_info(monitorinflation)("Too many deflations without progress; " 1250 "bumping in_use_list_ceiling from " SIZE_FORMAT 1251 " to " SIZE_FORMAT, old_ceiling, new_ceiling); 1252 _no_progress_cnt = 0; 1253 ceiling = new_ceiling; 1254 } 1255 1256 // Check if our monitor usage is above the threshold: 1257 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1258 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1259 log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT 1260 ", monitor_usage=" SIZE_FORMAT ", threshold=" INTX_FORMAT, 1261 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1262 return true; 1263 } 1264 1265 return false; 1266 } 1267 1268 size_t ObjectSynchronizer::in_use_list_ceiling() { 1269 return _in_use_list_ceiling; 1270 } 1271 1272 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1273 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1274 } 1275 1276 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1277 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1278 } 1279 1280 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1281 _in_use_list_ceiling = new_value; 1282 } 1283 1284 bool ObjectSynchronizer::is_async_deflation_needed() { 1285 if (is_async_deflation_requested()) { 1286 // Async deflation request. 1287 log_info(monitorinflation)("Async deflation needed: explicit request"); 1288 return true; 1289 } 1290 1291 jlong time_since_last = time_since_last_async_deflation_ms(); 1292 1293 if (AsyncDeflationInterval > 0 && 1294 time_since_last > AsyncDeflationInterval && 1295 monitors_used_above_threshold(&_in_use_list)) { 1296 // It's been longer than our specified deflate interval and there 1297 // are too many monitors in use. We don't deflate more frequently 1298 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1299 // in order to not swamp the MonitorDeflationThread. 1300 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1301 return true; 1302 } 1303 1304 if (GuaranteedAsyncDeflationInterval > 0 && 1305 time_since_last > GuaranteedAsyncDeflationInterval) { 1306 // It's been longer than our specified guaranteed deflate interval. 1307 // We need to clean up the used monitors even if the threshold is 1308 // not reached, to keep the memory utilization at bay when many threads 1309 // touched many monitors. 1310 log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) " 1311 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1312 GuaranteedAsyncDeflationInterval, time_since_last); 1313 1314 // If this deflation has no progress, then it should not affect the no-progress 1315 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1316 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1317 // the generic code would bump the no-progress counter, and we compensate for that 1318 // by telling it to skip the update. 1319 // 1320 // If this deflation has progress, then it should let non-progress tracking 1321 // know about this, otherwise the threshold heuristics would kick in, potentially 1322 // experience no-progress due to aggressive cleanup by this deflation, and think 1323 // it is still in no-progress stride. In this "progress" case, the generic code would 1324 // zero the counter, and we allow it to happen. 1325 _no_progress_skip_increment = true; 1326 1327 return true; 1328 } 1329 1330 return false; 1331 } 1332 1333 void ObjectSynchronizer::request_deflate_idle_monitors() { 1334 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1335 set_is_async_deflation_requested(true); 1336 ml.notify_all(); 1337 } 1338 1339 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1340 JavaThread* current = JavaThread::current(); 1341 bool ret_code = false; 1342 1343 jlong last_time = last_async_deflation_time_ns(); 1344 1345 request_deflate_idle_monitors(); 1346 1347 const int N_CHECKS = 5; 1348 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1349 if (last_async_deflation_time_ns() > last_time) { 1350 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1351 ret_code = true; 1352 break; 1353 } 1354 { 1355 // JavaThread has to honor the blocking protocol. 1356 ThreadBlockInVM tbivm(current); 1357 os::naked_short_sleep(999); // sleep for almost 1 second 1358 } 1359 } 1360 if (!ret_code) { 1361 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1362 } 1363 1364 return ret_code; 1365 } 1366 1367 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1368 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1369 } 1370 1371 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1372 const oop obj, 1373 ObjectSynchronizer::InflateCause cause) { 1374 assert(event != nullptr, "invariant"); 1375 event->set_monitorClass(obj->klass()); 1376 event->set_address((uintptr_t)(void*)obj); 1377 event->set_cause((u1)cause); 1378 event->commit(); 1379 } 1380 1381 // Fast path code shared by multiple functions 1382 void ObjectSynchronizer::inflate_helper(oop obj) { 1383 markWord mark = obj->mark_acquire(); 1384 if (mark.has_monitor()) { 1385 ObjectMonitor* monitor = mark.monitor(); 1386 markWord dmw = monitor->header(); 1387 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1388 return; 1389 } 1390 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1391 } 1392 1393 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1394 assert(current == Thread::current(), "must be"); 1395 if (LockingMode == LM_LIGHTWEIGHT && current->is_Java_thread()) { 1396 return inflate_impl(JavaThread::cast(current), obj, cause); 1397 } 1398 return inflate_impl(nullptr, obj, cause); 1399 } 1400 1401 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1402 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1403 return inflate_impl(thread, obj, cause); 1404 } 1405 1406 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* inflating_thread, oop object, const InflateCause cause) { 1407 // The JavaThread* inflating_thread parameter is only used by LM_LIGHTWEIGHT and requires 1408 // that the inflating_thread == Thread::current() or is suspended throughout the call by 1409 // some other mechanism. 1410 // Even with LM_LIGHTWEIGHT the thread might be nullptr when called from a non 1411 // JavaThread. (As may still be the case from FastHashCode). However it is only 1412 // important for the correctness of the LM_LIGHTWEIGHT algorithm that the thread 1413 // is set when called from ObjectSynchronizer::enter from the owning thread, 1414 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1415 EventJavaMonitorInflate event; 1416 1417 for (;;) { 1418 const markWord mark = object->mark_acquire(); 1419 1420 // The mark can be in one of the following states: 1421 // * inflated - Just return if using stack-locking. 1422 // If using fast-locking and the ObjectMonitor owner 1423 // is anonymous and the inflating_thread owns the 1424 // object lock, then we make the inflating_thread 1425 // the ObjectMonitor owner and remove the lock from 1426 // the inflating_thread's lock stack. 1427 // * fast-locked - Coerce it to inflated from fast-locked. 1428 // * stack-locked - Coerce it to inflated from stack-locked. 1429 // * INFLATING - Busy wait for conversion from stack-locked to 1430 // inflated. 1431 // * neutral - Aggressively inflate the object. 1432 1433 // CASE: inflated 1434 if (mark.has_monitor()) { 1435 ObjectMonitor* inf = mark.monitor(); 1436 markWord dmw = inf->header(); 1437 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1438 if (LockingMode == LM_LIGHTWEIGHT && inf->is_owner_anonymous() && 1439 inflating_thread != nullptr && inflating_thread->lock_stack().contains(object)) { 1440 inf->set_owner_from_anonymous(inflating_thread); 1441 size_t removed = inflating_thread->lock_stack().remove(object); 1442 inf->set_recursions(removed - 1); 1443 } 1444 return inf; 1445 } 1446 1447 if (LockingMode != LM_LIGHTWEIGHT) { 1448 // New lightweight locking does not use INFLATING. 1449 // CASE: inflation in progress - inflating over a stack-lock. 1450 // Some other thread is converting from stack-locked to inflated. 1451 // Only that thread can complete inflation -- other threads must wait. 1452 // The INFLATING value is transient. 1453 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1454 // We could always eliminate polling by parking the thread on some auxiliary list. 1455 if (mark == markWord::INFLATING()) { 1456 read_stable_mark(object); 1457 continue; 1458 } 1459 } 1460 1461 // CASE: fast-locked 1462 // Could be fast-locked either by the inflating_thread or by some other thread. 1463 // 1464 // Note that we allocate the ObjectMonitor speculatively, _before_ 1465 // attempting to set the object's mark to the new ObjectMonitor. If 1466 // the inflating_thread owns the monitor, then we set the ObjectMonitor's 1467 // owner to the inflating_thread. Otherwise, we set the ObjectMonitor's owner 1468 // to anonymous. If we lose the race to set the object's mark to the 1469 // new ObjectMonitor, then we just delete it and loop around again. 1470 // 1471 LogStreamHandle(Trace, monitorinflation) lsh; 1472 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1473 ObjectMonitor* monitor = new ObjectMonitor(object); 1474 monitor->set_header(mark.set_unlocked()); 1475 bool own = inflating_thread != nullptr && inflating_thread->lock_stack().contains(object); 1476 if (own) { 1477 // Owned by inflating_thread. 1478 monitor->set_owner_from(nullptr, inflating_thread); 1479 } else { 1480 // Owned by somebody else. 1481 monitor->set_owner_anonymous(); 1482 } 1483 markWord monitor_mark = markWord::encode(monitor); 1484 markWord old_mark = object->cas_set_mark(monitor_mark, mark); 1485 if (old_mark == mark) { 1486 // Success! Return inflated monitor. 1487 if (own) { 1488 size_t removed = inflating_thread->lock_stack().remove(object); 1489 monitor->set_recursions(removed - 1); 1490 } 1491 // Once the ObjectMonitor is configured and object is associated 1492 // with the ObjectMonitor, it is safe to allow async deflation: 1493 _in_use_list.add(monitor); 1494 1495 // Hopefully the performance counters are allocated on distinct 1496 // cache lines to avoid false sharing on MP systems ... 1497 OM_PERFDATA_OP(Inflations, inc()); 1498 if (log_is_enabled(Trace, monitorinflation)) { 1499 ResourceMark rm; 1500 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1501 INTPTR_FORMAT ", type='%s'", p2i(object), 1502 object->mark().value(), object->klass()->external_name()); 1503 } 1504 if (event.should_commit()) { 1505 post_monitor_inflate_event(&event, object, cause); 1506 } 1507 return monitor; 1508 } else { 1509 delete monitor; 1510 continue; // Interference -- just retry 1511 } 1512 } 1513 1514 // CASE: stack-locked 1515 // Could be stack-locked either by current or by some other thread. 1516 // 1517 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1518 // to install INFLATING into the mark word. We originally installed INFLATING, 1519 // allocated the ObjectMonitor, and then finally STed the address of the 1520 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1521 // the interval in which INFLATING appeared in the mark, thus increasing 1522 // the odds of inflation contention. If we lose the race to set INFLATING, 1523 // then we just delete the ObjectMonitor and loop around again. 1524 // 1525 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1526 assert(LockingMode != LM_LIGHTWEIGHT, "cannot happen with new lightweight locking"); 1527 ObjectMonitor* m = new ObjectMonitor(object); 1528 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1529 // We do this before the CAS in order to minimize the length of time 1530 // in which INFLATING appears in the mark. 1531 1532 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1533 if (cmp != mark) { 1534 delete m; 1535 continue; // Interference -- just retry 1536 } 1537 1538 // We've successfully installed INFLATING (0) into the mark-word. 1539 // This is the only case where 0 will appear in a mark-word. 1540 // Only the singular thread that successfully swings the mark-word 1541 // to 0 can perform (or more precisely, complete) inflation. 1542 // 1543 // Why do we CAS a 0 into the mark-word instead of just CASing the 1544 // mark-word from the stack-locked value directly to the new inflated state? 1545 // Consider what happens when a thread unlocks a stack-locked object. 1546 // It attempts to use CAS to swing the displaced header value from the 1547 // on-stack BasicLock back into the object header. Recall also that the 1548 // header value (hash code, etc) can reside in (a) the object header, or 1549 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1550 // header in an ObjectMonitor. The inflate() routine must copy the header 1551 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1552 // the while preserving the hashCode stability invariants. If the owner 1553 // decides to release the lock while the value is 0, the unlock will fail 1554 // and control will eventually pass from slow_exit() to inflate. The owner 1555 // will then spin, waiting for the 0 value to disappear. Put another way, 1556 // the 0 causes the owner to stall if the owner happens to try to 1557 // drop the lock (restoring the header from the BasicLock to the object) 1558 // while inflation is in-progress. This protocol avoids races that might 1559 // would otherwise permit hashCode values to change or "flicker" for an object. 1560 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1561 // 0 serves as a "BUSY" inflate-in-progress indicator. 1562 1563 1564 // fetch the displaced mark from the owner's stack. 1565 // The owner can't die or unwind past the lock while our INFLATING 1566 // object is in the mark. Furthermore the owner can't complete 1567 // an unlock on the object, either. 1568 markWord dmw = mark.displaced_mark_helper(); 1569 // Catch if the object's header is not neutral (not locked and 1570 // not marked is what we care about here). 1571 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1572 1573 // Setup monitor fields to proper values -- prepare the monitor 1574 m->set_header(dmw); 1575 1576 // Optimization: if the mark.locker stack address is associated 1577 // with this thread we could simply set m->_owner = current. 1578 // Note that a thread can inflate an object 1579 // that it has stack-locked -- as might happen in wait() -- directly 1580 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1581 m->set_owner_from(nullptr, mark.locker()); 1582 // TODO-FIXME: assert BasicLock->dhw != 0. 1583 1584 // Must preserve store ordering. The monitor state must 1585 // be stable at the time of publishing the monitor address. 1586 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1587 // Release semantics so that above set_object() is seen first. 1588 object->release_set_mark(markWord::encode(m)); 1589 1590 // Once ObjectMonitor is configured and the object is associated 1591 // with the ObjectMonitor, it is safe to allow async deflation: 1592 _in_use_list.add(m); 1593 1594 // Hopefully the performance counters are allocated on distinct cache lines 1595 // to avoid false sharing on MP systems ... 1596 OM_PERFDATA_OP(Inflations, inc()); 1597 if (log_is_enabled(Trace, monitorinflation)) { 1598 ResourceMark rm; 1599 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1600 INTPTR_FORMAT ", type='%s'", p2i(object), 1601 object->mark().value(), object->klass()->external_name()); 1602 } 1603 if (event.should_commit()) { 1604 post_monitor_inflate_event(&event, object, cause); 1605 } 1606 return m; 1607 } 1608 1609 // CASE: neutral 1610 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1611 // If we know we're inflating for entry it's better to inflate by swinging a 1612 // pre-locked ObjectMonitor pointer into the object header. A successful 1613 // CAS inflates the object *and* confers ownership to the inflating thread. 1614 // In the current implementation we use a 2-step mechanism where we CAS() 1615 // to inflate and then CAS() again to try to swing _owner from null to current. 1616 // An inflateTry() method that we could call from enter() would be useful. 1617 1618 // Catch if the object's header is not neutral (not locked and 1619 // not marked is what we care about here). 1620 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1621 ObjectMonitor* m = new ObjectMonitor(object); 1622 // prepare m for installation - set monitor to initial state 1623 m->set_header(mark); 1624 1625 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1626 delete m; 1627 m = nullptr; 1628 continue; 1629 // interference - the markword changed - just retry. 1630 // The state-transitions are one-way, so there's no chance of 1631 // live-lock -- "Inflated" is an absorbing state. 1632 } 1633 1634 // Once the ObjectMonitor is configured and object is associated 1635 // with the ObjectMonitor, it is safe to allow async deflation: 1636 _in_use_list.add(m); 1637 1638 // Hopefully the performance counters are allocated on distinct 1639 // cache lines to avoid false sharing on MP systems ... 1640 OM_PERFDATA_OP(Inflations, inc()); 1641 if (log_is_enabled(Trace, monitorinflation)) { 1642 ResourceMark rm; 1643 lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark=" 1644 INTPTR_FORMAT ", type='%s'", p2i(object), 1645 object->mark().value(), object->klass()->external_name()); 1646 } 1647 if (event.should_commit()) { 1648 post_monitor_inflate_event(&event, object, cause); 1649 } 1650 return m; 1651 } 1652 } 1653 1654 void ObjectSynchronizer::chk_for_block_req(JavaThread* current, const char* op_name, 1655 const char* cnt_name, size_t cnt, 1656 LogStream* ls, elapsedTimer* timer_p) { 1657 if (!SafepointMechanism::should_process(current)) { 1658 return; 1659 } 1660 1661 // A safepoint/handshake has started. 1662 if (ls != nullptr) { 1663 timer_p->stop(); 1664 ls->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling=" 1665 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1666 op_name, cnt_name, cnt, in_use_list_ceiling(), 1667 _in_use_list.count(), _in_use_list.max()); 1668 } 1669 1670 { 1671 // Honor block request. 1672 ThreadBlockInVM tbivm(current); 1673 } 1674 1675 if (ls != nullptr) { 1676 ls->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT 1677 ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name, 1678 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1679 timer_p->start(); 1680 } 1681 } 1682 1683 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1684 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1685 // 1686 size_t ObjectSynchronizer::deflate_monitor_list(Thread* current, LogStream* ls, 1687 elapsedTimer* timer_p) { 1688 MonitorList::Iterator iter = _in_use_list.iterator(); 1689 size_t deflated_count = 0; 1690 1691 while (iter.has_next()) { 1692 if (deflated_count >= (size_t)MonitorDeflationMax) { 1693 break; 1694 } 1695 ObjectMonitor* mid = iter.next(); 1696 if (mid->deflate_monitor()) { 1697 deflated_count++; 1698 } 1699 1700 if (current->is_Java_thread()) { 1701 // A JavaThread must check for a safepoint/handshake and honor it. 1702 chk_for_block_req(JavaThread::cast(current), "deflation", "deflated_count", 1703 deflated_count, ls, timer_p); 1704 } 1705 } 1706 1707 return deflated_count; 1708 } 1709 1710 class HandshakeForDeflation : public HandshakeClosure { 1711 public: 1712 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1713 1714 void do_thread(Thread* thread) { 1715 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1716 INTPTR_FORMAT, p2i(thread)); 1717 } 1718 }; 1719 1720 class VM_RendezvousGCThreads : public VM_Operation { 1721 public: 1722 bool evaluate_at_safepoint() const override { return false; } 1723 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1724 void doit() override { 1725 Universe::heap()->safepoint_synchronize_begin(); 1726 Universe::heap()->safepoint_synchronize_end(); 1727 }; 1728 }; 1729 1730 static size_t delete_monitors(Thread* current, GrowableArray<ObjectMonitor*>* delete_list, 1731 LogStream* ls, elapsedTimer* timer_p) { 1732 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1733 size_t deleted_count = 0; 1734 for (ObjectMonitor* monitor: *delete_list) { 1735 delete monitor; 1736 deleted_count++; 1737 if (current->is_Java_thread()) { 1738 // A JavaThread must check for a safepoint/handshake and honor it. 1739 ObjectSynchronizer::chk_for_block_req(JavaThread::cast(current), "deletion", "deleted_count", 1740 deleted_count, ls, timer_p); 1741 } 1742 } 1743 return deleted_count; 1744 } 1745 1746 // This function is called by the MonitorDeflationThread to deflate 1747 // ObjectMonitors. 1748 size_t ObjectSynchronizer::deflate_idle_monitors() { 1749 Thread* current = Thread::current(); 1750 if (current->is_Java_thread()) { 1751 // The async deflation request has been processed. 1752 _last_async_deflation_time_ns = os::javaTimeNanos(); 1753 set_is_async_deflation_requested(false); 1754 } 1755 1756 LogStreamHandle(Debug, monitorinflation) lsh_debug; 1757 LogStreamHandle(Info, monitorinflation) lsh_info; 1758 LogStream* ls = nullptr; 1759 if (log_is_enabled(Debug, monitorinflation)) { 1760 ls = &lsh_debug; 1761 } else if (log_is_enabled(Info, monitorinflation)) { 1762 ls = &lsh_info; 1763 } 1764 1765 elapsedTimer timer; 1766 if (ls != nullptr) { 1767 ls->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1768 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1769 timer.start(); 1770 } 1771 1772 // Deflate some idle ObjectMonitors. 1773 size_t deflated_count = deflate_monitor_list(current, ls, &timer); 1774 size_t unlinked_count = 0; 1775 size_t deleted_count = 0; 1776 if (deflated_count > 0) { 1777 // There are ObjectMonitors that have been deflated. 1778 1779 // Unlink deflated ObjectMonitors from the in-use list. 1780 ResourceMark rm; 1781 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1782 unlinked_count = _in_use_list.unlink_deflated(current, ls, &timer, deflated_count, &delete_list); 1783 if (current->is_monitor_deflation_thread()) { 1784 if (ls != nullptr) { 1785 timer.stop(); 1786 ls->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT 1787 ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" 1788 SIZE_FORMAT ", max=" SIZE_FORMAT, 1789 unlinked_count, in_use_list_ceiling(), 1790 _in_use_list.count(), _in_use_list.max()); 1791 } 1792 1793 // A JavaThread needs to handshake in order to safely free the 1794 // ObjectMonitors that were deflated in this cycle. 1795 HandshakeForDeflation hfd_hc; 1796 Handshake::execute(&hfd_hc); 1797 // Also, we sync and desync GC threads around the handshake, so that they can 1798 // safely read the mark-word and look-through to the object-monitor, without 1799 // being afraid that the object-monitor is going away. 1800 VM_RendezvousGCThreads sync_gc; 1801 VMThread::execute(&sync_gc); 1802 1803 if (ls != nullptr) { 1804 ls->print_cr("after handshaking: in_use_list stats: ceiling=" 1805 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1806 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1807 timer.start(); 1808 } 1809 } else { 1810 // This is not a monitor deflation thread. 1811 // No handshake or rendezvous is needed when we are already at safepoint. 1812 assert_at_safepoint(); 1813 } 1814 1815 // After the handshake, safely free the ObjectMonitors that were 1816 // deflated and unlinked in this cycle. 1817 deleted_count = delete_monitors(current, &delete_list, ls, &timer); 1818 assert(unlinked_count == deleted_count, "must be"); 1819 } 1820 1821 if (ls != nullptr) { 1822 timer.stop(); 1823 if (deflated_count != 0 || unlinked_count != 0 || log_is_enabled(Debug, monitorinflation)) { 1824 ls->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs", 1825 deflated_count, unlinked_count, timer.seconds()); 1826 } 1827 ls->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1828 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1829 } 1830 1831 OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count())); 1832 OM_PERFDATA_OP(Deflations, inc(deflated_count)); 1833 1834 GVars.stw_random = os::random(); 1835 1836 if (deflated_count != 0) { 1837 _no_progress_cnt = 0; 1838 } else if (_no_progress_skip_increment) { 1839 _no_progress_skip_increment = false; 1840 } else { 1841 _no_progress_cnt++; 1842 } 1843 1844 return deflated_count; 1845 } 1846 1847 // Monitor cleanup on JavaThread::exit 1848 1849 // Iterate through monitor cache and attempt to release thread's monitors 1850 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1851 private: 1852 JavaThread* _thread; 1853 1854 public: 1855 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1856 void do_monitor(ObjectMonitor* mid) { 1857 intx rec = mid->complete_exit(_thread); 1858 _thread->dec_held_monitor_count(rec + 1); 1859 } 1860 }; 1861 1862 // Release all inflated monitors owned by current thread. Lightweight monitors are 1863 // ignored. This is meant to be called during JNI thread detach which assumes 1864 // all remaining monitors are heavyweight. All exceptions are swallowed. 1865 // Scanning the extant monitor list can be time consuming. 1866 // A simple optimization is to add a per-thread flag that indicates a thread 1867 // called jni_monitorenter() during its lifetime. 1868 // 1869 // Instead of NoSafepointVerifier it might be cheaper to 1870 // use an idiom of the form: 1871 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1872 // <code that must not run at safepoint> 1873 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1874 // Since the tests are extremely cheap we could leave them enabled 1875 // for normal product builds. 1876 1877 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1878 assert(current == JavaThread::current(), "must be current Java thread"); 1879 NoSafepointVerifier nsv; 1880 ReleaseJavaMonitorsClosure rjmc(current); 1881 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1882 assert(!current->has_pending_exception(), "Should not be possible"); 1883 current->clear_pending_exception(); 1884 assert(current->held_monitor_count() == 0, "Should not be possible"); 1885 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1886 current->clear_jni_monitor_count(); 1887 } 1888 1889 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1890 switch (cause) { 1891 case inflate_cause_vm_internal: return "VM Internal"; 1892 case inflate_cause_monitor_enter: return "Monitor Enter"; 1893 case inflate_cause_wait: return "Monitor Wait"; 1894 case inflate_cause_notify: return "Monitor Notify"; 1895 case inflate_cause_hash_code: return "Monitor Hash Code"; 1896 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1897 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1898 default: 1899 ShouldNotReachHere(); 1900 } 1901 return "Unknown"; 1902 } 1903 1904 //------------------------------------------------------------------------------ 1905 // Debugging code 1906 1907 u_char* ObjectSynchronizer::get_gvars_addr() { 1908 return (u_char*)&GVars; 1909 } 1910 1911 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1912 return (u_char*)&GVars.hc_sequence; 1913 } 1914 1915 size_t ObjectSynchronizer::get_gvars_size() { 1916 return sizeof(SharedGlobals); 1917 } 1918 1919 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1920 return (u_char*)&GVars.stw_random; 1921 } 1922 1923 // Do the final audit and print of ObjectMonitor stats; must be done 1924 // by the VMThread at VM exit time. 1925 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1926 assert(Thread::current()->is_VM_thread(), "sanity check"); 1927 1928 if (is_final_audit()) { // Only do the audit once. 1929 return; 1930 } 1931 set_is_final_audit(); 1932 log_info(monitorinflation)("Starting the final audit."); 1933 1934 if (log_is_enabled(Info, monitorinflation)) { 1935 // The other audit_and_print_stats() call is done at the Debug 1936 // level at a safepoint in SafepointSynchronize::do_cleanup_tasks. 1937 audit_and_print_stats(true /* on_exit */); 1938 } 1939 } 1940 1941 // This function can be called at a safepoint or it can be called when 1942 // we are trying to exit the VM. When we are trying to exit the VM, the 1943 // list walker functions can run in parallel with the other list 1944 // operations so spin-locking is used for safety. 1945 // 1946 // Calls to this function can be added in various places as a debugging 1947 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor 1948 // details logged at the Info level and 'false' for the 'on_exit' 1949 // parameter to have in-use monitor details logged at the Trace level. 1950 // 1951 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) { 1952 assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant"); 1953 1954 LogStreamHandle(Debug, monitorinflation) lsh_debug; 1955 LogStreamHandle(Info, monitorinflation) lsh_info; 1956 LogStreamHandle(Trace, monitorinflation) lsh_trace; 1957 LogStream* ls = nullptr; 1958 if (log_is_enabled(Trace, monitorinflation)) { 1959 ls = &lsh_trace; 1960 } else if (log_is_enabled(Debug, monitorinflation)) { 1961 ls = &lsh_debug; 1962 } else if (log_is_enabled(Info, monitorinflation)) { 1963 ls = &lsh_info; 1964 } 1965 assert(ls != nullptr, "sanity check"); 1966 1967 int error_cnt = 0; 1968 1969 ls->print_cr("Checking in_use_list:"); 1970 chk_in_use_list(ls, &error_cnt); 1971 1972 if (error_cnt == 0) { 1973 ls->print_cr("No errors found in in_use_list checks."); 1974 } else { 1975 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1976 } 1977 1978 if ((on_exit && log_is_enabled(Info, monitorinflation)) || 1979 (!on_exit && log_is_enabled(Trace, monitorinflation))) { 1980 // When exiting this log output is at the Info level. When called 1981 // at a safepoint, this log output is at the Trace level since 1982 // there can be a lot of it. 1983 log_in_use_monitor_details(ls, !on_exit /* log_all */); 1984 } 1985 1986 ls->flush(); 1987 1988 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 1989 } 1990 1991 // Check the in_use_list; log the results of the checks. 1992 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 1993 size_t l_in_use_count = _in_use_list.count(); 1994 size_t l_in_use_max = _in_use_list.max(); 1995 out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count, 1996 l_in_use_max); 1997 1998 size_t ck_in_use_count = 0; 1999 MonitorList::Iterator iter = _in_use_list.iterator(); 2000 while (iter.has_next()) { 2001 ObjectMonitor* mid = iter.next(); 2002 chk_in_use_entry(mid, out, error_cnt_p); 2003 ck_in_use_count++; 2004 } 2005 2006 if (l_in_use_count == ck_in_use_count) { 2007 out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count=" 2008 SIZE_FORMAT, l_in_use_count, ck_in_use_count); 2009 } else { 2010 out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to " 2011 "ck_in_use_count=" SIZE_FORMAT, l_in_use_count, 2012 ck_in_use_count); 2013 } 2014 2015 size_t ck_in_use_max = _in_use_list.max(); 2016 if (l_in_use_max == ck_in_use_max) { 2017 out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max=" 2018 SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2019 } else { 2020 out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to " 2021 "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2022 } 2023 } 2024 2025 // Check an in-use monitor entry; log any errors. 2026 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2027 int* error_cnt_p) { 2028 if (n->owner_is_DEFLATER_MARKER()) { 2029 // This could happen when monitor deflation blocks for a safepoint. 2030 return; 2031 } 2032 2033 if (n->header().value() == 0) { 2034 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2035 "have non-null _header field.", p2i(n)); 2036 *error_cnt_p = *error_cnt_p + 1; 2037 } 2038 const oop obj = n->object_peek(); 2039 if (obj != nullptr) { 2040 const markWord mark = obj->mark(); 2041 if (!mark.has_monitor()) { 2042 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2043 "object does not think it has a monitor: obj=" 2044 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2045 p2i(obj), mark.value()); 2046 *error_cnt_p = *error_cnt_p + 1; 2047 } 2048 ObjectMonitor* const obj_mon = mark.monitor(); 2049 if (n != obj_mon) { 2050 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2051 "object does not refer to the same monitor: obj=" 2052 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2053 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2054 *error_cnt_p = *error_cnt_p + 1; 2055 } 2056 } 2057 } 2058 2059 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2060 // flags indicate why the entry is in-use, 'object' and 'object type' 2061 // indicate the associated object and its type. 2062 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2063 if (_in_use_list.count() > 0) { 2064 stringStream ss; 2065 out->print_cr("In-use monitor info:"); 2066 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2067 out->print_cr("%18s %s %18s %18s", 2068 "monitor", "BHL", "object", "object type"); 2069 out->print_cr("================== === ================== =================="); 2070 2071 auto is_interesting = [&](ObjectMonitor* monitor) { 2072 return log_all || monitor->has_owner() || monitor->is_busy(); 2073 }; 2074 2075 monitors_iterate([&](ObjectMonitor* monitor) { 2076 if (is_interesting(monitor)) { 2077 const oop obj = monitor->object_peek(); 2078 const markWord mark = monitor->header(); 2079 ResourceMark rm; 2080 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2081 monitor->is_busy(), mark.hash() != 0, monitor->owner() != nullptr, 2082 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2083 if (monitor->is_busy()) { 2084 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2085 ss.reset(); 2086 } 2087 out->cr(); 2088 } 2089 }); 2090 } 2091 2092 out->flush(); 2093 }