1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/globals.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/handshake.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/javaThread.hpp"
  44 #include "runtime/lockStack.inline.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/objectMonitor.hpp"
  47 #include "runtime/objectMonitor.inline.hpp"
  48 #include "runtime/os.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/perfData.hpp"
  51 #include "runtime/safepointMechanism.inline.hpp"
  52 #include "runtime/safepointVerifiers.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/synchronizer.hpp"
  56 #include "runtime/threads.hpp"
  57 #include "runtime/timer.hpp"
  58 #include "runtime/trimNativeHeap.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vmThread.hpp"
  61 #include "utilities/align.hpp"
  62 #include "utilities/dtrace.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/globalDefinitions.hpp"
  65 #include "utilities/linkedlist.hpp"
  66 #include "utilities/preserveException.hpp"
  67 
  68 void MonitorList::add(ObjectMonitor* m) {
  69   ObjectMonitor* head;
  70   do {
  71     head = Atomic::load(&_head);
  72     m->set_next_om(head);
  73   } while (Atomic::cmpxchg(&_head, head, m) != head);
  74 
  75   size_t count = Atomic::add(&_count, 1u);
  76   if (count > max()) {
  77     Atomic::inc(&_max);
  78   }
  79 }
  80 
  81 size_t MonitorList::count() const {
  82   return Atomic::load(&_count);
  83 }
  84 
  85 size_t MonitorList::max() const {
  86   return Atomic::load(&_max);
  87 }
  88 
  89 // Walk the in-use list and unlink deflated ObjectMonitors.
  90 // Returns the number of unlinked ObjectMonitors.
  91 size_t MonitorList::unlink_deflated(Thread* current, LogStream* ls,
  92                                     elapsedTimer* timer_p,
  93                                     size_t deflated_count,
  94                                     GrowableArray<ObjectMonitor*>* unlinked_list) {
  95   size_t unlinked_count = 0;
  96   ObjectMonitor* prev = nullptr;
  97   ObjectMonitor* m = Atomic::load_acquire(&_head);
  98 
  99   // The in-use list head can be null during the final audit.
 100   while (m != nullptr) {
 101     if (m->is_being_async_deflated()) {
 102       // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can
 103       // modify the list once per batch. The batch starts at "m".
 104       size_t unlinked_batch = 0;
 105       ObjectMonitor* next = m;
 106       // Look for at most MonitorUnlinkBatch monitors, or the number of
 107       // deflated and not unlinked monitors, whatever comes first.
 108       assert(deflated_count >= unlinked_count, "Sanity: underflow");
 109       size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch);
 110       do {
 111         ObjectMonitor* next_next = next->next_om();
 112         unlinked_batch++;
 113         unlinked_list->append(next);
 114         next = next_next;
 115         if (unlinked_batch >= unlinked_batch_limit) {
 116           // Reached the max batch, so bail out of the gathering loop.
 117           break;
 118         }
 119         if (prev == nullptr && Atomic::load(&_head) != m) {
 120           // Current batch used to be at head, but it is not at head anymore.
 121           // Bail out and figure out where we currently are. This avoids long
 122           // walks searching for new prev during unlink under heavy list inserts.
 123           break;
 124         }
 125       } while (next != nullptr && next->is_being_async_deflated());
 126 
 127       // Unlink the found batch.
 128       if (prev == nullptr) {
 129         // The current batch is the first batch, so there is a chance that it starts at head.
 130         // Optimistically assume no inserts happened, and try to unlink the entire batch from the head.
 131         ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next);
 132         if (prev_head != m) {
 133           // Something must have updated the head. Figure out the actual prev for this batch.
 134           for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) {
 135             prev = n;
 136           }
 137           assert(prev != nullptr, "Should have found the prev for the current batch");
 138           prev->set_next_om(next);
 139         }
 140       } else {
 141         // The current batch is preceded by another batch. This guarantees the current batch
 142         // does not start at head. Unlink the entire current batch without updating the head.
 143         assert(Atomic::load(&_head) != m, "Sanity");
 144         prev->set_next_om(next);
 145       }
 146 
 147       unlinked_count += unlinked_batch;
 148       if (unlinked_count >= deflated_count) {
 149         // Reached the max so bail out of the searching loop.
 150         // There should be no more deflated monitors left.
 151         break;
 152       }
 153       m = next;
 154     } else {
 155       prev = m;
 156       m = m->next_om();
 157     }
 158 
 159     if (current->is_Java_thread()) {
 160       // A JavaThread must check for a safepoint/handshake and honor it.
 161       ObjectSynchronizer::chk_for_block_req(JavaThread::cast(current), "unlinking",
 162                                             "unlinked_count", unlinked_count,
 163                                             ls, timer_p);
 164     }
 165   }
 166 
 167 #ifdef ASSERT
 168   // Invariant: the code above should unlink all deflated monitors.
 169   // The code that runs after this unlinking does not expect deflated monitors.
 170   // Notably, attempting to deflate the already deflated monitor would break.
 171   {
 172     ObjectMonitor* m = Atomic::load_acquire(&_head);
 173     while (m != nullptr) {
 174       assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked");
 175       m = m->next_om();
 176     }
 177   }
 178 #endif
 179 
 180   Atomic::sub(&_count, unlinked_count);
 181   return unlinked_count;
 182 }
 183 
 184 MonitorList::Iterator MonitorList::iterator() const {
 185   return Iterator(Atomic::load_acquire(&_head));
 186 }
 187 
 188 ObjectMonitor* MonitorList::Iterator::next() {
 189   ObjectMonitor* current = _current;
 190   _current = current->next_om();
 191   return current;
 192 }
 193 
 194 // The "core" versions of monitor enter and exit reside in this file.
 195 // The interpreter and compilers contain specialized transliterated
 196 // variants of the enter-exit fast-path operations.  See c2_MacroAssembler_x86.cpp
 197 // fast_lock(...) for instance.  If you make changes here, make sure to modify the
 198 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 199 //
 200 // -----------------------------------------------------------------------------
 201 
 202 #ifdef DTRACE_ENABLED
 203 
 204 // Only bother with this argument setup if dtrace is available
 205 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
 206 
 207 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
 208   char* bytes = nullptr;                                                      \
 209   int len = 0;                                                             \
 210   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
 211   Symbol* klassname = obj->klass()->name();                                \
 212   if (klassname != nullptr) {                                                 \
 213     bytes = (char*)klassname->bytes();                                     \
 214     len = klassname->utf8_length();                                        \
 215   }
 216 
 217 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 218   {                                                                        \
 219     if (DTraceMonitorProbes) {                                             \
 220       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 221       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 222                            (uintptr_t)(monitor), bytes, len, (millis));    \
 223     }                                                                      \
 224   }
 225 
 226 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
 227 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 228 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 229 
 230 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 231   {                                                                        \
 232     if (DTraceMonitorProbes) {                                             \
 233       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 234       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 235                                     (uintptr_t)(monitor), bytes, len);     \
 236     }                                                                      \
 237   }
 238 
 239 #else //  ndef DTRACE_ENABLED
 240 
 241 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 242 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 243 
 244 #endif // ndef DTRACE_ENABLED
 245 
 246 // This exists only as a workaround of dtrace bug 6254741
 247 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) {
 248   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 249   return 0;
 250 }
 251 
 252 static constexpr size_t inflation_lock_count() {
 253   return 256;
 254 }
 255 
 256 // Static storage for an array of PlatformMutex.
 257 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 258 
 259 static inline PlatformMutex* inflation_lock(size_t index) {
 260   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 261 }
 262 
 263 void ObjectSynchronizer::initialize() {
 264   for (size_t i = 0; i < inflation_lock_count(); i++) {
 265     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 266   }
 267   // Start the ceiling with the estimate for one thread.
 268   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 269 
 270   // Start the timer for deflations, so it does not trigger immediately.
 271   _last_async_deflation_time_ns = os::javaTimeNanos();
 272 }
 273 
 274 MonitorList ObjectSynchronizer::_in_use_list;
 275 // monitors_used_above_threshold() policy is as follows:
 276 //
 277 // The ratio of the current _in_use_list count to the ceiling is used
 278 // to determine if we are above MonitorUsedDeflationThreshold and need
 279 // to do an async monitor deflation cycle. The ceiling is increased by
 280 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 281 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 282 // removed from the system.
 283 //
 284 // Note: If the _in_use_list max exceeds the ceiling, then
 285 // monitors_used_above_threshold() will use the in_use_list max instead
 286 // of the thread count derived ceiling because we have used more
 287 // ObjectMonitors than the estimated average.
 288 //
 289 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 290 // no-progress async monitor deflation cycles in a row, then the ceiling
 291 // is adjusted upwards by monitors_used_above_threshold().
 292 //
 293 // Start the ceiling with the estimate for one thread in initialize()
 294 // which is called after cmd line options are processed.
 295 static size_t _in_use_list_ceiling = 0;
 296 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 297 bool volatile ObjectSynchronizer::_is_final_audit = false;
 298 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 299 static uintx _no_progress_cnt = 0;
 300 static bool _no_progress_skip_increment = false;
 301 
 302 // =====================> Quick functions
 303 
 304 // The quick_* forms are special fast-path variants used to improve
 305 // performance.  In the simplest case, a "quick_*" implementation could
 306 // simply return false, in which case the caller will perform the necessary
 307 // state transitions and call the slow-path form.
 308 // The fast-path is designed to handle frequently arising cases in an efficient
 309 // manner and is just a degenerate "optimistic" variant of the slow-path.
 310 // returns true  -- to indicate the call was satisfied.
 311 // returns false -- to indicate the call needs the services of the slow-path.
 312 // A no-loitering ordinance is in effect for code in the quick_* family
 313 // operators: safepoints or indefinite blocking (blocking that might span a
 314 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 315 // entry.
 316 //
 317 // Consider: An interesting optimization is to have the JIT recognize the
 318 // following common idiom:
 319 //   synchronized (someobj) { .... ; notify(); }
 320 // That is, we find a notify() or notifyAll() call that immediately precedes
 321 // the monitorexit operation.  In that case the JIT could fuse the operations
 322 // into a single notifyAndExit() runtime primitive.
 323 
 324 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) {
 325   assert(current->thread_state() == _thread_in_Java, "invariant");
 326   NoSafepointVerifier nsv;
 327   if (obj == nullptr) return false;  // slow-path for invalid obj
 328   const markWord mark = obj->mark();
 329 
 330   if (LockingMode == LM_LIGHTWEIGHT) {
 331     if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 332       // Degenerate notify
 333       // fast-locked by caller so by definition the implied waitset is empty.
 334       return true;
 335     }
 336   } else if (LockingMode == LM_LEGACY) {
 337     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 338       // Degenerate notify
 339       // stack-locked by caller so by definition the implied waitset is empty.
 340       return true;
 341     }
 342   }
 343 
 344   if (mark.has_monitor()) {
 345     ObjectMonitor* const mon = mark.monitor();
 346     assert(mon->object() == oop(obj), "invariant");
 347     if (mon->owner() != current) return false;  // slow-path for IMS exception
 348 
 349     if (mon->first_waiter() != nullptr) {
 350       // We have one or more waiters. Since this is an inflated monitor
 351       // that we own, we can transfer one or more threads from the waitset
 352       // to the entrylist here and now, avoiding the slow-path.
 353       if (all) {
 354         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 355       } else {
 356         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 357       }
 358       int free_count = 0;
 359       do {
 360         mon->INotify(current);
 361         ++free_count;
 362       } while (mon->first_waiter() != nullptr && all);
 363       OM_PERFDATA_OP(Notifications, inc(free_count));
 364     }
 365     return true;
 366   }
 367 
 368   // other IMS exception states take the slow-path
 369   return false;
 370 }
 371 
 372 
 373 // The LockNode emitted directly at the synchronization site would have
 374 // been too big if it were to have included support for the cases of inflated
 375 // recursive enter and exit, so they go here instead.
 376 // Note that we can't safely call AsyncPrintJavaStack() from within
 377 // quick_enter() as our thread state remains _in_Java.
 378 
 379 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current,
 380                                      BasicLock * lock) {
 381   assert(current->thread_state() == _thread_in_Java, "invariant");
 382   NoSafepointVerifier nsv;
 383   if (obj == nullptr) return false;       // Need to throw NPE
 384 
 385   if (obj->klass()->is_value_based()) {
 386     return false;
 387   }
 388 
 389   if (LockingMode == LM_LIGHTWEIGHT) {
 390     LockStack& lock_stack = current->lock_stack();
 391     if (lock_stack.is_full()) {
 392       // Always go into runtime if the lock stack is full.
 393       return false;
 394     }
 395     if (lock_stack.try_recursive_enter(obj)) {
 396       // Recursive lock successful.
 397       current->inc_held_monitor_count();
 398       return true;
 399     }
 400   }
 401 
 402   const markWord mark = obj->mark();
 403 
 404   if (mark.has_monitor()) {
 405     ObjectMonitor* const m = mark.monitor();
 406     // An async deflation or GC can race us before we manage to make
 407     // the ObjectMonitor busy by setting the owner below. If we detect
 408     // that race we just bail out to the slow-path here.
 409     if (m->object_peek() == nullptr) {
 410       return false;
 411     }
 412     JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw());
 413 
 414     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 415     // and observability
 416     // Case: light contention possibly amenable to TLE
 417     // Case: TLE inimical operations such as nested/recursive synchronization
 418 
 419     if (owner == current) {
 420       m->_recursions++;
 421       current->inc_held_monitor_count();
 422       return true;
 423     }
 424 
 425     if (LockingMode != LM_LIGHTWEIGHT) {
 426       // This Java Monitor is inflated so obj's header will never be
 427       // displaced to this thread's BasicLock. Make the displaced header
 428       // non-null so this BasicLock is not seen as recursive nor as
 429       // being locked. We do this unconditionally so that this thread's
 430       // BasicLock cannot be mis-interpreted by any stack walkers. For
 431       // performance reasons, stack walkers generally first check for
 432       // stack-locking in the object's header, the second check is for
 433       // recursive stack-locking in the displaced header in the BasicLock,
 434       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 435       lock->set_displaced_header(markWord::unused_mark());
 436     }
 437 
 438     if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) {
 439       assert(m->_recursions == 0, "invariant");
 440       current->inc_held_monitor_count();
 441       return true;
 442     }
 443   }
 444 
 445   // Note that we could inflate in quick_enter.
 446   // This is likely a useful optimization
 447   // Critically, in quick_enter() we must not:
 448   // -- block indefinitely, or
 449   // -- reach a safepoint
 450 
 451   return false;        // revert to slow-path
 452 }
 453 
 454 // Handle notifications when synchronizing on value based classes
 455 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) {
 456   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 457   frame last_frame = locking_thread->last_frame();
 458   bool bcp_was_adjusted = false;
 459   // Don't decrement bcp if it points to the frame's first instruction.  This happens when
 460   // handle_sync_on_value_based_class() is called because of a synchronized method.  There
 461   // is no actual monitorenter instruction in the byte code in this case.
 462   if (last_frame.is_interpreted_frame() &&
 463       (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) {
 464     // adjust bcp to point back to monitorenter so that we print the correct line numbers
 465     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1);
 466     bcp_was_adjusted = true;
 467   }
 468 
 469   if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) {
 470     ResourceMark rm;
 471     stringStream ss;
 472     locking_thread->print_active_stack_on(&ss);
 473     char* base = (char*)strstr(ss.base(), "at");
 474     char* newline = (char*)strchr(ss.base(), '\n');
 475     if (newline != nullptr) {
 476       *newline = '\0';
 477     }
 478     fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base);
 479   } else {
 480     assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses");
 481     ResourceMark rm;
 482     Log(valuebasedclasses) vblog;
 483 
 484     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 485     if (locking_thread->has_last_Java_frame()) {
 486       LogStream info_stream(vblog.info());
 487       locking_thread->print_active_stack_on(&info_stream);
 488     } else {
 489       vblog.info("Cannot find the last Java frame");
 490     }
 491 
 492     EventSyncOnValueBasedClass event;
 493     if (event.should_commit()) {
 494       event.set_valueBasedClass(obj->klass());
 495       event.commit();
 496     }
 497   }
 498 
 499   if (bcp_was_adjusted) {
 500     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 501   }
 502 }
 503 
 504 static bool useHeavyMonitors() {
 505 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390)
 506   return LockingMode == LM_MONITOR;
 507 #else
 508   return false;
 509 #endif
 510 }
 511 
 512 // -----------------------------------------------------------------------------
 513 // Monitor Enter/Exit
 514 
 515 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 516   // When called with locking_thread != Thread::current() some mechanism must synchronize
 517   // the locking_thread with respect to the current thread. Currently only used when
 518   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 519   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 520   if (!enter_fast_impl(obj, lock, locking_thread)) {
 521     // Inflated ObjectMonitor::enter_for is required
 522 
 523     // An async deflation can race after the inflate_for() call and before
 524     // enter_for() can make the ObjectMonitor busy. enter_for() returns false
 525     // if we have lost the race to async deflation and we simply try again.
 526     while (true) {
 527       ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter);
 528       if (monitor->enter_for(locking_thread)) {
 529         return;
 530       }
 531       assert(monitor->is_being_async_deflated(), "must be");
 532     }
 533   }
 534 }
 535 
 536 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
 537   assert(current == Thread::current(), "must be");
 538   if (!enter_fast_impl(obj, lock, current)) {
 539     // Inflated ObjectMonitor::enter is required
 540 
 541     // An async deflation can race after the inflate() call and before
 542     // enter() can make the ObjectMonitor busy. enter() returns false if
 543     // we have lost the race to async deflation and we simply try again.
 544     while (true) {
 545       ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 546       if (monitor->enter(current)) {
 547         return;
 548       }
 549     }
 550   }
 551 }
 552 
 553 // The interpreter and compiler assembly code tries to lock using the fast path
 554 // of this algorithm. Make sure to update that code if the following function is
 555 // changed. The implementation is extremely sensitive to race condition. Be careful.
 556 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 557 
 558   if (obj->klass()->is_value_based()) {
 559     handle_sync_on_value_based_class(obj, locking_thread);
 560   }
 561 
 562   locking_thread->inc_held_monitor_count();
 563 
 564   if (!useHeavyMonitors()) {
 565     if (LockingMode == LM_LIGHTWEIGHT) {
 566       // Fast-locking does not use the 'lock' argument.
 567       LockStack& lock_stack = locking_thread->lock_stack();
 568       if (lock_stack.is_full()) {
 569         // We unconditionally make room on the lock stack by inflating
 570         // the least recently locked object on the lock stack.
 571 
 572         // About the choice to inflate least recently locked object.
 573         // First we must chose to inflate a lock, either some lock on
 574         // the lock-stack or the lock that is currently being entered
 575         // (which may or may not be on the lock-stack).
 576         // Second the best lock to inflate is a lock which is entered
 577         // in a control flow where there are only a very few locks being
 578         // used, as the costly part of inflated locking is inflation,
 579         // not locking. But this property is entirely program dependent.
 580         // Third inflating the lock currently being entered on when it
 581         // is not present on the lock-stack will result in a still full
 582         // lock-stack. This creates a scenario where every deeper nested
 583         // monitorenter must call into the runtime.
 584         // The rational here is as follows:
 585         // Because we cannot (currently) figure out the second, and want
 586         // to avoid the third, we inflate a lock on the lock-stack.
 587         // The least recently locked lock is chosen as it is the lock
 588         // with the longest critical section.
 589 
 590         log_info(monitorinflation)("LockStack capacity exceeded, inflating.");
 591         ObjectMonitor* monitor = inflate_for(locking_thread, lock_stack.bottom(), inflate_cause_vm_internal);
 592         assert(monitor->owner() == Thread::current(), "must be owner=" PTR_FORMAT " current=" PTR_FORMAT " mark=" PTR_FORMAT,
 593                p2i(monitor->owner()), p2i(Thread::current()), monitor->object()->mark_acquire().value());
 594         assert(!lock_stack.is_full(), "must have made room here");
 595       }
 596 
 597       markWord mark = obj()->mark_acquire();
 598       while (mark.is_neutral()) {
 599         // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications.
 600         // Try to swing into 'fast-locked' state.
 601         assert(!lock_stack.contains(obj()), "thread must not already hold the lock");
 602         const markWord locked_mark = mark.set_fast_locked();
 603         const markWord old_mark = obj()->cas_set_mark(locked_mark, mark);
 604         if (old_mark == mark) {
 605           // Successfully fast-locked, push object to lock-stack and return.
 606           lock_stack.push(obj());
 607           return true;
 608         }
 609         mark = old_mark;
 610       }
 611 
 612       if (mark.is_fast_locked() && lock_stack.try_recursive_enter(obj())) {
 613         // Recursive lock successful.
 614         return true;
 615       }
 616 
 617       // Failed to fast lock.
 618       return false;
 619     } else if (LockingMode == LM_LEGACY) {
 620       markWord mark = obj->mark();
 621       if (mark.is_neutral()) {
 622         // Anticipate successful CAS -- the ST of the displaced mark must
 623         // be visible <= the ST performed by the CAS.
 624         lock->set_displaced_header(mark);
 625         if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 626           return true;
 627         }
 628       } else if (mark.has_locker() &&
 629                  locking_thread->is_lock_owned((address) mark.locker())) {
 630         assert(lock != mark.locker(), "must not re-lock the same lock");
 631         assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock");
 632         lock->set_displaced_header(markWord::from_pointer(nullptr));
 633         return true;
 634       }
 635 
 636       // The object header will never be displaced to this lock,
 637       // so it does not matter what the value is, except that it
 638       // must be non-zero to avoid looking like a re-entrant lock,
 639       // and must not look locked either.
 640       lock->set_displaced_header(markWord::unused_mark());
 641 
 642       // Failed to fast lock.
 643       return false;
 644     }
 645   } else if (VerifyHeavyMonitors) {
 646     guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 647   }
 648 
 649   return false;
 650 }
 651 
 652 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) {
 653   current->dec_held_monitor_count();
 654 
 655   if (!useHeavyMonitors()) {
 656     markWord mark = object->mark();
 657     if (LockingMode == LM_LIGHTWEIGHT) {
 658       // Fast-locking does not use the 'lock' argument.
 659       LockStack& lock_stack = current->lock_stack();
 660       if (mark.is_fast_locked() && lock_stack.try_recursive_exit(object)) {
 661         // Recursively unlocked.
 662         return;
 663       }
 664 
 665       if (mark.is_fast_locked() && lock_stack.is_recursive(object)) {
 666         // This lock is recursive but is not at the top of the lock stack so we're
 667         // doing an unbalanced exit. We have to fall thru to inflation below and
 668         // let ObjectMonitor::exit() do the unlock.
 669       } else {
 670         while (mark.is_fast_locked()) {
 671           // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications.
 672           const markWord unlocked_mark = mark.set_unlocked();
 673           const markWord old_mark = object->cas_set_mark(unlocked_mark, mark);
 674           if (old_mark == mark) {
 675             size_t recursions = lock_stack.remove(object) - 1;
 676             assert(recursions == 0, "must not be recursive here");
 677             return;
 678           }
 679           mark = old_mark;
 680         }
 681       }
 682     } else if (LockingMode == LM_LEGACY) {
 683       markWord dhw = lock->displaced_header();
 684       if (dhw.value() == 0) {
 685         // If the displaced header is null, then this exit matches up with
 686         // a recursive enter. No real work to do here except for diagnostics.
 687 #ifndef PRODUCT
 688         if (mark != markWord::INFLATING()) {
 689           // Only do diagnostics if we are not racing an inflation. Simply
 690           // exiting a recursive enter of a Java Monitor that is being
 691           // inflated is safe; see the has_monitor() comment below.
 692           assert(!mark.is_neutral(), "invariant");
 693           assert(!mark.has_locker() ||
 694                  current->is_lock_owned((address)mark.locker()), "invariant");
 695           if (mark.has_monitor()) {
 696             // The BasicLock's displaced_header is marked as a recursive
 697             // enter and we have an inflated Java Monitor (ObjectMonitor).
 698             // This is a special case where the Java Monitor was inflated
 699             // after this thread entered the stack-lock recursively. When a
 700             // Java Monitor is inflated, we cannot safely walk the Java
 701             // Monitor owner's stack and update the BasicLocks because a
 702             // Java Monitor can be asynchronously inflated by a thread that
 703             // does not own the Java Monitor.
 704             ObjectMonitor* m = mark.monitor();
 705             assert(m->object()->mark() == mark, "invariant");
 706             assert(m->is_entered(current), "invariant");
 707           }
 708         }
 709 #endif
 710         return;
 711       }
 712 
 713       if (mark == markWord::from_pointer(lock)) {
 714         // If the object is stack-locked by the current thread, try to
 715         // swing the displaced header from the BasicLock back to the mark.
 716         assert(dhw.is_neutral(), "invariant");
 717         if (object->cas_set_mark(dhw, mark) == mark) {
 718           return;
 719         }
 720       }
 721     }
 722   } else if (VerifyHeavyMonitors) {
 723     guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 724   }
 725 
 726   // We have to take the slow-path of possible inflation and then exit.
 727   // The ObjectMonitor* can't be async deflated until ownership is
 728   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 729   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 730   assert(!monitor->is_owner_anonymous(), "must not be");
 731   monitor->exit(current);
 732 }
 733 
 734 // -----------------------------------------------------------------------------
 735 // JNI locks on java objects
 736 // NOTE: must use heavy weight monitor to handle jni monitor enter
 737 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 738   if (obj->klass()->is_value_based()) {
 739     handle_sync_on_value_based_class(obj, current);
 740   }
 741 
 742   // the current locking is from JNI instead of Java code
 743   current->set_current_pending_monitor_is_from_java(false);
 744   // An async deflation can race after the inflate() call and before
 745   // enter() can make the ObjectMonitor busy. enter() returns false if
 746   // we have lost the race to async deflation and we simply try again.
 747   while (true) {
 748     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter);
 749     if (monitor->enter(current)) {
 750       current->inc_held_monitor_count(1, true);
 751       break;
 752     }
 753   }
 754   current->set_current_pending_monitor_is_from_java(true);
 755 }
 756 
 757 // NOTE: must use heavy weight monitor to handle jni monitor exit
 758 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 759   JavaThread* current = THREAD;
 760 
 761   // The ObjectMonitor* can't be async deflated until ownership is
 762   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 763   ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit);
 764   // If this thread has locked the object, exit the monitor. We
 765   // intentionally do not use CHECK on check_owner because we must exit the
 766   // monitor even if an exception was already pending.
 767   if (monitor->check_owner(THREAD)) {
 768     monitor->exit(current);
 769     current->dec_held_monitor_count(1, true);
 770   }
 771 }
 772 
 773 // -----------------------------------------------------------------------------
 774 // Internal VM locks on java objects
 775 // standard constructor, allows locking failures
 776 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 777   _thread = thread;
 778   _thread->check_for_valid_safepoint_state();
 779   _obj = obj;
 780 
 781   if (_obj() != nullptr) {
 782     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 783   }
 784 }
 785 
 786 ObjectLocker::~ObjectLocker() {
 787   if (_obj() != nullptr) {
 788     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 789   }
 790 }
 791 
 792 
 793 // -----------------------------------------------------------------------------
 794 //  Wait/Notify/NotifyAll
 795 // NOTE: must use heavy weight monitor to handle wait()
 796 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 797   JavaThread* current = THREAD;
 798   if (millis < 0) {
 799     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 800   }
 801   // The ObjectMonitor* can't be async deflated because the _waiters
 802   // field is incremented before ownership is dropped and decremented
 803   // after ownership is regained.
 804   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait);
 805 
 806   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 807   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 808 
 809   // This dummy call is in place to get around dtrace bug 6254741.  Once
 810   // that's fixed we can uncomment the following line, remove the call
 811   // and change this function back into a "void" func.
 812   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 813   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 814   return ret_code;
 815 }
 816 
 817 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 818   if (millis < 0) {
 819     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 820   }
 821   ObjectSynchronizer::inflate(THREAD,
 822                               obj(),
 823                               inflate_cause_wait)->wait(millis, false, THREAD);
 824 }
 825 
 826 
 827 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 828   JavaThread* current = THREAD;
 829 
 830   markWord mark = obj->mark();
 831   if (LockingMode == LM_LIGHTWEIGHT) {
 832     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 833       // Not inflated so there can't be any waiters to notify.
 834       return;
 835     }
 836   } else if (LockingMode == LM_LEGACY) {
 837     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 838       // Not inflated so there can't be any waiters to notify.
 839       return;
 840     }
 841   }
 842   // The ObjectMonitor* can't be async deflated until ownership is
 843   // dropped by the calling thread.
 844   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);
 845   monitor->notify(CHECK);
 846 }
 847 
 848 // NOTE: see comment of notify()
 849 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 850   JavaThread* current = THREAD;
 851 
 852   markWord mark = obj->mark();
 853   if (LockingMode == LM_LIGHTWEIGHT) {
 854     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 855       // Not inflated so there can't be any waiters to notify.
 856       return;
 857     }
 858   } else if (LockingMode == LM_LEGACY) {
 859     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 860       // Not inflated so there can't be any waiters to notify.
 861       return;
 862     }
 863   }
 864   // The ObjectMonitor* can't be async deflated until ownership is
 865   // dropped by the calling thread.
 866   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);
 867   monitor->notifyAll(CHECK);
 868 }
 869 
 870 // -----------------------------------------------------------------------------
 871 // Hash Code handling
 872 
 873 struct SharedGlobals {
 874   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 875   // This is a highly shared mostly-read variable.
 876   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 877   volatile int stw_random;
 878   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 879   // Hot RW variable -- Sequester to avoid false-sharing
 880   volatile int hc_sequence;
 881   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 882 };
 883 
 884 static SharedGlobals GVars;
 885 
 886 static markWord read_stable_mark(oop obj) {
 887   markWord mark = obj->mark_acquire();
 888   if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) {
 889     // New lightweight locking does not use the markWord::INFLATING() protocol.
 890     return mark;       // normal fast-path return
 891   }
 892 
 893   int its = 0;
 894   for (;;) {
 895     markWord mark = obj->mark_acquire();
 896     if (!mark.is_being_inflated()) {
 897       return mark;    // normal fast-path return
 898     }
 899 
 900     // The object is being inflated by some other thread.
 901     // The caller of read_stable_mark() must wait for inflation to complete.
 902     // Avoid live-lock.
 903 
 904     ++its;
 905     if (its > 10000 || !os::is_MP()) {
 906       if (its & 1) {
 907         os::naked_yield();
 908       } else {
 909         // Note that the following code attenuates the livelock problem but is not
 910         // a complete remedy.  A more complete solution would require that the inflating
 911         // thread hold the associated inflation lock.  The following code simply restricts
 912         // the number of spinners to at most one.  We'll have N-2 threads blocked
 913         // on the inflationlock, 1 thread holding the inflation lock and using
 914         // a yield/park strategy, and 1 thread in the midst of inflation.
 915         // A more refined approach would be to change the encoding of INFLATING
 916         // to allow encapsulation of a native thread pointer.  Threads waiting for
 917         // inflation to complete would use CAS to push themselves onto a singly linked
 918         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 919         // and calling park().  When inflation was complete the thread that accomplished inflation
 920         // would detach the list and set the markword to inflated with a single CAS and
 921         // then for each thread on the list, set the flag and unpark() the thread.
 922 
 923         // Index into the lock array based on the current object address.
 924         static_assert(is_power_of_2(inflation_lock_count()), "must be");
 925         size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1);
 926         int YieldThenBlock = 0;
 927         assert(ix < inflation_lock_count(), "invariant");
 928         inflation_lock(ix)->lock();
 929         while (obj->mark_acquire() == markWord::INFLATING()) {
 930           // Beware: naked_yield() is advisory and has almost no effect on some platforms
 931           // so we periodically call current->_ParkEvent->park(1).
 932           // We use a mixed spin/yield/block mechanism.
 933           if ((YieldThenBlock++) >= 16) {
 934             Thread::current()->_ParkEvent->park(1);
 935           } else {
 936             os::naked_yield();
 937           }
 938         }
 939         inflation_lock(ix)->unlock();
 940       }
 941     } else {
 942       SpinPause();       // SMP-polite spinning
 943     }
 944   }
 945 }
 946 
 947 // hashCode() generation :
 948 //
 949 // Possibilities:
 950 // * MD5Digest of {obj,stw_random}
 951 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 952 // * A DES- or AES-style SBox[] mechanism
 953 // * One of the Phi-based schemes, such as:
 954 //   2654435761 = 2^32 * Phi (golden ratio)
 955 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 956 // * A variation of Marsaglia's shift-xor RNG scheme.
 957 // * (obj ^ stw_random) is appealing, but can result
 958 //   in undesirable regularity in the hashCode values of adjacent objects
 959 //   (objects allocated back-to-back, in particular).  This could potentially
 960 //   result in hashtable collisions and reduced hashtable efficiency.
 961 //   There are simple ways to "diffuse" the middle address bits over the
 962 //   generated hashCode values:
 963 
 964 static inline intptr_t get_next_hash(Thread* current, oop obj) {
 965   intptr_t value = 0;
 966   if (hashCode == 0) {
 967     // This form uses global Park-Miller RNG.
 968     // On MP system we'll have lots of RW access to a global, so the
 969     // mechanism induces lots of coherency traffic.
 970     value = os::random();
 971   } else if (hashCode == 1) {
 972     // This variation has the property of being stable (idempotent)
 973     // between STW operations.  This can be useful in some of the 1-0
 974     // synchronization schemes.
 975     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 976     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 977   } else if (hashCode == 2) {
 978     value = 1;            // for sensitivity testing
 979   } else if (hashCode == 3) {
 980     value = ++GVars.hc_sequence;
 981   } else if (hashCode == 4) {
 982     value = cast_from_oop<intptr_t>(obj);
 983   } else {
 984     // Marsaglia's xor-shift scheme with thread-specific state
 985     // This is probably the best overall implementation -- we'll
 986     // likely make this the default in future releases.
 987     unsigned t = current->_hashStateX;
 988     t ^= (t << 11);
 989     current->_hashStateX = current->_hashStateY;
 990     current->_hashStateY = current->_hashStateZ;
 991     current->_hashStateZ = current->_hashStateW;
 992     unsigned v = current->_hashStateW;
 993     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 994     current->_hashStateW = v;
 995     value = v;
 996   }
 997 
 998   value &= UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask;
 999   if (value == 0) value = 0xBAD;
1000   assert(value != markWord::no_hash, "invariant");
1001   return value;
1002 }
1003 
1004 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
1005 
1006   while (true) {
1007     ObjectMonitor* monitor = nullptr;
1008     markWord temp, test;
1009     intptr_t hash;
1010     markWord mark = read_stable_mark(obj);
1011     if (VerifyHeavyMonitors) {
1012       assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)");
1013       guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
1014     }
1015     if (mark.is_neutral() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) {
1016       hash = mark.hash();
1017       if (hash != 0) {                     // if it has a hash, just return it
1018         return hash;
1019       }
1020       hash = get_next_hash(current, obj);  // get a new hash
1021       temp = mark.copy_set_hash(hash);     // merge the hash into header
1022                                            // try to install the hash
1023       test = obj->cas_set_mark(temp, mark);
1024       if (test == mark) {                  // if the hash was installed, return it
1025         return hash;
1026       }
1027       if (LockingMode == LM_LIGHTWEIGHT) {
1028         // CAS failed, retry
1029         continue;
1030       }
1031       // Failed to install the hash. It could be that another thread
1032       // installed the hash just before our attempt or inflation has
1033       // occurred or... so we fall thru to inflate the monitor for
1034       // stability and then install the hash.
1035     } else if (mark.has_monitor()) {
1036       monitor = mark.monitor();
1037       temp = monitor->header();
1038       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1039       hash = temp.hash();
1040       if (hash != 0) {
1041         // It has a hash.
1042 
1043         // Separate load of dmw/header above from the loads in
1044         // is_being_async_deflated().
1045 
1046         // dmw/header and _contentions may get written by different threads.
1047         // Make sure to observe them in the same order when having several observers.
1048         OrderAccess::loadload_for_IRIW();
1049 
1050         if (monitor->is_being_async_deflated()) {
1051           // But we can't safely use the hash if we detect that async
1052           // deflation has occurred. So we attempt to restore the
1053           // header/dmw to the object's header so that we only retry
1054           // once if the deflater thread happens to be slow.
1055           monitor->install_displaced_markword_in_object(obj);
1056           continue;
1057         }
1058         return hash;
1059       }
1060       // Fall thru so we only have one place that installs the hash in
1061       // the ObjectMonitor.
1062     } else if (LockingMode == LM_LEGACY && mark.has_locker()
1063                && current->is_Java_thread()
1064                && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) {
1065       // This is a stack-lock owned by the calling thread so fetch the
1066       // displaced markWord from the BasicLock on the stack.
1067       temp = mark.displaced_mark_helper();
1068       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1069       hash = temp.hash();
1070       if (hash != 0) {                  // if it has a hash, just return it
1071         return hash;
1072       }
1073       // WARNING:
1074       // The displaced header in the BasicLock on a thread's stack
1075       // is strictly immutable. It CANNOT be changed in ANY cases.
1076       // So we have to inflate the stack-lock into an ObjectMonitor
1077       // even if the current thread owns the lock. The BasicLock on
1078       // a thread's stack can be asynchronously read by other threads
1079       // during an inflate() call so any change to that stack memory
1080       // may not propagate to other threads correctly.
1081     }
1082 
1083     // Inflate the monitor to set the hash.
1084 
1085     // An async deflation can race after the inflate() call and before we
1086     // can update the ObjectMonitor's header with the hash value below.
1087     monitor = inflate(current, obj, inflate_cause_hash_code);
1088     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1089     mark = monitor->header();
1090     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1091     hash = mark.hash();
1092     if (hash == 0) {                       // if it does not have a hash
1093       hash = get_next_hash(current, obj);  // get a new hash
1094       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
1095       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1096       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1097       test = markWord(v);
1098       if (test != mark) {
1099         // The attempt to update the ObjectMonitor's header/dmw field
1100         // did not work. This can happen if another thread managed to
1101         // merge in the hash just before our cmpxchg().
1102         // If we add any new usages of the header/dmw field, this code
1103         // will need to be updated.
1104         hash = test.hash();
1105         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1106         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1107       }
1108       if (monitor->is_being_async_deflated()) {
1109         // If we detect that async deflation has occurred, then we
1110         // attempt to restore the header/dmw to the object's header
1111         // so that we only retry once if the deflater thread happens
1112         // to be slow.
1113         monitor->install_displaced_markword_in_object(obj);
1114         continue;
1115       }
1116     }
1117     // We finally get the hash.
1118     return hash;
1119   }
1120 }
1121 
1122 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
1123                                                    Handle h_obj) {
1124   assert(current == JavaThread::current(), "Can only be called on current thread");
1125   oop obj = h_obj();
1126 
1127   markWord mark = read_stable_mark(obj);
1128 
1129   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1130     // stack-locked case, header points into owner's stack
1131     return current->is_lock_owned((address)mark.locker());
1132   }
1133 
1134   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1135     // fast-locking case, see if lock is in current's lock stack
1136     return current->lock_stack().contains(h_obj());
1137   }
1138 
1139   if (mark.has_monitor()) {
1140     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1141     // The first stage of async deflation does not affect any field
1142     // used by this comparison so the ObjectMonitor* is usable here.
1143     ObjectMonitor* monitor = mark.monitor();
1144     return monitor->is_entered(current) != 0;
1145   }
1146   // Unlocked case, header in place
1147   assert(mark.is_neutral(), "sanity check");
1148   return false;
1149 }
1150 
1151 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1152   oop obj = h_obj();
1153   markWord mark = read_stable_mark(obj);
1154 
1155   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1156     // stack-locked so header points into owner's stack.
1157     // owning_thread_from_monitor_owner() may also return null here:
1158     return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker());
1159   }
1160 
1161   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1162     // fast-locked so get owner from the object.
1163     // owning_thread_from_object() may also return null here:
1164     return Threads::owning_thread_from_object(t_list, h_obj());
1165   }
1166 
1167   if (mark.has_monitor()) {
1168     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1169     // The first stage of async deflation does not affect any field
1170     // used by this comparison so the ObjectMonitor* is usable here.
1171     ObjectMonitor* monitor = mark.monitor();
1172     assert(monitor != nullptr, "monitor should be non-null");
1173     // owning_thread_from_monitor() may also return null here:
1174     return Threads::owning_thread_from_monitor(t_list, monitor);
1175   }
1176 
1177   // Unlocked case, header in place
1178   // Cannot have assertion since this object may have been
1179   // locked by another thread when reaching here.
1180   // assert(mark.is_neutral(), "sanity check");
1181 
1182   return nullptr;
1183 }
1184 
1185 // Visitors ...
1186 
1187 // Iterate over all ObjectMonitors.
1188 template <typename Function>
1189 void ObjectSynchronizer::monitors_iterate(Function function) {
1190   MonitorList::Iterator iter = _in_use_list.iterator();
1191   while (iter.has_next()) {
1192     ObjectMonitor* monitor = iter.next();
1193     function(monitor);
1194   }
1195 }
1196 
1197 // Iterate ObjectMonitors owned by any thread and where the owner `filter`
1198 // returns true.
1199 template <typename OwnerFilter>
1200 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) {
1201   monitors_iterate([&](ObjectMonitor* monitor) {
1202     // This function is only called at a safepoint or when the
1203     // target thread is suspended or when the target thread is
1204     // operating on itself. The current closures in use today are
1205     // only interested in an owned ObjectMonitor and ownership
1206     // cannot be dropped under the calling contexts so the
1207     // ObjectMonitor cannot be async deflated.
1208     if (monitor->has_owner() && filter(monitor->owner_raw())) {
1209       assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating");
1210 
1211       closure->do_monitor(monitor);
1212     }
1213   });
1214 }
1215 
1216 // Iterate ObjectMonitors where the owner == thread; this does NOT include
1217 // ObjectMonitors where owner is set to a stack-lock address in thread.
1218 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) {
1219   auto thread_filter = [&](void* owner) { return owner == thread; };
1220   return owned_monitors_iterate_filtered(closure, thread_filter);
1221 }
1222 
1223 // Iterate ObjectMonitors owned by any thread.
1224 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) {
1225   auto all_filter = [&](void* owner) { return true; };
1226   return owned_monitors_iterate_filtered(closure, all_filter);
1227 }
1228 
1229 static bool monitors_used_above_threshold(MonitorList* list) {
1230   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1231     return false;
1232   }
1233   // Start with ceiling based on a per-thread estimate:
1234   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1235   size_t old_ceiling = ceiling;
1236   if (ceiling < list->max()) {
1237     // The max used by the system has exceeded the ceiling so use that:
1238     ceiling = list->max();
1239   }
1240   size_t monitors_used = list->count();
1241   if (monitors_used == 0) {  // empty list is easy
1242     return false;
1243   }
1244   if (NoAsyncDeflationProgressMax != 0 &&
1245       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1246     float remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1247     size_t new_ceiling = ceiling + (ceiling * remainder) + 1;
1248     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1249     log_info(monitorinflation)("Too many deflations without progress; "
1250                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1251                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1252     _no_progress_cnt = 0;
1253     ceiling = new_ceiling;
1254   }
1255 
1256   // Check if our monitor usage is above the threshold:
1257   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1258   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1259     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1260                                ", monitor_usage=" SIZE_FORMAT ", threshold=" INTX_FORMAT,
1261                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1262     return true;
1263   }
1264 
1265   return false;
1266 }
1267 
1268 size_t ObjectSynchronizer::in_use_list_ceiling() {
1269   return _in_use_list_ceiling;
1270 }
1271 
1272 void ObjectSynchronizer::dec_in_use_list_ceiling() {
1273   Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1274 }
1275 
1276 void ObjectSynchronizer::inc_in_use_list_ceiling() {
1277   Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1278 }
1279 
1280 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) {
1281   _in_use_list_ceiling = new_value;
1282 }
1283 
1284 bool ObjectSynchronizer::is_async_deflation_needed() {
1285   if (is_async_deflation_requested()) {
1286     // Async deflation request.
1287     log_info(monitorinflation)("Async deflation needed: explicit request");
1288     return true;
1289   }
1290 
1291   jlong time_since_last = time_since_last_async_deflation_ms();
1292 
1293   if (AsyncDeflationInterval > 0 &&
1294       time_since_last > AsyncDeflationInterval &&
1295       monitors_used_above_threshold(&_in_use_list)) {
1296     // It's been longer than our specified deflate interval and there
1297     // are too many monitors in use. We don't deflate more frequently
1298     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1299     // in order to not swamp the MonitorDeflationThread.
1300     log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold");
1301     return true;
1302   }
1303 
1304   if (GuaranteedAsyncDeflationInterval > 0 &&
1305       time_since_last > GuaranteedAsyncDeflationInterval) {
1306     // It's been longer than our specified guaranteed deflate interval.
1307     // We need to clean up the used monitors even if the threshold is
1308     // not reached, to keep the memory utilization at bay when many threads
1309     // touched many monitors.
1310     log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) "
1311                                "is greater than time since last deflation (" JLONG_FORMAT " ms)",
1312                                GuaranteedAsyncDeflationInterval, time_since_last);
1313 
1314     // If this deflation has no progress, then it should not affect the no-progress
1315     // tracking, otherwise threshold heuristics would think it was triggered, experienced
1316     // no progress, and needs to backoff more aggressively. In this "no progress" case,
1317     // the generic code would bump the no-progress counter, and we compensate for that
1318     // by telling it to skip the update.
1319     //
1320     // If this deflation has progress, then it should let non-progress tracking
1321     // know about this, otherwise the threshold heuristics would kick in, potentially
1322     // experience no-progress due to aggressive cleanup by this deflation, and think
1323     // it is still in no-progress stride. In this "progress" case, the generic code would
1324     // zero the counter, and we allow it to happen.
1325     _no_progress_skip_increment = true;
1326 
1327     return true;
1328   }
1329 
1330   return false;
1331 }
1332 
1333 void ObjectSynchronizer::request_deflate_idle_monitors() {
1334   MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag);
1335   set_is_async_deflation_requested(true);
1336   ml.notify_all();
1337 }
1338 
1339 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() {
1340   JavaThread* current = JavaThread::current();
1341   bool ret_code = false;
1342 
1343   jlong last_time = last_async_deflation_time_ns();
1344 
1345   request_deflate_idle_monitors();
1346 
1347   const int N_CHECKS = 5;
1348   for (int i = 0; i < N_CHECKS; i++) {  // sleep for at most 5 seconds
1349     if (last_async_deflation_time_ns() > last_time) {
1350       log_info(monitorinflation)("Async Deflation happened after %d check(s).", i);
1351       ret_code = true;
1352       break;
1353     }
1354     {
1355       // JavaThread has to honor the blocking protocol.
1356       ThreadBlockInVM tbivm(current);
1357       os::naked_short_sleep(999);  // sleep for almost 1 second
1358     }
1359   }
1360   if (!ret_code) {
1361     log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS);
1362   }
1363 
1364   return ret_code;
1365 }
1366 
1367 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1368   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1369 }
1370 
1371 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1372                                        const oop obj,
1373                                        ObjectSynchronizer::InflateCause cause) {
1374   assert(event != nullptr, "invariant");
1375   event->set_monitorClass(obj->klass());
1376   event->set_address((uintptr_t)(void*)obj);
1377   event->set_cause((u1)cause);
1378   event->commit();
1379 }
1380 
1381 // Fast path code shared by multiple functions
1382 void ObjectSynchronizer::inflate_helper(oop obj) {
1383   markWord mark = obj->mark_acquire();
1384   if (mark.has_monitor()) {
1385     ObjectMonitor* monitor = mark.monitor();
1386     markWord dmw = monitor->header();
1387     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1388     return;
1389   }
1390   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1391 }
1392 
1393 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) {
1394   assert(current == Thread::current(), "must be");
1395   if (LockingMode == LM_LIGHTWEIGHT && current->is_Java_thread()) {
1396     return inflate_impl(JavaThread::cast(current), obj, cause);
1397   }
1398   return inflate_impl(nullptr, obj, cause);
1399 }
1400 
1401 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) {
1402   assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be");
1403   return inflate_impl(thread, obj, cause);
1404 }
1405 
1406 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* inflating_thread, oop object, const InflateCause cause) {
1407   // The JavaThread* inflating_thread parameter is only used by LM_LIGHTWEIGHT and requires
1408   // that the inflating_thread == Thread::current() or is suspended throughout the call by
1409   // some other mechanism.
1410   // Even with LM_LIGHTWEIGHT the thread might be nullptr when called from a non
1411   // JavaThread. (As may still be the case from FastHashCode). However it is only
1412   // important for the correctness of the LM_LIGHTWEIGHT algorithm that the thread
1413   // is set when called from ObjectSynchronizer::enter from the owning thread,
1414   // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit.
1415   EventJavaMonitorInflate event;
1416 
1417   for (;;) {
1418     const markWord mark = object->mark_acquire();
1419 
1420     // The mark can be in one of the following states:
1421     // *  inflated     - Just return if using stack-locking.
1422     //                   If using fast-locking and the ObjectMonitor owner
1423     //                   is anonymous and the inflating_thread owns the
1424     //                   object lock, then we make the inflating_thread
1425     //                   the ObjectMonitor owner and remove the lock from
1426     //                   the inflating_thread's lock stack.
1427     // *  fast-locked  - Coerce it to inflated from fast-locked.
1428     // *  stack-locked - Coerce it to inflated from stack-locked.
1429     // *  INFLATING    - Busy wait for conversion from stack-locked to
1430     //                   inflated.
1431     // *  neutral      - Aggressively inflate the object.
1432 
1433     // CASE: inflated
1434     if (mark.has_monitor()) {
1435       ObjectMonitor* inf = mark.monitor();
1436       markWord dmw = inf->header();
1437       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1438       if (LockingMode == LM_LIGHTWEIGHT && inf->is_owner_anonymous() &&
1439           inflating_thread != nullptr && inflating_thread->lock_stack().contains(object)) {
1440         inf->set_owner_from_anonymous(inflating_thread);
1441         size_t removed = inflating_thread->lock_stack().remove(object);
1442         inf->set_recursions(removed - 1);
1443       }
1444       return inf;
1445     }
1446 
1447     if (LockingMode != LM_LIGHTWEIGHT) {
1448       // New lightweight locking does not use INFLATING.
1449       // CASE: inflation in progress - inflating over a stack-lock.
1450       // Some other thread is converting from stack-locked to inflated.
1451       // Only that thread can complete inflation -- other threads must wait.
1452       // The INFLATING value is transient.
1453       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1454       // We could always eliminate polling by parking the thread on some auxiliary list.
1455       if (mark == markWord::INFLATING()) {
1456         read_stable_mark(object);
1457         continue;
1458       }
1459     }
1460 
1461     // CASE: fast-locked
1462     // Could be fast-locked either by the inflating_thread or by some other thread.
1463     //
1464     // Note that we allocate the ObjectMonitor speculatively, _before_
1465     // attempting to set the object's mark to the new ObjectMonitor. If
1466     // the inflating_thread owns the monitor, then we set the ObjectMonitor's
1467     // owner to the inflating_thread. Otherwise, we set the ObjectMonitor's owner
1468     // to anonymous. If we lose the race to set the object's mark to the
1469     // new ObjectMonitor, then we just delete it and loop around again.
1470     //
1471     LogStreamHandle(Trace, monitorinflation) lsh;
1472     if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1473       ObjectMonitor* monitor = new ObjectMonitor(object);
1474       monitor->set_header(mark.set_unlocked());
1475       bool own = inflating_thread != nullptr && inflating_thread->lock_stack().contains(object);
1476       if (own) {
1477         // Owned by inflating_thread.
1478         monitor->set_owner_from(nullptr, inflating_thread);
1479       } else {
1480         // Owned by somebody else.
1481         monitor->set_owner_anonymous();
1482       }
1483       markWord monitor_mark = markWord::encode(monitor);
1484       markWord old_mark = object->cas_set_mark(monitor_mark, mark);
1485       if (old_mark == mark) {
1486         // Success! Return inflated monitor.
1487         if (own) {
1488           size_t removed = inflating_thread->lock_stack().remove(object);
1489           monitor->set_recursions(removed - 1);
1490         }
1491         // Once the ObjectMonitor is configured and object is associated
1492         // with the ObjectMonitor, it is safe to allow async deflation:
1493         _in_use_list.add(monitor);
1494 
1495         // Hopefully the performance counters are allocated on distinct
1496         // cache lines to avoid false sharing on MP systems ...
1497         OM_PERFDATA_OP(Inflations, inc());
1498         if (log_is_enabled(Trace, monitorinflation)) {
1499           ResourceMark rm;
1500           lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1501                        INTPTR_FORMAT ", type='%s'", p2i(object),
1502                        object->mark().value(), object->klass()->external_name());
1503         }
1504         if (event.should_commit()) {
1505           post_monitor_inflate_event(&event, object, cause);
1506         }
1507         return monitor;
1508       } else {
1509         delete monitor;
1510         continue;  // Interference -- just retry
1511       }
1512     }
1513 
1514     // CASE: stack-locked
1515     // Could be stack-locked either by current or by some other thread.
1516     //
1517     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1518     // to install INFLATING into the mark word.  We originally installed INFLATING,
1519     // allocated the ObjectMonitor, and then finally STed the address of the
1520     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1521     // the interval in which INFLATING appeared in the mark, thus increasing
1522     // the odds of inflation contention. If we lose the race to set INFLATING,
1523     // then we just delete the ObjectMonitor and loop around again.
1524     //
1525     if (LockingMode == LM_LEGACY && mark.has_locker()) {
1526       assert(LockingMode != LM_LIGHTWEIGHT, "cannot happen with new lightweight locking");
1527       ObjectMonitor* m = new ObjectMonitor(object);
1528       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1529       // We do this before the CAS in order to minimize the length of time
1530       // in which INFLATING appears in the mark.
1531 
1532       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1533       if (cmp != mark) {
1534         delete m;
1535         continue;       // Interference -- just retry
1536       }
1537 
1538       // We've successfully installed INFLATING (0) into the mark-word.
1539       // This is the only case where 0 will appear in a mark-word.
1540       // Only the singular thread that successfully swings the mark-word
1541       // to 0 can perform (or more precisely, complete) inflation.
1542       //
1543       // Why do we CAS a 0 into the mark-word instead of just CASing the
1544       // mark-word from the stack-locked value directly to the new inflated state?
1545       // Consider what happens when a thread unlocks a stack-locked object.
1546       // It attempts to use CAS to swing the displaced header value from the
1547       // on-stack BasicLock back into the object header.  Recall also that the
1548       // header value (hash code, etc) can reside in (a) the object header, or
1549       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1550       // header in an ObjectMonitor.  The inflate() routine must copy the header
1551       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1552       // the while preserving the hashCode stability invariants.  If the owner
1553       // decides to release the lock while the value is 0, the unlock will fail
1554       // and control will eventually pass from slow_exit() to inflate.  The owner
1555       // will then spin, waiting for the 0 value to disappear.   Put another way,
1556       // the 0 causes the owner to stall if the owner happens to try to
1557       // drop the lock (restoring the header from the BasicLock to the object)
1558       // while inflation is in-progress.  This protocol avoids races that might
1559       // would otherwise permit hashCode values to change or "flicker" for an object.
1560       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1561       // 0 serves as a "BUSY" inflate-in-progress indicator.
1562 
1563 
1564       // fetch the displaced mark from the owner's stack.
1565       // The owner can't die or unwind past the lock while our INFLATING
1566       // object is in the mark.  Furthermore the owner can't complete
1567       // an unlock on the object, either.
1568       markWord dmw = mark.displaced_mark_helper();
1569       // Catch if the object's header is not neutral (not locked and
1570       // not marked is what we care about here).
1571       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1572 
1573       // Setup monitor fields to proper values -- prepare the monitor
1574       m->set_header(dmw);
1575 
1576       // Optimization: if the mark.locker stack address is associated
1577       // with this thread we could simply set m->_owner = current.
1578       // Note that a thread can inflate an object
1579       // that it has stack-locked -- as might happen in wait() -- directly
1580       // with CAS.  That is, we can avoid the xchg-nullptr .... ST idiom.
1581       m->set_owner_from(nullptr, mark.locker());
1582       // TODO-FIXME: assert BasicLock->dhw != 0.
1583 
1584       // Must preserve store ordering. The monitor state must
1585       // be stable at the time of publishing the monitor address.
1586       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1587       // Release semantics so that above set_object() is seen first.
1588       object->release_set_mark(markWord::encode(m));
1589 
1590       // Once ObjectMonitor is configured and the object is associated
1591       // with the ObjectMonitor, it is safe to allow async deflation:
1592       _in_use_list.add(m);
1593 
1594       // Hopefully the performance counters are allocated on distinct cache lines
1595       // to avoid false sharing on MP systems ...
1596       OM_PERFDATA_OP(Inflations, inc());
1597       if (log_is_enabled(Trace, monitorinflation)) {
1598         ResourceMark rm;
1599         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1600                      INTPTR_FORMAT ", type='%s'", p2i(object),
1601                      object->mark().value(), object->klass()->external_name());
1602       }
1603       if (event.should_commit()) {
1604         post_monitor_inflate_event(&event, object, cause);
1605       }
1606       return m;
1607     }
1608 
1609     // CASE: neutral
1610     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1611     // If we know we're inflating for entry it's better to inflate by swinging a
1612     // pre-locked ObjectMonitor pointer into the object header.   A successful
1613     // CAS inflates the object *and* confers ownership to the inflating thread.
1614     // In the current implementation we use a 2-step mechanism where we CAS()
1615     // to inflate and then CAS() again to try to swing _owner from null to current.
1616     // An inflateTry() method that we could call from enter() would be useful.
1617 
1618     // Catch if the object's header is not neutral (not locked and
1619     // not marked is what we care about here).
1620     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1621     ObjectMonitor* m = new ObjectMonitor(object);
1622     // prepare m for installation - set monitor to initial state
1623     m->set_header(mark);
1624 
1625     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1626       delete m;
1627       m = nullptr;
1628       continue;
1629       // interference - the markword changed - just retry.
1630       // The state-transitions are one-way, so there's no chance of
1631       // live-lock -- "Inflated" is an absorbing state.
1632     }
1633 
1634     // Once the ObjectMonitor is configured and object is associated
1635     // with the ObjectMonitor, it is safe to allow async deflation:
1636     _in_use_list.add(m);
1637 
1638     // Hopefully the performance counters are allocated on distinct
1639     // cache lines to avoid false sharing on MP systems ...
1640     OM_PERFDATA_OP(Inflations, inc());
1641     if (log_is_enabled(Trace, monitorinflation)) {
1642       ResourceMark rm;
1643       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1644                    INTPTR_FORMAT ", type='%s'", p2i(object),
1645                    object->mark().value(), object->klass()->external_name());
1646     }
1647     if (event.should_commit()) {
1648       post_monitor_inflate_event(&event, object, cause);
1649     }
1650     return m;
1651   }
1652 }
1653 
1654 void ObjectSynchronizer::chk_for_block_req(JavaThread* current, const char* op_name,
1655                                            const char* cnt_name, size_t cnt,
1656                                            LogStream* ls, elapsedTimer* timer_p) {
1657   if (!SafepointMechanism::should_process(current)) {
1658     return;
1659   }
1660 
1661   // A safepoint/handshake has started.
1662   if (ls != nullptr) {
1663     timer_p->stop();
1664     ls->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling="
1665                  SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1666                  op_name, cnt_name, cnt, in_use_list_ceiling(),
1667                  _in_use_list.count(), _in_use_list.max());
1668   }
1669 
1670   {
1671     // Honor block request.
1672     ThreadBlockInVM tbivm(current);
1673   }
1674 
1675   if (ls != nullptr) {
1676     ls->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT
1677                  ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name,
1678                  in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1679     timer_p->start();
1680   }
1681 }
1682 
1683 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1684 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1685 //
1686 size_t ObjectSynchronizer::deflate_monitor_list(Thread* current, LogStream* ls,
1687                                                 elapsedTimer* timer_p) {
1688   MonitorList::Iterator iter = _in_use_list.iterator();
1689   size_t deflated_count = 0;
1690 
1691   while (iter.has_next()) {
1692     if (deflated_count >= (size_t)MonitorDeflationMax) {
1693       break;
1694     }
1695     ObjectMonitor* mid = iter.next();
1696     if (mid->deflate_monitor()) {
1697       deflated_count++;
1698     }
1699 
1700     if (current->is_Java_thread()) {
1701       // A JavaThread must check for a safepoint/handshake and honor it.
1702       chk_for_block_req(JavaThread::cast(current), "deflation", "deflated_count",
1703                         deflated_count, ls, timer_p);
1704     }
1705   }
1706 
1707   return deflated_count;
1708 }
1709 
1710 class HandshakeForDeflation : public HandshakeClosure {
1711  public:
1712   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1713 
1714   void do_thread(Thread* thread) {
1715     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1716                                 INTPTR_FORMAT, p2i(thread));
1717   }
1718 };
1719 
1720 class VM_RendezvousGCThreads : public VM_Operation {
1721 public:
1722   bool evaluate_at_safepoint() const override { return false; }
1723   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1724   void doit() override {
1725     Universe::heap()->safepoint_synchronize_begin();
1726     Universe::heap()->safepoint_synchronize_end();
1727   };
1728 };
1729 
1730 static size_t delete_monitors(Thread* current, GrowableArray<ObjectMonitor*>* delete_list,
1731                               LogStream* ls, elapsedTimer* timer_p) {
1732   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1733   size_t deleted_count = 0;
1734   for (ObjectMonitor* monitor: *delete_list) {
1735     delete monitor;
1736     deleted_count++;
1737     if (current->is_Java_thread()) {
1738       // A JavaThread must check for a safepoint/handshake and honor it.
1739       ObjectSynchronizer::chk_for_block_req(JavaThread::cast(current), "deletion", "deleted_count",
1740                                             deleted_count, ls, timer_p);
1741     }
1742   }
1743   return deleted_count;
1744 }
1745 
1746 // This function is called by the MonitorDeflationThread to deflate
1747 // ObjectMonitors.
1748 size_t ObjectSynchronizer::deflate_idle_monitors() {
1749   Thread* current = Thread::current();
1750   if (current->is_Java_thread()) {
1751     // The async deflation request has been processed.
1752     _last_async_deflation_time_ns = os::javaTimeNanos();
1753     set_is_async_deflation_requested(false);
1754   }
1755 
1756   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1757   LogStreamHandle(Info, monitorinflation) lsh_info;
1758   LogStream* ls = nullptr;
1759   if (log_is_enabled(Debug, monitorinflation)) {
1760     ls = &lsh_debug;
1761   } else if (log_is_enabled(Info, monitorinflation)) {
1762     ls = &lsh_info;
1763   }
1764 
1765   elapsedTimer timer;
1766   if (ls != nullptr) {
1767     ls->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1768                  in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1769     timer.start();
1770   }
1771 
1772   // Deflate some idle ObjectMonitors.
1773   size_t deflated_count = deflate_monitor_list(current, ls, &timer);
1774   size_t unlinked_count = 0;
1775   size_t deleted_count = 0;
1776   if (deflated_count > 0) {
1777     // There are ObjectMonitors that have been deflated.
1778 
1779     // Unlink deflated ObjectMonitors from the in-use list.
1780     ResourceMark rm;
1781     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1782     unlinked_count = _in_use_list.unlink_deflated(current, ls, &timer, deflated_count, &delete_list);
1783     if (current->is_monitor_deflation_thread()) {
1784       if (ls != nullptr) {
1785         timer.stop();
1786         ls->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT
1787                      ", in_use_list stats: ceiling=" SIZE_FORMAT ", count="
1788                      SIZE_FORMAT ", max=" SIZE_FORMAT,
1789                      unlinked_count, in_use_list_ceiling(),
1790                      _in_use_list.count(), _in_use_list.max());
1791       }
1792 
1793       // A JavaThread needs to handshake in order to safely free the
1794       // ObjectMonitors that were deflated in this cycle.
1795       HandshakeForDeflation hfd_hc;
1796       Handshake::execute(&hfd_hc);
1797       // Also, we sync and desync GC threads around the handshake, so that they can
1798       // safely read the mark-word and look-through to the object-monitor, without
1799       // being afraid that the object-monitor is going away.
1800       VM_RendezvousGCThreads sync_gc;
1801       VMThread::execute(&sync_gc);
1802 
1803       if (ls != nullptr) {
1804         ls->print_cr("after handshaking: in_use_list stats: ceiling="
1805                      SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1806                      in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1807         timer.start();
1808       }
1809     } else {
1810       // This is not a monitor deflation thread.
1811       // No handshake or rendezvous is needed when we are already at safepoint.
1812       assert_at_safepoint();
1813     }
1814 
1815     // After the handshake, safely free the ObjectMonitors that were
1816     // deflated and unlinked in this cycle.
1817     deleted_count = delete_monitors(current, &delete_list, ls, &timer);
1818     assert(unlinked_count == deleted_count, "must be");
1819   }
1820 
1821   if (ls != nullptr) {
1822     timer.stop();
1823     if (deflated_count != 0 || unlinked_count != 0 || log_is_enabled(Debug, monitorinflation)) {
1824       ls->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs",
1825                    deflated_count, unlinked_count, timer.seconds());
1826     }
1827     ls->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1828                  in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1829   }
1830 
1831   OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count()));
1832   OM_PERFDATA_OP(Deflations, inc(deflated_count));
1833 
1834   GVars.stw_random = os::random();
1835 
1836   if (deflated_count != 0) {
1837     _no_progress_cnt = 0;
1838   } else if (_no_progress_skip_increment) {
1839     _no_progress_skip_increment = false;
1840   } else {
1841     _no_progress_cnt++;
1842   }
1843 
1844   return deflated_count;
1845 }
1846 
1847 // Monitor cleanup on JavaThread::exit
1848 
1849 // Iterate through monitor cache and attempt to release thread's monitors
1850 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1851  private:
1852   JavaThread* _thread;
1853 
1854  public:
1855   ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {}
1856   void do_monitor(ObjectMonitor* mid) {
1857     intx rec = mid->complete_exit(_thread);
1858     _thread->dec_held_monitor_count(rec + 1);
1859   }
1860 };
1861 
1862 // Release all inflated monitors owned by current thread.  Lightweight monitors are
1863 // ignored.  This is meant to be called during JNI thread detach which assumes
1864 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1865 // Scanning the extant monitor list can be time consuming.
1866 // A simple optimization is to add a per-thread flag that indicates a thread
1867 // called jni_monitorenter() during its lifetime.
1868 //
1869 // Instead of NoSafepointVerifier it might be cheaper to
1870 // use an idiom of the form:
1871 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1872 //   <code that must not run at safepoint>
1873 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1874 // Since the tests are extremely cheap we could leave them enabled
1875 // for normal product builds.
1876 
1877 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) {
1878   assert(current == JavaThread::current(), "must be current Java thread");
1879   NoSafepointVerifier nsv;
1880   ReleaseJavaMonitorsClosure rjmc(current);
1881   ObjectSynchronizer::owned_monitors_iterate(&rjmc, current);
1882   assert(!current->has_pending_exception(), "Should not be possible");
1883   current->clear_pending_exception();
1884   assert(current->held_monitor_count() == 0, "Should not be possible");
1885   // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count.
1886   current->clear_jni_monitor_count();
1887 }
1888 
1889 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1890   switch (cause) {
1891     case inflate_cause_vm_internal:    return "VM Internal";
1892     case inflate_cause_monitor_enter:  return "Monitor Enter";
1893     case inflate_cause_wait:           return "Monitor Wait";
1894     case inflate_cause_notify:         return "Monitor Notify";
1895     case inflate_cause_hash_code:      return "Monitor Hash Code";
1896     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1897     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1898     default:
1899       ShouldNotReachHere();
1900   }
1901   return "Unknown";
1902 }
1903 
1904 //------------------------------------------------------------------------------
1905 // Debugging code
1906 
1907 u_char* ObjectSynchronizer::get_gvars_addr() {
1908   return (u_char*)&GVars;
1909 }
1910 
1911 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1912   return (u_char*)&GVars.hc_sequence;
1913 }
1914 
1915 size_t ObjectSynchronizer::get_gvars_size() {
1916   return sizeof(SharedGlobals);
1917 }
1918 
1919 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1920   return (u_char*)&GVars.stw_random;
1921 }
1922 
1923 // Do the final audit and print of ObjectMonitor stats; must be done
1924 // by the VMThread at VM exit time.
1925 void ObjectSynchronizer::do_final_audit_and_print_stats() {
1926   assert(Thread::current()->is_VM_thread(), "sanity check");
1927 
1928   if (is_final_audit()) {  // Only do the audit once.
1929     return;
1930   }
1931   set_is_final_audit();
1932   log_info(monitorinflation)("Starting the final audit.");
1933 
1934   if (log_is_enabled(Info, monitorinflation)) {
1935     // The other audit_and_print_stats() call is done at the Debug
1936     // level at a safepoint in SafepointSynchronize::do_cleanup_tasks.
1937     audit_and_print_stats(true /* on_exit */);
1938   }
1939 }
1940 
1941 // This function can be called at a safepoint or it can be called when
1942 // we are trying to exit the VM. When we are trying to exit the VM, the
1943 // list walker functions can run in parallel with the other list
1944 // operations so spin-locking is used for safety.
1945 //
1946 // Calls to this function can be added in various places as a debugging
1947 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor
1948 // details logged at the Info level and 'false' for the 'on_exit'
1949 // parameter to have in-use monitor details logged at the Trace level.
1950 //
1951 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
1952   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
1953 
1954   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1955   LogStreamHandle(Info, monitorinflation) lsh_info;
1956   LogStreamHandle(Trace, monitorinflation) lsh_trace;
1957   LogStream* ls = nullptr;
1958   if (log_is_enabled(Trace, monitorinflation)) {
1959     ls = &lsh_trace;
1960   } else if (log_is_enabled(Debug, monitorinflation)) {
1961     ls = &lsh_debug;
1962   } else if (log_is_enabled(Info, monitorinflation)) {
1963     ls = &lsh_info;
1964   }
1965   assert(ls != nullptr, "sanity check");
1966 
1967   int error_cnt = 0;
1968 
1969   ls->print_cr("Checking in_use_list:");
1970   chk_in_use_list(ls, &error_cnt);
1971 
1972   if (error_cnt == 0) {
1973     ls->print_cr("No errors found in in_use_list checks.");
1974   } else {
1975     log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt);
1976   }
1977 
1978   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
1979       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
1980     // When exiting this log output is at the Info level. When called
1981     // at a safepoint, this log output is at the Trace level since
1982     // there can be a lot of it.
1983     log_in_use_monitor_details(ls, !on_exit /* log_all */);
1984   }
1985 
1986   ls->flush();
1987 
1988   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1989 }
1990 
1991 // Check the in_use_list; log the results of the checks.
1992 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) {
1993   size_t l_in_use_count = _in_use_list.count();
1994   size_t l_in_use_max = _in_use_list.max();
1995   out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count,
1996                 l_in_use_max);
1997 
1998   size_t ck_in_use_count = 0;
1999   MonitorList::Iterator iter = _in_use_list.iterator();
2000   while (iter.has_next()) {
2001     ObjectMonitor* mid = iter.next();
2002     chk_in_use_entry(mid, out, error_cnt_p);
2003     ck_in_use_count++;
2004   }
2005 
2006   if (l_in_use_count == ck_in_use_count) {
2007     out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count="
2008                   SIZE_FORMAT, l_in_use_count, ck_in_use_count);
2009   } else {
2010     out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to "
2011                   "ck_in_use_count=" SIZE_FORMAT, l_in_use_count,
2012                   ck_in_use_count);
2013   }
2014 
2015   size_t ck_in_use_max = _in_use_list.max();
2016   if (l_in_use_max == ck_in_use_max) {
2017     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
2018                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
2019   } else {
2020     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
2021                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
2022   }
2023 }
2024 
2025 // Check an in-use monitor entry; log any errors.
2026 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
2027                                           int* error_cnt_p) {
2028   if (n->owner_is_DEFLATER_MARKER()) {
2029     // This could happen when monitor deflation blocks for a safepoint.
2030     return;
2031   }
2032 
2033   if (n->header().value() == 0) {
2034     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
2035                   "have non-null _header field.", p2i(n));
2036     *error_cnt_p = *error_cnt_p + 1;
2037   }
2038   const oop obj = n->object_peek();
2039   if (obj != nullptr) {
2040     const markWord mark = obj->mark();
2041     if (!mark.has_monitor()) {
2042       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2043                     "object does not think it has a monitor: obj="
2044                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2045                     p2i(obj), mark.value());
2046       *error_cnt_p = *error_cnt_p + 1;
2047     }
2048     ObjectMonitor* const obj_mon = mark.monitor();
2049     if (n != obj_mon) {
2050       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2051                     "object does not refer to the same monitor: obj="
2052                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2053                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2054       *error_cnt_p = *error_cnt_p + 1;
2055     }
2056   }
2057 }
2058 
2059 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
2060 // flags indicate why the entry is in-use, 'object' and 'object type'
2061 // indicate the associated object and its type.
2062 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
2063   if (_in_use_list.count() > 0) {
2064     stringStream ss;
2065     out->print_cr("In-use monitor info:");
2066     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2067     out->print_cr("%18s  %s  %18s  %18s",
2068                   "monitor", "BHL", "object", "object type");
2069     out->print_cr("==================  ===  ==================  ==================");
2070 
2071     auto is_interesting = [&](ObjectMonitor* monitor) {
2072       return log_all || monitor->has_owner() || monitor->is_busy();
2073     };
2074 
2075     monitors_iterate([&](ObjectMonitor* monitor) {
2076       if (is_interesting(monitor)) {
2077         const oop obj = monitor->object_peek();
2078         const markWord mark = monitor->header();
2079         ResourceMark rm;
2080         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
2081                    monitor->is_busy(), mark.hash() != 0, monitor->owner() != nullptr,
2082                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
2083         if (monitor->is_busy()) {
2084           out->print(" (%s)", monitor->is_busy_to_string(&ss));
2085           ss.reset();
2086         }
2087         out->cr();
2088       }
2089     });
2090   }
2091 
2092   out->flush();
2093 }