1 //
    2 // Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
    3 // Copyright (c) 2014, 2024, Red Hat, Inc. All rights reserved.
    4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    5 //
    6 // This code is free software; you can redistribute it and/or modify it
    7 // under the terms of the GNU General Public License version 2 only, as
    8 // published by the Free Software Foundation.
    9 //
   10 // This code is distributed in the hope that it will be useful, but WITHOUT
   11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   13 // version 2 for more details (a copy is included in the LICENSE file that
   14 // accompanied this code).
   15 //
   16 // You should have received a copy of the GNU General Public License version
   17 // 2 along with this work; if not, write to the Free Software Foundation,
   18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   19 //
   20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   21 // or visit www.oracle.com if you need additional information or have any
   22 // questions.
   23 //
   24 //
   25 
   26 // AArch64 Architecture Description File
   27 
   28 //----------REGISTER DEFINITION BLOCK------------------------------------------
   29 // This information is used by the matcher and the register allocator to
   30 // describe individual registers and classes of registers within the target
   31 // architecture.
   32 
   33 register %{
   34 //----------Architecture Description Register Definitions----------------------
   35 // General Registers
   36 // "reg_def"  name ( register save type, C convention save type,
   37 //                   ideal register type, encoding );
   38 // Register Save Types:
   39 //
   40 // NS  = No-Save:       The register allocator assumes that these registers
   41 //                      can be used without saving upon entry to the method, &
   42 //                      that they do not need to be saved at call sites.
   43 //
   44 // SOC = Save-On-Call:  The register allocator assumes that these registers
   45 //                      can be used without saving upon entry to the method,
   46 //                      but that they must be saved at call sites.
   47 //
   48 // SOE = Save-On-Entry: The register allocator assumes that these registers
   49 //                      must be saved before using them upon entry to the
   50 //                      method, but they do not need to be saved at call
   51 //                      sites.
   52 //
   53 // AS  = Always-Save:   The register allocator assumes that these registers
   54 //                      must be saved before using them upon entry to the
   55 //                      method, & that they must be saved at call sites.
   56 //
   57 // Ideal Register Type is used to determine how to save & restore a
   58 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
   59 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
   60 //
   61 // The encoding number is the actual bit-pattern placed into the opcodes.
   62 
   63 // We must define the 64 bit int registers in two 32 bit halves, the
   64 // real lower register and a virtual upper half register. upper halves
   65 // are used by the register allocator but are not actually supplied as
   66 // operands to memory ops.
   67 //
   68 // follow the C1 compiler in making registers
   69 //
   70 //   r0-r7,r10-r26 volatile (caller save)
   71 //   r27-r32 system (no save, no allocate)
   72 //   r8-r9 non-allocatable (so we can use them as scratch regs)
   73 //
   74 // as regards Java usage. we don't use any callee save registers
   75 // because this makes it difficult to de-optimise a frame (see comment
   76 // in x86 implementation of Deoptimization::unwind_callee_save_values)
   77 //
   78 
   79 // General Registers
   80 
   81 reg_def R0      ( SOC, SOC, Op_RegI,  0, r0->as_VMReg()         );
   82 reg_def R0_H    ( SOC, SOC, Op_RegI,  0, r0->as_VMReg()->next() );
   83 reg_def R1      ( SOC, SOC, Op_RegI,  1, r1->as_VMReg()         );
   84 reg_def R1_H    ( SOC, SOC, Op_RegI,  1, r1->as_VMReg()->next() );
   85 reg_def R2      ( SOC, SOC, Op_RegI,  2, r2->as_VMReg()         );
   86 reg_def R2_H    ( SOC, SOC, Op_RegI,  2, r2->as_VMReg()->next() );
   87 reg_def R3      ( SOC, SOC, Op_RegI,  3, r3->as_VMReg()         );
   88 reg_def R3_H    ( SOC, SOC, Op_RegI,  3, r3->as_VMReg()->next() );
   89 reg_def R4      ( SOC, SOC, Op_RegI,  4, r4->as_VMReg()         );
   90 reg_def R4_H    ( SOC, SOC, Op_RegI,  4, r4->as_VMReg()->next() );
   91 reg_def R5      ( SOC, SOC, Op_RegI,  5, r5->as_VMReg()         );
   92 reg_def R5_H    ( SOC, SOC, Op_RegI,  5, r5->as_VMReg()->next() );
   93 reg_def R6      ( SOC, SOC, Op_RegI,  6, r6->as_VMReg()         );
   94 reg_def R6_H    ( SOC, SOC, Op_RegI,  6, r6->as_VMReg()->next() );
   95 reg_def R7      ( SOC, SOC, Op_RegI,  7, r7->as_VMReg()         );
   96 reg_def R7_H    ( SOC, SOC, Op_RegI,  7, r7->as_VMReg()->next() );
   97 reg_def R8      ( NS,  SOC, Op_RegI,  8, r8->as_VMReg()         ); // rscratch1, non-allocatable
   98 reg_def R8_H    ( NS,  SOC, Op_RegI,  8, r8->as_VMReg()->next() );
   99 reg_def R9      ( NS,  SOC, Op_RegI,  9, r9->as_VMReg()         ); // rscratch2, non-allocatable
  100 reg_def R9_H    ( NS,  SOC, Op_RegI,  9, r9->as_VMReg()->next() );
  101 reg_def R10     ( SOC, SOC, Op_RegI, 10, r10->as_VMReg()        );
  102 reg_def R10_H   ( SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
  103 reg_def R11     ( SOC, SOC, Op_RegI, 11, r11->as_VMReg()        );
  104 reg_def R11_H   ( SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
  105 reg_def R12     ( SOC, SOC, Op_RegI, 12, r12->as_VMReg()        );
  106 reg_def R12_H   ( SOC, SOC, Op_RegI, 12, r12->as_VMReg()->next());
  107 reg_def R13     ( SOC, SOC, Op_RegI, 13, r13->as_VMReg()        );
  108 reg_def R13_H   ( SOC, SOC, Op_RegI, 13, r13->as_VMReg()->next());
  109 reg_def R14     ( SOC, SOC, Op_RegI, 14, r14->as_VMReg()        );
  110 reg_def R14_H   ( SOC, SOC, Op_RegI, 14, r14->as_VMReg()->next());
  111 reg_def R15     ( SOC, SOC, Op_RegI, 15, r15->as_VMReg()        );
  112 reg_def R15_H   ( SOC, SOC, Op_RegI, 15, r15->as_VMReg()->next());
  113 reg_def R16     ( SOC, SOC, Op_RegI, 16, r16->as_VMReg()        );
  114 reg_def R16_H   ( SOC, SOC, Op_RegI, 16, r16->as_VMReg()->next());
  115 reg_def R17     ( SOC, SOC, Op_RegI, 17, r17->as_VMReg()        );
  116 reg_def R17_H   ( SOC, SOC, Op_RegI, 17, r17->as_VMReg()->next());
  117 reg_def R18     ( SOC, SOC, Op_RegI, 18, r18_tls->as_VMReg()        );
  118 reg_def R18_H   ( SOC, SOC, Op_RegI, 18, r18_tls->as_VMReg()->next());
  119 reg_def R19     ( SOC, SOE, Op_RegI, 19, r19->as_VMReg()        );
  120 reg_def R19_H   ( SOC, SOE, Op_RegI, 19, r19->as_VMReg()->next());
  121 reg_def R20     ( SOC, SOE, Op_RegI, 20, r20->as_VMReg()        ); // caller esp
  122 reg_def R20_H   ( SOC, SOE, Op_RegI, 20, r20->as_VMReg()->next());
  123 reg_def R21     ( SOC, SOE, Op_RegI, 21, r21->as_VMReg()        );
  124 reg_def R21_H   ( SOC, SOE, Op_RegI, 21, r21->as_VMReg()->next());
  125 reg_def R22     ( SOC, SOE, Op_RegI, 22, r22->as_VMReg()        );
  126 reg_def R22_H   ( SOC, SOE, Op_RegI, 22, r22->as_VMReg()->next());
  127 reg_def R23     ( SOC, SOE, Op_RegI, 23, r23->as_VMReg()        );
  128 reg_def R23_H   ( SOC, SOE, Op_RegI, 23, r23->as_VMReg()->next());
  129 reg_def R24     ( SOC, SOE, Op_RegI, 24, r24->as_VMReg()        );
  130 reg_def R24_H   ( SOC, SOE, Op_RegI, 24, r24->as_VMReg()->next());
  131 reg_def R25     ( SOC, SOE, Op_RegI, 25, r25->as_VMReg()        );
  132 reg_def R25_H   ( SOC, SOE, Op_RegI, 25, r25->as_VMReg()->next());
  133 reg_def R26     ( SOC, SOE, Op_RegI, 26, r26->as_VMReg()        );
  134 reg_def R26_H   ( SOC, SOE, Op_RegI, 26, r26->as_VMReg()->next());
  135 reg_def R27     ( SOC, SOE, Op_RegI, 27, r27->as_VMReg()        ); // heapbase
  136 reg_def R27_H   ( SOC, SOE, Op_RegI, 27, r27->as_VMReg()->next());
  137 reg_def R28     (  NS, SOE, Op_RegI, 28, r28->as_VMReg()        ); // thread
  138 reg_def R28_H   (  NS, SOE, Op_RegI, 28, r28->as_VMReg()->next());
  139 reg_def R29     (  NS,  NS, Op_RegI, 29, r29->as_VMReg()        ); // fp
  140 reg_def R29_H   (  NS,  NS, Op_RegI, 29, r29->as_VMReg()->next());
  141 reg_def R30     (  NS,  NS, Op_RegI, 30, r30->as_VMReg()        ); // lr
  142 reg_def R30_H   (  NS,  NS, Op_RegI, 30, r30->as_VMReg()->next());
  143 reg_def R31     (  NS,  NS, Op_RegI, 31, r31_sp->as_VMReg()     ); // sp
  144 reg_def R31_H   (  NS,  NS, Op_RegI, 31, r31_sp->as_VMReg()->next());
  145 
  146 // ----------------------------
  147 // Float/Double/Vector Registers
  148 // ----------------------------
  149 
  150 // Double Registers
  151 
  152 // The rules of ADL require that double registers be defined in pairs.
  153 // Each pair must be two 32-bit values, but not necessarily a pair of
  154 // single float registers. In each pair, ADLC-assigned register numbers
  155 // must be adjacent, with the lower number even. Finally, when the
  156 // CPU stores such a register pair to memory, the word associated with
  157 // the lower ADLC-assigned number must be stored to the lower address.
  158 
  159 // AArch64 has 32 floating-point registers. Each can store a vector of
  160 // single or double precision floating-point values up to 8 * 32
  161 // floats, 4 * 64 bit floats or 2 * 128 bit floats.  We currently only
  162 // use the first float or double element of the vector.
  163 
  164 // for Java use float registers v0-v15 are always save on call whereas
  165 // the platform ABI treats v8-v15 as callee save). float registers
  166 // v16-v31 are SOC as per the platform spec
  167 
  168 // For SVE vector registers, we simply extend vector register size to 8
  169 // 'logical' slots. This is nominally 256 bits but it actually covers
  170 // all possible 'physical' SVE vector register lengths from 128 ~ 2048
  171 // bits. The 'physical' SVE vector register length is detected during
  172 // startup, so the register allocator is able to identify the correct
  173 // number of bytes needed for an SVE spill/unspill.
  174 // Note that a vector register with 4 slots denotes a 128-bit NEON
  175 // register allowing it to be distinguished from the corresponding SVE
  176 // vector register when the SVE vector length is 128 bits.
  177 
  178   reg_def V0   ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()          );
  179   reg_def V0_H ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next()  );
  180   reg_def V0_J ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(2) );
  181   reg_def V0_K ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(3) );
  182 
  183   reg_def V1   ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()          );
  184   reg_def V1_H ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next()  );
  185   reg_def V1_J ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(2) );
  186   reg_def V1_K ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(3) );
  187 
  188   reg_def V2   ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()          );
  189   reg_def V2_H ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next()  );
  190   reg_def V2_J ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(2) );
  191   reg_def V2_K ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(3) );
  192 
  193   reg_def V3   ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()          );
  194   reg_def V3_H ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next()  );
  195   reg_def V3_J ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(2) );
  196   reg_def V3_K ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(3) );
  197 
  198   reg_def V4   ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()          );
  199   reg_def V4_H ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next()  );
  200   reg_def V4_J ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(2) );
  201   reg_def V4_K ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(3) );
  202 
  203   reg_def V5   ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()          );
  204   reg_def V5_H ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next()  );
  205   reg_def V5_J ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(2) );
  206   reg_def V5_K ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(3) );
  207 
  208   reg_def V6   ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()          );
  209   reg_def V6_H ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next()  );
  210   reg_def V6_J ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(2) );
  211   reg_def V6_K ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(3) );
  212 
  213   reg_def V7   ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()          );
  214   reg_def V7_H ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next()  );
  215   reg_def V7_J ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(2) );
  216   reg_def V7_K ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(3) );
  217 
  218   reg_def V8   ( SOC, SOE, Op_RegF, 8, v8->as_VMReg()          );
  219   reg_def V8_H ( SOC, SOE, Op_RegF, 8, v8->as_VMReg()->next()  );
  220   reg_def V8_J ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(2) );
  221   reg_def V8_K ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(3) );
  222 
  223   reg_def V9   ( SOC, SOE, Op_RegF, 9, v9->as_VMReg()          );
  224   reg_def V9_H ( SOC, SOE, Op_RegF, 9, v9->as_VMReg()->next()  );
  225   reg_def V9_J ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(2) );
  226   reg_def V9_K ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(3) );
  227 
  228   reg_def V10   ( SOC, SOE, Op_RegF, 10, v10->as_VMReg()          );
  229   reg_def V10_H ( SOC, SOE, Op_RegF, 10, v10->as_VMReg()->next()  );
  230   reg_def V10_J ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(2) );
  231   reg_def V10_K ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(3) );
  232 
  233   reg_def V11   ( SOC, SOE, Op_RegF, 11, v11->as_VMReg()          );
  234   reg_def V11_H ( SOC, SOE, Op_RegF, 11, v11->as_VMReg()->next()  );
  235   reg_def V11_J ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(2) );
  236   reg_def V11_K ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(3) );
  237 
  238   reg_def V12   ( SOC, SOE, Op_RegF, 12, v12->as_VMReg()          );
  239   reg_def V12_H ( SOC, SOE, Op_RegF, 12, v12->as_VMReg()->next()  );
  240   reg_def V12_J ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(2) );
  241   reg_def V12_K ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(3) );
  242 
  243   reg_def V13   ( SOC, SOE, Op_RegF, 13, v13->as_VMReg()          );
  244   reg_def V13_H ( SOC, SOE, Op_RegF, 13, v13->as_VMReg()->next()  );
  245   reg_def V13_J ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(2) );
  246   reg_def V13_K ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(3) );
  247 
  248   reg_def V14   ( SOC, SOE, Op_RegF, 14, v14->as_VMReg()          );
  249   reg_def V14_H ( SOC, SOE, Op_RegF, 14, v14->as_VMReg()->next()  );
  250   reg_def V14_J ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(2) );
  251   reg_def V14_K ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(3) );
  252 
  253   reg_def V15   ( SOC, SOE, Op_RegF, 15, v15->as_VMReg()          );
  254   reg_def V15_H ( SOC, SOE, Op_RegF, 15, v15->as_VMReg()->next()  );
  255   reg_def V15_J ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(2) );
  256   reg_def V15_K ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(3) );
  257 
  258   reg_def V16   ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()          );
  259   reg_def V16_H ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next()  );
  260   reg_def V16_J ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(2) );
  261   reg_def V16_K ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(3) );
  262 
  263   reg_def V17   ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()          );
  264   reg_def V17_H ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next()  );
  265   reg_def V17_J ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(2) );
  266   reg_def V17_K ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(3) );
  267 
  268   reg_def V18   ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()          );
  269   reg_def V18_H ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next()  );
  270   reg_def V18_J ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(2) );
  271   reg_def V18_K ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(3) );
  272 
  273   reg_def V19   ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()          );
  274   reg_def V19_H ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next()  );
  275   reg_def V19_J ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(2) );
  276   reg_def V19_K ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(3) );
  277 
  278   reg_def V20   ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()          );
  279   reg_def V20_H ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next()  );
  280   reg_def V20_J ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(2) );
  281   reg_def V20_K ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(3) );
  282 
  283   reg_def V21   ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()          );
  284   reg_def V21_H ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next()  );
  285   reg_def V21_J ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(2) );
  286   reg_def V21_K ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(3) );
  287 
  288   reg_def V22   ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()          );
  289   reg_def V22_H ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next()  );
  290   reg_def V22_J ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(2) );
  291   reg_def V22_K ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(3) );
  292 
  293   reg_def V23   ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()          );
  294   reg_def V23_H ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next()  );
  295   reg_def V23_J ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(2) );
  296   reg_def V23_K ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(3) );
  297 
  298   reg_def V24   ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()          );
  299   reg_def V24_H ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next()  );
  300   reg_def V24_J ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(2) );
  301   reg_def V24_K ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(3) );
  302 
  303   reg_def V25   ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()          );
  304   reg_def V25_H ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next()  );
  305   reg_def V25_J ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(2) );
  306   reg_def V25_K ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(3) );
  307 
  308   reg_def V26   ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()          );
  309   reg_def V26_H ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next()  );
  310   reg_def V26_J ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(2) );
  311   reg_def V26_K ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(3) );
  312 
  313   reg_def V27   ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()          );
  314   reg_def V27_H ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next()  );
  315   reg_def V27_J ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(2) );
  316   reg_def V27_K ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(3) );
  317 
  318   reg_def V28   ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()          );
  319   reg_def V28_H ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next()  );
  320   reg_def V28_J ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(2) );
  321   reg_def V28_K ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(3) );
  322 
  323   reg_def V29   ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()          );
  324   reg_def V29_H ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next()  );
  325   reg_def V29_J ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(2) );
  326   reg_def V29_K ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(3) );
  327 
  328   reg_def V30   ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()          );
  329   reg_def V30_H ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next()  );
  330   reg_def V30_J ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(2) );
  331   reg_def V30_K ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(3) );
  332 
  333   reg_def V31   ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()          );
  334   reg_def V31_H ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next()  );
  335   reg_def V31_J ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(2) );
  336   reg_def V31_K ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(3) );
  337 
  338 // ----------------------------
  339 // SVE Predicate Registers
  340 // ----------------------------
  341   reg_def P0 (SOC, SOC, Op_RegVectMask, 0, p0->as_VMReg());
  342   reg_def P1 (SOC, SOC, Op_RegVectMask, 1, p1->as_VMReg());
  343   reg_def P2 (SOC, SOC, Op_RegVectMask, 2, p2->as_VMReg());
  344   reg_def P3 (SOC, SOC, Op_RegVectMask, 3, p3->as_VMReg());
  345   reg_def P4 (SOC, SOC, Op_RegVectMask, 4, p4->as_VMReg());
  346   reg_def P5 (SOC, SOC, Op_RegVectMask, 5, p5->as_VMReg());
  347   reg_def P6 (SOC, SOC, Op_RegVectMask, 6, p6->as_VMReg());
  348   reg_def P7 (SOC, SOC, Op_RegVectMask, 7, p7->as_VMReg());
  349   reg_def P8 (SOC, SOC, Op_RegVectMask, 8, p8->as_VMReg());
  350   reg_def P9 (SOC, SOC, Op_RegVectMask, 9, p9->as_VMReg());
  351   reg_def P10 (SOC, SOC, Op_RegVectMask, 10, p10->as_VMReg());
  352   reg_def P11 (SOC, SOC, Op_RegVectMask, 11, p11->as_VMReg());
  353   reg_def P12 (SOC, SOC, Op_RegVectMask, 12, p12->as_VMReg());
  354   reg_def P13 (SOC, SOC, Op_RegVectMask, 13, p13->as_VMReg());
  355   reg_def P14 (SOC, SOC, Op_RegVectMask, 14, p14->as_VMReg());
  356   reg_def P15 (SOC, SOC, Op_RegVectMask, 15, p15->as_VMReg());
  357 
  358 // ----------------------------
  359 // Special Registers
  360 // ----------------------------
  361 
  362 // the AArch64 CSPR status flag register is not directly accessible as
  363 // instruction operand. the FPSR status flag register is a system
  364 // register which can be written/read using MSR/MRS but again does not
  365 // appear as an operand (a code identifying the FSPR occurs as an
  366 // immediate value in the instruction).
  367 
  368 reg_def RFLAGS(SOC, SOC, 0, 32, VMRegImpl::Bad());
  369 
  370 // Specify priority of register selection within phases of register
  371 // allocation.  Highest priority is first.  A useful heuristic is to
  372 // give registers a low priority when they are required by machine
  373 // instructions, like EAX and EDX on I486, and choose no-save registers
  374 // before save-on-call, & save-on-call before save-on-entry.  Registers
  375 // which participate in fixed calling sequences should come last.
  376 // Registers which are used as pairs must fall on an even boundary.
  377 
  378 alloc_class chunk0(
  379     // volatiles
  380     R10, R10_H,
  381     R11, R11_H,
  382     R12, R12_H,
  383     R13, R13_H,
  384     R14, R14_H,
  385     R15, R15_H,
  386     R16, R16_H,
  387     R17, R17_H,
  388     R18, R18_H,
  389 
  390     // arg registers
  391     R0, R0_H,
  392     R1, R1_H,
  393     R2, R2_H,
  394     R3, R3_H,
  395     R4, R4_H,
  396     R5, R5_H,
  397     R6, R6_H,
  398     R7, R7_H,
  399 
  400     // non-volatiles
  401     R19, R19_H,
  402     R20, R20_H,
  403     R21, R21_H,
  404     R22, R22_H,
  405     R23, R23_H,
  406     R24, R24_H,
  407     R25, R25_H,
  408     R26, R26_H,
  409 
  410     // non-allocatable registers
  411 
  412     R27, R27_H, // heapbase
  413     R28, R28_H, // thread
  414     R29, R29_H, // fp
  415     R30, R30_H, // lr
  416     R31, R31_H, // sp
  417     R8, R8_H,   // rscratch1
  418     R9, R9_H,   // rscratch2
  419 );
  420 
  421 alloc_class chunk1(
  422 
  423     // no save
  424     V16, V16_H, V16_J, V16_K,
  425     V17, V17_H, V17_J, V17_K,
  426     V18, V18_H, V18_J, V18_K,
  427     V19, V19_H, V19_J, V19_K,
  428     V20, V20_H, V20_J, V20_K,
  429     V21, V21_H, V21_J, V21_K,
  430     V22, V22_H, V22_J, V22_K,
  431     V23, V23_H, V23_J, V23_K,
  432     V24, V24_H, V24_J, V24_K,
  433     V25, V25_H, V25_J, V25_K,
  434     V26, V26_H, V26_J, V26_K,
  435     V27, V27_H, V27_J, V27_K,
  436     V28, V28_H, V28_J, V28_K,
  437     V29, V29_H, V29_J, V29_K,
  438     V30, V30_H, V30_J, V30_K,
  439     V31, V31_H, V31_J, V31_K,
  440 
  441     // arg registers
  442     V0, V0_H, V0_J, V0_K,
  443     V1, V1_H, V1_J, V1_K,
  444     V2, V2_H, V2_J, V2_K,
  445     V3, V3_H, V3_J, V3_K,
  446     V4, V4_H, V4_J, V4_K,
  447     V5, V5_H, V5_J, V5_K,
  448     V6, V6_H, V6_J, V6_K,
  449     V7, V7_H, V7_J, V7_K,
  450 
  451     // non-volatiles
  452     V8, V8_H, V8_J, V8_K,
  453     V9, V9_H, V9_J, V9_K,
  454     V10, V10_H, V10_J, V10_K,
  455     V11, V11_H, V11_J, V11_K,
  456     V12, V12_H, V12_J, V12_K,
  457     V13, V13_H, V13_J, V13_K,
  458     V14, V14_H, V14_J, V14_K,
  459     V15, V15_H, V15_J, V15_K,
  460 );
  461 
  462 alloc_class chunk2 (
  463     // Governing predicates for load/store and arithmetic
  464     P0,
  465     P1,
  466     P2,
  467     P3,
  468     P4,
  469     P5,
  470     P6,
  471 
  472     // Extra predicates
  473     P8,
  474     P9,
  475     P10,
  476     P11,
  477     P12,
  478     P13,
  479     P14,
  480     P15,
  481 
  482     // Preserved for all-true predicate
  483     P7,
  484 );
  485 
  486 alloc_class chunk3(RFLAGS);
  487 
  488 //----------Architecture Description Register Classes--------------------------
  489 // Several register classes are automatically defined based upon information in
  490 // this architecture description.
  491 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
  492 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
  493 //
  494 
  495 // Class for all 32 bit general purpose registers
  496 reg_class all_reg32(
  497     R0,
  498     R1,
  499     R2,
  500     R3,
  501     R4,
  502     R5,
  503     R6,
  504     R7,
  505     R10,
  506     R11,
  507     R12,
  508     R13,
  509     R14,
  510     R15,
  511     R16,
  512     R17,
  513     R18,
  514     R19,
  515     R20,
  516     R21,
  517     R22,
  518     R23,
  519     R24,
  520     R25,
  521     R26,
  522     R27,
  523     R28,
  524     R29,
  525     R30,
  526     R31
  527 );
  528 
  529 
  530 // Class for all 32 bit integer registers (excluding SP which
  531 // will never be used as an integer register)
  532 reg_class any_reg32 %{
  533   return _ANY_REG32_mask;
  534 %}
  535 
  536 // Singleton class for R0 int register
  537 reg_class int_r0_reg(R0);
  538 
  539 // Singleton class for R2 int register
  540 reg_class int_r2_reg(R2);
  541 
  542 // Singleton class for R3 int register
  543 reg_class int_r3_reg(R3);
  544 
  545 // Singleton class for R4 int register
  546 reg_class int_r4_reg(R4);
  547 
  548 // Singleton class for R31 int register
  549 reg_class int_r31_reg(R31);
  550 
  551 // Class for all 64 bit general purpose registers
  552 reg_class all_reg(
  553     R0, R0_H,
  554     R1, R1_H,
  555     R2, R2_H,
  556     R3, R3_H,
  557     R4, R4_H,
  558     R5, R5_H,
  559     R6, R6_H,
  560     R7, R7_H,
  561     R10, R10_H,
  562     R11, R11_H,
  563     R12, R12_H,
  564     R13, R13_H,
  565     R14, R14_H,
  566     R15, R15_H,
  567     R16, R16_H,
  568     R17, R17_H,
  569     R18, R18_H,
  570     R19, R19_H,
  571     R20, R20_H,
  572     R21, R21_H,
  573     R22, R22_H,
  574     R23, R23_H,
  575     R24, R24_H,
  576     R25, R25_H,
  577     R26, R26_H,
  578     R27, R27_H,
  579     R28, R28_H,
  580     R29, R29_H,
  581     R30, R30_H,
  582     R31, R31_H
  583 );
  584 
  585 // Class for all long integer registers (including SP)
  586 reg_class any_reg %{
  587   return _ANY_REG_mask;
  588 %}
  589 
  590 // Class for non-allocatable 32 bit registers
  591 reg_class non_allocatable_reg32(
  592 #ifdef R18_RESERVED
  593     // See comment in register_aarch64.hpp
  594     R18,                        // tls on Windows
  595 #endif
  596     R28,                        // thread
  597     R30,                        // lr
  598     R31                         // sp
  599 );
  600 
  601 // Class for non-allocatable 64 bit registers
  602 reg_class non_allocatable_reg(
  603 #ifdef R18_RESERVED
  604     // See comment in register_aarch64.hpp
  605     R18, R18_H,                 // tls on Windows, platform register on macOS
  606 #endif
  607     R28, R28_H,                 // thread
  608     R30, R30_H,                 // lr
  609     R31, R31_H                  // sp
  610 );
  611 
  612 // Class for all non-special integer registers
  613 reg_class no_special_reg32 %{
  614   return _NO_SPECIAL_REG32_mask;
  615 %}
  616 
  617 // Class for all non-special long integer registers
  618 reg_class no_special_reg %{
  619   return _NO_SPECIAL_REG_mask;
  620 %}
  621 
  622 // Class for 64 bit register r0
  623 reg_class r0_reg(
  624     R0, R0_H
  625 );
  626 
  627 // Class for 64 bit register r1
  628 reg_class r1_reg(
  629     R1, R1_H
  630 );
  631 
  632 // Class for 64 bit register r2
  633 reg_class r2_reg(
  634     R2, R2_H
  635 );
  636 
  637 // Class for 64 bit register r3
  638 reg_class r3_reg(
  639     R3, R3_H
  640 );
  641 
  642 // Class for 64 bit register r4
  643 reg_class r4_reg(
  644     R4, R4_H
  645 );
  646 
  647 // Class for 64 bit register r5
  648 reg_class r5_reg(
  649     R5, R5_H
  650 );
  651 
  652 // Class for 64 bit register r10
  653 reg_class r10_reg(
  654     R10, R10_H
  655 );
  656 
  657 // Class for 64 bit register r11
  658 reg_class r11_reg(
  659     R11, R11_H
  660 );
  661 
  662 // Class for method register
  663 reg_class method_reg(
  664     R12, R12_H
  665 );
  666 
  667 // Class for thread register
  668 reg_class thread_reg(
  669     R28, R28_H
  670 );
  671 
  672 // Class for frame pointer register
  673 reg_class fp_reg(
  674     R29, R29_H
  675 );
  676 
  677 // Class for link register
  678 reg_class lr_reg(
  679     R30, R30_H
  680 );
  681 
  682 // Class for long sp register
  683 reg_class sp_reg(
  684   R31, R31_H
  685 );
  686 
  687 // Class for all pointer registers
  688 reg_class ptr_reg %{
  689   return _PTR_REG_mask;
  690 %}
  691 
  692 // Class for all non_special pointer registers
  693 reg_class no_special_ptr_reg %{
  694   return _NO_SPECIAL_PTR_REG_mask;
  695 %}
  696 
  697 // Class for all non_special pointer registers (excluding rfp)
  698 reg_class no_special_no_rfp_ptr_reg %{
  699   return _NO_SPECIAL_NO_RFP_PTR_REG_mask;
  700 %}
  701 
  702 // Class for all float registers
  703 reg_class float_reg(
  704     V0,
  705     V1,
  706     V2,
  707     V3,
  708     V4,
  709     V5,
  710     V6,
  711     V7,
  712     V8,
  713     V9,
  714     V10,
  715     V11,
  716     V12,
  717     V13,
  718     V14,
  719     V15,
  720     V16,
  721     V17,
  722     V18,
  723     V19,
  724     V20,
  725     V21,
  726     V22,
  727     V23,
  728     V24,
  729     V25,
  730     V26,
  731     V27,
  732     V28,
  733     V29,
  734     V30,
  735     V31
  736 );
  737 
  738 // Double precision float registers have virtual `high halves' that
  739 // are needed by the allocator.
  740 // Class for all double registers
  741 reg_class double_reg(
  742     V0, V0_H,
  743     V1, V1_H,
  744     V2, V2_H,
  745     V3, V3_H,
  746     V4, V4_H,
  747     V5, V5_H,
  748     V6, V6_H,
  749     V7, V7_H,
  750     V8, V8_H,
  751     V9, V9_H,
  752     V10, V10_H,
  753     V11, V11_H,
  754     V12, V12_H,
  755     V13, V13_H,
  756     V14, V14_H,
  757     V15, V15_H,
  758     V16, V16_H,
  759     V17, V17_H,
  760     V18, V18_H,
  761     V19, V19_H,
  762     V20, V20_H,
  763     V21, V21_H,
  764     V22, V22_H,
  765     V23, V23_H,
  766     V24, V24_H,
  767     V25, V25_H,
  768     V26, V26_H,
  769     V27, V27_H,
  770     V28, V28_H,
  771     V29, V29_H,
  772     V30, V30_H,
  773     V31, V31_H
  774 );
  775 
  776 // Class for all SVE vector registers.
  777 reg_class vectora_reg (
  778     V0, V0_H, V0_J, V0_K,
  779     V1, V1_H, V1_J, V1_K,
  780     V2, V2_H, V2_J, V2_K,
  781     V3, V3_H, V3_J, V3_K,
  782     V4, V4_H, V4_J, V4_K,
  783     V5, V5_H, V5_J, V5_K,
  784     V6, V6_H, V6_J, V6_K,
  785     V7, V7_H, V7_J, V7_K,
  786     V8, V8_H, V8_J, V8_K,
  787     V9, V9_H, V9_J, V9_K,
  788     V10, V10_H, V10_J, V10_K,
  789     V11, V11_H, V11_J, V11_K,
  790     V12, V12_H, V12_J, V12_K,
  791     V13, V13_H, V13_J, V13_K,
  792     V14, V14_H, V14_J, V14_K,
  793     V15, V15_H, V15_J, V15_K,
  794     V16, V16_H, V16_J, V16_K,
  795     V17, V17_H, V17_J, V17_K,
  796     V18, V18_H, V18_J, V18_K,
  797     V19, V19_H, V19_J, V19_K,
  798     V20, V20_H, V20_J, V20_K,
  799     V21, V21_H, V21_J, V21_K,
  800     V22, V22_H, V22_J, V22_K,
  801     V23, V23_H, V23_J, V23_K,
  802     V24, V24_H, V24_J, V24_K,
  803     V25, V25_H, V25_J, V25_K,
  804     V26, V26_H, V26_J, V26_K,
  805     V27, V27_H, V27_J, V27_K,
  806     V28, V28_H, V28_J, V28_K,
  807     V29, V29_H, V29_J, V29_K,
  808     V30, V30_H, V30_J, V30_K,
  809     V31, V31_H, V31_J, V31_K,
  810 );
  811 
  812 // Class for all 64bit vector registers
  813 reg_class vectord_reg(
  814     V0, V0_H,
  815     V1, V1_H,
  816     V2, V2_H,
  817     V3, V3_H,
  818     V4, V4_H,
  819     V5, V5_H,
  820     V6, V6_H,
  821     V7, V7_H,
  822     V8, V8_H,
  823     V9, V9_H,
  824     V10, V10_H,
  825     V11, V11_H,
  826     V12, V12_H,
  827     V13, V13_H,
  828     V14, V14_H,
  829     V15, V15_H,
  830     V16, V16_H,
  831     V17, V17_H,
  832     V18, V18_H,
  833     V19, V19_H,
  834     V20, V20_H,
  835     V21, V21_H,
  836     V22, V22_H,
  837     V23, V23_H,
  838     V24, V24_H,
  839     V25, V25_H,
  840     V26, V26_H,
  841     V27, V27_H,
  842     V28, V28_H,
  843     V29, V29_H,
  844     V30, V30_H,
  845     V31, V31_H
  846 );
  847 
  848 // Class for all 128bit vector registers
  849 reg_class vectorx_reg(
  850     V0, V0_H, V0_J, V0_K,
  851     V1, V1_H, V1_J, V1_K,
  852     V2, V2_H, V2_J, V2_K,
  853     V3, V3_H, V3_J, V3_K,
  854     V4, V4_H, V4_J, V4_K,
  855     V5, V5_H, V5_J, V5_K,
  856     V6, V6_H, V6_J, V6_K,
  857     V7, V7_H, V7_J, V7_K,
  858     V8, V8_H, V8_J, V8_K,
  859     V9, V9_H, V9_J, V9_K,
  860     V10, V10_H, V10_J, V10_K,
  861     V11, V11_H, V11_J, V11_K,
  862     V12, V12_H, V12_J, V12_K,
  863     V13, V13_H, V13_J, V13_K,
  864     V14, V14_H, V14_J, V14_K,
  865     V15, V15_H, V15_J, V15_K,
  866     V16, V16_H, V16_J, V16_K,
  867     V17, V17_H, V17_J, V17_K,
  868     V18, V18_H, V18_J, V18_K,
  869     V19, V19_H, V19_J, V19_K,
  870     V20, V20_H, V20_J, V20_K,
  871     V21, V21_H, V21_J, V21_K,
  872     V22, V22_H, V22_J, V22_K,
  873     V23, V23_H, V23_J, V23_K,
  874     V24, V24_H, V24_J, V24_K,
  875     V25, V25_H, V25_J, V25_K,
  876     V26, V26_H, V26_J, V26_K,
  877     V27, V27_H, V27_J, V27_K,
  878     V28, V28_H, V28_J, V28_K,
  879     V29, V29_H, V29_J, V29_K,
  880     V30, V30_H, V30_J, V30_K,
  881     V31, V31_H, V31_J, V31_K
  882 );
  883 
  884 // Class for 128 bit register v0
  885 reg_class v0_reg(
  886     V0, V0_H
  887 );
  888 
  889 // Class for 128 bit register v1
  890 reg_class v1_reg(
  891     V1, V1_H
  892 );
  893 
  894 // Class for 128 bit register v2
  895 reg_class v2_reg(
  896     V2, V2_H
  897 );
  898 
  899 // Class for 128 bit register v3
  900 reg_class v3_reg(
  901     V3, V3_H
  902 );
  903 
  904 // Class for 128 bit register v4
  905 reg_class v4_reg(
  906     V4, V4_H
  907 );
  908 
  909 // Class for 128 bit register v5
  910 reg_class v5_reg(
  911     V5, V5_H
  912 );
  913 
  914 // Class for 128 bit register v6
  915 reg_class v6_reg(
  916     V6, V6_H
  917 );
  918 
  919 // Class for 128 bit register v7
  920 reg_class v7_reg(
  921     V7, V7_H
  922 );
  923 
  924 // Class for 128 bit register v8
  925 reg_class v8_reg(
  926     V8, V8_H
  927 );
  928 
  929 // Class for 128 bit register v9
  930 reg_class v9_reg(
  931     V9, V9_H
  932 );
  933 
  934 // Class for 128 bit register v10
  935 reg_class v10_reg(
  936     V10, V10_H
  937 );
  938 
  939 // Class for 128 bit register v11
  940 reg_class v11_reg(
  941     V11, V11_H
  942 );
  943 
  944 // Class for 128 bit register v12
  945 reg_class v12_reg(
  946     V12, V12_H
  947 );
  948 
  949 // Class for 128 bit register v13
  950 reg_class v13_reg(
  951     V13, V13_H
  952 );
  953 
  954 // Class for 128 bit register v14
  955 reg_class v14_reg(
  956     V14, V14_H
  957 );
  958 
  959 // Class for 128 bit register v15
  960 reg_class v15_reg(
  961     V15, V15_H
  962 );
  963 
  964 // Class for 128 bit register v16
  965 reg_class v16_reg(
  966     V16, V16_H
  967 );
  968 
  969 // Class for 128 bit register v17
  970 reg_class v17_reg(
  971     V17, V17_H
  972 );
  973 
  974 // Class for 128 bit register v18
  975 reg_class v18_reg(
  976     V18, V18_H
  977 );
  978 
  979 // Class for 128 bit register v19
  980 reg_class v19_reg(
  981     V19, V19_H
  982 );
  983 
  984 // Class for 128 bit register v20
  985 reg_class v20_reg(
  986     V20, V20_H
  987 );
  988 
  989 // Class for 128 bit register v21
  990 reg_class v21_reg(
  991     V21, V21_H
  992 );
  993 
  994 // Class for 128 bit register v22
  995 reg_class v22_reg(
  996     V22, V22_H
  997 );
  998 
  999 // Class for 128 bit register v23
 1000 reg_class v23_reg(
 1001     V23, V23_H
 1002 );
 1003 
 1004 // Class for 128 bit register v24
 1005 reg_class v24_reg(
 1006     V24, V24_H
 1007 );
 1008 
 1009 // Class for 128 bit register v25
 1010 reg_class v25_reg(
 1011     V25, V25_H
 1012 );
 1013 
 1014 // Class for 128 bit register v26
 1015 reg_class v26_reg(
 1016     V26, V26_H
 1017 );
 1018 
 1019 // Class for 128 bit register v27
 1020 reg_class v27_reg(
 1021     V27, V27_H
 1022 );
 1023 
 1024 // Class for 128 bit register v28
 1025 reg_class v28_reg(
 1026     V28, V28_H
 1027 );
 1028 
 1029 // Class for 128 bit register v29
 1030 reg_class v29_reg(
 1031     V29, V29_H
 1032 );
 1033 
 1034 // Class for 128 bit register v30
 1035 reg_class v30_reg(
 1036     V30, V30_H
 1037 );
 1038 
 1039 // Class for 128 bit register v31
 1040 reg_class v31_reg(
 1041     V31, V31_H
 1042 );
 1043 
 1044 // Class for all SVE predicate registers.
 1045 reg_class pr_reg (
 1046     P0,
 1047     P1,
 1048     P2,
 1049     P3,
 1050     P4,
 1051     P5,
 1052     P6,
 1053     // P7, non-allocatable, preserved with all elements preset to TRUE.
 1054     P8,
 1055     P9,
 1056     P10,
 1057     P11,
 1058     P12,
 1059     P13,
 1060     P14,
 1061     P15
 1062 );
 1063 
 1064 // Class for SVE governing predicate registers, which are used
 1065 // to determine the active elements of a predicated instruction.
 1066 reg_class gov_pr (
 1067     P0,
 1068     P1,
 1069     P2,
 1070     P3,
 1071     P4,
 1072     P5,
 1073     P6,
 1074     // P7, non-allocatable, preserved with all elements preset to TRUE.
 1075 );
 1076 
 1077 reg_class p0_reg(P0);
 1078 reg_class p1_reg(P1);
 1079 
 1080 // Singleton class for condition codes
 1081 reg_class int_flags(RFLAGS);
 1082 
 1083 %}
 1084 
 1085 //----------DEFINITION BLOCK---------------------------------------------------
 1086 // Define name --> value mappings to inform the ADLC of an integer valued name
 1087 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 1088 // Format:
 1089 //        int_def  <name>         ( <int_value>, <expression>);
 1090 // Generated Code in ad_<arch>.hpp
 1091 //        #define  <name>   (<expression>)
 1092 //        // value == <int_value>
 1093 // Generated code in ad_<arch>.cpp adlc_verification()
 1094 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 1095 //
 1096 
 1097 // we follow the ppc-aix port in using a simple cost model which ranks
 1098 // register operations as cheap, memory ops as more expensive and
 1099 // branches as most expensive. the first two have a low as well as a
 1100 // normal cost. huge cost appears to be a way of saying don't do
 1101 // something
 1102 
 1103 definitions %{
 1104   // The default cost (of a register move instruction).
 1105   int_def INSN_COST            (    100,     100);
 1106   int_def BRANCH_COST          (    200,     2 * INSN_COST);
 1107   int_def CALL_COST            (    200,     2 * INSN_COST);
 1108   int_def VOLATILE_REF_COST    (   1000,     10 * INSN_COST);
 1109 %}
 1110 
 1111 
 1112 //----------SOURCE BLOCK-------------------------------------------------------
 1113 // This is a block of C++ code which provides values, functions, and
 1114 // definitions necessary in the rest of the architecture description
 1115 
 1116 source_hpp %{
 1117 
 1118 #include "asm/macroAssembler.hpp"
 1119 #include "gc/shared/barrierSetAssembler.hpp"
 1120 #include "gc/shared/cardTable.hpp"
 1121 #include "gc/shared/cardTableBarrierSet.hpp"
 1122 #include "gc/shared/collectedHeap.hpp"
 1123 #include "opto/addnode.hpp"
 1124 #include "opto/convertnode.hpp"
 1125 #include "runtime/objectMonitor.hpp"
 1126 
 1127 extern RegMask _ANY_REG32_mask;
 1128 extern RegMask _ANY_REG_mask;
 1129 extern RegMask _PTR_REG_mask;
 1130 extern RegMask _NO_SPECIAL_REG32_mask;
 1131 extern RegMask _NO_SPECIAL_REG_mask;
 1132 extern RegMask _NO_SPECIAL_PTR_REG_mask;
 1133 extern RegMask _NO_SPECIAL_NO_RFP_PTR_REG_mask;
 1134 
 1135 class CallStubImpl {
 1136 
 1137   //--------------------------------------------------------------
 1138   //---<  Used for optimization in Compile::shorten_branches  >---
 1139   //--------------------------------------------------------------
 1140 
 1141  public:
 1142   // Size of call trampoline stub.
 1143   static uint size_call_trampoline() {
 1144     return 0; // no call trampolines on this platform
 1145   }
 1146 
 1147   // number of relocations needed by a call trampoline stub
 1148   static uint reloc_call_trampoline() {
 1149     return 0; // no call trampolines on this platform
 1150   }
 1151 };
 1152 
 1153 class HandlerImpl {
 1154 
 1155  public:
 1156 
 1157   static int emit_exception_handler(C2_MacroAssembler *masm);
 1158   static int emit_deopt_handler(C2_MacroAssembler* masm);
 1159 
 1160   static uint size_exception_handler() {
 1161     return MacroAssembler::far_codestub_branch_size();
 1162   }
 1163 
 1164   static uint size_deopt_handler() {
 1165     // count one adr and one far branch instruction
 1166     return NativeInstruction::instruction_size + MacroAssembler::far_codestub_branch_size();
 1167   }
 1168 };
 1169 
 1170 class Node::PD {
 1171 public:
 1172   enum NodeFlags {
 1173     _last_flag = Node::_last_flag
 1174   };
 1175 };
 1176 
 1177   bool is_CAS(int opcode, bool maybe_volatile);
 1178 
 1179   // predicates controlling emit of ldr<x>/ldar<x> and associated dmb
 1180 
 1181   bool unnecessary_acquire(const Node *barrier);
 1182   bool needs_acquiring_load(const Node *load);
 1183 
 1184   // predicates controlling emit of str<x>/stlr<x> and associated dmbs
 1185 
 1186   bool unnecessary_release(const Node *barrier);
 1187   bool unnecessary_volatile(const Node *barrier);
 1188   bool needs_releasing_store(const Node *store);
 1189 
 1190   // predicate controlling translation of CompareAndSwapX
 1191   bool needs_acquiring_load_exclusive(const Node *load);
 1192 
 1193   // predicate controlling addressing modes
 1194   bool size_fits_all_mem_uses(AddPNode* addp, int shift);
 1195 
 1196   // Convert BootTest condition to Assembler condition.
 1197   // Replicate the logic of cmpOpOper::ccode() and cmpOpUOper::ccode().
 1198   Assembler::Condition to_assembler_cond(BoolTest::mask cond);
 1199 %}
 1200 
 1201 source %{
 1202 
 1203   // Derived RegMask with conditionally allocatable registers
 1204 
 1205   void PhaseOutput::pd_perform_mach_node_analysis() {
 1206   }
 1207 
 1208   int MachNode::pd_alignment_required() const {
 1209     return 1;
 1210   }
 1211 
 1212   int MachNode::compute_padding(int current_offset) const {
 1213     return 0;
 1214   }
 1215 
 1216   RegMask _ANY_REG32_mask;
 1217   RegMask _ANY_REG_mask;
 1218   RegMask _PTR_REG_mask;
 1219   RegMask _NO_SPECIAL_REG32_mask;
 1220   RegMask _NO_SPECIAL_REG_mask;
 1221   RegMask _NO_SPECIAL_PTR_REG_mask;
 1222   RegMask _NO_SPECIAL_NO_RFP_PTR_REG_mask;
 1223 
 1224   void reg_mask_init() {
 1225     // We derive below RegMask(s) from the ones which are auto-generated from
 1226     // adlc register classes to make AArch64 rheapbase (r27) and rfp (r29)
 1227     // registers conditionally reserved.
 1228 
 1229     _ANY_REG32_mask = _ALL_REG32_mask;
 1230     _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(r31_sp->as_VMReg()));
 1231 
 1232     _ANY_REG_mask = _ALL_REG_mask;
 1233 
 1234     _PTR_REG_mask = _ALL_REG_mask;
 1235 
 1236     _NO_SPECIAL_REG32_mask = _ALL_REG32_mask;
 1237     _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask);
 1238 
 1239     _NO_SPECIAL_REG_mask = _ALL_REG_mask;
 1240     _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
 1241 
 1242     _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask;
 1243     _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
 1244 
 1245     // r27 is not allocatable when compressed oops is on and heapbase is not
 1246     // zero, compressed klass pointers doesn't use r27 after JDK-8234794
 1247     if (UseCompressedOops && (CompressedOops::base() != nullptr)) {
 1248       _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg()));
 1249       _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg()));
 1250       _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg()));
 1251     }
 1252 
 1253     // r29 is not allocatable when PreserveFramePointer is on
 1254     if (PreserveFramePointer) {
 1255       _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg()));
 1256       _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg()));
 1257       _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg()));
 1258     }
 1259 
 1260     _NO_SPECIAL_NO_RFP_PTR_REG_mask = _NO_SPECIAL_PTR_REG_mask;
 1261     _NO_SPECIAL_NO_RFP_PTR_REG_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg()));
 1262   }
 1263 
 1264   // Optimizaton of volatile gets and puts
 1265   // -------------------------------------
 1266   //
 1267   // AArch64 has ldar<x> and stlr<x> instructions which we can safely
 1268   // use to implement volatile reads and writes. For a volatile read
 1269   // we simply need
 1270   //
 1271   //   ldar<x>
 1272   //
 1273   // and for a volatile write we need
 1274   //
 1275   //   stlr<x>
 1276   //
 1277   // Alternatively, we can implement them by pairing a normal
 1278   // load/store with a memory barrier. For a volatile read we need
 1279   //
 1280   //   ldr<x>
 1281   //   dmb ishld
 1282   //
 1283   // for a volatile write
 1284   //
 1285   //   dmb ish
 1286   //   str<x>
 1287   //   dmb ish
 1288   //
 1289   // We can also use ldaxr and stlxr to implement compare and swap CAS
 1290   // sequences. These are normally translated to an instruction
 1291   // sequence like the following
 1292   //
 1293   //   dmb      ish
 1294   // retry:
 1295   //   ldxr<x>   rval raddr
 1296   //   cmp       rval rold
 1297   //   b.ne done
 1298   //   stlxr<x>  rval, rnew, rold
 1299   //   cbnz      rval retry
 1300   // done:
 1301   //   cset      r0, eq
 1302   //   dmb ishld
 1303   //
 1304   // Note that the exclusive store is already using an stlxr
 1305   // instruction. That is required to ensure visibility to other
 1306   // threads of the exclusive write (assuming it succeeds) before that
 1307   // of any subsequent writes.
 1308   //
 1309   // The following instruction sequence is an improvement on the above
 1310   //
 1311   // retry:
 1312   //   ldaxr<x>  rval raddr
 1313   //   cmp       rval rold
 1314   //   b.ne done
 1315   //   stlxr<x>  rval, rnew, rold
 1316   //   cbnz      rval retry
 1317   // done:
 1318   //   cset      r0, eq
 1319   //
 1320   // We don't need the leading dmb ish since the stlxr guarantees
 1321   // visibility of prior writes in the case that the swap is
 1322   // successful. Crucially we don't have to worry about the case where
 1323   // the swap is not successful since no valid program should be
 1324   // relying on visibility of prior changes by the attempting thread
 1325   // in the case where the CAS fails.
 1326   //
 1327   // Similarly, we don't need the trailing dmb ishld if we substitute
 1328   // an ldaxr instruction since that will provide all the guarantees we
 1329   // require regarding observation of changes made by other threads
 1330   // before any change to the CAS address observed by the load.
 1331   //
 1332   // In order to generate the desired instruction sequence we need to
 1333   // be able to identify specific 'signature' ideal graph node
 1334   // sequences which i) occur as a translation of a volatile reads or
 1335   // writes or CAS operations and ii) do not occur through any other
 1336   // translation or graph transformation. We can then provide
 1337   // alternative aldc matching rules which translate these node
 1338   // sequences to the desired machine code sequences. Selection of the
 1339   // alternative rules can be implemented by predicates which identify
 1340   // the relevant node sequences.
 1341   //
 1342   // The ideal graph generator translates a volatile read to the node
 1343   // sequence
 1344   //
 1345   //   LoadX[mo_acquire]
 1346   //   MemBarAcquire
 1347   //
 1348   // As a special case when using the compressed oops optimization we
 1349   // may also see this variant
 1350   //
 1351   //   LoadN[mo_acquire]
 1352   //   DecodeN
 1353   //   MemBarAcquire
 1354   //
 1355   // A volatile write is translated to the node sequence
 1356   //
 1357   //   MemBarRelease
 1358   //   StoreX[mo_release] {CardMark}-optional
 1359   //   MemBarVolatile
 1360   //
 1361   // n.b. the above node patterns are generated with a strict
 1362   // 'signature' configuration of input and output dependencies (see
 1363   // the predicates below for exact details). The card mark may be as
 1364   // simple as a few extra nodes or, in a few GC configurations, may
 1365   // include more complex control flow between the leading and
 1366   // trailing memory barriers. However, whatever the card mark
 1367   // configuration these signatures are unique to translated volatile
 1368   // reads/stores -- they will not appear as a result of any other
 1369   // bytecode translation or inlining nor as a consequence of
 1370   // optimizing transforms.
 1371   //
 1372   // We also want to catch inlined unsafe volatile gets and puts and
 1373   // be able to implement them using either ldar<x>/stlr<x> or some
 1374   // combination of ldr<x>/stlr<x> and dmb instructions.
 1375   //
 1376   // Inlined unsafe volatiles puts manifest as a minor variant of the
 1377   // normal volatile put node sequence containing an extra cpuorder
 1378   // membar
 1379   //
 1380   //   MemBarRelease
 1381   //   MemBarCPUOrder
 1382   //   StoreX[mo_release] {CardMark}-optional
 1383   //   MemBarCPUOrder
 1384   //   MemBarVolatile
 1385   //
 1386   // n.b. as an aside, a cpuorder membar is not itself subject to
 1387   // matching and translation by adlc rules.  However, the rule
 1388   // predicates need to detect its presence in order to correctly
 1389   // select the desired adlc rules.
 1390   //
 1391   // Inlined unsafe volatile gets manifest as a slightly different
 1392   // node sequence to a normal volatile get because of the
 1393   // introduction of some CPUOrder memory barriers to bracket the
 1394   // Load. However, but the same basic skeleton of a LoadX feeding a
 1395   // MemBarAcquire, possibly through an optional DecodeN, is still
 1396   // present
 1397   //
 1398   //   MemBarCPUOrder
 1399   //        ||       \\
 1400   //   MemBarCPUOrder LoadX[mo_acquire]
 1401   //        ||            |
 1402   //        ||       {DecodeN} optional
 1403   //        ||       /
 1404   //     MemBarAcquire
 1405   //
 1406   // In this case the acquire membar does not directly depend on the
 1407   // load. However, we can be sure that the load is generated from an
 1408   // inlined unsafe volatile get if we see it dependent on this unique
 1409   // sequence of membar nodes. Similarly, given an acquire membar we
 1410   // can know that it was added because of an inlined unsafe volatile
 1411   // get if it is fed and feeds a cpuorder membar and if its feed
 1412   // membar also feeds an acquiring load.
 1413   //
 1414   // Finally an inlined (Unsafe) CAS operation is translated to the
 1415   // following ideal graph
 1416   //
 1417   //   MemBarRelease
 1418   //   MemBarCPUOrder
 1419   //   CompareAndSwapX {CardMark}-optional
 1420   //   MemBarCPUOrder
 1421   //   MemBarAcquire
 1422   //
 1423   // So, where we can identify these volatile read and write
 1424   // signatures we can choose to plant either of the above two code
 1425   // sequences. For a volatile read we can simply plant a normal
 1426   // ldr<x> and translate the MemBarAcquire to a dmb. However, we can
 1427   // also choose to inhibit translation of the MemBarAcquire and
 1428   // inhibit planting of the ldr<x>, instead planting an ldar<x>.
 1429   //
 1430   // When we recognise a volatile store signature we can choose to
 1431   // plant at a dmb ish as a translation for the MemBarRelease, a
 1432   // normal str<x> and then a dmb ish for the MemBarVolatile.
 1433   // Alternatively, we can inhibit translation of the MemBarRelease
 1434   // and MemBarVolatile and instead plant a simple stlr<x>
 1435   // instruction.
 1436   //
 1437   // when we recognise a CAS signature we can choose to plant a dmb
 1438   // ish as a translation for the MemBarRelease, the conventional
 1439   // macro-instruction sequence for the CompareAndSwap node (which
 1440   // uses ldxr<x>) and then a dmb ishld for the MemBarAcquire.
 1441   // Alternatively, we can elide generation of the dmb instructions
 1442   // and plant the alternative CompareAndSwap macro-instruction
 1443   // sequence (which uses ldaxr<x>).
 1444   //
 1445   // Of course, the above only applies when we see these signature
 1446   // configurations. We still want to plant dmb instructions in any
 1447   // other cases where we may see a MemBarAcquire, MemBarRelease or
 1448   // MemBarVolatile. For example, at the end of a constructor which
 1449   // writes final/volatile fields we will see a MemBarRelease
 1450   // instruction and this needs a 'dmb ish' lest we risk the
 1451   // constructed object being visible without making the
 1452   // final/volatile field writes visible.
 1453   //
 1454   // n.b. the translation rules below which rely on detection of the
 1455   // volatile signatures and insert ldar<x> or stlr<x> are failsafe.
 1456   // If we see anything other than the signature configurations we
 1457   // always just translate the loads and stores to ldr<x> and str<x>
 1458   // and translate acquire, release and volatile membars to the
 1459   // relevant dmb instructions.
 1460   //
 1461 
 1462   // is_CAS(int opcode, bool maybe_volatile)
 1463   //
 1464   // return true if opcode is one of the possible CompareAndSwapX
 1465   // values otherwise false.
 1466 
 1467   bool is_CAS(int opcode, bool maybe_volatile)
 1468   {
 1469     switch(opcode) {
 1470       // We handle these
 1471     case Op_CompareAndSwapI:
 1472     case Op_CompareAndSwapL:
 1473     case Op_CompareAndSwapP:
 1474     case Op_CompareAndSwapN:
 1475     case Op_ShenandoahCompareAndSwapP:
 1476     case Op_ShenandoahCompareAndSwapN:
 1477     case Op_CompareAndSwapB:
 1478     case Op_CompareAndSwapS:
 1479     case Op_GetAndSetI:
 1480     case Op_GetAndSetL:
 1481     case Op_GetAndSetP:
 1482     case Op_GetAndSetN:
 1483     case Op_GetAndAddI:
 1484     case Op_GetAndAddL:
 1485       return true;
 1486     case Op_CompareAndExchangeI:
 1487     case Op_CompareAndExchangeN:
 1488     case Op_CompareAndExchangeB:
 1489     case Op_CompareAndExchangeS:
 1490     case Op_CompareAndExchangeL:
 1491     case Op_CompareAndExchangeP:
 1492     case Op_WeakCompareAndSwapB:
 1493     case Op_WeakCompareAndSwapS:
 1494     case Op_WeakCompareAndSwapI:
 1495     case Op_WeakCompareAndSwapL:
 1496     case Op_WeakCompareAndSwapP:
 1497     case Op_WeakCompareAndSwapN:
 1498     case Op_ShenandoahWeakCompareAndSwapP:
 1499     case Op_ShenandoahWeakCompareAndSwapN:
 1500     case Op_ShenandoahCompareAndExchangeP:
 1501     case Op_ShenandoahCompareAndExchangeN:
 1502       return maybe_volatile;
 1503     default:
 1504       return false;
 1505     }
 1506   }
 1507 
 1508   // helper to determine the maximum number of Phi nodes we may need to
 1509   // traverse when searching from a card mark membar for the merge mem
 1510   // feeding a trailing membar or vice versa
 1511 
 1512 // predicates controlling emit of ldr<x>/ldar<x>
 1513 
 1514 bool unnecessary_acquire(const Node *barrier)
 1515 {
 1516   assert(barrier->is_MemBar(), "expecting a membar");
 1517 
 1518   MemBarNode* mb = barrier->as_MemBar();
 1519 
 1520   if (mb->trailing_load()) {
 1521     return true;
 1522   }
 1523 
 1524   if (mb->trailing_load_store()) {
 1525     Node* load_store = mb->in(MemBarNode::Precedent);
 1526     assert(load_store->is_LoadStore(), "unexpected graph shape");
 1527     return is_CAS(load_store->Opcode(), true);
 1528   }
 1529 
 1530   return false;
 1531 }
 1532 
 1533 bool needs_acquiring_load(const Node *n)
 1534 {
 1535   assert(n->is_Load(), "expecting a load");
 1536   LoadNode *ld = n->as_Load();
 1537   return ld->is_acquire();
 1538 }
 1539 
 1540 bool unnecessary_release(const Node *n)
 1541 {
 1542   assert((n->is_MemBar() &&
 1543           n->Opcode() == Op_MemBarRelease),
 1544          "expecting a release membar");
 1545 
 1546   MemBarNode *barrier = n->as_MemBar();
 1547   if (!barrier->leading()) {
 1548     return false;
 1549   } else {
 1550     Node* trailing = barrier->trailing_membar();
 1551     MemBarNode* trailing_mb = trailing->as_MemBar();
 1552     assert(trailing_mb->trailing(), "Not a trailing membar?");
 1553     assert(trailing_mb->leading_membar() == n, "inconsistent leading/trailing membars");
 1554 
 1555     Node* mem = trailing_mb->in(MemBarNode::Precedent);
 1556     if (mem->is_Store()) {
 1557       assert(mem->as_Store()->is_release(), "");
 1558       assert(trailing_mb->Opcode() == Op_MemBarVolatile, "");
 1559       return true;
 1560     } else {
 1561       assert(mem->is_LoadStore(), "");
 1562       assert(trailing_mb->Opcode() == Op_MemBarAcquire, "");
 1563       return is_CAS(mem->Opcode(), true);
 1564     }
 1565   }
 1566   return false;
 1567 }
 1568 
 1569 bool unnecessary_volatile(const Node *n)
 1570 {
 1571   // assert n->is_MemBar();
 1572   MemBarNode *mbvol = n->as_MemBar();
 1573 
 1574   bool release = mbvol->trailing_store();
 1575   assert(!release || (mbvol->in(MemBarNode::Precedent)->is_Store() && mbvol->in(MemBarNode::Precedent)->as_Store()->is_release()), "");
 1576 #ifdef ASSERT
 1577   if (release) {
 1578     Node* leading = mbvol->leading_membar();
 1579     assert(leading->Opcode() == Op_MemBarRelease, "");
 1580     assert(leading->as_MemBar()->leading_store(), "");
 1581     assert(leading->as_MemBar()->trailing_membar() == mbvol, "");
 1582   }
 1583 #endif
 1584 
 1585   return release;
 1586 }
 1587 
 1588 // predicates controlling emit of str<x>/stlr<x>
 1589 
 1590 bool needs_releasing_store(const Node *n)
 1591 {
 1592   // assert n->is_Store();
 1593   StoreNode *st = n->as_Store();
 1594   return st->trailing_membar() != nullptr;
 1595 }
 1596 
 1597 // predicate controlling translation of CAS
 1598 //
 1599 // returns true if CAS needs to use an acquiring load otherwise false
 1600 
 1601 bool needs_acquiring_load_exclusive(const Node *n)
 1602 {
 1603   assert(is_CAS(n->Opcode(), true), "expecting a compare and swap");
 1604   LoadStoreNode* ldst = n->as_LoadStore();
 1605   if (is_CAS(n->Opcode(), false)) {
 1606     assert(ldst->trailing_membar() != nullptr, "expected trailing membar");
 1607   } else {
 1608     return ldst->trailing_membar() != nullptr;
 1609   }
 1610 
 1611   // so we can just return true here
 1612   return true;
 1613 }
 1614 
 1615 #define __ masm->
 1616 
 1617 // advance declarations for helper functions to convert register
 1618 // indices to register objects
 1619 
 1620 // the ad file has to provide implementations of certain methods
 1621 // expected by the generic code
 1622 //
 1623 // REQUIRED FUNCTIONALITY
 1624 
 1625 //=============================================================================
 1626 
 1627 // !!!!! Special hack to get all types of calls to specify the byte offset
 1628 //       from the start of the call to the point where the return address
 1629 //       will point.
 1630 
 1631 int MachCallStaticJavaNode::ret_addr_offset()
 1632 {
 1633   // call should be a simple bl
 1634   int off = 4;
 1635   return off;
 1636 }
 1637 
 1638 int MachCallDynamicJavaNode::ret_addr_offset()
 1639 {
 1640   return 16; // movz, movk, movk, bl
 1641 }
 1642 
 1643 int MachCallRuntimeNode::ret_addr_offset() {
 1644   // for generated stubs the call will be
 1645   //   bl(addr)
 1646   // or with far branches
 1647   //   bl(trampoline_stub)
 1648   // for real runtime callouts it will be six instructions
 1649   // see aarch64_enc_java_to_runtime
 1650   //   adr(rscratch2, retaddr)
 1651   //   str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset()));
 1652   //   lea(rscratch1, RuntimeAddress(addr)
 1653   //   blr(rscratch1)
 1654   CodeBlob *cb = CodeCache::find_blob(_entry_point);
 1655   if (cb) {
 1656     return 1 * NativeInstruction::instruction_size;
 1657   } else {
 1658     return 6 * NativeInstruction::instruction_size;
 1659   }
 1660 }
 1661 
 1662 //=============================================================================
 1663 
 1664 #ifndef PRODUCT
 1665 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1666   st->print("BREAKPOINT");
 1667 }
 1668 #endif
 1669 
 1670 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1671   __ brk(0);
 1672 }
 1673 
 1674 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1675   return MachNode::size(ra_);
 1676 }
 1677 
 1678 //=============================================================================
 1679 
 1680 #ifndef PRODUCT
 1681   void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const {
 1682     st->print("nop \t# %d bytes pad for loops and calls", _count);
 1683   }
 1684 #endif
 1685 
 1686   void MachNopNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc*) const {
 1687     for (int i = 0; i < _count; i++) {
 1688       __ nop();
 1689     }
 1690   }
 1691 
 1692   uint MachNopNode::size(PhaseRegAlloc*) const {
 1693     return _count * NativeInstruction::instruction_size;
 1694   }
 1695 
 1696 //=============================================================================
 1697 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 1698 
 1699 int ConstantTable::calculate_table_base_offset() const {
 1700   return 0;  // absolute addressing, no offset
 1701 }
 1702 
 1703 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 1704 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 1705   ShouldNotReachHere();
 1706 }
 1707 
 1708 void MachConstantBaseNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const {
 1709   // Empty encoding
 1710 }
 1711 
 1712 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 1713   return 0;
 1714 }
 1715 
 1716 #ifndef PRODUCT
 1717 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 1718   st->print("-- \t// MachConstantBaseNode (empty encoding)");
 1719 }
 1720 #endif
 1721 
 1722 #ifndef PRODUCT
 1723 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1724   Compile* C = ra_->C;
 1725 
 1726   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1727 
 1728   if (C->output()->need_stack_bang(framesize))
 1729     st->print("# stack bang size=%d\n\t", framesize);
 1730 
 1731   if (VM_Version::use_rop_protection()) {
 1732     st->print("ldr  zr, [lr]\n\t");
 1733     st->print("paciaz\n\t");
 1734   }
 1735   if (framesize < ((1 << 9) + 2 * wordSize)) {
 1736     st->print("sub  sp, sp, #%d\n\t", framesize);
 1737     st->print("stp  rfp, lr, [sp, #%d]", framesize - 2 * wordSize);
 1738     if (PreserveFramePointer) st->print("\n\tadd  rfp, sp, #%d", framesize - 2 * wordSize);
 1739   } else {
 1740     st->print("stp  lr, rfp, [sp, #%d]!\n\t", -(2 * wordSize));
 1741     if (PreserveFramePointer) st->print("mov  rfp, sp\n\t");
 1742     st->print("mov  rscratch1, #%d\n\t", framesize - 2 * wordSize);
 1743     st->print("sub  sp, sp, rscratch1");
 1744   }
 1745   if (C->stub_function() == nullptr) {
 1746     st->print("\n\t");
 1747     st->print("ldr  rscratch1, [guard]\n\t");
 1748     st->print("dmb ishld\n\t");
 1749     st->print("ldr  rscratch2, [rthread, #thread_disarmed_guard_value_offset]\n\t");
 1750     st->print("cmp  rscratch1, rscratch2\n\t");
 1751     st->print("b.eq skip");
 1752     st->print("\n\t");
 1753     st->print("blr #nmethod_entry_barrier_stub\n\t");
 1754     st->print("b skip\n\t");
 1755     st->print("guard: int\n\t");
 1756     st->print("\n\t");
 1757     st->print("skip:\n\t");
 1758   }
 1759 }
 1760 #endif
 1761 
 1762 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1763   Compile* C = ra_->C;
 1764 
 1765   // n.b. frame size includes space for return pc and rfp
 1766   const int framesize = C->output()->frame_size_in_bytes();
 1767 
 1768   // insert a nop at the start of the prolog so we can patch in a
 1769   // branch if we need to invalidate the method later
 1770   __ nop();
 1771 
 1772   if (C->clinit_barrier_on_entry()) {
 1773     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 1774 
 1775     Label L_skip_barrier;
 1776 
 1777     __ mov_metadata(rscratch2, C->method()->holder()->constant_encoding());
 1778     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
 1779     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 1780     __ bind(L_skip_barrier);
 1781   }
 1782 
 1783   if (C->max_vector_size() > 0) {
 1784     __ reinitialize_ptrue();
 1785   }
 1786 
 1787   int bangsize = C->output()->bang_size_in_bytes();
 1788   if (C->output()->need_stack_bang(bangsize))
 1789     __ generate_stack_overflow_check(bangsize);
 1790 
 1791   __ build_frame(framesize);
 1792 
 1793   if (C->stub_function() == nullptr) {
 1794     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 1795     // Dummy labels for just measuring the code size
 1796     Label dummy_slow_path;
 1797     Label dummy_continuation;
 1798     Label dummy_guard;
 1799     Label* slow_path = &dummy_slow_path;
 1800     Label* continuation = &dummy_continuation;
 1801     Label* guard = &dummy_guard;
 1802     if (!Compile::current()->output()->in_scratch_emit_size()) {
 1803       // Use real labels from actual stub when not emitting code for the purpose of measuring its size
 1804       C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub();
 1805       Compile::current()->output()->add_stub(stub);
 1806       slow_path = &stub->entry();
 1807       continuation = &stub->continuation();
 1808       guard = &stub->guard();
 1809     }
 1810     // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub.
 1811     bs->nmethod_entry_barrier(masm, slow_path, continuation, guard);
 1812   }
 1813 
 1814   if (VerifyStackAtCalls) {
 1815     Unimplemented();
 1816   }
 1817 
 1818   C->output()->set_frame_complete(__ offset());
 1819 
 1820   if (C->has_mach_constant_base_node()) {
 1821     // NOTE: We set the table base offset here because users might be
 1822     // emitted before MachConstantBaseNode.
 1823     ConstantTable& constant_table = C->output()->constant_table();
 1824     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1825   }
 1826 }
 1827 
 1828 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 1829 {
 1830   return MachNode::size(ra_); // too many variables; just compute it
 1831                               // the hard way
 1832 }
 1833 
 1834 int MachPrologNode::reloc() const
 1835 {
 1836   return 0;
 1837 }
 1838 
 1839 //=============================================================================
 1840 
 1841 #ifndef PRODUCT
 1842 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1843   Compile* C = ra_->C;
 1844   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1845 
 1846   st->print("# pop frame %d\n\t",framesize);
 1847 
 1848   if (framesize == 0) {
 1849     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1850   } else if (framesize < ((1 << 9) + 2 * wordSize)) {
 1851     st->print("ldp  lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
 1852     st->print("add  sp, sp, #%d\n\t", framesize);
 1853   } else {
 1854     st->print("mov  rscratch1, #%d\n\t", framesize - 2 * wordSize);
 1855     st->print("add  sp, sp, rscratch1\n\t");
 1856     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1857   }
 1858   if (VM_Version::use_rop_protection()) {
 1859     st->print("autiaz\n\t");
 1860     st->print("ldr  zr, [lr]\n\t");
 1861   }
 1862 
 1863   if (do_polling() && C->is_method_compilation()) {
 1864     st->print("# test polling word\n\t");
 1865     st->print("ldr  rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset()));
 1866     st->print("cmp  sp, rscratch1\n\t");
 1867     st->print("bhi #slow_path");
 1868   }
 1869 }
 1870 #endif
 1871 
 1872 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1873   Compile* C = ra_->C;
 1874   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1875 
 1876   __ remove_frame(framesize);
 1877 
 1878   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1879     __ reserved_stack_check();
 1880   }
 1881 
 1882   if (do_polling() && C->is_method_compilation()) {
 1883     Label dummy_label;
 1884     Label* code_stub = &dummy_label;
 1885     if (!C->output()->in_scratch_emit_size()) {
 1886       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1887       C->output()->add_stub(stub);
 1888       code_stub = &stub->entry();
 1889     }
 1890     __ relocate(relocInfo::poll_return_type);
 1891     __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */);
 1892   }
 1893 }
 1894 
 1895 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 1896   // Variable size. Determine dynamically.
 1897   return MachNode::size(ra_);
 1898 }
 1899 
 1900 int MachEpilogNode::reloc() const {
 1901   // Return number of relocatable values contained in this instruction.
 1902   return 1; // 1 for polling page.
 1903 }
 1904 
 1905 const Pipeline * MachEpilogNode::pipeline() const {
 1906   return MachNode::pipeline_class();
 1907 }
 1908 
 1909 //=============================================================================
 1910 
 1911 static enum RC rc_class(OptoReg::Name reg) {
 1912 
 1913   if (reg == OptoReg::Bad) {
 1914     return rc_bad;
 1915   }
 1916 
 1917   // we have 32 int registers * 2 halves
 1918   int slots_of_int_registers = Register::number_of_registers * Register::max_slots_per_register;
 1919 
 1920   if (reg < slots_of_int_registers) {
 1921     return rc_int;
 1922   }
 1923 
 1924   // we have 32 float register * 8 halves
 1925   int slots_of_float_registers = FloatRegister::number_of_registers * FloatRegister::max_slots_per_register;
 1926   if (reg < slots_of_int_registers + slots_of_float_registers) {
 1927     return rc_float;
 1928   }
 1929 
 1930   int slots_of_predicate_registers = PRegister::number_of_registers * PRegister::max_slots_per_register;
 1931   if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_predicate_registers) {
 1932     return rc_predicate;
 1933   }
 1934 
 1935   // Between predicate regs & stack is the flags.
 1936   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
 1937 
 1938   return rc_stack;
 1939 }
 1940 
 1941 uint MachSpillCopyNode::implementation(C2_MacroAssembler *masm, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
 1942   Compile* C = ra_->C;
 1943 
 1944   // Get registers to move.
 1945   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
 1946   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
 1947   OptoReg::Name dst_hi = ra_->get_reg_second(this);
 1948   OptoReg::Name dst_lo = ra_->get_reg_first(this);
 1949 
 1950   enum RC src_hi_rc = rc_class(src_hi);
 1951   enum RC src_lo_rc = rc_class(src_lo);
 1952   enum RC dst_hi_rc = rc_class(dst_hi);
 1953   enum RC dst_lo_rc = rc_class(dst_lo);
 1954 
 1955   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
 1956 
 1957   if (src_hi != OptoReg::Bad && !bottom_type()->isa_vectmask()) {
 1958     assert((src_lo&1)==0 && src_lo+1==src_hi &&
 1959            (dst_lo&1)==0 && dst_lo+1==dst_hi,
 1960            "expected aligned-adjacent pairs");
 1961   }
 1962 
 1963   if (src_lo == dst_lo && src_hi == dst_hi) {
 1964     return 0;            // Self copy, no move.
 1965   }
 1966 
 1967   bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi &&
 1968               (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi;
 1969   int src_offset = ra_->reg2offset(src_lo);
 1970   int dst_offset = ra_->reg2offset(dst_lo);
 1971 
 1972   if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) {
 1973     uint ireg = ideal_reg();
 1974     if (ireg == Op_VecA && masm) {
 1975       int sve_vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
 1976       if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
 1977         // stack->stack
 1978         __ spill_copy_sve_vector_stack_to_stack(src_offset, dst_offset,
 1979                                                 sve_vector_reg_size_in_bytes);
 1980       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
 1981         __ spill_sve_vector(as_FloatRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo),
 1982                             sve_vector_reg_size_in_bytes);
 1983       } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) {
 1984         __ unspill_sve_vector(as_FloatRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo),
 1985                               sve_vector_reg_size_in_bytes);
 1986       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
 1987         __ sve_orr(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1988                    as_FloatRegister(Matcher::_regEncode[src_lo]),
 1989                    as_FloatRegister(Matcher::_regEncode[src_lo]));
 1990       } else {
 1991         ShouldNotReachHere();
 1992       }
 1993     } else if (masm) {
 1994       assert(ireg == Op_VecD || ireg == Op_VecX, "must be 64 bit or 128 bit vector");
 1995       assert((src_lo_rc != rc_int && dst_lo_rc != rc_int), "sanity");
 1996       if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
 1997         // stack->stack
 1998         assert((src_offset & 7) == 0 && (dst_offset & 7) == 0, "unaligned stack offset");
 1999         if (ireg == Op_VecD) {
 2000           __ unspill(rscratch1, true, src_offset);
 2001           __ spill(rscratch1, true, dst_offset);
 2002         } else {
 2003           __ spill_copy128(src_offset, dst_offset);
 2004         }
 2005       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
 2006         __ mov(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2007                ireg == Op_VecD ? __ T8B : __ T16B,
 2008                as_FloatRegister(Matcher::_regEncode[src_lo]));
 2009       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
 2010         __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
 2011                  ireg == Op_VecD ? __ D : __ Q,
 2012                  ra_->reg2offset(dst_lo));
 2013       } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) {
 2014         __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2015                    ireg == Op_VecD ? __ D : __ Q,
 2016                    ra_->reg2offset(src_lo));
 2017       } else {
 2018         ShouldNotReachHere();
 2019       }
 2020     }
 2021   } else if (masm) {
 2022     switch (src_lo_rc) {
 2023     case rc_int:
 2024       if (dst_lo_rc == rc_int) {  // gpr --> gpr copy
 2025         if (is64) {
 2026             __ mov(as_Register(Matcher::_regEncode[dst_lo]),
 2027                    as_Register(Matcher::_regEncode[src_lo]));
 2028         } else {
 2029             __ movw(as_Register(Matcher::_regEncode[dst_lo]),
 2030                     as_Register(Matcher::_regEncode[src_lo]));
 2031         }
 2032       } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy
 2033         if (is64) {
 2034             __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2035                      as_Register(Matcher::_regEncode[src_lo]));
 2036         } else {
 2037             __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2038                      as_Register(Matcher::_regEncode[src_lo]));
 2039         }
 2040       } else {                    // gpr --> stack spill
 2041         assert(dst_lo_rc == rc_stack, "spill to bad register class");
 2042         __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset);
 2043       }
 2044       break;
 2045     case rc_float:
 2046       if (dst_lo_rc == rc_int) {  // fpr --> gpr copy
 2047         if (is64) {
 2048             __ fmovd(as_Register(Matcher::_regEncode[dst_lo]),
 2049                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 2050         } else {
 2051             __ fmovs(as_Register(Matcher::_regEncode[dst_lo]),
 2052                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 2053         }
 2054       } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy
 2055         if (is64) {
 2056             __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2057                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 2058         } else {
 2059             __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2060                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 2061         }
 2062       } else {                    // fpr --> stack spill
 2063         assert(dst_lo_rc == rc_stack, "spill to bad register class");
 2064         __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
 2065                  is64 ? __ D : __ S, dst_offset);
 2066       }
 2067       break;
 2068     case rc_stack:
 2069       if (dst_lo_rc == rc_int) {  // stack --> gpr load
 2070         __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
 2071       } else if (dst_lo_rc == rc_float) { // stack --> fpr load
 2072         __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2073                    is64 ? __ D : __ S, src_offset);
 2074       } else if (dst_lo_rc == rc_predicate) {
 2075         __ unspill_sve_predicate(as_PRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo),
 2076                                  Matcher::scalable_vector_reg_size(T_BYTE) >> 3);
 2077       } else {                    // stack --> stack copy
 2078         assert(dst_lo_rc == rc_stack, "spill to bad register class");
 2079         if (ideal_reg() == Op_RegVectMask) {
 2080           __ spill_copy_sve_predicate_stack_to_stack(src_offset, dst_offset,
 2081                                                      Matcher::scalable_vector_reg_size(T_BYTE) >> 3);
 2082         } else {
 2083           __ unspill(rscratch1, is64, src_offset);
 2084           __ spill(rscratch1, is64, dst_offset);
 2085         }
 2086       }
 2087       break;
 2088     case rc_predicate:
 2089       if (dst_lo_rc == rc_predicate) {
 2090         __ sve_mov(as_PRegister(Matcher::_regEncode[dst_lo]), as_PRegister(Matcher::_regEncode[src_lo]));
 2091       } else if (dst_lo_rc == rc_stack) {
 2092         __ spill_sve_predicate(as_PRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo),
 2093                                Matcher::scalable_vector_reg_size(T_BYTE) >> 3);
 2094       } else {
 2095         assert(false, "bad src and dst rc_class combination.");
 2096         ShouldNotReachHere();
 2097       }
 2098       break;
 2099     default:
 2100       assert(false, "bad rc_class for spill");
 2101       ShouldNotReachHere();
 2102     }
 2103   }
 2104 
 2105   if (st) {
 2106     st->print("spill ");
 2107     if (src_lo_rc == rc_stack) {
 2108       st->print("[sp, #%d] -> ", ra_->reg2offset(src_lo));
 2109     } else {
 2110       st->print("%s -> ", Matcher::regName[src_lo]);
 2111     }
 2112     if (dst_lo_rc == rc_stack) {
 2113       st->print("[sp, #%d]", ra_->reg2offset(dst_lo));
 2114     } else {
 2115       st->print("%s", Matcher::regName[dst_lo]);
 2116     }
 2117     if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) {
 2118       int vsize = 0;
 2119       switch (ideal_reg()) {
 2120       case Op_VecD:
 2121         vsize = 64;
 2122         break;
 2123       case Op_VecX:
 2124         vsize = 128;
 2125         break;
 2126       case Op_VecA:
 2127         vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8;
 2128         break;
 2129       default:
 2130         assert(false, "bad register type for spill");
 2131         ShouldNotReachHere();
 2132       }
 2133       st->print("\t# vector spill size = %d", vsize);
 2134     } else if (ideal_reg() == Op_RegVectMask) {
 2135       assert(Matcher::supports_scalable_vector(), "bad register type for spill");
 2136       int vsize = Matcher::scalable_predicate_reg_slots() * 32;
 2137       st->print("\t# predicate spill size = %d", vsize);
 2138     } else {
 2139       st->print("\t# spill size = %d", is64 ? 64 : 32);
 2140     }
 2141   }
 2142 
 2143   return 0;
 2144 
 2145 }
 2146 
 2147 #ifndef PRODUCT
 2148 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 2149   if (!ra_)
 2150     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
 2151   else
 2152     implementation(nullptr, ra_, false, st);
 2153 }
 2154 #endif
 2155 
 2156 void MachSpillCopyNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2157   implementation(masm, ra_, false, nullptr);
 2158 }
 2159 
 2160 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
 2161   return MachNode::size(ra_);
 2162 }
 2163 
 2164 //=============================================================================
 2165 
 2166 #ifndef PRODUCT
 2167 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 2168   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2169   int reg = ra_->get_reg_first(this);
 2170   st->print("add %s, rsp, #%d]\t# box lock",
 2171             Matcher::regName[reg], offset);
 2172 }
 2173 #endif
 2174 
 2175 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2176   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2177   int reg    = ra_->get_encode(this);
 2178 
 2179   // This add will handle any 24-bit signed offset. 24 bits allows an
 2180   // 8 megabyte stack frame.
 2181   __ add(as_Register(reg), sp, offset);
 2182 }
 2183 
 2184 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 2185   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 2186   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2187 
 2188   if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
 2189     return NativeInstruction::instruction_size;
 2190   } else {
 2191     return 2 * NativeInstruction::instruction_size;
 2192   }
 2193 }
 2194 
 2195 //=============================================================================
 2196 
 2197 #ifndef PRODUCT
 2198 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2199 {
 2200   st->print_cr("# MachUEPNode");
 2201   if (UseCompressedClassPointers) {
 2202     st->print_cr("\tldrw rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2203     st->print_cr("\tldrw r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2204     st->print_cr("\tcmpw rscratch1, r10");
 2205   } else {
 2206     st->print_cr("\tldr rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2207     st->print_cr("\tldr r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2208     st->print_cr("\tcmp rscratch1, r10");
 2209   }
 2210   st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
 2211 }
 2212 #endif
 2213 
 2214 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 2215 {
 2216   __ ic_check(InteriorEntryAlignment);
 2217 }
 2218 
 2219 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
 2220 {
 2221   return MachNode::size(ra_);
 2222 }
 2223 
 2224 // REQUIRED EMIT CODE
 2225 
 2226 //=============================================================================
 2227 
 2228 // Emit exception handler code.
 2229 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm)
 2230 {
 2231   // mov rscratch1 #exception_blob_entry_point
 2232   // br rscratch1
 2233   // Note that the code buffer's insts_mark is always relative to insts.
 2234   // That's why we must use the macroassembler to generate a handler.
 2235   address base = __ start_a_stub(size_exception_handler());
 2236   if (base == nullptr) {
 2237     ciEnv::current()->record_failure("CodeCache is full");
 2238     return 0;  // CodeBuffer::expand failed
 2239   }
 2240   int offset = __ offset();
 2241   __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
 2242   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
 2243   __ end_a_stub();
 2244   return offset;
 2245 }
 2246 
 2247 // Emit deopt handler code.
 2248 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm)
 2249 {
 2250   // Note that the code buffer's insts_mark is always relative to insts.
 2251   // That's why we must use the macroassembler to generate a handler.
 2252   address base = __ start_a_stub(size_deopt_handler());
 2253   if (base == nullptr) {
 2254     ciEnv::current()->record_failure("CodeCache is full");
 2255     return 0;  // CodeBuffer::expand failed
 2256   }
 2257   int offset = __ offset();
 2258 
 2259   __ adr(lr, __ pc());
 2260   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 2261 
 2262   assert(__ offset() - offset == (int) size_deopt_handler(), "overflow");
 2263   __ end_a_stub();
 2264   return offset;
 2265 }
 2266 
 2267 // REQUIRED MATCHER CODE
 2268 
 2269 //=============================================================================
 2270 
 2271 bool Matcher::match_rule_supported(int opcode) {
 2272   if (!has_match_rule(opcode))
 2273     return false;
 2274 
 2275   switch (opcode) {
 2276     case Op_OnSpinWait:
 2277       return VM_Version::supports_on_spin_wait();
 2278     case Op_CacheWB:
 2279     case Op_CacheWBPreSync:
 2280     case Op_CacheWBPostSync:
 2281       if (!VM_Version::supports_data_cache_line_flush()) {
 2282         return false;
 2283       }
 2284       break;
 2285     case Op_ExpandBits:
 2286     case Op_CompressBits:
 2287       if (!VM_Version::supports_svebitperm()) {
 2288         return false;
 2289       }
 2290       break;
 2291     case Op_FmaF:
 2292     case Op_FmaD:
 2293     case Op_FmaVF:
 2294     case Op_FmaVD:
 2295       if (!UseFMA) {
 2296         return false;
 2297       }
 2298       break;
 2299     case Op_FmaHF:
 2300       // UseFMA flag also needs to be checked along with FEAT_FP16
 2301       if (!UseFMA || !is_feat_fp16_supported()) {
 2302         return false;
 2303       }
 2304       break;
 2305     case Op_AddHF:
 2306     case Op_SubHF:
 2307     case Op_MulHF:
 2308     case Op_DivHF:
 2309     case Op_MinHF:
 2310     case Op_MaxHF:
 2311     case Op_SqrtHF:
 2312       // Half-precision floating point scalar operations require FEAT_FP16
 2313       // to be available. FEAT_FP16 is enabled if both "fphp" and "asimdhp"
 2314       // features are supported.
 2315       if (!is_feat_fp16_supported()) {
 2316         return false;
 2317       }
 2318       break;
 2319   }
 2320 
 2321   return true; // Per default match rules are supported.
 2322 }
 2323 
 2324 const RegMask* Matcher::predicate_reg_mask(void) {
 2325   return &_PR_REG_mask;
 2326 }
 2327 
 2328 bool Matcher::supports_vector_calling_convention(void) {
 2329   return EnableVectorSupport;
 2330 }
 2331 
 2332 OptoRegPair Matcher::vector_return_value(uint ideal_reg) {
 2333   assert(EnableVectorSupport, "sanity");
 2334   int lo = V0_num;
 2335   int hi = V0_H_num;
 2336   if (ideal_reg == Op_VecX || ideal_reg == Op_VecA) {
 2337     hi = V0_K_num;
 2338   }
 2339   return OptoRegPair(hi, lo);
 2340 }
 2341 
 2342 // Is this branch offset short enough that a short branch can be used?
 2343 //
 2344 // NOTE: If the platform does not provide any short branch variants, then
 2345 //       this method should return false for offset 0.
 2346 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
 2347   // The passed offset is relative to address of the branch.
 2348 
 2349   return (-32768 <= offset && offset < 32768);
 2350 }
 2351 
 2352 // Vector width in bytes.
 2353 int Matcher::vector_width_in_bytes(BasicType bt) {
 2354   // The MaxVectorSize should have been set by detecting SVE max vector register size.
 2355   int size = MIN2((UseSVE > 0) ? (int)FloatRegister::sve_vl_max : (int)FloatRegister::neon_vl, (int)MaxVectorSize);
 2356   // Minimum 2 values in vector
 2357   if (size < 2*type2aelembytes(bt)) size = 0;
 2358   // But never < 4
 2359   if (size < 4) size = 0;
 2360   return size;
 2361 }
 2362 
 2363 // Limits on vector size (number of elements) loaded into vector.
 2364 int Matcher::max_vector_size(const BasicType bt) {
 2365   return vector_width_in_bytes(bt)/type2aelembytes(bt);
 2366 }
 2367 
 2368 int Matcher::min_vector_size(const BasicType bt) {
 2369   int max_size = max_vector_size(bt);
 2370   // Limit the min vector size to 8 bytes.
 2371   int size = 8 / type2aelembytes(bt);
 2372   if (bt == T_BYTE) {
 2373     // To support vector api shuffle/rearrange.
 2374     size = 4;
 2375   } else if (bt == T_BOOLEAN) {
 2376     // To support vector api load/store mask.
 2377     size = 2;
 2378   }
 2379   if (size < 2) size = 2;
 2380   return MIN2(size, max_size);
 2381 }
 2382 
 2383 int Matcher::max_vector_size_auto_vectorization(const BasicType bt) {
 2384   return Matcher::max_vector_size(bt);
 2385 }
 2386 
 2387 // Actual max scalable vector register length.
 2388 int Matcher::scalable_vector_reg_size(const BasicType bt) {
 2389   return Matcher::max_vector_size(bt);
 2390 }
 2391 
 2392 // Vector ideal reg.
 2393 uint Matcher::vector_ideal_reg(int len) {
 2394   if (UseSVE > 0 && FloatRegister::neon_vl < len && len <= FloatRegister::sve_vl_max) {
 2395     return Op_VecA;
 2396   }
 2397   switch(len) {
 2398     // For 16-bit/32-bit mask vector, reuse VecD.
 2399     case  2:
 2400     case  4:
 2401     case  8: return Op_VecD;
 2402     case 16: return Op_VecX;
 2403   }
 2404   ShouldNotReachHere();
 2405   return 0;
 2406 }
 2407 
 2408 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* generic_opnd, uint ideal_reg, bool is_temp) {
 2409   assert(Matcher::is_generic_vector(generic_opnd), "not generic");
 2410   switch (ideal_reg) {
 2411     case Op_VecA: return new vecAOper();
 2412     case Op_VecD: return new vecDOper();
 2413     case Op_VecX: return new vecXOper();
 2414   }
 2415   ShouldNotReachHere();
 2416   return nullptr;
 2417 }
 2418 
 2419 bool Matcher::is_reg2reg_move(MachNode* m) {
 2420   return false;
 2421 }
 2422 
 2423 bool Matcher::is_generic_vector(MachOper* opnd)  {
 2424   return opnd->opcode() == VREG;
 2425 }
 2426 
 2427 // Return whether or not this register is ever used as an argument.
 2428 // This function is used on startup to build the trampoline stubs in
 2429 // generateOptoStub.  Registers not mentioned will be killed by the VM
 2430 // call in the trampoline, and arguments in those registers not be
 2431 // available to the callee.
 2432 bool Matcher::can_be_java_arg(int reg)
 2433 {
 2434   return
 2435     reg ==  R0_num || reg == R0_H_num ||
 2436     reg ==  R1_num || reg == R1_H_num ||
 2437     reg ==  R2_num || reg == R2_H_num ||
 2438     reg ==  R3_num || reg == R3_H_num ||
 2439     reg ==  R4_num || reg == R4_H_num ||
 2440     reg ==  R5_num || reg == R5_H_num ||
 2441     reg ==  R6_num || reg == R6_H_num ||
 2442     reg ==  R7_num || reg == R7_H_num ||
 2443     reg ==  V0_num || reg == V0_H_num ||
 2444     reg ==  V1_num || reg == V1_H_num ||
 2445     reg ==  V2_num || reg == V2_H_num ||
 2446     reg ==  V3_num || reg == V3_H_num ||
 2447     reg ==  V4_num || reg == V4_H_num ||
 2448     reg ==  V5_num || reg == V5_H_num ||
 2449     reg ==  V6_num || reg == V6_H_num ||
 2450     reg ==  V7_num || reg == V7_H_num;
 2451 }
 2452 
 2453 bool Matcher::is_spillable_arg(int reg)
 2454 {
 2455   return can_be_java_arg(reg);
 2456 }
 2457 
 2458 uint Matcher::int_pressure_limit()
 2459 {
 2460   // JDK-8183543: When taking the number of available registers as int
 2461   // register pressure threshold, the jtreg test:
 2462   // test/hotspot/jtreg/compiler/regalloc/TestC2IntPressure.java
 2463   // failed due to C2 compilation failure with
 2464   // "COMPILE SKIPPED: failed spill-split-recycle sanity check".
 2465   //
 2466   // A derived pointer is live at CallNode and then is flagged by RA
 2467   // as a spilled LRG. Spilling heuristics(Spill-USE) explicitly skip
 2468   // derived pointers and lastly fail to spill after reaching maximum
 2469   // number of iterations. Lowering the default pressure threshold to
 2470   // (_NO_SPECIAL_REG32_mask.Size() minus 1) forces CallNode to become
 2471   // a high register pressure area of the code so that split_DEF can
 2472   // generate DefinitionSpillCopy for the derived pointer.
 2473   uint default_int_pressure_threshold = _NO_SPECIAL_REG32_mask.Size() - 1;
 2474   if (!PreserveFramePointer) {
 2475     // When PreserveFramePointer is off, frame pointer is allocatable,
 2476     // but different from other SOC registers, it is excluded from
 2477     // fatproj's mask because its save type is No-Save. Decrease 1 to
 2478     // ensure high pressure at fatproj when PreserveFramePointer is off.
 2479     // See check_pressure_at_fatproj().
 2480     default_int_pressure_threshold--;
 2481   }
 2482   return (INTPRESSURE == -1) ? default_int_pressure_threshold : INTPRESSURE;
 2483 }
 2484 
 2485 uint Matcher::float_pressure_limit()
 2486 {
 2487   // _FLOAT_REG_mask is generated by adlc from the float_reg register class.
 2488   return (FLOATPRESSURE == -1) ? _FLOAT_REG_mask.Size() : FLOATPRESSURE;
 2489 }
 2490 
 2491 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
 2492   return false;
 2493 }
 2494 
 2495 RegMask Matcher::divI_proj_mask() {
 2496   ShouldNotReachHere();
 2497   return RegMask();
 2498 }
 2499 
 2500 // Register for MODI projection of divmodI.
 2501 RegMask Matcher::modI_proj_mask() {
 2502   ShouldNotReachHere();
 2503   return RegMask();
 2504 }
 2505 
 2506 // Register for DIVL projection of divmodL.
 2507 RegMask Matcher::divL_proj_mask() {
 2508   ShouldNotReachHere();
 2509   return RegMask();
 2510 }
 2511 
 2512 // Register for MODL projection of divmodL.
 2513 RegMask Matcher::modL_proj_mask() {
 2514   ShouldNotReachHere();
 2515   return RegMask();
 2516 }
 2517 
 2518 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
 2519   return FP_REG_mask();
 2520 }
 2521 
 2522 bool size_fits_all_mem_uses(AddPNode* addp, int shift) {
 2523   for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
 2524     Node* u = addp->fast_out(i);
 2525     if (u->is_LoadStore()) {
 2526       // On AArch64, LoadStoreNodes (i.e. compare and swap
 2527       // instructions) only take register indirect as an operand, so
 2528       // any attempt to use an AddPNode as an input to a LoadStoreNode
 2529       // must fail.
 2530       return false;
 2531     }
 2532     if (u->is_Mem()) {
 2533       int opsize = u->as_Mem()->memory_size();
 2534       assert(opsize > 0, "unexpected memory operand size");
 2535       if (u->as_Mem()->memory_size() != (1<<shift)) {
 2536         return false;
 2537       }
 2538     }
 2539   }
 2540   return true;
 2541 }
 2542 
 2543 // Convert BootTest condition to Assembler condition.
 2544 // Replicate the logic of cmpOpOper::ccode() and cmpOpUOper::ccode().
 2545 Assembler::Condition to_assembler_cond(BoolTest::mask cond) {
 2546   Assembler::Condition result;
 2547   switch(cond) {
 2548     case BoolTest::eq:
 2549       result = Assembler::EQ; break;
 2550     case BoolTest::ne:
 2551       result = Assembler::NE; break;
 2552     case BoolTest::le:
 2553       result = Assembler::LE; break;
 2554     case BoolTest::ge:
 2555       result = Assembler::GE; break;
 2556     case BoolTest::lt:
 2557       result = Assembler::LT; break;
 2558     case BoolTest::gt:
 2559       result = Assembler::GT; break;
 2560     case BoolTest::ule:
 2561       result = Assembler::LS; break;
 2562     case BoolTest::uge:
 2563       result = Assembler::HS; break;
 2564     case BoolTest::ult:
 2565       result = Assembler::LO; break;
 2566     case BoolTest::ugt:
 2567       result = Assembler::HI; break;
 2568     case BoolTest::overflow:
 2569       result = Assembler::VS; break;
 2570     case BoolTest::no_overflow:
 2571       result = Assembler::VC; break;
 2572     default:
 2573       ShouldNotReachHere();
 2574       return Assembler::Condition(-1);
 2575   }
 2576 
 2577   // Check conversion
 2578   if (cond & BoolTest::unsigned_compare) {
 2579     assert(cmpOpUOper((BoolTest::mask)((int)cond & ~(BoolTest::unsigned_compare))).ccode() == result, "Invalid conversion");
 2580   } else {
 2581     assert(cmpOpOper(cond).ccode() == result, "Invalid conversion");
 2582   }
 2583 
 2584   return result;
 2585 }
 2586 
 2587 // Binary src (Replicate con)
 2588 static bool is_valid_sve_arith_imm_pattern(Node* n, Node* m) {
 2589   if (n == nullptr || m == nullptr) {
 2590     return false;
 2591   }
 2592 
 2593   if (UseSVE == 0 || m->Opcode() != Op_Replicate) {
 2594     return false;
 2595   }
 2596 
 2597   Node* imm_node = m->in(1);
 2598   if (!imm_node->is_Con()) {
 2599     return false;
 2600   }
 2601 
 2602   const Type* t = imm_node->bottom_type();
 2603   if (!(t->isa_int() || t->isa_long())) {
 2604     return false;
 2605   }
 2606 
 2607   switch (n->Opcode()) {
 2608   case Op_AndV:
 2609   case Op_OrV:
 2610   case Op_XorV: {
 2611     Assembler::SIMD_RegVariant T = Assembler::elemType_to_regVariant(Matcher::vector_element_basic_type(n));
 2612     uint64_t value = t->isa_long() ? (uint64_t)imm_node->get_long() : (uint64_t)imm_node->get_int();
 2613     return Assembler::operand_valid_for_sve_logical_immediate(Assembler::regVariant_to_elemBits(T), value);
 2614   }
 2615   case Op_AddVB:
 2616     return (imm_node->get_int() <= 255 && imm_node->get_int() >= -255);
 2617   case Op_AddVS:
 2618   case Op_AddVI:
 2619     return Assembler::operand_valid_for_sve_add_sub_immediate((int64_t)imm_node->get_int());
 2620   case Op_AddVL:
 2621     return Assembler::operand_valid_for_sve_add_sub_immediate(imm_node->get_long());
 2622   default:
 2623     return false;
 2624   }
 2625 }
 2626 
 2627 // (XorV src (Replicate m1))
 2628 // (XorVMask src (MaskAll m1))
 2629 static bool is_vector_bitwise_not_pattern(Node* n, Node* m) {
 2630   if (n != nullptr && m != nullptr) {
 2631     return (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) &&
 2632            VectorNode::is_all_ones_vector(m);
 2633   }
 2634   return false;
 2635 }
 2636 
 2637 // Should the matcher clone input 'm' of node 'n'?
 2638 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
 2639   if (is_vshift_con_pattern(n, m) ||
 2640       is_vector_bitwise_not_pattern(n, m) ||
 2641       is_valid_sve_arith_imm_pattern(n, m) ||
 2642       is_encode_and_store_pattern(n, m)) {
 2643     mstack.push(m, Visit);
 2644     return true;
 2645   }
 2646   return false;
 2647 }
 2648 
 2649 // Should the Matcher clone shifts on addressing modes, expecting them
 2650 // to be subsumed into complex addressing expressions or compute them
 2651 // into registers?
 2652 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
 2653 
 2654   // Loads and stores with indirect memory input (e.g., volatile loads and
 2655   // stores) do not subsume the input into complex addressing expressions. If
 2656   // the addressing expression is input to at least one such load or store, do
 2657   // not clone the addressing expression. Query needs_acquiring_load and
 2658   // needs_releasing_store as a proxy for indirect memory input, as it is not
 2659   // possible to directly query for indirect memory input at this stage.
 2660   for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
 2661     Node* n = m->fast_out(i);
 2662     if (n->is_Load() && needs_acquiring_load(n)) {
 2663       return false;
 2664     }
 2665     if (n->is_Store() && needs_releasing_store(n)) {
 2666       return false;
 2667     }
 2668   }
 2669 
 2670   if (clone_base_plus_offset_address(m, mstack, address_visited)) {
 2671     return true;
 2672   }
 2673 
 2674   Node *off = m->in(AddPNode::Offset);
 2675   if (off->Opcode() == Op_LShiftL && off->in(2)->is_Con() &&
 2676       size_fits_all_mem_uses(m, off->in(2)->get_int()) &&
 2677       // Are there other uses besides address expressions?
 2678       !is_visited(off)) {
 2679     address_visited.set(off->_idx); // Flag as address_visited
 2680     mstack.push(off->in(2), Visit);
 2681     Node *conv = off->in(1);
 2682     if (conv->Opcode() == Op_ConvI2L &&
 2683         // Are there other uses besides address expressions?
 2684         !is_visited(conv)) {
 2685       address_visited.set(conv->_idx); // Flag as address_visited
 2686       mstack.push(conv->in(1), Pre_Visit);
 2687     } else {
 2688       mstack.push(conv, Pre_Visit);
 2689     }
 2690     address_visited.test_set(m->_idx); // Flag as address_visited
 2691     mstack.push(m->in(AddPNode::Address), Pre_Visit);
 2692     mstack.push(m->in(AddPNode::Base), Pre_Visit);
 2693     return true;
 2694   } else if (off->Opcode() == Op_ConvI2L &&
 2695              // Are there other uses besides address expressions?
 2696              !is_visited(off)) {
 2697     address_visited.test_set(m->_idx); // Flag as address_visited
 2698     address_visited.set(off->_idx); // Flag as address_visited
 2699     mstack.push(off->in(1), Pre_Visit);
 2700     mstack.push(m->in(AddPNode::Address), Pre_Visit);
 2701     mstack.push(m->in(AddPNode::Base), Pre_Visit);
 2702     return true;
 2703   }
 2704   return false;
 2705 }
 2706 
 2707 #define MOV_VOLATILE(REG, BASE, INDEX, SCALE, DISP, SCRATCH, INSN)      \
 2708   {                                                                     \
 2709     guarantee(INDEX == -1, "mode not permitted for volatile");          \
 2710     guarantee(DISP == 0, "mode not permitted for volatile");            \
 2711     guarantee(SCALE == 0, "mode not permitted for volatile");           \
 2712     __ INSN(REG, as_Register(BASE));                                    \
 2713   }
 2714 
 2715 
 2716 static Address mem2address(int opcode, Register base, int index, int size, int disp)
 2717   {
 2718     Address::extend scale;
 2719 
 2720     // Hooboy, this is fugly.  We need a way to communicate to the
 2721     // encoder that the index needs to be sign extended, so we have to
 2722     // enumerate all the cases.
 2723     switch (opcode) {
 2724     case INDINDEXSCALEDI2L:
 2725     case INDINDEXSCALEDI2LN:
 2726     case INDINDEXI2L:
 2727     case INDINDEXI2LN:
 2728       scale = Address::sxtw(size);
 2729       break;
 2730     default:
 2731       scale = Address::lsl(size);
 2732     }
 2733 
 2734     if (index == -1) {
 2735       return Address(base, disp);
 2736     } else {
 2737       assert(disp == 0, "unsupported address mode: disp = %d", disp);
 2738       return Address(base, as_Register(index), scale);
 2739     }
 2740   }
 2741 
 2742 
 2743 typedef void (MacroAssembler::* mem_insn)(Register Rt, const Address &adr);
 2744 typedef void (MacroAssembler::* mem_insn2)(Register Rt, Register adr);
 2745 typedef void (MacroAssembler::* mem_float_insn)(FloatRegister Rt, const Address &adr);
 2746 typedef void (MacroAssembler::* mem_vector_insn)(FloatRegister Rt,
 2747                                   MacroAssembler::SIMD_RegVariant T, const Address &adr);
 2748 
 2749   // Used for all non-volatile memory accesses.  The use of
 2750   // $mem->opcode() to discover whether this pattern uses sign-extended
 2751   // offsets is something of a kludge.
 2752   static void loadStore(C2_MacroAssembler* masm, mem_insn insn,
 2753                         Register reg, int opcode,
 2754                         Register base, int index, int scale, int disp,
 2755                         int size_in_memory)
 2756   {
 2757     Address addr = mem2address(opcode, base, index, scale, disp);
 2758     if (addr.getMode() == Address::base_plus_offset) {
 2759       /* Fix up any out-of-range offsets. */
 2760       assert_different_registers(rscratch1, base);
 2761       assert_different_registers(rscratch1, reg);
 2762       addr = __ legitimize_address(addr, size_in_memory, rscratch1);
 2763     }
 2764     (masm->*insn)(reg, addr);
 2765   }
 2766 
 2767   static void loadStore(C2_MacroAssembler* masm, mem_float_insn insn,
 2768                         FloatRegister reg, int opcode,
 2769                         Register base, int index, int size, int disp,
 2770                         int size_in_memory)
 2771   {
 2772     Address::extend scale;
 2773 
 2774     switch (opcode) {
 2775     case INDINDEXSCALEDI2L:
 2776     case INDINDEXSCALEDI2LN:
 2777       scale = Address::sxtw(size);
 2778       break;
 2779     default:
 2780       scale = Address::lsl(size);
 2781     }
 2782 
 2783     if (index == -1) {
 2784       // Fix up any out-of-range offsets.
 2785       assert_different_registers(rscratch1, base);
 2786       Address addr = Address(base, disp);
 2787       addr = __ legitimize_address(addr, size_in_memory, rscratch1);
 2788       (masm->*insn)(reg, addr);
 2789     } else {
 2790       assert(disp == 0, "unsupported address mode: disp = %d", disp);
 2791       (masm->*insn)(reg, Address(base, as_Register(index), scale));
 2792     }
 2793   }
 2794 
 2795   static void loadStore(C2_MacroAssembler* masm, mem_vector_insn insn,
 2796                         FloatRegister reg, MacroAssembler::SIMD_RegVariant T,
 2797                         int opcode, Register base, int index, int size, int disp)
 2798   {
 2799     if (index == -1) {
 2800       (masm->*insn)(reg, T, Address(base, disp));
 2801     } else {
 2802       assert(disp == 0, "unsupported address mode");
 2803       (masm->*insn)(reg, T, Address(base, as_Register(index), Address::lsl(size)));
 2804     }
 2805   }
 2806 
 2807 %}
 2808 
 2809 
 2810 
 2811 //----------ENCODING BLOCK-----------------------------------------------------
 2812 // This block specifies the encoding classes used by the compiler to
 2813 // output byte streams.  Encoding classes are parameterized macros
 2814 // used by Machine Instruction Nodes in order to generate the bit
 2815 // encoding of the instruction.  Operands specify their base encoding
 2816 // interface with the interface keyword.  There are currently
 2817 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
 2818 // COND_INTER.  REG_INTER causes an operand to generate a function
 2819 // which returns its register number when queried.  CONST_INTER causes
 2820 // an operand to generate a function which returns the value of the
 2821 // constant when queried.  MEMORY_INTER causes an operand to generate
 2822 // four functions which return the Base Register, the Index Register,
 2823 // the Scale Value, and the Offset Value of the operand when queried.
 2824 // COND_INTER causes an operand to generate six functions which return
 2825 // the encoding code (ie - encoding bits for the instruction)
 2826 // associated with each basic boolean condition for a conditional
 2827 // instruction.
 2828 //
 2829 // Instructions specify two basic values for encoding.  Again, a
 2830 // function is available to check if the constant displacement is an
 2831 // oop. They use the ins_encode keyword to specify their encoding
 2832 // classes (which must be a sequence of enc_class names, and their
 2833 // parameters, specified in the encoding block), and they use the
 2834 // opcode keyword to specify, in order, their primary, secondary, and
 2835 // tertiary opcode.  Only the opcode sections which a particular
 2836 // instruction needs for encoding need to be specified.
 2837 encode %{
 2838   // Build emit functions for each basic byte or larger field in the
 2839   // intel encoding scheme (opcode, rm, sib, immediate), and call them
 2840   // from C++ code in the enc_class source block.  Emit functions will
 2841   // live in the main source block for now.  In future, we can
 2842   // generalize this by adding a syntax that specifies the sizes of
 2843   // fields in an order, so that the adlc can build the emit functions
 2844   // automagically
 2845 
 2846   // catch all for unimplemented encodings
 2847   enc_class enc_unimplemented %{
 2848     __ unimplemented("C2 catch all");
 2849   %}
 2850 
 2851   // BEGIN Non-volatile memory access
 2852 
 2853   // This encoding class is generated automatically from ad_encode.m4.
 2854   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2855   enc_class aarch64_enc_ldrsbw(iRegI dst, memory1 mem) %{
 2856     Register dst_reg = as_Register($dst$$reg);
 2857     loadStore(masm, &MacroAssembler::ldrsbw, dst_reg, $mem->opcode(),
 2858                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2859   %}
 2860 
 2861   // This encoding class is generated automatically from ad_encode.m4.
 2862   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2863   enc_class aarch64_enc_ldrsb(iRegI dst, memory1 mem) %{
 2864     Register dst_reg = as_Register($dst$$reg);
 2865     loadStore(masm, &MacroAssembler::ldrsb, dst_reg, $mem->opcode(),
 2866                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2867   %}
 2868 
 2869   // This encoding class is generated automatically from ad_encode.m4.
 2870   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2871   enc_class aarch64_enc_ldrb(iRegI dst, memory1 mem) %{
 2872     Register dst_reg = as_Register($dst$$reg);
 2873     loadStore(masm, &MacroAssembler::ldrb, dst_reg, $mem->opcode(),
 2874                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2875   %}
 2876 
 2877   // This encoding class is generated automatically from ad_encode.m4.
 2878   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2879   enc_class aarch64_enc_ldrb(iRegL dst, memory1 mem) %{
 2880     Register dst_reg = as_Register($dst$$reg);
 2881     loadStore(masm, &MacroAssembler::ldrb, dst_reg, $mem->opcode(),
 2882                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2883   %}
 2884 
 2885   // This encoding class is generated automatically from ad_encode.m4.
 2886   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2887   enc_class aarch64_enc_ldrshw(iRegI dst, memory2 mem) %{
 2888     Register dst_reg = as_Register($dst$$reg);
 2889     loadStore(masm, &MacroAssembler::ldrshw, dst_reg, $mem->opcode(),
 2890                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2891   %}
 2892 
 2893   // This encoding class is generated automatically from ad_encode.m4.
 2894   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2895   enc_class aarch64_enc_ldrsh(iRegI dst, memory2 mem) %{
 2896     Register dst_reg = as_Register($dst$$reg);
 2897     loadStore(masm, &MacroAssembler::ldrsh, dst_reg, $mem->opcode(),
 2898                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2899   %}
 2900 
 2901   // This encoding class is generated automatically from ad_encode.m4.
 2902   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2903   enc_class aarch64_enc_ldrh(iRegI dst, memory2 mem) %{
 2904     Register dst_reg = as_Register($dst$$reg);
 2905     loadStore(masm, &MacroAssembler::ldrh, dst_reg, $mem->opcode(),
 2906                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2907   %}
 2908 
 2909   // This encoding class is generated automatically from ad_encode.m4.
 2910   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2911   enc_class aarch64_enc_ldrh(iRegL dst, memory2 mem) %{
 2912     Register dst_reg = as_Register($dst$$reg);
 2913     loadStore(masm, &MacroAssembler::ldrh, dst_reg, $mem->opcode(),
 2914                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2915   %}
 2916 
 2917   // This encoding class is generated automatically from ad_encode.m4.
 2918   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2919   enc_class aarch64_enc_ldrw(iRegI dst, memory4 mem) %{
 2920     Register dst_reg = as_Register($dst$$reg);
 2921     loadStore(masm, &MacroAssembler::ldrw, dst_reg, $mem->opcode(),
 2922                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 2923   %}
 2924 
 2925   // This encoding class is generated automatically from ad_encode.m4.
 2926   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2927   enc_class aarch64_enc_ldrw(iRegL dst, memory4 mem) %{
 2928     Register dst_reg = as_Register($dst$$reg);
 2929     loadStore(masm, &MacroAssembler::ldrw, dst_reg, $mem->opcode(),
 2930                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 2931   %}
 2932 
 2933   // This encoding class is generated automatically from ad_encode.m4.
 2934   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2935   enc_class aarch64_enc_ldrsw(iRegL dst, memory4 mem) %{
 2936     Register dst_reg = as_Register($dst$$reg);
 2937     loadStore(masm, &MacroAssembler::ldrsw, dst_reg, $mem->opcode(),
 2938                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 2939   %}
 2940 
 2941   // This encoding class is generated automatically from ad_encode.m4.
 2942   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2943   enc_class aarch64_enc_ldr(iRegL dst, memory8 mem) %{
 2944     Register dst_reg = as_Register($dst$$reg);
 2945     loadStore(masm, &MacroAssembler::ldr, dst_reg, $mem->opcode(),
 2946                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 2947   %}
 2948 
 2949   // This encoding class is generated automatically from ad_encode.m4.
 2950   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2951   enc_class aarch64_enc_ldrs(vRegF dst, memory4 mem) %{
 2952     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 2953     loadStore(masm, &MacroAssembler::ldrs, dst_reg, $mem->opcode(),
 2954                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 2955   %}
 2956 
 2957   // This encoding class is generated automatically from ad_encode.m4.
 2958   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2959   enc_class aarch64_enc_ldrd(vRegD dst, memory8 mem) %{
 2960     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 2961     loadStore(masm, &MacroAssembler::ldrd, dst_reg, $mem->opcode(),
 2962                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 2963   %}
 2964 
 2965   // This encoding class is generated automatically from ad_encode.m4.
 2966   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2967   enc_class aarch64_enc_strb(iRegI src, memory1 mem) %{
 2968     Register src_reg = as_Register($src$$reg);
 2969     loadStore(masm, &MacroAssembler::strb, src_reg, $mem->opcode(),
 2970                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2971   %}
 2972 
 2973   // This encoding class is generated automatically from ad_encode.m4.
 2974   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2975   enc_class aarch64_enc_strb0(memory1 mem) %{
 2976     loadStore(masm, &MacroAssembler::strb, zr, $mem->opcode(),
 2977                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2978   %}
 2979 
 2980   // This encoding class is generated automatically from ad_encode.m4.
 2981   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2982   enc_class aarch64_enc_strh(iRegI src, memory2 mem) %{
 2983     Register src_reg = as_Register($src$$reg);
 2984     loadStore(masm, &MacroAssembler::strh, src_reg, $mem->opcode(),
 2985                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2986   %}
 2987 
 2988   // This encoding class is generated automatically from ad_encode.m4.
 2989   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2990   enc_class aarch64_enc_strh0(memory2 mem) %{
 2991     loadStore(masm, &MacroAssembler::strh, zr, $mem->opcode(),
 2992                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2993   %}
 2994 
 2995   // This encoding class is generated automatically from ad_encode.m4.
 2996   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2997   enc_class aarch64_enc_strw(iRegI src, memory4 mem) %{
 2998     Register src_reg = as_Register($src$$reg);
 2999     loadStore(masm, &MacroAssembler::strw, src_reg, $mem->opcode(),
 3000                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 3001   %}
 3002 
 3003   // This encoding class is generated automatically from ad_encode.m4.
 3004   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3005   enc_class aarch64_enc_strw0(memory4 mem) %{
 3006     loadStore(masm, &MacroAssembler::strw, zr, $mem->opcode(),
 3007                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 3008   %}
 3009 
 3010   // This encoding class is generated automatically from ad_encode.m4.
 3011   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3012   enc_class aarch64_enc_str(iRegL src, memory8 mem) %{
 3013     Register src_reg = as_Register($src$$reg);
 3014     // we sometimes get asked to store the stack pointer into the
 3015     // current thread -- we cannot do that directly on AArch64
 3016     if (src_reg == r31_sp) {
 3017       assert(as_Register($mem$$base) == rthread, "unexpected store for sp");
 3018       __ mov(rscratch2, sp);
 3019       src_reg = rscratch2;
 3020     }
 3021     loadStore(masm, &MacroAssembler::str, src_reg, $mem->opcode(),
 3022                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 3023   %}
 3024 
 3025   // This encoding class is generated automatically from ad_encode.m4.
 3026   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3027   enc_class aarch64_enc_str0(memory8 mem) %{
 3028     loadStore(masm, &MacroAssembler::str, zr, $mem->opcode(),
 3029                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 3030   %}
 3031 
 3032   // This encoding class is generated automatically from ad_encode.m4.
 3033   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3034   enc_class aarch64_enc_strs(vRegF src, memory4 mem) %{
 3035     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3036     loadStore(masm, &MacroAssembler::strs, src_reg, $mem->opcode(),
 3037                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 3038   %}
 3039 
 3040   // This encoding class is generated automatically from ad_encode.m4.
 3041   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3042   enc_class aarch64_enc_strd(vRegD src, memory8 mem) %{
 3043     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3044     loadStore(masm, &MacroAssembler::strd, src_reg, $mem->opcode(),
 3045                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 3046   %}
 3047 
 3048   // This encoding class is generated automatically from ad_encode.m4.
 3049   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3050   enc_class aarch64_enc_strb0_ordered(memory4 mem) %{
 3051       __ membar(Assembler::StoreStore);
 3052       loadStore(masm, &MacroAssembler::strb, zr, $mem->opcode(),
 3053                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 3054   %}
 3055 
 3056   // END Non-volatile memory access
 3057 
 3058   // Vector loads and stores
 3059   enc_class aarch64_enc_ldrvH(vReg dst, memory mem) %{
 3060     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 3061     loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::H,
 3062        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3063   %}
 3064 
 3065   enc_class aarch64_enc_ldrvS(vReg dst, memory mem) %{
 3066     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 3067     loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::S,
 3068        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3069   %}
 3070 
 3071   enc_class aarch64_enc_ldrvD(vReg dst, memory mem) %{
 3072     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 3073     loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::D,
 3074        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3075   %}
 3076 
 3077   enc_class aarch64_enc_ldrvQ(vReg dst, memory mem) %{
 3078     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 3079     loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::Q,
 3080        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3081   %}
 3082 
 3083   enc_class aarch64_enc_strvH(vReg src, memory mem) %{
 3084     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3085     loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::H,
 3086        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3087   %}
 3088 
 3089   enc_class aarch64_enc_strvS(vReg src, memory mem) %{
 3090     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3091     loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::S,
 3092        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3093   %}
 3094 
 3095   enc_class aarch64_enc_strvD(vReg src, memory mem) %{
 3096     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3097     loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::D,
 3098        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3099   %}
 3100 
 3101   enc_class aarch64_enc_strvQ(vReg src, memory mem) %{
 3102     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3103     loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::Q,
 3104        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3105   %}
 3106 
 3107   // volatile loads and stores
 3108 
 3109   enc_class aarch64_enc_stlrb(iRegI src, memory mem) %{
 3110     MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3111                  rscratch1, stlrb);
 3112   %}
 3113 
 3114   enc_class aarch64_enc_stlrb0(memory mem) %{
 3115     MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3116                  rscratch1, stlrb);
 3117   %}
 3118 
 3119   enc_class aarch64_enc_stlrh(iRegI src, memory mem) %{
 3120     MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3121                  rscratch1, stlrh);
 3122   %}
 3123 
 3124   enc_class aarch64_enc_stlrh0(memory mem) %{
 3125     MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3126                  rscratch1, stlrh);
 3127   %}
 3128 
 3129   enc_class aarch64_enc_stlrw(iRegI src, memory mem) %{
 3130     MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3131                  rscratch1, stlrw);
 3132   %}
 3133 
 3134   enc_class aarch64_enc_stlrw0(memory mem) %{
 3135     MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3136                  rscratch1, stlrw);
 3137   %}
 3138 
 3139   enc_class aarch64_enc_ldarsbw(iRegI dst, memory mem) %{
 3140     Register dst_reg = as_Register($dst$$reg);
 3141     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3142              rscratch1, ldarb);
 3143     __ sxtbw(dst_reg, dst_reg);
 3144   %}
 3145 
 3146   enc_class aarch64_enc_ldarsb(iRegL dst, memory mem) %{
 3147     Register dst_reg = as_Register($dst$$reg);
 3148     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3149              rscratch1, ldarb);
 3150     __ sxtb(dst_reg, dst_reg);
 3151   %}
 3152 
 3153   enc_class aarch64_enc_ldarbw(iRegI dst, memory mem) %{
 3154     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3155              rscratch1, ldarb);
 3156   %}
 3157 
 3158   enc_class aarch64_enc_ldarb(iRegL dst, memory mem) %{
 3159     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3160              rscratch1, ldarb);
 3161   %}
 3162 
 3163   enc_class aarch64_enc_ldarshw(iRegI dst, memory mem) %{
 3164     Register dst_reg = as_Register($dst$$reg);
 3165     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3166              rscratch1, ldarh);
 3167     __ sxthw(dst_reg, dst_reg);
 3168   %}
 3169 
 3170   enc_class aarch64_enc_ldarsh(iRegL dst, memory mem) %{
 3171     Register dst_reg = as_Register($dst$$reg);
 3172     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3173              rscratch1, ldarh);
 3174     __ sxth(dst_reg, dst_reg);
 3175   %}
 3176 
 3177   enc_class aarch64_enc_ldarhw(iRegI dst, memory mem) %{
 3178     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3179              rscratch1, ldarh);
 3180   %}
 3181 
 3182   enc_class aarch64_enc_ldarh(iRegL dst, memory mem) %{
 3183     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3184              rscratch1, ldarh);
 3185   %}
 3186 
 3187   enc_class aarch64_enc_ldarw(iRegI dst, memory mem) %{
 3188     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3189              rscratch1, ldarw);
 3190   %}
 3191 
 3192   enc_class aarch64_enc_ldarw(iRegL dst, memory mem) %{
 3193     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3194              rscratch1, ldarw);
 3195   %}
 3196 
 3197   enc_class aarch64_enc_ldar(iRegL dst, memory mem) %{
 3198     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3199              rscratch1, ldar);
 3200   %}
 3201 
 3202   enc_class aarch64_enc_fldars(vRegF dst, memory mem) %{
 3203     MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3204              rscratch1, ldarw);
 3205     __ fmovs(as_FloatRegister($dst$$reg), rscratch1);
 3206   %}
 3207 
 3208   enc_class aarch64_enc_fldard(vRegD dst, memory mem) %{
 3209     MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3210              rscratch1, ldar);
 3211     __ fmovd(as_FloatRegister($dst$$reg), rscratch1);
 3212   %}
 3213 
 3214   enc_class aarch64_enc_stlr(iRegL src, memory mem) %{
 3215     Register src_reg = as_Register($src$$reg);
 3216     // we sometimes get asked to store the stack pointer into the
 3217     // current thread -- we cannot do that directly on AArch64
 3218     if (src_reg == r31_sp) {
 3219       assert(as_Register($mem$$base) == rthread, "unexpected store for sp");
 3220       __ mov(rscratch2, sp);
 3221       src_reg = rscratch2;
 3222     }
 3223     MOV_VOLATILE(src_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3224                  rscratch1, stlr);
 3225   %}
 3226 
 3227   enc_class aarch64_enc_stlr0(memory mem) %{
 3228     MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3229                  rscratch1, stlr);
 3230   %}
 3231 
 3232   enc_class aarch64_enc_fstlrs(vRegF src, memory mem) %{
 3233     {
 3234       FloatRegister src_reg = as_FloatRegister($src$$reg);
 3235       __ fmovs(rscratch2, src_reg);
 3236     }
 3237     MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3238                  rscratch1, stlrw);
 3239   %}
 3240 
 3241   enc_class aarch64_enc_fstlrd(vRegD src, memory mem) %{
 3242     {
 3243       FloatRegister src_reg = as_FloatRegister($src$$reg);
 3244       __ fmovd(rscratch2, src_reg);
 3245     }
 3246     MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3247                  rscratch1, stlr);
 3248   %}
 3249 
 3250   // synchronized read/update encodings
 3251 
 3252   enc_class aarch64_enc_ldaxr(iRegL dst, memory8 mem) %{
 3253     Register dst_reg = as_Register($dst$$reg);
 3254     Register base = as_Register($mem$$base);
 3255     int index = $mem$$index;
 3256     int scale = $mem$$scale;
 3257     int disp = $mem$$disp;
 3258     if (index == -1) {
 3259        if (disp != 0) {
 3260         __ lea(rscratch1, Address(base, disp));
 3261         __ ldaxr(dst_reg, rscratch1);
 3262       } else {
 3263         // TODO
 3264         // should we ever get anything other than this case?
 3265         __ ldaxr(dst_reg, base);
 3266       }
 3267     } else {
 3268       Register index_reg = as_Register(index);
 3269       if (disp == 0) {
 3270         __ lea(rscratch1, Address(base, index_reg, Address::lsl(scale)));
 3271         __ ldaxr(dst_reg, rscratch1);
 3272       } else {
 3273         __ lea(rscratch1, Address(base, disp));
 3274         __ lea(rscratch1, Address(rscratch1, index_reg, Address::lsl(scale)));
 3275         __ ldaxr(dst_reg, rscratch1);
 3276       }
 3277     }
 3278   %}
 3279 
 3280   enc_class aarch64_enc_stlxr(iRegLNoSp src, memory8 mem) %{
 3281     Register src_reg = as_Register($src$$reg);
 3282     Register base = as_Register($mem$$base);
 3283     int index = $mem$$index;
 3284     int scale = $mem$$scale;
 3285     int disp = $mem$$disp;
 3286     if (index == -1) {
 3287        if (disp != 0) {
 3288         __ lea(rscratch2, Address(base, disp));
 3289         __ stlxr(rscratch1, src_reg, rscratch2);
 3290       } else {
 3291         // TODO
 3292         // should we ever get anything other than this case?
 3293         __ stlxr(rscratch1, src_reg, base);
 3294       }
 3295     } else {
 3296       Register index_reg = as_Register(index);
 3297       if (disp == 0) {
 3298         __ lea(rscratch2, Address(base, index_reg, Address::lsl(scale)));
 3299         __ stlxr(rscratch1, src_reg, rscratch2);
 3300       } else {
 3301         __ lea(rscratch2, Address(base, disp));
 3302         __ lea(rscratch2, Address(rscratch2, index_reg, Address::lsl(scale)));
 3303         __ stlxr(rscratch1, src_reg, rscratch2);
 3304       }
 3305     }
 3306     __ cmpw(rscratch1, zr);
 3307   %}
 3308 
 3309   enc_class aarch64_enc_cmpxchg(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
 3310     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3311     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3312                Assembler::xword, /*acquire*/ false, /*release*/ true,
 3313                /*weak*/ false, noreg);
 3314   %}
 3315 
 3316   enc_class aarch64_enc_cmpxchgw(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3317     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3318     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3319                Assembler::word, /*acquire*/ false, /*release*/ true,
 3320                /*weak*/ false, noreg);
 3321   %}
 3322 
 3323   enc_class aarch64_enc_cmpxchgs(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3324     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3325     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3326                Assembler::halfword, /*acquire*/ false, /*release*/ true,
 3327                /*weak*/ false, noreg);
 3328   %}
 3329 
 3330   enc_class aarch64_enc_cmpxchgb(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3331     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3332     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3333                Assembler::byte, /*acquire*/ false, /*release*/ true,
 3334                /*weak*/ false, noreg);
 3335   %}
 3336 
 3337 
 3338   // The only difference between aarch64_enc_cmpxchg and
 3339   // aarch64_enc_cmpxchg_acq is that we use load-acquire in the
 3340   // CompareAndSwap sequence to serve as a barrier on acquiring a
 3341   // lock.
 3342   enc_class aarch64_enc_cmpxchg_acq(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
 3343     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3344     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3345                Assembler::xword, /*acquire*/ true, /*release*/ true,
 3346                /*weak*/ false, noreg);
 3347   %}
 3348 
 3349   enc_class aarch64_enc_cmpxchgw_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3350     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3351     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3352                Assembler::word, /*acquire*/ true, /*release*/ true,
 3353                /*weak*/ false, noreg);
 3354   %}
 3355 
 3356   enc_class aarch64_enc_cmpxchgs_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3357     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3358     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3359                Assembler::halfword, /*acquire*/ true, /*release*/ true,
 3360                /*weak*/ false, noreg);
 3361   %}
 3362 
 3363   enc_class aarch64_enc_cmpxchgb_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3364     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3365     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3366                Assembler::byte, /*acquire*/ true, /*release*/ true,
 3367                /*weak*/ false, noreg);
 3368   %}
 3369 
 3370   // auxiliary used for CompareAndSwapX to set result register
 3371   enc_class aarch64_enc_cset_eq(iRegINoSp res) %{
 3372     Register res_reg = as_Register($res$$reg);
 3373     __ cset(res_reg, Assembler::EQ);
 3374   %}
 3375 
 3376   // prefetch encodings
 3377 
 3378   enc_class aarch64_enc_prefetchw(memory mem) %{
 3379     Register base = as_Register($mem$$base);
 3380     int index = $mem$$index;
 3381     int scale = $mem$$scale;
 3382     int disp = $mem$$disp;
 3383     if (index == -1) {
 3384       // Fix up any out-of-range offsets.
 3385       assert_different_registers(rscratch1, base);
 3386       Address addr = Address(base, disp);
 3387       addr = __ legitimize_address(addr, 8, rscratch1);
 3388       __ prfm(addr, PSTL1KEEP);
 3389     } else {
 3390       Register index_reg = as_Register(index);
 3391       if (disp == 0) {
 3392         __ prfm(Address(base, index_reg, Address::lsl(scale)), PSTL1KEEP);
 3393       } else {
 3394         __ lea(rscratch1, Address(base, disp));
 3395 	__ prfm(Address(rscratch1, index_reg, Address::lsl(scale)), PSTL1KEEP);
 3396       }
 3397     }
 3398   %}
 3399 
 3400   // mov encodings
 3401 
 3402   enc_class aarch64_enc_movw_imm(iRegI dst, immI src) %{
 3403     uint32_t con = (uint32_t)$src$$constant;
 3404     Register dst_reg = as_Register($dst$$reg);
 3405     if (con == 0) {
 3406       __ movw(dst_reg, zr);
 3407     } else {
 3408       __ movw(dst_reg, con);
 3409     }
 3410   %}
 3411 
 3412   enc_class aarch64_enc_mov_imm(iRegL dst, immL src) %{
 3413     Register dst_reg = as_Register($dst$$reg);
 3414     uint64_t con = (uint64_t)$src$$constant;
 3415     if (con == 0) {
 3416       __ mov(dst_reg, zr);
 3417     } else {
 3418       __ mov(dst_reg, con);
 3419     }
 3420   %}
 3421 
 3422   enc_class aarch64_enc_mov_p(iRegP dst, immP src) %{
 3423     Register dst_reg = as_Register($dst$$reg);
 3424     address con = (address)$src$$constant;
 3425     if (con == nullptr || con == (address)1) {
 3426       ShouldNotReachHere();
 3427     } else {
 3428       relocInfo::relocType rtype = $src->constant_reloc();
 3429       if (rtype == relocInfo::oop_type) {
 3430         __ movoop(dst_reg, (jobject)con);
 3431       } else if (rtype == relocInfo::metadata_type) {
 3432         __ mov_metadata(dst_reg, (Metadata*)con);
 3433       } else {
 3434         assert(rtype == relocInfo::none, "unexpected reloc type");
 3435         if (! __ is_valid_AArch64_address(con) ||
 3436             con < (address)(uintptr_t)os::vm_page_size()) {
 3437           __ mov(dst_reg, con);
 3438         } else {
 3439           uint64_t offset;
 3440           __ adrp(dst_reg, con, offset);
 3441           __ add(dst_reg, dst_reg, offset);
 3442         }
 3443       }
 3444     }
 3445   %}
 3446 
 3447   enc_class aarch64_enc_mov_p0(iRegP dst, immP0 src) %{
 3448     Register dst_reg = as_Register($dst$$reg);
 3449     __ mov(dst_reg, zr);
 3450   %}
 3451 
 3452   enc_class aarch64_enc_mov_p1(iRegP dst, immP_1 src) %{
 3453     Register dst_reg = as_Register($dst$$reg);
 3454     __ mov(dst_reg, (uint64_t)1);
 3455   %}
 3456 
 3457   enc_class aarch64_enc_mov_byte_map_base(iRegP dst, immByteMapBase src) %{
 3458     __ load_byte_map_base($dst$$Register);
 3459   %}
 3460 
 3461   enc_class aarch64_enc_mov_n(iRegN dst, immN src) %{
 3462     Register dst_reg = as_Register($dst$$reg);
 3463     address con = (address)$src$$constant;
 3464     if (con == nullptr) {
 3465       ShouldNotReachHere();
 3466     } else {
 3467       relocInfo::relocType rtype = $src->constant_reloc();
 3468       assert(rtype == relocInfo::oop_type, "unexpected reloc type");
 3469       __ set_narrow_oop(dst_reg, (jobject)con);
 3470     }
 3471   %}
 3472 
 3473   enc_class aarch64_enc_mov_n0(iRegN dst, immN0 src) %{
 3474     Register dst_reg = as_Register($dst$$reg);
 3475     __ mov(dst_reg, zr);
 3476   %}
 3477 
 3478   enc_class aarch64_enc_mov_nk(iRegN dst, immNKlass src) %{
 3479     Register dst_reg = as_Register($dst$$reg);
 3480     address con = (address)$src$$constant;
 3481     if (con == nullptr) {
 3482       ShouldNotReachHere();
 3483     } else {
 3484       relocInfo::relocType rtype = $src->constant_reloc();
 3485       assert(rtype == relocInfo::metadata_type, "unexpected reloc type");
 3486       __ set_narrow_klass(dst_reg, (Klass *)con);
 3487     }
 3488   %}
 3489 
 3490   // arithmetic encodings
 3491 
 3492   enc_class aarch64_enc_addsubw_imm(iRegI dst, iRegI src1, immIAddSub src2) %{
 3493     Register dst_reg = as_Register($dst$$reg);
 3494     Register src_reg = as_Register($src1$$reg);
 3495     int32_t con = (int32_t)$src2$$constant;
 3496     // add has primary == 0, subtract has primary == 1
 3497     if ($primary) { con = -con; }
 3498     if (con < 0) {
 3499       __ subw(dst_reg, src_reg, -con);
 3500     } else {
 3501       __ addw(dst_reg, src_reg, con);
 3502     }
 3503   %}
 3504 
 3505   enc_class aarch64_enc_addsub_imm(iRegL dst, iRegL src1, immLAddSub src2) %{
 3506     Register dst_reg = as_Register($dst$$reg);
 3507     Register src_reg = as_Register($src1$$reg);
 3508     int32_t con = (int32_t)$src2$$constant;
 3509     // add has primary == 0, subtract has primary == 1
 3510     if ($primary) { con = -con; }
 3511     if (con < 0) {
 3512       __ sub(dst_reg, src_reg, -con);
 3513     } else {
 3514       __ add(dst_reg, src_reg, con);
 3515     }
 3516   %}
 3517 
 3518   enc_class aarch64_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{
 3519    Register dst_reg = as_Register($dst$$reg);
 3520    Register src1_reg = as_Register($src1$$reg);
 3521    Register src2_reg = as_Register($src2$$reg);
 3522     __ corrected_idivl(dst_reg, src1_reg, src2_reg, false, rscratch1);
 3523   %}
 3524 
 3525   enc_class aarch64_enc_div(iRegI dst, iRegI src1, iRegI src2) %{
 3526    Register dst_reg = as_Register($dst$$reg);
 3527    Register src1_reg = as_Register($src1$$reg);
 3528    Register src2_reg = as_Register($src2$$reg);
 3529     __ corrected_idivq(dst_reg, src1_reg, src2_reg, false, rscratch1);
 3530   %}
 3531 
 3532   enc_class aarch64_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{
 3533    Register dst_reg = as_Register($dst$$reg);
 3534    Register src1_reg = as_Register($src1$$reg);
 3535    Register src2_reg = as_Register($src2$$reg);
 3536     __ corrected_idivl(dst_reg, src1_reg, src2_reg, true, rscratch1);
 3537   %}
 3538 
 3539   enc_class aarch64_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{
 3540    Register dst_reg = as_Register($dst$$reg);
 3541    Register src1_reg = as_Register($src1$$reg);
 3542    Register src2_reg = as_Register($src2$$reg);
 3543     __ corrected_idivq(dst_reg, src1_reg, src2_reg, true, rscratch1);
 3544   %}
 3545 
 3546   // compare instruction encodings
 3547 
 3548   enc_class aarch64_enc_cmpw(iRegI src1, iRegI src2) %{
 3549     Register reg1 = as_Register($src1$$reg);
 3550     Register reg2 = as_Register($src2$$reg);
 3551     __ cmpw(reg1, reg2);
 3552   %}
 3553 
 3554   enc_class aarch64_enc_cmpw_imm_addsub(iRegI src1, immIAddSub src2) %{
 3555     Register reg = as_Register($src1$$reg);
 3556     int32_t val = $src2$$constant;
 3557     if (val >= 0) {
 3558       __ subsw(zr, reg, val);
 3559     } else {
 3560       __ addsw(zr, reg, -val);
 3561     }
 3562   %}
 3563 
 3564   enc_class aarch64_enc_cmpw_imm(iRegI src1, immI src2) %{
 3565     Register reg1 = as_Register($src1$$reg);
 3566     uint32_t val = (uint32_t)$src2$$constant;
 3567     __ movw(rscratch1, val);
 3568     __ cmpw(reg1, rscratch1);
 3569   %}
 3570 
 3571   enc_class aarch64_enc_cmp(iRegL src1, iRegL src2) %{
 3572     Register reg1 = as_Register($src1$$reg);
 3573     Register reg2 = as_Register($src2$$reg);
 3574     __ cmp(reg1, reg2);
 3575   %}
 3576 
 3577   enc_class aarch64_enc_cmp_imm_addsub(iRegL src1, immL12 src2) %{
 3578     Register reg = as_Register($src1$$reg);
 3579     int64_t val = $src2$$constant;
 3580     if (val >= 0) {
 3581       __ subs(zr, reg, val);
 3582     } else if (val != -val) {
 3583       __ adds(zr, reg, -val);
 3584     } else {
 3585     // aargh, Long.MIN_VALUE is a special case
 3586       __ orr(rscratch1, zr, (uint64_t)val);
 3587       __ subs(zr, reg, rscratch1);
 3588     }
 3589   %}
 3590 
 3591   enc_class aarch64_enc_cmp_imm(iRegL src1, immL src2) %{
 3592     Register reg1 = as_Register($src1$$reg);
 3593     uint64_t val = (uint64_t)$src2$$constant;
 3594     __ mov(rscratch1, val);
 3595     __ cmp(reg1, rscratch1);
 3596   %}
 3597 
 3598   enc_class aarch64_enc_cmpp(iRegP src1, iRegP src2) %{
 3599     Register reg1 = as_Register($src1$$reg);
 3600     Register reg2 = as_Register($src2$$reg);
 3601     __ cmp(reg1, reg2);
 3602   %}
 3603 
 3604   enc_class aarch64_enc_cmpn(iRegN src1, iRegN src2) %{
 3605     Register reg1 = as_Register($src1$$reg);
 3606     Register reg2 = as_Register($src2$$reg);
 3607     __ cmpw(reg1, reg2);
 3608   %}
 3609 
 3610   enc_class aarch64_enc_testp(iRegP src) %{
 3611     Register reg = as_Register($src$$reg);
 3612     __ cmp(reg, zr);
 3613   %}
 3614 
 3615   enc_class aarch64_enc_testn(iRegN src) %{
 3616     Register reg = as_Register($src$$reg);
 3617     __ cmpw(reg, zr);
 3618   %}
 3619 
 3620   enc_class aarch64_enc_b(label lbl) %{
 3621     Label *L = $lbl$$label;
 3622     __ b(*L);
 3623   %}
 3624 
 3625   enc_class aarch64_enc_br_con(cmpOp cmp, label lbl) %{
 3626     Label *L = $lbl$$label;
 3627     __ br ((Assembler::Condition)$cmp$$cmpcode, *L);
 3628   %}
 3629 
 3630   enc_class aarch64_enc_br_conU(cmpOpU cmp, label lbl) %{
 3631     Label *L = $lbl$$label;
 3632     __ br ((Assembler::Condition)$cmp$$cmpcode, *L);
 3633   %}
 3634 
 3635   enc_class aarch64_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result)
 3636   %{
 3637      Register sub_reg = as_Register($sub$$reg);
 3638      Register super_reg = as_Register($super$$reg);
 3639      Register temp_reg = as_Register($temp$$reg);
 3640      Register result_reg = as_Register($result$$reg);
 3641 
 3642      Label miss;
 3643      __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg,
 3644                                      nullptr, &miss,
 3645                                      /*set_cond_codes:*/ true);
 3646      if ($primary) {
 3647        __ mov(result_reg, zr);
 3648      }
 3649      __ bind(miss);
 3650   %}
 3651 
 3652   enc_class aarch64_enc_java_static_call(method meth) %{
 3653     address addr = (address)$meth$$method;
 3654     address call;
 3655     if (!_method) {
 3656       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
 3657       call = __ trampoline_call(Address(addr, relocInfo::runtime_call_type));
 3658       if (call == nullptr) {
 3659         ciEnv::current()->record_failure("CodeCache is full");
 3660         return;
 3661       }
 3662     } else if (_method->intrinsic_id() == vmIntrinsicID::_ensureMaterializedForStackWalk) {
 3663       // The NOP here is purely to ensure that eliding a call to
 3664       // JVM_EnsureMaterializedForStackWalk doesn't change the code size.
 3665       __ nop();
 3666       __ block_comment("call JVM_EnsureMaterializedForStackWalk (elided)");
 3667     } else {
 3668       int method_index = resolved_method_index(masm);
 3669       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
 3670                                                   : static_call_Relocation::spec(method_index);
 3671       call = __ trampoline_call(Address(addr, rspec));
 3672       if (call == nullptr) {
 3673         ciEnv::current()->record_failure("CodeCache is full");
 3674         return;
 3675       }
 3676       if (CodeBuffer::supports_shared_stubs() && _method->can_be_statically_bound()) {
 3677         // Calls of the same statically bound method can share
 3678         // a stub to the interpreter.
 3679         __ code()->shared_stub_to_interp_for(_method, call - __ begin());
 3680       } else {
 3681         // Emit stub for static call
 3682         address stub = CompiledDirectCall::emit_to_interp_stub(masm, call);
 3683         if (stub == nullptr) {
 3684           ciEnv::current()->record_failure("CodeCache is full");
 3685           return;
 3686         }
 3687       }
 3688     }
 3689 
 3690     __ post_call_nop();
 3691 
 3692     // Only non uncommon_trap calls need to reinitialize ptrue.
 3693     if (Compile::current()->max_vector_size() > 0 && uncommon_trap_request() == 0) {
 3694       __ reinitialize_ptrue();
 3695     }
 3696   %}
 3697 
 3698   enc_class aarch64_enc_java_dynamic_call(method meth) %{
 3699     int method_index = resolved_method_index(masm);
 3700     address call = __ ic_call((address)$meth$$method, method_index);
 3701     if (call == nullptr) {
 3702       ciEnv::current()->record_failure("CodeCache is full");
 3703       return;
 3704     }
 3705     __ post_call_nop();
 3706     if (Compile::current()->max_vector_size() > 0) {
 3707       __ reinitialize_ptrue();
 3708     }
 3709   %}
 3710 
 3711   enc_class aarch64_enc_call_epilog() %{
 3712     if (VerifyStackAtCalls) {
 3713       // Check that stack depth is unchanged: find majik cookie on stack
 3714       __ call_Unimplemented();
 3715     }
 3716   %}
 3717 
 3718   enc_class aarch64_enc_java_to_runtime(method meth) %{
 3719     // some calls to generated routines (arraycopy code) are scheduled
 3720     // by C2 as runtime calls. if so we can call them using a br (they
 3721     // will be in a reachable segment) otherwise we have to use a blr
 3722     // which loads the absolute address into a register.
 3723     address entry = (address)$meth$$method;
 3724     CodeBlob *cb = CodeCache::find_blob(entry);
 3725     if (cb) {
 3726       address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
 3727       if (call == nullptr) {
 3728         ciEnv::current()->record_failure("CodeCache is full");
 3729         return;
 3730       }
 3731       __ post_call_nop();
 3732     } else {
 3733       Label retaddr;
 3734       // Make the anchor frame walkable
 3735       __ adr(rscratch2, retaddr);
 3736       __ str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset()));
 3737       __ lea(rscratch1, RuntimeAddress(entry));
 3738       __ blr(rscratch1);
 3739       __ bind(retaddr);
 3740       __ post_call_nop();
 3741     }
 3742     if (Compile::current()->max_vector_size() > 0) {
 3743       __ reinitialize_ptrue();
 3744     }
 3745   %}
 3746 
 3747   enc_class aarch64_enc_rethrow() %{
 3748     __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub()));
 3749   %}
 3750 
 3751   enc_class aarch64_enc_ret() %{
 3752 #ifdef ASSERT
 3753     if (Compile::current()->max_vector_size() > 0) {
 3754       __ verify_ptrue();
 3755     }
 3756 #endif
 3757     __ ret(lr);
 3758   %}
 3759 
 3760   enc_class aarch64_enc_tail_call(iRegP jump_target) %{
 3761     Register target_reg = as_Register($jump_target$$reg);
 3762     __ br(target_reg);
 3763   %}
 3764 
 3765   enc_class aarch64_enc_tail_jmp(iRegP jump_target) %{
 3766     Register target_reg = as_Register($jump_target$$reg);
 3767     // exception oop should be in r0
 3768     // ret addr has been popped into lr
 3769     // callee expects it in r3
 3770     __ mov(r3, lr);
 3771     __ br(target_reg);
 3772   %}
 3773 
 3774 %}
 3775 
 3776 //----------FRAME--------------------------------------------------------------
 3777 // Definition of frame structure and management information.
 3778 //
 3779 //  S T A C K   L A Y O U T    Allocators stack-slot number
 3780 //                             |   (to get allocators register number
 3781 //  G  Owned by    |        |  v    add OptoReg::stack0())
 3782 //  r   CALLER     |        |
 3783 //  o     |        +--------+      pad to even-align allocators stack-slot
 3784 //  w     V        |  pad0  |        numbers; owned by CALLER
 3785 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
 3786 //  h     ^        |   in   |  5
 3787 //        |        |  args  |  4   Holes in incoming args owned by SELF
 3788 //  |     |        |        |  3
 3789 //  |     |        +--------+
 3790 //  V     |        | old out|      Empty on Intel, window on Sparc
 3791 //        |    old |preserve|      Must be even aligned.
 3792 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
 3793 //        |        |   in   |  3   area for Intel ret address
 3794 //     Owned by    |preserve|      Empty on Sparc.
 3795 //       SELF      +--------+
 3796 //        |        |  pad2  |  2   pad to align old SP
 3797 //        |        +--------+  1
 3798 //        |        | locks  |  0
 3799 //        |        +--------+----> OptoReg::stack0(), even aligned
 3800 //        |        |  pad1  | 11   pad to align new SP
 3801 //        |        +--------+
 3802 //        |        |        | 10
 3803 //        |        | spills |  9   spills
 3804 //        V        |        |  8   (pad0 slot for callee)
 3805 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
 3806 //        ^        |  out   |  7
 3807 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
 3808 //     Owned by    +--------+
 3809 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
 3810 //        |    new |preserve|      Must be even-aligned.
 3811 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
 3812 //        |        |        |
 3813 //
 3814 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
 3815 //         known from SELF's arguments and the Java calling convention.
 3816 //         Region 6-7 is determined per call site.
 3817 // Note 2: If the calling convention leaves holes in the incoming argument
 3818 //         area, those holes are owned by SELF.  Holes in the outgoing area
 3819 //         are owned by the CALLEE.  Holes should not be necessary in the
 3820 //         incoming area, as the Java calling convention is completely under
 3821 //         the control of the AD file.  Doubles can be sorted and packed to
 3822 //         avoid holes.  Holes in the outgoing arguments may be necessary for
 3823 //         varargs C calling conventions.
 3824 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
 3825 //         even aligned with pad0 as needed.
 3826 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
 3827 //           (the latter is true on Intel but is it false on AArch64?)
 3828 //         region 6-11 is even aligned; it may be padded out more so that
 3829 //         the region from SP to FP meets the minimum stack alignment.
 3830 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
 3831 //         alignment.  Region 11, pad1, may be dynamically extended so that
 3832 //         SP meets the minimum alignment.
 3833 
 3834 frame %{
 3835   // These three registers define part of the calling convention
 3836   // between compiled code and the interpreter.
 3837 
 3838   // Inline Cache Register or Method for I2C.
 3839   inline_cache_reg(R12);
 3840 
 3841   // Number of stack slots consumed by locking an object
 3842   sync_stack_slots(2);
 3843 
 3844   // Compiled code's Frame Pointer
 3845   frame_pointer(R31);
 3846 
 3847   // Interpreter stores its frame pointer in a register which is
 3848   // stored to the stack by I2CAdaptors.
 3849   // I2CAdaptors convert from interpreted java to compiled java.
 3850   interpreter_frame_pointer(R29);
 3851 
 3852   // Stack alignment requirement
 3853   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
 3854 
 3855   // Number of outgoing stack slots killed above the out_preserve_stack_slots
 3856   // for calls to C.  Supports the var-args backing area for register parms.
 3857   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
 3858 
 3859   // The after-PROLOG location of the return address.  Location of
 3860   // return address specifies a type (REG or STACK) and a number
 3861   // representing the register number (i.e. - use a register name) or
 3862   // stack slot.
 3863   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
 3864   // Otherwise, it is above the locks and verification slot and alignment word
 3865   // TODO this may well be correct but need to check why that - 2 is there
 3866   // ppc port uses 0 but we definitely need to allow for fixed_slots
 3867   // which folds in the space used for monitors
 3868   return_addr(STACK - 2 +
 3869               align_up((Compile::current()->in_preserve_stack_slots() +
 3870                         Compile::current()->fixed_slots()),
 3871                        stack_alignment_in_slots()));
 3872 
 3873   // Location of compiled Java return values.  Same as C for now.
 3874   return_value
 3875   %{
 3876     // TODO do we allow ideal_reg == Op_RegN???
 3877     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
 3878            "only return normal values");
 3879 
 3880     static const int lo[Op_RegL + 1] = { // enum name
 3881       0,                                 // Op_Node
 3882       0,                                 // Op_Set
 3883       R0_num,                            // Op_RegN
 3884       R0_num,                            // Op_RegI
 3885       R0_num,                            // Op_RegP
 3886       V0_num,                            // Op_RegF
 3887       V0_num,                            // Op_RegD
 3888       R0_num                             // Op_RegL
 3889     };
 3890 
 3891     static const int hi[Op_RegL + 1] = { // enum name
 3892       0,                                 // Op_Node
 3893       0,                                 // Op_Set
 3894       OptoReg::Bad,                      // Op_RegN
 3895       OptoReg::Bad,                      // Op_RegI
 3896       R0_H_num,                          // Op_RegP
 3897       OptoReg::Bad,                      // Op_RegF
 3898       V0_H_num,                          // Op_RegD
 3899       R0_H_num                           // Op_RegL
 3900     };
 3901 
 3902     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
 3903   %}
 3904 %}
 3905 
 3906 //----------ATTRIBUTES---------------------------------------------------------
 3907 //----------Operand Attributes-------------------------------------------------
 3908 op_attrib op_cost(1);        // Required cost attribute
 3909 
 3910 //----------Instruction Attributes---------------------------------------------
 3911 ins_attrib ins_cost(INSN_COST); // Required cost attribute
 3912 ins_attrib ins_size(32);        // Required size attribute (in bits)
 3913 ins_attrib ins_short_branch(0); // Required flag: is this instruction
 3914                                 // a non-matching short branch variant
 3915                                 // of some long branch?
 3916 ins_attrib ins_alignment(4);    // Required alignment attribute (must
 3917                                 // be a power of 2) specifies the
 3918                                 // alignment that some part of the
 3919                                 // instruction (not necessarily the
 3920                                 // start) requires.  If > 1, a
 3921                                 // compute_padding() function must be
 3922                                 // provided for the instruction
 3923 
 3924 //----------OPERANDS-----------------------------------------------------------
 3925 // Operand definitions must precede instruction definitions for correct parsing
 3926 // in the ADLC because operands constitute user defined types which are used in
 3927 // instruction definitions.
 3928 
 3929 //----------Simple Operands----------------------------------------------------
 3930 
 3931 // Integer operands 32 bit
 3932 // 32 bit immediate
 3933 operand immI()
 3934 %{
 3935   match(ConI);
 3936 
 3937   op_cost(0);
 3938   format %{ %}
 3939   interface(CONST_INTER);
 3940 %}
 3941 
 3942 // 32 bit zero
 3943 operand immI0()
 3944 %{
 3945   predicate(n->get_int() == 0);
 3946   match(ConI);
 3947 
 3948   op_cost(0);
 3949   format %{ %}
 3950   interface(CONST_INTER);
 3951 %}
 3952 
 3953 // 32 bit unit increment
 3954 operand immI_1()
 3955 %{
 3956   predicate(n->get_int() == 1);
 3957   match(ConI);
 3958 
 3959   op_cost(0);
 3960   format %{ %}
 3961   interface(CONST_INTER);
 3962 %}
 3963 
 3964 // 32 bit unit decrement
 3965 operand immI_M1()
 3966 %{
 3967   predicate(n->get_int() == -1);
 3968   match(ConI);
 3969 
 3970   op_cost(0);
 3971   format %{ %}
 3972   interface(CONST_INTER);
 3973 %}
 3974 
 3975 // Shift values for add/sub extension shift
 3976 operand immIExt()
 3977 %{
 3978   predicate(0 <= n->get_int() && (n->get_int() <= 4));
 3979   match(ConI);
 3980 
 3981   op_cost(0);
 3982   format %{ %}
 3983   interface(CONST_INTER);
 3984 %}
 3985 
 3986 operand immI_gt_1()
 3987 %{
 3988   predicate(n->get_int() > 1);
 3989   match(ConI);
 3990 
 3991   op_cost(0);
 3992   format %{ %}
 3993   interface(CONST_INTER);
 3994 %}
 3995 
 3996 operand immI_le_4()
 3997 %{
 3998   predicate(n->get_int() <= 4);
 3999   match(ConI);
 4000 
 4001   op_cost(0);
 4002   format %{ %}
 4003   interface(CONST_INTER);
 4004 %}
 4005 
 4006 operand immI_16()
 4007 %{
 4008   predicate(n->get_int() == 16);
 4009   match(ConI);
 4010 
 4011   op_cost(0);
 4012   format %{ %}
 4013   interface(CONST_INTER);
 4014 %}
 4015 
 4016 operand immI_24()
 4017 %{
 4018   predicate(n->get_int() == 24);
 4019   match(ConI);
 4020 
 4021   op_cost(0);
 4022   format %{ %}
 4023   interface(CONST_INTER);
 4024 %}
 4025 
 4026 operand immI_32()
 4027 %{
 4028   predicate(n->get_int() == 32);
 4029   match(ConI);
 4030 
 4031   op_cost(0);
 4032   format %{ %}
 4033   interface(CONST_INTER);
 4034 %}
 4035 
 4036 operand immI_48()
 4037 %{
 4038   predicate(n->get_int() == 48);
 4039   match(ConI);
 4040 
 4041   op_cost(0);
 4042   format %{ %}
 4043   interface(CONST_INTER);
 4044 %}
 4045 
 4046 operand immI_56()
 4047 %{
 4048   predicate(n->get_int() == 56);
 4049   match(ConI);
 4050 
 4051   op_cost(0);
 4052   format %{ %}
 4053   interface(CONST_INTER);
 4054 %}
 4055 
 4056 operand immI_255()
 4057 %{
 4058   predicate(n->get_int() == 255);
 4059   match(ConI);
 4060 
 4061   op_cost(0);
 4062   format %{ %}
 4063   interface(CONST_INTER);
 4064 %}
 4065 
 4066 operand immI_65535()
 4067 %{
 4068   predicate(n->get_int() == 65535);
 4069   match(ConI);
 4070 
 4071   op_cost(0);
 4072   format %{ %}
 4073   interface(CONST_INTER);
 4074 %}
 4075 
 4076 operand immI_positive()
 4077 %{
 4078   predicate(n->get_int() > 0);
 4079   match(ConI);
 4080 
 4081   op_cost(0);
 4082   format %{ %}
 4083   interface(CONST_INTER);
 4084 %}
 4085 
 4086 // BoolTest condition for signed compare
 4087 operand immI_cmp_cond()
 4088 %{
 4089   predicate(!Matcher::is_unsigned_booltest_pred(n->get_int()));
 4090   match(ConI);
 4091 
 4092   op_cost(0);
 4093   format %{ %}
 4094   interface(CONST_INTER);
 4095 %}
 4096 
 4097 // BoolTest condition for unsigned compare
 4098 operand immI_cmpU_cond()
 4099 %{
 4100   predicate(Matcher::is_unsigned_booltest_pred(n->get_int()));
 4101   match(ConI);
 4102 
 4103   op_cost(0);
 4104   format %{ %}
 4105   interface(CONST_INTER);
 4106 %}
 4107 
 4108 operand immL_255()
 4109 %{
 4110   predicate(n->get_long() == 255L);
 4111   match(ConL);
 4112 
 4113   op_cost(0);
 4114   format %{ %}
 4115   interface(CONST_INTER);
 4116 %}
 4117 
 4118 operand immL_65535()
 4119 %{
 4120   predicate(n->get_long() == 65535L);
 4121   match(ConL);
 4122 
 4123   op_cost(0);
 4124   format %{ %}
 4125   interface(CONST_INTER);
 4126 %}
 4127 
 4128 operand immL_4294967295()
 4129 %{
 4130   predicate(n->get_long() == 4294967295L);
 4131   match(ConL);
 4132 
 4133   op_cost(0);
 4134   format %{ %}
 4135   interface(CONST_INTER);
 4136 %}
 4137 
 4138 operand immL_bitmask()
 4139 %{
 4140   predicate((n->get_long() != 0)
 4141             && ((n->get_long() & 0xc000000000000000l) == 0)
 4142             && is_power_of_2(n->get_long() + 1));
 4143   match(ConL);
 4144 
 4145   op_cost(0);
 4146   format %{ %}
 4147   interface(CONST_INTER);
 4148 %}
 4149 
 4150 operand immI_bitmask()
 4151 %{
 4152   predicate((n->get_int() != 0)
 4153             && ((n->get_int() & 0xc0000000) == 0)
 4154             && is_power_of_2(n->get_int() + 1));
 4155   match(ConI);
 4156 
 4157   op_cost(0);
 4158   format %{ %}
 4159   interface(CONST_INTER);
 4160 %}
 4161 
 4162 operand immL_positive_bitmaskI()
 4163 %{
 4164   predicate((n->get_long() != 0)
 4165             && ((julong)n->get_long() < 0x80000000ULL)
 4166             && is_power_of_2(n->get_long() + 1));
 4167   match(ConL);
 4168 
 4169   op_cost(0);
 4170   format %{ %}
 4171   interface(CONST_INTER);
 4172 %}
 4173 
 4174 // Scale values for scaled offset addressing modes (up to long but not quad)
 4175 operand immIScale()
 4176 %{
 4177   predicate(0 <= n->get_int() && (n->get_int() <= 3));
 4178   match(ConI);
 4179 
 4180   op_cost(0);
 4181   format %{ %}
 4182   interface(CONST_INTER);
 4183 %}
 4184 
 4185 // 5 bit signed integer
 4186 operand immI5()
 4187 %{
 4188   predicate(Assembler::is_simm(n->get_int(), 5));
 4189   match(ConI);
 4190 
 4191   op_cost(0);
 4192   format %{ %}
 4193   interface(CONST_INTER);
 4194 %}
 4195 
 4196 // 7 bit unsigned integer
 4197 operand immIU7()
 4198 %{
 4199   predicate(Assembler::is_uimm(n->get_int(), 7));
 4200   match(ConI);
 4201 
 4202   op_cost(0);
 4203   format %{ %}
 4204   interface(CONST_INTER);
 4205 %}
 4206 
 4207 // Offset for scaled or unscaled immediate loads and stores
 4208 operand immIOffset()
 4209 %{
 4210   predicate(Address::offset_ok_for_immed(n->get_int(), 0));
 4211   match(ConI);
 4212 
 4213   op_cost(0);
 4214   format %{ %}
 4215   interface(CONST_INTER);
 4216 %}
 4217 
 4218 operand immIOffset1()
 4219 %{
 4220   predicate(Address::offset_ok_for_immed(n->get_int(), 0));
 4221   match(ConI);
 4222 
 4223   op_cost(0);
 4224   format %{ %}
 4225   interface(CONST_INTER);
 4226 %}
 4227 
 4228 operand immIOffset2()
 4229 %{
 4230   predicate(Address::offset_ok_for_immed(n->get_int(), 1));
 4231   match(ConI);
 4232 
 4233   op_cost(0);
 4234   format %{ %}
 4235   interface(CONST_INTER);
 4236 %}
 4237 
 4238 operand immIOffset4()
 4239 %{
 4240   predicate(Address::offset_ok_for_immed(n->get_int(), 2));
 4241   match(ConI);
 4242 
 4243   op_cost(0);
 4244   format %{ %}
 4245   interface(CONST_INTER);
 4246 %}
 4247 
 4248 operand immIOffset8()
 4249 %{
 4250   predicate(Address::offset_ok_for_immed(n->get_int(), 3));
 4251   match(ConI);
 4252 
 4253   op_cost(0);
 4254   format %{ %}
 4255   interface(CONST_INTER);
 4256 %}
 4257 
 4258 operand immIOffset16()
 4259 %{
 4260   predicate(Address::offset_ok_for_immed(n->get_int(), 4));
 4261   match(ConI);
 4262 
 4263   op_cost(0);
 4264   format %{ %}
 4265   interface(CONST_INTER);
 4266 %}
 4267 
 4268 operand immLOffset()
 4269 %{
 4270   predicate(n->get_long() >= -256 && n->get_long() <= 65520);
 4271   match(ConL);
 4272 
 4273   op_cost(0);
 4274   format %{ %}
 4275   interface(CONST_INTER);
 4276 %}
 4277 
 4278 operand immLoffset1()
 4279 %{
 4280   predicate(Address::offset_ok_for_immed(n->get_long(), 0));
 4281   match(ConL);
 4282 
 4283   op_cost(0);
 4284   format %{ %}
 4285   interface(CONST_INTER);
 4286 %}
 4287 
 4288 operand immLoffset2()
 4289 %{
 4290   predicate(Address::offset_ok_for_immed(n->get_long(), 1));
 4291   match(ConL);
 4292 
 4293   op_cost(0);
 4294   format %{ %}
 4295   interface(CONST_INTER);
 4296 %}
 4297 
 4298 operand immLoffset4()
 4299 %{
 4300   predicate(Address::offset_ok_for_immed(n->get_long(), 2));
 4301   match(ConL);
 4302 
 4303   op_cost(0);
 4304   format %{ %}
 4305   interface(CONST_INTER);
 4306 %}
 4307 
 4308 operand immLoffset8()
 4309 %{
 4310   predicate(Address::offset_ok_for_immed(n->get_long(), 3));
 4311   match(ConL);
 4312 
 4313   op_cost(0);
 4314   format %{ %}
 4315   interface(CONST_INTER);
 4316 %}
 4317 
 4318 operand immLoffset16()
 4319 %{
 4320   predicate(Address::offset_ok_for_immed(n->get_long(), 4));
 4321   match(ConL);
 4322 
 4323   op_cost(0);
 4324   format %{ %}
 4325   interface(CONST_INTER);
 4326 %}
 4327 
 4328 // 5 bit signed long integer
 4329 operand immL5()
 4330 %{
 4331   predicate(Assembler::is_simm(n->get_long(), 5));
 4332   match(ConL);
 4333 
 4334   op_cost(0);
 4335   format %{ %}
 4336   interface(CONST_INTER);
 4337 %}
 4338 
 4339 // 7 bit unsigned long integer
 4340 operand immLU7()
 4341 %{
 4342   predicate(Assembler::is_uimm(n->get_long(), 7));
 4343   match(ConL);
 4344 
 4345   op_cost(0);
 4346   format %{ %}
 4347   interface(CONST_INTER);
 4348 %}
 4349 
 4350 // 8 bit signed value.
 4351 operand immI8()
 4352 %{
 4353   predicate(n->get_int() <= 127 && n->get_int() >= -128);
 4354   match(ConI);
 4355 
 4356   op_cost(0);
 4357   format %{ %}
 4358   interface(CONST_INTER);
 4359 %}
 4360 
 4361 // 8 bit signed value (simm8), or #simm8 LSL 8.
 4362 operand immI8_shift8()
 4363 %{
 4364   predicate((n->get_int() <= 127 && n->get_int() >= -128) ||
 4365             (n->get_int() <= 32512 && n->get_int() >= -32768 && (n->get_int() & 0xff) == 0));
 4366   match(ConI);
 4367 
 4368   op_cost(0);
 4369   format %{ %}
 4370   interface(CONST_INTER);
 4371 %}
 4372 
 4373 // 8 bit signed value (simm8), or #simm8 LSL 8.
 4374 operand immL8_shift8()
 4375 %{
 4376   predicate((n->get_long() <= 127 && n->get_long() >= -128) ||
 4377             (n->get_long() <= 32512 && n->get_long() >= -32768 && (n->get_long() & 0xff) == 0));
 4378   match(ConL);
 4379 
 4380   op_cost(0);
 4381   format %{ %}
 4382   interface(CONST_INTER);
 4383 %}
 4384 
 4385 // 8 bit integer valid for vector add sub immediate
 4386 operand immBAddSubV()
 4387 %{
 4388   predicate(n->get_int() <= 255 && n->get_int() >= -255);
 4389   match(ConI);
 4390 
 4391   op_cost(0);
 4392   format %{ %}
 4393   interface(CONST_INTER);
 4394 %}
 4395 
 4396 // 32 bit integer valid for add sub immediate
 4397 operand immIAddSub()
 4398 %{
 4399   predicate(Assembler::operand_valid_for_add_sub_immediate((int64_t)n->get_int()));
 4400   match(ConI);
 4401   op_cost(0);
 4402   format %{ %}
 4403   interface(CONST_INTER);
 4404 %}
 4405 
 4406 // 32 bit integer valid for vector add sub immediate
 4407 operand immIAddSubV()
 4408 %{
 4409   predicate(Assembler::operand_valid_for_sve_add_sub_immediate((int64_t)n->get_int()));
 4410   match(ConI);
 4411 
 4412   op_cost(0);
 4413   format %{ %}
 4414   interface(CONST_INTER);
 4415 %}
 4416 
 4417 // 32 bit unsigned integer valid for logical immediate
 4418 
 4419 operand immBLog()
 4420 %{
 4421   predicate(Assembler::operand_valid_for_sve_logical_immediate(BitsPerByte, (uint64_t)n->get_int()));
 4422   match(ConI);
 4423 
 4424   op_cost(0);
 4425   format %{ %}
 4426   interface(CONST_INTER);
 4427 %}
 4428 
 4429 operand immSLog()
 4430 %{
 4431   predicate(Assembler::operand_valid_for_sve_logical_immediate(BitsPerShort, (uint64_t)n->get_int()));
 4432   match(ConI);
 4433 
 4434   op_cost(0);
 4435   format %{ %}
 4436   interface(CONST_INTER);
 4437 %}
 4438 
 4439 operand immILog()
 4440 %{
 4441   predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/true, (uint64_t)n->get_int()));
 4442   match(ConI);
 4443 
 4444   op_cost(0);
 4445   format %{ %}
 4446   interface(CONST_INTER);
 4447 %}
 4448 
 4449 // Integer operands 64 bit
 4450 // 64 bit immediate
 4451 operand immL()
 4452 %{
 4453   match(ConL);
 4454 
 4455   op_cost(0);
 4456   format %{ %}
 4457   interface(CONST_INTER);
 4458 %}
 4459 
 4460 // 64 bit zero
 4461 operand immL0()
 4462 %{
 4463   predicate(n->get_long() == 0);
 4464   match(ConL);
 4465 
 4466   op_cost(0);
 4467   format %{ %}
 4468   interface(CONST_INTER);
 4469 %}
 4470 
 4471 // 64 bit unit decrement
 4472 operand immL_M1()
 4473 %{
 4474   predicate(n->get_long() == -1);
 4475   match(ConL);
 4476 
 4477   op_cost(0);
 4478   format %{ %}
 4479   interface(CONST_INTER);
 4480 %}
 4481 
 4482 // 64 bit integer valid for add sub immediate
 4483 operand immLAddSub()
 4484 %{
 4485   predicate(Assembler::operand_valid_for_add_sub_immediate(n->get_long()));
 4486   match(ConL);
 4487   op_cost(0);
 4488   format %{ %}
 4489   interface(CONST_INTER);
 4490 %}
 4491 
 4492 // 64 bit integer valid for addv subv immediate
 4493 operand immLAddSubV()
 4494 %{
 4495   predicate(Assembler::operand_valid_for_sve_add_sub_immediate(n->get_long()));
 4496   match(ConL);
 4497 
 4498   op_cost(0);
 4499   format %{ %}
 4500   interface(CONST_INTER);
 4501 %}
 4502 
 4503 // 64 bit integer valid for logical immediate
 4504 operand immLLog()
 4505 %{
 4506   predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/false, (uint64_t)n->get_long()));
 4507   match(ConL);
 4508   op_cost(0);
 4509   format %{ %}
 4510   interface(CONST_INTER);
 4511 %}
 4512 
 4513 // Long Immediate: low 32-bit mask
 4514 operand immL_32bits()
 4515 %{
 4516   predicate(n->get_long() == 0xFFFFFFFFL);
 4517   match(ConL);
 4518   op_cost(0);
 4519   format %{ %}
 4520   interface(CONST_INTER);
 4521 %}
 4522 
 4523 // Pointer operands
 4524 // Pointer Immediate
 4525 operand immP()
 4526 %{
 4527   match(ConP);
 4528 
 4529   op_cost(0);
 4530   format %{ %}
 4531   interface(CONST_INTER);
 4532 %}
 4533 
 4534 // nullptr Pointer Immediate
 4535 operand immP0()
 4536 %{
 4537   predicate(n->get_ptr() == 0);
 4538   match(ConP);
 4539 
 4540   op_cost(0);
 4541   format %{ %}
 4542   interface(CONST_INTER);
 4543 %}
 4544 
 4545 // Pointer Immediate One
 4546 // this is used in object initialization (initial object header)
 4547 operand immP_1()
 4548 %{
 4549   predicate(n->get_ptr() == 1);
 4550   match(ConP);
 4551 
 4552   op_cost(0);
 4553   format %{ %}
 4554   interface(CONST_INTER);
 4555 %}
 4556 
 4557 // Card Table Byte Map Base
 4558 operand immByteMapBase()
 4559 %{
 4560   // Get base of card map
 4561   predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
 4562             SHENANDOAHGC_ONLY(!BarrierSet::barrier_set()->is_a(BarrierSet::ShenandoahBarrierSet) &&)
 4563             (CardTable::CardValue*)n->get_ptr() == ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base());
 4564   match(ConP);
 4565 
 4566   op_cost(0);
 4567   format %{ %}
 4568   interface(CONST_INTER);
 4569 %}
 4570 
 4571 // Float and Double operands
 4572 // Double Immediate
 4573 operand immD()
 4574 %{
 4575   match(ConD);
 4576   op_cost(0);
 4577   format %{ %}
 4578   interface(CONST_INTER);
 4579 %}
 4580 
 4581 // Double Immediate: +0.0d
 4582 operand immD0()
 4583 %{
 4584   predicate(jlong_cast(n->getd()) == 0);
 4585   match(ConD);
 4586 
 4587   op_cost(0);
 4588   format %{ %}
 4589   interface(CONST_INTER);
 4590 %}
 4591 
 4592 // constant 'double +0.0'.
 4593 operand immDPacked()
 4594 %{
 4595   predicate(Assembler::operand_valid_for_float_immediate(n->getd()));
 4596   match(ConD);
 4597   op_cost(0);
 4598   format %{ %}
 4599   interface(CONST_INTER);
 4600 %}
 4601 
 4602 // Float Immediate
 4603 operand immF()
 4604 %{
 4605   match(ConF);
 4606   op_cost(0);
 4607   format %{ %}
 4608   interface(CONST_INTER);
 4609 %}
 4610 
 4611 // Float Immediate: +0.0f.
 4612 operand immF0()
 4613 %{
 4614   predicate(jint_cast(n->getf()) == 0);
 4615   match(ConF);
 4616 
 4617   op_cost(0);
 4618   format %{ %}
 4619   interface(CONST_INTER);
 4620 %}
 4621 
 4622 // Half Float (FP16) Immediate
 4623 operand immH()
 4624 %{
 4625   match(ConH);
 4626   op_cost(0);
 4627   format %{ %}
 4628   interface(CONST_INTER);
 4629 %}
 4630 
 4631 //
 4632 operand immFPacked()
 4633 %{
 4634   predicate(Assembler::operand_valid_for_float_immediate((double)n->getf()));
 4635   match(ConF);
 4636   op_cost(0);
 4637   format %{ %}
 4638   interface(CONST_INTER);
 4639 %}
 4640 
 4641 // Narrow pointer operands
 4642 // Narrow Pointer Immediate
 4643 operand immN()
 4644 %{
 4645   match(ConN);
 4646 
 4647   op_cost(0);
 4648   format %{ %}
 4649   interface(CONST_INTER);
 4650 %}
 4651 
 4652 // Narrow nullptr Pointer Immediate
 4653 operand immN0()
 4654 %{
 4655   predicate(n->get_narrowcon() == 0);
 4656   match(ConN);
 4657 
 4658   op_cost(0);
 4659   format %{ %}
 4660   interface(CONST_INTER);
 4661 %}
 4662 
 4663 operand immNKlass()
 4664 %{
 4665   match(ConNKlass);
 4666 
 4667   op_cost(0);
 4668   format %{ %}
 4669   interface(CONST_INTER);
 4670 %}
 4671 
 4672 // Integer 32 bit Register Operands
 4673 // Integer 32 bitRegister (excludes SP)
 4674 operand iRegI()
 4675 %{
 4676   constraint(ALLOC_IN_RC(any_reg32));
 4677   match(RegI);
 4678   match(iRegINoSp);
 4679   op_cost(0);
 4680   format %{ %}
 4681   interface(REG_INTER);
 4682 %}
 4683 
 4684 // Integer 32 bit Register not Special
 4685 operand iRegINoSp()
 4686 %{
 4687   constraint(ALLOC_IN_RC(no_special_reg32));
 4688   match(RegI);
 4689   op_cost(0);
 4690   format %{ %}
 4691   interface(REG_INTER);
 4692 %}
 4693 
 4694 // Integer 64 bit Register Operands
 4695 // Integer 64 bit Register (includes SP)
 4696 operand iRegL()
 4697 %{
 4698   constraint(ALLOC_IN_RC(any_reg));
 4699   match(RegL);
 4700   match(iRegLNoSp);
 4701   op_cost(0);
 4702   format %{ %}
 4703   interface(REG_INTER);
 4704 %}
 4705 
 4706 // Integer 64 bit Register not Special
 4707 operand iRegLNoSp()
 4708 %{
 4709   constraint(ALLOC_IN_RC(no_special_reg));
 4710   match(RegL);
 4711   match(iRegL_R0);
 4712   format %{ %}
 4713   interface(REG_INTER);
 4714 %}
 4715 
 4716 // Pointer Register Operands
 4717 // Pointer Register
 4718 operand iRegP()
 4719 %{
 4720   constraint(ALLOC_IN_RC(ptr_reg));
 4721   match(RegP);
 4722   match(iRegPNoSp);
 4723   match(iRegP_R0);
 4724   //match(iRegP_R2);
 4725   //match(iRegP_R4);
 4726   match(iRegP_R5);
 4727   match(thread_RegP);
 4728   op_cost(0);
 4729   format %{ %}
 4730   interface(REG_INTER);
 4731 %}
 4732 
 4733 // Pointer 64 bit Register not Special
 4734 operand iRegPNoSp()
 4735 %{
 4736   constraint(ALLOC_IN_RC(no_special_ptr_reg));
 4737   match(RegP);
 4738   // match(iRegP);
 4739   // match(iRegP_R0);
 4740   // match(iRegP_R2);
 4741   // match(iRegP_R4);
 4742   // match(iRegP_R5);
 4743   // match(thread_RegP);
 4744   op_cost(0);
 4745   format %{ %}
 4746   interface(REG_INTER);
 4747 %}
 4748 
 4749 // This operand is not allowed to use rfp even if
 4750 // rfp is not used to hold the frame pointer.
 4751 operand iRegPNoSpNoRfp()
 4752 %{
 4753   constraint(ALLOC_IN_RC(no_special_no_rfp_ptr_reg));
 4754   match(RegP);
 4755   match(iRegPNoSp);
 4756   op_cost(0);
 4757   format %{ %}
 4758   interface(REG_INTER);
 4759 %}
 4760 
 4761 // Pointer 64 bit Register R0 only
 4762 operand iRegP_R0()
 4763 %{
 4764   constraint(ALLOC_IN_RC(r0_reg));
 4765   match(RegP);
 4766   // match(iRegP);
 4767   match(iRegPNoSp);
 4768   op_cost(0);
 4769   format %{ %}
 4770   interface(REG_INTER);
 4771 %}
 4772 
 4773 // Pointer 64 bit Register R1 only
 4774 operand iRegP_R1()
 4775 %{
 4776   constraint(ALLOC_IN_RC(r1_reg));
 4777   match(RegP);
 4778   // match(iRegP);
 4779   match(iRegPNoSp);
 4780   op_cost(0);
 4781   format %{ %}
 4782   interface(REG_INTER);
 4783 %}
 4784 
 4785 // Pointer 64 bit Register R2 only
 4786 operand iRegP_R2()
 4787 %{
 4788   constraint(ALLOC_IN_RC(r2_reg));
 4789   match(RegP);
 4790   // match(iRegP);
 4791   match(iRegPNoSp);
 4792   op_cost(0);
 4793   format %{ %}
 4794   interface(REG_INTER);
 4795 %}
 4796 
 4797 // Pointer 64 bit Register R3 only
 4798 operand iRegP_R3()
 4799 %{
 4800   constraint(ALLOC_IN_RC(r3_reg));
 4801   match(RegP);
 4802   // match(iRegP);
 4803   match(iRegPNoSp);
 4804   op_cost(0);
 4805   format %{ %}
 4806   interface(REG_INTER);
 4807 %}
 4808 
 4809 // Pointer 64 bit Register R4 only
 4810 operand iRegP_R4()
 4811 %{
 4812   constraint(ALLOC_IN_RC(r4_reg));
 4813   match(RegP);
 4814   // match(iRegP);
 4815   match(iRegPNoSp);
 4816   op_cost(0);
 4817   format %{ %}
 4818   interface(REG_INTER);
 4819 %}
 4820 
 4821 // Pointer 64 bit Register R5 only
 4822 operand iRegP_R5()
 4823 %{
 4824   constraint(ALLOC_IN_RC(r5_reg));
 4825   match(RegP);
 4826   // match(iRegP);
 4827   match(iRegPNoSp);
 4828   op_cost(0);
 4829   format %{ %}
 4830   interface(REG_INTER);
 4831 %}
 4832 
 4833 // Pointer 64 bit Register R10 only
 4834 operand iRegP_R10()
 4835 %{
 4836   constraint(ALLOC_IN_RC(r10_reg));
 4837   match(RegP);
 4838   // match(iRegP);
 4839   match(iRegPNoSp);
 4840   op_cost(0);
 4841   format %{ %}
 4842   interface(REG_INTER);
 4843 %}
 4844 
 4845 // Long 64 bit Register R0 only
 4846 operand iRegL_R0()
 4847 %{
 4848   constraint(ALLOC_IN_RC(r0_reg));
 4849   match(RegL);
 4850   match(iRegLNoSp);
 4851   op_cost(0);
 4852   format %{ %}
 4853   interface(REG_INTER);
 4854 %}
 4855 
 4856 // Long 64 bit Register R11 only
 4857 operand iRegL_R11()
 4858 %{
 4859   constraint(ALLOC_IN_RC(r11_reg));
 4860   match(RegL);
 4861   match(iRegLNoSp);
 4862   op_cost(0);
 4863   format %{ %}
 4864   interface(REG_INTER);
 4865 %}
 4866 
 4867 // Register R0 only
 4868 operand iRegI_R0()
 4869 %{
 4870   constraint(ALLOC_IN_RC(int_r0_reg));
 4871   match(RegI);
 4872   match(iRegINoSp);
 4873   op_cost(0);
 4874   format %{ %}
 4875   interface(REG_INTER);
 4876 %}
 4877 
 4878 // Register R2 only
 4879 operand iRegI_R2()
 4880 %{
 4881   constraint(ALLOC_IN_RC(int_r2_reg));
 4882   match(RegI);
 4883   match(iRegINoSp);
 4884   op_cost(0);
 4885   format %{ %}
 4886   interface(REG_INTER);
 4887 %}
 4888 
 4889 // Register R3 only
 4890 operand iRegI_R3()
 4891 %{
 4892   constraint(ALLOC_IN_RC(int_r3_reg));
 4893   match(RegI);
 4894   match(iRegINoSp);
 4895   op_cost(0);
 4896   format %{ %}
 4897   interface(REG_INTER);
 4898 %}
 4899 
 4900 
 4901 // Register R4 only
 4902 operand iRegI_R4()
 4903 %{
 4904   constraint(ALLOC_IN_RC(int_r4_reg));
 4905   match(RegI);
 4906   match(iRegINoSp);
 4907   op_cost(0);
 4908   format %{ %}
 4909   interface(REG_INTER);
 4910 %}
 4911 
 4912 
 4913 // Pointer Register Operands
 4914 // Narrow Pointer Register
 4915 operand iRegN()
 4916 %{
 4917   constraint(ALLOC_IN_RC(any_reg32));
 4918   match(RegN);
 4919   match(iRegNNoSp);
 4920   op_cost(0);
 4921   format %{ %}
 4922   interface(REG_INTER);
 4923 %}
 4924 
 4925 // Integer 64 bit Register not Special
 4926 operand iRegNNoSp()
 4927 %{
 4928   constraint(ALLOC_IN_RC(no_special_reg32));
 4929   match(RegN);
 4930   op_cost(0);
 4931   format %{ %}
 4932   interface(REG_INTER);
 4933 %}
 4934 
 4935 // Float Register
 4936 // Float register operands
 4937 operand vRegF()
 4938 %{
 4939   constraint(ALLOC_IN_RC(float_reg));
 4940   match(RegF);
 4941 
 4942   op_cost(0);
 4943   format %{ %}
 4944   interface(REG_INTER);
 4945 %}
 4946 
 4947 // Double Register
 4948 // Double register operands
 4949 operand vRegD()
 4950 %{
 4951   constraint(ALLOC_IN_RC(double_reg));
 4952   match(RegD);
 4953 
 4954   op_cost(0);
 4955   format %{ %}
 4956   interface(REG_INTER);
 4957 %}
 4958 
 4959 // Generic vector class. This will be used for
 4960 // all vector operands, including NEON and SVE.
 4961 operand vReg()
 4962 %{
 4963   constraint(ALLOC_IN_RC(dynamic));
 4964   match(VecA);
 4965   match(VecD);
 4966   match(VecX);
 4967 
 4968   op_cost(0);
 4969   format %{ %}
 4970   interface(REG_INTER);
 4971 %}
 4972 
 4973 operand vecA()
 4974 %{
 4975   constraint(ALLOC_IN_RC(vectora_reg));
 4976   match(VecA);
 4977 
 4978   op_cost(0);
 4979   format %{ %}
 4980   interface(REG_INTER);
 4981 %}
 4982 
 4983 operand vecD()
 4984 %{
 4985   constraint(ALLOC_IN_RC(vectord_reg));
 4986   match(VecD);
 4987 
 4988   op_cost(0);
 4989   format %{ %}
 4990   interface(REG_INTER);
 4991 %}
 4992 
 4993 operand vecX()
 4994 %{
 4995   constraint(ALLOC_IN_RC(vectorx_reg));
 4996   match(VecX);
 4997 
 4998   op_cost(0);
 4999   format %{ %}
 5000   interface(REG_INTER);
 5001 %}
 5002 
 5003 operand vRegD_V0()
 5004 %{
 5005   constraint(ALLOC_IN_RC(v0_reg));
 5006   match(RegD);
 5007   op_cost(0);
 5008   format %{ %}
 5009   interface(REG_INTER);
 5010 %}
 5011 
 5012 operand vRegD_V1()
 5013 %{
 5014   constraint(ALLOC_IN_RC(v1_reg));
 5015   match(RegD);
 5016   op_cost(0);
 5017   format %{ %}
 5018   interface(REG_INTER);
 5019 %}
 5020 
 5021 operand vRegD_V2()
 5022 %{
 5023   constraint(ALLOC_IN_RC(v2_reg));
 5024   match(RegD);
 5025   op_cost(0);
 5026   format %{ %}
 5027   interface(REG_INTER);
 5028 %}
 5029 
 5030 operand vRegD_V3()
 5031 %{
 5032   constraint(ALLOC_IN_RC(v3_reg));
 5033   match(RegD);
 5034   op_cost(0);
 5035   format %{ %}
 5036   interface(REG_INTER);
 5037 %}
 5038 
 5039 operand vRegD_V4()
 5040 %{
 5041   constraint(ALLOC_IN_RC(v4_reg));
 5042   match(RegD);
 5043   op_cost(0);
 5044   format %{ %}
 5045   interface(REG_INTER);
 5046 %}
 5047 
 5048 operand vRegD_V5()
 5049 %{
 5050   constraint(ALLOC_IN_RC(v5_reg));
 5051   match(RegD);
 5052   op_cost(0);
 5053   format %{ %}
 5054   interface(REG_INTER);
 5055 %}
 5056 
 5057 operand vRegD_V6()
 5058 %{
 5059   constraint(ALLOC_IN_RC(v6_reg));
 5060   match(RegD);
 5061   op_cost(0);
 5062   format %{ %}
 5063   interface(REG_INTER);
 5064 %}
 5065 
 5066 operand vRegD_V7()
 5067 %{
 5068   constraint(ALLOC_IN_RC(v7_reg));
 5069   match(RegD);
 5070   op_cost(0);
 5071   format %{ %}
 5072   interface(REG_INTER);
 5073 %}
 5074 
 5075 operand vRegD_V12()
 5076 %{
 5077   constraint(ALLOC_IN_RC(v12_reg));
 5078   match(RegD);
 5079   op_cost(0);
 5080   format %{ %}
 5081   interface(REG_INTER);
 5082 %}
 5083 
 5084 operand vRegD_V13()
 5085 %{
 5086   constraint(ALLOC_IN_RC(v13_reg));
 5087   match(RegD);
 5088   op_cost(0);
 5089   format %{ %}
 5090   interface(REG_INTER);
 5091 %}
 5092 
 5093 operand pReg()
 5094 %{
 5095   constraint(ALLOC_IN_RC(pr_reg));
 5096   match(RegVectMask);
 5097   match(pRegGov);
 5098   op_cost(0);
 5099   format %{ %}
 5100   interface(REG_INTER);
 5101 %}
 5102 
 5103 operand pRegGov()
 5104 %{
 5105   constraint(ALLOC_IN_RC(gov_pr));
 5106   match(RegVectMask);
 5107   match(pReg);
 5108   op_cost(0);
 5109   format %{ %}
 5110   interface(REG_INTER);
 5111 %}
 5112 
 5113 operand pRegGov_P0()
 5114 %{
 5115   constraint(ALLOC_IN_RC(p0_reg));
 5116   match(RegVectMask);
 5117   op_cost(0);
 5118   format %{ %}
 5119   interface(REG_INTER);
 5120 %}
 5121 
 5122 operand pRegGov_P1()
 5123 %{
 5124   constraint(ALLOC_IN_RC(p1_reg));
 5125   match(RegVectMask);
 5126   op_cost(0);
 5127   format %{ %}
 5128   interface(REG_INTER);
 5129 %}
 5130 
 5131 // Flags register, used as output of signed compare instructions
 5132 
 5133 // note that on AArch64 we also use this register as the output for
 5134 // for floating point compare instructions (CmpF CmpD). this ensures
 5135 // that ordered inequality tests use GT, GE, LT or LE none of which
 5136 // pass through cases where the result is unordered i.e. one or both
 5137 // inputs to the compare is a NaN. this means that the ideal code can
 5138 // replace e.g. a GT with an LE and not end up capturing the NaN case
 5139 // (where the comparison should always fail). EQ and NE tests are
 5140 // always generated in ideal code so that unordered folds into the NE
 5141 // case, matching the behaviour of AArch64 NE.
 5142 //
 5143 // This differs from x86 where the outputs of FP compares use a
 5144 // special FP flags registers and where compares based on this
 5145 // register are distinguished into ordered inequalities (cmpOpUCF) and
 5146 // EQ/NEQ tests (cmpOpUCF2). x86 has to special case the latter tests
 5147 // to explicitly handle the unordered case in branches. x86 also has
 5148 // to include extra CMoveX rules to accept a cmpOpUCF input.
 5149 
 5150 operand rFlagsReg()
 5151 %{
 5152   constraint(ALLOC_IN_RC(int_flags));
 5153   match(RegFlags);
 5154 
 5155   op_cost(0);
 5156   format %{ "RFLAGS" %}
 5157   interface(REG_INTER);
 5158 %}
 5159 
 5160 // Flags register, used as output of unsigned compare instructions
 5161 operand rFlagsRegU()
 5162 %{
 5163   constraint(ALLOC_IN_RC(int_flags));
 5164   match(RegFlags);
 5165 
 5166   op_cost(0);
 5167   format %{ "RFLAGSU" %}
 5168   interface(REG_INTER);
 5169 %}
 5170 
 5171 // Special Registers
 5172 
 5173 // Method Register
 5174 operand inline_cache_RegP(iRegP reg)
 5175 %{
 5176   constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg
 5177   match(reg);
 5178   match(iRegPNoSp);
 5179   op_cost(0);
 5180   format %{ %}
 5181   interface(REG_INTER);
 5182 %}
 5183 
 5184 // Thread Register
 5185 operand thread_RegP(iRegP reg)
 5186 %{
 5187   constraint(ALLOC_IN_RC(thread_reg)); // link_reg
 5188   match(reg);
 5189   op_cost(0);
 5190   format %{ %}
 5191   interface(REG_INTER);
 5192 %}
 5193 
 5194 //----------Memory Operands----------------------------------------------------
 5195 
 5196 operand indirect(iRegP reg)
 5197 %{
 5198   constraint(ALLOC_IN_RC(ptr_reg));
 5199   match(reg);
 5200   op_cost(0);
 5201   format %{ "[$reg]" %}
 5202   interface(MEMORY_INTER) %{
 5203     base($reg);
 5204     index(0xffffffff);
 5205     scale(0x0);
 5206     disp(0x0);
 5207   %}
 5208 %}
 5209 
 5210 operand indIndexScaledI2L(iRegP reg, iRegI ireg, immIScale scale)
 5211 %{
 5212   constraint(ALLOC_IN_RC(ptr_reg));
 5213   predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
 5214   match(AddP reg (LShiftL (ConvI2L ireg) scale));
 5215   op_cost(0);
 5216   format %{ "$reg, $ireg sxtw($scale), 0, I2L" %}
 5217   interface(MEMORY_INTER) %{
 5218     base($reg);
 5219     index($ireg);
 5220     scale($scale);
 5221     disp(0x0);
 5222   %}
 5223 %}
 5224 
 5225 operand indIndexScaled(iRegP reg, iRegL lreg, immIScale scale)
 5226 %{
 5227   constraint(ALLOC_IN_RC(ptr_reg));
 5228   predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
 5229   match(AddP reg (LShiftL lreg scale));
 5230   op_cost(0);
 5231   format %{ "$reg, $lreg lsl($scale)" %}
 5232   interface(MEMORY_INTER) %{
 5233     base($reg);
 5234     index($lreg);
 5235     scale($scale);
 5236     disp(0x0);
 5237   %}
 5238 %}
 5239 
 5240 operand indIndexI2L(iRegP reg, iRegI ireg)
 5241 %{
 5242   constraint(ALLOC_IN_RC(ptr_reg));
 5243   match(AddP reg (ConvI2L ireg));
 5244   op_cost(0);
 5245   format %{ "$reg, $ireg, 0, I2L" %}
 5246   interface(MEMORY_INTER) %{
 5247     base($reg);
 5248     index($ireg);
 5249     scale(0x0);
 5250     disp(0x0);
 5251   %}
 5252 %}
 5253 
 5254 operand indIndex(iRegP reg, iRegL lreg)
 5255 %{
 5256   constraint(ALLOC_IN_RC(ptr_reg));
 5257   match(AddP reg lreg);
 5258   op_cost(0);
 5259   format %{ "$reg, $lreg" %}
 5260   interface(MEMORY_INTER) %{
 5261     base($reg);
 5262     index($lreg);
 5263     scale(0x0);
 5264     disp(0x0);
 5265   %}
 5266 %}
 5267 
 5268 operand indOffI1(iRegP reg, immIOffset1 off)
 5269 %{
 5270   constraint(ALLOC_IN_RC(ptr_reg));
 5271   match(AddP reg off);
 5272   op_cost(0);
 5273   format %{ "[$reg, $off]" %}
 5274   interface(MEMORY_INTER) %{
 5275     base($reg);
 5276     index(0xffffffff);
 5277     scale(0x0);
 5278     disp($off);
 5279   %}
 5280 %}
 5281 
 5282 operand indOffI2(iRegP reg, immIOffset2 off)
 5283 %{
 5284   constraint(ALLOC_IN_RC(ptr_reg));
 5285   match(AddP reg off);
 5286   op_cost(0);
 5287   format %{ "[$reg, $off]" %}
 5288   interface(MEMORY_INTER) %{
 5289     base($reg);
 5290     index(0xffffffff);
 5291     scale(0x0);
 5292     disp($off);
 5293   %}
 5294 %}
 5295 
 5296 operand indOffI4(iRegP reg, immIOffset4 off)
 5297 %{
 5298   constraint(ALLOC_IN_RC(ptr_reg));
 5299   match(AddP reg off);
 5300   op_cost(0);
 5301   format %{ "[$reg, $off]" %}
 5302   interface(MEMORY_INTER) %{
 5303     base($reg);
 5304     index(0xffffffff);
 5305     scale(0x0);
 5306     disp($off);
 5307   %}
 5308 %}
 5309 
 5310 operand indOffI8(iRegP reg, immIOffset8 off)
 5311 %{
 5312   constraint(ALLOC_IN_RC(ptr_reg));
 5313   match(AddP reg off);
 5314   op_cost(0);
 5315   format %{ "[$reg, $off]" %}
 5316   interface(MEMORY_INTER) %{
 5317     base($reg);
 5318     index(0xffffffff);
 5319     scale(0x0);
 5320     disp($off);
 5321   %}
 5322 %}
 5323 
 5324 operand indOffI16(iRegP reg, immIOffset16 off)
 5325 %{
 5326   constraint(ALLOC_IN_RC(ptr_reg));
 5327   match(AddP reg off);
 5328   op_cost(0);
 5329   format %{ "[$reg, $off]" %}
 5330   interface(MEMORY_INTER) %{
 5331     base($reg);
 5332     index(0xffffffff);
 5333     scale(0x0);
 5334     disp($off);
 5335   %}
 5336 %}
 5337 
 5338 operand indOffL1(iRegP reg, immLoffset1 off)
 5339 %{
 5340   constraint(ALLOC_IN_RC(ptr_reg));
 5341   match(AddP reg off);
 5342   op_cost(0);
 5343   format %{ "[$reg, $off]" %}
 5344   interface(MEMORY_INTER) %{
 5345     base($reg);
 5346     index(0xffffffff);
 5347     scale(0x0);
 5348     disp($off);
 5349   %}
 5350 %}
 5351 
 5352 operand indOffL2(iRegP reg, immLoffset2 off)
 5353 %{
 5354   constraint(ALLOC_IN_RC(ptr_reg));
 5355   match(AddP reg off);
 5356   op_cost(0);
 5357   format %{ "[$reg, $off]" %}
 5358   interface(MEMORY_INTER) %{
 5359     base($reg);
 5360     index(0xffffffff);
 5361     scale(0x0);
 5362     disp($off);
 5363   %}
 5364 %}
 5365 
 5366 operand indOffL4(iRegP reg, immLoffset4 off)
 5367 %{
 5368   constraint(ALLOC_IN_RC(ptr_reg));
 5369   match(AddP reg off);
 5370   op_cost(0);
 5371   format %{ "[$reg, $off]" %}
 5372   interface(MEMORY_INTER) %{
 5373     base($reg);
 5374     index(0xffffffff);
 5375     scale(0x0);
 5376     disp($off);
 5377   %}
 5378 %}
 5379 
 5380 operand indOffL8(iRegP reg, immLoffset8 off)
 5381 %{
 5382   constraint(ALLOC_IN_RC(ptr_reg));
 5383   match(AddP reg off);
 5384   op_cost(0);
 5385   format %{ "[$reg, $off]" %}
 5386   interface(MEMORY_INTER) %{
 5387     base($reg);
 5388     index(0xffffffff);
 5389     scale(0x0);
 5390     disp($off);
 5391   %}
 5392 %}
 5393 
 5394 operand indOffL16(iRegP reg, immLoffset16 off)
 5395 %{
 5396   constraint(ALLOC_IN_RC(ptr_reg));
 5397   match(AddP reg off);
 5398   op_cost(0);
 5399   format %{ "[$reg, $off]" %}
 5400   interface(MEMORY_INTER) %{
 5401     base($reg);
 5402     index(0xffffffff);
 5403     scale(0x0);
 5404     disp($off);
 5405   %}
 5406 %}
 5407 
 5408 operand indirectX2P(iRegL reg)
 5409 %{
 5410   constraint(ALLOC_IN_RC(ptr_reg));
 5411   match(CastX2P reg);
 5412   op_cost(0);
 5413   format %{ "[$reg]\t# long -> ptr" %}
 5414   interface(MEMORY_INTER) %{
 5415     base($reg);
 5416     index(0xffffffff);
 5417     scale(0x0);
 5418     disp(0x0);
 5419   %}
 5420 %}
 5421 
 5422 operand indOffX2P(iRegL reg, immLOffset off)
 5423 %{
 5424   constraint(ALLOC_IN_RC(ptr_reg));
 5425   match(AddP (CastX2P reg) off);
 5426   op_cost(0);
 5427   format %{ "[$reg, $off]\t# long -> ptr" %}
 5428   interface(MEMORY_INTER) %{
 5429     base($reg);
 5430     index(0xffffffff);
 5431     scale(0x0);
 5432     disp($off);
 5433   %}
 5434 %}
 5435 
 5436 operand indirectN(iRegN reg)
 5437 %{
 5438   predicate(CompressedOops::shift() == 0);
 5439   constraint(ALLOC_IN_RC(ptr_reg));
 5440   match(DecodeN reg);
 5441   op_cost(0);
 5442   format %{ "[$reg]\t# narrow" %}
 5443   interface(MEMORY_INTER) %{
 5444     base($reg);
 5445     index(0xffffffff);
 5446     scale(0x0);
 5447     disp(0x0);
 5448   %}
 5449 %}
 5450 
 5451 operand indIndexScaledI2LN(iRegN reg, iRegI ireg, immIScale scale)
 5452 %{
 5453   predicate(CompressedOops::shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
 5454   constraint(ALLOC_IN_RC(ptr_reg));
 5455   match(AddP (DecodeN reg) (LShiftL (ConvI2L ireg) scale));
 5456   op_cost(0);
 5457   format %{ "$reg, $ireg sxtw($scale), 0, I2L\t# narrow" %}
 5458   interface(MEMORY_INTER) %{
 5459     base($reg);
 5460     index($ireg);
 5461     scale($scale);
 5462     disp(0x0);
 5463   %}
 5464 %}
 5465 
 5466 operand indIndexScaledN(iRegN reg, iRegL lreg, immIScale scale)
 5467 %{
 5468   predicate(CompressedOops::shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
 5469   constraint(ALLOC_IN_RC(ptr_reg));
 5470   match(AddP (DecodeN reg) (LShiftL lreg scale));
 5471   op_cost(0);
 5472   format %{ "$reg, $lreg lsl($scale)\t# narrow" %}
 5473   interface(MEMORY_INTER) %{
 5474     base($reg);
 5475     index($lreg);
 5476     scale($scale);
 5477     disp(0x0);
 5478   %}
 5479 %}
 5480 
 5481 operand indIndexI2LN(iRegN reg, iRegI ireg)
 5482 %{
 5483   predicate(CompressedOops::shift() == 0);
 5484   constraint(ALLOC_IN_RC(ptr_reg));
 5485   match(AddP (DecodeN reg) (ConvI2L ireg));
 5486   op_cost(0);
 5487   format %{ "$reg, $ireg, 0, I2L\t# narrow" %}
 5488   interface(MEMORY_INTER) %{
 5489     base($reg);
 5490     index($ireg);
 5491     scale(0x0);
 5492     disp(0x0);
 5493   %}
 5494 %}
 5495 
 5496 operand indIndexN(iRegN reg, iRegL lreg)
 5497 %{
 5498   predicate(CompressedOops::shift() == 0);
 5499   constraint(ALLOC_IN_RC(ptr_reg));
 5500   match(AddP (DecodeN reg) lreg);
 5501   op_cost(0);
 5502   format %{ "$reg, $lreg\t# narrow" %}
 5503   interface(MEMORY_INTER) %{
 5504     base($reg);
 5505     index($lreg);
 5506     scale(0x0);
 5507     disp(0x0);
 5508   %}
 5509 %}
 5510 
 5511 operand indOffIN(iRegN reg, immIOffset off)
 5512 %{
 5513   predicate(CompressedOops::shift() == 0);
 5514   constraint(ALLOC_IN_RC(ptr_reg));
 5515   match(AddP (DecodeN reg) off);
 5516   op_cost(0);
 5517   format %{ "[$reg, $off]\t# narrow" %}
 5518   interface(MEMORY_INTER) %{
 5519     base($reg);
 5520     index(0xffffffff);
 5521     scale(0x0);
 5522     disp($off);
 5523   %}
 5524 %}
 5525 
 5526 operand indOffLN(iRegN reg, immLOffset off)
 5527 %{
 5528   predicate(CompressedOops::shift() == 0);
 5529   constraint(ALLOC_IN_RC(ptr_reg));
 5530   match(AddP (DecodeN reg) off);
 5531   op_cost(0);
 5532   format %{ "[$reg, $off]\t# narrow" %}
 5533   interface(MEMORY_INTER) %{
 5534     base($reg);
 5535     index(0xffffffff);
 5536     scale(0x0);
 5537     disp($off);
 5538   %}
 5539 %}
 5540 
 5541 
 5542 //----------Special Memory Operands--------------------------------------------
 5543 // Stack Slot Operand - This operand is used for loading and storing temporary
 5544 //                      values on the stack where a match requires a value to
 5545 //                      flow through memory.
 5546 operand stackSlotP(sRegP reg)
 5547 %{
 5548   constraint(ALLOC_IN_RC(stack_slots));
 5549   op_cost(100);
 5550   // No match rule because this operand is only generated in matching
 5551   // match(RegP);
 5552   format %{ "[$reg]" %}
 5553   interface(MEMORY_INTER) %{
 5554     base(0x1e);  // RSP
 5555     index(0x0);  // No Index
 5556     scale(0x0);  // No Scale
 5557     disp($reg);  // Stack Offset
 5558   %}
 5559 %}
 5560 
 5561 operand stackSlotI(sRegI reg)
 5562 %{
 5563   constraint(ALLOC_IN_RC(stack_slots));
 5564   // No match rule because this operand is only generated in matching
 5565   // match(RegI);
 5566   format %{ "[$reg]" %}
 5567   interface(MEMORY_INTER) %{
 5568     base(0x1e);  // RSP
 5569     index(0x0);  // No Index
 5570     scale(0x0);  // No Scale
 5571     disp($reg);  // Stack Offset
 5572   %}
 5573 %}
 5574 
 5575 operand stackSlotF(sRegF reg)
 5576 %{
 5577   constraint(ALLOC_IN_RC(stack_slots));
 5578   // No match rule because this operand is only generated in matching
 5579   // match(RegF);
 5580   format %{ "[$reg]" %}
 5581   interface(MEMORY_INTER) %{
 5582     base(0x1e);  // RSP
 5583     index(0x0);  // No Index
 5584     scale(0x0);  // No Scale
 5585     disp($reg);  // Stack Offset
 5586   %}
 5587 %}
 5588 
 5589 operand stackSlotD(sRegD reg)
 5590 %{
 5591   constraint(ALLOC_IN_RC(stack_slots));
 5592   // No match rule because this operand is only generated in matching
 5593   // match(RegD);
 5594   format %{ "[$reg]" %}
 5595   interface(MEMORY_INTER) %{
 5596     base(0x1e);  // RSP
 5597     index(0x0);  // No Index
 5598     scale(0x0);  // No Scale
 5599     disp($reg);  // Stack Offset
 5600   %}
 5601 %}
 5602 
 5603 operand stackSlotL(sRegL reg)
 5604 %{
 5605   constraint(ALLOC_IN_RC(stack_slots));
 5606   // No match rule because this operand is only generated in matching
 5607   // match(RegL);
 5608   format %{ "[$reg]" %}
 5609   interface(MEMORY_INTER) %{
 5610     base(0x1e);  // RSP
 5611     index(0x0);  // No Index
 5612     scale(0x0);  // No Scale
 5613     disp($reg);  // Stack Offset
 5614   %}
 5615 %}
 5616 
 5617 // Operands for expressing Control Flow
 5618 // NOTE: Label is a predefined operand which should not be redefined in
 5619 //       the AD file. It is generically handled within the ADLC.
 5620 
 5621 //----------Conditional Branch Operands----------------------------------------
 5622 // Comparison Op  - This is the operation of the comparison, and is limited to
 5623 //                  the following set of codes:
 5624 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
 5625 //
 5626 // Other attributes of the comparison, such as unsignedness, are specified
 5627 // by the comparison instruction that sets a condition code flags register.
 5628 // That result is represented by a flags operand whose subtype is appropriate
 5629 // to the unsignedness (etc.) of the comparison.
 5630 //
 5631 // Later, the instruction which matches both the Comparison Op (a Bool) and
 5632 // the flags (produced by the Cmp) specifies the coding of the comparison op
 5633 // by matching a specific subtype of Bool operand below, such as cmpOpU.
 5634 
 5635 // used for signed integral comparisons and fp comparisons
 5636 
 5637 operand cmpOp()
 5638 %{
 5639   match(Bool);
 5640 
 5641   format %{ "" %}
 5642   interface(COND_INTER) %{
 5643     equal(0x0, "eq");
 5644     not_equal(0x1, "ne");
 5645     less(0xb, "lt");
 5646     greater_equal(0xa, "ge");
 5647     less_equal(0xd, "le");
 5648     greater(0xc, "gt");
 5649     overflow(0x6, "vs");
 5650     no_overflow(0x7, "vc");
 5651   %}
 5652 %}
 5653 
 5654 // used for unsigned integral comparisons
 5655 
 5656 operand cmpOpU()
 5657 %{
 5658   match(Bool);
 5659 
 5660   format %{ "" %}
 5661   interface(COND_INTER) %{
 5662     equal(0x0, "eq");
 5663     not_equal(0x1, "ne");
 5664     less(0x3, "lo");
 5665     greater_equal(0x2, "hs");
 5666     less_equal(0x9, "ls");
 5667     greater(0x8, "hi");
 5668     overflow(0x6, "vs");
 5669     no_overflow(0x7, "vc");
 5670   %}
 5671 %}
 5672 
 5673 // used for certain integral comparisons which can be
 5674 // converted to cbxx or tbxx instructions
 5675 
 5676 operand cmpOpEqNe()
 5677 %{
 5678   match(Bool);
 5679   op_cost(0);
 5680   predicate(n->as_Bool()->_test._test == BoolTest::ne
 5681             || n->as_Bool()->_test._test == BoolTest::eq);
 5682 
 5683   format %{ "" %}
 5684   interface(COND_INTER) %{
 5685     equal(0x0, "eq");
 5686     not_equal(0x1, "ne");
 5687     less(0xb, "lt");
 5688     greater_equal(0xa, "ge");
 5689     less_equal(0xd, "le");
 5690     greater(0xc, "gt");
 5691     overflow(0x6, "vs");
 5692     no_overflow(0x7, "vc");
 5693   %}
 5694 %}
 5695 
 5696 // used for certain integral comparisons which can be
 5697 // converted to cbxx or tbxx instructions
 5698 
 5699 operand cmpOpLtGe()
 5700 %{
 5701   match(Bool);
 5702   op_cost(0);
 5703 
 5704   predicate(n->as_Bool()->_test._test == BoolTest::lt
 5705             || n->as_Bool()->_test._test == BoolTest::ge);
 5706 
 5707   format %{ "" %}
 5708   interface(COND_INTER) %{
 5709     equal(0x0, "eq");
 5710     not_equal(0x1, "ne");
 5711     less(0xb, "lt");
 5712     greater_equal(0xa, "ge");
 5713     less_equal(0xd, "le");
 5714     greater(0xc, "gt");
 5715     overflow(0x6, "vs");
 5716     no_overflow(0x7, "vc");
 5717   %}
 5718 %}
 5719 
 5720 // used for certain unsigned integral comparisons which can be
 5721 // converted to cbxx or tbxx instructions
 5722 
 5723 operand cmpOpUEqNeLeGt()
 5724 %{
 5725   match(Bool);
 5726   op_cost(0);
 5727 
 5728   predicate(n->as_Bool()->_test._test == BoolTest::eq ||
 5729             n->as_Bool()->_test._test == BoolTest::ne ||
 5730             n->as_Bool()->_test._test == BoolTest::le ||
 5731             n->as_Bool()->_test._test == BoolTest::gt);
 5732 
 5733   format %{ "" %}
 5734   interface(COND_INTER) %{
 5735     equal(0x0, "eq");
 5736     not_equal(0x1, "ne");
 5737     less(0x3, "lo");
 5738     greater_equal(0x2, "hs");
 5739     less_equal(0x9, "ls");
 5740     greater(0x8, "hi");
 5741     overflow(0x6, "vs");
 5742     no_overflow(0x7, "vc");
 5743   %}
 5744 %}
 5745 
 5746 // Special operand allowing long args to int ops to be truncated for free
 5747 
 5748 operand iRegL2I(iRegL reg) %{
 5749 
 5750   op_cost(0);
 5751 
 5752   match(ConvL2I reg);
 5753 
 5754   format %{ "l2i($reg)" %}
 5755 
 5756   interface(REG_INTER)
 5757 %}
 5758 
 5759 operand iRegL2P(iRegL reg) %{
 5760 
 5761   op_cost(0);
 5762 
 5763   match(CastX2P reg);
 5764 
 5765   format %{ "l2p($reg)" %}
 5766 
 5767   interface(REG_INTER)
 5768 %}
 5769 
 5770 opclass vmem2(indirect, indIndex, indOffI2, indOffL2);
 5771 opclass vmem4(indirect, indIndex, indOffI4, indOffL4);
 5772 opclass vmem8(indirect, indIndex, indOffI8, indOffL8);
 5773 opclass vmem16(indirect, indIndex, indOffI16, indOffL16);
 5774 
 5775 //----------OPERAND CLASSES----------------------------------------------------
 5776 // Operand Classes are groups of operands that are used as to simplify
 5777 // instruction definitions by not requiring the AD writer to specify
 5778 // separate instructions for every form of operand when the
 5779 // instruction accepts multiple operand types with the same basic
 5780 // encoding and format. The classic case of this is memory operands.
 5781 
 5782 // memory is used to define read/write location for load/store
 5783 // instruction defs. we can turn a memory op into an Address
 5784 
 5785 opclass memory1(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI1, indOffL1,
 5786                 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indirectX2P, indOffX2P);
 5787 
 5788 opclass memory2(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI2, indOffL2,
 5789                 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indirectX2P, indOffX2P);
 5790 
 5791 opclass memory4(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI4, indOffL4,
 5792                 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN, indirectX2P, indOffX2P);
 5793 
 5794 opclass memory8(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI8, indOffL8,
 5795                 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN, indirectX2P, indOffX2P);
 5796 
 5797 // All of the memory operands. For the pipeline description.
 5798 opclass memory(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex,
 5799                indOffI1, indOffL1, indOffI2, indOffL2, indOffI4, indOffL4, indOffI8, indOffL8,
 5800                indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN, indirectX2P, indOffX2P);
 5801 
 5802 
 5803 // iRegIorL2I is used for src inputs in rules for 32 bit int (I)
 5804 // operations. it allows the src to be either an iRegI or a (ConvL2I
 5805 // iRegL). in the latter case the l2i normally planted for a ConvL2I
 5806 // can be elided because the 32-bit instruction will just employ the
 5807 // lower 32 bits anyway.
 5808 //
 5809 // n.b. this does not elide all L2I conversions. if the truncated
 5810 // value is consumed by more than one operation then the ConvL2I
 5811 // cannot be bundled into the consuming nodes so an l2i gets planted
 5812 // (actually a movw $dst $src) and the downstream instructions consume
 5813 // the result of the l2i as an iRegI input. That's a shame since the
 5814 // movw is actually redundant but its not too costly.
 5815 
 5816 opclass iRegIorL2I(iRegI, iRegL2I);
 5817 opclass iRegPorL2P(iRegP, iRegL2P);
 5818 
 5819 //----------PIPELINE-----------------------------------------------------------
 5820 // Rules which define the behavior of the target architectures pipeline.
 5821 
 5822 // For specific pipelines, eg A53, define the stages of that pipeline
 5823 //pipe_desc(ISS, EX1, EX2, WR);
 5824 #define ISS S0
 5825 #define EX1 S1
 5826 #define EX2 S2
 5827 #define WR  S3
 5828 
 5829 // Integer ALU reg operation
 5830 pipeline %{
 5831 
 5832 attributes %{
 5833   // ARM instructions are of fixed length
 5834   fixed_size_instructions;        // Fixed size instructions TODO does
 5835   max_instructions_per_bundle = 4;   // A53 = 2, A57 = 4
 5836   // ARM instructions come in 32-bit word units
 5837   instruction_unit_size = 4;         // An instruction is 4 bytes long
 5838   instruction_fetch_unit_size = 64;  // The processor fetches one line
 5839   instruction_fetch_units = 1;       // of 64 bytes
 5840 
 5841   // List of nop instructions
 5842   nops( MachNop );
 5843 %}
 5844 
 5845 // We don't use an actual pipeline model so don't care about resources
 5846 // or description. we do use pipeline classes to introduce fixed
 5847 // latencies
 5848 
 5849 //----------RESOURCES----------------------------------------------------------
 5850 // Resources are the functional units available to the machine
 5851 
 5852 resources( INS0, INS1, INS01 = INS0 | INS1,
 5853            ALU0, ALU1, ALU = ALU0 | ALU1,
 5854            MAC,
 5855            DIV,
 5856            BRANCH,
 5857            LDST,
 5858            NEON_FP);
 5859 
 5860 //----------PIPELINE DESCRIPTION-----------------------------------------------
 5861 // Pipeline Description specifies the stages in the machine's pipeline
 5862 
 5863 // Define the pipeline as a generic 6 stage pipeline
 5864 pipe_desc(S0, S1, S2, S3, S4, S5);
 5865 
 5866 //----------PIPELINE CLASSES---------------------------------------------------
 5867 // Pipeline Classes describe the stages in which input and output are
 5868 // referenced by the hardware pipeline.
 5869 
 5870 pipe_class fp_dop_reg_reg_s(vRegF dst, vRegF src1, vRegF src2)
 5871 %{
 5872   single_instruction;
 5873   src1   : S1(read);
 5874   src2   : S2(read);
 5875   dst    : S5(write);
 5876   INS01  : ISS;
 5877   NEON_FP : S5;
 5878 %}
 5879 
 5880 pipe_class fp_dop_reg_reg_d(vRegD dst, vRegD src1, vRegD src2)
 5881 %{
 5882   single_instruction;
 5883   src1   : S1(read);
 5884   src2   : S2(read);
 5885   dst    : S5(write);
 5886   INS01  : ISS;
 5887   NEON_FP : S5;
 5888 %}
 5889 
 5890 pipe_class fp_uop_s(vRegF dst, vRegF src)
 5891 %{
 5892   single_instruction;
 5893   src    : S1(read);
 5894   dst    : S5(write);
 5895   INS01  : ISS;
 5896   NEON_FP : S5;
 5897 %}
 5898 
 5899 pipe_class fp_uop_d(vRegD dst, vRegD src)
 5900 %{
 5901   single_instruction;
 5902   src    : S1(read);
 5903   dst    : S5(write);
 5904   INS01  : ISS;
 5905   NEON_FP : S5;
 5906 %}
 5907 
 5908 pipe_class fp_d2f(vRegF dst, vRegD src)
 5909 %{
 5910   single_instruction;
 5911   src    : S1(read);
 5912   dst    : S5(write);
 5913   INS01  : ISS;
 5914   NEON_FP : S5;
 5915 %}
 5916 
 5917 pipe_class fp_f2d(vRegD dst, vRegF src)
 5918 %{
 5919   single_instruction;
 5920   src    : S1(read);
 5921   dst    : S5(write);
 5922   INS01  : ISS;
 5923   NEON_FP : S5;
 5924 %}
 5925 
 5926 pipe_class fp_f2i(iRegINoSp dst, vRegF src)
 5927 %{
 5928   single_instruction;
 5929   src    : S1(read);
 5930   dst    : S5(write);
 5931   INS01  : ISS;
 5932   NEON_FP : S5;
 5933 %}
 5934 
 5935 pipe_class fp_f2l(iRegLNoSp dst, vRegF src)
 5936 %{
 5937   single_instruction;
 5938   src    : S1(read);
 5939   dst    : S5(write);
 5940   INS01  : ISS;
 5941   NEON_FP : S5;
 5942 %}
 5943 
 5944 pipe_class fp_i2f(vRegF dst, iRegIorL2I src)
 5945 %{
 5946   single_instruction;
 5947   src    : S1(read);
 5948   dst    : S5(write);
 5949   INS01  : ISS;
 5950   NEON_FP : S5;
 5951 %}
 5952 
 5953 pipe_class fp_l2f(vRegF dst, iRegL src)
 5954 %{
 5955   single_instruction;
 5956   src    : S1(read);
 5957   dst    : S5(write);
 5958   INS01  : ISS;
 5959   NEON_FP : S5;
 5960 %}
 5961 
 5962 pipe_class fp_d2i(iRegINoSp dst, vRegD src)
 5963 %{
 5964   single_instruction;
 5965   src    : S1(read);
 5966   dst    : S5(write);
 5967   INS01  : ISS;
 5968   NEON_FP : S5;
 5969 %}
 5970 
 5971 pipe_class fp_d2l(iRegLNoSp dst, vRegD src)
 5972 %{
 5973   single_instruction;
 5974   src    : S1(read);
 5975   dst    : S5(write);
 5976   INS01  : ISS;
 5977   NEON_FP : S5;
 5978 %}
 5979 
 5980 pipe_class fp_i2d(vRegD dst, iRegIorL2I src)
 5981 %{
 5982   single_instruction;
 5983   src    : S1(read);
 5984   dst    : S5(write);
 5985   INS01  : ISS;
 5986   NEON_FP : S5;
 5987 %}
 5988 
 5989 pipe_class fp_l2d(vRegD dst, iRegIorL2I src)
 5990 %{
 5991   single_instruction;
 5992   src    : S1(read);
 5993   dst    : S5(write);
 5994   INS01  : ISS;
 5995   NEON_FP : S5;
 5996 %}
 5997 
 5998 pipe_class fp_div_s(vRegF dst, vRegF src1, vRegF src2)
 5999 %{
 6000   single_instruction;
 6001   src1   : S1(read);
 6002   src2   : S2(read);
 6003   dst    : S5(write);
 6004   INS0   : ISS;
 6005   NEON_FP : S5;
 6006 %}
 6007 
 6008 pipe_class fp_div_d(vRegD dst, vRegD src1, vRegD src2)
 6009 %{
 6010   single_instruction;
 6011   src1   : S1(read);
 6012   src2   : S2(read);
 6013   dst    : S5(write);
 6014   INS0   : ISS;
 6015   NEON_FP : S5;
 6016 %}
 6017 
 6018 pipe_class fp_cond_reg_reg_s(vRegF dst, vRegF src1, vRegF src2, rFlagsReg cr)
 6019 %{
 6020   single_instruction;
 6021   cr     : S1(read);
 6022   src1   : S1(read);
 6023   src2   : S1(read);
 6024   dst    : S3(write);
 6025   INS01  : ISS;
 6026   NEON_FP : S3;
 6027 %}
 6028 
 6029 pipe_class fp_cond_reg_reg_d(vRegD dst, vRegD src1, vRegD src2, rFlagsReg cr)
 6030 %{
 6031   single_instruction;
 6032   cr     : S1(read);
 6033   src1   : S1(read);
 6034   src2   : S1(read);
 6035   dst    : S3(write);
 6036   INS01  : ISS;
 6037   NEON_FP : S3;
 6038 %}
 6039 
 6040 pipe_class fp_imm_s(vRegF dst)
 6041 %{
 6042   single_instruction;
 6043   dst    : S3(write);
 6044   INS01  : ISS;
 6045   NEON_FP : S3;
 6046 %}
 6047 
 6048 pipe_class fp_imm_d(vRegD dst)
 6049 %{
 6050   single_instruction;
 6051   dst    : S3(write);
 6052   INS01  : ISS;
 6053   NEON_FP : S3;
 6054 %}
 6055 
 6056 pipe_class fp_load_constant_s(vRegF dst)
 6057 %{
 6058   single_instruction;
 6059   dst    : S4(write);
 6060   INS01  : ISS;
 6061   NEON_FP : S4;
 6062 %}
 6063 
 6064 pipe_class fp_load_constant_d(vRegD dst)
 6065 %{
 6066   single_instruction;
 6067   dst    : S4(write);
 6068   INS01  : ISS;
 6069   NEON_FP : S4;
 6070 %}
 6071 
 6072 //------- Integer ALU operations --------------------------
 6073 
 6074 // Integer ALU reg-reg operation
 6075 // Operands needed in EX1, result generated in EX2
 6076 // Eg.  ADD     x0, x1, x2
 6077 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6078 %{
 6079   single_instruction;
 6080   dst    : EX2(write);
 6081   src1   : EX1(read);
 6082   src2   : EX1(read);
 6083   INS01  : ISS; // Dual issue as instruction 0 or 1
 6084   ALU    : EX2;
 6085 %}
 6086 
 6087 // Integer ALU reg-reg operation with constant shift
 6088 // Shifted register must be available in LATE_ISS instead of EX1
 6089 // Eg.  ADD     x0, x1, x2, LSL #2
 6090 pipe_class ialu_reg_reg_shift(iRegI dst, iRegI src1, iRegI src2, immI shift)
 6091 %{
 6092   single_instruction;
 6093   dst    : EX2(write);
 6094   src1   : EX1(read);
 6095   src2   : ISS(read);
 6096   INS01  : ISS;
 6097   ALU    : EX2;
 6098 %}
 6099 
 6100 // Integer ALU reg operation with constant shift
 6101 // Eg.  LSL     x0, x1, #shift
 6102 pipe_class ialu_reg_shift(iRegI dst, iRegI src1)
 6103 %{
 6104   single_instruction;
 6105   dst    : EX2(write);
 6106   src1   : ISS(read);
 6107   INS01  : ISS;
 6108   ALU    : EX2;
 6109 %}
 6110 
 6111 // Integer ALU reg-reg operation with variable shift
 6112 // Both operands must be available in LATE_ISS instead of EX1
 6113 // Result is available in EX1 instead of EX2
 6114 // Eg.  LSLV    x0, x1, x2
 6115 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2)
 6116 %{
 6117   single_instruction;
 6118   dst    : EX1(write);
 6119   src1   : ISS(read);
 6120   src2   : ISS(read);
 6121   INS01  : ISS;
 6122   ALU    : EX1;
 6123 %}
 6124 
 6125 // Integer ALU reg-reg operation with extract
 6126 // As for _vshift above, but result generated in EX2
 6127 // Eg.  EXTR    x0, x1, x2, #N
 6128 pipe_class ialu_reg_reg_extr(iRegI dst, iRegI src1, iRegI src2)
 6129 %{
 6130   single_instruction;
 6131   dst    : EX2(write);
 6132   src1   : ISS(read);
 6133   src2   : ISS(read);
 6134   INS1   : ISS; // Can only dual issue as Instruction 1
 6135   ALU    : EX1;
 6136 %}
 6137 
 6138 // Integer ALU reg operation
 6139 // Eg.  NEG     x0, x1
 6140 pipe_class ialu_reg(iRegI dst, iRegI src)
 6141 %{
 6142   single_instruction;
 6143   dst    : EX2(write);
 6144   src    : EX1(read);
 6145   INS01  : ISS;
 6146   ALU    : EX2;
 6147 %}
 6148 
 6149 // Integer ALU reg mmediate operation
 6150 // Eg.  ADD     x0, x1, #N
 6151 pipe_class ialu_reg_imm(iRegI dst, iRegI src1)
 6152 %{
 6153   single_instruction;
 6154   dst    : EX2(write);
 6155   src1   : EX1(read);
 6156   INS01  : ISS;
 6157   ALU    : EX2;
 6158 %}
 6159 
 6160 // Integer ALU immediate operation (no source operands)
 6161 // Eg.  MOV     x0, #N
 6162 pipe_class ialu_imm(iRegI dst)
 6163 %{
 6164   single_instruction;
 6165   dst    : EX1(write);
 6166   INS01  : ISS;
 6167   ALU    : EX1;
 6168 %}
 6169 
 6170 //------- Compare operation -------------------------------
 6171 
 6172 // Compare reg-reg
 6173 // Eg.  CMP     x0, x1
 6174 pipe_class icmp_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2)
 6175 %{
 6176   single_instruction;
 6177 //  fixed_latency(16);
 6178   cr     : EX2(write);
 6179   op1    : EX1(read);
 6180   op2    : EX1(read);
 6181   INS01  : ISS;
 6182   ALU    : EX2;
 6183 %}
 6184 
 6185 // Compare reg-reg
 6186 // Eg.  CMP     x0, #N
 6187 pipe_class icmp_reg_imm(rFlagsReg cr, iRegI op1)
 6188 %{
 6189   single_instruction;
 6190 //  fixed_latency(16);
 6191   cr     : EX2(write);
 6192   op1    : EX1(read);
 6193   INS01  : ISS;
 6194   ALU    : EX2;
 6195 %}
 6196 
 6197 //------- Conditional instructions ------------------------
 6198 
 6199 // Conditional no operands
 6200 // Eg.  CSINC   x0, zr, zr, <cond>
 6201 pipe_class icond_none(iRegI dst, rFlagsReg cr)
 6202 %{
 6203   single_instruction;
 6204   cr     : EX1(read);
 6205   dst    : EX2(write);
 6206   INS01  : ISS;
 6207   ALU    : EX2;
 6208 %}
 6209 
 6210 // Conditional 2 operand
 6211 // EG.  CSEL    X0, X1, X2, <cond>
 6212 pipe_class icond_reg_reg(iRegI dst, iRegI src1, iRegI src2, rFlagsReg cr)
 6213 %{
 6214   single_instruction;
 6215   cr     : EX1(read);
 6216   src1   : EX1(read);
 6217   src2   : EX1(read);
 6218   dst    : EX2(write);
 6219   INS01  : ISS;
 6220   ALU    : EX2;
 6221 %}
 6222 
 6223 // Conditional 2 operand
 6224 // EG.  CSEL    X0, X1, X2, <cond>
 6225 pipe_class icond_reg(iRegI dst, iRegI src, rFlagsReg cr)
 6226 %{
 6227   single_instruction;
 6228   cr     : EX1(read);
 6229   src    : EX1(read);
 6230   dst    : EX2(write);
 6231   INS01  : ISS;
 6232   ALU    : EX2;
 6233 %}
 6234 
 6235 //------- Multiply pipeline operations --------------------
 6236 
 6237 // Multiply reg-reg
 6238 // Eg.  MUL     w0, w1, w2
 6239 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6240 %{
 6241   single_instruction;
 6242   dst    : WR(write);
 6243   src1   : ISS(read);
 6244   src2   : ISS(read);
 6245   INS01  : ISS;
 6246   MAC    : WR;
 6247 %}
 6248 
 6249 // Multiply accumulate
 6250 // Eg.  MADD    w0, w1, w2, w3
 6251 pipe_class imac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3)
 6252 %{
 6253   single_instruction;
 6254   dst    : WR(write);
 6255   src1   : ISS(read);
 6256   src2   : ISS(read);
 6257   src3   : ISS(read);
 6258   INS01  : ISS;
 6259   MAC    : WR;
 6260 %}
 6261 
 6262 // Eg.  MUL     w0, w1, w2
 6263 pipe_class lmul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6264 %{
 6265   single_instruction;
 6266   fixed_latency(3); // Maximum latency for 64 bit mul
 6267   dst    : WR(write);
 6268   src1   : ISS(read);
 6269   src2   : ISS(read);
 6270   INS01  : ISS;
 6271   MAC    : WR;
 6272 %}
 6273 
 6274 // Multiply accumulate
 6275 // Eg.  MADD    w0, w1, w2, w3
 6276 pipe_class lmac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3)
 6277 %{
 6278   single_instruction;
 6279   fixed_latency(3); // Maximum latency for 64 bit mul
 6280   dst    : WR(write);
 6281   src1   : ISS(read);
 6282   src2   : ISS(read);
 6283   src3   : ISS(read);
 6284   INS01  : ISS;
 6285   MAC    : WR;
 6286 %}
 6287 
 6288 //------- Divide pipeline operations --------------------
 6289 
 6290 // Eg.  SDIV    w0, w1, w2
 6291 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6292 %{
 6293   single_instruction;
 6294   fixed_latency(8); // Maximum latency for 32 bit divide
 6295   dst    : WR(write);
 6296   src1   : ISS(read);
 6297   src2   : ISS(read);
 6298   INS0   : ISS; // Can only dual issue as instruction 0
 6299   DIV    : WR;
 6300 %}
 6301 
 6302 // Eg.  SDIV    x0, x1, x2
 6303 pipe_class ldiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6304 %{
 6305   single_instruction;
 6306   fixed_latency(16); // Maximum latency for 64 bit divide
 6307   dst    : WR(write);
 6308   src1   : ISS(read);
 6309   src2   : ISS(read);
 6310   INS0   : ISS; // Can only dual issue as instruction 0
 6311   DIV    : WR;
 6312 %}
 6313 
 6314 //------- Load pipeline operations ------------------------
 6315 
 6316 // Load - prefetch
 6317 // Eg.  PFRM    <mem>
 6318 pipe_class iload_prefetch(memory mem)
 6319 %{
 6320   single_instruction;
 6321   mem    : ISS(read);
 6322   INS01  : ISS;
 6323   LDST   : WR;
 6324 %}
 6325 
 6326 // Load - reg, mem
 6327 // Eg.  LDR     x0, <mem>
 6328 pipe_class iload_reg_mem(iRegI dst, memory mem)
 6329 %{
 6330   single_instruction;
 6331   dst    : WR(write);
 6332   mem    : ISS(read);
 6333   INS01  : ISS;
 6334   LDST   : WR;
 6335 %}
 6336 
 6337 // Load - reg, reg
 6338 // Eg.  LDR     x0, [sp, x1]
 6339 pipe_class iload_reg_reg(iRegI dst, iRegI src)
 6340 %{
 6341   single_instruction;
 6342   dst    : WR(write);
 6343   src    : ISS(read);
 6344   INS01  : ISS;
 6345   LDST   : WR;
 6346 %}
 6347 
 6348 //------- Store pipeline operations -----------------------
 6349 
 6350 // Store - zr, mem
 6351 // Eg.  STR     zr, <mem>
 6352 pipe_class istore_mem(memory mem)
 6353 %{
 6354   single_instruction;
 6355   mem    : ISS(read);
 6356   INS01  : ISS;
 6357   LDST   : WR;
 6358 %}
 6359 
 6360 // Store - reg, mem
 6361 // Eg.  STR     x0, <mem>
 6362 pipe_class istore_reg_mem(iRegI src, memory mem)
 6363 %{
 6364   single_instruction;
 6365   mem    : ISS(read);
 6366   src    : EX2(read);
 6367   INS01  : ISS;
 6368   LDST   : WR;
 6369 %}
 6370 
 6371 // Store - reg, reg
 6372 // Eg. STR      x0, [sp, x1]
 6373 pipe_class istore_reg_reg(iRegI dst, iRegI src)
 6374 %{
 6375   single_instruction;
 6376   dst    : ISS(read);
 6377   src    : EX2(read);
 6378   INS01  : ISS;
 6379   LDST   : WR;
 6380 %}
 6381 
 6382 //------- Store pipeline operations -----------------------
 6383 
 6384 // Branch
 6385 pipe_class pipe_branch()
 6386 %{
 6387   single_instruction;
 6388   INS01  : ISS;
 6389   BRANCH : EX1;
 6390 %}
 6391 
 6392 // Conditional branch
 6393 pipe_class pipe_branch_cond(rFlagsReg cr)
 6394 %{
 6395   single_instruction;
 6396   cr     : EX1(read);
 6397   INS01  : ISS;
 6398   BRANCH : EX1;
 6399 %}
 6400 
 6401 // Compare & Branch
 6402 // EG.  CBZ/CBNZ
 6403 pipe_class pipe_cmp_branch(iRegI op1)
 6404 %{
 6405   single_instruction;
 6406   op1    : EX1(read);
 6407   INS01  : ISS;
 6408   BRANCH : EX1;
 6409 %}
 6410 
 6411 //------- Synchronisation operations ----------------------
 6412 
 6413 // Any operation requiring serialization.
 6414 // EG.  DMB/Atomic Ops/Load Acquire/Str Release
 6415 pipe_class pipe_serial()
 6416 %{
 6417   single_instruction;
 6418   force_serialization;
 6419   fixed_latency(16);
 6420   INS01  : ISS(2); // Cannot dual issue with any other instruction
 6421   LDST   : WR;
 6422 %}
 6423 
 6424 // Generic big/slow expanded idiom - also serialized
 6425 pipe_class pipe_slow()
 6426 %{
 6427   instruction_count(10);
 6428   multiple_bundles;
 6429   force_serialization;
 6430   fixed_latency(16);
 6431   INS01  : ISS(2); // Cannot dual issue with any other instruction
 6432   LDST   : WR;
 6433 %}
 6434 
 6435 // Empty pipeline class
 6436 pipe_class pipe_class_empty()
 6437 %{
 6438   single_instruction;
 6439   fixed_latency(0);
 6440 %}
 6441 
 6442 // Default pipeline class.
 6443 pipe_class pipe_class_default()
 6444 %{
 6445   single_instruction;
 6446   fixed_latency(2);
 6447 %}
 6448 
 6449 // Pipeline class for compares.
 6450 pipe_class pipe_class_compare()
 6451 %{
 6452   single_instruction;
 6453   fixed_latency(16);
 6454 %}
 6455 
 6456 // Pipeline class for memory operations.
 6457 pipe_class pipe_class_memory()
 6458 %{
 6459   single_instruction;
 6460   fixed_latency(16);
 6461 %}
 6462 
 6463 // Pipeline class for call.
 6464 pipe_class pipe_class_call()
 6465 %{
 6466   single_instruction;
 6467   fixed_latency(100);
 6468 %}
 6469 
 6470 // Define the class for the Nop node.
 6471 define %{
 6472    MachNop = pipe_class_empty;
 6473 %}
 6474 
 6475 %}
 6476 //----------INSTRUCTIONS-------------------------------------------------------
 6477 //
 6478 // match      -- States which machine-independent subtree may be replaced
 6479 //               by this instruction.
 6480 // ins_cost   -- The estimated cost of this instruction is used by instruction
 6481 //               selection to identify a minimum cost tree of machine
 6482 //               instructions that matches a tree of machine-independent
 6483 //               instructions.
 6484 // format     -- A string providing the disassembly for this instruction.
 6485 //               The value of an instruction's operand may be inserted
 6486 //               by referring to it with a '$' prefix.
 6487 // opcode     -- Three instruction opcodes may be provided.  These are referred
 6488 //               to within an encode class as $primary, $secondary, and $tertiary
 6489 //               rrspectively.  The primary opcode is commonly used to
 6490 //               indicate the type of machine instruction, while secondary
 6491 //               and tertiary are often used for prefix options or addressing
 6492 //               modes.
 6493 // ins_encode -- A list of encode classes with parameters. The encode class
 6494 //               name must have been defined in an 'enc_class' specification
 6495 //               in the encode section of the architecture description.
 6496 
 6497 // ============================================================================
 6498 // Memory (Load/Store) Instructions
 6499 
 6500 // Load Instructions
 6501 
 6502 // Load Byte (8 bit signed)
 6503 instruct loadB(iRegINoSp dst, memory1 mem)
 6504 %{
 6505   match(Set dst (LoadB mem));
 6506   predicate(!needs_acquiring_load(n));
 6507 
 6508   ins_cost(4 * INSN_COST);
 6509   format %{ "ldrsbw  $dst, $mem\t# byte" %}
 6510 
 6511   ins_encode(aarch64_enc_ldrsbw(dst, mem));
 6512 
 6513   ins_pipe(iload_reg_mem);
 6514 %}
 6515 
 6516 // Load Byte (8 bit signed) into long
 6517 instruct loadB2L(iRegLNoSp dst, memory1 mem)
 6518 %{
 6519   match(Set dst (ConvI2L (LoadB mem)));
 6520   predicate(!needs_acquiring_load(n->in(1)));
 6521 
 6522   ins_cost(4 * INSN_COST);
 6523   format %{ "ldrsb  $dst, $mem\t# byte" %}
 6524 
 6525   ins_encode(aarch64_enc_ldrsb(dst, mem));
 6526 
 6527   ins_pipe(iload_reg_mem);
 6528 %}
 6529 
 6530 // Load Byte (8 bit unsigned)
 6531 instruct loadUB(iRegINoSp dst, memory1 mem)
 6532 %{
 6533   match(Set dst (LoadUB mem));
 6534   predicate(!needs_acquiring_load(n));
 6535 
 6536   ins_cost(4 * INSN_COST);
 6537   format %{ "ldrbw  $dst, $mem\t# byte" %}
 6538 
 6539   ins_encode(aarch64_enc_ldrb(dst, mem));
 6540 
 6541   ins_pipe(iload_reg_mem);
 6542 %}
 6543 
 6544 // Load Byte (8 bit unsigned) into long
 6545 instruct loadUB2L(iRegLNoSp dst, memory1 mem)
 6546 %{
 6547   match(Set dst (ConvI2L (LoadUB mem)));
 6548   predicate(!needs_acquiring_load(n->in(1)));
 6549 
 6550   ins_cost(4 * INSN_COST);
 6551   format %{ "ldrb  $dst, $mem\t# byte" %}
 6552 
 6553   ins_encode(aarch64_enc_ldrb(dst, mem));
 6554 
 6555   ins_pipe(iload_reg_mem);
 6556 %}
 6557 
 6558 // Load Short (16 bit signed)
 6559 instruct loadS(iRegINoSp dst, memory2 mem)
 6560 %{
 6561   match(Set dst (LoadS mem));
 6562   predicate(!needs_acquiring_load(n));
 6563 
 6564   ins_cost(4 * INSN_COST);
 6565   format %{ "ldrshw  $dst, $mem\t# short" %}
 6566 
 6567   ins_encode(aarch64_enc_ldrshw(dst, mem));
 6568 
 6569   ins_pipe(iload_reg_mem);
 6570 %}
 6571 
 6572 // Load Short (16 bit signed) into long
 6573 instruct loadS2L(iRegLNoSp dst, memory2 mem)
 6574 %{
 6575   match(Set dst (ConvI2L (LoadS mem)));
 6576   predicate(!needs_acquiring_load(n->in(1)));
 6577 
 6578   ins_cost(4 * INSN_COST);
 6579   format %{ "ldrsh  $dst, $mem\t# short" %}
 6580 
 6581   ins_encode(aarch64_enc_ldrsh(dst, mem));
 6582 
 6583   ins_pipe(iload_reg_mem);
 6584 %}
 6585 
 6586 // Load Char (16 bit unsigned)
 6587 instruct loadUS(iRegINoSp dst, memory2 mem)
 6588 %{
 6589   match(Set dst (LoadUS mem));
 6590   predicate(!needs_acquiring_load(n));
 6591 
 6592   ins_cost(4 * INSN_COST);
 6593   format %{ "ldrh  $dst, $mem\t# short" %}
 6594 
 6595   ins_encode(aarch64_enc_ldrh(dst, mem));
 6596 
 6597   ins_pipe(iload_reg_mem);
 6598 %}
 6599 
 6600 // Load Short/Char (16 bit unsigned) into long
 6601 instruct loadUS2L(iRegLNoSp dst, memory2 mem)
 6602 %{
 6603   match(Set dst (ConvI2L (LoadUS mem)));
 6604   predicate(!needs_acquiring_load(n->in(1)));
 6605 
 6606   ins_cost(4 * INSN_COST);
 6607   format %{ "ldrh  $dst, $mem\t# short" %}
 6608 
 6609   ins_encode(aarch64_enc_ldrh(dst, mem));
 6610 
 6611   ins_pipe(iload_reg_mem);
 6612 %}
 6613 
 6614 // Load Integer (32 bit signed)
 6615 instruct loadI(iRegINoSp dst, memory4 mem)
 6616 %{
 6617   match(Set dst (LoadI mem));
 6618   predicate(!needs_acquiring_load(n));
 6619 
 6620   ins_cost(4 * INSN_COST);
 6621   format %{ "ldrw  $dst, $mem\t# int" %}
 6622 
 6623   ins_encode(aarch64_enc_ldrw(dst, mem));
 6624 
 6625   ins_pipe(iload_reg_mem);
 6626 %}
 6627 
 6628 // Load Integer (32 bit signed) into long
 6629 instruct loadI2L(iRegLNoSp dst, memory4 mem)
 6630 %{
 6631   match(Set dst (ConvI2L (LoadI mem)));
 6632   predicate(!needs_acquiring_load(n->in(1)));
 6633 
 6634   ins_cost(4 * INSN_COST);
 6635   format %{ "ldrsw  $dst, $mem\t# int" %}
 6636 
 6637   ins_encode(aarch64_enc_ldrsw(dst, mem));
 6638 
 6639   ins_pipe(iload_reg_mem);
 6640 %}
 6641 
 6642 // Load Integer (32 bit unsigned) into long
 6643 instruct loadUI2L(iRegLNoSp dst, memory4 mem, immL_32bits mask)
 6644 %{
 6645   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 6646   predicate(!needs_acquiring_load(n->in(1)->in(1)->as_Load()));
 6647 
 6648   ins_cost(4 * INSN_COST);
 6649   format %{ "ldrw  $dst, $mem\t# int" %}
 6650 
 6651   ins_encode(aarch64_enc_ldrw(dst, mem));
 6652 
 6653   ins_pipe(iload_reg_mem);
 6654 %}
 6655 
 6656 // Load Long (64 bit signed)
 6657 instruct loadL(iRegLNoSp dst, memory8 mem)
 6658 %{
 6659   match(Set dst (LoadL mem));
 6660   predicate(!needs_acquiring_load(n));
 6661 
 6662   ins_cost(4 * INSN_COST);
 6663   format %{ "ldr  $dst, $mem\t# int" %}
 6664 
 6665   ins_encode(aarch64_enc_ldr(dst, mem));
 6666 
 6667   ins_pipe(iload_reg_mem);
 6668 %}
 6669 
 6670 // Load Range
 6671 instruct loadRange(iRegINoSp dst, memory4 mem)
 6672 %{
 6673   match(Set dst (LoadRange mem));
 6674 
 6675   ins_cost(4 * INSN_COST);
 6676   format %{ "ldrw  $dst, $mem\t# range" %}
 6677 
 6678   ins_encode(aarch64_enc_ldrw(dst, mem));
 6679 
 6680   ins_pipe(iload_reg_mem);
 6681 %}
 6682 
 6683 // Load Pointer
 6684 instruct loadP(iRegPNoSp dst, memory8 mem)
 6685 %{
 6686   match(Set dst (LoadP mem));
 6687   predicate(!needs_acquiring_load(n) && (n->as_Load()->barrier_data() == 0));
 6688 
 6689   ins_cost(4 * INSN_COST);
 6690   format %{ "ldr  $dst, $mem\t# ptr" %}
 6691 
 6692   ins_encode(aarch64_enc_ldr(dst, mem));
 6693 
 6694   ins_pipe(iload_reg_mem);
 6695 %}
 6696 
 6697 // Load Compressed Pointer
 6698 instruct loadN(iRegNNoSp dst, memory4 mem)
 6699 %{
 6700   match(Set dst (LoadN mem));
 6701   predicate(!needs_acquiring_load(n) && n->as_Load()->barrier_data() == 0);
 6702 
 6703   ins_cost(4 * INSN_COST);
 6704   format %{ "ldrw  $dst, $mem\t# compressed ptr" %}
 6705 
 6706   ins_encode(aarch64_enc_ldrw(dst, mem));
 6707 
 6708   ins_pipe(iload_reg_mem);
 6709 %}
 6710 
 6711 // Load Klass Pointer
 6712 instruct loadKlass(iRegPNoSp dst, memory8 mem)
 6713 %{
 6714   match(Set dst (LoadKlass mem));
 6715   predicate(!needs_acquiring_load(n));
 6716 
 6717   ins_cost(4 * INSN_COST);
 6718   format %{ "ldr  $dst, $mem\t# class" %}
 6719 
 6720   ins_encode(aarch64_enc_ldr(dst, mem));
 6721 
 6722   ins_pipe(iload_reg_mem);
 6723 %}
 6724 
 6725 // Load Narrow Klass Pointer
 6726 instruct loadNKlass(iRegNNoSp dst, memory4 mem)
 6727 %{
 6728   match(Set dst (LoadNKlass mem));
 6729   predicate(!needs_acquiring_load(n) && !UseCompactObjectHeaders);
 6730 
 6731   ins_cost(4 * INSN_COST);
 6732   format %{ "ldrw  $dst, $mem\t# compressed class ptr" %}
 6733 
 6734   ins_encode(aarch64_enc_ldrw(dst, mem));
 6735 
 6736   ins_pipe(iload_reg_mem);
 6737 %}
 6738 
 6739 instruct loadNKlassCompactHeaders(iRegNNoSp dst, memory4 mem)
 6740 %{
 6741   match(Set dst (LoadNKlass mem));
 6742   predicate(!needs_acquiring_load(n) && UseCompactObjectHeaders);
 6743 
 6744   ins_cost(4 * INSN_COST);
 6745   format %{
 6746     "ldrw  $dst, $mem\t# compressed class ptr, shifted\n\t"
 6747     "lsrw  $dst, $dst, markWord::klass_shift_at_offset"
 6748   %}
 6749   ins_encode %{
 6750     // inlined aarch64_enc_ldrw
 6751     loadStore(masm, &MacroAssembler::ldrw, $dst$$Register, $mem->opcode(),
 6752               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 6753     __ lsrw($dst$$Register, $dst$$Register, markWord::klass_shift_at_offset);
 6754   %}
 6755   ins_pipe(iload_reg_mem);
 6756 %}
 6757 
 6758 // Load Float
 6759 instruct loadF(vRegF dst, memory4 mem)
 6760 %{
 6761   match(Set dst (LoadF mem));
 6762   predicate(!needs_acquiring_load(n));
 6763 
 6764   ins_cost(4 * INSN_COST);
 6765   format %{ "ldrs  $dst, $mem\t# float" %}
 6766 
 6767   ins_encode( aarch64_enc_ldrs(dst, mem) );
 6768 
 6769   ins_pipe(pipe_class_memory);
 6770 %}
 6771 
 6772 // Load Double
 6773 instruct loadD(vRegD dst, memory8 mem)
 6774 %{
 6775   match(Set dst (LoadD mem));
 6776   predicate(!needs_acquiring_load(n));
 6777 
 6778   ins_cost(4 * INSN_COST);
 6779   format %{ "ldrd  $dst, $mem\t# double" %}
 6780 
 6781   ins_encode( aarch64_enc_ldrd(dst, mem) );
 6782 
 6783   ins_pipe(pipe_class_memory);
 6784 %}
 6785 
 6786 
 6787 // Load Int Constant
 6788 instruct loadConI(iRegINoSp dst, immI src)
 6789 %{
 6790   match(Set dst src);
 6791 
 6792   ins_cost(INSN_COST);
 6793   format %{ "mov $dst, $src\t# int" %}
 6794 
 6795   ins_encode( aarch64_enc_movw_imm(dst, src) );
 6796 
 6797   ins_pipe(ialu_imm);
 6798 %}
 6799 
 6800 // Load Long Constant
 6801 instruct loadConL(iRegLNoSp dst, immL src)
 6802 %{
 6803   match(Set dst src);
 6804 
 6805   ins_cost(INSN_COST);
 6806   format %{ "mov $dst, $src\t# long" %}
 6807 
 6808   ins_encode( aarch64_enc_mov_imm(dst, src) );
 6809 
 6810   ins_pipe(ialu_imm);
 6811 %}
 6812 
 6813 // Load Pointer Constant
 6814 
 6815 instruct loadConP(iRegPNoSp dst, immP con)
 6816 %{
 6817   match(Set dst con);
 6818 
 6819   ins_cost(INSN_COST * 4);
 6820   format %{
 6821     "mov  $dst, $con\t# ptr\n\t"
 6822   %}
 6823 
 6824   ins_encode(aarch64_enc_mov_p(dst, con));
 6825 
 6826   ins_pipe(ialu_imm);
 6827 %}
 6828 
 6829 // Load Null Pointer Constant
 6830 
 6831 instruct loadConP0(iRegPNoSp dst, immP0 con)
 6832 %{
 6833   match(Set dst con);
 6834 
 6835   ins_cost(INSN_COST);
 6836   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6837 
 6838   ins_encode(aarch64_enc_mov_p0(dst, con));
 6839 
 6840   ins_pipe(ialu_imm);
 6841 %}
 6842 
 6843 // Load Pointer Constant One
 6844 
 6845 instruct loadConP1(iRegPNoSp dst, immP_1 con)
 6846 %{
 6847   match(Set dst con);
 6848 
 6849   ins_cost(INSN_COST);
 6850   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6851 
 6852   ins_encode(aarch64_enc_mov_p1(dst, con));
 6853 
 6854   ins_pipe(ialu_imm);
 6855 %}
 6856 
 6857 // Load Byte Map Base Constant
 6858 
 6859 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con)
 6860 %{
 6861   match(Set dst con);
 6862 
 6863   ins_cost(INSN_COST);
 6864   format %{ "adr  $dst, $con\t# Byte Map Base" %}
 6865 
 6866   ins_encode(aarch64_enc_mov_byte_map_base(dst, con));
 6867 
 6868   ins_pipe(ialu_imm);
 6869 %}
 6870 
 6871 // Load Narrow Pointer Constant
 6872 
 6873 instruct loadConN(iRegNNoSp dst, immN con)
 6874 %{
 6875   match(Set dst con);
 6876 
 6877   ins_cost(INSN_COST * 4);
 6878   format %{ "mov  $dst, $con\t# compressed ptr" %}
 6879 
 6880   ins_encode(aarch64_enc_mov_n(dst, con));
 6881 
 6882   ins_pipe(ialu_imm);
 6883 %}
 6884 
 6885 // Load Narrow Null Pointer Constant
 6886 
 6887 instruct loadConN0(iRegNNoSp dst, immN0 con)
 6888 %{
 6889   match(Set dst con);
 6890 
 6891   ins_cost(INSN_COST);
 6892   format %{ "mov  $dst, $con\t# compressed nullptr ptr" %}
 6893 
 6894   ins_encode(aarch64_enc_mov_n0(dst, con));
 6895 
 6896   ins_pipe(ialu_imm);
 6897 %}
 6898 
 6899 // Load Narrow Klass Constant
 6900 
 6901 instruct loadConNKlass(iRegNNoSp dst, immNKlass con)
 6902 %{
 6903   match(Set dst con);
 6904 
 6905   ins_cost(INSN_COST);
 6906   format %{ "mov  $dst, $con\t# compressed klass ptr" %}
 6907 
 6908   ins_encode(aarch64_enc_mov_nk(dst, con));
 6909 
 6910   ins_pipe(ialu_imm);
 6911 %}
 6912 
 6913 // Load Packed Float Constant
 6914 
 6915 instruct loadConF_packed(vRegF dst, immFPacked con) %{
 6916   match(Set dst con);
 6917   ins_cost(INSN_COST * 4);
 6918   format %{ "fmovs  $dst, $con"%}
 6919   ins_encode %{
 6920     __ fmovs(as_FloatRegister($dst$$reg), (double)$con$$constant);
 6921   %}
 6922 
 6923   ins_pipe(fp_imm_s);
 6924 %}
 6925 
 6926 // Load Float Constant
 6927 
 6928 instruct loadConF(vRegF dst, immF con) %{
 6929   match(Set dst con);
 6930 
 6931   ins_cost(INSN_COST * 4);
 6932 
 6933   format %{
 6934     "ldrs $dst, [$constantaddress]\t# load from constant table: float=$con\n\t"
 6935   %}
 6936 
 6937   ins_encode %{
 6938     __ ldrs(as_FloatRegister($dst$$reg), $constantaddress($con));
 6939   %}
 6940 
 6941   ins_pipe(fp_load_constant_s);
 6942 %}
 6943 
 6944 // Load Packed Double Constant
 6945 
 6946 instruct loadConD_packed(vRegD dst, immDPacked con) %{
 6947   match(Set dst con);
 6948   ins_cost(INSN_COST);
 6949   format %{ "fmovd  $dst, $con"%}
 6950   ins_encode %{
 6951     __ fmovd(as_FloatRegister($dst$$reg), $con$$constant);
 6952   %}
 6953 
 6954   ins_pipe(fp_imm_d);
 6955 %}
 6956 
 6957 // Load Double Constant
 6958 
 6959 instruct loadConD(vRegD dst, immD con) %{
 6960   match(Set dst con);
 6961 
 6962   ins_cost(INSN_COST * 5);
 6963   format %{
 6964     "ldrd $dst, [$constantaddress]\t# load from constant table: float=$con\n\t"
 6965   %}
 6966 
 6967   ins_encode %{
 6968     __ ldrd(as_FloatRegister($dst$$reg), $constantaddress($con));
 6969   %}
 6970 
 6971   ins_pipe(fp_load_constant_d);
 6972 %}
 6973 
 6974 // Load Half Float Constant
 6975 // The "ldr" instruction loads a 32-bit word from the constant pool into a
 6976 // 32-bit register but only the bottom half will be populated and the top
 6977 // 16 bits are zero.
 6978 instruct loadConH(vRegF dst, immH con) %{
 6979   match(Set dst con);
 6980   format %{
 6981     "ldrs $dst, [$constantaddress]\t# load from constant table: half float=$con\n\t"
 6982   %}
 6983   ins_encode %{
 6984     __ ldrs(as_FloatRegister($dst$$reg), $constantaddress($con));
 6985   %}
 6986   ins_pipe(fp_load_constant_s);
 6987 %}
 6988 
 6989 // Store Instructions
 6990 
 6991 // Store Byte
 6992 instruct storeB(iRegIorL2I src, memory1 mem)
 6993 %{
 6994   match(Set mem (StoreB mem src));
 6995   predicate(!needs_releasing_store(n));
 6996 
 6997   ins_cost(INSN_COST);
 6998   format %{ "strb  $src, $mem\t# byte" %}
 6999 
 7000   ins_encode(aarch64_enc_strb(src, mem));
 7001 
 7002   ins_pipe(istore_reg_mem);
 7003 %}
 7004 
 7005 
 7006 instruct storeimmB0(immI0 zero, memory1 mem)
 7007 %{
 7008   match(Set mem (StoreB mem zero));
 7009   predicate(!needs_releasing_store(n));
 7010 
 7011   ins_cost(INSN_COST);
 7012   format %{ "strb rscractch2, $mem\t# byte" %}
 7013 
 7014   ins_encode(aarch64_enc_strb0(mem));
 7015 
 7016   ins_pipe(istore_mem);
 7017 %}
 7018 
 7019 // Store Char/Short
 7020 instruct storeC(iRegIorL2I src, memory2 mem)
 7021 %{
 7022   match(Set mem (StoreC mem src));
 7023   predicate(!needs_releasing_store(n));
 7024 
 7025   ins_cost(INSN_COST);
 7026   format %{ "strh  $src, $mem\t# short" %}
 7027 
 7028   ins_encode(aarch64_enc_strh(src, mem));
 7029 
 7030   ins_pipe(istore_reg_mem);
 7031 %}
 7032 
 7033 instruct storeimmC0(immI0 zero, memory2 mem)
 7034 %{
 7035   match(Set mem (StoreC mem zero));
 7036   predicate(!needs_releasing_store(n));
 7037 
 7038   ins_cost(INSN_COST);
 7039   format %{ "strh  zr, $mem\t# short" %}
 7040 
 7041   ins_encode(aarch64_enc_strh0(mem));
 7042 
 7043   ins_pipe(istore_mem);
 7044 %}
 7045 
 7046 // Store Integer
 7047 
 7048 instruct storeI(iRegIorL2I src, memory4 mem)
 7049 %{
 7050   match(Set mem(StoreI mem src));
 7051   predicate(!needs_releasing_store(n));
 7052 
 7053   ins_cost(INSN_COST);
 7054   format %{ "strw  $src, $mem\t# int" %}
 7055 
 7056   ins_encode(aarch64_enc_strw(src, mem));
 7057 
 7058   ins_pipe(istore_reg_mem);
 7059 %}
 7060 
 7061 instruct storeimmI0(immI0 zero, memory4 mem)
 7062 %{
 7063   match(Set mem(StoreI mem zero));
 7064   predicate(!needs_releasing_store(n));
 7065 
 7066   ins_cost(INSN_COST);
 7067   format %{ "strw  zr, $mem\t# int" %}
 7068 
 7069   ins_encode(aarch64_enc_strw0(mem));
 7070 
 7071   ins_pipe(istore_mem);
 7072 %}
 7073 
 7074 // Store Long (64 bit signed)
 7075 instruct storeL(iRegL src, memory8 mem)
 7076 %{
 7077   match(Set mem (StoreL mem src));
 7078   predicate(!needs_releasing_store(n));
 7079 
 7080   ins_cost(INSN_COST);
 7081   format %{ "str  $src, $mem\t# int" %}
 7082 
 7083   ins_encode(aarch64_enc_str(src, mem));
 7084 
 7085   ins_pipe(istore_reg_mem);
 7086 %}
 7087 
 7088 // Store Long (64 bit signed)
 7089 instruct storeimmL0(immL0 zero, memory8 mem)
 7090 %{
 7091   match(Set mem (StoreL mem zero));
 7092   predicate(!needs_releasing_store(n));
 7093 
 7094   ins_cost(INSN_COST);
 7095   format %{ "str  zr, $mem\t# int" %}
 7096 
 7097   ins_encode(aarch64_enc_str0(mem));
 7098 
 7099   ins_pipe(istore_mem);
 7100 %}
 7101 
 7102 // Store Pointer
 7103 instruct storeP(iRegP src, memory8 mem)
 7104 %{
 7105   match(Set mem (StoreP mem src));
 7106   predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0);
 7107 
 7108   ins_cost(INSN_COST);
 7109   format %{ "str  $src, $mem\t# ptr" %}
 7110 
 7111   ins_encode(aarch64_enc_str(src, mem));
 7112 
 7113   ins_pipe(istore_reg_mem);
 7114 %}
 7115 
 7116 // Store Pointer
 7117 instruct storeimmP0(immP0 zero, memory8 mem)
 7118 %{
 7119   match(Set mem (StoreP mem zero));
 7120   predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0);
 7121 
 7122   ins_cost(INSN_COST);
 7123   format %{ "str zr, $mem\t# ptr" %}
 7124 
 7125   ins_encode(aarch64_enc_str0(mem));
 7126 
 7127   ins_pipe(istore_mem);
 7128 %}
 7129 
 7130 // Store Compressed Pointer
 7131 instruct storeN(iRegN src, memory4 mem)
 7132 %{
 7133   match(Set mem (StoreN mem src));
 7134   predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0);
 7135 
 7136   ins_cost(INSN_COST);
 7137   format %{ "strw  $src, $mem\t# compressed ptr" %}
 7138 
 7139   ins_encode(aarch64_enc_strw(src, mem));
 7140 
 7141   ins_pipe(istore_reg_mem);
 7142 %}
 7143 
 7144 instruct storeImmN0(immN0 zero, memory4 mem)
 7145 %{
 7146   match(Set mem (StoreN mem zero));
 7147   predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0);
 7148 
 7149   ins_cost(INSN_COST);
 7150   format %{ "strw  zr, $mem\t# compressed ptr" %}
 7151 
 7152   ins_encode(aarch64_enc_strw0(mem));
 7153 
 7154   ins_pipe(istore_mem);
 7155 %}
 7156 
 7157 // Store Float
 7158 instruct storeF(vRegF src, memory4 mem)
 7159 %{
 7160   match(Set mem (StoreF mem src));
 7161   predicate(!needs_releasing_store(n));
 7162 
 7163   ins_cost(INSN_COST);
 7164   format %{ "strs  $src, $mem\t# float" %}
 7165 
 7166   ins_encode( aarch64_enc_strs(src, mem) );
 7167 
 7168   ins_pipe(pipe_class_memory);
 7169 %}
 7170 
 7171 // TODO
 7172 // implement storeImmF0 and storeFImmPacked
 7173 
 7174 // Store Double
 7175 instruct storeD(vRegD src, memory8 mem)
 7176 %{
 7177   match(Set mem (StoreD mem src));
 7178   predicate(!needs_releasing_store(n));
 7179 
 7180   ins_cost(INSN_COST);
 7181   format %{ "strd  $src, $mem\t# double" %}
 7182 
 7183   ins_encode( aarch64_enc_strd(src, mem) );
 7184 
 7185   ins_pipe(pipe_class_memory);
 7186 %}
 7187 
 7188 // Store Compressed Klass Pointer
 7189 instruct storeNKlass(iRegN src, memory4 mem)
 7190 %{
 7191   predicate(!needs_releasing_store(n));
 7192   match(Set mem (StoreNKlass mem src));
 7193 
 7194   ins_cost(INSN_COST);
 7195   format %{ "strw  $src, $mem\t# compressed klass ptr" %}
 7196 
 7197   ins_encode(aarch64_enc_strw(src, mem));
 7198 
 7199   ins_pipe(istore_reg_mem);
 7200 %}
 7201 
 7202 // TODO
 7203 // implement storeImmD0 and storeDImmPacked
 7204 
 7205 // prefetch instructions
 7206 // Must be safe to execute with invalid address (cannot fault).
 7207 
 7208 instruct prefetchalloc( memory8 mem ) %{
 7209   match(PrefetchAllocation mem);
 7210 
 7211   ins_cost(INSN_COST);
 7212   format %{ "prfm $mem, PSTL1KEEP\t# Prefetch into level 1 cache write keep" %}
 7213 
 7214   ins_encode( aarch64_enc_prefetchw(mem) );
 7215 
 7216   ins_pipe(iload_prefetch);
 7217 %}
 7218 
 7219 //  ---------------- volatile loads and stores ----------------
 7220 
 7221 // Load Byte (8 bit signed)
 7222 instruct loadB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7223 %{
 7224   match(Set dst (LoadB mem));
 7225 
 7226   ins_cost(VOLATILE_REF_COST);
 7227   format %{ "ldarsb  $dst, $mem\t# byte" %}
 7228 
 7229   ins_encode(aarch64_enc_ldarsb(dst, mem));
 7230 
 7231   ins_pipe(pipe_serial);
 7232 %}
 7233 
 7234 // Load Byte (8 bit signed) into long
 7235 instruct loadB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7236 %{
 7237   match(Set dst (ConvI2L (LoadB mem)));
 7238 
 7239   ins_cost(VOLATILE_REF_COST);
 7240   format %{ "ldarsb  $dst, $mem\t# byte" %}
 7241 
 7242   ins_encode(aarch64_enc_ldarsb(dst, mem));
 7243 
 7244   ins_pipe(pipe_serial);
 7245 %}
 7246 
 7247 // Load Byte (8 bit unsigned)
 7248 instruct loadUB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7249 %{
 7250   match(Set dst (LoadUB mem));
 7251 
 7252   ins_cost(VOLATILE_REF_COST);
 7253   format %{ "ldarb  $dst, $mem\t# byte" %}
 7254 
 7255   ins_encode(aarch64_enc_ldarb(dst, mem));
 7256 
 7257   ins_pipe(pipe_serial);
 7258 %}
 7259 
 7260 // Load Byte (8 bit unsigned) into long
 7261 instruct loadUB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7262 %{
 7263   match(Set dst (ConvI2L (LoadUB mem)));
 7264 
 7265   ins_cost(VOLATILE_REF_COST);
 7266   format %{ "ldarb  $dst, $mem\t# byte" %}
 7267 
 7268   ins_encode(aarch64_enc_ldarb(dst, mem));
 7269 
 7270   ins_pipe(pipe_serial);
 7271 %}
 7272 
 7273 // Load Short (16 bit signed)
 7274 instruct loadS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7275 %{
 7276   match(Set dst (LoadS mem));
 7277 
 7278   ins_cost(VOLATILE_REF_COST);
 7279   format %{ "ldarshw  $dst, $mem\t# short" %}
 7280 
 7281   ins_encode(aarch64_enc_ldarshw(dst, mem));
 7282 
 7283   ins_pipe(pipe_serial);
 7284 %}
 7285 
 7286 instruct loadUS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7287 %{
 7288   match(Set dst (LoadUS mem));
 7289 
 7290   ins_cost(VOLATILE_REF_COST);
 7291   format %{ "ldarhw  $dst, $mem\t# short" %}
 7292 
 7293   ins_encode(aarch64_enc_ldarhw(dst, mem));
 7294 
 7295   ins_pipe(pipe_serial);
 7296 %}
 7297 
 7298 // Load Short/Char (16 bit unsigned) into long
 7299 instruct loadUS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7300 %{
 7301   match(Set dst (ConvI2L (LoadUS mem)));
 7302 
 7303   ins_cost(VOLATILE_REF_COST);
 7304   format %{ "ldarh  $dst, $mem\t# short" %}
 7305 
 7306   ins_encode(aarch64_enc_ldarh(dst, mem));
 7307 
 7308   ins_pipe(pipe_serial);
 7309 %}
 7310 
 7311 // Load Short/Char (16 bit signed) into long
 7312 instruct loadS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7313 %{
 7314   match(Set dst (ConvI2L (LoadS mem)));
 7315 
 7316   ins_cost(VOLATILE_REF_COST);
 7317   format %{ "ldarh  $dst, $mem\t# short" %}
 7318 
 7319   ins_encode(aarch64_enc_ldarsh(dst, mem));
 7320 
 7321   ins_pipe(pipe_serial);
 7322 %}
 7323 
 7324 // Load Integer (32 bit signed)
 7325 instruct loadI_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7326 %{
 7327   match(Set dst (LoadI mem));
 7328 
 7329   ins_cost(VOLATILE_REF_COST);
 7330   format %{ "ldarw  $dst, $mem\t# int" %}
 7331 
 7332   ins_encode(aarch64_enc_ldarw(dst, mem));
 7333 
 7334   ins_pipe(pipe_serial);
 7335 %}
 7336 
 7337 // Load Integer (32 bit unsigned) into long
 7338 instruct loadUI2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem, immL_32bits mask)
 7339 %{
 7340   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 7341 
 7342   ins_cost(VOLATILE_REF_COST);
 7343   format %{ "ldarw  $dst, $mem\t# int" %}
 7344 
 7345   ins_encode(aarch64_enc_ldarw(dst, mem));
 7346 
 7347   ins_pipe(pipe_serial);
 7348 %}
 7349 
 7350 // Load Long (64 bit signed)
 7351 instruct loadL_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7352 %{
 7353   match(Set dst (LoadL mem));
 7354 
 7355   ins_cost(VOLATILE_REF_COST);
 7356   format %{ "ldar  $dst, $mem\t# int" %}
 7357 
 7358   ins_encode(aarch64_enc_ldar(dst, mem));
 7359 
 7360   ins_pipe(pipe_serial);
 7361 %}
 7362 
 7363 // Load Pointer
 7364 instruct loadP_volatile(iRegPNoSp dst, /* sync_memory*/indirect mem)
 7365 %{
 7366   match(Set dst (LoadP mem));
 7367   predicate(n->as_Load()->barrier_data() == 0);
 7368 
 7369   ins_cost(VOLATILE_REF_COST);
 7370   format %{ "ldar  $dst, $mem\t# ptr" %}
 7371 
 7372   ins_encode(aarch64_enc_ldar(dst, mem));
 7373 
 7374   ins_pipe(pipe_serial);
 7375 %}
 7376 
 7377 // Load Compressed Pointer
 7378 instruct loadN_volatile(iRegNNoSp dst, /* sync_memory*/indirect mem)
 7379 %{
 7380   match(Set dst (LoadN mem));
 7381   predicate(n->as_Load()->barrier_data() == 0);
 7382 
 7383   ins_cost(VOLATILE_REF_COST);
 7384   format %{ "ldarw  $dst, $mem\t# compressed ptr" %}
 7385 
 7386   ins_encode(aarch64_enc_ldarw(dst, mem));
 7387 
 7388   ins_pipe(pipe_serial);
 7389 %}
 7390 
 7391 // Load Float
 7392 instruct loadF_volatile(vRegF dst, /* sync_memory*/indirect mem)
 7393 %{
 7394   match(Set dst (LoadF mem));
 7395 
 7396   ins_cost(VOLATILE_REF_COST);
 7397   format %{ "ldars  $dst, $mem\t# float" %}
 7398 
 7399   ins_encode( aarch64_enc_fldars(dst, mem) );
 7400 
 7401   ins_pipe(pipe_serial);
 7402 %}
 7403 
 7404 // Load Double
 7405 instruct loadD_volatile(vRegD dst, /* sync_memory*/indirect mem)
 7406 %{
 7407   match(Set dst (LoadD mem));
 7408 
 7409   ins_cost(VOLATILE_REF_COST);
 7410   format %{ "ldard  $dst, $mem\t# double" %}
 7411 
 7412   ins_encode( aarch64_enc_fldard(dst, mem) );
 7413 
 7414   ins_pipe(pipe_serial);
 7415 %}
 7416 
 7417 // Store Byte
 7418 instruct storeB_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
 7419 %{
 7420   match(Set mem (StoreB mem src));
 7421 
 7422   ins_cost(VOLATILE_REF_COST);
 7423   format %{ "stlrb  $src, $mem\t# byte" %}
 7424 
 7425   ins_encode(aarch64_enc_stlrb(src, mem));
 7426 
 7427   ins_pipe(pipe_class_memory);
 7428 %}
 7429 
 7430 instruct storeimmB0_volatile(immI0 zero, /* sync_memory*/indirect mem)
 7431 %{
 7432   match(Set mem (StoreB mem zero));
 7433 
 7434   ins_cost(VOLATILE_REF_COST);
 7435   format %{ "stlrb  zr, $mem\t# byte" %}
 7436 
 7437   ins_encode(aarch64_enc_stlrb0(mem));
 7438 
 7439   ins_pipe(pipe_class_memory);
 7440 %}
 7441 
 7442 // Store Char/Short
 7443 instruct storeC_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
 7444 %{
 7445   match(Set mem (StoreC mem src));
 7446 
 7447   ins_cost(VOLATILE_REF_COST);
 7448   format %{ "stlrh  $src, $mem\t# short" %}
 7449 
 7450   ins_encode(aarch64_enc_stlrh(src, mem));
 7451 
 7452   ins_pipe(pipe_class_memory);
 7453 %}
 7454 
 7455 instruct storeimmC0_volatile(immI0 zero, /* sync_memory*/indirect mem)
 7456 %{
 7457   match(Set mem (StoreC mem zero));
 7458 
 7459   ins_cost(VOLATILE_REF_COST);
 7460   format %{ "stlrh  zr, $mem\t# short" %}
 7461 
 7462   ins_encode(aarch64_enc_stlrh0(mem));
 7463 
 7464   ins_pipe(pipe_class_memory);
 7465 %}
 7466 
 7467 // Store Integer
 7468 
 7469 instruct storeI_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
 7470 %{
 7471   match(Set mem(StoreI mem src));
 7472 
 7473   ins_cost(VOLATILE_REF_COST);
 7474   format %{ "stlrw  $src, $mem\t# int" %}
 7475 
 7476   ins_encode(aarch64_enc_stlrw(src, mem));
 7477 
 7478   ins_pipe(pipe_class_memory);
 7479 %}
 7480 
 7481 instruct storeimmI0_volatile(immI0 zero, /* sync_memory*/indirect mem)
 7482 %{
 7483   match(Set mem(StoreI mem zero));
 7484 
 7485   ins_cost(VOLATILE_REF_COST);
 7486   format %{ "stlrw  zr, $mem\t# int" %}
 7487 
 7488   ins_encode(aarch64_enc_stlrw0(mem));
 7489 
 7490   ins_pipe(pipe_class_memory);
 7491 %}
 7492 
 7493 // Store Long (64 bit signed)
 7494 instruct storeL_volatile(iRegL src, /* sync_memory*/indirect mem)
 7495 %{
 7496   match(Set mem (StoreL mem src));
 7497 
 7498   ins_cost(VOLATILE_REF_COST);
 7499   format %{ "stlr  $src, $mem\t# int" %}
 7500 
 7501   ins_encode(aarch64_enc_stlr(src, mem));
 7502 
 7503   ins_pipe(pipe_class_memory);
 7504 %}
 7505 
 7506 instruct storeimmL0_volatile(immL0 zero, /* sync_memory*/indirect mem)
 7507 %{
 7508   match(Set mem (StoreL mem zero));
 7509 
 7510   ins_cost(VOLATILE_REF_COST);
 7511   format %{ "stlr  zr, $mem\t# int" %}
 7512 
 7513   ins_encode(aarch64_enc_stlr0(mem));
 7514 
 7515   ins_pipe(pipe_class_memory);
 7516 %}
 7517 
 7518 // Store Pointer
 7519 instruct storeP_volatile(iRegP src, /* sync_memory*/indirect mem)
 7520 %{
 7521   match(Set mem (StoreP mem src));
 7522   predicate(n->as_Store()->barrier_data() == 0);
 7523 
 7524   ins_cost(VOLATILE_REF_COST);
 7525   format %{ "stlr  $src, $mem\t# ptr" %}
 7526 
 7527   ins_encode(aarch64_enc_stlr(src, mem));
 7528 
 7529   ins_pipe(pipe_class_memory);
 7530 %}
 7531 
 7532 instruct storeimmP0_volatile(immP0 zero, /* sync_memory*/indirect mem)
 7533 %{
 7534   match(Set mem (StoreP mem zero));
 7535   predicate(n->as_Store()->barrier_data() == 0);
 7536 
 7537   ins_cost(VOLATILE_REF_COST);
 7538   format %{ "stlr  zr, $mem\t# ptr" %}
 7539 
 7540   ins_encode(aarch64_enc_stlr0(mem));
 7541 
 7542   ins_pipe(pipe_class_memory);
 7543 %}
 7544 
 7545 // Store Compressed Pointer
 7546 instruct storeN_volatile(iRegN src, /* sync_memory*/indirect mem)
 7547 %{
 7548   match(Set mem (StoreN mem src));
 7549   predicate(n->as_Store()->barrier_data() == 0);
 7550 
 7551   ins_cost(VOLATILE_REF_COST);
 7552   format %{ "stlrw  $src, $mem\t# compressed ptr" %}
 7553 
 7554   ins_encode(aarch64_enc_stlrw(src, mem));
 7555 
 7556   ins_pipe(pipe_class_memory);
 7557 %}
 7558 
 7559 instruct storeimmN0_volatile(immN0 zero, /* sync_memory*/indirect mem)
 7560 %{
 7561   match(Set mem (StoreN mem zero));
 7562   predicate(n->as_Store()->barrier_data() == 0);
 7563 
 7564   ins_cost(VOLATILE_REF_COST);
 7565   format %{ "stlrw  zr, $mem\t# compressed ptr" %}
 7566 
 7567   ins_encode(aarch64_enc_stlrw0(mem));
 7568 
 7569   ins_pipe(pipe_class_memory);
 7570 %}
 7571 
 7572 // Store Float
 7573 instruct storeF_volatile(vRegF src, /* sync_memory*/indirect mem)
 7574 %{
 7575   match(Set mem (StoreF mem src));
 7576 
 7577   ins_cost(VOLATILE_REF_COST);
 7578   format %{ "stlrs  $src, $mem\t# float" %}
 7579 
 7580   ins_encode( aarch64_enc_fstlrs(src, mem) );
 7581 
 7582   ins_pipe(pipe_class_memory);
 7583 %}
 7584 
 7585 // TODO
 7586 // implement storeImmF0 and storeFImmPacked
 7587 
 7588 // Store Double
 7589 instruct storeD_volatile(vRegD src, /* sync_memory*/indirect mem)
 7590 %{
 7591   match(Set mem (StoreD mem src));
 7592 
 7593   ins_cost(VOLATILE_REF_COST);
 7594   format %{ "stlrd  $src, $mem\t# double" %}
 7595 
 7596   ins_encode( aarch64_enc_fstlrd(src, mem) );
 7597 
 7598   ins_pipe(pipe_class_memory);
 7599 %}
 7600 
 7601 //  ---------------- end of volatile loads and stores ----------------
 7602 
 7603 instruct cacheWB(indirect addr)
 7604 %{
 7605   predicate(VM_Version::supports_data_cache_line_flush());
 7606   match(CacheWB addr);
 7607 
 7608   ins_cost(100);
 7609   format %{"cache wb $addr" %}
 7610   ins_encode %{
 7611     assert($addr->index_position() < 0, "should be");
 7612     assert($addr$$disp == 0, "should be");
 7613     __ cache_wb(Address($addr$$base$$Register, 0));
 7614   %}
 7615   ins_pipe(pipe_slow); // XXX
 7616 %}
 7617 
 7618 instruct cacheWBPreSync()
 7619 %{
 7620   predicate(VM_Version::supports_data_cache_line_flush());
 7621   match(CacheWBPreSync);
 7622 
 7623   ins_cost(100);
 7624   format %{"cache wb presync" %}
 7625   ins_encode %{
 7626     __ cache_wbsync(true);
 7627   %}
 7628   ins_pipe(pipe_slow); // XXX
 7629 %}
 7630 
 7631 instruct cacheWBPostSync()
 7632 %{
 7633   predicate(VM_Version::supports_data_cache_line_flush());
 7634   match(CacheWBPostSync);
 7635 
 7636   ins_cost(100);
 7637   format %{"cache wb postsync" %}
 7638   ins_encode %{
 7639     __ cache_wbsync(false);
 7640   %}
 7641   ins_pipe(pipe_slow); // XXX
 7642 %}
 7643 
 7644 // ============================================================================
 7645 // BSWAP Instructions
 7646 
 7647 instruct bytes_reverse_int(iRegINoSp dst, iRegIorL2I src) %{
 7648   match(Set dst (ReverseBytesI src));
 7649 
 7650   ins_cost(INSN_COST);
 7651   format %{ "revw  $dst, $src" %}
 7652 
 7653   ins_encode %{
 7654     __ revw(as_Register($dst$$reg), as_Register($src$$reg));
 7655   %}
 7656 
 7657   ins_pipe(ialu_reg);
 7658 %}
 7659 
 7660 instruct bytes_reverse_long(iRegLNoSp dst, iRegL src) %{
 7661   match(Set dst (ReverseBytesL src));
 7662 
 7663   ins_cost(INSN_COST);
 7664   format %{ "rev  $dst, $src" %}
 7665 
 7666   ins_encode %{
 7667     __ rev(as_Register($dst$$reg), as_Register($src$$reg));
 7668   %}
 7669 
 7670   ins_pipe(ialu_reg);
 7671 %}
 7672 
 7673 instruct bytes_reverse_unsigned_short(iRegINoSp dst, iRegIorL2I src) %{
 7674   match(Set dst (ReverseBytesUS src));
 7675 
 7676   ins_cost(INSN_COST);
 7677   format %{ "rev16w  $dst, $src" %}
 7678 
 7679   ins_encode %{
 7680     __ rev16w(as_Register($dst$$reg), as_Register($src$$reg));
 7681   %}
 7682 
 7683   ins_pipe(ialu_reg);
 7684 %}
 7685 
 7686 instruct bytes_reverse_short(iRegINoSp dst, iRegIorL2I src) %{
 7687   match(Set dst (ReverseBytesS src));
 7688 
 7689   ins_cost(INSN_COST);
 7690   format %{ "rev16w  $dst, $src\n\t"
 7691             "sbfmw $dst, $dst, #0, #15" %}
 7692 
 7693   ins_encode %{
 7694     __ rev16w(as_Register($dst$$reg), as_Register($src$$reg));
 7695     __ sbfmw(as_Register($dst$$reg), as_Register($dst$$reg), 0U, 15U);
 7696   %}
 7697 
 7698   ins_pipe(ialu_reg);
 7699 %}
 7700 
 7701 // ============================================================================
 7702 // Zero Count Instructions
 7703 
 7704 instruct countLeadingZerosI(iRegINoSp dst, iRegIorL2I src) %{
 7705   match(Set dst (CountLeadingZerosI src));
 7706 
 7707   ins_cost(INSN_COST);
 7708   format %{ "clzw  $dst, $src" %}
 7709   ins_encode %{
 7710     __ clzw(as_Register($dst$$reg), as_Register($src$$reg));
 7711   %}
 7712 
 7713   ins_pipe(ialu_reg);
 7714 %}
 7715 
 7716 instruct countLeadingZerosL(iRegINoSp dst, iRegL src) %{
 7717   match(Set dst (CountLeadingZerosL src));
 7718 
 7719   ins_cost(INSN_COST);
 7720   format %{ "clz   $dst, $src" %}
 7721   ins_encode %{
 7722     __ clz(as_Register($dst$$reg), as_Register($src$$reg));
 7723   %}
 7724 
 7725   ins_pipe(ialu_reg);
 7726 %}
 7727 
 7728 instruct countTrailingZerosI(iRegINoSp dst, iRegIorL2I src) %{
 7729   match(Set dst (CountTrailingZerosI src));
 7730 
 7731   ins_cost(INSN_COST * 2);
 7732   format %{ "rbitw  $dst, $src\n\t"
 7733             "clzw   $dst, $dst" %}
 7734   ins_encode %{
 7735     __ rbitw(as_Register($dst$$reg), as_Register($src$$reg));
 7736     __ clzw(as_Register($dst$$reg), as_Register($dst$$reg));
 7737   %}
 7738 
 7739   ins_pipe(ialu_reg);
 7740 %}
 7741 
 7742 instruct countTrailingZerosL(iRegINoSp dst, iRegL src) %{
 7743   match(Set dst (CountTrailingZerosL src));
 7744 
 7745   ins_cost(INSN_COST * 2);
 7746   format %{ "rbit   $dst, $src\n\t"
 7747             "clz    $dst, $dst" %}
 7748   ins_encode %{
 7749     __ rbit(as_Register($dst$$reg), as_Register($src$$reg));
 7750     __ clz(as_Register($dst$$reg), as_Register($dst$$reg));
 7751   %}
 7752 
 7753   ins_pipe(ialu_reg);
 7754 %}
 7755 
 7756 //---------- Population Count Instructions -------------------------------------
 7757 //
 7758 
 7759 instruct popCountI(iRegINoSp dst, iRegIorL2I src, vRegF tmp) %{
 7760   match(Set dst (PopCountI src));
 7761   effect(TEMP tmp);
 7762   ins_cost(INSN_COST * 13);
 7763 
 7764   format %{ "movw   $src, $src\n\t"
 7765             "mov    $tmp, $src\t# vector (1D)\n\t"
 7766             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
 7767             "addv   $tmp, $tmp\t# vector (8B)\n\t"
 7768             "mov    $dst, $tmp\t# vector (1D)" %}
 7769   ins_encode %{
 7770     __ movw($src$$Register, $src$$Register); // ensure top 32 bits 0
 7771     __ mov($tmp$$FloatRegister, __ D, 0, $src$$Register);
 7772     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7773     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7774     __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0);
 7775   %}
 7776 
 7777   ins_pipe(pipe_class_default);
 7778 %}
 7779 
 7780 instruct popCountI_mem(iRegINoSp dst, memory4 mem, vRegF tmp) %{
 7781   match(Set dst (PopCountI (LoadI mem)));
 7782   effect(TEMP tmp);
 7783   ins_cost(INSN_COST * 13);
 7784 
 7785   format %{ "ldrs   $tmp, $mem\n\t"
 7786             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
 7787             "addv   $tmp, $tmp\t# vector (8B)\n\t"
 7788             "mov    $dst, $tmp\t# vector (1D)" %}
 7789   ins_encode %{
 7790     FloatRegister tmp_reg = as_FloatRegister($tmp$$reg);
 7791     loadStore(masm, &MacroAssembler::ldrs, tmp_reg, $mem->opcode(),
 7792               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 7793     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7794     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7795     __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0);
 7796   %}
 7797 
 7798   ins_pipe(pipe_class_default);
 7799 %}
 7800 
 7801 // Note: Long.bitCount(long) returns an int.
 7802 instruct popCountL(iRegINoSp dst, iRegL src, vRegD tmp) %{
 7803   match(Set dst (PopCountL src));
 7804   effect(TEMP tmp);
 7805   ins_cost(INSN_COST * 13);
 7806 
 7807   format %{ "mov    $tmp, $src\t# vector (1D)\n\t"
 7808             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
 7809             "addv   $tmp, $tmp\t# vector (8B)\n\t"
 7810             "mov    $dst, $tmp\t# vector (1D)" %}
 7811   ins_encode %{
 7812     __ mov($tmp$$FloatRegister, __ D, 0, $src$$Register);
 7813     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7814     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7815     __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0);
 7816   %}
 7817 
 7818   ins_pipe(pipe_class_default);
 7819 %}
 7820 
 7821 instruct popCountL_mem(iRegINoSp dst, memory8 mem, vRegD tmp) %{
 7822   match(Set dst (PopCountL (LoadL mem)));
 7823   effect(TEMP tmp);
 7824   ins_cost(INSN_COST * 13);
 7825 
 7826   format %{ "ldrd   $tmp, $mem\n\t"
 7827             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
 7828             "addv   $tmp, $tmp\t# vector (8B)\n\t"
 7829             "mov    $dst, $tmp\t# vector (1D)" %}
 7830   ins_encode %{
 7831     FloatRegister tmp_reg = as_FloatRegister($tmp$$reg);
 7832     loadStore(masm, &MacroAssembler::ldrd, tmp_reg, $mem->opcode(),
 7833               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 7834     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7835     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7836     __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0);
 7837   %}
 7838 
 7839   ins_pipe(pipe_class_default);
 7840 %}
 7841 
 7842 // ============================================================================
 7843 // VerifyVectorAlignment Instruction
 7844 
 7845 instruct verify_vector_alignment(iRegP addr, immL_positive_bitmaskI mask, rFlagsReg cr) %{
 7846   match(Set addr (VerifyVectorAlignment addr mask));
 7847   effect(KILL cr);
 7848   format %{ "verify_vector_alignment $addr $mask \t! verify alignment" %}
 7849   ins_encode %{
 7850     Label Lskip;
 7851     // check if masked bits of addr are zero
 7852     __ tst($addr$$Register, $mask$$constant);
 7853     __ br(Assembler::EQ, Lskip);
 7854     __ stop("verify_vector_alignment found a misaligned vector memory access");
 7855     __ bind(Lskip);
 7856   %}
 7857   ins_pipe(pipe_slow);
 7858 %}
 7859 
 7860 // ============================================================================
 7861 // MemBar Instruction
 7862 
 7863 instruct load_fence() %{
 7864   match(LoadFence);
 7865   ins_cost(VOLATILE_REF_COST);
 7866 
 7867   format %{ "load_fence" %}
 7868 
 7869   ins_encode %{
 7870     __ membar(Assembler::LoadLoad|Assembler::LoadStore);
 7871   %}
 7872   ins_pipe(pipe_serial);
 7873 %}
 7874 
 7875 instruct unnecessary_membar_acquire() %{
 7876   predicate(unnecessary_acquire(n));
 7877   match(MemBarAcquire);
 7878   ins_cost(0);
 7879 
 7880   format %{ "membar_acquire (elided)" %}
 7881 
 7882   ins_encode %{
 7883     __ block_comment("membar_acquire (elided)");
 7884   %}
 7885 
 7886   ins_pipe(pipe_class_empty);
 7887 %}
 7888 
 7889 instruct membar_acquire() %{
 7890   match(MemBarAcquire);
 7891   ins_cost(VOLATILE_REF_COST);
 7892 
 7893   format %{ "membar_acquire\n\t"
 7894             "dmb ishld" %}
 7895 
 7896   ins_encode %{
 7897     __ block_comment("membar_acquire");
 7898     __ membar(Assembler::LoadLoad|Assembler::LoadStore);
 7899   %}
 7900 
 7901   ins_pipe(pipe_serial);
 7902 %}
 7903 
 7904 
 7905 instruct membar_acquire_lock() %{
 7906   match(MemBarAcquireLock);
 7907   ins_cost(VOLATILE_REF_COST);
 7908 
 7909   format %{ "membar_acquire_lock (elided)" %}
 7910 
 7911   ins_encode %{
 7912     __ block_comment("membar_acquire_lock (elided)");
 7913   %}
 7914 
 7915   ins_pipe(pipe_serial);
 7916 %}
 7917 
 7918 instruct store_fence() %{
 7919   match(StoreFence);
 7920   ins_cost(VOLATILE_REF_COST);
 7921 
 7922   format %{ "store_fence" %}
 7923 
 7924   ins_encode %{
 7925     __ membar(Assembler::LoadStore|Assembler::StoreStore);
 7926   %}
 7927   ins_pipe(pipe_serial);
 7928 %}
 7929 
 7930 instruct unnecessary_membar_release() %{
 7931   predicate(unnecessary_release(n));
 7932   match(MemBarRelease);
 7933   ins_cost(0);
 7934 
 7935   format %{ "membar_release (elided)" %}
 7936 
 7937   ins_encode %{
 7938     __ block_comment("membar_release (elided)");
 7939   %}
 7940   ins_pipe(pipe_serial);
 7941 %}
 7942 
 7943 instruct membar_release() %{
 7944   match(MemBarRelease);
 7945   ins_cost(VOLATILE_REF_COST);
 7946 
 7947   format %{ "membar_release\n\t"
 7948             "dmb ishst\n\tdmb ishld" %}
 7949 
 7950   ins_encode %{
 7951     __ block_comment("membar_release");
 7952     // These will be merged if AlwaysMergeDMB is enabled.
 7953     __ membar(Assembler::StoreStore);
 7954     __ membar(Assembler::LoadStore);
 7955   %}
 7956   ins_pipe(pipe_serial);
 7957 %}
 7958 
 7959 instruct membar_storestore() %{
 7960   match(MemBarStoreStore);
 7961   match(StoreStoreFence);
 7962   ins_cost(VOLATILE_REF_COST);
 7963 
 7964   format %{ "MEMBAR-store-store" %}
 7965 
 7966   ins_encode %{
 7967     __ membar(Assembler::StoreStore);
 7968   %}
 7969   ins_pipe(pipe_serial);
 7970 %}
 7971 
 7972 instruct membar_release_lock() %{
 7973   match(MemBarReleaseLock);
 7974   ins_cost(VOLATILE_REF_COST);
 7975 
 7976   format %{ "membar_release_lock (elided)" %}
 7977 
 7978   ins_encode %{
 7979     __ block_comment("membar_release_lock (elided)");
 7980   %}
 7981 
 7982   ins_pipe(pipe_serial);
 7983 %}
 7984 
 7985 instruct unnecessary_membar_volatile() %{
 7986   predicate(unnecessary_volatile(n));
 7987   match(MemBarVolatile);
 7988   ins_cost(0);
 7989 
 7990   format %{ "membar_volatile (elided)" %}
 7991 
 7992   ins_encode %{
 7993     __ block_comment("membar_volatile (elided)");
 7994   %}
 7995 
 7996   ins_pipe(pipe_serial);
 7997 %}
 7998 
 7999 instruct membar_volatile() %{
 8000   match(MemBarVolatile);
 8001   ins_cost(VOLATILE_REF_COST*100);
 8002 
 8003   format %{ "membar_volatile\n\t"
 8004              "dmb ish"%}
 8005 
 8006   ins_encode %{
 8007     __ block_comment("membar_volatile");
 8008     __ membar(Assembler::StoreLoad);
 8009   %}
 8010 
 8011   ins_pipe(pipe_serial);
 8012 %}
 8013 
 8014 // ============================================================================
 8015 // Cast/Convert Instructions
 8016 
 8017 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 8018   match(Set dst (CastX2P src));
 8019 
 8020   ins_cost(INSN_COST);
 8021   format %{ "mov $dst, $src\t# long -> ptr" %}
 8022 
 8023   ins_encode %{
 8024     if ($dst$$reg != $src$$reg) {
 8025       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8026     }
 8027   %}
 8028 
 8029   ins_pipe(ialu_reg);
 8030 %}
 8031 
 8032 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 8033   match(Set dst (CastP2X src));
 8034 
 8035   ins_cost(INSN_COST);
 8036   format %{ "mov $dst, $src\t# ptr -> long" %}
 8037 
 8038   ins_encode %{
 8039     if ($dst$$reg != $src$$reg) {
 8040       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8041     }
 8042   %}
 8043 
 8044   ins_pipe(ialu_reg);
 8045 %}
 8046 
 8047 // Convert oop into int for vectors alignment masking
 8048 instruct convP2I(iRegINoSp dst, iRegP src) %{
 8049   match(Set dst (ConvL2I (CastP2X src)));
 8050 
 8051   ins_cost(INSN_COST);
 8052   format %{ "movw $dst, $src\t# ptr -> int" %}
 8053   ins_encode %{
 8054     __ movw($dst$$Register, $src$$Register);
 8055   %}
 8056 
 8057   ins_pipe(ialu_reg);
 8058 %}
 8059 
 8060 // Convert compressed oop into int for vectors alignment masking
 8061 // in case of 32bit oops (heap < 4Gb).
 8062 instruct convN2I(iRegINoSp dst, iRegN src)
 8063 %{
 8064   predicate(CompressedOops::shift() == 0);
 8065   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
 8066 
 8067   ins_cost(INSN_COST);
 8068   format %{ "mov dst, $src\t# compressed ptr -> int" %}
 8069   ins_encode %{
 8070     __ movw($dst$$Register, $src$$Register);
 8071   %}
 8072 
 8073   ins_pipe(ialu_reg);
 8074 %}
 8075 
 8076 
 8077 // Convert oop pointer into compressed form
 8078 instruct encodeHeapOop(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{
 8079   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 8080   match(Set dst (EncodeP src));
 8081   effect(KILL cr);
 8082   ins_cost(INSN_COST * 3);
 8083   format %{ "encode_heap_oop $dst, $src" %}
 8084   ins_encode %{
 8085     Register s = $src$$Register;
 8086     Register d = $dst$$Register;
 8087     __ encode_heap_oop(d, s);
 8088   %}
 8089   ins_pipe(ialu_reg);
 8090 %}
 8091 
 8092 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{
 8093   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 8094   match(Set dst (EncodeP src));
 8095   ins_cost(INSN_COST * 3);
 8096   format %{ "encode_heap_oop_not_null $dst, $src" %}
 8097   ins_encode %{
 8098     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 8099   %}
 8100   ins_pipe(ialu_reg);
 8101 %}
 8102 
 8103 instruct decodeHeapOop(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{
 8104   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 8105             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 8106   match(Set dst (DecodeN src));
 8107   ins_cost(INSN_COST * 3);
 8108   format %{ "decode_heap_oop $dst, $src" %}
 8109   ins_encode %{
 8110     Register s = $src$$Register;
 8111     Register d = $dst$$Register;
 8112     __ decode_heap_oop(d, s);
 8113   %}
 8114   ins_pipe(ialu_reg);
 8115 %}
 8116 
 8117 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{
 8118   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 8119             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 8120   match(Set dst (DecodeN src));
 8121   ins_cost(INSN_COST * 3);
 8122   format %{ "decode_heap_oop_not_null $dst, $src" %}
 8123   ins_encode %{
 8124     Register s = $src$$Register;
 8125     Register d = $dst$$Register;
 8126     __ decode_heap_oop_not_null(d, s);
 8127   %}
 8128   ins_pipe(ialu_reg);
 8129 %}
 8130 
 8131 // n.b. AArch64 implementations of encode_klass_not_null and
 8132 // decode_klass_not_null do not modify the flags register so, unlike
 8133 // Intel, we don't kill CR as a side effect here
 8134 
 8135 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{
 8136   match(Set dst (EncodePKlass src));
 8137 
 8138   ins_cost(INSN_COST * 3);
 8139   format %{ "encode_klass_not_null $dst,$src" %}
 8140 
 8141   ins_encode %{
 8142     Register src_reg = as_Register($src$$reg);
 8143     Register dst_reg = as_Register($dst$$reg);
 8144     __ encode_klass_not_null(dst_reg, src_reg);
 8145   %}
 8146 
 8147    ins_pipe(ialu_reg);
 8148 %}
 8149 
 8150 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src) %{
 8151   match(Set dst (DecodeNKlass src));
 8152 
 8153   ins_cost(INSN_COST * 3);
 8154   format %{ "decode_klass_not_null $dst,$src" %}
 8155 
 8156   ins_encode %{
 8157     Register src_reg = as_Register($src$$reg);
 8158     Register dst_reg = as_Register($dst$$reg);
 8159     if (dst_reg != src_reg) {
 8160       __ decode_klass_not_null(dst_reg, src_reg);
 8161     } else {
 8162       __ decode_klass_not_null(dst_reg);
 8163     }
 8164   %}
 8165 
 8166    ins_pipe(ialu_reg);
 8167 %}
 8168 
 8169 instruct checkCastPP(iRegPNoSp dst)
 8170 %{
 8171   match(Set dst (CheckCastPP dst));
 8172 
 8173   size(0);
 8174   format %{ "# checkcastPP of $dst" %}
 8175   ins_encode(/* empty encoding */);
 8176   ins_pipe(pipe_class_empty);
 8177 %}
 8178 
 8179 instruct castPP(iRegPNoSp dst)
 8180 %{
 8181   match(Set dst (CastPP dst));
 8182 
 8183   size(0);
 8184   format %{ "# castPP of $dst" %}
 8185   ins_encode(/* empty encoding */);
 8186   ins_pipe(pipe_class_empty);
 8187 %}
 8188 
 8189 instruct castII(iRegI dst)
 8190 %{
 8191   predicate(VerifyConstraintCasts == 0);
 8192   match(Set dst (CastII dst));
 8193 
 8194   size(0);
 8195   format %{ "# castII of $dst" %}
 8196   ins_encode(/* empty encoding */);
 8197   ins_cost(0);
 8198   ins_pipe(pipe_class_empty);
 8199 %}
 8200 
 8201 instruct castII_checked(iRegI dst, rFlagsReg cr)
 8202 %{
 8203   predicate(VerifyConstraintCasts > 0);
 8204   match(Set dst (CastII dst));
 8205   effect(KILL cr);
 8206 
 8207   format %{ "# castII_checked of $dst" %}
 8208   ins_encode %{
 8209     __ verify_int_in_range(_idx, bottom_type()->is_int(), $dst$$Register, rscratch1);
 8210   %}
 8211   ins_pipe(pipe_slow);
 8212 %}
 8213 
 8214 instruct castLL(iRegL dst)
 8215 %{
 8216   predicate(VerifyConstraintCasts == 0);
 8217   match(Set dst (CastLL dst));
 8218 
 8219   size(0);
 8220   format %{ "# castLL of $dst" %}
 8221   ins_encode(/* empty encoding */);
 8222   ins_cost(0);
 8223   ins_pipe(pipe_class_empty);
 8224 %}
 8225 
 8226 instruct castLL_checked(iRegL dst, rFlagsReg cr)
 8227 %{
 8228   predicate(VerifyConstraintCasts > 0);
 8229   match(Set dst (CastLL dst));
 8230   effect(KILL cr);
 8231 
 8232   format %{ "# castLL_checked of $dst" %}
 8233   ins_encode %{
 8234     __ verify_long_in_range(_idx, bottom_type()->is_long(), $dst$$Register, rscratch1);
 8235   %}
 8236   ins_pipe(pipe_slow);
 8237 %}
 8238 
 8239 instruct castFF(vRegF dst)
 8240 %{
 8241   match(Set dst (CastFF dst));
 8242 
 8243   size(0);
 8244   format %{ "# castFF of $dst" %}
 8245   ins_encode(/* empty encoding */);
 8246   ins_cost(0);
 8247   ins_pipe(pipe_class_empty);
 8248 %}
 8249 
 8250 instruct castDD(vRegD dst)
 8251 %{
 8252   match(Set dst (CastDD dst));
 8253 
 8254   size(0);
 8255   format %{ "# castDD of $dst" %}
 8256   ins_encode(/* empty encoding */);
 8257   ins_cost(0);
 8258   ins_pipe(pipe_class_empty);
 8259 %}
 8260 
 8261 instruct castVV(vReg dst)
 8262 %{
 8263   match(Set dst (CastVV dst));
 8264 
 8265   size(0);
 8266   format %{ "# castVV of $dst" %}
 8267   ins_encode(/* empty encoding */);
 8268   ins_cost(0);
 8269   ins_pipe(pipe_class_empty);
 8270 %}
 8271 
 8272 instruct castVVMask(pRegGov dst)
 8273 %{
 8274   match(Set dst (CastVV dst));
 8275 
 8276   size(0);
 8277   format %{ "# castVV of $dst" %}
 8278   ins_encode(/* empty encoding */);
 8279   ins_cost(0);
 8280   ins_pipe(pipe_class_empty);
 8281 %}
 8282 
 8283 // ============================================================================
 8284 // Atomic operation instructions
 8285 //
 8286 
 8287 // standard CompareAndSwapX when we are using barriers
 8288 // these have higher priority than the rules selected by a predicate
 8289 
 8290 // XXX No flag versions for CompareAndSwap{I,L,P,N} because matcher
 8291 // can't match them
 8292 
 8293 instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8294 
 8295   match(Set res (CompareAndSwapB mem (Binary oldval newval)));
 8296   ins_cost(2 * VOLATILE_REF_COST);
 8297 
 8298   effect(KILL cr);
 8299 
 8300   format %{
 8301     "cmpxchgb $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8302     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8303   %}
 8304 
 8305   ins_encode(aarch64_enc_cmpxchgb(mem, oldval, newval),
 8306             aarch64_enc_cset_eq(res));
 8307 
 8308   ins_pipe(pipe_slow);
 8309 %}
 8310 
 8311 instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8312 
 8313   match(Set res (CompareAndSwapS mem (Binary oldval newval)));
 8314   ins_cost(2 * VOLATILE_REF_COST);
 8315 
 8316   effect(KILL cr);
 8317 
 8318   format %{
 8319     "cmpxchgs $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8320     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8321   %}
 8322 
 8323   ins_encode(aarch64_enc_cmpxchgs(mem, oldval, newval),
 8324             aarch64_enc_cset_eq(res));
 8325 
 8326   ins_pipe(pipe_slow);
 8327 %}
 8328 
 8329 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8330 
 8331   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
 8332   ins_cost(2 * VOLATILE_REF_COST);
 8333 
 8334   effect(KILL cr);
 8335 
 8336  format %{
 8337     "cmpxchgw $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8338     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8339  %}
 8340 
 8341  ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval),
 8342             aarch64_enc_cset_eq(res));
 8343 
 8344   ins_pipe(pipe_slow);
 8345 %}
 8346 
 8347 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{
 8348 
 8349   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
 8350   ins_cost(2 * VOLATILE_REF_COST);
 8351 
 8352   effect(KILL cr);
 8353 
 8354  format %{
 8355     "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval"
 8356     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8357  %}
 8358 
 8359  ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval),
 8360             aarch64_enc_cset_eq(res));
 8361 
 8362   ins_pipe(pipe_slow);
 8363 %}
 8364 
 8365 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8366 
 8367   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
 8368   predicate(n->as_LoadStore()->barrier_data() == 0);
 8369   ins_cost(2 * VOLATILE_REF_COST);
 8370 
 8371   effect(KILL cr);
 8372 
 8373  format %{
 8374     "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval"
 8375     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8376  %}
 8377 
 8378  ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval),
 8379             aarch64_enc_cset_eq(res));
 8380 
 8381   ins_pipe(pipe_slow);
 8382 %}
 8383 
 8384 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{
 8385 
 8386   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
 8387   predicate(n->as_LoadStore()->barrier_data() == 0);
 8388   ins_cost(2 * VOLATILE_REF_COST);
 8389 
 8390   effect(KILL cr);
 8391 
 8392  format %{
 8393     "cmpxchgw $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval"
 8394     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8395  %}
 8396 
 8397  ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval),
 8398             aarch64_enc_cset_eq(res));
 8399 
 8400   ins_pipe(pipe_slow);
 8401 %}
 8402 
 8403 // alternative CompareAndSwapX when we are eliding barriers
 8404 
 8405 instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8406 
 8407   predicate(needs_acquiring_load_exclusive(n));
 8408   match(Set res (CompareAndSwapB mem (Binary oldval newval)));
 8409   ins_cost(VOLATILE_REF_COST);
 8410 
 8411   effect(KILL cr);
 8412 
 8413   format %{
 8414     "cmpxchgb_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8415     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8416   %}
 8417 
 8418   ins_encode(aarch64_enc_cmpxchgb_acq(mem, oldval, newval),
 8419             aarch64_enc_cset_eq(res));
 8420 
 8421   ins_pipe(pipe_slow);
 8422 %}
 8423 
 8424 instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8425 
 8426   predicate(needs_acquiring_load_exclusive(n));
 8427   match(Set res (CompareAndSwapS mem (Binary oldval newval)));
 8428   ins_cost(VOLATILE_REF_COST);
 8429 
 8430   effect(KILL cr);
 8431 
 8432   format %{
 8433     "cmpxchgs_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8434     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8435   %}
 8436 
 8437   ins_encode(aarch64_enc_cmpxchgs_acq(mem, oldval, newval),
 8438             aarch64_enc_cset_eq(res));
 8439 
 8440   ins_pipe(pipe_slow);
 8441 %}
 8442 
 8443 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8444 
 8445   predicate(needs_acquiring_load_exclusive(n));
 8446   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
 8447   ins_cost(VOLATILE_REF_COST);
 8448 
 8449   effect(KILL cr);
 8450 
 8451  format %{
 8452     "cmpxchgw_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8453     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8454  %}
 8455 
 8456  ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval),
 8457             aarch64_enc_cset_eq(res));
 8458 
 8459   ins_pipe(pipe_slow);
 8460 %}
 8461 
 8462 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{
 8463 
 8464   predicate(needs_acquiring_load_exclusive(n));
 8465   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
 8466   ins_cost(VOLATILE_REF_COST);
 8467 
 8468   effect(KILL cr);
 8469 
 8470  format %{
 8471     "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval"
 8472     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8473  %}
 8474 
 8475  ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval),
 8476             aarch64_enc_cset_eq(res));
 8477 
 8478   ins_pipe(pipe_slow);
 8479 %}
 8480 
 8481 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8482 
 8483   predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0));
 8484   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
 8485   ins_cost(VOLATILE_REF_COST);
 8486 
 8487   effect(KILL cr);
 8488 
 8489  format %{
 8490     "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval"
 8491     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8492  %}
 8493 
 8494  ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval),
 8495             aarch64_enc_cset_eq(res));
 8496 
 8497   ins_pipe(pipe_slow);
 8498 %}
 8499 
 8500 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{
 8501 
 8502   predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0);
 8503   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
 8504   ins_cost(VOLATILE_REF_COST);
 8505 
 8506   effect(KILL cr);
 8507 
 8508  format %{
 8509     "cmpxchgw_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval"
 8510     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8511  %}
 8512 
 8513  ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval),
 8514             aarch64_enc_cset_eq(res));
 8515 
 8516   ins_pipe(pipe_slow);
 8517 %}
 8518 
 8519 
 8520 // ---------------------------------------------------------------------
 8521 
 8522 // BEGIN This section of the file is automatically generated. Do not edit --------------
 8523 
 8524 // Sundry CAS operations.  Note that release is always true,
 8525 // regardless of the memory ordering of the CAS.  This is because we
 8526 // need the volatile case to be sequentially consistent but there is
 8527 // no trailing StoreLoad barrier emitted by C2.  Unfortunately we
 8528 // can't check the type of memory ordering here, so we always emit a
 8529 // STLXR.
 8530 
 8531 // This section is generated from cas.m4
 8532 
 8533 
 8534 // This pattern is generated automatically from cas.m4.
 8535 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8536 instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8537   match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
 8538   ins_cost(2 * VOLATILE_REF_COST);
 8539   effect(TEMP_DEF res, KILL cr);
 8540   format %{
 8541     "cmpxchgb $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
 8542   %}
 8543   ins_encode %{
 8544     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8545                Assembler::byte, /*acquire*/ false, /*release*/ true,
 8546                /*weak*/ false, $res$$Register);
 8547     __ sxtbw($res$$Register, $res$$Register);
 8548   %}
 8549   ins_pipe(pipe_slow);
 8550 %}
 8551 
 8552 // This pattern is generated automatically from cas.m4.
 8553 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8554 instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8555   match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
 8556   ins_cost(2 * VOLATILE_REF_COST);
 8557   effect(TEMP_DEF res, KILL cr);
 8558   format %{
 8559     "cmpxchgs $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
 8560   %}
 8561   ins_encode %{
 8562     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8563                Assembler::halfword, /*acquire*/ false, /*release*/ true,
 8564                /*weak*/ false, $res$$Register);
 8565     __ sxthw($res$$Register, $res$$Register);
 8566   %}
 8567   ins_pipe(pipe_slow);
 8568 %}
 8569 
 8570 // This pattern is generated automatically from cas.m4.
 8571 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8572 instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8573   match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
 8574   ins_cost(2 * VOLATILE_REF_COST);
 8575   effect(TEMP_DEF res, KILL cr);
 8576   format %{
 8577     "cmpxchgw $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
 8578   %}
 8579   ins_encode %{
 8580     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8581                Assembler::word, /*acquire*/ false, /*release*/ true,
 8582                /*weak*/ false, $res$$Register);
 8583   %}
 8584   ins_pipe(pipe_slow);
 8585 %}
 8586 
 8587 // This pattern is generated automatically from cas.m4.
 8588 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8589 instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
 8590   match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
 8591   ins_cost(2 * VOLATILE_REF_COST);
 8592   effect(TEMP_DEF res, KILL cr);
 8593   format %{
 8594     "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
 8595   %}
 8596   ins_encode %{
 8597     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8598                Assembler::xword, /*acquire*/ false, /*release*/ true,
 8599                /*weak*/ false, $res$$Register);
 8600   %}
 8601   ins_pipe(pipe_slow);
 8602 %}
 8603 
 8604 // This pattern is generated automatically from cas.m4.
 8605 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8606 instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
 8607   predicate(n->as_LoadStore()->barrier_data() == 0);
 8608   match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
 8609   ins_cost(2 * VOLATILE_REF_COST);
 8610   effect(TEMP_DEF res, KILL cr);
 8611   format %{
 8612     "cmpxchgw $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
 8613   %}
 8614   ins_encode %{
 8615     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8616                Assembler::word, /*acquire*/ false, /*release*/ true,
 8617                /*weak*/ false, $res$$Register);
 8618   %}
 8619   ins_pipe(pipe_slow);
 8620 %}
 8621 
 8622 // This pattern is generated automatically from cas.m4.
 8623 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8624 instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8625   predicate(n->as_LoadStore()->barrier_data() == 0);
 8626   match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
 8627   ins_cost(2 * VOLATILE_REF_COST);
 8628   effect(TEMP_DEF res, KILL cr);
 8629   format %{
 8630     "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
 8631   %}
 8632   ins_encode %{
 8633     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8634                Assembler::xword, /*acquire*/ false, /*release*/ true,
 8635                /*weak*/ false, $res$$Register);
 8636   %}
 8637   ins_pipe(pipe_slow);
 8638 %}
 8639 
 8640 // This pattern is generated automatically from cas.m4.
 8641 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8642 instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8643   predicate(needs_acquiring_load_exclusive(n));
 8644   match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
 8645   ins_cost(VOLATILE_REF_COST);
 8646   effect(TEMP_DEF res, KILL cr);
 8647   format %{
 8648     "cmpxchgb_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
 8649   %}
 8650   ins_encode %{
 8651     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8652                Assembler::byte, /*acquire*/ true, /*release*/ true,
 8653                /*weak*/ false, $res$$Register);
 8654     __ sxtbw($res$$Register, $res$$Register);
 8655   %}
 8656   ins_pipe(pipe_slow);
 8657 %}
 8658 
 8659 // This pattern is generated automatically from cas.m4.
 8660 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8661 instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8662   predicate(needs_acquiring_load_exclusive(n));
 8663   match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
 8664   ins_cost(VOLATILE_REF_COST);
 8665   effect(TEMP_DEF res, KILL cr);
 8666   format %{
 8667     "cmpxchgs_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
 8668   %}
 8669   ins_encode %{
 8670     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8671                Assembler::halfword, /*acquire*/ true, /*release*/ true,
 8672                /*weak*/ false, $res$$Register);
 8673     __ sxthw($res$$Register, $res$$Register);
 8674   %}
 8675   ins_pipe(pipe_slow);
 8676 %}
 8677 
 8678 // This pattern is generated automatically from cas.m4.
 8679 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8680 instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8681   predicate(needs_acquiring_load_exclusive(n));
 8682   match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
 8683   ins_cost(VOLATILE_REF_COST);
 8684   effect(TEMP_DEF res, KILL cr);
 8685   format %{
 8686     "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
 8687   %}
 8688   ins_encode %{
 8689     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8690                Assembler::word, /*acquire*/ true, /*release*/ true,
 8691                /*weak*/ false, $res$$Register);
 8692   %}
 8693   ins_pipe(pipe_slow);
 8694 %}
 8695 
 8696 // This pattern is generated automatically from cas.m4.
 8697 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8698 instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
 8699   predicate(needs_acquiring_load_exclusive(n));
 8700   match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
 8701   ins_cost(VOLATILE_REF_COST);
 8702   effect(TEMP_DEF res, KILL cr);
 8703   format %{
 8704     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
 8705   %}
 8706   ins_encode %{
 8707     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8708                Assembler::xword, /*acquire*/ true, /*release*/ true,
 8709                /*weak*/ false, $res$$Register);
 8710   %}
 8711   ins_pipe(pipe_slow);
 8712 %}
 8713 
 8714 // This pattern is generated automatically from cas.m4.
 8715 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8716 instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
 8717   predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0);
 8718   match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
 8719   ins_cost(VOLATILE_REF_COST);
 8720   effect(TEMP_DEF res, KILL cr);
 8721   format %{
 8722     "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
 8723   %}
 8724   ins_encode %{
 8725     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8726                Assembler::word, /*acquire*/ true, /*release*/ true,
 8727                /*weak*/ false, $res$$Register);
 8728   %}
 8729   ins_pipe(pipe_slow);
 8730 %}
 8731 
 8732 // This pattern is generated automatically from cas.m4.
 8733 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8734 instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8735   predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0));
 8736   match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
 8737   ins_cost(VOLATILE_REF_COST);
 8738   effect(TEMP_DEF res, KILL cr);
 8739   format %{
 8740     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
 8741   %}
 8742   ins_encode %{
 8743     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8744                Assembler::xword, /*acquire*/ true, /*release*/ true,
 8745                /*weak*/ false, $res$$Register);
 8746   %}
 8747   ins_pipe(pipe_slow);
 8748 %}
 8749 
 8750 // This pattern is generated automatically from cas.m4.
 8751 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8752 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8753   match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
 8754   ins_cost(2 * VOLATILE_REF_COST);
 8755   effect(KILL cr);
 8756   format %{
 8757     "cmpxchgb $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
 8758     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8759   %}
 8760   ins_encode %{
 8761     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8762                Assembler::byte, /*acquire*/ false, /*release*/ true,
 8763                /*weak*/ true, noreg);
 8764     __ csetw($res$$Register, Assembler::EQ);
 8765   %}
 8766   ins_pipe(pipe_slow);
 8767 %}
 8768 
 8769 // This pattern is generated automatically from cas.m4.
 8770 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8771 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8772   match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
 8773   ins_cost(2 * VOLATILE_REF_COST);
 8774   effect(KILL cr);
 8775   format %{
 8776     "cmpxchgs $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
 8777     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8778   %}
 8779   ins_encode %{
 8780     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8781                Assembler::halfword, /*acquire*/ false, /*release*/ true,
 8782                /*weak*/ true, noreg);
 8783     __ csetw($res$$Register, Assembler::EQ);
 8784   %}
 8785   ins_pipe(pipe_slow);
 8786 %}
 8787 
 8788 // This pattern is generated automatically from cas.m4.
 8789 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8790 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8791   match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
 8792   ins_cost(2 * VOLATILE_REF_COST);
 8793   effect(KILL cr);
 8794   format %{
 8795     "cmpxchgw $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
 8796     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8797   %}
 8798   ins_encode %{
 8799     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8800                Assembler::word, /*acquire*/ false, /*release*/ true,
 8801                /*weak*/ true, noreg);
 8802     __ csetw($res$$Register, Assembler::EQ);
 8803   %}
 8804   ins_pipe(pipe_slow);
 8805 %}
 8806 
 8807 // This pattern is generated automatically from cas.m4.
 8808 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8809 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
 8810   match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
 8811   ins_cost(2 * VOLATILE_REF_COST);
 8812   effect(KILL cr);
 8813   format %{
 8814     "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
 8815     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8816   %}
 8817   ins_encode %{
 8818     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8819                Assembler::xword, /*acquire*/ false, /*release*/ true,
 8820                /*weak*/ true, noreg);
 8821     __ csetw($res$$Register, Assembler::EQ);
 8822   %}
 8823   ins_pipe(pipe_slow);
 8824 %}
 8825 
 8826 // This pattern is generated automatically from cas.m4.
 8827 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8828 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
 8829   predicate(n->as_LoadStore()->barrier_data() == 0);
 8830   match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
 8831   ins_cost(2 * VOLATILE_REF_COST);
 8832   effect(KILL cr);
 8833   format %{
 8834     "cmpxchgw $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
 8835     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8836   %}
 8837   ins_encode %{
 8838     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8839                Assembler::word, /*acquire*/ false, /*release*/ true,
 8840                /*weak*/ true, noreg);
 8841     __ csetw($res$$Register, Assembler::EQ);
 8842   %}
 8843   ins_pipe(pipe_slow);
 8844 %}
 8845 
 8846 // This pattern is generated automatically from cas.m4.
 8847 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8848 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8849   predicate(n->as_LoadStore()->barrier_data() == 0);
 8850   match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
 8851   ins_cost(2 * VOLATILE_REF_COST);
 8852   effect(KILL cr);
 8853   format %{
 8854     "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
 8855     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8856   %}
 8857   ins_encode %{
 8858     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8859                Assembler::xword, /*acquire*/ false, /*release*/ true,
 8860                /*weak*/ true, noreg);
 8861     __ csetw($res$$Register, Assembler::EQ);
 8862   %}
 8863   ins_pipe(pipe_slow);
 8864 %}
 8865 
 8866 // This pattern is generated automatically from cas.m4.
 8867 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8868 instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8869   predicate(needs_acquiring_load_exclusive(n));
 8870   match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
 8871   ins_cost(VOLATILE_REF_COST);
 8872   effect(KILL cr);
 8873   format %{
 8874     "cmpxchgb_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
 8875     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8876   %}
 8877   ins_encode %{
 8878     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8879                Assembler::byte, /*acquire*/ true, /*release*/ true,
 8880                /*weak*/ true, noreg);
 8881     __ csetw($res$$Register, Assembler::EQ);
 8882   %}
 8883   ins_pipe(pipe_slow);
 8884 %}
 8885 
 8886 // This pattern is generated automatically from cas.m4.
 8887 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8888 instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8889   predicate(needs_acquiring_load_exclusive(n));
 8890   match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
 8891   ins_cost(VOLATILE_REF_COST);
 8892   effect(KILL cr);
 8893   format %{
 8894     "cmpxchgs_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
 8895     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8896   %}
 8897   ins_encode %{
 8898     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8899                Assembler::halfword, /*acquire*/ true, /*release*/ true,
 8900                /*weak*/ true, noreg);
 8901     __ csetw($res$$Register, Assembler::EQ);
 8902   %}
 8903   ins_pipe(pipe_slow);
 8904 %}
 8905 
 8906 // This pattern is generated automatically from cas.m4.
 8907 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8908 instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8909   predicate(needs_acquiring_load_exclusive(n));
 8910   match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
 8911   ins_cost(VOLATILE_REF_COST);
 8912   effect(KILL cr);
 8913   format %{
 8914     "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
 8915     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8916   %}
 8917   ins_encode %{
 8918     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8919                Assembler::word, /*acquire*/ true, /*release*/ true,
 8920                /*weak*/ true, noreg);
 8921     __ csetw($res$$Register, Assembler::EQ);
 8922   %}
 8923   ins_pipe(pipe_slow);
 8924 %}
 8925 
 8926 // This pattern is generated automatically from cas.m4.
 8927 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8928 instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
 8929   predicate(needs_acquiring_load_exclusive(n));
 8930   match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
 8931   ins_cost(VOLATILE_REF_COST);
 8932   effect(KILL cr);
 8933   format %{
 8934     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
 8935     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8936   %}
 8937   ins_encode %{
 8938     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8939                Assembler::xword, /*acquire*/ true, /*release*/ true,
 8940                /*weak*/ true, noreg);
 8941     __ csetw($res$$Register, Assembler::EQ);
 8942   %}
 8943   ins_pipe(pipe_slow);
 8944 %}
 8945 
 8946 // This pattern is generated automatically from cas.m4.
 8947 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8948 instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
 8949   predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0);
 8950   match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
 8951   ins_cost(VOLATILE_REF_COST);
 8952   effect(KILL cr);
 8953   format %{
 8954     "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
 8955     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8956   %}
 8957   ins_encode %{
 8958     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8959                Assembler::word, /*acquire*/ true, /*release*/ true,
 8960                /*weak*/ true, noreg);
 8961     __ csetw($res$$Register, Assembler::EQ);
 8962   %}
 8963   ins_pipe(pipe_slow);
 8964 %}
 8965 
 8966 // This pattern is generated automatically from cas.m4.
 8967 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8968 instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8969   predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0));
 8970   match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
 8971   ins_cost(VOLATILE_REF_COST);
 8972   effect(KILL cr);
 8973   format %{
 8974     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
 8975     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8976   %}
 8977   ins_encode %{
 8978     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8979                Assembler::xword, /*acquire*/ true, /*release*/ true,
 8980                /*weak*/ true, noreg);
 8981     __ csetw($res$$Register, Assembler::EQ);
 8982   %}
 8983   ins_pipe(pipe_slow);
 8984 %}
 8985 
 8986 // END This section of the file is automatically generated. Do not edit --------------
 8987 // ---------------------------------------------------------------------
 8988 
 8989 instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev) %{
 8990   match(Set prev (GetAndSetI mem newv));
 8991   ins_cost(2 * VOLATILE_REF_COST);
 8992   format %{ "atomic_xchgw  $prev, $newv, [$mem]" %}
 8993   ins_encode %{
 8994     __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 8995   %}
 8996   ins_pipe(pipe_serial);
 8997 %}
 8998 
 8999 instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev) %{
 9000   match(Set prev (GetAndSetL mem newv));
 9001   ins_cost(2 * VOLATILE_REF_COST);
 9002   format %{ "atomic_xchg  $prev, $newv, [$mem]" %}
 9003   ins_encode %{
 9004     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9005   %}
 9006   ins_pipe(pipe_serial);
 9007 %}
 9008 
 9009 instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev) %{
 9010   predicate(n->as_LoadStore()->barrier_data() == 0);
 9011   match(Set prev (GetAndSetN mem newv));
 9012   ins_cost(2 * VOLATILE_REF_COST);
 9013   format %{ "atomic_xchgw $prev, $newv, [$mem]" %}
 9014   ins_encode %{
 9015     __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9016   %}
 9017   ins_pipe(pipe_serial);
 9018 %}
 9019 
 9020 instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev) %{
 9021   predicate(n->as_LoadStore()->barrier_data() == 0);
 9022   match(Set prev (GetAndSetP mem newv));
 9023   ins_cost(2 * VOLATILE_REF_COST);
 9024   format %{ "atomic_xchg  $prev, $newv, [$mem]" %}
 9025   ins_encode %{
 9026     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9027   %}
 9028   ins_pipe(pipe_serial);
 9029 %}
 9030 
 9031 instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev) %{
 9032   predicate(needs_acquiring_load_exclusive(n));
 9033   match(Set prev (GetAndSetI mem newv));
 9034   ins_cost(VOLATILE_REF_COST);
 9035   format %{ "atomic_xchgw_acq  $prev, $newv, [$mem]" %}
 9036   ins_encode %{
 9037     __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9038   %}
 9039   ins_pipe(pipe_serial);
 9040 %}
 9041 
 9042 instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev) %{
 9043   predicate(needs_acquiring_load_exclusive(n));
 9044   match(Set prev (GetAndSetL mem newv));
 9045   ins_cost(VOLATILE_REF_COST);
 9046   format %{ "atomic_xchg_acq  $prev, $newv, [$mem]" %}
 9047   ins_encode %{
 9048     __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9049   %}
 9050   ins_pipe(pipe_serial);
 9051 %}
 9052 
 9053 instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev) %{
 9054   predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0);
 9055   match(Set prev (GetAndSetN mem newv));
 9056   ins_cost(VOLATILE_REF_COST);
 9057   format %{ "atomic_xchgw_acq $prev, $newv, [$mem]" %}
 9058   ins_encode %{
 9059     __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9060   %}
 9061   ins_pipe(pipe_serial);
 9062 %}
 9063 
 9064 instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev) %{
 9065   predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0));
 9066   match(Set prev (GetAndSetP mem newv));
 9067   ins_cost(VOLATILE_REF_COST);
 9068   format %{ "atomic_xchg_acq  $prev, $newv, [$mem]" %}
 9069   ins_encode %{
 9070     __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9071   %}
 9072   ins_pipe(pipe_serial);
 9073 %}
 9074 
 9075 
 9076 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr) %{
 9077   match(Set newval (GetAndAddL mem incr));
 9078   ins_cost(2 * VOLATILE_REF_COST + 1);
 9079   format %{ "get_and_addL $newval, [$mem], $incr" %}
 9080   ins_encode %{
 9081     __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base));
 9082   %}
 9083   ins_pipe(pipe_serial);
 9084 %}
 9085 
 9086 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr) %{
 9087   predicate(n->as_LoadStore()->result_not_used());
 9088   match(Set dummy (GetAndAddL mem incr));
 9089   ins_cost(2 * VOLATILE_REF_COST);
 9090   format %{ "get_and_addL [$mem], $incr" %}
 9091   ins_encode %{
 9092     __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base));
 9093   %}
 9094   ins_pipe(pipe_serial);
 9095 %}
 9096 
 9097 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAddSub incr) %{
 9098   match(Set newval (GetAndAddL mem incr));
 9099   ins_cost(2 * VOLATILE_REF_COST + 1);
 9100   format %{ "get_and_addL $newval, [$mem], $incr" %}
 9101   ins_encode %{
 9102     __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base));
 9103   %}
 9104   ins_pipe(pipe_serial);
 9105 %}
 9106 
 9107 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAddSub incr) %{
 9108   predicate(n->as_LoadStore()->result_not_used());
 9109   match(Set dummy (GetAndAddL mem incr));
 9110   ins_cost(2 * VOLATILE_REF_COST);
 9111   format %{ "get_and_addL [$mem], $incr" %}
 9112   ins_encode %{
 9113     __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base));
 9114   %}
 9115   ins_pipe(pipe_serial);
 9116 %}
 9117 
 9118 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{
 9119   match(Set newval (GetAndAddI mem incr));
 9120   ins_cost(2 * VOLATILE_REF_COST + 1);
 9121   format %{ "get_and_addI $newval, [$mem], $incr" %}
 9122   ins_encode %{
 9123     __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base));
 9124   %}
 9125   ins_pipe(pipe_serial);
 9126 %}
 9127 
 9128 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr) %{
 9129   predicate(n->as_LoadStore()->result_not_used());
 9130   match(Set dummy (GetAndAddI mem incr));
 9131   ins_cost(2 * VOLATILE_REF_COST);
 9132   format %{ "get_and_addI [$mem], $incr" %}
 9133   ins_encode %{
 9134     __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base));
 9135   %}
 9136   ins_pipe(pipe_serial);
 9137 %}
 9138 
 9139 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAddSub incr) %{
 9140   match(Set newval (GetAndAddI mem incr));
 9141   ins_cost(2 * VOLATILE_REF_COST + 1);
 9142   format %{ "get_and_addI $newval, [$mem], $incr" %}
 9143   ins_encode %{
 9144     __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base));
 9145   %}
 9146   ins_pipe(pipe_serial);
 9147 %}
 9148 
 9149 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAddSub incr) %{
 9150   predicate(n->as_LoadStore()->result_not_used());
 9151   match(Set dummy (GetAndAddI mem incr));
 9152   ins_cost(2 * VOLATILE_REF_COST);
 9153   format %{ "get_and_addI [$mem], $incr" %}
 9154   ins_encode %{
 9155     __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base));
 9156   %}
 9157   ins_pipe(pipe_serial);
 9158 %}
 9159 
 9160 instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr) %{
 9161   predicate(needs_acquiring_load_exclusive(n));
 9162   match(Set newval (GetAndAddL mem incr));
 9163   ins_cost(VOLATILE_REF_COST + 1);
 9164   format %{ "get_and_addL_acq $newval, [$mem], $incr" %}
 9165   ins_encode %{
 9166     __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base));
 9167   %}
 9168   ins_pipe(pipe_serial);
 9169 %}
 9170 
 9171 instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{
 9172   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n));
 9173   match(Set dummy (GetAndAddL mem incr));
 9174   ins_cost(VOLATILE_REF_COST);
 9175   format %{ "get_and_addL_acq [$mem], $incr" %}
 9176   ins_encode %{
 9177     __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base));
 9178   %}
 9179   ins_pipe(pipe_serial);
 9180 %}
 9181 
 9182 instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAddSub incr) %{
 9183   predicate(needs_acquiring_load_exclusive(n));
 9184   match(Set newval (GetAndAddL mem incr));
 9185   ins_cost(VOLATILE_REF_COST + 1);
 9186   format %{ "get_and_addL_acq $newval, [$mem], $incr" %}
 9187   ins_encode %{
 9188     __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base));
 9189   %}
 9190   ins_pipe(pipe_serial);
 9191 %}
 9192 
 9193 instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAddSub incr) %{
 9194   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n));
 9195   match(Set dummy (GetAndAddL mem incr));
 9196   ins_cost(VOLATILE_REF_COST);
 9197   format %{ "get_and_addL_acq [$mem], $incr" %}
 9198   ins_encode %{
 9199     __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base));
 9200   %}
 9201   ins_pipe(pipe_serial);
 9202 %}
 9203 
 9204 instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{
 9205   predicate(needs_acquiring_load_exclusive(n));
 9206   match(Set newval (GetAndAddI mem incr));
 9207   ins_cost(VOLATILE_REF_COST + 1);
 9208   format %{ "get_and_addI_acq $newval, [$mem], $incr" %}
 9209   ins_encode %{
 9210     __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base));
 9211   %}
 9212   ins_pipe(pipe_serial);
 9213 %}
 9214 
 9215 instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr) %{
 9216   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n));
 9217   match(Set dummy (GetAndAddI mem incr));
 9218   ins_cost(VOLATILE_REF_COST);
 9219   format %{ "get_and_addI_acq [$mem], $incr" %}
 9220   ins_encode %{
 9221     __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base));
 9222   %}
 9223   ins_pipe(pipe_serial);
 9224 %}
 9225 
 9226 instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAddSub incr) %{
 9227   predicate(needs_acquiring_load_exclusive(n));
 9228   match(Set newval (GetAndAddI mem incr));
 9229   ins_cost(VOLATILE_REF_COST + 1);
 9230   format %{ "get_and_addI_acq $newval, [$mem], $incr" %}
 9231   ins_encode %{
 9232     __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base));
 9233   %}
 9234   ins_pipe(pipe_serial);
 9235 %}
 9236 
 9237 instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAddSub incr) %{
 9238   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n));
 9239   match(Set dummy (GetAndAddI mem incr));
 9240   ins_cost(VOLATILE_REF_COST);
 9241   format %{ "get_and_addI_acq [$mem], $incr" %}
 9242   ins_encode %{
 9243     __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base));
 9244   %}
 9245   ins_pipe(pipe_serial);
 9246 %}
 9247 
 9248 // Manifest a CmpU result in an integer register.
 9249 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 9250 instruct cmpU3_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg flags)
 9251 %{
 9252   match(Set dst (CmpU3 src1 src2));
 9253   effect(KILL flags);
 9254 
 9255   ins_cost(INSN_COST * 3);
 9256   format %{
 9257       "cmpw $src1, $src2\n\t"
 9258       "csetw $dst, ne\n\t"
 9259       "cnegw $dst, lo\t# CmpU3(reg)"
 9260   %}
 9261   ins_encode %{
 9262     __ cmpw($src1$$Register, $src2$$Register);
 9263     __ csetw($dst$$Register, Assembler::NE);
 9264     __ cnegw($dst$$Register, $dst$$Register, Assembler::LO);
 9265   %}
 9266 
 9267   ins_pipe(pipe_class_default);
 9268 %}
 9269 
 9270 instruct cmpU3_reg_imm(iRegINoSp dst, iRegI src1, immIAddSub src2, rFlagsReg flags)
 9271 %{
 9272   match(Set dst (CmpU3 src1 src2));
 9273   effect(KILL flags);
 9274 
 9275   ins_cost(INSN_COST * 3);
 9276   format %{
 9277       "subsw zr, $src1, $src2\n\t"
 9278       "csetw $dst, ne\n\t"
 9279       "cnegw $dst, lo\t# CmpU3(imm)"
 9280   %}
 9281   ins_encode %{
 9282     __ subsw(zr, $src1$$Register, (int32_t)$src2$$constant);
 9283     __ csetw($dst$$Register, Assembler::NE);
 9284     __ cnegw($dst$$Register, $dst$$Register, Assembler::LO);
 9285   %}
 9286 
 9287   ins_pipe(pipe_class_default);
 9288 %}
 9289 
 9290 // Manifest a CmpUL result in an integer register.
 9291 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 9292 instruct cmpUL3_reg_reg(iRegINoSp dst, iRegL src1, iRegL src2, rFlagsReg flags)
 9293 %{
 9294   match(Set dst (CmpUL3 src1 src2));
 9295   effect(KILL flags);
 9296 
 9297   ins_cost(INSN_COST * 3);
 9298   format %{
 9299       "cmp $src1, $src2\n\t"
 9300       "csetw $dst, ne\n\t"
 9301       "cnegw $dst, lo\t# CmpUL3(reg)"
 9302   %}
 9303   ins_encode %{
 9304     __ cmp($src1$$Register, $src2$$Register);
 9305     __ csetw($dst$$Register, Assembler::NE);
 9306     __ cnegw($dst$$Register, $dst$$Register, Assembler::LO);
 9307   %}
 9308 
 9309   ins_pipe(pipe_class_default);
 9310 %}
 9311 
 9312 instruct cmpUL3_reg_imm(iRegINoSp dst, iRegL src1, immLAddSub src2, rFlagsReg flags)
 9313 %{
 9314   match(Set dst (CmpUL3 src1 src2));
 9315   effect(KILL flags);
 9316 
 9317   ins_cost(INSN_COST * 3);
 9318   format %{
 9319       "subs zr, $src1, $src2\n\t"
 9320       "csetw $dst, ne\n\t"
 9321       "cnegw $dst, lo\t# CmpUL3(imm)"
 9322   %}
 9323   ins_encode %{
 9324     __ subs(zr, $src1$$Register, (int32_t)$src2$$constant);
 9325     __ csetw($dst$$Register, Assembler::NE);
 9326     __ cnegw($dst$$Register, $dst$$Register, Assembler::LO);
 9327   %}
 9328 
 9329   ins_pipe(pipe_class_default);
 9330 %}
 9331 
 9332 // Manifest a CmpL result in an integer register.
 9333 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 9334 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL src1, iRegL src2, rFlagsReg flags)
 9335 %{
 9336   match(Set dst (CmpL3 src1 src2));
 9337   effect(KILL flags);
 9338 
 9339   ins_cost(INSN_COST * 3);
 9340   format %{
 9341       "cmp $src1, $src2\n\t"
 9342       "csetw $dst, ne\n\t"
 9343       "cnegw $dst, lt\t# CmpL3(reg)"
 9344   %}
 9345   ins_encode %{
 9346     __ cmp($src1$$Register, $src2$$Register);
 9347     __ csetw($dst$$Register, Assembler::NE);
 9348     __ cnegw($dst$$Register, $dst$$Register, Assembler::LT);
 9349   %}
 9350 
 9351   ins_pipe(pipe_class_default);
 9352 %}
 9353 
 9354 instruct cmpL3_reg_imm(iRegINoSp dst, iRegL src1, immLAddSub src2, rFlagsReg flags)
 9355 %{
 9356   match(Set dst (CmpL3 src1 src2));
 9357   effect(KILL flags);
 9358 
 9359   ins_cost(INSN_COST * 3);
 9360   format %{
 9361       "subs zr, $src1, $src2\n\t"
 9362       "csetw $dst, ne\n\t"
 9363       "cnegw $dst, lt\t# CmpL3(imm)"
 9364   %}
 9365   ins_encode %{
 9366     __ subs(zr, $src1$$Register, (int32_t)$src2$$constant);
 9367     __ csetw($dst$$Register, Assembler::NE);
 9368     __ cnegw($dst$$Register, $dst$$Register, Assembler::LT);
 9369   %}
 9370 
 9371   ins_pipe(pipe_class_default);
 9372 %}
 9373 
 9374 // ============================================================================
 9375 // Conditional Move Instructions
 9376 
 9377 // n.b. we have identical rules for both a signed compare op (cmpOp)
 9378 // and an unsigned compare op (cmpOpU). it would be nice if we could
 9379 // define an op class which merged both inputs and use it to type the
 9380 // argument to a single rule. unfortunatelyt his fails because the
 9381 // opclass does not live up to the COND_INTER interface of its
 9382 // component operands. When the generic code tries to negate the
 9383 // operand it ends up running the generci Machoper::negate method
 9384 // which throws a ShouldNotHappen. So, we have to provide two flavours
 9385 // of each rule, one for a cmpOp and a second for a cmpOpU (sigh).
 9386 
 9387 instruct cmovI_reg_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 9388   match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2)));
 9389 
 9390   ins_cost(INSN_COST * 2);
 9391   format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, int"  %}
 9392 
 9393   ins_encode %{
 9394     __ cselw(as_Register($dst$$reg),
 9395              as_Register($src2$$reg),
 9396              as_Register($src1$$reg),
 9397              (Assembler::Condition)$cmp$$cmpcode);
 9398   %}
 9399 
 9400   ins_pipe(icond_reg_reg);
 9401 %}
 9402 
 9403 instruct cmovUI_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 9404   match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2)));
 9405 
 9406   ins_cost(INSN_COST * 2);
 9407   format %{ "cselw $dst, $src2, $src1 $cmp\t# unsigned, int"  %}
 9408 
 9409   ins_encode %{
 9410     __ cselw(as_Register($dst$$reg),
 9411              as_Register($src2$$reg),
 9412              as_Register($src1$$reg),
 9413              (Assembler::Condition)$cmp$$cmpcode);
 9414   %}
 9415 
 9416   ins_pipe(icond_reg_reg);
 9417 %}
 9418 
 9419 // special cases where one arg is zero
 9420 
 9421 // n.b. this is selected in preference to the rule above because it
 9422 // avoids loading constant 0 into a source register
 9423 
 9424 // TODO
 9425 // we ought only to be able to cull one of these variants as the ideal
 9426 // transforms ought always to order the zero consistently (to left/right?)
 9427 
 9428 instruct cmovI_zero_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{
 9429   match(Set dst (CMoveI (Binary cmp cr) (Binary zero src)));
 9430 
 9431   ins_cost(INSN_COST * 2);
 9432   format %{ "cselw $dst, $src, zr $cmp\t# signed, int"  %}
 9433 
 9434   ins_encode %{
 9435     __ cselw(as_Register($dst$$reg),
 9436              as_Register($src$$reg),
 9437              zr,
 9438              (Assembler::Condition)$cmp$$cmpcode);
 9439   %}
 9440 
 9441   ins_pipe(icond_reg);
 9442 %}
 9443 
 9444 instruct cmovUI_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{
 9445   match(Set dst (CMoveI (Binary cmp cr) (Binary zero src)));
 9446 
 9447   ins_cost(INSN_COST * 2);
 9448   format %{ "cselw $dst, $src, zr $cmp\t# unsigned, int"  %}
 9449 
 9450   ins_encode %{
 9451     __ cselw(as_Register($dst$$reg),
 9452              as_Register($src$$reg),
 9453              zr,
 9454              (Assembler::Condition)$cmp$$cmpcode);
 9455   %}
 9456 
 9457   ins_pipe(icond_reg);
 9458 %}
 9459 
 9460 instruct cmovI_reg_zero(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
 9461   match(Set dst (CMoveI (Binary cmp cr) (Binary src zero)));
 9462 
 9463   ins_cost(INSN_COST * 2);
 9464   format %{ "cselw $dst, zr, $src $cmp\t# signed, int"  %}
 9465 
 9466   ins_encode %{
 9467     __ cselw(as_Register($dst$$reg),
 9468              zr,
 9469              as_Register($src$$reg),
 9470              (Assembler::Condition)$cmp$$cmpcode);
 9471   %}
 9472 
 9473   ins_pipe(icond_reg);
 9474 %}
 9475 
 9476 instruct cmovUI_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
 9477   match(Set dst (CMoveI (Binary cmp cr) (Binary src zero)));
 9478 
 9479   ins_cost(INSN_COST * 2);
 9480   format %{ "cselw $dst, zr, $src $cmp\t# unsigned, int"  %}
 9481 
 9482   ins_encode %{
 9483     __ cselw(as_Register($dst$$reg),
 9484              zr,
 9485              as_Register($src$$reg),
 9486              (Assembler::Condition)$cmp$$cmpcode);
 9487   %}
 9488 
 9489   ins_pipe(icond_reg);
 9490 %}
 9491 
 9492 // special case for creating a boolean 0 or 1
 9493 
 9494 // n.b. this is selected in preference to the rule above because it
 9495 // avoids loading constants 0 and 1 into a source register
 9496 
 9497 instruct cmovI_reg_zero_one(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, immI_1 one) %{
 9498   match(Set dst (CMoveI (Binary cmp cr) (Binary one zero)));
 9499 
 9500   ins_cost(INSN_COST * 2);
 9501   format %{ "csincw $dst, zr, zr $cmp\t# signed, int"  %}
 9502 
 9503   ins_encode %{
 9504     // equivalently
 9505     // cset(as_Register($dst$$reg),
 9506     //      negate_condition((Assembler::Condition)$cmp$$cmpcode));
 9507     __ csincw(as_Register($dst$$reg),
 9508              zr,
 9509              zr,
 9510              (Assembler::Condition)$cmp$$cmpcode);
 9511   %}
 9512 
 9513   ins_pipe(icond_none);
 9514 %}
 9515 
 9516 instruct cmovUI_reg_zero_one(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, immI_1 one) %{
 9517   match(Set dst (CMoveI (Binary cmp cr) (Binary one zero)));
 9518 
 9519   ins_cost(INSN_COST * 2);
 9520   format %{ "csincw $dst, zr, zr $cmp\t# unsigned, int"  %}
 9521 
 9522   ins_encode %{
 9523     // equivalently
 9524     // cset(as_Register($dst$$reg),
 9525     //      negate_condition((Assembler::Condition)$cmp$$cmpcode));
 9526     __ csincw(as_Register($dst$$reg),
 9527              zr,
 9528              zr,
 9529              (Assembler::Condition)$cmp$$cmpcode);
 9530   %}
 9531 
 9532   ins_pipe(icond_none);
 9533 %}
 9534 
 9535 instruct cmovL_reg_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{
 9536   match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2)));
 9537 
 9538   ins_cost(INSN_COST * 2);
 9539   format %{ "csel $dst, $src2, $src1 $cmp\t# signed, long"  %}
 9540 
 9541   ins_encode %{
 9542     __ csel(as_Register($dst$$reg),
 9543             as_Register($src2$$reg),
 9544             as_Register($src1$$reg),
 9545             (Assembler::Condition)$cmp$$cmpcode);
 9546   %}
 9547 
 9548   ins_pipe(icond_reg_reg);
 9549 %}
 9550 
 9551 instruct cmovUL_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{
 9552   match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2)));
 9553 
 9554   ins_cost(INSN_COST * 2);
 9555   format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, long"  %}
 9556 
 9557   ins_encode %{
 9558     __ csel(as_Register($dst$$reg),
 9559             as_Register($src2$$reg),
 9560             as_Register($src1$$reg),
 9561             (Assembler::Condition)$cmp$$cmpcode);
 9562   %}
 9563 
 9564   ins_pipe(icond_reg_reg);
 9565 %}
 9566 
 9567 // special cases where one arg is zero
 9568 
 9569 instruct cmovL_reg_zero(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src, immL0 zero) %{
 9570   match(Set dst (CMoveL (Binary cmp cr) (Binary src zero)));
 9571 
 9572   ins_cost(INSN_COST * 2);
 9573   format %{ "csel $dst, zr, $src $cmp\t# signed, long"  %}
 9574 
 9575   ins_encode %{
 9576     __ csel(as_Register($dst$$reg),
 9577             zr,
 9578             as_Register($src$$reg),
 9579             (Assembler::Condition)$cmp$$cmpcode);
 9580   %}
 9581 
 9582   ins_pipe(icond_reg);
 9583 %}
 9584 
 9585 instruct cmovUL_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src, immL0 zero) %{
 9586   match(Set dst (CMoveL (Binary cmp cr) (Binary src zero)));
 9587 
 9588   ins_cost(INSN_COST * 2);
 9589   format %{ "csel $dst, zr, $src $cmp\t# unsigned, long"  %}
 9590 
 9591   ins_encode %{
 9592     __ csel(as_Register($dst$$reg),
 9593             zr,
 9594             as_Register($src$$reg),
 9595             (Assembler::Condition)$cmp$$cmpcode);
 9596   %}
 9597 
 9598   ins_pipe(icond_reg);
 9599 %}
 9600 
 9601 instruct cmovL_zero_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, immL0 zero, iRegL src) %{
 9602   match(Set dst (CMoveL (Binary cmp cr) (Binary zero src)));
 9603 
 9604   ins_cost(INSN_COST * 2);
 9605   format %{ "csel $dst, $src, zr $cmp\t# signed, long"  %}
 9606 
 9607   ins_encode %{
 9608     __ csel(as_Register($dst$$reg),
 9609             as_Register($src$$reg),
 9610             zr,
 9611             (Assembler::Condition)$cmp$$cmpcode);
 9612   %}
 9613 
 9614   ins_pipe(icond_reg);
 9615 %}
 9616 
 9617 instruct cmovUL_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, immL0 zero, iRegL src) %{
 9618   match(Set dst (CMoveL (Binary cmp cr) (Binary zero src)));
 9619 
 9620   ins_cost(INSN_COST * 2);
 9621   format %{ "csel $dst, $src, zr $cmp\t# unsigned, long"  %}
 9622 
 9623   ins_encode %{
 9624     __ csel(as_Register($dst$$reg),
 9625             as_Register($src$$reg),
 9626             zr,
 9627             (Assembler::Condition)$cmp$$cmpcode);
 9628   %}
 9629 
 9630   ins_pipe(icond_reg);
 9631 %}
 9632 
 9633 instruct cmovP_reg_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{
 9634   match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2)));
 9635 
 9636   ins_cost(INSN_COST * 2);
 9637   format %{ "csel $dst, $src2, $src1 $cmp\t# signed, ptr"  %}
 9638 
 9639   ins_encode %{
 9640     __ csel(as_Register($dst$$reg),
 9641             as_Register($src2$$reg),
 9642             as_Register($src1$$reg),
 9643             (Assembler::Condition)$cmp$$cmpcode);
 9644   %}
 9645 
 9646   ins_pipe(icond_reg_reg);
 9647 %}
 9648 
 9649 instruct cmovUP_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{
 9650   match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2)));
 9651 
 9652   ins_cost(INSN_COST * 2);
 9653   format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, ptr"  %}
 9654 
 9655   ins_encode %{
 9656     __ csel(as_Register($dst$$reg),
 9657             as_Register($src2$$reg),
 9658             as_Register($src1$$reg),
 9659             (Assembler::Condition)$cmp$$cmpcode);
 9660   %}
 9661 
 9662   ins_pipe(icond_reg_reg);
 9663 %}
 9664 
 9665 // special cases where one arg is zero
 9666 
 9667 instruct cmovP_reg_zero(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src, immP0 zero) %{
 9668   match(Set dst (CMoveP (Binary cmp cr) (Binary src zero)));
 9669 
 9670   ins_cost(INSN_COST * 2);
 9671   format %{ "csel $dst, zr, $src $cmp\t# signed, ptr"  %}
 9672 
 9673   ins_encode %{
 9674     __ csel(as_Register($dst$$reg),
 9675             zr,
 9676             as_Register($src$$reg),
 9677             (Assembler::Condition)$cmp$$cmpcode);
 9678   %}
 9679 
 9680   ins_pipe(icond_reg);
 9681 %}
 9682 
 9683 instruct cmovUP_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src, immP0 zero) %{
 9684   match(Set dst (CMoveP (Binary cmp cr) (Binary src zero)));
 9685 
 9686   ins_cost(INSN_COST * 2);
 9687   format %{ "csel $dst, zr, $src $cmp\t# unsigned, ptr"  %}
 9688 
 9689   ins_encode %{
 9690     __ csel(as_Register($dst$$reg),
 9691             zr,
 9692             as_Register($src$$reg),
 9693             (Assembler::Condition)$cmp$$cmpcode);
 9694   %}
 9695 
 9696   ins_pipe(icond_reg);
 9697 %}
 9698 
 9699 instruct cmovP_zero_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, immP0 zero, iRegP src) %{
 9700   match(Set dst (CMoveP (Binary cmp cr) (Binary zero src)));
 9701 
 9702   ins_cost(INSN_COST * 2);
 9703   format %{ "csel $dst, $src, zr $cmp\t# signed, ptr"  %}
 9704 
 9705   ins_encode %{
 9706     __ csel(as_Register($dst$$reg),
 9707             as_Register($src$$reg),
 9708             zr,
 9709             (Assembler::Condition)$cmp$$cmpcode);
 9710   %}
 9711 
 9712   ins_pipe(icond_reg);
 9713 %}
 9714 
 9715 instruct cmovUP_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, immP0 zero, iRegP src) %{
 9716   match(Set dst (CMoveP (Binary cmp cr) (Binary zero src)));
 9717 
 9718   ins_cost(INSN_COST * 2);
 9719   format %{ "csel $dst, $src, zr $cmp\t# unsigned, ptr"  %}
 9720 
 9721   ins_encode %{
 9722     __ csel(as_Register($dst$$reg),
 9723             as_Register($src$$reg),
 9724             zr,
 9725             (Assembler::Condition)$cmp$$cmpcode);
 9726   %}
 9727 
 9728   ins_pipe(icond_reg);
 9729 %}
 9730 
 9731 instruct cmovN_reg_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{
 9732   match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2)));
 9733 
 9734   ins_cost(INSN_COST * 2);
 9735   format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr"  %}
 9736 
 9737   ins_encode %{
 9738     __ cselw(as_Register($dst$$reg),
 9739              as_Register($src2$$reg),
 9740              as_Register($src1$$reg),
 9741              (Assembler::Condition)$cmp$$cmpcode);
 9742   %}
 9743 
 9744   ins_pipe(icond_reg_reg);
 9745 %}
 9746 
 9747 instruct cmovUN_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{
 9748   match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2)));
 9749 
 9750   ins_cost(INSN_COST * 2);
 9751   format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr"  %}
 9752 
 9753   ins_encode %{
 9754     __ cselw(as_Register($dst$$reg),
 9755              as_Register($src2$$reg),
 9756              as_Register($src1$$reg),
 9757              (Assembler::Condition)$cmp$$cmpcode);
 9758   %}
 9759 
 9760   ins_pipe(icond_reg_reg);
 9761 %}
 9762 
 9763 // special cases where one arg is zero
 9764 
 9765 instruct cmovN_reg_zero(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src, immN0 zero) %{
 9766   match(Set dst (CMoveN (Binary cmp cr) (Binary src zero)));
 9767 
 9768   ins_cost(INSN_COST * 2);
 9769   format %{ "cselw $dst, zr, $src $cmp\t# signed, compressed ptr"  %}
 9770 
 9771   ins_encode %{
 9772     __ cselw(as_Register($dst$$reg),
 9773              zr,
 9774              as_Register($src$$reg),
 9775              (Assembler::Condition)$cmp$$cmpcode);
 9776   %}
 9777 
 9778   ins_pipe(icond_reg);
 9779 %}
 9780 
 9781 instruct cmovUN_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src, immN0 zero) %{
 9782   match(Set dst (CMoveN (Binary cmp cr) (Binary src zero)));
 9783 
 9784   ins_cost(INSN_COST * 2);
 9785   format %{ "cselw $dst, zr, $src $cmp\t# unsigned, compressed ptr"  %}
 9786 
 9787   ins_encode %{
 9788     __ cselw(as_Register($dst$$reg),
 9789              zr,
 9790              as_Register($src$$reg),
 9791              (Assembler::Condition)$cmp$$cmpcode);
 9792   %}
 9793 
 9794   ins_pipe(icond_reg);
 9795 %}
 9796 
 9797 instruct cmovN_zero_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, immN0 zero, iRegN src) %{
 9798   match(Set dst (CMoveN (Binary cmp cr) (Binary zero src)));
 9799 
 9800   ins_cost(INSN_COST * 2);
 9801   format %{ "cselw $dst, $src, zr $cmp\t# signed, compressed ptr"  %}
 9802 
 9803   ins_encode %{
 9804     __ cselw(as_Register($dst$$reg),
 9805              as_Register($src$$reg),
 9806              zr,
 9807              (Assembler::Condition)$cmp$$cmpcode);
 9808   %}
 9809 
 9810   ins_pipe(icond_reg);
 9811 %}
 9812 
 9813 instruct cmovUN_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, immN0 zero, iRegN src) %{
 9814   match(Set dst (CMoveN (Binary cmp cr) (Binary zero src)));
 9815 
 9816   ins_cost(INSN_COST * 2);
 9817   format %{ "cselw $dst, $src, zr $cmp\t# unsigned, compressed ptr"  %}
 9818 
 9819   ins_encode %{
 9820     __ cselw(as_Register($dst$$reg),
 9821              as_Register($src$$reg),
 9822              zr,
 9823              (Assembler::Condition)$cmp$$cmpcode);
 9824   %}
 9825 
 9826   ins_pipe(icond_reg);
 9827 %}
 9828 
 9829 instruct cmovF_reg(cmpOp cmp, rFlagsReg cr, vRegF dst, vRegF src1,  vRegF src2)
 9830 %{
 9831   match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2)));
 9832 
 9833   ins_cost(INSN_COST * 3);
 9834 
 9835   format %{ "fcsels $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %}
 9836   ins_encode %{
 9837     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
 9838     __ fcsels(as_FloatRegister($dst$$reg),
 9839               as_FloatRegister($src2$$reg),
 9840               as_FloatRegister($src1$$reg),
 9841               cond);
 9842   %}
 9843 
 9844   ins_pipe(fp_cond_reg_reg_s);
 9845 %}
 9846 
 9847 instruct cmovUF_reg(cmpOpU cmp, rFlagsRegU cr, vRegF dst, vRegF src1,  vRegF src2)
 9848 %{
 9849   match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2)));
 9850 
 9851   ins_cost(INSN_COST * 3);
 9852 
 9853   format %{ "fcsels $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %}
 9854   ins_encode %{
 9855     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
 9856     __ fcsels(as_FloatRegister($dst$$reg),
 9857               as_FloatRegister($src2$$reg),
 9858               as_FloatRegister($src1$$reg),
 9859               cond);
 9860   %}
 9861 
 9862   ins_pipe(fp_cond_reg_reg_s);
 9863 %}
 9864 
 9865 instruct cmovD_reg(cmpOp cmp, rFlagsReg cr, vRegD dst, vRegD src1,  vRegD src2)
 9866 %{
 9867   match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2)));
 9868 
 9869   ins_cost(INSN_COST * 3);
 9870 
 9871   format %{ "fcseld $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %}
 9872   ins_encode %{
 9873     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
 9874     __ fcseld(as_FloatRegister($dst$$reg),
 9875               as_FloatRegister($src2$$reg),
 9876               as_FloatRegister($src1$$reg),
 9877               cond);
 9878   %}
 9879 
 9880   ins_pipe(fp_cond_reg_reg_d);
 9881 %}
 9882 
 9883 instruct cmovUD_reg(cmpOpU cmp, rFlagsRegU cr, vRegD dst, vRegD src1,  vRegD src2)
 9884 %{
 9885   match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2)));
 9886 
 9887   ins_cost(INSN_COST * 3);
 9888 
 9889   format %{ "fcseld $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %}
 9890   ins_encode %{
 9891     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
 9892     __ fcseld(as_FloatRegister($dst$$reg),
 9893               as_FloatRegister($src2$$reg),
 9894               as_FloatRegister($src1$$reg),
 9895               cond);
 9896   %}
 9897 
 9898   ins_pipe(fp_cond_reg_reg_d);
 9899 %}
 9900 
 9901 // ============================================================================
 9902 // Arithmetic Instructions
 9903 //
 9904 
 9905 // Integer Addition
 9906 
 9907 // TODO
 9908 // these currently employ operations which do not set CR and hence are
 9909 // not flagged as killing CR but we would like to isolate the cases
 9910 // where we want to set flags from those where we don't. need to work
 9911 // out how to do that.
 9912 
 9913 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 9914   match(Set dst (AddI src1 src2));
 9915 
 9916   ins_cost(INSN_COST);
 9917   format %{ "addw  $dst, $src1, $src2" %}
 9918 
 9919   ins_encode %{
 9920     __ addw(as_Register($dst$$reg),
 9921             as_Register($src1$$reg),
 9922             as_Register($src2$$reg));
 9923   %}
 9924 
 9925   ins_pipe(ialu_reg_reg);
 9926 %}
 9927 
 9928 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{
 9929   match(Set dst (AddI src1 src2));
 9930 
 9931   ins_cost(INSN_COST);
 9932   format %{ "addw $dst, $src1, $src2" %}
 9933 
 9934   // use opcode to indicate that this is an add not a sub
 9935   opcode(0x0);
 9936 
 9937   ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
 9938 
 9939   ins_pipe(ialu_reg_imm);
 9940 %}
 9941 
 9942 instruct addI_reg_imm_i2l(iRegINoSp dst, iRegL src1, immIAddSub src2) %{
 9943   match(Set dst (AddI (ConvL2I src1) src2));
 9944 
 9945   ins_cost(INSN_COST);
 9946   format %{ "addw $dst, $src1, $src2" %}
 9947 
 9948   // use opcode to indicate that this is an add not a sub
 9949   opcode(0x0);
 9950 
 9951   ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
 9952 
 9953   ins_pipe(ialu_reg_imm);
 9954 %}
 9955 
 9956 // Pointer Addition
 9957 instruct addP_reg_reg(iRegPNoSp dst, iRegPorL2P src1, iRegL src2) %{
 9958   match(Set dst (AddP src1 src2));
 9959 
 9960   ins_cost(INSN_COST);
 9961   format %{ "add $dst, $src1, $src2\t# ptr" %}
 9962 
 9963   ins_encode %{
 9964     __ add(as_Register($dst$$reg),
 9965            as_Register($src1$$reg),
 9966            as_Register($src2$$reg));
 9967   %}
 9968 
 9969   ins_pipe(ialu_reg_reg);
 9970 %}
 9971 
 9972 instruct addP_reg_reg_ext(iRegPNoSp dst, iRegPorL2P src1, iRegIorL2I src2) %{
 9973   match(Set dst (AddP src1 (ConvI2L src2)));
 9974 
 9975   ins_cost(1.9 * INSN_COST);
 9976   format %{ "add $dst, $src1, $src2, sxtw\t# ptr" %}
 9977 
 9978   ins_encode %{
 9979     __ add(as_Register($dst$$reg),
 9980            as_Register($src1$$reg),
 9981            as_Register($src2$$reg), ext::sxtw);
 9982   %}
 9983 
 9984   ins_pipe(ialu_reg_reg);
 9985 %}
 9986 
 9987 instruct addP_reg_reg_lsl(iRegPNoSp dst, iRegPorL2P src1, iRegL src2, immIScale scale) %{
 9988   match(Set dst (AddP src1 (LShiftL src2 scale)));
 9989 
 9990   ins_cost(1.9 * INSN_COST);
 9991   format %{ "add $dst, $src1, $src2, LShiftL $scale\t# ptr" %}
 9992 
 9993   ins_encode %{
 9994     __ lea(as_Register($dst$$reg),
 9995            Address(as_Register($src1$$reg), as_Register($src2$$reg),
 9996                    Address::lsl($scale$$constant)));
 9997   %}
 9998 
 9999   ins_pipe(ialu_reg_reg_shift);
10000 %}
10001 
10002 instruct addP_reg_reg_ext_shift(iRegPNoSp dst, iRegPorL2P src1, iRegIorL2I src2, immIScale scale) %{
10003   match(Set dst (AddP src1 (LShiftL (ConvI2L src2) scale)));
10004 
10005   ins_cost(1.9 * INSN_COST);
10006   format %{ "add $dst, $src1, $src2, I2L $scale\t# ptr" %}
10007 
10008   ins_encode %{
10009     __ lea(as_Register($dst$$reg),
10010            Address(as_Register($src1$$reg), as_Register($src2$$reg),
10011                    Address::sxtw($scale$$constant)));
10012   %}
10013 
10014   ins_pipe(ialu_reg_reg_shift);
10015 %}
10016 
10017 instruct lshift_ext(iRegLNoSp dst, iRegIorL2I src, immI scale, rFlagsReg cr) %{
10018   match(Set dst (LShiftL (ConvI2L src) scale));
10019 
10020   ins_cost(INSN_COST);
10021   format %{ "sbfiz $dst, $src, $scale & 63, -$scale & 63\t" %}
10022 
10023   ins_encode %{
10024     __ sbfiz(as_Register($dst$$reg),
10025           as_Register($src$$reg),
10026           $scale$$constant & 63, MIN2(32, (int)((-$scale$$constant) & 63)));
10027   %}
10028 
10029   ins_pipe(ialu_reg_shift);
10030 %}
10031 
10032 // Pointer Immediate Addition
10033 // n.b. this needs to be more expensive than using an indirect memory
10034 // operand
10035 instruct addP_reg_imm(iRegPNoSp dst, iRegPorL2P src1, immLAddSub src2) %{
10036   match(Set dst (AddP src1 src2));
10037 
10038   ins_cost(INSN_COST);
10039   format %{ "add $dst, $src1, $src2\t# ptr" %}
10040 
10041   // use opcode to indicate that this is an add not a sub
10042   opcode(0x0);
10043 
10044   ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
10045 
10046   ins_pipe(ialu_reg_imm);
10047 %}
10048 
10049 // Long Addition
10050 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10051 
10052   match(Set dst (AddL src1 src2));
10053 
10054   ins_cost(INSN_COST);
10055   format %{ "add  $dst, $src1, $src2" %}
10056 
10057   ins_encode %{
10058     __ add(as_Register($dst$$reg),
10059            as_Register($src1$$reg),
10060            as_Register($src2$$reg));
10061   %}
10062 
10063   ins_pipe(ialu_reg_reg);
10064 %}
10065 
10066 // No constant pool entries requiredLong Immediate Addition.
10067 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{
10068   match(Set dst (AddL src1 src2));
10069 
10070   ins_cost(INSN_COST);
10071   format %{ "add $dst, $src1, $src2" %}
10072 
10073   // use opcode to indicate that this is an add not a sub
10074   opcode(0x0);
10075 
10076   ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
10077 
10078   ins_pipe(ialu_reg_imm);
10079 %}
10080 
10081 // Integer Subtraction
10082 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10083   match(Set dst (SubI src1 src2));
10084 
10085   ins_cost(INSN_COST);
10086   format %{ "subw  $dst, $src1, $src2" %}
10087 
10088   ins_encode %{
10089     __ subw(as_Register($dst$$reg),
10090             as_Register($src1$$reg),
10091             as_Register($src2$$reg));
10092   %}
10093 
10094   ins_pipe(ialu_reg_reg);
10095 %}
10096 
10097 // Immediate Subtraction
10098 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{
10099   match(Set dst (SubI src1 src2));
10100 
10101   ins_cost(INSN_COST);
10102   format %{ "subw $dst, $src1, $src2" %}
10103 
10104   // use opcode to indicate that this is a sub not an add
10105   opcode(0x1);
10106 
10107   ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
10108 
10109   ins_pipe(ialu_reg_imm);
10110 %}
10111 
10112 // Long Subtraction
10113 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10114 
10115   match(Set dst (SubL src1 src2));
10116 
10117   ins_cost(INSN_COST);
10118   format %{ "sub  $dst, $src1, $src2" %}
10119 
10120   ins_encode %{
10121     __ sub(as_Register($dst$$reg),
10122            as_Register($src1$$reg),
10123            as_Register($src2$$reg));
10124   %}
10125 
10126   ins_pipe(ialu_reg_reg);
10127 %}
10128 
10129 // No constant pool entries requiredLong Immediate Subtraction.
10130 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{
10131   match(Set dst (SubL src1 src2));
10132 
10133   ins_cost(INSN_COST);
10134   format %{ "sub$dst, $src1, $src2" %}
10135 
10136   // use opcode to indicate that this is a sub not an add
10137   opcode(0x1);
10138 
10139   ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
10140 
10141   ins_pipe(ialu_reg_imm);
10142 %}
10143 
10144 // Integer Negation (special case for sub)
10145 
10146 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr) %{
10147   match(Set dst (SubI zero src));
10148 
10149   ins_cost(INSN_COST);
10150   format %{ "negw $dst, $src\t# int" %}
10151 
10152   ins_encode %{
10153     __ negw(as_Register($dst$$reg),
10154             as_Register($src$$reg));
10155   %}
10156 
10157   ins_pipe(ialu_reg);
10158 %}
10159 
10160 // Long Negation
10161 
10162 instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero, rFlagsReg cr) %{
10163   match(Set dst (SubL zero src));
10164 
10165   ins_cost(INSN_COST);
10166   format %{ "neg $dst, $src\t# long" %}
10167 
10168   ins_encode %{
10169     __ neg(as_Register($dst$$reg),
10170            as_Register($src$$reg));
10171   %}
10172 
10173   ins_pipe(ialu_reg);
10174 %}
10175 
10176 // Integer Multiply
10177 
10178 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10179   match(Set dst (MulI src1 src2));
10180 
10181   ins_cost(INSN_COST * 3);
10182   format %{ "mulw  $dst, $src1, $src2" %}
10183 
10184   ins_encode %{
10185     __ mulw(as_Register($dst$$reg),
10186             as_Register($src1$$reg),
10187             as_Register($src2$$reg));
10188   %}
10189 
10190   ins_pipe(imul_reg_reg);
10191 %}
10192 
10193 instruct smulI(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10194   match(Set dst (MulL (ConvI2L src1) (ConvI2L src2)));
10195 
10196   ins_cost(INSN_COST * 3);
10197   format %{ "smull  $dst, $src1, $src2" %}
10198 
10199   ins_encode %{
10200     __ smull(as_Register($dst$$reg),
10201              as_Register($src1$$reg),
10202              as_Register($src2$$reg));
10203   %}
10204 
10205   ins_pipe(imul_reg_reg);
10206 %}
10207 
10208 // Long Multiply
10209 
10210 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10211   match(Set dst (MulL src1 src2));
10212 
10213   ins_cost(INSN_COST * 5);
10214   format %{ "mul  $dst, $src1, $src2" %}
10215 
10216   ins_encode %{
10217     __ mul(as_Register($dst$$reg),
10218            as_Register($src1$$reg),
10219            as_Register($src2$$reg));
10220   %}
10221 
10222   ins_pipe(lmul_reg_reg);
10223 %}
10224 
10225 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr)
10226 %{
10227   match(Set dst (MulHiL src1 src2));
10228 
10229   ins_cost(INSN_COST * 7);
10230   format %{ "smulh   $dst, $src1, $src2\t# mulhi" %}
10231 
10232   ins_encode %{
10233     __ smulh(as_Register($dst$$reg),
10234              as_Register($src1$$reg),
10235              as_Register($src2$$reg));
10236   %}
10237 
10238   ins_pipe(lmul_reg_reg);
10239 %}
10240 
10241 instruct umulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr)
10242 %{
10243   match(Set dst (UMulHiL src1 src2));
10244 
10245   ins_cost(INSN_COST * 7);
10246   format %{ "umulh   $dst, $src1, $src2\t# umulhi" %}
10247 
10248   ins_encode %{
10249     __ umulh(as_Register($dst$$reg),
10250              as_Register($src1$$reg),
10251              as_Register($src2$$reg));
10252   %}
10253 
10254   ins_pipe(lmul_reg_reg);
10255 %}
10256 
10257 // Combined Integer Multiply & Add/Sub
10258 
10259 instruct maddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{
10260   match(Set dst (AddI src3 (MulI src1 src2)));
10261 
10262   ins_cost(INSN_COST * 3);
10263   format %{ "madd  $dst, $src1, $src2, $src3" %}
10264 
10265   ins_encode %{
10266     __ maddw(as_Register($dst$$reg),
10267              as_Register($src1$$reg),
10268              as_Register($src2$$reg),
10269              as_Register($src3$$reg));
10270   %}
10271 
10272   ins_pipe(imac_reg_reg);
10273 %}
10274 
10275 instruct msubI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{
10276   match(Set dst (SubI src3 (MulI src1 src2)));
10277 
10278   ins_cost(INSN_COST * 3);
10279   format %{ "msub  $dst, $src1, $src2, $src3" %}
10280 
10281   ins_encode %{
10282     __ msubw(as_Register($dst$$reg),
10283              as_Register($src1$$reg),
10284              as_Register($src2$$reg),
10285              as_Register($src3$$reg));
10286   %}
10287 
10288   ins_pipe(imac_reg_reg);
10289 %}
10290 
10291 // Combined Integer Multiply & Neg
10292 
10293 instruct mnegI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI0 zero) %{
10294   match(Set dst (MulI (SubI zero src1) src2));
10295 
10296   ins_cost(INSN_COST * 3);
10297   format %{ "mneg  $dst, $src1, $src2" %}
10298 
10299   ins_encode %{
10300     __ mnegw(as_Register($dst$$reg),
10301              as_Register($src1$$reg),
10302              as_Register($src2$$reg));
10303   %}
10304 
10305   ins_pipe(imac_reg_reg);
10306 %}
10307 
10308 // Combined Long Multiply & Add/Sub
10309 
10310 instruct maddL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{
10311   match(Set dst (AddL src3 (MulL src1 src2)));
10312 
10313   ins_cost(INSN_COST * 5);
10314   format %{ "madd  $dst, $src1, $src2, $src3" %}
10315 
10316   ins_encode %{
10317     __ madd(as_Register($dst$$reg),
10318             as_Register($src1$$reg),
10319             as_Register($src2$$reg),
10320             as_Register($src3$$reg));
10321   %}
10322 
10323   ins_pipe(lmac_reg_reg);
10324 %}
10325 
10326 instruct msubL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{
10327   match(Set dst (SubL src3 (MulL src1 src2)));
10328 
10329   ins_cost(INSN_COST * 5);
10330   format %{ "msub  $dst, $src1, $src2, $src3" %}
10331 
10332   ins_encode %{
10333     __ msub(as_Register($dst$$reg),
10334             as_Register($src1$$reg),
10335             as_Register($src2$$reg),
10336             as_Register($src3$$reg));
10337   %}
10338 
10339   ins_pipe(lmac_reg_reg);
10340 %}
10341 
10342 // Combined Long Multiply & Neg
10343 
10344 instruct mnegL(iRegLNoSp dst, iRegL src1, iRegL src2, immL0 zero) %{
10345   match(Set dst (MulL (SubL zero src1) src2));
10346 
10347   ins_cost(INSN_COST * 5);
10348   format %{ "mneg  $dst, $src1, $src2" %}
10349 
10350   ins_encode %{
10351     __ mneg(as_Register($dst$$reg),
10352             as_Register($src1$$reg),
10353             as_Register($src2$$reg));
10354   %}
10355 
10356   ins_pipe(lmac_reg_reg);
10357 %}
10358 
10359 // Combine Integer Signed Multiply & Add/Sub/Neg Long
10360 
10361 instruct smaddL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegLNoSp src3) %{
10362   match(Set dst (AddL src3 (MulL (ConvI2L src1) (ConvI2L src2))));
10363 
10364   ins_cost(INSN_COST * 3);
10365   format %{ "smaddl  $dst, $src1, $src2, $src3" %}
10366 
10367   ins_encode %{
10368     __ smaddl(as_Register($dst$$reg),
10369               as_Register($src1$$reg),
10370               as_Register($src2$$reg),
10371               as_Register($src3$$reg));
10372   %}
10373 
10374   ins_pipe(imac_reg_reg);
10375 %}
10376 
10377 instruct smsubL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegLNoSp src3) %{
10378   match(Set dst (SubL src3 (MulL (ConvI2L src1) (ConvI2L src2))));
10379 
10380   ins_cost(INSN_COST * 3);
10381   format %{ "smsubl  $dst, $src1, $src2, $src3" %}
10382 
10383   ins_encode %{
10384     __ smsubl(as_Register($dst$$reg),
10385               as_Register($src1$$reg),
10386               as_Register($src2$$reg),
10387               as_Register($src3$$reg));
10388   %}
10389 
10390   ins_pipe(imac_reg_reg);
10391 %}
10392 
10393 instruct smnegL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, immL0 zero) %{
10394   match(Set dst (MulL (SubL zero (ConvI2L src1)) (ConvI2L src2)));
10395 
10396   ins_cost(INSN_COST * 3);
10397   format %{ "smnegl  $dst, $src1, $src2" %}
10398 
10399   ins_encode %{
10400     __ smnegl(as_Register($dst$$reg),
10401               as_Register($src1$$reg),
10402               as_Register($src2$$reg));
10403   %}
10404 
10405   ins_pipe(imac_reg_reg);
10406 %}
10407 
10408 // Combined Multiply-Add Shorts into Integer (dst = src1 * src2 + src3 * src4)
10409 
10410 instruct muladdS2I(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3, iRegIorL2I src4) %{
10411   match(Set dst (MulAddS2I (Binary src1 src2) (Binary src3 src4)));
10412 
10413   ins_cost(INSN_COST * 5);
10414   format %{ "mulw  rscratch1, $src1, $src2\n\t"
10415             "maddw $dst, $src3, $src4, rscratch1" %}
10416 
10417   ins_encode %{
10418     __ mulw(rscratch1, as_Register($src1$$reg), as_Register($src2$$reg));
10419     __ maddw(as_Register($dst$$reg), as_Register($src3$$reg), as_Register($src4$$reg), rscratch1); %}
10420 
10421   ins_pipe(imac_reg_reg);
10422 %}
10423 
10424 // Integer Divide
10425 
10426 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10427   match(Set dst (DivI src1 src2));
10428 
10429   ins_cost(INSN_COST * 19);
10430   format %{ "sdivw  $dst, $src1, $src2" %}
10431 
10432   ins_encode(aarch64_enc_divw(dst, src1, src2));
10433   ins_pipe(idiv_reg_reg);
10434 %}
10435 
10436 // Long Divide
10437 
10438 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10439   match(Set dst (DivL src1 src2));
10440 
10441   ins_cost(INSN_COST * 35);
10442   format %{ "sdiv   $dst, $src1, $src2" %}
10443 
10444   ins_encode(aarch64_enc_div(dst, src1, src2));
10445   ins_pipe(ldiv_reg_reg);
10446 %}
10447 
10448 // Integer Remainder
10449 
10450 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10451   match(Set dst (ModI src1 src2));
10452 
10453   ins_cost(INSN_COST * 22);
10454   format %{ "sdivw  rscratch1, $src1, $src2\n\t"
10455             "msubw  $dst, rscratch1, $src2, $src1" %}
10456 
10457   ins_encode(aarch64_enc_modw(dst, src1, src2));
10458   ins_pipe(idiv_reg_reg);
10459 %}
10460 
10461 // Long Remainder
10462 
10463 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10464   match(Set dst (ModL src1 src2));
10465 
10466   ins_cost(INSN_COST * 38);
10467   format %{ "sdiv   rscratch1, $src1, $src2\n"
10468             "msub   $dst, rscratch1, $src2, $src1" %}
10469 
10470   ins_encode(aarch64_enc_mod(dst, src1, src2));
10471   ins_pipe(ldiv_reg_reg);
10472 %}
10473 
10474 // Unsigned Integer Divide
10475 
10476 instruct UdivI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10477   match(Set dst (UDivI src1 src2));
10478 
10479   ins_cost(INSN_COST * 19);
10480   format %{ "udivw  $dst, $src1, $src2" %}
10481 
10482   ins_encode %{
10483     __ udivw($dst$$Register, $src1$$Register, $src2$$Register);
10484   %}
10485 
10486   ins_pipe(idiv_reg_reg);
10487 %}
10488 
10489 //  Unsigned Long Divide
10490 
10491 instruct UdivL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10492   match(Set dst (UDivL src1 src2));
10493 
10494   ins_cost(INSN_COST * 35);
10495   format %{ "udiv   $dst, $src1, $src2" %}
10496 
10497   ins_encode %{
10498     __ udiv($dst$$Register, $src1$$Register, $src2$$Register);
10499   %}
10500 
10501   ins_pipe(ldiv_reg_reg);
10502 %}
10503 
10504 // Unsigned Integer Remainder
10505 
10506 instruct UmodI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10507   match(Set dst (UModI src1 src2));
10508 
10509   ins_cost(INSN_COST * 22);
10510   format %{ "udivw  rscratch1, $src1, $src2\n\t"
10511             "msubw  $dst, rscratch1, $src2, $src1" %}
10512 
10513   ins_encode %{
10514     __ udivw(rscratch1, $src1$$Register, $src2$$Register);
10515     __ msubw($dst$$Register, rscratch1, $src2$$Register, $src1$$Register);
10516   %}
10517 
10518   ins_pipe(idiv_reg_reg);
10519 %}
10520 
10521 // Unsigned Long Remainder
10522 
10523 instruct UModL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10524   match(Set dst (UModL src1 src2));
10525 
10526   ins_cost(INSN_COST * 38);
10527   format %{ "udiv   rscratch1, $src1, $src2\n"
10528             "msub   $dst, rscratch1, $src2, $src1" %}
10529 
10530   ins_encode %{
10531     __ udiv(rscratch1, $src1$$Register, $src2$$Register);
10532     __ msub($dst$$Register, rscratch1, $src2$$Register, $src1$$Register);
10533   %}
10534 
10535   ins_pipe(ldiv_reg_reg);
10536 %}
10537 
10538 // Integer Shifts
10539 
10540 // Shift Left Register
10541 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10542   match(Set dst (LShiftI src1 src2));
10543 
10544   ins_cost(INSN_COST * 2);
10545   format %{ "lslvw  $dst, $src1, $src2" %}
10546 
10547   ins_encode %{
10548     __ lslvw(as_Register($dst$$reg),
10549              as_Register($src1$$reg),
10550              as_Register($src2$$reg));
10551   %}
10552 
10553   ins_pipe(ialu_reg_reg_vshift);
10554 %}
10555 
10556 // Shift Left Immediate
10557 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
10558   match(Set dst (LShiftI src1 src2));
10559 
10560   ins_cost(INSN_COST);
10561   format %{ "lslw $dst, $src1, ($src2 & 0x1f)" %}
10562 
10563   ins_encode %{
10564     __ lslw(as_Register($dst$$reg),
10565             as_Register($src1$$reg),
10566             $src2$$constant & 0x1f);
10567   %}
10568 
10569   ins_pipe(ialu_reg_shift);
10570 %}
10571 
10572 // Shift Right Logical Register
10573 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10574   match(Set dst (URShiftI src1 src2));
10575 
10576   ins_cost(INSN_COST * 2);
10577   format %{ "lsrvw  $dst, $src1, $src2" %}
10578 
10579   ins_encode %{
10580     __ lsrvw(as_Register($dst$$reg),
10581              as_Register($src1$$reg),
10582              as_Register($src2$$reg));
10583   %}
10584 
10585   ins_pipe(ialu_reg_reg_vshift);
10586 %}
10587 
10588 // Shift Right Logical Immediate
10589 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
10590   match(Set dst (URShiftI src1 src2));
10591 
10592   ins_cost(INSN_COST);
10593   format %{ "lsrw $dst, $src1, ($src2 & 0x1f)" %}
10594 
10595   ins_encode %{
10596     __ lsrw(as_Register($dst$$reg),
10597             as_Register($src1$$reg),
10598             $src2$$constant & 0x1f);
10599   %}
10600 
10601   ins_pipe(ialu_reg_shift);
10602 %}
10603 
10604 // Shift Right Arithmetic Register
10605 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10606   match(Set dst (RShiftI src1 src2));
10607 
10608   ins_cost(INSN_COST * 2);
10609   format %{ "asrvw  $dst, $src1, $src2" %}
10610 
10611   ins_encode %{
10612     __ asrvw(as_Register($dst$$reg),
10613              as_Register($src1$$reg),
10614              as_Register($src2$$reg));
10615   %}
10616 
10617   ins_pipe(ialu_reg_reg_vshift);
10618 %}
10619 
10620 // Shift Right Arithmetic Immediate
10621 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
10622   match(Set dst (RShiftI src1 src2));
10623 
10624   ins_cost(INSN_COST);
10625   format %{ "asrw $dst, $src1, ($src2 & 0x1f)" %}
10626 
10627   ins_encode %{
10628     __ asrw(as_Register($dst$$reg),
10629             as_Register($src1$$reg),
10630             $src2$$constant & 0x1f);
10631   %}
10632 
10633   ins_pipe(ialu_reg_shift);
10634 %}
10635 
10636 // Combined Int Mask and Right Shift (using UBFM)
10637 // TODO
10638 
10639 // Long Shifts
10640 
10641 // Shift Left Register
10642 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
10643   match(Set dst (LShiftL src1 src2));
10644 
10645   ins_cost(INSN_COST * 2);
10646   format %{ "lslv  $dst, $src1, $src2" %}
10647 
10648   ins_encode %{
10649     __ lslv(as_Register($dst$$reg),
10650             as_Register($src1$$reg),
10651             as_Register($src2$$reg));
10652   %}
10653 
10654   ins_pipe(ialu_reg_reg_vshift);
10655 %}
10656 
10657 // Shift Left Immediate
10658 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
10659   match(Set dst (LShiftL src1 src2));
10660 
10661   ins_cost(INSN_COST);
10662   format %{ "lsl $dst, $src1, ($src2 & 0x3f)" %}
10663 
10664   ins_encode %{
10665     __ lsl(as_Register($dst$$reg),
10666             as_Register($src1$$reg),
10667             $src2$$constant & 0x3f);
10668   %}
10669 
10670   ins_pipe(ialu_reg_shift);
10671 %}
10672 
10673 // Shift Right Logical Register
10674 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
10675   match(Set dst (URShiftL src1 src2));
10676 
10677   ins_cost(INSN_COST * 2);
10678   format %{ "lsrv  $dst, $src1, $src2" %}
10679 
10680   ins_encode %{
10681     __ lsrv(as_Register($dst$$reg),
10682             as_Register($src1$$reg),
10683             as_Register($src2$$reg));
10684   %}
10685 
10686   ins_pipe(ialu_reg_reg_vshift);
10687 %}
10688 
10689 // Shift Right Logical Immediate
10690 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
10691   match(Set dst (URShiftL src1 src2));
10692 
10693   ins_cost(INSN_COST);
10694   format %{ "lsr $dst, $src1, ($src2 & 0x3f)" %}
10695 
10696   ins_encode %{
10697     __ lsr(as_Register($dst$$reg),
10698            as_Register($src1$$reg),
10699            $src2$$constant & 0x3f);
10700   %}
10701 
10702   ins_pipe(ialu_reg_shift);
10703 %}
10704 
10705 // A special-case pattern for card table stores.
10706 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{
10707   match(Set dst (URShiftL (CastP2X src1) src2));
10708 
10709   ins_cost(INSN_COST);
10710   format %{ "lsr $dst, p2x($src1), ($src2 & 0x3f)" %}
10711 
10712   ins_encode %{
10713     __ lsr(as_Register($dst$$reg),
10714            as_Register($src1$$reg),
10715            $src2$$constant & 0x3f);
10716   %}
10717 
10718   ins_pipe(ialu_reg_shift);
10719 %}
10720 
10721 // Shift Right Arithmetic Register
10722 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
10723   match(Set dst (RShiftL src1 src2));
10724 
10725   ins_cost(INSN_COST * 2);
10726   format %{ "asrv  $dst, $src1, $src2" %}
10727 
10728   ins_encode %{
10729     __ asrv(as_Register($dst$$reg),
10730             as_Register($src1$$reg),
10731             as_Register($src2$$reg));
10732   %}
10733 
10734   ins_pipe(ialu_reg_reg_vshift);
10735 %}
10736 
10737 // Shift Right Arithmetic Immediate
10738 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
10739   match(Set dst (RShiftL src1 src2));
10740 
10741   ins_cost(INSN_COST);
10742   format %{ "asr $dst, $src1, ($src2 & 0x3f)" %}
10743 
10744   ins_encode %{
10745     __ asr(as_Register($dst$$reg),
10746            as_Register($src1$$reg),
10747            $src2$$constant & 0x3f);
10748   %}
10749 
10750   ins_pipe(ialu_reg_shift);
10751 %}
10752 
10753 // BEGIN This section of the file is automatically generated. Do not edit --------------
10754 // This section is generated from aarch64_ad.m4
10755 
10756 // This pattern is automatically generated from aarch64_ad.m4
10757 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10758 instruct regL_not_reg(iRegLNoSp dst,
10759                          iRegL src1, immL_M1 m1,
10760                          rFlagsReg cr) %{
10761   match(Set dst (XorL src1 m1));
10762   ins_cost(INSN_COST);
10763   format %{ "eon  $dst, $src1, zr" %}
10764 
10765   ins_encode %{
10766     __ eon(as_Register($dst$$reg),
10767               as_Register($src1$$reg),
10768               zr,
10769               Assembler::LSL, 0);
10770   %}
10771 
10772   ins_pipe(ialu_reg);
10773 %}
10774 
10775 // This pattern is automatically generated from aarch64_ad.m4
10776 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10777 instruct regI_not_reg(iRegINoSp dst,
10778                          iRegIorL2I src1, immI_M1 m1,
10779                          rFlagsReg cr) %{
10780   match(Set dst (XorI src1 m1));
10781   ins_cost(INSN_COST);
10782   format %{ "eonw  $dst, $src1, zr" %}
10783 
10784   ins_encode %{
10785     __ eonw(as_Register($dst$$reg),
10786               as_Register($src1$$reg),
10787               zr,
10788               Assembler::LSL, 0);
10789   %}
10790 
10791   ins_pipe(ialu_reg);
10792 %}
10793 
10794 // This pattern is automatically generated from aarch64_ad.m4
10795 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10796 instruct NegI_reg_URShift_reg(iRegINoSp dst,
10797                               immI0 zero, iRegIorL2I src1, immI src2) %{
10798   match(Set dst (SubI zero (URShiftI src1 src2)));
10799 
10800   ins_cost(1.9 * INSN_COST);
10801   format %{ "negw  $dst, $src1, LSR $src2" %}
10802 
10803   ins_encode %{
10804     __ negw(as_Register($dst$$reg), as_Register($src1$$reg),
10805             Assembler::LSR, $src2$$constant & 0x1f);
10806   %}
10807 
10808   ins_pipe(ialu_reg_shift);
10809 %}
10810 
10811 // This pattern is automatically generated from aarch64_ad.m4
10812 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10813 instruct NegI_reg_RShift_reg(iRegINoSp dst,
10814                               immI0 zero, iRegIorL2I src1, immI src2) %{
10815   match(Set dst (SubI zero (RShiftI src1 src2)));
10816 
10817   ins_cost(1.9 * INSN_COST);
10818   format %{ "negw  $dst, $src1, ASR $src2" %}
10819 
10820   ins_encode %{
10821     __ negw(as_Register($dst$$reg), as_Register($src1$$reg),
10822             Assembler::ASR, $src2$$constant & 0x1f);
10823   %}
10824 
10825   ins_pipe(ialu_reg_shift);
10826 %}
10827 
10828 // This pattern is automatically generated from aarch64_ad.m4
10829 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10830 instruct NegI_reg_LShift_reg(iRegINoSp dst,
10831                               immI0 zero, iRegIorL2I src1, immI src2) %{
10832   match(Set dst (SubI zero (LShiftI src1 src2)));
10833 
10834   ins_cost(1.9 * INSN_COST);
10835   format %{ "negw  $dst, $src1, LSL $src2" %}
10836 
10837   ins_encode %{
10838     __ negw(as_Register($dst$$reg), as_Register($src1$$reg),
10839             Assembler::LSL, $src2$$constant & 0x1f);
10840   %}
10841 
10842   ins_pipe(ialu_reg_shift);
10843 %}
10844 
10845 // This pattern is automatically generated from aarch64_ad.m4
10846 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10847 instruct NegL_reg_URShift_reg(iRegLNoSp dst,
10848                               immL0 zero, iRegL src1, immI src2) %{
10849   match(Set dst (SubL zero (URShiftL src1 src2)));
10850 
10851   ins_cost(1.9 * INSN_COST);
10852   format %{ "neg  $dst, $src1, LSR $src2" %}
10853 
10854   ins_encode %{
10855     __ neg(as_Register($dst$$reg), as_Register($src1$$reg),
10856             Assembler::LSR, $src2$$constant & 0x3f);
10857   %}
10858 
10859   ins_pipe(ialu_reg_shift);
10860 %}
10861 
10862 // This pattern is automatically generated from aarch64_ad.m4
10863 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10864 instruct NegL_reg_RShift_reg(iRegLNoSp dst,
10865                               immL0 zero, iRegL src1, immI src2) %{
10866   match(Set dst (SubL zero (RShiftL src1 src2)));
10867 
10868   ins_cost(1.9 * INSN_COST);
10869   format %{ "neg  $dst, $src1, ASR $src2" %}
10870 
10871   ins_encode %{
10872     __ neg(as_Register($dst$$reg), as_Register($src1$$reg),
10873             Assembler::ASR, $src2$$constant & 0x3f);
10874   %}
10875 
10876   ins_pipe(ialu_reg_shift);
10877 %}
10878 
10879 // This pattern is automatically generated from aarch64_ad.m4
10880 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10881 instruct NegL_reg_LShift_reg(iRegLNoSp dst,
10882                               immL0 zero, iRegL src1, immI src2) %{
10883   match(Set dst (SubL zero (LShiftL src1 src2)));
10884 
10885   ins_cost(1.9 * INSN_COST);
10886   format %{ "neg  $dst, $src1, LSL $src2" %}
10887 
10888   ins_encode %{
10889     __ neg(as_Register($dst$$reg), as_Register($src1$$reg),
10890             Assembler::LSL, $src2$$constant & 0x3f);
10891   %}
10892 
10893   ins_pipe(ialu_reg_shift);
10894 %}
10895 
10896 // This pattern is automatically generated from aarch64_ad.m4
10897 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10898 instruct AndI_reg_not_reg(iRegINoSp dst,
10899                          iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{
10900   match(Set dst (AndI src1 (XorI src2 m1)));
10901   ins_cost(INSN_COST);
10902   format %{ "bicw  $dst, $src1, $src2" %}
10903 
10904   ins_encode %{
10905     __ bicw(as_Register($dst$$reg),
10906               as_Register($src1$$reg),
10907               as_Register($src2$$reg),
10908               Assembler::LSL, 0);
10909   %}
10910 
10911   ins_pipe(ialu_reg_reg);
10912 %}
10913 
10914 // This pattern is automatically generated from aarch64_ad.m4
10915 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10916 instruct AndL_reg_not_reg(iRegLNoSp dst,
10917                          iRegL src1, iRegL src2, immL_M1 m1) %{
10918   match(Set dst (AndL src1 (XorL src2 m1)));
10919   ins_cost(INSN_COST);
10920   format %{ "bic  $dst, $src1, $src2" %}
10921 
10922   ins_encode %{
10923     __ bic(as_Register($dst$$reg),
10924               as_Register($src1$$reg),
10925               as_Register($src2$$reg),
10926               Assembler::LSL, 0);
10927   %}
10928 
10929   ins_pipe(ialu_reg_reg);
10930 %}
10931 
10932 // This pattern is automatically generated from aarch64_ad.m4
10933 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10934 instruct OrI_reg_not_reg(iRegINoSp dst,
10935                          iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{
10936   match(Set dst (OrI src1 (XorI src2 m1)));
10937   ins_cost(INSN_COST);
10938   format %{ "ornw  $dst, $src1, $src2" %}
10939 
10940   ins_encode %{
10941     __ ornw(as_Register($dst$$reg),
10942               as_Register($src1$$reg),
10943               as_Register($src2$$reg),
10944               Assembler::LSL, 0);
10945   %}
10946 
10947   ins_pipe(ialu_reg_reg);
10948 %}
10949 
10950 // This pattern is automatically generated from aarch64_ad.m4
10951 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10952 instruct OrL_reg_not_reg(iRegLNoSp dst,
10953                          iRegL src1, iRegL src2, immL_M1 m1) %{
10954   match(Set dst (OrL src1 (XorL src2 m1)));
10955   ins_cost(INSN_COST);
10956   format %{ "orn  $dst, $src1, $src2" %}
10957 
10958   ins_encode %{
10959     __ orn(as_Register($dst$$reg),
10960               as_Register($src1$$reg),
10961               as_Register($src2$$reg),
10962               Assembler::LSL, 0);
10963   %}
10964 
10965   ins_pipe(ialu_reg_reg);
10966 %}
10967 
10968 // This pattern is automatically generated from aarch64_ad.m4
10969 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10970 instruct XorI_reg_not_reg(iRegINoSp dst,
10971                          iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{
10972   match(Set dst (XorI m1 (XorI src2 src1)));
10973   ins_cost(INSN_COST);
10974   format %{ "eonw  $dst, $src1, $src2" %}
10975 
10976   ins_encode %{
10977     __ eonw(as_Register($dst$$reg),
10978               as_Register($src1$$reg),
10979               as_Register($src2$$reg),
10980               Assembler::LSL, 0);
10981   %}
10982 
10983   ins_pipe(ialu_reg_reg);
10984 %}
10985 
10986 // This pattern is automatically generated from aarch64_ad.m4
10987 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10988 instruct XorL_reg_not_reg(iRegLNoSp dst,
10989                          iRegL src1, iRegL src2, immL_M1 m1) %{
10990   match(Set dst (XorL m1 (XorL src2 src1)));
10991   ins_cost(INSN_COST);
10992   format %{ "eon  $dst, $src1, $src2" %}
10993 
10994   ins_encode %{
10995     __ eon(as_Register($dst$$reg),
10996               as_Register($src1$$reg),
10997               as_Register($src2$$reg),
10998               Assembler::LSL, 0);
10999   %}
11000 
11001   ins_pipe(ialu_reg_reg);
11002 %}
11003 
11004 // This pattern is automatically generated from aarch64_ad.m4
11005 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11006 // val & (-1 ^ (val >>> shift)) ==> bicw
11007 instruct AndI_reg_URShift_not_reg(iRegINoSp dst,
11008                          iRegIorL2I src1, iRegIorL2I src2,
11009                          immI src3, immI_M1 src4) %{
11010   match(Set dst (AndI src1 (XorI(URShiftI src2 src3) src4)));
11011   ins_cost(1.9 * INSN_COST);
11012   format %{ "bicw  $dst, $src1, $src2, LSR $src3" %}
11013 
11014   ins_encode %{
11015     __ bicw(as_Register($dst$$reg),
11016               as_Register($src1$$reg),
11017               as_Register($src2$$reg),
11018               Assembler::LSR,
11019               $src3$$constant & 0x1f);
11020   %}
11021 
11022   ins_pipe(ialu_reg_reg_shift);
11023 %}
11024 
11025 // This pattern is automatically generated from aarch64_ad.m4
11026 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11027 // val & (-1 ^ (val >>> shift)) ==> bic
11028 instruct AndL_reg_URShift_not_reg(iRegLNoSp dst,
11029                          iRegL src1, iRegL src2,
11030                          immI src3, immL_M1 src4) %{
11031   match(Set dst (AndL src1 (XorL(URShiftL src2 src3) src4)));
11032   ins_cost(1.9 * INSN_COST);
11033   format %{ "bic  $dst, $src1, $src2, LSR $src3" %}
11034 
11035   ins_encode %{
11036     __ bic(as_Register($dst$$reg),
11037               as_Register($src1$$reg),
11038               as_Register($src2$$reg),
11039               Assembler::LSR,
11040               $src3$$constant & 0x3f);
11041   %}
11042 
11043   ins_pipe(ialu_reg_reg_shift);
11044 %}
11045 
11046 // This pattern is automatically generated from aarch64_ad.m4
11047 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11048 // val & (-1 ^ (val >> shift)) ==> bicw
11049 instruct AndI_reg_RShift_not_reg(iRegINoSp dst,
11050                          iRegIorL2I src1, iRegIorL2I src2,
11051                          immI src3, immI_M1 src4) %{
11052   match(Set dst (AndI src1 (XorI(RShiftI src2 src3) src4)));
11053   ins_cost(1.9 * INSN_COST);
11054   format %{ "bicw  $dst, $src1, $src2, ASR $src3" %}
11055 
11056   ins_encode %{
11057     __ bicw(as_Register($dst$$reg),
11058               as_Register($src1$$reg),
11059               as_Register($src2$$reg),
11060               Assembler::ASR,
11061               $src3$$constant & 0x1f);
11062   %}
11063 
11064   ins_pipe(ialu_reg_reg_shift);
11065 %}
11066 
11067 // This pattern is automatically generated from aarch64_ad.m4
11068 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11069 // val & (-1 ^ (val >> shift)) ==> bic
11070 instruct AndL_reg_RShift_not_reg(iRegLNoSp dst,
11071                          iRegL src1, iRegL src2,
11072                          immI src3, immL_M1 src4) %{
11073   match(Set dst (AndL src1 (XorL(RShiftL src2 src3) src4)));
11074   ins_cost(1.9 * INSN_COST);
11075   format %{ "bic  $dst, $src1, $src2, ASR $src3" %}
11076 
11077   ins_encode %{
11078     __ bic(as_Register($dst$$reg),
11079               as_Register($src1$$reg),
11080               as_Register($src2$$reg),
11081               Assembler::ASR,
11082               $src3$$constant & 0x3f);
11083   %}
11084 
11085   ins_pipe(ialu_reg_reg_shift);
11086 %}
11087 
11088 // This pattern is automatically generated from aarch64_ad.m4
11089 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11090 // val & (-1 ^ (val ror shift)) ==> bicw
11091 instruct AndI_reg_RotateRight_not_reg(iRegINoSp dst,
11092                          iRegIorL2I src1, iRegIorL2I src2,
11093                          immI src3, immI_M1 src4) %{
11094   match(Set dst (AndI src1 (XorI(RotateRight src2 src3) src4)));
11095   ins_cost(1.9 * INSN_COST);
11096   format %{ "bicw  $dst, $src1, $src2, ROR $src3" %}
11097 
11098   ins_encode %{
11099     __ bicw(as_Register($dst$$reg),
11100               as_Register($src1$$reg),
11101               as_Register($src2$$reg),
11102               Assembler::ROR,
11103               $src3$$constant & 0x1f);
11104   %}
11105 
11106   ins_pipe(ialu_reg_reg_shift);
11107 %}
11108 
11109 // This pattern is automatically generated from aarch64_ad.m4
11110 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11111 // val & (-1 ^ (val ror shift)) ==> bic
11112 instruct AndL_reg_RotateRight_not_reg(iRegLNoSp dst,
11113                          iRegL src1, iRegL src2,
11114                          immI src3, immL_M1 src4) %{
11115   match(Set dst (AndL src1 (XorL(RotateRight src2 src3) src4)));
11116   ins_cost(1.9 * INSN_COST);
11117   format %{ "bic  $dst, $src1, $src2, ROR $src3" %}
11118 
11119   ins_encode %{
11120     __ bic(as_Register($dst$$reg),
11121               as_Register($src1$$reg),
11122               as_Register($src2$$reg),
11123               Assembler::ROR,
11124               $src3$$constant & 0x3f);
11125   %}
11126 
11127   ins_pipe(ialu_reg_reg_shift);
11128 %}
11129 
11130 // This pattern is automatically generated from aarch64_ad.m4
11131 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11132 // val & (-1 ^ (val << shift)) ==> bicw
11133 instruct AndI_reg_LShift_not_reg(iRegINoSp dst,
11134                          iRegIorL2I src1, iRegIorL2I src2,
11135                          immI src3, immI_M1 src4) %{
11136   match(Set dst (AndI src1 (XorI(LShiftI src2 src3) src4)));
11137   ins_cost(1.9 * INSN_COST);
11138   format %{ "bicw  $dst, $src1, $src2, LSL $src3" %}
11139 
11140   ins_encode %{
11141     __ bicw(as_Register($dst$$reg),
11142               as_Register($src1$$reg),
11143               as_Register($src2$$reg),
11144               Assembler::LSL,
11145               $src3$$constant & 0x1f);
11146   %}
11147 
11148   ins_pipe(ialu_reg_reg_shift);
11149 %}
11150 
11151 // This pattern is automatically generated from aarch64_ad.m4
11152 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11153 // val & (-1 ^ (val << shift)) ==> bic
11154 instruct AndL_reg_LShift_not_reg(iRegLNoSp dst,
11155                          iRegL src1, iRegL src2,
11156                          immI src3, immL_M1 src4) %{
11157   match(Set dst (AndL src1 (XorL(LShiftL src2 src3) src4)));
11158   ins_cost(1.9 * INSN_COST);
11159   format %{ "bic  $dst, $src1, $src2, LSL $src3" %}
11160 
11161   ins_encode %{
11162     __ bic(as_Register($dst$$reg),
11163               as_Register($src1$$reg),
11164               as_Register($src2$$reg),
11165               Assembler::LSL,
11166               $src3$$constant & 0x3f);
11167   %}
11168 
11169   ins_pipe(ialu_reg_reg_shift);
11170 %}
11171 
11172 // This pattern is automatically generated from aarch64_ad.m4
11173 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11174 // val ^ (-1 ^ (val >>> shift)) ==> eonw
11175 instruct XorI_reg_URShift_not_reg(iRegINoSp dst,
11176                          iRegIorL2I src1, iRegIorL2I src2,
11177                          immI src3, immI_M1 src4) %{
11178   match(Set dst (XorI src4 (XorI(URShiftI src2 src3) src1)));
11179   ins_cost(1.9 * INSN_COST);
11180   format %{ "eonw  $dst, $src1, $src2, LSR $src3" %}
11181 
11182   ins_encode %{
11183     __ eonw(as_Register($dst$$reg),
11184               as_Register($src1$$reg),
11185               as_Register($src2$$reg),
11186               Assembler::LSR,
11187               $src3$$constant & 0x1f);
11188   %}
11189 
11190   ins_pipe(ialu_reg_reg_shift);
11191 %}
11192 
11193 // This pattern is automatically generated from aarch64_ad.m4
11194 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11195 // val ^ (-1 ^ (val >>> shift)) ==> eon
11196 instruct XorL_reg_URShift_not_reg(iRegLNoSp dst,
11197                          iRegL src1, iRegL src2,
11198                          immI src3, immL_M1 src4) %{
11199   match(Set dst (XorL src4 (XorL(URShiftL src2 src3) src1)));
11200   ins_cost(1.9 * INSN_COST);
11201   format %{ "eon  $dst, $src1, $src2, LSR $src3" %}
11202 
11203   ins_encode %{
11204     __ eon(as_Register($dst$$reg),
11205               as_Register($src1$$reg),
11206               as_Register($src2$$reg),
11207               Assembler::LSR,
11208               $src3$$constant & 0x3f);
11209   %}
11210 
11211   ins_pipe(ialu_reg_reg_shift);
11212 %}
11213 
11214 // This pattern is automatically generated from aarch64_ad.m4
11215 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11216 // val ^ (-1 ^ (val >> shift)) ==> eonw
11217 instruct XorI_reg_RShift_not_reg(iRegINoSp dst,
11218                          iRegIorL2I src1, iRegIorL2I src2,
11219                          immI src3, immI_M1 src4) %{
11220   match(Set dst (XorI src4 (XorI(RShiftI src2 src3) src1)));
11221   ins_cost(1.9 * INSN_COST);
11222   format %{ "eonw  $dst, $src1, $src2, ASR $src3" %}
11223 
11224   ins_encode %{
11225     __ eonw(as_Register($dst$$reg),
11226               as_Register($src1$$reg),
11227               as_Register($src2$$reg),
11228               Assembler::ASR,
11229               $src3$$constant & 0x1f);
11230   %}
11231 
11232   ins_pipe(ialu_reg_reg_shift);
11233 %}
11234 
11235 // This pattern is automatically generated from aarch64_ad.m4
11236 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11237 // val ^ (-1 ^ (val >> shift)) ==> eon
11238 instruct XorL_reg_RShift_not_reg(iRegLNoSp dst,
11239                          iRegL src1, iRegL src2,
11240                          immI src3, immL_M1 src4) %{
11241   match(Set dst (XorL src4 (XorL(RShiftL src2 src3) src1)));
11242   ins_cost(1.9 * INSN_COST);
11243   format %{ "eon  $dst, $src1, $src2, ASR $src3" %}
11244 
11245   ins_encode %{
11246     __ eon(as_Register($dst$$reg),
11247               as_Register($src1$$reg),
11248               as_Register($src2$$reg),
11249               Assembler::ASR,
11250               $src3$$constant & 0x3f);
11251   %}
11252 
11253   ins_pipe(ialu_reg_reg_shift);
11254 %}
11255 
11256 // This pattern is automatically generated from aarch64_ad.m4
11257 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11258 // val ^ (-1 ^ (val ror shift)) ==> eonw
11259 instruct XorI_reg_RotateRight_not_reg(iRegINoSp dst,
11260                          iRegIorL2I src1, iRegIorL2I src2,
11261                          immI src3, immI_M1 src4) %{
11262   match(Set dst (XorI src4 (XorI(RotateRight src2 src3) src1)));
11263   ins_cost(1.9 * INSN_COST);
11264   format %{ "eonw  $dst, $src1, $src2, ROR $src3" %}
11265 
11266   ins_encode %{
11267     __ eonw(as_Register($dst$$reg),
11268               as_Register($src1$$reg),
11269               as_Register($src2$$reg),
11270               Assembler::ROR,
11271               $src3$$constant & 0x1f);
11272   %}
11273 
11274   ins_pipe(ialu_reg_reg_shift);
11275 %}
11276 
11277 // This pattern is automatically generated from aarch64_ad.m4
11278 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11279 // val ^ (-1 ^ (val ror shift)) ==> eon
11280 instruct XorL_reg_RotateRight_not_reg(iRegLNoSp dst,
11281                          iRegL src1, iRegL src2,
11282                          immI src3, immL_M1 src4) %{
11283   match(Set dst (XorL src4 (XorL(RotateRight src2 src3) src1)));
11284   ins_cost(1.9 * INSN_COST);
11285   format %{ "eon  $dst, $src1, $src2, ROR $src3" %}
11286 
11287   ins_encode %{
11288     __ eon(as_Register($dst$$reg),
11289               as_Register($src1$$reg),
11290               as_Register($src2$$reg),
11291               Assembler::ROR,
11292               $src3$$constant & 0x3f);
11293   %}
11294 
11295   ins_pipe(ialu_reg_reg_shift);
11296 %}
11297 
11298 // This pattern is automatically generated from aarch64_ad.m4
11299 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11300 // val ^ (-1 ^ (val << shift)) ==> eonw
11301 instruct XorI_reg_LShift_not_reg(iRegINoSp dst,
11302                          iRegIorL2I src1, iRegIorL2I src2,
11303                          immI src3, immI_M1 src4) %{
11304   match(Set dst (XorI src4 (XorI(LShiftI src2 src3) src1)));
11305   ins_cost(1.9 * INSN_COST);
11306   format %{ "eonw  $dst, $src1, $src2, LSL $src3" %}
11307 
11308   ins_encode %{
11309     __ eonw(as_Register($dst$$reg),
11310               as_Register($src1$$reg),
11311               as_Register($src2$$reg),
11312               Assembler::LSL,
11313               $src3$$constant & 0x1f);
11314   %}
11315 
11316   ins_pipe(ialu_reg_reg_shift);
11317 %}
11318 
11319 // This pattern is automatically generated from aarch64_ad.m4
11320 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11321 // val ^ (-1 ^ (val << shift)) ==> eon
11322 instruct XorL_reg_LShift_not_reg(iRegLNoSp dst,
11323                          iRegL src1, iRegL src2,
11324                          immI src3, immL_M1 src4) %{
11325   match(Set dst (XorL src4 (XorL(LShiftL src2 src3) src1)));
11326   ins_cost(1.9 * INSN_COST);
11327   format %{ "eon  $dst, $src1, $src2, LSL $src3" %}
11328 
11329   ins_encode %{
11330     __ eon(as_Register($dst$$reg),
11331               as_Register($src1$$reg),
11332               as_Register($src2$$reg),
11333               Assembler::LSL,
11334               $src3$$constant & 0x3f);
11335   %}
11336 
11337   ins_pipe(ialu_reg_reg_shift);
11338 %}
11339 
11340 // This pattern is automatically generated from aarch64_ad.m4
11341 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11342 // val | (-1 ^ (val >>> shift)) ==> ornw
11343 instruct OrI_reg_URShift_not_reg(iRegINoSp dst,
11344                          iRegIorL2I src1, iRegIorL2I src2,
11345                          immI src3, immI_M1 src4) %{
11346   match(Set dst (OrI src1 (XorI(URShiftI src2 src3) src4)));
11347   ins_cost(1.9 * INSN_COST);
11348   format %{ "ornw  $dst, $src1, $src2, LSR $src3" %}
11349 
11350   ins_encode %{
11351     __ ornw(as_Register($dst$$reg),
11352               as_Register($src1$$reg),
11353               as_Register($src2$$reg),
11354               Assembler::LSR,
11355               $src3$$constant & 0x1f);
11356   %}
11357 
11358   ins_pipe(ialu_reg_reg_shift);
11359 %}
11360 
11361 // This pattern is automatically generated from aarch64_ad.m4
11362 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11363 // val | (-1 ^ (val >>> shift)) ==> orn
11364 instruct OrL_reg_URShift_not_reg(iRegLNoSp dst,
11365                          iRegL src1, iRegL src2,
11366                          immI src3, immL_M1 src4) %{
11367   match(Set dst (OrL src1 (XorL(URShiftL src2 src3) src4)));
11368   ins_cost(1.9 * INSN_COST);
11369   format %{ "orn  $dst, $src1, $src2, LSR $src3" %}
11370 
11371   ins_encode %{
11372     __ orn(as_Register($dst$$reg),
11373               as_Register($src1$$reg),
11374               as_Register($src2$$reg),
11375               Assembler::LSR,
11376               $src3$$constant & 0x3f);
11377   %}
11378 
11379   ins_pipe(ialu_reg_reg_shift);
11380 %}
11381 
11382 // This pattern is automatically generated from aarch64_ad.m4
11383 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11384 // val | (-1 ^ (val >> shift)) ==> ornw
11385 instruct OrI_reg_RShift_not_reg(iRegINoSp dst,
11386                          iRegIorL2I src1, iRegIorL2I src2,
11387                          immI src3, immI_M1 src4) %{
11388   match(Set dst (OrI src1 (XorI(RShiftI src2 src3) src4)));
11389   ins_cost(1.9 * INSN_COST);
11390   format %{ "ornw  $dst, $src1, $src2, ASR $src3" %}
11391 
11392   ins_encode %{
11393     __ ornw(as_Register($dst$$reg),
11394               as_Register($src1$$reg),
11395               as_Register($src2$$reg),
11396               Assembler::ASR,
11397               $src3$$constant & 0x1f);
11398   %}
11399 
11400   ins_pipe(ialu_reg_reg_shift);
11401 %}
11402 
11403 // This pattern is automatically generated from aarch64_ad.m4
11404 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11405 // val | (-1 ^ (val >> shift)) ==> orn
11406 instruct OrL_reg_RShift_not_reg(iRegLNoSp dst,
11407                          iRegL src1, iRegL src2,
11408                          immI src3, immL_M1 src4) %{
11409   match(Set dst (OrL src1 (XorL(RShiftL src2 src3) src4)));
11410   ins_cost(1.9 * INSN_COST);
11411   format %{ "orn  $dst, $src1, $src2, ASR $src3" %}
11412 
11413   ins_encode %{
11414     __ orn(as_Register($dst$$reg),
11415               as_Register($src1$$reg),
11416               as_Register($src2$$reg),
11417               Assembler::ASR,
11418               $src3$$constant & 0x3f);
11419   %}
11420 
11421   ins_pipe(ialu_reg_reg_shift);
11422 %}
11423 
11424 // This pattern is automatically generated from aarch64_ad.m4
11425 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11426 // val | (-1 ^ (val ror shift)) ==> ornw
11427 instruct OrI_reg_RotateRight_not_reg(iRegINoSp dst,
11428                          iRegIorL2I src1, iRegIorL2I src2,
11429                          immI src3, immI_M1 src4) %{
11430   match(Set dst (OrI src1 (XorI(RotateRight src2 src3) src4)));
11431   ins_cost(1.9 * INSN_COST);
11432   format %{ "ornw  $dst, $src1, $src2, ROR $src3" %}
11433 
11434   ins_encode %{
11435     __ ornw(as_Register($dst$$reg),
11436               as_Register($src1$$reg),
11437               as_Register($src2$$reg),
11438               Assembler::ROR,
11439               $src3$$constant & 0x1f);
11440   %}
11441 
11442   ins_pipe(ialu_reg_reg_shift);
11443 %}
11444 
11445 // This pattern is automatically generated from aarch64_ad.m4
11446 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11447 // val | (-1 ^ (val ror shift)) ==> orn
11448 instruct OrL_reg_RotateRight_not_reg(iRegLNoSp dst,
11449                          iRegL src1, iRegL src2,
11450                          immI src3, immL_M1 src4) %{
11451   match(Set dst (OrL src1 (XorL(RotateRight src2 src3) src4)));
11452   ins_cost(1.9 * INSN_COST);
11453   format %{ "orn  $dst, $src1, $src2, ROR $src3" %}
11454 
11455   ins_encode %{
11456     __ orn(as_Register($dst$$reg),
11457               as_Register($src1$$reg),
11458               as_Register($src2$$reg),
11459               Assembler::ROR,
11460               $src3$$constant & 0x3f);
11461   %}
11462 
11463   ins_pipe(ialu_reg_reg_shift);
11464 %}
11465 
11466 // This pattern is automatically generated from aarch64_ad.m4
11467 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11468 // val | (-1 ^ (val << shift)) ==> ornw
11469 instruct OrI_reg_LShift_not_reg(iRegINoSp dst,
11470                          iRegIorL2I src1, iRegIorL2I src2,
11471                          immI src3, immI_M1 src4) %{
11472   match(Set dst (OrI src1 (XorI(LShiftI src2 src3) src4)));
11473   ins_cost(1.9 * INSN_COST);
11474   format %{ "ornw  $dst, $src1, $src2, LSL $src3" %}
11475 
11476   ins_encode %{
11477     __ ornw(as_Register($dst$$reg),
11478               as_Register($src1$$reg),
11479               as_Register($src2$$reg),
11480               Assembler::LSL,
11481               $src3$$constant & 0x1f);
11482   %}
11483 
11484   ins_pipe(ialu_reg_reg_shift);
11485 %}
11486 
11487 // This pattern is automatically generated from aarch64_ad.m4
11488 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11489 // val | (-1 ^ (val << shift)) ==> orn
11490 instruct OrL_reg_LShift_not_reg(iRegLNoSp dst,
11491                          iRegL src1, iRegL src2,
11492                          immI src3, immL_M1 src4) %{
11493   match(Set dst (OrL src1 (XorL(LShiftL src2 src3) src4)));
11494   ins_cost(1.9 * INSN_COST);
11495   format %{ "orn  $dst, $src1, $src2, LSL $src3" %}
11496 
11497   ins_encode %{
11498     __ orn(as_Register($dst$$reg),
11499               as_Register($src1$$reg),
11500               as_Register($src2$$reg),
11501               Assembler::LSL,
11502               $src3$$constant & 0x3f);
11503   %}
11504 
11505   ins_pipe(ialu_reg_reg_shift);
11506 %}
11507 
11508 // This pattern is automatically generated from aarch64_ad.m4
11509 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11510 instruct AndI_reg_URShift_reg(iRegINoSp dst,
11511                          iRegIorL2I src1, iRegIorL2I src2,
11512                          immI src3) %{
11513   match(Set dst (AndI src1 (URShiftI src2 src3)));
11514 
11515   ins_cost(1.9 * INSN_COST);
11516   format %{ "andw  $dst, $src1, $src2, LSR $src3" %}
11517 
11518   ins_encode %{
11519     __ andw(as_Register($dst$$reg),
11520               as_Register($src1$$reg),
11521               as_Register($src2$$reg),
11522               Assembler::LSR,
11523               $src3$$constant & 0x1f);
11524   %}
11525 
11526   ins_pipe(ialu_reg_reg_shift);
11527 %}
11528 
11529 // This pattern is automatically generated from aarch64_ad.m4
11530 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11531 instruct AndL_reg_URShift_reg(iRegLNoSp dst,
11532                          iRegL src1, iRegL src2,
11533                          immI src3) %{
11534   match(Set dst (AndL src1 (URShiftL src2 src3)));
11535 
11536   ins_cost(1.9 * INSN_COST);
11537   format %{ "andr  $dst, $src1, $src2, LSR $src3" %}
11538 
11539   ins_encode %{
11540     __ andr(as_Register($dst$$reg),
11541               as_Register($src1$$reg),
11542               as_Register($src2$$reg),
11543               Assembler::LSR,
11544               $src3$$constant & 0x3f);
11545   %}
11546 
11547   ins_pipe(ialu_reg_reg_shift);
11548 %}
11549 
11550 // This pattern is automatically generated from aarch64_ad.m4
11551 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11552 instruct AndI_reg_RShift_reg(iRegINoSp dst,
11553                          iRegIorL2I src1, iRegIorL2I src2,
11554                          immI src3) %{
11555   match(Set dst (AndI src1 (RShiftI src2 src3)));
11556 
11557   ins_cost(1.9 * INSN_COST);
11558   format %{ "andw  $dst, $src1, $src2, ASR $src3" %}
11559 
11560   ins_encode %{
11561     __ andw(as_Register($dst$$reg),
11562               as_Register($src1$$reg),
11563               as_Register($src2$$reg),
11564               Assembler::ASR,
11565               $src3$$constant & 0x1f);
11566   %}
11567 
11568   ins_pipe(ialu_reg_reg_shift);
11569 %}
11570 
11571 // This pattern is automatically generated from aarch64_ad.m4
11572 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11573 instruct AndL_reg_RShift_reg(iRegLNoSp dst,
11574                          iRegL src1, iRegL src2,
11575                          immI src3) %{
11576   match(Set dst (AndL src1 (RShiftL src2 src3)));
11577 
11578   ins_cost(1.9 * INSN_COST);
11579   format %{ "andr  $dst, $src1, $src2, ASR $src3" %}
11580 
11581   ins_encode %{
11582     __ andr(as_Register($dst$$reg),
11583               as_Register($src1$$reg),
11584               as_Register($src2$$reg),
11585               Assembler::ASR,
11586               $src3$$constant & 0x3f);
11587   %}
11588 
11589   ins_pipe(ialu_reg_reg_shift);
11590 %}
11591 
11592 // This pattern is automatically generated from aarch64_ad.m4
11593 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11594 instruct AndI_reg_LShift_reg(iRegINoSp dst,
11595                          iRegIorL2I src1, iRegIorL2I src2,
11596                          immI src3) %{
11597   match(Set dst (AndI src1 (LShiftI src2 src3)));
11598 
11599   ins_cost(1.9 * INSN_COST);
11600   format %{ "andw  $dst, $src1, $src2, LSL $src3" %}
11601 
11602   ins_encode %{
11603     __ andw(as_Register($dst$$reg),
11604               as_Register($src1$$reg),
11605               as_Register($src2$$reg),
11606               Assembler::LSL,
11607               $src3$$constant & 0x1f);
11608   %}
11609 
11610   ins_pipe(ialu_reg_reg_shift);
11611 %}
11612 
11613 // This pattern is automatically generated from aarch64_ad.m4
11614 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11615 instruct AndL_reg_LShift_reg(iRegLNoSp dst,
11616                          iRegL src1, iRegL src2,
11617                          immI src3) %{
11618   match(Set dst (AndL src1 (LShiftL src2 src3)));
11619 
11620   ins_cost(1.9 * INSN_COST);
11621   format %{ "andr  $dst, $src1, $src2, LSL $src3" %}
11622 
11623   ins_encode %{
11624     __ andr(as_Register($dst$$reg),
11625               as_Register($src1$$reg),
11626               as_Register($src2$$reg),
11627               Assembler::LSL,
11628               $src3$$constant & 0x3f);
11629   %}
11630 
11631   ins_pipe(ialu_reg_reg_shift);
11632 %}
11633 
11634 // This pattern is automatically generated from aarch64_ad.m4
11635 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11636 instruct AndI_reg_RotateRight_reg(iRegINoSp dst,
11637                          iRegIorL2I src1, iRegIorL2I src2,
11638                          immI src3) %{
11639   match(Set dst (AndI src1 (RotateRight src2 src3)));
11640 
11641   ins_cost(1.9 * INSN_COST);
11642   format %{ "andw  $dst, $src1, $src2, ROR $src3" %}
11643 
11644   ins_encode %{
11645     __ andw(as_Register($dst$$reg),
11646               as_Register($src1$$reg),
11647               as_Register($src2$$reg),
11648               Assembler::ROR,
11649               $src3$$constant & 0x1f);
11650   %}
11651 
11652   ins_pipe(ialu_reg_reg_shift);
11653 %}
11654 
11655 // This pattern is automatically generated from aarch64_ad.m4
11656 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11657 instruct AndL_reg_RotateRight_reg(iRegLNoSp dst,
11658                          iRegL src1, iRegL src2,
11659                          immI src3) %{
11660   match(Set dst (AndL src1 (RotateRight src2 src3)));
11661 
11662   ins_cost(1.9 * INSN_COST);
11663   format %{ "andr  $dst, $src1, $src2, ROR $src3" %}
11664 
11665   ins_encode %{
11666     __ andr(as_Register($dst$$reg),
11667               as_Register($src1$$reg),
11668               as_Register($src2$$reg),
11669               Assembler::ROR,
11670               $src3$$constant & 0x3f);
11671   %}
11672 
11673   ins_pipe(ialu_reg_reg_shift);
11674 %}
11675 
11676 // This pattern is automatically generated from aarch64_ad.m4
11677 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11678 instruct XorI_reg_URShift_reg(iRegINoSp dst,
11679                          iRegIorL2I src1, iRegIorL2I src2,
11680                          immI src3) %{
11681   match(Set dst (XorI src1 (URShiftI src2 src3)));
11682 
11683   ins_cost(1.9 * INSN_COST);
11684   format %{ "eorw  $dst, $src1, $src2, LSR $src3" %}
11685 
11686   ins_encode %{
11687     __ eorw(as_Register($dst$$reg),
11688               as_Register($src1$$reg),
11689               as_Register($src2$$reg),
11690               Assembler::LSR,
11691               $src3$$constant & 0x1f);
11692   %}
11693 
11694   ins_pipe(ialu_reg_reg_shift);
11695 %}
11696 
11697 // This pattern is automatically generated from aarch64_ad.m4
11698 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11699 instruct XorL_reg_URShift_reg(iRegLNoSp dst,
11700                          iRegL src1, iRegL src2,
11701                          immI src3) %{
11702   match(Set dst (XorL src1 (URShiftL src2 src3)));
11703 
11704   ins_cost(1.9 * INSN_COST);
11705   format %{ "eor  $dst, $src1, $src2, LSR $src3" %}
11706 
11707   ins_encode %{
11708     __ eor(as_Register($dst$$reg),
11709               as_Register($src1$$reg),
11710               as_Register($src2$$reg),
11711               Assembler::LSR,
11712               $src3$$constant & 0x3f);
11713   %}
11714 
11715   ins_pipe(ialu_reg_reg_shift);
11716 %}
11717 
11718 // This pattern is automatically generated from aarch64_ad.m4
11719 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11720 instruct XorI_reg_RShift_reg(iRegINoSp dst,
11721                          iRegIorL2I src1, iRegIorL2I src2,
11722                          immI src3) %{
11723   match(Set dst (XorI src1 (RShiftI src2 src3)));
11724 
11725   ins_cost(1.9 * INSN_COST);
11726   format %{ "eorw  $dst, $src1, $src2, ASR $src3" %}
11727 
11728   ins_encode %{
11729     __ eorw(as_Register($dst$$reg),
11730               as_Register($src1$$reg),
11731               as_Register($src2$$reg),
11732               Assembler::ASR,
11733               $src3$$constant & 0x1f);
11734   %}
11735 
11736   ins_pipe(ialu_reg_reg_shift);
11737 %}
11738 
11739 // This pattern is automatically generated from aarch64_ad.m4
11740 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11741 instruct XorL_reg_RShift_reg(iRegLNoSp dst,
11742                          iRegL src1, iRegL src2,
11743                          immI src3) %{
11744   match(Set dst (XorL src1 (RShiftL src2 src3)));
11745 
11746   ins_cost(1.9 * INSN_COST);
11747   format %{ "eor  $dst, $src1, $src2, ASR $src3" %}
11748 
11749   ins_encode %{
11750     __ eor(as_Register($dst$$reg),
11751               as_Register($src1$$reg),
11752               as_Register($src2$$reg),
11753               Assembler::ASR,
11754               $src3$$constant & 0x3f);
11755   %}
11756 
11757   ins_pipe(ialu_reg_reg_shift);
11758 %}
11759 
11760 // This pattern is automatically generated from aarch64_ad.m4
11761 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11762 instruct XorI_reg_LShift_reg(iRegINoSp dst,
11763                          iRegIorL2I src1, iRegIorL2I src2,
11764                          immI src3) %{
11765   match(Set dst (XorI src1 (LShiftI src2 src3)));
11766 
11767   ins_cost(1.9 * INSN_COST);
11768   format %{ "eorw  $dst, $src1, $src2, LSL $src3" %}
11769 
11770   ins_encode %{
11771     __ eorw(as_Register($dst$$reg),
11772               as_Register($src1$$reg),
11773               as_Register($src2$$reg),
11774               Assembler::LSL,
11775               $src3$$constant & 0x1f);
11776   %}
11777 
11778   ins_pipe(ialu_reg_reg_shift);
11779 %}
11780 
11781 // This pattern is automatically generated from aarch64_ad.m4
11782 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11783 instruct XorL_reg_LShift_reg(iRegLNoSp dst,
11784                          iRegL src1, iRegL src2,
11785                          immI src3) %{
11786   match(Set dst (XorL src1 (LShiftL src2 src3)));
11787 
11788   ins_cost(1.9 * INSN_COST);
11789   format %{ "eor  $dst, $src1, $src2, LSL $src3" %}
11790 
11791   ins_encode %{
11792     __ eor(as_Register($dst$$reg),
11793               as_Register($src1$$reg),
11794               as_Register($src2$$reg),
11795               Assembler::LSL,
11796               $src3$$constant & 0x3f);
11797   %}
11798 
11799   ins_pipe(ialu_reg_reg_shift);
11800 %}
11801 
11802 // This pattern is automatically generated from aarch64_ad.m4
11803 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11804 instruct XorI_reg_RotateRight_reg(iRegINoSp dst,
11805                          iRegIorL2I src1, iRegIorL2I src2,
11806                          immI src3) %{
11807   match(Set dst (XorI src1 (RotateRight src2 src3)));
11808 
11809   ins_cost(1.9 * INSN_COST);
11810   format %{ "eorw  $dst, $src1, $src2, ROR $src3" %}
11811 
11812   ins_encode %{
11813     __ eorw(as_Register($dst$$reg),
11814               as_Register($src1$$reg),
11815               as_Register($src2$$reg),
11816               Assembler::ROR,
11817               $src3$$constant & 0x1f);
11818   %}
11819 
11820   ins_pipe(ialu_reg_reg_shift);
11821 %}
11822 
11823 // This pattern is automatically generated from aarch64_ad.m4
11824 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11825 instruct XorL_reg_RotateRight_reg(iRegLNoSp dst,
11826                          iRegL src1, iRegL src2,
11827                          immI src3) %{
11828   match(Set dst (XorL src1 (RotateRight src2 src3)));
11829 
11830   ins_cost(1.9 * INSN_COST);
11831   format %{ "eor  $dst, $src1, $src2, ROR $src3" %}
11832 
11833   ins_encode %{
11834     __ eor(as_Register($dst$$reg),
11835               as_Register($src1$$reg),
11836               as_Register($src2$$reg),
11837               Assembler::ROR,
11838               $src3$$constant & 0x3f);
11839   %}
11840 
11841   ins_pipe(ialu_reg_reg_shift);
11842 %}
11843 
11844 // This pattern is automatically generated from aarch64_ad.m4
11845 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11846 instruct OrI_reg_URShift_reg(iRegINoSp dst,
11847                          iRegIorL2I src1, iRegIorL2I src2,
11848                          immI src3) %{
11849   match(Set dst (OrI src1 (URShiftI src2 src3)));
11850 
11851   ins_cost(1.9 * INSN_COST);
11852   format %{ "orrw  $dst, $src1, $src2, LSR $src3" %}
11853 
11854   ins_encode %{
11855     __ orrw(as_Register($dst$$reg),
11856               as_Register($src1$$reg),
11857               as_Register($src2$$reg),
11858               Assembler::LSR,
11859               $src3$$constant & 0x1f);
11860   %}
11861 
11862   ins_pipe(ialu_reg_reg_shift);
11863 %}
11864 
11865 // This pattern is automatically generated from aarch64_ad.m4
11866 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11867 instruct OrL_reg_URShift_reg(iRegLNoSp dst,
11868                          iRegL src1, iRegL src2,
11869                          immI src3) %{
11870   match(Set dst (OrL src1 (URShiftL src2 src3)));
11871 
11872   ins_cost(1.9 * INSN_COST);
11873   format %{ "orr  $dst, $src1, $src2, LSR $src3" %}
11874 
11875   ins_encode %{
11876     __ orr(as_Register($dst$$reg),
11877               as_Register($src1$$reg),
11878               as_Register($src2$$reg),
11879               Assembler::LSR,
11880               $src3$$constant & 0x3f);
11881   %}
11882 
11883   ins_pipe(ialu_reg_reg_shift);
11884 %}
11885 
11886 // This pattern is automatically generated from aarch64_ad.m4
11887 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11888 instruct OrI_reg_RShift_reg(iRegINoSp dst,
11889                          iRegIorL2I src1, iRegIorL2I src2,
11890                          immI src3) %{
11891   match(Set dst (OrI src1 (RShiftI src2 src3)));
11892 
11893   ins_cost(1.9 * INSN_COST);
11894   format %{ "orrw  $dst, $src1, $src2, ASR $src3" %}
11895 
11896   ins_encode %{
11897     __ orrw(as_Register($dst$$reg),
11898               as_Register($src1$$reg),
11899               as_Register($src2$$reg),
11900               Assembler::ASR,
11901               $src3$$constant & 0x1f);
11902   %}
11903 
11904   ins_pipe(ialu_reg_reg_shift);
11905 %}
11906 
11907 // This pattern is automatically generated from aarch64_ad.m4
11908 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11909 instruct OrL_reg_RShift_reg(iRegLNoSp dst,
11910                          iRegL src1, iRegL src2,
11911                          immI src3) %{
11912   match(Set dst (OrL src1 (RShiftL src2 src3)));
11913 
11914   ins_cost(1.9 * INSN_COST);
11915   format %{ "orr  $dst, $src1, $src2, ASR $src3" %}
11916 
11917   ins_encode %{
11918     __ orr(as_Register($dst$$reg),
11919               as_Register($src1$$reg),
11920               as_Register($src2$$reg),
11921               Assembler::ASR,
11922               $src3$$constant & 0x3f);
11923   %}
11924 
11925   ins_pipe(ialu_reg_reg_shift);
11926 %}
11927 
11928 // This pattern is automatically generated from aarch64_ad.m4
11929 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11930 instruct OrI_reg_LShift_reg(iRegINoSp dst,
11931                          iRegIorL2I src1, iRegIorL2I src2,
11932                          immI src3) %{
11933   match(Set dst (OrI src1 (LShiftI src2 src3)));
11934 
11935   ins_cost(1.9 * INSN_COST);
11936   format %{ "orrw  $dst, $src1, $src2, LSL $src3" %}
11937 
11938   ins_encode %{
11939     __ orrw(as_Register($dst$$reg),
11940               as_Register($src1$$reg),
11941               as_Register($src2$$reg),
11942               Assembler::LSL,
11943               $src3$$constant & 0x1f);
11944   %}
11945 
11946   ins_pipe(ialu_reg_reg_shift);
11947 %}
11948 
11949 // This pattern is automatically generated from aarch64_ad.m4
11950 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11951 instruct OrL_reg_LShift_reg(iRegLNoSp dst,
11952                          iRegL src1, iRegL src2,
11953                          immI src3) %{
11954   match(Set dst (OrL src1 (LShiftL src2 src3)));
11955 
11956   ins_cost(1.9 * INSN_COST);
11957   format %{ "orr  $dst, $src1, $src2, LSL $src3" %}
11958 
11959   ins_encode %{
11960     __ orr(as_Register($dst$$reg),
11961               as_Register($src1$$reg),
11962               as_Register($src2$$reg),
11963               Assembler::LSL,
11964               $src3$$constant & 0x3f);
11965   %}
11966 
11967   ins_pipe(ialu_reg_reg_shift);
11968 %}
11969 
11970 // This pattern is automatically generated from aarch64_ad.m4
11971 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11972 instruct OrI_reg_RotateRight_reg(iRegINoSp dst,
11973                          iRegIorL2I src1, iRegIorL2I src2,
11974                          immI src3) %{
11975   match(Set dst (OrI src1 (RotateRight src2 src3)));
11976 
11977   ins_cost(1.9 * INSN_COST);
11978   format %{ "orrw  $dst, $src1, $src2, ROR $src3" %}
11979 
11980   ins_encode %{
11981     __ orrw(as_Register($dst$$reg),
11982               as_Register($src1$$reg),
11983               as_Register($src2$$reg),
11984               Assembler::ROR,
11985               $src3$$constant & 0x1f);
11986   %}
11987 
11988   ins_pipe(ialu_reg_reg_shift);
11989 %}
11990 
11991 // This pattern is automatically generated from aarch64_ad.m4
11992 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11993 instruct OrL_reg_RotateRight_reg(iRegLNoSp dst,
11994                          iRegL src1, iRegL src2,
11995                          immI src3) %{
11996   match(Set dst (OrL src1 (RotateRight src2 src3)));
11997 
11998   ins_cost(1.9 * INSN_COST);
11999   format %{ "orr  $dst, $src1, $src2, ROR $src3" %}
12000 
12001   ins_encode %{
12002     __ orr(as_Register($dst$$reg),
12003               as_Register($src1$$reg),
12004               as_Register($src2$$reg),
12005               Assembler::ROR,
12006               $src3$$constant & 0x3f);
12007   %}
12008 
12009   ins_pipe(ialu_reg_reg_shift);
12010 %}
12011 
12012 // This pattern is automatically generated from aarch64_ad.m4
12013 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12014 instruct AddI_reg_URShift_reg(iRegINoSp dst,
12015                          iRegIorL2I src1, iRegIorL2I src2,
12016                          immI src3) %{
12017   match(Set dst (AddI src1 (URShiftI src2 src3)));
12018 
12019   ins_cost(1.9 * INSN_COST);
12020   format %{ "addw  $dst, $src1, $src2, LSR $src3" %}
12021 
12022   ins_encode %{
12023     __ addw(as_Register($dst$$reg),
12024               as_Register($src1$$reg),
12025               as_Register($src2$$reg),
12026               Assembler::LSR,
12027               $src3$$constant & 0x1f);
12028   %}
12029 
12030   ins_pipe(ialu_reg_reg_shift);
12031 %}
12032 
12033 // This pattern is automatically generated from aarch64_ad.m4
12034 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12035 instruct AddL_reg_URShift_reg(iRegLNoSp dst,
12036                          iRegL src1, iRegL src2,
12037                          immI src3) %{
12038   match(Set dst (AddL src1 (URShiftL src2 src3)));
12039 
12040   ins_cost(1.9 * INSN_COST);
12041   format %{ "add  $dst, $src1, $src2, LSR $src3" %}
12042 
12043   ins_encode %{
12044     __ add(as_Register($dst$$reg),
12045               as_Register($src1$$reg),
12046               as_Register($src2$$reg),
12047               Assembler::LSR,
12048               $src3$$constant & 0x3f);
12049   %}
12050 
12051   ins_pipe(ialu_reg_reg_shift);
12052 %}
12053 
12054 // This pattern is automatically generated from aarch64_ad.m4
12055 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12056 instruct AddI_reg_RShift_reg(iRegINoSp dst,
12057                          iRegIorL2I src1, iRegIorL2I src2,
12058                          immI src3) %{
12059   match(Set dst (AddI src1 (RShiftI src2 src3)));
12060 
12061   ins_cost(1.9 * INSN_COST);
12062   format %{ "addw  $dst, $src1, $src2, ASR $src3" %}
12063 
12064   ins_encode %{
12065     __ addw(as_Register($dst$$reg),
12066               as_Register($src1$$reg),
12067               as_Register($src2$$reg),
12068               Assembler::ASR,
12069               $src3$$constant & 0x1f);
12070   %}
12071 
12072   ins_pipe(ialu_reg_reg_shift);
12073 %}
12074 
12075 // This pattern is automatically generated from aarch64_ad.m4
12076 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12077 instruct AddL_reg_RShift_reg(iRegLNoSp dst,
12078                          iRegL src1, iRegL src2,
12079                          immI src3) %{
12080   match(Set dst (AddL src1 (RShiftL src2 src3)));
12081 
12082   ins_cost(1.9 * INSN_COST);
12083   format %{ "add  $dst, $src1, $src2, ASR $src3" %}
12084 
12085   ins_encode %{
12086     __ add(as_Register($dst$$reg),
12087               as_Register($src1$$reg),
12088               as_Register($src2$$reg),
12089               Assembler::ASR,
12090               $src3$$constant & 0x3f);
12091   %}
12092 
12093   ins_pipe(ialu_reg_reg_shift);
12094 %}
12095 
12096 // This pattern is automatically generated from aarch64_ad.m4
12097 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12098 instruct AddI_reg_LShift_reg(iRegINoSp dst,
12099                          iRegIorL2I src1, iRegIorL2I src2,
12100                          immI src3) %{
12101   match(Set dst (AddI src1 (LShiftI src2 src3)));
12102 
12103   ins_cost(1.9 * INSN_COST);
12104   format %{ "addw  $dst, $src1, $src2, LSL $src3" %}
12105 
12106   ins_encode %{
12107     __ addw(as_Register($dst$$reg),
12108               as_Register($src1$$reg),
12109               as_Register($src2$$reg),
12110               Assembler::LSL,
12111               $src3$$constant & 0x1f);
12112   %}
12113 
12114   ins_pipe(ialu_reg_reg_shift);
12115 %}
12116 
12117 // This pattern is automatically generated from aarch64_ad.m4
12118 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12119 instruct AddL_reg_LShift_reg(iRegLNoSp dst,
12120                          iRegL src1, iRegL src2,
12121                          immI src3) %{
12122   match(Set dst (AddL src1 (LShiftL src2 src3)));
12123 
12124   ins_cost(1.9 * INSN_COST);
12125   format %{ "add  $dst, $src1, $src2, LSL $src3" %}
12126 
12127   ins_encode %{
12128     __ add(as_Register($dst$$reg),
12129               as_Register($src1$$reg),
12130               as_Register($src2$$reg),
12131               Assembler::LSL,
12132               $src3$$constant & 0x3f);
12133   %}
12134 
12135   ins_pipe(ialu_reg_reg_shift);
12136 %}
12137 
12138 // This pattern is automatically generated from aarch64_ad.m4
12139 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12140 instruct SubI_reg_URShift_reg(iRegINoSp dst,
12141                          iRegIorL2I src1, iRegIorL2I src2,
12142                          immI src3) %{
12143   match(Set dst (SubI src1 (URShiftI src2 src3)));
12144 
12145   ins_cost(1.9 * INSN_COST);
12146   format %{ "subw  $dst, $src1, $src2, LSR $src3" %}
12147 
12148   ins_encode %{
12149     __ subw(as_Register($dst$$reg),
12150               as_Register($src1$$reg),
12151               as_Register($src2$$reg),
12152               Assembler::LSR,
12153               $src3$$constant & 0x1f);
12154   %}
12155 
12156   ins_pipe(ialu_reg_reg_shift);
12157 %}
12158 
12159 // This pattern is automatically generated from aarch64_ad.m4
12160 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12161 instruct SubL_reg_URShift_reg(iRegLNoSp dst,
12162                          iRegL src1, iRegL src2,
12163                          immI src3) %{
12164   match(Set dst (SubL src1 (URShiftL src2 src3)));
12165 
12166   ins_cost(1.9 * INSN_COST);
12167   format %{ "sub  $dst, $src1, $src2, LSR $src3" %}
12168 
12169   ins_encode %{
12170     __ sub(as_Register($dst$$reg),
12171               as_Register($src1$$reg),
12172               as_Register($src2$$reg),
12173               Assembler::LSR,
12174               $src3$$constant & 0x3f);
12175   %}
12176 
12177   ins_pipe(ialu_reg_reg_shift);
12178 %}
12179 
12180 // This pattern is automatically generated from aarch64_ad.m4
12181 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12182 instruct SubI_reg_RShift_reg(iRegINoSp dst,
12183                          iRegIorL2I src1, iRegIorL2I src2,
12184                          immI src3) %{
12185   match(Set dst (SubI src1 (RShiftI src2 src3)));
12186 
12187   ins_cost(1.9 * INSN_COST);
12188   format %{ "subw  $dst, $src1, $src2, ASR $src3" %}
12189 
12190   ins_encode %{
12191     __ subw(as_Register($dst$$reg),
12192               as_Register($src1$$reg),
12193               as_Register($src2$$reg),
12194               Assembler::ASR,
12195               $src3$$constant & 0x1f);
12196   %}
12197 
12198   ins_pipe(ialu_reg_reg_shift);
12199 %}
12200 
12201 // This pattern is automatically generated from aarch64_ad.m4
12202 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12203 instruct SubL_reg_RShift_reg(iRegLNoSp dst,
12204                          iRegL src1, iRegL src2,
12205                          immI src3) %{
12206   match(Set dst (SubL src1 (RShiftL src2 src3)));
12207 
12208   ins_cost(1.9 * INSN_COST);
12209   format %{ "sub  $dst, $src1, $src2, ASR $src3" %}
12210 
12211   ins_encode %{
12212     __ sub(as_Register($dst$$reg),
12213               as_Register($src1$$reg),
12214               as_Register($src2$$reg),
12215               Assembler::ASR,
12216               $src3$$constant & 0x3f);
12217   %}
12218 
12219   ins_pipe(ialu_reg_reg_shift);
12220 %}
12221 
12222 // This pattern is automatically generated from aarch64_ad.m4
12223 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12224 instruct SubI_reg_LShift_reg(iRegINoSp dst,
12225                          iRegIorL2I src1, iRegIorL2I src2,
12226                          immI src3) %{
12227   match(Set dst (SubI src1 (LShiftI src2 src3)));
12228 
12229   ins_cost(1.9 * INSN_COST);
12230   format %{ "subw  $dst, $src1, $src2, LSL $src3" %}
12231 
12232   ins_encode %{
12233     __ subw(as_Register($dst$$reg),
12234               as_Register($src1$$reg),
12235               as_Register($src2$$reg),
12236               Assembler::LSL,
12237               $src3$$constant & 0x1f);
12238   %}
12239 
12240   ins_pipe(ialu_reg_reg_shift);
12241 %}
12242 
12243 // This pattern is automatically generated from aarch64_ad.m4
12244 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12245 instruct SubL_reg_LShift_reg(iRegLNoSp dst,
12246                          iRegL src1, iRegL src2,
12247                          immI src3) %{
12248   match(Set dst (SubL src1 (LShiftL src2 src3)));
12249 
12250   ins_cost(1.9 * INSN_COST);
12251   format %{ "sub  $dst, $src1, $src2, LSL $src3" %}
12252 
12253   ins_encode %{
12254     __ sub(as_Register($dst$$reg),
12255               as_Register($src1$$reg),
12256               as_Register($src2$$reg),
12257               Assembler::LSL,
12258               $src3$$constant & 0x3f);
12259   %}
12260 
12261   ins_pipe(ialu_reg_reg_shift);
12262 %}
12263 
12264 // This pattern is automatically generated from aarch64_ad.m4
12265 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12266 
12267 // Shift Left followed by Shift Right.
12268 // This idiom is used by the compiler for the i2b bytecode etc.
12269 instruct sbfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count)
12270 %{
12271   match(Set dst (RShiftL (LShiftL src lshift_count) rshift_count));
12272   ins_cost(INSN_COST * 2);
12273   format %{ "sbfm  $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %}
12274   ins_encode %{
12275     int lshift = $lshift_count$$constant & 63;
12276     int rshift = $rshift_count$$constant & 63;
12277     int s = 63 - lshift;
12278     int r = (rshift - lshift) & 63;
12279     __ sbfm(as_Register($dst$$reg),
12280             as_Register($src$$reg),
12281             r, s);
12282   %}
12283 
12284   ins_pipe(ialu_reg_shift);
12285 %}
12286 
12287 // This pattern is automatically generated from aarch64_ad.m4
12288 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12289 
12290 // Shift Left followed by Shift Right.
12291 // This idiom is used by the compiler for the i2b bytecode etc.
12292 instruct sbfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count)
12293 %{
12294   match(Set dst (RShiftI (LShiftI src lshift_count) rshift_count));
12295   ins_cost(INSN_COST * 2);
12296   format %{ "sbfmw  $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %}
12297   ins_encode %{
12298     int lshift = $lshift_count$$constant & 31;
12299     int rshift = $rshift_count$$constant & 31;
12300     int s = 31 - lshift;
12301     int r = (rshift - lshift) & 31;
12302     __ sbfmw(as_Register($dst$$reg),
12303             as_Register($src$$reg),
12304             r, s);
12305   %}
12306 
12307   ins_pipe(ialu_reg_shift);
12308 %}
12309 
12310 // This pattern is automatically generated from aarch64_ad.m4
12311 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12312 
12313 // Shift Left followed by Shift Right.
12314 // This idiom is used by the compiler for the i2b bytecode etc.
12315 instruct ubfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count)
12316 %{
12317   match(Set dst (URShiftL (LShiftL src lshift_count) rshift_count));
12318   ins_cost(INSN_COST * 2);
12319   format %{ "ubfm  $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %}
12320   ins_encode %{
12321     int lshift = $lshift_count$$constant & 63;
12322     int rshift = $rshift_count$$constant & 63;
12323     int s = 63 - lshift;
12324     int r = (rshift - lshift) & 63;
12325     __ ubfm(as_Register($dst$$reg),
12326             as_Register($src$$reg),
12327             r, s);
12328   %}
12329 
12330   ins_pipe(ialu_reg_shift);
12331 %}
12332 
12333 // This pattern is automatically generated from aarch64_ad.m4
12334 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12335 
12336 // Shift Left followed by Shift Right.
12337 // This idiom is used by the compiler for the i2b bytecode etc.
12338 instruct ubfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count)
12339 %{
12340   match(Set dst (URShiftI (LShiftI src lshift_count) rshift_count));
12341   ins_cost(INSN_COST * 2);
12342   format %{ "ubfmw  $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %}
12343   ins_encode %{
12344     int lshift = $lshift_count$$constant & 31;
12345     int rshift = $rshift_count$$constant & 31;
12346     int s = 31 - lshift;
12347     int r = (rshift - lshift) & 31;
12348     __ ubfmw(as_Register($dst$$reg),
12349             as_Register($src$$reg),
12350             r, s);
12351   %}
12352 
12353   ins_pipe(ialu_reg_shift);
12354 %}
12355 
12356 // Bitfield extract with shift & mask
12357 
12358 // This pattern is automatically generated from aarch64_ad.m4
12359 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12360 instruct ubfxwI(iRegINoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask)
12361 %{
12362   match(Set dst (AndI (URShiftI src rshift) mask));
12363   // Make sure we are not going to exceed what ubfxw can do.
12364   predicate((exact_log2(n->in(2)->get_int() + 1) + (n->in(1)->in(2)->get_int() & 31)) <= (31 + 1));
12365 
12366   ins_cost(INSN_COST);
12367   format %{ "ubfxw $dst, $src, $rshift, $mask" %}
12368   ins_encode %{
12369     int rshift = $rshift$$constant & 31;
12370     intptr_t mask = $mask$$constant;
12371     int width = exact_log2(mask+1);
12372     __ ubfxw(as_Register($dst$$reg),
12373             as_Register($src$$reg), rshift, width);
12374   %}
12375   ins_pipe(ialu_reg_shift);
12376 %}
12377 
12378 // This pattern is automatically generated from aarch64_ad.m4
12379 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12380 instruct ubfxL(iRegLNoSp dst, iRegL src, immI rshift, immL_bitmask mask)
12381 %{
12382   match(Set dst (AndL (URShiftL src rshift) mask));
12383   // Make sure we are not going to exceed what ubfx can do.
12384   predicate((exact_log2_long(n->in(2)->get_long() + 1) + (n->in(1)->in(2)->get_int() & 63)) <= (63 + 1));
12385 
12386   ins_cost(INSN_COST);
12387   format %{ "ubfx $dst, $src, $rshift, $mask" %}
12388   ins_encode %{
12389     int rshift = $rshift$$constant & 63;
12390     intptr_t mask = $mask$$constant;
12391     int width = exact_log2_long(mask+1);
12392     __ ubfx(as_Register($dst$$reg),
12393             as_Register($src$$reg), rshift, width);
12394   %}
12395   ins_pipe(ialu_reg_shift);
12396 %}
12397 
12398 
12399 // This pattern is automatically generated from aarch64_ad.m4
12400 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12401 
12402 // We can use ubfx when extending an And with a mask when we know mask
12403 // is positive.  We know that because immI_bitmask guarantees it.
12404 instruct ubfxIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask)
12405 %{
12406   match(Set dst (ConvI2L (AndI (URShiftI src rshift) mask)));
12407   // Make sure we are not going to exceed what ubfxw can do.
12408   predicate((exact_log2(n->in(1)->in(2)->get_int() + 1) + (n->in(1)->in(1)->in(2)->get_int() & 31)) <= (31 + 1));
12409 
12410   ins_cost(INSN_COST * 2);
12411   format %{ "ubfx $dst, $src, $rshift, $mask" %}
12412   ins_encode %{
12413     int rshift = $rshift$$constant & 31;
12414     intptr_t mask = $mask$$constant;
12415     int width = exact_log2(mask+1);
12416     __ ubfx(as_Register($dst$$reg),
12417             as_Register($src$$reg), rshift, width);
12418   %}
12419   ins_pipe(ialu_reg_shift);
12420 %}
12421 
12422 
12423 // This pattern is automatically generated from aarch64_ad.m4
12424 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12425 
12426 // We can use ubfiz when masking by a positive number and then left shifting the result.
12427 // We know that the mask is positive because immI_bitmask guarantees it.
12428 instruct ubfizwI(iRegINoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask)
12429 %{
12430   match(Set dst (LShiftI (AndI src mask) lshift));
12431   predicate((exact_log2(n->in(1)->in(2)->get_int() + 1) + (n->in(2)->get_int() & 31)) <= (31 + 1));
12432 
12433   ins_cost(INSN_COST);
12434   format %{ "ubfizw $dst, $src, $lshift, $mask" %}
12435   ins_encode %{
12436     int lshift = $lshift$$constant & 31;
12437     intptr_t mask = $mask$$constant;
12438     int width = exact_log2(mask+1);
12439     __ ubfizw(as_Register($dst$$reg),
12440           as_Register($src$$reg), lshift, width);
12441   %}
12442   ins_pipe(ialu_reg_shift);
12443 %}
12444 
12445 // This pattern is automatically generated from aarch64_ad.m4
12446 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12447 
12448 // We can use ubfiz when masking by a positive number and then left shifting the result.
12449 // We know that the mask is positive because immL_bitmask guarantees it.
12450 instruct ubfizL(iRegLNoSp dst, iRegL src, immI lshift, immL_bitmask mask)
12451 %{
12452   match(Set dst (LShiftL (AndL src mask) lshift));
12453   predicate((exact_log2_long(n->in(1)->in(2)->get_long() + 1) + (n->in(2)->get_int() & 63)) <= (63 + 1));
12454 
12455   ins_cost(INSN_COST);
12456   format %{ "ubfiz $dst, $src, $lshift, $mask" %}
12457   ins_encode %{
12458     int lshift = $lshift$$constant & 63;
12459     intptr_t mask = $mask$$constant;
12460     int width = exact_log2_long(mask+1);
12461     __ ubfiz(as_Register($dst$$reg),
12462           as_Register($src$$reg), lshift, width);
12463   %}
12464   ins_pipe(ialu_reg_shift);
12465 %}
12466 
12467 // This pattern is automatically generated from aarch64_ad.m4
12468 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12469 
12470 // We can use ubfiz when masking by a positive number and then left shifting the result.
12471 // We know that the mask is positive because immI_bitmask guarantees it.
12472 instruct ubfizwIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask)
12473 %{
12474   match(Set dst (ConvI2L (LShiftI (AndI src mask) lshift)));
12475   predicate((exact_log2(n->in(1)->in(1)->in(2)->get_int() + 1) + (n->in(1)->in(2)->get_int() & 31)) <= 31);
12476 
12477   ins_cost(INSN_COST);
12478   format %{ "ubfizw $dst, $src, $lshift, $mask" %}
12479   ins_encode %{
12480     int lshift = $lshift$$constant & 31;
12481     intptr_t mask = $mask$$constant;
12482     int width = exact_log2(mask+1);
12483     __ ubfizw(as_Register($dst$$reg),
12484           as_Register($src$$reg), lshift, width);
12485   %}
12486   ins_pipe(ialu_reg_shift);
12487 %}
12488 
12489 // This pattern is automatically generated from aarch64_ad.m4
12490 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12491 
12492 // We can use ubfiz when masking by a positive number and then left shifting the result.
12493 // We know that the mask is positive because immL_bitmask guarantees it.
12494 instruct ubfizLConvL2I(iRegINoSp dst, iRegL src, immI lshift, immL_positive_bitmaskI mask)
12495 %{
12496   match(Set dst (ConvL2I (LShiftL (AndL src mask) lshift)));
12497   predicate((exact_log2_long(n->in(1)->in(1)->in(2)->get_long() + 1) + (n->in(1)->in(2)->get_int() & 63)) <= 31);
12498 
12499   ins_cost(INSN_COST);
12500   format %{ "ubfiz $dst, $src, $lshift, $mask" %}
12501   ins_encode %{
12502     int lshift = $lshift$$constant & 63;
12503     intptr_t mask = $mask$$constant;
12504     int width = exact_log2_long(mask+1);
12505     __ ubfiz(as_Register($dst$$reg),
12506           as_Register($src$$reg), lshift, width);
12507   %}
12508   ins_pipe(ialu_reg_shift);
12509 %}
12510 
12511 
12512 // This pattern is automatically generated from aarch64_ad.m4
12513 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12514 
12515 // If there is a convert I to L block between and AndI and a LShiftL, we can also match ubfiz
12516 instruct ubfizIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask)
12517 %{
12518   match(Set dst (LShiftL (ConvI2L (AndI src mask)) lshift));
12519   predicate((exact_log2(n->in(1)->in(1)->in(2)->get_int() + 1) + (n->in(2)->get_int() & 63)) <= (63 + 1));
12520 
12521   ins_cost(INSN_COST);
12522   format %{ "ubfiz $dst, $src, $lshift, $mask" %}
12523   ins_encode %{
12524     int lshift = $lshift$$constant & 63;
12525     intptr_t mask = $mask$$constant;
12526     int width = exact_log2(mask+1);
12527     __ ubfiz(as_Register($dst$$reg),
12528              as_Register($src$$reg), lshift, width);
12529   %}
12530   ins_pipe(ialu_reg_shift);
12531 %}
12532 
12533 // This pattern is automatically generated from aarch64_ad.m4
12534 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12535 
12536 // If there is a convert L to I block between and AndL and a LShiftI, we can also match ubfiz
12537 instruct ubfizLConvL2Ix(iRegINoSp dst, iRegL src, immI lshift, immL_positive_bitmaskI mask)
12538 %{
12539   match(Set dst (LShiftI (ConvL2I (AndL src mask)) lshift));
12540   predicate((exact_log2_long(n->in(1)->in(1)->in(2)->get_long() + 1) + (n->in(2)->get_int() & 31)) <= 31);
12541 
12542   ins_cost(INSN_COST);
12543   format %{ "ubfiz $dst, $src, $lshift, $mask" %}
12544   ins_encode %{
12545     int lshift = $lshift$$constant & 31;
12546     intptr_t mask = $mask$$constant;
12547     int width = exact_log2(mask+1);
12548     __ ubfiz(as_Register($dst$$reg),
12549              as_Register($src$$reg), lshift, width);
12550   %}
12551   ins_pipe(ialu_reg_shift);
12552 %}
12553 
12554 // This pattern is automatically generated from aarch64_ad.m4
12555 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12556 
12557 // Can skip int2long conversions after AND with small bitmask
12558 instruct ubfizIConvI2LAndI(iRegLNoSp dst, iRegI src, immI_bitmask msk)
12559 %{
12560   match(Set dst (ConvI2L (AndI src msk)));
12561   ins_cost(INSN_COST);
12562   format %{ "ubfiz $dst, $src, 0, exact_log2($msk + 1) " %}
12563   ins_encode %{
12564     __ ubfiz(as_Register($dst$$reg), as_Register($src$$reg), 0, exact_log2($msk$$constant + 1));
12565   %}
12566   ins_pipe(ialu_reg_shift);
12567 %}
12568 
12569 
12570 // Rotations
12571 
12572 // This pattern is automatically generated from aarch64_ad.m4
12573 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12574 instruct extrOrL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr)
12575 %{
12576   match(Set dst (OrL (LShiftL src1 lshift) (URShiftL src2 rshift)));
12577   predicate(0 == (((n->in(1)->in(2)->get_int() & 63) + (n->in(2)->in(2)->get_int() & 63)) & 63));
12578 
12579   ins_cost(INSN_COST);
12580   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12581 
12582   ins_encode %{
12583     __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12584             $rshift$$constant & 63);
12585   %}
12586   ins_pipe(ialu_reg_reg_extr);
12587 %}
12588 
12589 
12590 // This pattern is automatically generated from aarch64_ad.m4
12591 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12592 instruct extrOrI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr)
12593 %{
12594   match(Set dst (OrI (LShiftI src1 lshift) (URShiftI src2 rshift)));
12595   predicate(0 == (((n->in(1)->in(2)->get_int() & 31) + (n->in(2)->in(2)->get_int() & 31)) & 31));
12596 
12597   ins_cost(INSN_COST);
12598   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12599 
12600   ins_encode %{
12601     __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12602             $rshift$$constant & 31);
12603   %}
12604   ins_pipe(ialu_reg_reg_extr);
12605 %}
12606 
12607 
12608 // This pattern is automatically generated from aarch64_ad.m4
12609 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12610 instruct extrAddL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr)
12611 %{
12612   match(Set dst (AddL (LShiftL src1 lshift) (URShiftL src2 rshift)));
12613   predicate(0 == (((n->in(1)->in(2)->get_int() & 63) + (n->in(2)->in(2)->get_int() & 63)) & 63));
12614 
12615   ins_cost(INSN_COST);
12616   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12617 
12618   ins_encode %{
12619     __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12620             $rshift$$constant & 63);
12621   %}
12622   ins_pipe(ialu_reg_reg_extr);
12623 %}
12624 
12625 
12626 // This pattern is automatically generated from aarch64_ad.m4
12627 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12628 instruct extrAddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr)
12629 %{
12630   match(Set dst (AddI (LShiftI src1 lshift) (URShiftI src2 rshift)));
12631   predicate(0 == (((n->in(1)->in(2)->get_int() & 31) + (n->in(2)->in(2)->get_int() & 31)) & 31));
12632 
12633   ins_cost(INSN_COST);
12634   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12635 
12636   ins_encode %{
12637     __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12638             $rshift$$constant & 31);
12639   %}
12640   ins_pipe(ialu_reg_reg_extr);
12641 %}
12642 
12643 // This pattern is automatically generated from aarch64_ad.m4
12644 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12645 instruct rorI_imm(iRegINoSp dst, iRegI src, immI shift)
12646 %{
12647   match(Set dst (RotateRight src shift));
12648 
12649   ins_cost(INSN_COST);
12650   format %{ "ror    $dst, $src, $shift" %}
12651 
12652   ins_encode %{
12653      __ extrw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($src$$reg),
12654                $shift$$constant & 0x1f);
12655   %}
12656   ins_pipe(ialu_reg_reg_vshift);
12657 %}
12658 
12659 // This pattern is automatically generated from aarch64_ad.m4
12660 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12661 instruct rorL_imm(iRegLNoSp dst, iRegL src, immI shift)
12662 %{
12663   match(Set dst (RotateRight src shift));
12664 
12665   ins_cost(INSN_COST);
12666   format %{ "ror    $dst, $src, $shift" %}
12667 
12668   ins_encode %{
12669      __ extr(as_Register($dst$$reg), as_Register($src$$reg), as_Register($src$$reg),
12670                $shift$$constant & 0x3f);
12671   %}
12672   ins_pipe(ialu_reg_reg_vshift);
12673 %}
12674 
12675 // This pattern is automatically generated from aarch64_ad.m4
12676 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12677 instruct rorI_reg(iRegINoSp dst, iRegI src, iRegI shift)
12678 %{
12679   match(Set dst (RotateRight src shift));
12680 
12681   ins_cost(INSN_COST);
12682   format %{ "ror    $dst, $src, $shift" %}
12683 
12684   ins_encode %{
12685      __ rorvw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg));
12686   %}
12687   ins_pipe(ialu_reg_reg_vshift);
12688 %}
12689 
12690 // This pattern is automatically generated from aarch64_ad.m4
12691 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12692 instruct rorL_reg(iRegLNoSp dst, iRegL src, iRegI shift)
12693 %{
12694   match(Set dst (RotateRight src shift));
12695 
12696   ins_cost(INSN_COST);
12697   format %{ "ror    $dst, $src, $shift" %}
12698 
12699   ins_encode %{
12700      __ rorv(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg));
12701   %}
12702   ins_pipe(ialu_reg_reg_vshift);
12703 %}
12704 
12705 // This pattern is automatically generated from aarch64_ad.m4
12706 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12707 instruct rolI_reg(iRegINoSp dst, iRegI src, iRegI shift)
12708 %{
12709   match(Set dst (RotateLeft src shift));
12710 
12711   ins_cost(INSN_COST);
12712   format %{ "rol    $dst, $src, $shift" %}
12713 
12714   ins_encode %{
12715      __ subw(rscratch1, zr, as_Register($shift$$reg));
12716      __ rorvw(as_Register($dst$$reg), as_Register($src$$reg), rscratch1);
12717   %}
12718   ins_pipe(ialu_reg_reg_vshift);
12719 %}
12720 
12721 // This pattern is automatically generated from aarch64_ad.m4
12722 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12723 instruct rolL_reg(iRegLNoSp dst, iRegL src, iRegI shift)
12724 %{
12725   match(Set dst (RotateLeft src shift));
12726 
12727   ins_cost(INSN_COST);
12728   format %{ "rol    $dst, $src, $shift" %}
12729 
12730   ins_encode %{
12731      __ subw(rscratch1, zr, as_Register($shift$$reg));
12732      __ rorv(as_Register($dst$$reg), as_Register($src$$reg), rscratch1);
12733   %}
12734   ins_pipe(ialu_reg_reg_vshift);
12735 %}
12736 
12737 
12738 // Add/subtract (extended)
12739 
12740 // This pattern is automatically generated from aarch64_ad.m4
12741 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12742 instruct AddExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr)
12743 %{
12744   match(Set dst (AddL src1 (ConvI2L src2)));
12745   ins_cost(INSN_COST);
12746   format %{ "add  $dst, $src1, $src2, sxtw" %}
12747 
12748    ins_encode %{
12749      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12750             as_Register($src2$$reg), ext::sxtw);
12751    %}
12752   ins_pipe(ialu_reg_reg);
12753 %}
12754 
12755 // This pattern is automatically generated from aarch64_ad.m4
12756 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12757 instruct SubExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr)
12758 %{
12759   match(Set dst (SubL src1 (ConvI2L src2)));
12760   ins_cost(INSN_COST);
12761   format %{ "sub  $dst, $src1, $src2, sxtw" %}
12762 
12763    ins_encode %{
12764      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
12765             as_Register($src2$$reg), ext::sxtw);
12766    %}
12767   ins_pipe(ialu_reg_reg);
12768 %}
12769 
12770 // This pattern is automatically generated from aarch64_ad.m4
12771 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12772 instruct AddExtI_sxth(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_16 lshift, immI_16 rshift, rFlagsReg cr)
12773 %{
12774   match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift)));
12775   ins_cost(INSN_COST);
12776   format %{ "add  $dst, $src1, $src2, sxth" %}
12777 
12778    ins_encode %{
12779      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12780             as_Register($src2$$reg), ext::sxth);
12781    %}
12782   ins_pipe(ialu_reg_reg);
12783 %}
12784 
12785 // This pattern is automatically generated from aarch64_ad.m4
12786 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12787 instruct AddExtI_sxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr)
12788 %{
12789   match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift)));
12790   ins_cost(INSN_COST);
12791   format %{ "add  $dst, $src1, $src2, sxtb" %}
12792 
12793    ins_encode %{
12794      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12795             as_Register($src2$$reg), ext::sxtb);
12796    %}
12797   ins_pipe(ialu_reg_reg);
12798 %}
12799 
12800 // This pattern is automatically generated from aarch64_ad.m4
12801 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12802 instruct AddExtI_uxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr)
12803 %{
12804   match(Set dst (AddI src1 (URShiftI (LShiftI src2 lshift) rshift)));
12805   ins_cost(INSN_COST);
12806   format %{ "add  $dst, $src1, $src2, uxtb" %}
12807 
12808    ins_encode %{
12809      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12810             as_Register($src2$$reg), ext::uxtb);
12811    %}
12812   ins_pipe(ialu_reg_reg);
12813 %}
12814 
12815 // This pattern is automatically generated from aarch64_ad.m4
12816 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12817 instruct AddExtL_sxth(iRegLNoSp dst, iRegL src1, iRegL src2, immI_48 lshift, immI_48 rshift, rFlagsReg cr)
12818 %{
12819   match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
12820   ins_cost(INSN_COST);
12821   format %{ "add  $dst, $src1, $src2, sxth" %}
12822 
12823    ins_encode %{
12824      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12825             as_Register($src2$$reg), ext::sxth);
12826    %}
12827   ins_pipe(ialu_reg_reg);
12828 %}
12829 
12830 // This pattern is automatically generated from aarch64_ad.m4
12831 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12832 instruct AddExtL_sxtw(iRegLNoSp dst, iRegL src1, iRegL src2, immI_32 lshift, immI_32 rshift, rFlagsReg cr)
12833 %{
12834   match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
12835   ins_cost(INSN_COST);
12836   format %{ "add  $dst, $src1, $src2, sxtw" %}
12837 
12838    ins_encode %{
12839      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12840             as_Register($src2$$reg), ext::sxtw);
12841    %}
12842   ins_pipe(ialu_reg_reg);
12843 %}
12844 
12845 // This pattern is automatically generated from aarch64_ad.m4
12846 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12847 instruct AddExtL_sxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr)
12848 %{
12849   match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
12850   ins_cost(INSN_COST);
12851   format %{ "add  $dst, $src1, $src2, sxtb" %}
12852 
12853    ins_encode %{
12854      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12855             as_Register($src2$$reg), ext::sxtb);
12856    %}
12857   ins_pipe(ialu_reg_reg);
12858 %}
12859 
12860 // This pattern is automatically generated from aarch64_ad.m4
12861 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12862 instruct AddExtL_uxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr)
12863 %{
12864   match(Set dst (AddL src1 (URShiftL (LShiftL src2 lshift) rshift)));
12865   ins_cost(INSN_COST);
12866   format %{ "add  $dst, $src1, $src2, uxtb" %}
12867 
12868    ins_encode %{
12869      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12870             as_Register($src2$$reg), ext::uxtb);
12871    %}
12872   ins_pipe(ialu_reg_reg);
12873 %}
12874 
12875 // This pattern is automatically generated from aarch64_ad.m4
12876 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12877 instruct AddExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr)
12878 %{
12879   match(Set dst (AddI src1 (AndI src2 mask)));
12880   ins_cost(INSN_COST);
12881   format %{ "addw  $dst, $src1, $src2, uxtb" %}
12882 
12883    ins_encode %{
12884      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
12885             as_Register($src2$$reg), ext::uxtb);
12886    %}
12887   ins_pipe(ialu_reg_reg);
12888 %}
12889 
12890 // This pattern is automatically generated from aarch64_ad.m4
12891 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12892 instruct AddExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr)
12893 %{
12894   match(Set dst (AddI src1 (AndI src2 mask)));
12895   ins_cost(INSN_COST);
12896   format %{ "addw  $dst, $src1, $src2, uxth" %}
12897 
12898    ins_encode %{
12899      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
12900             as_Register($src2$$reg), ext::uxth);
12901    %}
12902   ins_pipe(ialu_reg_reg);
12903 %}
12904 
12905 // This pattern is automatically generated from aarch64_ad.m4
12906 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12907 instruct AddExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr)
12908 %{
12909   match(Set dst (AddL src1 (AndL src2 mask)));
12910   ins_cost(INSN_COST);
12911   format %{ "add  $dst, $src1, $src2, uxtb" %}
12912 
12913    ins_encode %{
12914      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12915             as_Register($src2$$reg), ext::uxtb);
12916    %}
12917   ins_pipe(ialu_reg_reg);
12918 %}
12919 
12920 // This pattern is automatically generated from aarch64_ad.m4
12921 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12922 instruct AddExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr)
12923 %{
12924   match(Set dst (AddL src1 (AndL src2 mask)));
12925   ins_cost(INSN_COST);
12926   format %{ "add  $dst, $src1, $src2, uxth" %}
12927 
12928    ins_encode %{
12929      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12930             as_Register($src2$$reg), ext::uxth);
12931    %}
12932   ins_pipe(ialu_reg_reg);
12933 %}
12934 
12935 // This pattern is automatically generated from aarch64_ad.m4
12936 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12937 instruct AddExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr)
12938 %{
12939   match(Set dst (AddL src1 (AndL src2 mask)));
12940   ins_cost(INSN_COST);
12941   format %{ "add  $dst, $src1, $src2, uxtw" %}
12942 
12943    ins_encode %{
12944      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12945             as_Register($src2$$reg), ext::uxtw);
12946    %}
12947   ins_pipe(ialu_reg_reg);
12948 %}
12949 
12950 // This pattern is automatically generated from aarch64_ad.m4
12951 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12952 instruct SubExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr)
12953 %{
12954   match(Set dst (SubI src1 (AndI src2 mask)));
12955   ins_cost(INSN_COST);
12956   format %{ "subw  $dst, $src1, $src2, uxtb" %}
12957 
12958    ins_encode %{
12959      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
12960             as_Register($src2$$reg), ext::uxtb);
12961    %}
12962   ins_pipe(ialu_reg_reg);
12963 %}
12964 
12965 // This pattern is automatically generated from aarch64_ad.m4
12966 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12967 instruct SubExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr)
12968 %{
12969   match(Set dst (SubI src1 (AndI src2 mask)));
12970   ins_cost(INSN_COST);
12971   format %{ "subw  $dst, $src1, $src2, uxth" %}
12972 
12973    ins_encode %{
12974      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
12975             as_Register($src2$$reg), ext::uxth);
12976    %}
12977   ins_pipe(ialu_reg_reg);
12978 %}
12979 
12980 // This pattern is automatically generated from aarch64_ad.m4
12981 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12982 instruct SubExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr)
12983 %{
12984   match(Set dst (SubL src1 (AndL src2 mask)));
12985   ins_cost(INSN_COST);
12986   format %{ "sub  $dst, $src1, $src2, uxtb" %}
12987 
12988    ins_encode %{
12989      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
12990             as_Register($src2$$reg), ext::uxtb);
12991    %}
12992   ins_pipe(ialu_reg_reg);
12993 %}
12994 
12995 // This pattern is automatically generated from aarch64_ad.m4
12996 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12997 instruct SubExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr)
12998 %{
12999   match(Set dst (SubL src1 (AndL src2 mask)));
13000   ins_cost(INSN_COST);
13001   format %{ "sub  $dst, $src1, $src2, uxth" %}
13002 
13003    ins_encode %{
13004      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13005             as_Register($src2$$reg), ext::uxth);
13006    %}
13007   ins_pipe(ialu_reg_reg);
13008 %}
13009 
13010 // This pattern is automatically generated from aarch64_ad.m4
13011 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13012 instruct SubExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr)
13013 %{
13014   match(Set dst (SubL src1 (AndL src2 mask)));
13015   ins_cost(INSN_COST);
13016   format %{ "sub  $dst, $src1, $src2, uxtw" %}
13017 
13018    ins_encode %{
13019      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13020             as_Register($src2$$reg), ext::uxtw);
13021    %}
13022   ins_pipe(ialu_reg_reg);
13023 %}
13024 
13025 
13026 // This pattern is automatically generated from aarch64_ad.m4
13027 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13028 instruct AddExtL_sxtb_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_56 lshift1, immI_56 rshift1, rFlagsReg cr)
13029 %{
13030   match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13031   ins_cost(1.9 * INSN_COST);
13032   format %{ "add  $dst, $src1, $src2, sxtb #lshift2" %}
13033 
13034    ins_encode %{
13035      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13036             as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant));
13037    %}
13038   ins_pipe(ialu_reg_reg_shift);
13039 %}
13040 
13041 // This pattern is automatically generated from aarch64_ad.m4
13042 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13043 instruct AddExtL_sxth_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_48 lshift1, immI_48 rshift1, rFlagsReg cr)
13044 %{
13045   match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13046   ins_cost(1.9 * INSN_COST);
13047   format %{ "add  $dst, $src1, $src2, sxth #lshift2" %}
13048 
13049    ins_encode %{
13050      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13051             as_Register($src2$$reg), ext::sxth, ($lshift2$$constant));
13052    %}
13053   ins_pipe(ialu_reg_reg_shift);
13054 %}
13055 
13056 // This pattern is automatically generated from aarch64_ad.m4
13057 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13058 instruct AddExtL_sxtw_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_32 lshift1, immI_32 rshift1, rFlagsReg cr)
13059 %{
13060   match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13061   ins_cost(1.9 * INSN_COST);
13062   format %{ "add  $dst, $src1, $src2, sxtw #lshift2" %}
13063 
13064    ins_encode %{
13065      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13066             as_Register($src2$$reg), ext::sxtw, ($lshift2$$constant));
13067    %}
13068   ins_pipe(ialu_reg_reg_shift);
13069 %}
13070 
13071 // This pattern is automatically generated from aarch64_ad.m4
13072 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13073 instruct SubExtL_sxtb_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_56 lshift1, immI_56 rshift1, rFlagsReg cr)
13074 %{
13075   match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13076   ins_cost(1.9 * INSN_COST);
13077   format %{ "sub  $dst, $src1, $src2, sxtb #lshift2" %}
13078 
13079    ins_encode %{
13080      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13081             as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant));
13082    %}
13083   ins_pipe(ialu_reg_reg_shift);
13084 %}
13085 
13086 // This pattern is automatically generated from aarch64_ad.m4
13087 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13088 instruct SubExtL_sxth_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_48 lshift1, immI_48 rshift1, rFlagsReg cr)
13089 %{
13090   match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13091   ins_cost(1.9 * INSN_COST);
13092   format %{ "sub  $dst, $src1, $src2, sxth #lshift2" %}
13093 
13094    ins_encode %{
13095      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13096             as_Register($src2$$reg), ext::sxth, ($lshift2$$constant));
13097    %}
13098   ins_pipe(ialu_reg_reg_shift);
13099 %}
13100 
13101 // This pattern is automatically generated from aarch64_ad.m4
13102 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13103 instruct SubExtL_sxtw_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_32 lshift1, immI_32 rshift1, rFlagsReg cr)
13104 %{
13105   match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13106   ins_cost(1.9 * INSN_COST);
13107   format %{ "sub  $dst, $src1, $src2, sxtw #lshift2" %}
13108 
13109    ins_encode %{
13110      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13111             as_Register($src2$$reg), ext::sxtw, ($lshift2$$constant));
13112    %}
13113   ins_pipe(ialu_reg_reg_shift);
13114 %}
13115 
13116 // This pattern is automatically generated from aarch64_ad.m4
13117 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13118 instruct AddExtI_sxtb_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_24 lshift1, immI_24 rshift1, rFlagsReg cr)
13119 %{
13120   match(Set dst (AddI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2)));
13121   ins_cost(1.9 * INSN_COST);
13122   format %{ "addw  $dst, $src1, $src2, sxtb #lshift2" %}
13123 
13124    ins_encode %{
13125      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
13126             as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant));
13127    %}
13128   ins_pipe(ialu_reg_reg_shift);
13129 %}
13130 
13131 // This pattern is automatically generated from aarch64_ad.m4
13132 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13133 instruct AddExtI_sxth_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_16 lshift1, immI_16 rshift1, rFlagsReg cr)
13134 %{
13135   match(Set dst (AddI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2)));
13136   ins_cost(1.9 * INSN_COST);
13137   format %{ "addw  $dst, $src1, $src2, sxth #lshift2" %}
13138 
13139    ins_encode %{
13140      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
13141             as_Register($src2$$reg), ext::sxth, ($lshift2$$constant));
13142    %}
13143   ins_pipe(ialu_reg_reg_shift);
13144 %}
13145 
13146 // This pattern is automatically generated from aarch64_ad.m4
13147 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13148 instruct SubExtI_sxtb_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_24 lshift1, immI_24 rshift1, rFlagsReg cr)
13149 %{
13150   match(Set dst (SubI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2)));
13151   ins_cost(1.9 * INSN_COST);
13152   format %{ "subw  $dst, $src1, $src2, sxtb #lshift2" %}
13153 
13154    ins_encode %{
13155      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
13156             as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant));
13157    %}
13158   ins_pipe(ialu_reg_reg_shift);
13159 %}
13160 
13161 // This pattern is automatically generated from aarch64_ad.m4
13162 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13163 instruct SubExtI_sxth_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_16 lshift1, immI_16 rshift1, rFlagsReg cr)
13164 %{
13165   match(Set dst (SubI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2)));
13166   ins_cost(1.9 * INSN_COST);
13167   format %{ "subw  $dst, $src1, $src2, sxth #lshift2" %}
13168 
13169    ins_encode %{
13170      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
13171             as_Register($src2$$reg), ext::sxth, ($lshift2$$constant));
13172    %}
13173   ins_pipe(ialu_reg_reg_shift);
13174 %}
13175 
13176 // This pattern is automatically generated from aarch64_ad.m4
13177 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13178 instruct AddExtI_shift(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, immIExt lshift, rFlagsReg cr)
13179 %{
13180   match(Set dst (AddL src1 (LShiftL (ConvI2L src2) lshift)));
13181   ins_cost(1.9 * INSN_COST);
13182   format %{ "add  $dst, $src1, $src2, sxtw #lshift" %}
13183 
13184    ins_encode %{
13185      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13186             as_Register($src2$$reg), ext::sxtw, ($lshift$$constant));
13187    %}
13188   ins_pipe(ialu_reg_reg_shift);
13189 %}
13190 
13191 // This pattern is automatically generated from aarch64_ad.m4
13192 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13193 instruct SubExtI_shift(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, immIExt lshift, rFlagsReg cr)
13194 %{
13195   match(Set dst (SubL src1 (LShiftL (ConvI2L src2) lshift)));
13196   ins_cost(1.9 * INSN_COST);
13197   format %{ "sub  $dst, $src1, $src2, sxtw #lshift" %}
13198 
13199    ins_encode %{
13200      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13201             as_Register($src2$$reg), ext::sxtw, ($lshift$$constant));
13202    %}
13203   ins_pipe(ialu_reg_reg_shift);
13204 %}
13205 
13206 // This pattern is automatically generated from aarch64_ad.m4
13207 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13208 instruct AddExtL_uxtb_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, immIExt lshift, rFlagsReg cr)
13209 %{
13210   match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift)));
13211   ins_cost(1.9 * INSN_COST);
13212   format %{ "add  $dst, $src1, $src2, uxtb #lshift" %}
13213 
13214    ins_encode %{
13215      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13216             as_Register($src2$$reg), ext::uxtb, ($lshift$$constant));
13217    %}
13218   ins_pipe(ialu_reg_reg_shift);
13219 %}
13220 
13221 // This pattern is automatically generated from aarch64_ad.m4
13222 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13223 instruct AddExtL_uxth_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, immIExt lshift, rFlagsReg cr)
13224 %{
13225   match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift)));
13226   ins_cost(1.9 * INSN_COST);
13227   format %{ "add  $dst, $src1, $src2, uxth #lshift" %}
13228 
13229    ins_encode %{
13230      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13231             as_Register($src2$$reg), ext::uxth, ($lshift$$constant));
13232    %}
13233   ins_pipe(ialu_reg_reg_shift);
13234 %}
13235 
13236 // This pattern is automatically generated from aarch64_ad.m4
13237 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13238 instruct AddExtL_uxtw_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, immIExt lshift, rFlagsReg cr)
13239 %{
13240   match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift)));
13241   ins_cost(1.9 * INSN_COST);
13242   format %{ "add  $dst, $src1, $src2, uxtw #lshift" %}
13243 
13244    ins_encode %{
13245      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13246             as_Register($src2$$reg), ext::uxtw, ($lshift$$constant));
13247    %}
13248   ins_pipe(ialu_reg_reg_shift);
13249 %}
13250 
13251 // This pattern is automatically generated from aarch64_ad.m4
13252 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13253 instruct SubExtL_uxtb_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, immIExt lshift, rFlagsReg cr)
13254 %{
13255   match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift)));
13256   ins_cost(1.9 * INSN_COST);
13257   format %{ "sub  $dst, $src1, $src2, uxtb #lshift" %}
13258 
13259    ins_encode %{
13260      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13261             as_Register($src2$$reg), ext::uxtb, ($lshift$$constant));
13262    %}
13263   ins_pipe(ialu_reg_reg_shift);
13264 %}
13265 
13266 // This pattern is automatically generated from aarch64_ad.m4
13267 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13268 instruct SubExtL_uxth_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, immIExt lshift, rFlagsReg cr)
13269 %{
13270   match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift)));
13271   ins_cost(1.9 * INSN_COST);
13272   format %{ "sub  $dst, $src1, $src2, uxth #lshift" %}
13273 
13274    ins_encode %{
13275      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13276             as_Register($src2$$reg), ext::uxth, ($lshift$$constant));
13277    %}
13278   ins_pipe(ialu_reg_reg_shift);
13279 %}
13280 
13281 // This pattern is automatically generated from aarch64_ad.m4
13282 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13283 instruct SubExtL_uxtw_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, immIExt lshift, rFlagsReg cr)
13284 %{
13285   match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift)));
13286   ins_cost(1.9 * INSN_COST);
13287   format %{ "sub  $dst, $src1, $src2, uxtw #lshift" %}
13288 
13289    ins_encode %{
13290      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13291             as_Register($src2$$reg), ext::uxtw, ($lshift$$constant));
13292    %}
13293   ins_pipe(ialu_reg_reg_shift);
13294 %}
13295 
13296 // This pattern is automatically generated from aarch64_ad.m4
13297 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13298 instruct AddExtI_uxtb_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, immIExt lshift, rFlagsReg cr)
13299 %{
13300   match(Set dst (AddI src1 (LShiftI (AndI src2 mask) lshift)));
13301   ins_cost(1.9 * INSN_COST);
13302   format %{ "addw  $dst, $src1, $src2, uxtb #lshift" %}
13303 
13304    ins_encode %{
13305      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
13306             as_Register($src2$$reg), ext::uxtb, ($lshift$$constant));
13307    %}
13308   ins_pipe(ialu_reg_reg_shift);
13309 %}
13310 
13311 // This pattern is automatically generated from aarch64_ad.m4
13312 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13313 instruct AddExtI_uxth_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, immIExt lshift, rFlagsReg cr)
13314 %{
13315   match(Set dst (AddI src1 (LShiftI (AndI src2 mask) lshift)));
13316   ins_cost(1.9 * INSN_COST);
13317   format %{ "addw  $dst, $src1, $src2, uxth #lshift" %}
13318 
13319    ins_encode %{
13320      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
13321             as_Register($src2$$reg), ext::uxth, ($lshift$$constant));
13322    %}
13323   ins_pipe(ialu_reg_reg_shift);
13324 %}
13325 
13326 // This pattern is automatically generated from aarch64_ad.m4
13327 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13328 instruct SubExtI_uxtb_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, immIExt lshift, rFlagsReg cr)
13329 %{
13330   match(Set dst (SubI src1 (LShiftI (AndI src2 mask) lshift)));
13331   ins_cost(1.9 * INSN_COST);
13332   format %{ "subw  $dst, $src1, $src2, uxtb #lshift" %}
13333 
13334    ins_encode %{
13335      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
13336             as_Register($src2$$reg), ext::uxtb, ($lshift$$constant));
13337    %}
13338   ins_pipe(ialu_reg_reg_shift);
13339 %}
13340 
13341 // This pattern is automatically generated from aarch64_ad.m4
13342 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13343 instruct SubExtI_uxth_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, immIExt lshift, rFlagsReg cr)
13344 %{
13345   match(Set dst (SubI src1 (LShiftI (AndI src2 mask) lshift)));
13346   ins_cost(1.9 * INSN_COST);
13347   format %{ "subw  $dst, $src1, $src2, uxth #lshift" %}
13348 
13349    ins_encode %{
13350      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
13351             as_Register($src2$$reg), ext::uxth, ($lshift$$constant));
13352    %}
13353   ins_pipe(ialu_reg_reg_shift);
13354 %}
13355 
13356 // This pattern is automatically generated from aarch64_ad.m4
13357 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13358 instruct cmovI_reg_reg_lt(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr)
13359 %{
13360   effect(DEF dst, USE src1, USE src2, USE cr);
13361   ins_cost(INSN_COST * 2);
13362   format %{ "cselw $dst, $src1, $src2 lt\t"  %}
13363 
13364   ins_encode %{
13365     __ cselw($dst$$Register,
13366              $src1$$Register,
13367              $src2$$Register,
13368              Assembler::LT);
13369   %}
13370   ins_pipe(icond_reg_reg);
13371 %}
13372 
13373 // This pattern is automatically generated from aarch64_ad.m4
13374 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13375 instruct cmovI_reg_reg_gt(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr)
13376 %{
13377   effect(DEF dst, USE src1, USE src2, USE cr);
13378   ins_cost(INSN_COST * 2);
13379   format %{ "cselw $dst, $src1, $src2 gt\t"  %}
13380 
13381   ins_encode %{
13382     __ cselw($dst$$Register,
13383              $src1$$Register,
13384              $src2$$Register,
13385              Assembler::GT);
13386   %}
13387   ins_pipe(icond_reg_reg);
13388 %}
13389 
13390 // This pattern is automatically generated from aarch64_ad.m4
13391 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13392 instruct cmovI_reg_imm0_lt(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13393 %{
13394   effect(DEF dst, USE src1, USE cr);
13395   ins_cost(INSN_COST * 2);
13396   format %{ "cselw $dst, $src1, zr lt\t"  %}
13397 
13398   ins_encode %{
13399     __ cselw($dst$$Register,
13400              $src1$$Register,
13401              zr,
13402              Assembler::LT);
13403   %}
13404   ins_pipe(icond_reg);
13405 %}
13406 
13407 // This pattern is automatically generated from aarch64_ad.m4
13408 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13409 instruct cmovI_reg_imm0_gt(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13410 %{
13411   effect(DEF dst, USE src1, USE cr);
13412   ins_cost(INSN_COST * 2);
13413   format %{ "cselw $dst, $src1, zr gt\t"  %}
13414 
13415   ins_encode %{
13416     __ cselw($dst$$Register,
13417              $src1$$Register,
13418              zr,
13419              Assembler::GT);
13420   %}
13421   ins_pipe(icond_reg);
13422 %}
13423 
13424 // This pattern is automatically generated from aarch64_ad.m4
13425 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13426 instruct cmovI_reg_imm1_le(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13427 %{
13428   effect(DEF dst, USE src1, USE cr);
13429   ins_cost(INSN_COST * 2);
13430   format %{ "csincw $dst, $src1, zr le\t"  %}
13431 
13432   ins_encode %{
13433     __ csincw($dst$$Register,
13434              $src1$$Register,
13435              zr,
13436              Assembler::LE);
13437   %}
13438   ins_pipe(icond_reg);
13439 %}
13440 
13441 // This pattern is automatically generated from aarch64_ad.m4
13442 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13443 instruct cmovI_reg_imm1_gt(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13444 %{
13445   effect(DEF dst, USE src1, USE cr);
13446   ins_cost(INSN_COST * 2);
13447   format %{ "csincw $dst, $src1, zr gt\t"  %}
13448 
13449   ins_encode %{
13450     __ csincw($dst$$Register,
13451              $src1$$Register,
13452              zr,
13453              Assembler::GT);
13454   %}
13455   ins_pipe(icond_reg);
13456 %}
13457 
13458 // This pattern is automatically generated from aarch64_ad.m4
13459 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13460 instruct cmovI_reg_immM1_lt(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13461 %{
13462   effect(DEF dst, USE src1, USE cr);
13463   ins_cost(INSN_COST * 2);
13464   format %{ "csinvw $dst, $src1, zr lt\t"  %}
13465 
13466   ins_encode %{
13467     __ csinvw($dst$$Register,
13468              $src1$$Register,
13469              zr,
13470              Assembler::LT);
13471   %}
13472   ins_pipe(icond_reg);
13473 %}
13474 
13475 // This pattern is automatically generated from aarch64_ad.m4
13476 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13477 instruct cmovI_reg_immM1_ge(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13478 %{
13479   effect(DEF dst, USE src1, USE cr);
13480   ins_cost(INSN_COST * 2);
13481   format %{ "csinvw $dst, $src1, zr ge\t"  %}
13482 
13483   ins_encode %{
13484     __ csinvw($dst$$Register,
13485              $src1$$Register,
13486              zr,
13487              Assembler::GE);
13488   %}
13489   ins_pipe(icond_reg);
13490 %}
13491 
13492 // This pattern is automatically generated from aarch64_ad.m4
13493 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13494 instruct minI_reg_imm0(iRegINoSp dst, iRegIorL2I src, immI0 imm)
13495 %{
13496   match(Set dst (MinI src imm));
13497   ins_cost(INSN_COST * 3);
13498   expand %{
13499     rFlagsReg cr;
13500     compI_reg_imm0(cr, src);
13501     cmovI_reg_imm0_lt(dst, src, cr);
13502   %}
13503 %}
13504 
13505 // This pattern is automatically generated from aarch64_ad.m4
13506 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13507 instruct minI_imm0_reg(iRegINoSp dst, immI0 imm, iRegIorL2I src)
13508 %{
13509   match(Set dst (MinI imm src));
13510   ins_cost(INSN_COST * 3);
13511   expand %{
13512     rFlagsReg cr;
13513     compI_reg_imm0(cr, src);
13514     cmovI_reg_imm0_lt(dst, src, cr);
13515   %}
13516 %}
13517 
13518 // This pattern is automatically generated from aarch64_ad.m4
13519 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13520 instruct minI_reg_imm1(iRegINoSp dst, iRegIorL2I src, immI_1 imm)
13521 %{
13522   match(Set dst (MinI src imm));
13523   ins_cost(INSN_COST * 3);
13524   expand %{
13525     rFlagsReg cr;
13526     compI_reg_imm0(cr, src);
13527     cmovI_reg_imm1_le(dst, src, cr);
13528   %}
13529 %}
13530 
13531 // This pattern is automatically generated from aarch64_ad.m4
13532 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13533 instruct minI_imm1_reg(iRegINoSp dst, immI_1 imm, iRegIorL2I src)
13534 %{
13535   match(Set dst (MinI imm src));
13536   ins_cost(INSN_COST * 3);
13537   expand %{
13538     rFlagsReg cr;
13539     compI_reg_imm0(cr, src);
13540     cmovI_reg_imm1_le(dst, src, cr);
13541   %}
13542 %}
13543 
13544 // This pattern is automatically generated from aarch64_ad.m4
13545 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13546 instruct minI_reg_immM1(iRegINoSp dst, iRegIorL2I src, immI_M1 imm)
13547 %{
13548   match(Set dst (MinI src imm));
13549   ins_cost(INSN_COST * 3);
13550   expand %{
13551     rFlagsReg cr;
13552     compI_reg_imm0(cr, src);
13553     cmovI_reg_immM1_lt(dst, src, cr);
13554   %}
13555 %}
13556 
13557 // This pattern is automatically generated from aarch64_ad.m4
13558 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13559 instruct minI_immM1_reg(iRegINoSp dst, immI_M1 imm, iRegIorL2I src)
13560 %{
13561   match(Set dst (MinI imm src));
13562   ins_cost(INSN_COST * 3);
13563   expand %{
13564     rFlagsReg cr;
13565     compI_reg_imm0(cr, src);
13566     cmovI_reg_immM1_lt(dst, src, cr);
13567   %}
13568 %}
13569 
13570 // This pattern is automatically generated from aarch64_ad.m4
13571 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13572 instruct maxI_reg_imm0(iRegINoSp dst, iRegIorL2I src, immI0 imm)
13573 %{
13574   match(Set dst (MaxI src imm));
13575   ins_cost(INSN_COST * 3);
13576   expand %{
13577     rFlagsReg cr;
13578     compI_reg_imm0(cr, src);
13579     cmovI_reg_imm0_gt(dst, src, cr);
13580   %}
13581 %}
13582 
13583 // This pattern is automatically generated from aarch64_ad.m4
13584 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13585 instruct maxI_imm0_reg(iRegINoSp dst, immI0 imm, iRegIorL2I src)
13586 %{
13587   match(Set dst (MaxI imm src));
13588   ins_cost(INSN_COST * 3);
13589   expand %{
13590     rFlagsReg cr;
13591     compI_reg_imm0(cr, src);
13592     cmovI_reg_imm0_gt(dst, src, cr);
13593   %}
13594 %}
13595 
13596 // This pattern is automatically generated from aarch64_ad.m4
13597 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13598 instruct maxI_reg_imm1(iRegINoSp dst, iRegIorL2I src, immI_1 imm)
13599 %{
13600   match(Set dst (MaxI src imm));
13601   ins_cost(INSN_COST * 3);
13602   expand %{
13603     rFlagsReg cr;
13604     compI_reg_imm0(cr, src);
13605     cmovI_reg_imm1_gt(dst, src, cr);
13606   %}
13607 %}
13608 
13609 // This pattern is automatically generated from aarch64_ad.m4
13610 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13611 instruct maxI_imm1_reg(iRegINoSp dst, immI_1 imm, iRegIorL2I src)
13612 %{
13613   match(Set dst (MaxI imm src));
13614   ins_cost(INSN_COST * 3);
13615   expand %{
13616     rFlagsReg cr;
13617     compI_reg_imm0(cr, src);
13618     cmovI_reg_imm1_gt(dst, src, cr);
13619   %}
13620 %}
13621 
13622 // This pattern is automatically generated from aarch64_ad.m4
13623 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13624 instruct maxI_reg_immM1(iRegINoSp dst, iRegIorL2I src, immI_M1 imm)
13625 %{
13626   match(Set dst (MaxI src imm));
13627   ins_cost(INSN_COST * 3);
13628   expand %{
13629     rFlagsReg cr;
13630     compI_reg_imm0(cr, src);
13631     cmovI_reg_immM1_ge(dst, src, cr);
13632   %}
13633 %}
13634 
13635 // This pattern is automatically generated from aarch64_ad.m4
13636 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13637 instruct maxI_immM1_reg(iRegINoSp dst, immI_M1 imm, iRegIorL2I src)
13638 %{
13639   match(Set dst (MaxI imm src));
13640   ins_cost(INSN_COST * 3);
13641   expand %{
13642     rFlagsReg cr;
13643     compI_reg_imm0(cr, src);
13644     cmovI_reg_immM1_ge(dst, src, cr);
13645   %}
13646 %}
13647 
13648 // This pattern is automatically generated from aarch64_ad.m4
13649 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13650 instruct bits_reverse_I(iRegINoSp dst, iRegIorL2I src)
13651 %{
13652   match(Set dst (ReverseI src));
13653   ins_cost(INSN_COST);
13654   format %{ "rbitw  $dst, $src" %}
13655   ins_encode %{
13656     __ rbitw($dst$$Register, $src$$Register);
13657   %}
13658   ins_pipe(ialu_reg);
13659 %}
13660 
13661 // This pattern is automatically generated from aarch64_ad.m4
13662 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13663 instruct bits_reverse_L(iRegLNoSp dst, iRegL src)
13664 %{
13665   match(Set dst (ReverseL src));
13666   ins_cost(INSN_COST);
13667   format %{ "rbit  $dst, $src" %}
13668   ins_encode %{
13669     __ rbit($dst$$Register, $src$$Register);
13670   %}
13671   ins_pipe(ialu_reg);
13672 %}
13673 
13674 
13675 // END This section of the file is automatically generated. Do not edit --------------
13676 
13677 
13678 // ============================================================================
13679 // Floating Point Arithmetic Instructions
13680 
13681 instruct addHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13682   match(Set dst (AddHF src1 src2));
13683   format %{ "faddh $dst, $src1, $src2" %}
13684   ins_encode %{
13685     __ faddh($dst$$FloatRegister,
13686              $src1$$FloatRegister,
13687              $src2$$FloatRegister);
13688   %}
13689   ins_pipe(fp_dop_reg_reg_s);
13690 %}
13691 
13692 instruct addF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13693   match(Set dst (AddF src1 src2));
13694 
13695   ins_cost(INSN_COST * 5);
13696   format %{ "fadds   $dst, $src1, $src2" %}
13697 
13698   ins_encode %{
13699     __ fadds(as_FloatRegister($dst$$reg),
13700              as_FloatRegister($src1$$reg),
13701              as_FloatRegister($src2$$reg));
13702   %}
13703 
13704   ins_pipe(fp_dop_reg_reg_s);
13705 %}
13706 
13707 instruct addD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
13708   match(Set dst (AddD src1 src2));
13709 
13710   ins_cost(INSN_COST * 5);
13711   format %{ "faddd   $dst, $src1, $src2" %}
13712 
13713   ins_encode %{
13714     __ faddd(as_FloatRegister($dst$$reg),
13715              as_FloatRegister($src1$$reg),
13716              as_FloatRegister($src2$$reg));
13717   %}
13718 
13719   ins_pipe(fp_dop_reg_reg_d);
13720 %}
13721 
13722 instruct subHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13723   match(Set dst (SubHF src1 src2));
13724   format %{ "fsubh $dst, $src1, $src2" %}
13725   ins_encode %{
13726     __ fsubh($dst$$FloatRegister,
13727              $src1$$FloatRegister,
13728              $src2$$FloatRegister);
13729   %}
13730   ins_pipe(fp_dop_reg_reg_s);
13731 %}
13732 
13733 instruct subF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13734   match(Set dst (SubF src1 src2));
13735 
13736   ins_cost(INSN_COST * 5);
13737   format %{ "fsubs   $dst, $src1, $src2" %}
13738 
13739   ins_encode %{
13740     __ fsubs(as_FloatRegister($dst$$reg),
13741              as_FloatRegister($src1$$reg),
13742              as_FloatRegister($src2$$reg));
13743   %}
13744 
13745   ins_pipe(fp_dop_reg_reg_s);
13746 %}
13747 
13748 instruct subD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
13749   match(Set dst (SubD src1 src2));
13750 
13751   ins_cost(INSN_COST * 5);
13752   format %{ "fsubd   $dst, $src1, $src2" %}
13753 
13754   ins_encode %{
13755     __ fsubd(as_FloatRegister($dst$$reg),
13756              as_FloatRegister($src1$$reg),
13757              as_FloatRegister($src2$$reg));
13758   %}
13759 
13760   ins_pipe(fp_dop_reg_reg_d);
13761 %}
13762 
13763 instruct mulHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13764   match(Set dst (MulHF src1 src2));
13765   format %{ "fmulh $dst, $src1, $src2" %}
13766   ins_encode %{
13767     __ fmulh($dst$$FloatRegister,
13768              $src1$$FloatRegister,
13769              $src2$$FloatRegister);
13770   %}
13771   ins_pipe(fp_dop_reg_reg_s);
13772 %}
13773 
13774 instruct mulF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13775   match(Set dst (MulF src1 src2));
13776 
13777   ins_cost(INSN_COST * 6);
13778   format %{ "fmuls   $dst, $src1, $src2" %}
13779 
13780   ins_encode %{
13781     __ fmuls(as_FloatRegister($dst$$reg),
13782              as_FloatRegister($src1$$reg),
13783              as_FloatRegister($src2$$reg));
13784   %}
13785 
13786   ins_pipe(fp_dop_reg_reg_s);
13787 %}
13788 
13789 instruct mulD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
13790   match(Set dst (MulD src1 src2));
13791 
13792   ins_cost(INSN_COST * 6);
13793   format %{ "fmuld   $dst, $src1, $src2" %}
13794 
13795   ins_encode %{
13796     __ fmuld(as_FloatRegister($dst$$reg),
13797              as_FloatRegister($src1$$reg),
13798              as_FloatRegister($src2$$reg));
13799   %}
13800 
13801   ins_pipe(fp_dop_reg_reg_d);
13802 %}
13803 
13804 // src1 * src2 + src3 (half-precision float)
13805 instruct maddHF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13806   match(Set dst (FmaHF src3 (Binary src1 src2)));
13807   format %{ "fmaddh $dst, $src1, $src2, $src3" %}
13808   ins_encode %{
13809     assert(UseFMA, "Needs FMA instructions support.");
13810     __ fmaddh($dst$$FloatRegister,
13811               $src1$$FloatRegister,
13812               $src2$$FloatRegister,
13813               $src3$$FloatRegister);
13814   %}
13815   ins_pipe(pipe_class_default);
13816 %}
13817 
13818 // src1 * src2 + src3
13819 instruct maddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13820   match(Set dst (FmaF src3 (Binary src1 src2)));
13821 
13822   format %{ "fmadds   $dst, $src1, $src2, $src3" %}
13823 
13824   ins_encode %{
13825     assert(UseFMA, "Needs FMA instructions support.");
13826     __ fmadds(as_FloatRegister($dst$$reg),
13827              as_FloatRegister($src1$$reg),
13828              as_FloatRegister($src2$$reg),
13829              as_FloatRegister($src3$$reg));
13830   %}
13831 
13832   ins_pipe(pipe_class_default);
13833 %}
13834 
13835 // src1 * src2 + src3
13836 instruct maddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
13837   match(Set dst (FmaD src3 (Binary src1 src2)));
13838 
13839   format %{ "fmaddd   $dst, $src1, $src2, $src3" %}
13840 
13841   ins_encode %{
13842     assert(UseFMA, "Needs FMA instructions support.");
13843     __ fmaddd(as_FloatRegister($dst$$reg),
13844              as_FloatRegister($src1$$reg),
13845              as_FloatRegister($src2$$reg),
13846              as_FloatRegister($src3$$reg));
13847   %}
13848 
13849   ins_pipe(pipe_class_default);
13850 %}
13851 
13852 // src1 * (-src2) + src3
13853 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3"
13854 instruct msubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13855   match(Set dst (FmaF src3 (Binary src1 (NegF src2))));
13856 
13857   format %{ "fmsubs   $dst, $src1, $src2, $src3" %}
13858 
13859   ins_encode %{
13860     assert(UseFMA, "Needs FMA instructions support.");
13861     __ fmsubs(as_FloatRegister($dst$$reg),
13862               as_FloatRegister($src1$$reg),
13863               as_FloatRegister($src2$$reg),
13864               as_FloatRegister($src3$$reg));
13865   %}
13866 
13867   ins_pipe(pipe_class_default);
13868 %}
13869 
13870 // src1 * (-src2) + src3
13871 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3"
13872 instruct msubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
13873   match(Set dst (FmaD src3 (Binary src1 (NegD src2))));
13874 
13875   format %{ "fmsubd   $dst, $src1, $src2, $src3" %}
13876 
13877   ins_encode %{
13878     assert(UseFMA, "Needs FMA instructions support.");
13879     __ fmsubd(as_FloatRegister($dst$$reg),
13880               as_FloatRegister($src1$$reg),
13881               as_FloatRegister($src2$$reg),
13882               as_FloatRegister($src3$$reg));
13883   %}
13884 
13885   ins_pipe(pipe_class_default);
13886 %}
13887 
13888 // src1 * (-src2) - src3
13889 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3"
13890 instruct mnaddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13891   match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2))));
13892 
13893   format %{ "fnmadds  $dst, $src1, $src2, $src3" %}
13894 
13895   ins_encode %{
13896     assert(UseFMA, "Needs FMA instructions support.");
13897     __ fnmadds(as_FloatRegister($dst$$reg),
13898                as_FloatRegister($src1$$reg),
13899                as_FloatRegister($src2$$reg),
13900                as_FloatRegister($src3$$reg));
13901   %}
13902 
13903   ins_pipe(pipe_class_default);
13904 %}
13905 
13906 // src1 * (-src2) - src3
13907 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3"
13908 instruct mnaddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
13909   match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2))));
13910 
13911   format %{ "fnmaddd   $dst, $src1, $src2, $src3" %}
13912 
13913   ins_encode %{
13914     assert(UseFMA, "Needs FMA instructions support.");
13915     __ fnmaddd(as_FloatRegister($dst$$reg),
13916                as_FloatRegister($src1$$reg),
13917                as_FloatRegister($src2$$reg),
13918                as_FloatRegister($src3$$reg));
13919   %}
13920 
13921   ins_pipe(pipe_class_default);
13922 %}
13923 
13924 // src1 * src2 - src3
13925 instruct mnsubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3, immF0 zero) %{
13926   match(Set dst (FmaF (NegF src3) (Binary src1 src2)));
13927 
13928   format %{ "fnmsubs  $dst, $src1, $src2, $src3" %}
13929 
13930   ins_encode %{
13931     assert(UseFMA, "Needs FMA instructions support.");
13932     __ fnmsubs(as_FloatRegister($dst$$reg),
13933                as_FloatRegister($src1$$reg),
13934                as_FloatRegister($src2$$reg),
13935                as_FloatRegister($src3$$reg));
13936   %}
13937 
13938   ins_pipe(pipe_class_default);
13939 %}
13940 
13941 // src1 * src2 - src3
13942 instruct mnsubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3, immD0 zero) %{
13943   match(Set dst (FmaD (NegD src3) (Binary src1 src2)));
13944 
13945   format %{ "fnmsubd   $dst, $src1, $src2, $src3" %}
13946 
13947   ins_encode %{
13948     assert(UseFMA, "Needs FMA instructions support.");
13949     // n.b. insn name should be fnmsubd
13950     __ fnmsub(as_FloatRegister($dst$$reg),
13951               as_FloatRegister($src1$$reg),
13952               as_FloatRegister($src2$$reg),
13953               as_FloatRegister($src3$$reg));
13954   %}
13955 
13956   ins_pipe(pipe_class_default);
13957 %}
13958 
13959 // Math.max(HH)H (half-precision float)
13960 instruct maxHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13961   match(Set dst (MaxHF src1 src2));
13962   format %{ "fmaxh $dst, $src1, $src2" %}
13963   ins_encode %{
13964     __ fmaxh($dst$$FloatRegister,
13965              $src1$$FloatRegister,
13966              $src2$$FloatRegister);
13967   %}
13968   ins_pipe(fp_dop_reg_reg_s);
13969 %}
13970 
13971 // Math.min(HH)H (half-precision float)
13972 instruct minHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13973   match(Set dst (MinHF src1 src2));
13974   format %{ "fminh $dst, $src1, $src2" %}
13975   ins_encode %{
13976     __ fminh($dst$$FloatRegister,
13977              $src1$$FloatRegister,
13978              $src2$$FloatRegister);
13979   %}
13980   ins_pipe(fp_dop_reg_reg_s);
13981 %}
13982 
13983 // Math.max(FF)F
13984 instruct maxF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13985   match(Set dst (MaxF src1 src2));
13986 
13987   format %{ "fmaxs   $dst, $src1, $src2" %}
13988   ins_encode %{
13989     __ fmaxs(as_FloatRegister($dst$$reg),
13990              as_FloatRegister($src1$$reg),
13991              as_FloatRegister($src2$$reg));
13992   %}
13993 
13994   ins_pipe(fp_dop_reg_reg_s);
13995 %}
13996 
13997 // Math.min(FF)F
13998 instruct minF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13999   match(Set dst (MinF src1 src2));
14000 
14001   format %{ "fmins   $dst, $src1, $src2" %}
14002   ins_encode %{
14003     __ fmins(as_FloatRegister($dst$$reg),
14004              as_FloatRegister($src1$$reg),
14005              as_FloatRegister($src2$$reg));
14006   %}
14007 
14008   ins_pipe(fp_dop_reg_reg_s);
14009 %}
14010 
14011 // Math.max(DD)D
14012 instruct maxD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
14013   match(Set dst (MaxD src1 src2));
14014 
14015   format %{ "fmaxd   $dst, $src1, $src2" %}
14016   ins_encode %{
14017     __ fmaxd(as_FloatRegister($dst$$reg),
14018              as_FloatRegister($src1$$reg),
14019              as_FloatRegister($src2$$reg));
14020   %}
14021 
14022   ins_pipe(fp_dop_reg_reg_d);
14023 %}
14024 
14025 // Math.min(DD)D
14026 instruct minD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
14027   match(Set dst (MinD src1 src2));
14028 
14029   format %{ "fmind   $dst, $src1, $src2" %}
14030   ins_encode %{
14031     __ fmind(as_FloatRegister($dst$$reg),
14032              as_FloatRegister($src1$$reg),
14033              as_FloatRegister($src2$$reg));
14034   %}
14035 
14036   ins_pipe(fp_dop_reg_reg_d);
14037 %}
14038 
14039 instruct divHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
14040   match(Set dst (DivHF src1  src2));
14041   format %{ "fdivh $dst, $src1, $src2" %}
14042   ins_encode %{
14043     __ fdivh($dst$$FloatRegister,
14044              $src1$$FloatRegister,
14045              $src2$$FloatRegister);
14046   %}
14047   ins_pipe(fp_div_s);
14048 %}
14049 
14050 instruct divF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
14051   match(Set dst (DivF src1  src2));
14052 
14053   ins_cost(INSN_COST * 18);
14054   format %{ "fdivs   $dst, $src1, $src2" %}
14055 
14056   ins_encode %{
14057     __ fdivs(as_FloatRegister($dst$$reg),
14058              as_FloatRegister($src1$$reg),
14059              as_FloatRegister($src2$$reg));
14060   %}
14061 
14062   ins_pipe(fp_div_s);
14063 %}
14064 
14065 instruct divD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
14066   match(Set dst (DivD src1  src2));
14067 
14068   ins_cost(INSN_COST * 32);
14069   format %{ "fdivd   $dst, $src1, $src2" %}
14070 
14071   ins_encode %{
14072     __ fdivd(as_FloatRegister($dst$$reg),
14073              as_FloatRegister($src1$$reg),
14074              as_FloatRegister($src2$$reg));
14075   %}
14076 
14077   ins_pipe(fp_div_d);
14078 %}
14079 
14080 instruct negF_reg_reg(vRegF dst, vRegF src) %{
14081   match(Set dst (NegF src));
14082 
14083   ins_cost(INSN_COST * 3);
14084   format %{ "fneg   $dst, $src" %}
14085 
14086   ins_encode %{
14087     __ fnegs(as_FloatRegister($dst$$reg),
14088              as_FloatRegister($src$$reg));
14089   %}
14090 
14091   ins_pipe(fp_uop_s);
14092 %}
14093 
14094 instruct negD_reg_reg(vRegD dst, vRegD src) %{
14095   match(Set dst (NegD src));
14096 
14097   ins_cost(INSN_COST * 3);
14098   format %{ "fnegd   $dst, $src" %}
14099 
14100   ins_encode %{
14101     __ fnegd(as_FloatRegister($dst$$reg),
14102              as_FloatRegister($src$$reg));
14103   %}
14104 
14105   ins_pipe(fp_uop_d);
14106 %}
14107 
14108 instruct absI_reg(iRegINoSp dst, iRegIorL2I src, rFlagsReg cr)
14109 %{
14110   match(Set dst (AbsI src));
14111 
14112   effect(KILL cr);
14113   ins_cost(INSN_COST * 2);
14114   format %{ "cmpw  $src, zr\n\t"
14115             "cnegw $dst, $src, Assembler::LT\t# int abs"
14116   %}
14117 
14118   ins_encode %{
14119     __ cmpw(as_Register($src$$reg), zr);
14120     __ cnegw(as_Register($dst$$reg), as_Register($src$$reg), Assembler::LT);
14121   %}
14122   ins_pipe(pipe_class_default);
14123 %}
14124 
14125 instruct absL_reg(iRegLNoSp dst, iRegL src, rFlagsReg cr)
14126 %{
14127   match(Set dst (AbsL src));
14128 
14129   effect(KILL cr);
14130   ins_cost(INSN_COST * 2);
14131   format %{ "cmp  $src, zr\n\t"
14132             "cneg $dst, $src, Assembler::LT\t# long abs"
14133   %}
14134 
14135   ins_encode %{
14136     __ cmp(as_Register($src$$reg), zr);
14137     __ cneg(as_Register($dst$$reg), as_Register($src$$reg), Assembler::LT);
14138   %}
14139   ins_pipe(pipe_class_default);
14140 %}
14141 
14142 instruct absF_reg(vRegF dst, vRegF src) %{
14143   match(Set dst (AbsF src));
14144 
14145   ins_cost(INSN_COST * 3);
14146   format %{ "fabss   $dst, $src" %}
14147   ins_encode %{
14148     __ fabss(as_FloatRegister($dst$$reg),
14149              as_FloatRegister($src$$reg));
14150   %}
14151 
14152   ins_pipe(fp_uop_s);
14153 %}
14154 
14155 instruct absD_reg(vRegD dst, vRegD src) %{
14156   match(Set dst (AbsD src));
14157 
14158   ins_cost(INSN_COST * 3);
14159   format %{ "fabsd   $dst, $src" %}
14160   ins_encode %{
14161     __ fabsd(as_FloatRegister($dst$$reg),
14162              as_FloatRegister($src$$reg));
14163   %}
14164 
14165   ins_pipe(fp_uop_d);
14166 %}
14167 
14168 instruct absdF_reg(vRegF dst, vRegF src1, vRegF src2) %{
14169   match(Set dst (AbsF (SubF src1 src2)));
14170 
14171   ins_cost(INSN_COST * 3);
14172   format %{ "fabds   $dst, $src1, $src2" %}
14173   ins_encode %{
14174     __ fabds(as_FloatRegister($dst$$reg),
14175              as_FloatRegister($src1$$reg),
14176              as_FloatRegister($src2$$reg));
14177   %}
14178 
14179   ins_pipe(fp_uop_s);
14180 %}
14181 
14182 instruct absdD_reg(vRegD dst, vRegD src1, vRegD src2) %{
14183   match(Set dst (AbsD (SubD src1 src2)));
14184 
14185   ins_cost(INSN_COST * 3);
14186   format %{ "fabdd   $dst, $src1, $src2" %}
14187   ins_encode %{
14188     __ fabdd(as_FloatRegister($dst$$reg),
14189              as_FloatRegister($src1$$reg),
14190              as_FloatRegister($src2$$reg));
14191   %}
14192 
14193   ins_pipe(fp_uop_d);
14194 %}
14195 
14196 instruct sqrtD_reg(vRegD dst, vRegD src) %{
14197   match(Set dst (SqrtD src));
14198 
14199   ins_cost(INSN_COST * 50);
14200   format %{ "fsqrtd  $dst, $src" %}
14201   ins_encode %{
14202     __ fsqrtd(as_FloatRegister($dst$$reg),
14203              as_FloatRegister($src$$reg));
14204   %}
14205 
14206   ins_pipe(fp_div_s);
14207 %}
14208 
14209 instruct sqrtF_reg(vRegF dst, vRegF src) %{
14210   match(Set dst (SqrtF src));
14211 
14212   ins_cost(INSN_COST * 50);
14213   format %{ "fsqrts  $dst, $src" %}
14214   ins_encode %{
14215     __ fsqrts(as_FloatRegister($dst$$reg),
14216              as_FloatRegister($src$$reg));
14217   %}
14218 
14219   ins_pipe(fp_div_d);
14220 %}
14221 
14222 instruct sqrtHF_reg(vRegF dst, vRegF src) %{
14223   match(Set dst (SqrtHF src));
14224   format %{ "fsqrth $dst, $src" %}
14225   ins_encode %{
14226     __ fsqrth($dst$$FloatRegister,
14227               $src$$FloatRegister);
14228   %}
14229   ins_pipe(fp_div_s);
14230 %}
14231 
14232 // Math.rint, floor, ceil
14233 instruct roundD_reg(vRegD dst, vRegD src, immI rmode) %{
14234   match(Set dst (RoundDoubleMode src rmode));
14235   format %{ "frint  $dst, $src, $rmode" %}
14236   ins_encode %{
14237     switch ($rmode$$constant) {
14238       case RoundDoubleModeNode::rmode_rint:
14239         __ frintnd(as_FloatRegister($dst$$reg),
14240                    as_FloatRegister($src$$reg));
14241         break;
14242       case RoundDoubleModeNode::rmode_floor:
14243         __ frintmd(as_FloatRegister($dst$$reg),
14244                    as_FloatRegister($src$$reg));
14245         break;
14246       case RoundDoubleModeNode::rmode_ceil:
14247         __ frintpd(as_FloatRegister($dst$$reg),
14248                    as_FloatRegister($src$$reg));
14249         break;
14250     }
14251   %}
14252   ins_pipe(fp_uop_d);
14253 %}
14254 
14255 instruct copySignD_reg(vRegD dst, vRegD src1, vRegD src2, vRegD zero) %{
14256   match(Set dst (CopySignD src1 (Binary src2 zero)));
14257   effect(TEMP_DEF dst, USE src1, USE src2, USE zero);
14258   format %{ "CopySignD  $dst $src1 $src2" %}
14259   ins_encode %{
14260     FloatRegister dst = as_FloatRegister($dst$$reg),
14261                   src1 = as_FloatRegister($src1$$reg),
14262                   src2 = as_FloatRegister($src2$$reg),
14263                   zero = as_FloatRegister($zero$$reg);
14264     __ fnegd(dst, zero);
14265     __ bsl(dst, __ T8B, src2, src1);
14266   %}
14267   ins_pipe(fp_uop_d);
14268 %}
14269 
14270 instruct copySignF_reg(vRegF dst, vRegF src1, vRegF src2) %{
14271   match(Set dst (CopySignF src1 src2));
14272   effect(TEMP_DEF dst, USE src1, USE src2);
14273   format %{ "CopySignF  $dst $src1 $src2" %}
14274   ins_encode %{
14275     FloatRegister dst = as_FloatRegister($dst$$reg),
14276                   src1 = as_FloatRegister($src1$$reg),
14277                   src2 = as_FloatRegister($src2$$reg);
14278     __ movi(dst, __ T2S, 0x80, 24);
14279     __ bsl(dst, __ T8B, src2, src1);
14280   %}
14281   ins_pipe(fp_uop_d);
14282 %}
14283 
14284 instruct signumD_reg(vRegD dst, vRegD src, vRegD zero, vRegD one) %{
14285   match(Set dst (SignumD src (Binary zero one)));
14286   effect(TEMP_DEF dst, USE src, USE zero, USE one);
14287   format %{ "signumD  $dst, $src" %}
14288   ins_encode %{
14289     FloatRegister src = as_FloatRegister($src$$reg),
14290                   dst = as_FloatRegister($dst$$reg),
14291                   zero = as_FloatRegister($zero$$reg),
14292                   one = as_FloatRegister($one$$reg);
14293     __ facgtd(dst, src, zero); // dst=0 for +-0.0 and NaN. 0xFFF..F otherwise
14294     __ ushrd(dst, dst, 1);     // dst=0 for +-0.0 and NaN. 0x7FF..F otherwise
14295     // Bit selection instruction gets bit from "one" for each enabled bit in
14296     // "dst", otherwise gets a bit from "src". For "src" that contains +-0.0 or
14297     // NaN the whole "src" will be copied because "dst" is zero. For all other
14298     // "src" values dst is 0x7FF..F, which means only the sign bit is copied
14299     // from "src", and all other bits are copied from 1.0.
14300     __ bsl(dst, __ T8B, one, src);
14301   %}
14302   ins_pipe(fp_uop_d);
14303 %}
14304 
14305 instruct signumF_reg(vRegF dst, vRegF src, vRegF zero, vRegF one) %{
14306   match(Set dst (SignumF src (Binary zero one)));
14307   effect(TEMP_DEF dst, USE src, USE zero, USE one);
14308   format %{ "signumF  $dst, $src" %}
14309   ins_encode %{
14310     FloatRegister src = as_FloatRegister($src$$reg),
14311                   dst = as_FloatRegister($dst$$reg),
14312                   zero = as_FloatRegister($zero$$reg),
14313                   one = as_FloatRegister($one$$reg);
14314     __ facgts(dst, src, zero);    // dst=0 for +-0.0 and NaN. 0xFFF..F otherwise
14315     __ ushr(dst, __ T2S, dst, 1); // dst=0 for +-0.0 and NaN. 0x7FF..F otherwise
14316     // Bit selection instruction gets bit from "one" for each enabled bit in
14317     // "dst", otherwise gets a bit from "src". For "src" that contains +-0.0 or
14318     // NaN the whole "src" will be copied because "dst" is zero. For all other
14319     // "src" values dst is 0x7FF..F, which means only the sign bit is copied
14320     // from "src", and all other bits are copied from 1.0.
14321     __ bsl(dst, __ T8B, one, src);
14322   %}
14323   ins_pipe(fp_uop_d);
14324 %}
14325 
14326 instruct onspinwait() %{
14327   match(OnSpinWait);
14328   ins_cost(INSN_COST);
14329 
14330   format %{ "onspinwait" %}
14331 
14332   ins_encode %{
14333     __ spin_wait();
14334   %}
14335   ins_pipe(pipe_class_empty);
14336 %}
14337 
14338 // ============================================================================
14339 // Logical Instructions
14340 
14341 // Integer Logical Instructions
14342 
14343 // And Instructions
14344 
14345 
14346 instruct andI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, rFlagsReg cr) %{
14347   match(Set dst (AndI src1 src2));
14348 
14349   format %{ "andw  $dst, $src1, $src2\t# int" %}
14350 
14351   ins_cost(INSN_COST);
14352   ins_encode %{
14353     __ andw(as_Register($dst$$reg),
14354             as_Register($src1$$reg),
14355             as_Register($src2$$reg));
14356   %}
14357 
14358   ins_pipe(ialu_reg_reg);
14359 %}
14360 
14361 instruct andI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2, rFlagsReg cr) %{
14362   match(Set dst (AndI src1 src2));
14363 
14364   format %{ "andsw  $dst, $src1, $src2\t# int" %}
14365 
14366   ins_cost(INSN_COST);
14367   ins_encode %{
14368     __ andw(as_Register($dst$$reg),
14369             as_Register($src1$$reg),
14370             (uint64_t)($src2$$constant));
14371   %}
14372 
14373   ins_pipe(ialu_reg_imm);
14374 %}
14375 
14376 // Or Instructions
14377 
14378 instruct orI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
14379   match(Set dst (OrI src1 src2));
14380 
14381   format %{ "orrw  $dst, $src1, $src2\t# int" %}
14382 
14383   ins_cost(INSN_COST);
14384   ins_encode %{
14385     __ orrw(as_Register($dst$$reg),
14386             as_Register($src1$$reg),
14387             as_Register($src2$$reg));
14388   %}
14389 
14390   ins_pipe(ialu_reg_reg);
14391 %}
14392 
14393 instruct orI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{
14394   match(Set dst (OrI src1 src2));
14395 
14396   format %{ "orrw  $dst, $src1, $src2\t# int" %}
14397 
14398   ins_cost(INSN_COST);
14399   ins_encode %{
14400     __ orrw(as_Register($dst$$reg),
14401             as_Register($src1$$reg),
14402             (uint64_t)($src2$$constant));
14403   %}
14404 
14405   ins_pipe(ialu_reg_imm);
14406 %}
14407 
14408 // Xor Instructions
14409 
14410 instruct xorI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
14411   match(Set dst (XorI src1 src2));
14412 
14413   format %{ "eorw  $dst, $src1, $src2\t# int" %}
14414 
14415   ins_cost(INSN_COST);
14416   ins_encode %{
14417     __ eorw(as_Register($dst$$reg),
14418             as_Register($src1$$reg),
14419             as_Register($src2$$reg));
14420   %}
14421 
14422   ins_pipe(ialu_reg_reg);
14423 %}
14424 
14425 instruct xorI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{
14426   match(Set dst (XorI src1 src2));
14427 
14428   format %{ "eorw  $dst, $src1, $src2\t# int" %}
14429 
14430   ins_cost(INSN_COST);
14431   ins_encode %{
14432     __ eorw(as_Register($dst$$reg),
14433             as_Register($src1$$reg),
14434             (uint64_t)($src2$$constant));
14435   %}
14436 
14437   ins_pipe(ialu_reg_imm);
14438 %}
14439 
14440 // Long Logical Instructions
14441 // TODO
14442 
14443 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr) %{
14444   match(Set dst (AndL src1 src2));
14445 
14446   format %{ "and  $dst, $src1, $src2\t# int" %}
14447 
14448   ins_cost(INSN_COST);
14449   ins_encode %{
14450     __ andr(as_Register($dst$$reg),
14451             as_Register($src1$$reg),
14452             as_Register($src2$$reg));
14453   %}
14454 
14455   ins_pipe(ialu_reg_reg);
14456 %}
14457 
14458 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2, rFlagsReg cr) %{
14459   match(Set dst (AndL src1 src2));
14460 
14461   format %{ "and  $dst, $src1, $src2\t# int" %}
14462 
14463   ins_cost(INSN_COST);
14464   ins_encode %{
14465     __ andr(as_Register($dst$$reg),
14466             as_Register($src1$$reg),
14467             (uint64_t)($src2$$constant));
14468   %}
14469 
14470   ins_pipe(ialu_reg_imm);
14471 %}
14472 
14473 // Or Instructions
14474 
14475 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
14476   match(Set dst (OrL src1 src2));
14477 
14478   format %{ "orr  $dst, $src1, $src2\t# int" %}
14479 
14480   ins_cost(INSN_COST);
14481   ins_encode %{
14482     __ orr(as_Register($dst$$reg),
14483            as_Register($src1$$reg),
14484            as_Register($src2$$reg));
14485   %}
14486 
14487   ins_pipe(ialu_reg_reg);
14488 %}
14489 
14490 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{
14491   match(Set dst (OrL src1 src2));
14492 
14493   format %{ "orr  $dst, $src1, $src2\t# int" %}
14494 
14495   ins_cost(INSN_COST);
14496   ins_encode %{
14497     __ orr(as_Register($dst$$reg),
14498            as_Register($src1$$reg),
14499            (uint64_t)($src2$$constant));
14500   %}
14501 
14502   ins_pipe(ialu_reg_imm);
14503 %}
14504 
14505 // Xor Instructions
14506 
14507 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
14508   match(Set dst (XorL src1 src2));
14509 
14510   format %{ "eor  $dst, $src1, $src2\t# int" %}
14511 
14512   ins_cost(INSN_COST);
14513   ins_encode %{
14514     __ eor(as_Register($dst$$reg),
14515            as_Register($src1$$reg),
14516            as_Register($src2$$reg));
14517   %}
14518 
14519   ins_pipe(ialu_reg_reg);
14520 %}
14521 
14522 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{
14523   match(Set dst (XorL src1 src2));
14524 
14525   ins_cost(INSN_COST);
14526   format %{ "eor  $dst, $src1, $src2\t# int" %}
14527 
14528   ins_encode %{
14529     __ eor(as_Register($dst$$reg),
14530            as_Register($src1$$reg),
14531            (uint64_t)($src2$$constant));
14532   %}
14533 
14534   ins_pipe(ialu_reg_imm);
14535 %}
14536 
14537 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src)
14538 %{
14539   match(Set dst (ConvI2L src));
14540 
14541   ins_cost(INSN_COST);
14542   format %{ "sxtw  $dst, $src\t# i2l" %}
14543   ins_encode %{
14544     __ sbfm($dst$$Register, $src$$Register, 0, 31);
14545   %}
14546   ins_pipe(ialu_reg_shift);
14547 %}
14548 
14549 // this pattern occurs in bigmath arithmetic
14550 instruct convUI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask)
14551 %{
14552   match(Set dst (AndL (ConvI2L src) mask));
14553 
14554   ins_cost(INSN_COST);
14555   format %{ "ubfm  $dst, $src, 0, 31\t# ui2l" %}
14556   ins_encode %{
14557     __ ubfm($dst$$Register, $src$$Register, 0, 31);
14558   %}
14559 
14560   ins_pipe(ialu_reg_shift);
14561 %}
14562 
14563 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{
14564   match(Set dst (ConvL2I src));
14565 
14566   ins_cost(INSN_COST);
14567   format %{ "movw  $dst, $src \t// l2i" %}
14568 
14569   ins_encode %{
14570     __ movw(as_Register($dst$$reg), as_Register($src$$reg));
14571   %}
14572 
14573   ins_pipe(ialu_reg);
14574 %}
14575 
14576 instruct convD2F_reg(vRegF dst, vRegD src) %{
14577   match(Set dst (ConvD2F src));
14578 
14579   ins_cost(INSN_COST * 5);
14580   format %{ "fcvtd  $dst, $src \t// d2f" %}
14581 
14582   ins_encode %{
14583     __ fcvtd(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
14584   %}
14585 
14586   ins_pipe(fp_d2f);
14587 %}
14588 
14589 instruct convF2D_reg(vRegD dst, vRegF src) %{
14590   match(Set dst (ConvF2D src));
14591 
14592   ins_cost(INSN_COST * 5);
14593   format %{ "fcvts  $dst, $src \t// f2d" %}
14594 
14595   ins_encode %{
14596     __ fcvts(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
14597   %}
14598 
14599   ins_pipe(fp_f2d);
14600 %}
14601 
14602 instruct convF2I_reg_reg(iRegINoSp dst, vRegF src) %{
14603   match(Set dst (ConvF2I src));
14604 
14605   ins_cost(INSN_COST * 5);
14606   format %{ "fcvtzsw  $dst, $src \t// f2i" %}
14607 
14608   ins_encode %{
14609     __ fcvtzsw(as_Register($dst$$reg), as_FloatRegister($src$$reg));
14610   %}
14611 
14612   ins_pipe(fp_f2i);
14613 %}
14614 
14615 instruct convF2L_reg_reg(iRegLNoSp dst, vRegF src) %{
14616   match(Set dst (ConvF2L src));
14617 
14618   ins_cost(INSN_COST * 5);
14619   format %{ "fcvtzs  $dst, $src \t// f2l" %}
14620 
14621   ins_encode %{
14622     __ fcvtzs(as_Register($dst$$reg), as_FloatRegister($src$$reg));
14623   %}
14624 
14625   ins_pipe(fp_f2l);
14626 %}
14627 
14628 instruct convF2HF_reg_reg(iRegINoSp dst, vRegF src, vRegF tmp) %{
14629   match(Set dst (ConvF2HF src));
14630   format %{ "fcvt $tmp, $src\t# convert single to half precision\n\t"
14631             "smov $dst, $tmp\t# move result from $tmp to $dst"
14632   %}
14633   effect(TEMP tmp);
14634   ins_encode %{
14635       __ flt_to_flt16($dst$$Register, $src$$FloatRegister, $tmp$$FloatRegister);
14636   %}
14637   ins_pipe(pipe_slow);
14638 %}
14639 
14640 instruct convHF2F_reg_reg(vRegF dst, iRegINoSp src, vRegF tmp) %{
14641   match(Set dst (ConvHF2F src));
14642   format %{ "mov $tmp, $src\t# move source from $src to $tmp\n\t"
14643             "fcvt $dst, $tmp\t# convert half to single precision"
14644   %}
14645   effect(TEMP tmp);
14646   ins_encode %{
14647       __ flt16_to_flt($dst$$FloatRegister, $src$$Register, $tmp$$FloatRegister);
14648   %}
14649   ins_pipe(pipe_slow);
14650 %}
14651 
14652 instruct convI2F_reg_reg(vRegF dst, iRegIorL2I src) %{
14653   match(Set dst (ConvI2F src));
14654 
14655   ins_cost(INSN_COST * 5);
14656   format %{ "scvtfws  $dst, $src \t// i2f" %}
14657 
14658   ins_encode %{
14659     __ scvtfws(as_FloatRegister($dst$$reg), as_Register($src$$reg));
14660   %}
14661 
14662   ins_pipe(fp_i2f);
14663 %}
14664 
14665 instruct convL2F_reg_reg(vRegF dst, iRegL src) %{
14666   match(Set dst (ConvL2F src));
14667 
14668   ins_cost(INSN_COST * 5);
14669   format %{ "scvtfs  $dst, $src \t// l2f" %}
14670 
14671   ins_encode %{
14672     __ scvtfs(as_FloatRegister($dst$$reg), as_Register($src$$reg));
14673   %}
14674 
14675   ins_pipe(fp_l2f);
14676 %}
14677 
14678 instruct convD2I_reg_reg(iRegINoSp dst, vRegD src) %{
14679   match(Set dst (ConvD2I src));
14680 
14681   ins_cost(INSN_COST * 5);
14682   format %{ "fcvtzdw  $dst, $src \t// d2i" %}
14683 
14684   ins_encode %{
14685     __ fcvtzdw(as_Register($dst$$reg), as_FloatRegister($src$$reg));
14686   %}
14687 
14688   ins_pipe(fp_d2i);
14689 %}
14690 
14691 instruct convD2L_reg_reg(iRegLNoSp dst, vRegD src) %{
14692   match(Set dst (ConvD2L src));
14693 
14694   ins_cost(INSN_COST * 5);
14695   format %{ "fcvtzd  $dst, $src \t// d2l" %}
14696 
14697   ins_encode %{
14698     __ fcvtzd(as_Register($dst$$reg), as_FloatRegister($src$$reg));
14699   %}
14700 
14701   ins_pipe(fp_d2l);
14702 %}
14703 
14704 instruct convI2D_reg_reg(vRegD dst, iRegIorL2I src) %{
14705   match(Set dst (ConvI2D src));
14706 
14707   ins_cost(INSN_COST * 5);
14708   format %{ "scvtfwd  $dst, $src \t// i2d" %}
14709 
14710   ins_encode %{
14711     __ scvtfwd(as_FloatRegister($dst$$reg), as_Register($src$$reg));
14712   %}
14713 
14714   ins_pipe(fp_i2d);
14715 %}
14716 
14717 instruct convL2D_reg_reg(vRegD dst, iRegL src) %{
14718   match(Set dst (ConvL2D src));
14719 
14720   ins_cost(INSN_COST * 5);
14721   format %{ "scvtfd  $dst, $src \t// l2d" %}
14722 
14723   ins_encode %{
14724     __ scvtfd(as_FloatRegister($dst$$reg), as_Register($src$$reg));
14725   %}
14726 
14727   ins_pipe(fp_l2d);
14728 %}
14729 
14730 instruct round_double_reg(iRegLNoSp dst, vRegD src, vRegD ftmp, rFlagsReg cr)
14731 %{
14732   match(Set dst (RoundD src));
14733   effect(TEMP_DEF dst, TEMP ftmp, KILL cr);
14734   format %{ "java_round_double $dst,$src"%}
14735   ins_encode %{
14736     __ java_round_double($dst$$Register, as_FloatRegister($src$$reg),
14737                          as_FloatRegister($ftmp$$reg));
14738   %}
14739   ins_pipe(pipe_slow);
14740 %}
14741 
14742 instruct round_float_reg(iRegINoSp dst, vRegF src, vRegF ftmp, rFlagsReg cr)
14743 %{
14744   match(Set dst (RoundF src));
14745   effect(TEMP_DEF dst, TEMP ftmp, KILL cr);
14746   format %{ "java_round_float $dst,$src"%}
14747   ins_encode %{
14748     __ java_round_float($dst$$Register, as_FloatRegister($src$$reg),
14749                         as_FloatRegister($ftmp$$reg));
14750   %}
14751   ins_pipe(pipe_slow);
14752 %}
14753 
14754 // stack <-> reg and reg <-> reg shuffles with no conversion
14755 
14756 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{
14757 
14758   match(Set dst (MoveF2I src));
14759 
14760   effect(DEF dst, USE src);
14761 
14762   ins_cost(4 * INSN_COST);
14763 
14764   format %{ "ldrw $dst, $src\t# MoveF2I_stack_reg" %}
14765 
14766   ins_encode %{
14767     __ ldrw($dst$$Register, Address(sp, $src$$disp));
14768   %}
14769 
14770   ins_pipe(iload_reg_reg);
14771 
14772 %}
14773 
14774 instruct MoveI2F_stack_reg(vRegF dst, stackSlotI src) %{
14775 
14776   match(Set dst (MoveI2F src));
14777 
14778   effect(DEF dst, USE src);
14779 
14780   ins_cost(4 * INSN_COST);
14781 
14782   format %{ "ldrs $dst, $src\t# MoveI2F_stack_reg" %}
14783 
14784   ins_encode %{
14785     __ ldrs(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
14786   %}
14787 
14788   ins_pipe(pipe_class_memory);
14789 
14790 %}
14791 
14792 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{
14793 
14794   match(Set dst (MoveD2L src));
14795 
14796   effect(DEF dst, USE src);
14797 
14798   ins_cost(4 * INSN_COST);
14799 
14800   format %{ "ldr $dst, $src\t# MoveD2L_stack_reg" %}
14801 
14802   ins_encode %{
14803     __ ldr($dst$$Register, Address(sp, $src$$disp));
14804   %}
14805 
14806   ins_pipe(iload_reg_reg);
14807 
14808 %}
14809 
14810 instruct MoveL2D_stack_reg(vRegD dst, stackSlotL src) %{
14811 
14812   match(Set dst (MoveL2D src));
14813 
14814   effect(DEF dst, USE src);
14815 
14816   ins_cost(4 * INSN_COST);
14817 
14818   format %{ "ldrd $dst, $src\t# MoveL2D_stack_reg" %}
14819 
14820   ins_encode %{
14821     __ ldrd(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
14822   %}
14823 
14824   ins_pipe(pipe_class_memory);
14825 
14826 %}
14827 
14828 instruct MoveF2I_reg_stack(stackSlotI dst, vRegF src) %{
14829 
14830   match(Set dst (MoveF2I src));
14831 
14832   effect(DEF dst, USE src);
14833 
14834   ins_cost(INSN_COST);
14835 
14836   format %{ "strs $src, $dst\t# MoveF2I_reg_stack" %}
14837 
14838   ins_encode %{
14839     __ strs(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
14840   %}
14841 
14842   ins_pipe(pipe_class_memory);
14843 
14844 %}
14845 
14846 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
14847 
14848   match(Set dst (MoveI2F src));
14849 
14850   effect(DEF dst, USE src);
14851 
14852   ins_cost(INSN_COST);
14853 
14854   format %{ "strw $src, $dst\t# MoveI2F_reg_stack" %}
14855 
14856   ins_encode %{
14857     __ strw($src$$Register, Address(sp, $dst$$disp));
14858   %}
14859 
14860   ins_pipe(istore_reg_reg);
14861 
14862 %}
14863 
14864 instruct MoveD2L_reg_stack(stackSlotL dst, vRegD src) %{
14865 
14866   match(Set dst (MoveD2L src));
14867 
14868   effect(DEF dst, USE src);
14869 
14870   ins_cost(INSN_COST);
14871 
14872   format %{ "strd $dst, $src\t# MoveD2L_reg_stack" %}
14873 
14874   ins_encode %{
14875     __ strd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
14876   %}
14877 
14878   ins_pipe(pipe_class_memory);
14879 
14880 %}
14881 
14882 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
14883 
14884   match(Set dst (MoveL2D src));
14885 
14886   effect(DEF dst, USE src);
14887 
14888   ins_cost(INSN_COST);
14889 
14890   format %{ "str $src, $dst\t# MoveL2D_reg_stack" %}
14891 
14892   ins_encode %{
14893     __ str($src$$Register, Address(sp, $dst$$disp));
14894   %}
14895 
14896   ins_pipe(istore_reg_reg);
14897 
14898 %}
14899 
14900 instruct MoveF2I_reg_reg(iRegINoSp dst, vRegF src) %{
14901 
14902   match(Set dst (MoveF2I src));
14903 
14904   effect(DEF dst, USE src);
14905 
14906   ins_cost(INSN_COST);
14907 
14908   format %{ "fmovs $dst, $src\t# MoveF2I_reg_reg" %}
14909 
14910   ins_encode %{
14911     __ fmovs($dst$$Register, as_FloatRegister($src$$reg));
14912   %}
14913 
14914   ins_pipe(fp_f2i);
14915 
14916 %}
14917 
14918 instruct MoveI2F_reg_reg(vRegF dst, iRegI src) %{
14919 
14920   match(Set dst (MoveI2F src));
14921 
14922   effect(DEF dst, USE src);
14923 
14924   ins_cost(INSN_COST);
14925 
14926   format %{ "fmovs $dst, $src\t# MoveI2F_reg_reg" %}
14927 
14928   ins_encode %{
14929     __ fmovs(as_FloatRegister($dst$$reg), $src$$Register);
14930   %}
14931 
14932   ins_pipe(fp_i2f);
14933 
14934 %}
14935 
14936 instruct MoveD2L_reg_reg(iRegLNoSp dst, vRegD src) %{
14937 
14938   match(Set dst (MoveD2L src));
14939 
14940   effect(DEF dst, USE src);
14941 
14942   ins_cost(INSN_COST);
14943 
14944   format %{ "fmovd $dst, $src\t# MoveD2L_reg_reg" %}
14945 
14946   ins_encode %{
14947     __ fmovd($dst$$Register, as_FloatRegister($src$$reg));
14948   %}
14949 
14950   ins_pipe(fp_d2l);
14951 
14952 %}
14953 
14954 instruct MoveL2D_reg_reg(vRegD dst, iRegL src) %{
14955 
14956   match(Set dst (MoveL2D src));
14957 
14958   effect(DEF dst, USE src);
14959 
14960   ins_cost(INSN_COST);
14961 
14962   format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
14963 
14964   ins_encode %{
14965     __ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
14966   %}
14967 
14968   ins_pipe(fp_l2d);
14969 
14970 %}
14971 
14972 // ============================================================================
14973 // clearing of an array
14974 
14975 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, Universe dummy, rFlagsReg cr)
14976 %{
14977   match(Set dummy (ClearArray cnt base));
14978   effect(USE_KILL cnt, USE_KILL base, KILL cr);
14979 
14980   ins_cost(4 * INSN_COST);
14981   format %{ "ClearArray $cnt, $base" %}
14982 
14983   ins_encode %{
14984     address tpc = __ zero_words($base$$Register, $cnt$$Register);
14985     if (tpc == nullptr) {
14986       ciEnv::current()->record_failure("CodeCache is full");
14987       return;
14988     }
14989   %}
14990 
14991   ins_pipe(pipe_class_memory);
14992 %}
14993 
14994 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr)
14995 %{
14996   predicate((uint64_t)n->in(2)->get_long()
14997             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord));
14998   match(Set dummy (ClearArray cnt base));
14999   effect(TEMP temp, USE_KILL base, KILL cr);
15000 
15001   ins_cost(4 * INSN_COST);
15002   format %{ "ClearArray $cnt, $base" %}
15003 
15004   ins_encode %{
15005     address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
15006     if (tpc == nullptr) {
15007       ciEnv::current()->record_failure("CodeCache is full");
15008       return;
15009     }
15010   %}
15011 
15012   ins_pipe(pipe_class_memory);
15013 %}
15014 
15015 // ============================================================================
15016 // Overflow Math Instructions
15017 
15018 instruct overflowAddI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
15019 %{
15020   match(Set cr (OverflowAddI op1 op2));
15021 
15022   format %{ "cmnw  $op1, $op2\t# overflow check int" %}
15023   ins_cost(INSN_COST);
15024   ins_encode %{
15025     __ cmnw($op1$$Register, $op2$$Register);
15026   %}
15027 
15028   ins_pipe(icmp_reg_reg);
15029 %}
15030 
15031 instruct overflowAddI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2)
15032 %{
15033   match(Set cr (OverflowAddI op1 op2));
15034 
15035   format %{ "cmnw  $op1, $op2\t# overflow check int" %}
15036   ins_cost(INSN_COST);
15037   ins_encode %{
15038     __ cmnw($op1$$Register, $op2$$constant);
15039   %}
15040 
15041   ins_pipe(icmp_reg_imm);
15042 %}
15043 
15044 instruct overflowAddL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
15045 %{
15046   match(Set cr (OverflowAddL op1 op2));
15047 
15048   format %{ "cmn   $op1, $op2\t# overflow check long" %}
15049   ins_cost(INSN_COST);
15050   ins_encode %{
15051     __ cmn($op1$$Register, $op2$$Register);
15052   %}
15053 
15054   ins_pipe(icmp_reg_reg);
15055 %}
15056 
15057 instruct overflowAddL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2)
15058 %{
15059   match(Set cr (OverflowAddL op1 op2));
15060 
15061   format %{ "adds  zr, $op1, $op2\t# overflow check long" %}
15062   ins_cost(INSN_COST);
15063   ins_encode %{
15064     __ adds(zr, $op1$$Register, $op2$$constant);
15065   %}
15066 
15067   ins_pipe(icmp_reg_imm);
15068 %}
15069 
15070 instruct overflowSubI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
15071 %{
15072   match(Set cr (OverflowSubI op1 op2));
15073 
15074   format %{ "cmpw  $op1, $op2\t# overflow check int" %}
15075   ins_cost(INSN_COST);
15076   ins_encode %{
15077     __ cmpw($op1$$Register, $op2$$Register);
15078   %}
15079 
15080   ins_pipe(icmp_reg_reg);
15081 %}
15082 
15083 instruct overflowSubI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2)
15084 %{
15085   match(Set cr (OverflowSubI op1 op2));
15086 
15087   format %{ "cmpw  $op1, $op2\t# overflow check int" %}
15088   ins_cost(INSN_COST);
15089   ins_encode %{
15090     __ cmpw($op1$$Register, $op2$$constant);
15091   %}
15092 
15093   ins_pipe(icmp_reg_imm);
15094 %}
15095 
15096 instruct overflowSubL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
15097 %{
15098   match(Set cr (OverflowSubL op1 op2));
15099 
15100   format %{ "cmp   $op1, $op2\t# overflow check long" %}
15101   ins_cost(INSN_COST);
15102   ins_encode %{
15103     __ cmp($op1$$Register, $op2$$Register);
15104   %}
15105 
15106   ins_pipe(icmp_reg_reg);
15107 %}
15108 
15109 instruct overflowSubL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2)
15110 %{
15111   match(Set cr (OverflowSubL op1 op2));
15112 
15113   format %{ "cmp   $op1, $op2\t# overflow check long" %}
15114   ins_cost(INSN_COST);
15115   ins_encode %{
15116     __ subs(zr, $op1$$Register, $op2$$constant);
15117   %}
15118 
15119   ins_pipe(icmp_reg_imm);
15120 %}
15121 
15122 instruct overflowNegI_reg(rFlagsReg cr, immI0 zero, iRegIorL2I op1)
15123 %{
15124   match(Set cr (OverflowSubI zero op1));
15125 
15126   format %{ "cmpw  zr, $op1\t# overflow check int" %}
15127   ins_cost(INSN_COST);
15128   ins_encode %{
15129     __ cmpw(zr, $op1$$Register);
15130   %}
15131 
15132   ins_pipe(icmp_reg_imm);
15133 %}
15134 
15135 instruct overflowNegL_reg(rFlagsReg cr, immI0 zero, iRegL op1)
15136 %{
15137   match(Set cr (OverflowSubL zero op1));
15138 
15139   format %{ "cmp   zr, $op1\t# overflow check long" %}
15140   ins_cost(INSN_COST);
15141   ins_encode %{
15142     __ cmp(zr, $op1$$Register);
15143   %}
15144 
15145   ins_pipe(icmp_reg_imm);
15146 %}
15147 
15148 instruct overflowMulI_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
15149 %{
15150   match(Set cr (OverflowMulI op1 op2));
15151 
15152   format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t"
15153             "cmp   rscratch1, rscratch1, sxtw\n\t"
15154             "movw  rscratch1, #0x80000000\n\t"
15155             "cselw rscratch1, rscratch1, zr, NE\n\t"
15156             "cmpw  rscratch1, #1" %}
15157   ins_cost(5 * INSN_COST);
15158   ins_encode %{
15159     __ smull(rscratch1, $op1$$Register, $op2$$Register);
15160     __ subs(zr, rscratch1, rscratch1, ext::sxtw);      // NE => overflow
15161     __ movw(rscratch1, 0x80000000);                    // Develop 0 (EQ),
15162     __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE)
15163     __ cmpw(rscratch1, 1);                             // 0x80000000 - 1 => VS
15164   %}
15165 
15166   ins_pipe(pipe_slow);
15167 %}
15168 
15169 instruct overflowMulI_reg_branch(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, label labl, rFlagsReg cr)
15170 %{
15171   match(If cmp (OverflowMulI op1 op2));
15172   predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow
15173             || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow);
15174   effect(USE labl, KILL cr);
15175 
15176   format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t"
15177             "cmp   rscratch1, rscratch1, sxtw\n\t"
15178             "b$cmp   $labl" %}
15179   ins_cost(3 * INSN_COST); // Branch is rare so treat as INSN_COST
15180   ins_encode %{
15181     Label* L = $labl$$label;
15182     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15183     __ smull(rscratch1, $op1$$Register, $op2$$Register);
15184     __ subs(zr, rscratch1, rscratch1, ext::sxtw);      // NE => overflow
15185     __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L);
15186   %}
15187 
15188   ins_pipe(pipe_serial);
15189 %}
15190 
15191 instruct overflowMulL_reg(rFlagsReg cr, iRegL op1, iRegL op2)
15192 %{
15193   match(Set cr (OverflowMulL op1 op2));
15194 
15195   format %{ "mul   rscratch1, $op1, $op2\t#overflow check long\n\t"
15196             "smulh rscratch2, $op1, $op2\n\t"
15197             "cmp   rscratch2, rscratch1, ASR #63\n\t"
15198             "movw  rscratch1, #0x80000000\n\t"
15199             "cselw rscratch1, rscratch1, zr, NE\n\t"
15200             "cmpw  rscratch1, #1" %}
15201   ins_cost(6 * INSN_COST);
15202   ins_encode %{
15203     __ mul(rscratch1, $op1$$Register, $op2$$Register);   // Result bits 0..63
15204     __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127
15205     __ cmp(rscratch2, rscratch1, Assembler::ASR, 63);    // Top is pure sign ext
15206     __ movw(rscratch1, 0x80000000);                    // Develop 0 (EQ),
15207     __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE)
15208     __ cmpw(rscratch1, 1);                             // 0x80000000 - 1 => VS
15209   %}
15210 
15211   ins_pipe(pipe_slow);
15212 %}
15213 
15214 instruct overflowMulL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, rFlagsReg cr)
15215 %{
15216   match(If cmp (OverflowMulL op1 op2));
15217   predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow
15218             || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow);
15219   effect(USE labl, KILL cr);
15220 
15221   format %{ "mul   rscratch1, $op1, $op2\t#overflow check long\n\t"
15222             "smulh rscratch2, $op1, $op2\n\t"
15223             "cmp   rscratch2, rscratch1, ASR #63\n\t"
15224             "b$cmp $labl" %}
15225   ins_cost(4 * INSN_COST); // Branch is rare so treat as INSN_COST
15226   ins_encode %{
15227     Label* L = $labl$$label;
15228     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15229     __ mul(rscratch1, $op1$$Register, $op2$$Register);   // Result bits 0..63
15230     __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127
15231     __ cmp(rscratch2, rscratch1, Assembler::ASR, 63);    // Top is pure sign ext
15232     __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L);
15233   %}
15234 
15235   ins_pipe(pipe_serial);
15236 %}
15237 
15238 // ============================================================================
15239 // Compare Instructions
15240 
15241 instruct compI_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2)
15242 %{
15243   match(Set cr (CmpI op1 op2));
15244 
15245   effect(DEF cr, USE op1, USE op2);
15246 
15247   ins_cost(INSN_COST);
15248   format %{ "cmpw  $op1, $op2" %}
15249 
15250   ins_encode(aarch64_enc_cmpw(op1, op2));
15251 
15252   ins_pipe(icmp_reg_reg);
15253 %}
15254 
15255 instruct compI_reg_immI0(rFlagsReg cr, iRegI op1, immI0 zero)
15256 %{
15257   match(Set cr (CmpI op1 zero));
15258 
15259   effect(DEF cr, USE op1);
15260 
15261   ins_cost(INSN_COST);
15262   format %{ "cmpw $op1, 0" %}
15263 
15264   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero));
15265 
15266   ins_pipe(icmp_reg_imm);
15267 %}
15268 
15269 instruct compI_reg_immIAddSub(rFlagsReg cr, iRegI op1, immIAddSub op2)
15270 %{
15271   match(Set cr (CmpI op1 op2));
15272 
15273   effect(DEF cr, USE op1);
15274 
15275   ins_cost(INSN_COST);
15276   format %{ "cmpw  $op1, $op2" %}
15277 
15278   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2));
15279 
15280   ins_pipe(icmp_reg_imm);
15281 %}
15282 
15283 instruct compI_reg_immI(rFlagsReg cr, iRegI op1, immI op2)
15284 %{
15285   match(Set cr (CmpI op1 op2));
15286 
15287   effect(DEF cr, USE op1);
15288 
15289   ins_cost(INSN_COST * 2);
15290   format %{ "cmpw  $op1, $op2" %}
15291 
15292   ins_encode(aarch64_enc_cmpw_imm(op1, op2));
15293 
15294   ins_pipe(icmp_reg_imm);
15295 %}
15296 
15297 // Unsigned compare Instructions; really, same as signed compare
15298 // except it should only be used to feed an If or a CMovI which takes a
15299 // cmpOpU.
15300 
15301 instruct compU_reg_reg(rFlagsRegU cr, iRegI op1, iRegI op2)
15302 %{
15303   match(Set cr (CmpU op1 op2));
15304 
15305   effect(DEF cr, USE op1, USE op2);
15306 
15307   ins_cost(INSN_COST);
15308   format %{ "cmpw  $op1, $op2\t# unsigned" %}
15309 
15310   ins_encode(aarch64_enc_cmpw(op1, op2));
15311 
15312   ins_pipe(icmp_reg_reg);
15313 %}
15314 
15315 instruct compU_reg_immI0(rFlagsRegU cr, iRegI op1, immI0 zero)
15316 %{
15317   match(Set cr (CmpU op1 zero));
15318 
15319   effect(DEF cr, USE op1);
15320 
15321   ins_cost(INSN_COST);
15322   format %{ "cmpw $op1, #0\t# unsigned" %}
15323 
15324   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero));
15325 
15326   ins_pipe(icmp_reg_imm);
15327 %}
15328 
15329 instruct compU_reg_immIAddSub(rFlagsRegU cr, iRegI op1, immIAddSub op2)
15330 %{
15331   match(Set cr (CmpU op1 op2));
15332 
15333   effect(DEF cr, USE op1);
15334 
15335   ins_cost(INSN_COST);
15336   format %{ "cmpw  $op1, $op2\t# unsigned" %}
15337 
15338   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2));
15339 
15340   ins_pipe(icmp_reg_imm);
15341 %}
15342 
15343 instruct compU_reg_immI(rFlagsRegU cr, iRegI op1, immI op2)
15344 %{
15345   match(Set cr (CmpU op1 op2));
15346 
15347   effect(DEF cr, USE op1);
15348 
15349   ins_cost(INSN_COST * 2);
15350   format %{ "cmpw  $op1, $op2\t# unsigned" %}
15351 
15352   ins_encode(aarch64_enc_cmpw_imm(op1, op2));
15353 
15354   ins_pipe(icmp_reg_imm);
15355 %}
15356 
15357 instruct compL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
15358 %{
15359   match(Set cr (CmpL op1 op2));
15360 
15361   effect(DEF cr, USE op1, USE op2);
15362 
15363   ins_cost(INSN_COST);
15364   format %{ "cmp  $op1, $op2" %}
15365 
15366   ins_encode(aarch64_enc_cmp(op1, op2));
15367 
15368   ins_pipe(icmp_reg_reg);
15369 %}
15370 
15371 instruct compL_reg_immL0(rFlagsReg cr, iRegL op1, immL0 zero)
15372 %{
15373   match(Set cr (CmpL op1 zero));
15374 
15375   effect(DEF cr, USE op1);
15376 
15377   ins_cost(INSN_COST);
15378   format %{ "tst  $op1" %}
15379 
15380   ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero));
15381 
15382   ins_pipe(icmp_reg_imm);
15383 %}
15384 
15385 instruct compL_reg_immLAddSub(rFlagsReg cr, iRegL op1, immLAddSub op2)
15386 %{
15387   match(Set cr (CmpL op1 op2));
15388 
15389   effect(DEF cr, USE op1);
15390 
15391   ins_cost(INSN_COST);
15392   format %{ "cmp  $op1, $op2" %}
15393 
15394   ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2));
15395 
15396   ins_pipe(icmp_reg_imm);
15397 %}
15398 
15399 instruct compL_reg_immL(rFlagsReg cr, iRegL op1, immL op2)
15400 %{
15401   match(Set cr (CmpL op1 op2));
15402 
15403   effect(DEF cr, USE op1);
15404 
15405   ins_cost(INSN_COST * 2);
15406   format %{ "cmp  $op1, $op2" %}
15407 
15408   ins_encode(aarch64_enc_cmp_imm(op1, op2));
15409 
15410   ins_pipe(icmp_reg_imm);
15411 %}
15412 
15413 instruct compUL_reg_reg(rFlagsRegU cr, iRegL op1, iRegL op2)
15414 %{
15415   match(Set cr (CmpUL op1 op2));
15416 
15417   effect(DEF cr, USE op1, USE op2);
15418 
15419   ins_cost(INSN_COST);
15420   format %{ "cmp  $op1, $op2" %}
15421 
15422   ins_encode(aarch64_enc_cmp(op1, op2));
15423 
15424   ins_pipe(icmp_reg_reg);
15425 %}
15426 
15427 instruct compUL_reg_immL0(rFlagsRegU cr, iRegL op1, immL0 zero)
15428 %{
15429   match(Set cr (CmpUL op1 zero));
15430 
15431   effect(DEF cr, USE op1);
15432 
15433   ins_cost(INSN_COST);
15434   format %{ "tst  $op1" %}
15435 
15436   ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero));
15437 
15438   ins_pipe(icmp_reg_imm);
15439 %}
15440 
15441 instruct compUL_reg_immLAddSub(rFlagsRegU cr, iRegL op1, immLAddSub op2)
15442 %{
15443   match(Set cr (CmpUL op1 op2));
15444 
15445   effect(DEF cr, USE op1);
15446 
15447   ins_cost(INSN_COST);
15448   format %{ "cmp  $op1, $op2" %}
15449 
15450   ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2));
15451 
15452   ins_pipe(icmp_reg_imm);
15453 %}
15454 
15455 instruct compUL_reg_immL(rFlagsRegU cr, iRegL op1, immL op2)
15456 %{
15457   match(Set cr (CmpUL op1 op2));
15458 
15459   effect(DEF cr, USE op1);
15460 
15461   ins_cost(INSN_COST * 2);
15462   format %{ "cmp  $op1, $op2" %}
15463 
15464   ins_encode(aarch64_enc_cmp_imm(op1, op2));
15465 
15466   ins_pipe(icmp_reg_imm);
15467 %}
15468 
15469 instruct compP_reg_reg(rFlagsRegU cr, iRegP op1, iRegP op2)
15470 %{
15471   match(Set cr (CmpP op1 op2));
15472 
15473   effect(DEF cr, USE op1, USE op2);
15474 
15475   ins_cost(INSN_COST);
15476   format %{ "cmp  $op1, $op2\t // ptr" %}
15477 
15478   ins_encode(aarch64_enc_cmpp(op1, op2));
15479 
15480   ins_pipe(icmp_reg_reg);
15481 %}
15482 
15483 instruct compN_reg_reg(rFlagsRegU cr, iRegN op1, iRegN op2)
15484 %{
15485   match(Set cr (CmpN op1 op2));
15486 
15487   effect(DEF cr, USE op1, USE op2);
15488 
15489   ins_cost(INSN_COST);
15490   format %{ "cmp  $op1, $op2\t // compressed ptr" %}
15491 
15492   ins_encode(aarch64_enc_cmpn(op1, op2));
15493 
15494   ins_pipe(icmp_reg_reg);
15495 %}
15496 
15497 instruct testP_reg(rFlagsRegU cr, iRegP op1, immP0 zero)
15498 %{
15499   match(Set cr (CmpP op1 zero));
15500 
15501   effect(DEF cr, USE op1, USE zero);
15502 
15503   ins_cost(INSN_COST);
15504   format %{ "cmp  $op1, 0\t // ptr" %}
15505 
15506   ins_encode(aarch64_enc_testp(op1));
15507 
15508   ins_pipe(icmp_reg_imm);
15509 %}
15510 
15511 instruct testN_reg(rFlagsRegU cr, iRegN op1, immN0 zero)
15512 %{
15513   match(Set cr (CmpN op1 zero));
15514 
15515   effect(DEF cr, USE op1, USE zero);
15516 
15517   ins_cost(INSN_COST);
15518   format %{ "cmp  $op1, 0\t // compressed ptr" %}
15519 
15520   ins_encode(aarch64_enc_testn(op1));
15521 
15522   ins_pipe(icmp_reg_imm);
15523 %}
15524 
15525 // FP comparisons
15526 //
15527 // n.b. CmpF/CmpD set a normal flags reg which then gets compared
15528 // using normal cmpOp. See declaration of rFlagsReg for details.
15529 
15530 instruct compF_reg_reg(rFlagsReg cr, vRegF src1, vRegF src2)
15531 %{
15532   match(Set cr (CmpF src1 src2));
15533 
15534   ins_cost(3 * INSN_COST);
15535   format %{ "fcmps $src1, $src2" %}
15536 
15537   ins_encode %{
15538     __ fcmps(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
15539   %}
15540 
15541   ins_pipe(pipe_class_compare);
15542 %}
15543 
15544 instruct compF_reg_zero(rFlagsReg cr, vRegF src1, immF0 src2)
15545 %{
15546   match(Set cr (CmpF src1 src2));
15547 
15548   ins_cost(3 * INSN_COST);
15549   format %{ "fcmps $src1, 0.0" %}
15550 
15551   ins_encode %{
15552     __ fcmps(as_FloatRegister($src1$$reg), 0.0);
15553   %}
15554 
15555   ins_pipe(pipe_class_compare);
15556 %}
15557 // FROM HERE
15558 
15559 instruct compD_reg_reg(rFlagsReg cr, vRegD src1, vRegD src2)
15560 %{
15561   match(Set cr (CmpD src1 src2));
15562 
15563   ins_cost(3 * INSN_COST);
15564   format %{ "fcmpd $src1, $src2" %}
15565 
15566   ins_encode %{
15567     __ fcmpd(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
15568   %}
15569 
15570   ins_pipe(pipe_class_compare);
15571 %}
15572 
15573 instruct compD_reg_zero(rFlagsReg cr, vRegD src1, immD0 src2)
15574 %{
15575   match(Set cr (CmpD src1 src2));
15576 
15577   ins_cost(3 * INSN_COST);
15578   format %{ "fcmpd $src1, 0.0" %}
15579 
15580   ins_encode %{
15581     __ fcmpd(as_FloatRegister($src1$$reg), 0.0);
15582   %}
15583 
15584   ins_pipe(pipe_class_compare);
15585 %}
15586 
15587 instruct compF3_reg_reg(iRegINoSp dst, vRegF src1, vRegF src2, rFlagsReg cr)
15588 %{
15589   match(Set dst (CmpF3 src1 src2));
15590   effect(KILL cr);
15591 
15592   ins_cost(5 * INSN_COST);
15593   format %{ "fcmps $src1, $src2\n\t"
15594             "csinvw($dst, zr, zr, eq\n\t"
15595             "csnegw($dst, $dst, $dst, lt)"
15596   %}
15597 
15598   ins_encode %{
15599     Label done;
15600     FloatRegister s1 = as_FloatRegister($src1$$reg);
15601     FloatRegister s2 = as_FloatRegister($src2$$reg);
15602     Register d = as_Register($dst$$reg);
15603     __ fcmps(s1, s2);
15604     // installs 0 if EQ else -1
15605     __ csinvw(d, zr, zr, Assembler::EQ);
15606     // keeps -1 if less or unordered else installs 1
15607     __ csnegw(d, d, d, Assembler::LT);
15608     __ bind(done);
15609   %}
15610 
15611   ins_pipe(pipe_class_default);
15612 
15613 %}
15614 
15615 instruct compD3_reg_reg(iRegINoSp dst, vRegD src1, vRegD src2, rFlagsReg cr)
15616 %{
15617   match(Set dst (CmpD3 src1 src2));
15618   effect(KILL cr);
15619 
15620   ins_cost(5 * INSN_COST);
15621   format %{ "fcmpd $src1, $src2\n\t"
15622             "csinvw($dst, zr, zr, eq\n\t"
15623             "csnegw($dst, $dst, $dst, lt)"
15624   %}
15625 
15626   ins_encode %{
15627     Label done;
15628     FloatRegister s1 = as_FloatRegister($src1$$reg);
15629     FloatRegister s2 = as_FloatRegister($src2$$reg);
15630     Register d = as_Register($dst$$reg);
15631     __ fcmpd(s1, s2);
15632     // installs 0 if EQ else -1
15633     __ csinvw(d, zr, zr, Assembler::EQ);
15634     // keeps -1 if less or unordered else installs 1
15635     __ csnegw(d, d, d, Assembler::LT);
15636     __ bind(done);
15637   %}
15638   ins_pipe(pipe_class_default);
15639 
15640 %}
15641 
15642 instruct compF3_reg_immF0(iRegINoSp dst, vRegF src1, immF0 zero, rFlagsReg cr)
15643 %{
15644   match(Set dst (CmpF3 src1 zero));
15645   effect(KILL cr);
15646 
15647   ins_cost(5 * INSN_COST);
15648   format %{ "fcmps $src1, 0.0\n\t"
15649             "csinvw($dst, zr, zr, eq\n\t"
15650             "csnegw($dst, $dst, $dst, lt)"
15651   %}
15652 
15653   ins_encode %{
15654     Label done;
15655     FloatRegister s1 = as_FloatRegister($src1$$reg);
15656     Register d = as_Register($dst$$reg);
15657     __ fcmps(s1, 0.0);
15658     // installs 0 if EQ else -1
15659     __ csinvw(d, zr, zr, Assembler::EQ);
15660     // keeps -1 if less or unordered else installs 1
15661     __ csnegw(d, d, d, Assembler::LT);
15662     __ bind(done);
15663   %}
15664 
15665   ins_pipe(pipe_class_default);
15666 
15667 %}
15668 
15669 instruct compD3_reg_immD0(iRegINoSp dst, vRegD src1, immD0 zero, rFlagsReg cr)
15670 %{
15671   match(Set dst (CmpD3 src1 zero));
15672   effect(KILL cr);
15673 
15674   ins_cost(5 * INSN_COST);
15675   format %{ "fcmpd $src1, 0.0\n\t"
15676             "csinvw($dst, zr, zr, eq\n\t"
15677             "csnegw($dst, $dst, $dst, lt)"
15678   %}
15679 
15680   ins_encode %{
15681     Label done;
15682     FloatRegister s1 = as_FloatRegister($src1$$reg);
15683     Register d = as_Register($dst$$reg);
15684     __ fcmpd(s1, 0.0);
15685     // installs 0 if EQ else -1
15686     __ csinvw(d, zr, zr, Assembler::EQ);
15687     // keeps -1 if less or unordered else installs 1
15688     __ csnegw(d, d, d, Assembler::LT);
15689     __ bind(done);
15690   %}
15691   ins_pipe(pipe_class_default);
15692 
15693 %}
15694 
15695 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegIorL2I p, iRegIorL2I q, rFlagsReg cr)
15696 %{
15697   match(Set dst (CmpLTMask p q));
15698   effect(KILL cr);
15699 
15700   ins_cost(3 * INSN_COST);
15701 
15702   format %{ "cmpw $p, $q\t# cmpLTMask\n\t"
15703             "csetw $dst, lt\n\t"
15704             "subw $dst, zr, $dst"
15705   %}
15706 
15707   ins_encode %{
15708     __ cmpw(as_Register($p$$reg), as_Register($q$$reg));
15709     __ csetw(as_Register($dst$$reg), Assembler::LT);
15710     __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg));
15711   %}
15712 
15713   ins_pipe(ialu_reg_reg);
15714 %}
15715 
15716 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr)
15717 %{
15718   match(Set dst (CmpLTMask src zero));
15719   effect(KILL cr);
15720 
15721   ins_cost(INSN_COST);
15722 
15723   format %{ "asrw $dst, $src, #31\t# cmpLTMask0" %}
15724 
15725   ins_encode %{
15726     __ asrw(as_Register($dst$$reg), as_Register($src$$reg), 31);
15727   %}
15728 
15729   ins_pipe(ialu_reg_shift);
15730 %}
15731 
15732 // ============================================================================
15733 // Max and Min
15734 
15735 // Like compI_reg_reg or compI_reg_immI0 but without match rule and second zero parameter.
15736 
15737 instruct compI_reg_imm0(rFlagsReg cr, iRegI src)
15738 %{
15739   effect(DEF cr, USE src);
15740   ins_cost(INSN_COST);
15741   format %{ "cmpw $src, 0" %}
15742 
15743   ins_encode %{
15744     __ cmpw($src$$Register, 0);
15745   %}
15746   ins_pipe(icmp_reg_imm);
15747 %}
15748 
15749 instruct minI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2)
15750 %{
15751   match(Set dst (MinI src1 src2));
15752   ins_cost(INSN_COST * 3);
15753 
15754   expand %{
15755     rFlagsReg cr;
15756     compI_reg_reg(cr, src1, src2);
15757     cmovI_reg_reg_lt(dst, src1, src2, cr);
15758   %}
15759 %}
15760 
15761 instruct maxI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2)
15762 %{
15763   match(Set dst (MaxI src1 src2));
15764   ins_cost(INSN_COST * 3);
15765 
15766   expand %{
15767     rFlagsReg cr;
15768     compI_reg_reg(cr, src1, src2);
15769     cmovI_reg_reg_gt(dst, src1, src2, cr);
15770   %}
15771 %}
15772 
15773 
15774 // ============================================================================
15775 // Branch Instructions
15776 
15777 // Direct Branch.
15778 instruct branch(label lbl)
15779 %{
15780   match(Goto);
15781 
15782   effect(USE lbl);
15783 
15784   ins_cost(BRANCH_COST);
15785   format %{ "b  $lbl" %}
15786 
15787   ins_encode(aarch64_enc_b(lbl));
15788 
15789   ins_pipe(pipe_branch);
15790 %}
15791 
15792 // Conditional Near Branch
15793 instruct branchCon(cmpOp cmp, rFlagsReg cr, label lbl)
15794 %{
15795   // Same match rule as `branchConFar'.
15796   match(If cmp cr);
15797 
15798   effect(USE lbl);
15799 
15800   ins_cost(BRANCH_COST);
15801   // If set to 1 this indicates that the current instruction is a
15802   // short variant of a long branch. This avoids using this
15803   // instruction in first-pass matching. It will then only be used in
15804   // the `Shorten_branches' pass.
15805   // ins_short_branch(1);
15806   format %{ "b$cmp  $lbl" %}
15807 
15808   ins_encode(aarch64_enc_br_con(cmp, lbl));
15809 
15810   ins_pipe(pipe_branch_cond);
15811 %}
15812 
15813 // Conditional Near Branch Unsigned
15814 instruct branchConU(cmpOpU cmp, rFlagsRegU cr, label lbl)
15815 %{
15816   // Same match rule as `branchConFar'.
15817   match(If cmp cr);
15818 
15819   effect(USE lbl);
15820 
15821   ins_cost(BRANCH_COST);
15822   // If set to 1 this indicates that the current instruction is a
15823   // short variant of a long branch. This avoids using this
15824   // instruction in first-pass matching. It will then only be used in
15825   // the `Shorten_branches' pass.
15826   // ins_short_branch(1);
15827   format %{ "b$cmp  $lbl\t# unsigned" %}
15828 
15829   ins_encode(aarch64_enc_br_conU(cmp, lbl));
15830 
15831   ins_pipe(pipe_branch_cond);
15832 %}
15833 
15834 // Make use of CBZ and CBNZ.  These instructions, as well as being
15835 // shorter than (cmp; branch), have the additional benefit of not
15836 // killing the flags.
15837 
15838 instruct cmpI_imm0_branch(cmpOpEqNe cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsReg cr) %{
15839   match(If cmp (CmpI op1 op2));
15840   effect(USE labl);
15841 
15842   ins_cost(BRANCH_COST);
15843   format %{ "cbw$cmp   $op1, $labl" %}
15844   ins_encode %{
15845     Label* L = $labl$$label;
15846     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15847     if (cond == Assembler::EQ)
15848       __ cbzw($op1$$Register, *L);
15849     else
15850       __ cbnzw($op1$$Register, *L);
15851   %}
15852   ins_pipe(pipe_cmp_branch);
15853 %}
15854 
15855 instruct cmpL_imm0_branch(cmpOpEqNe cmp, iRegL op1, immL0 op2, label labl, rFlagsReg cr) %{
15856   match(If cmp (CmpL op1 op2));
15857   effect(USE labl);
15858 
15859   ins_cost(BRANCH_COST);
15860   format %{ "cb$cmp   $op1, $labl" %}
15861   ins_encode %{
15862     Label* L = $labl$$label;
15863     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15864     if (cond == Assembler::EQ)
15865       __ cbz($op1$$Register, *L);
15866     else
15867       __ cbnz($op1$$Register, *L);
15868   %}
15869   ins_pipe(pipe_cmp_branch);
15870 %}
15871 
15872 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 op2, label labl, rFlagsReg cr) %{
15873   match(If cmp (CmpP op1 op2));
15874   effect(USE labl);
15875 
15876   ins_cost(BRANCH_COST);
15877   format %{ "cb$cmp   $op1, $labl" %}
15878   ins_encode %{
15879     Label* L = $labl$$label;
15880     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15881     if (cond == Assembler::EQ)
15882       __ cbz($op1$$Register, *L);
15883     else
15884       __ cbnz($op1$$Register, *L);
15885   %}
15886   ins_pipe(pipe_cmp_branch);
15887 %}
15888 
15889 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 op2, label labl, rFlagsReg cr) %{
15890   match(If cmp (CmpN op1 op2));
15891   effect(USE labl);
15892 
15893   ins_cost(BRANCH_COST);
15894   format %{ "cbw$cmp   $op1, $labl" %}
15895   ins_encode %{
15896     Label* L = $labl$$label;
15897     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15898     if (cond == Assembler::EQ)
15899       __ cbzw($op1$$Register, *L);
15900     else
15901       __ cbnzw($op1$$Register, *L);
15902   %}
15903   ins_pipe(pipe_cmp_branch);
15904 %}
15905 
15906 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN oop, immP0 zero, label labl, rFlagsReg cr) %{
15907   match(If cmp (CmpP (DecodeN oop) zero));
15908   effect(USE labl);
15909 
15910   ins_cost(BRANCH_COST);
15911   format %{ "cb$cmp   $oop, $labl" %}
15912   ins_encode %{
15913     Label* L = $labl$$label;
15914     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15915     if (cond == Assembler::EQ)
15916       __ cbzw($oop$$Register, *L);
15917     else
15918       __ cbnzw($oop$$Register, *L);
15919   %}
15920   ins_pipe(pipe_cmp_branch);
15921 %}
15922 
15923 instruct cmpUI_imm0_branch(cmpOpUEqNeLeGt cmp, iRegIorL2I op1, immI0 op2, label labl) %{
15924   match(If cmp (CmpU op1 op2));
15925   effect(USE labl);
15926 
15927   ins_cost(BRANCH_COST);
15928   format %{ "cbw$cmp   $op1, $labl" %}
15929   ins_encode %{
15930     Label* L = $labl$$label;
15931     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15932     if (cond == Assembler::EQ || cond == Assembler::LS) {
15933       __ cbzw($op1$$Register, *L);
15934     } else {
15935       assert(cond == Assembler::NE || cond == Assembler::HI, "unexpected condition");
15936       __ cbnzw($op1$$Register, *L);
15937     }
15938   %}
15939   ins_pipe(pipe_cmp_branch);
15940 %}
15941 
15942 instruct cmpUL_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 op2, label labl) %{
15943   match(If cmp (CmpUL op1 op2));
15944   effect(USE labl);
15945 
15946   ins_cost(BRANCH_COST);
15947   format %{ "cb$cmp   $op1, $labl" %}
15948   ins_encode %{
15949     Label* L = $labl$$label;
15950     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15951     if (cond == Assembler::EQ || cond == Assembler::LS) {
15952       __ cbz($op1$$Register, *L);
15953     } else {
15954       assert(cond == Assembler::NE || cond == Assembler::HI, "unexpected condition");
15955       __ cbnz($op1$$Register, *L);
15956     }
15957   %}
15958   ins_pipe(pipe_cmp_branch);
15959 %}
15960 
15961 // Test bit and Branch
15962 
15963 // Patterns for short (< 32KiB) variants
15964 instruct cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{
15965   match(If cmp (CmpL op1 op2));
15966   effect(USE labl);
15967 
15968   ins_cost(BRANCH_COST);
15969   format %{ "cb$cmp   $op1, $labl # long" %}
15970   ins_encode %{
15971     Label* L = $labl$$label;
15972     Assembler::Condition cond =
15973       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
15974     __ tbr(cond, $op1$$Register, 63, *L);
15975   %}
15976   ins_pipe(pipe_cmp_branch);
15977   ins_short_branch(1);
15978 %}
15979 
15980 instruct cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{
15981   match(If cmp (CmpI op1 op2));
15982   effect(USE labl);
15983 
15984   ins_cost(BRANCH_COST);
15985   format %{ "cb$cmp   $op1, $labl # int" %}
15986   ins_encode %{
15987     Label* L = $labl$$label;
15988     Assembler::Condition cond =
15989       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
15990     __ tbr(cond, $op1$$Register, 31, *L);
15991   %}
15992   ins_pipe(pipe_cmp_branch);
15993   ins_short_branch(1);
15994 %}
15995 
15996 instruct cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{
15997   match(If cmp (CmpL (AndL op1 op2) op3));
15998   predicate(is_power_of_2((julong)n->in(2)->in(1)->in(2)->get_long()));
15999   effect(USE labl);
16000 
16001   ins_cost(BRANCH_COST);
16002   format %{ "tb$cmp   $op1, $op2, $labl" %}
16003   ins_encode %{
16004     Label* L = $labl$$label;
16005     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
16006     int bit = exact_log2_long($op2$$constant);
16007     __ tbr(cond, $op1$$Register, bit, *L);
16008   %}
16009   ins_pipe(pipe_cmp_branch);
16010   ins_short_branch(1);
16011 %}
16012 
16013 instruct cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{
16014   match(If cmp (CmpI (AndI op1 op2) op3));
16015   predicate(is_power_of_2((juint)n->in(2)->in(1)->in(2)->get_int()));
16016   effect(USE labl);
16017 
16018   ins_cost(BRANCH_COST);
16019   format %{ "tb$cmp   $op1, $op2, $labl" %}
16020   ins_encode %{
16021     Label* L = $labl$$label;
16022     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
16023     int bit = exact_log2((juint)$op2$$constant);
16024     __ tbr(cond, $op1$$Register, bit, *L);
16025   %}
16026   ins_pipe(pipe_cmp_branch);
16027   ins_short_branch(1);
16028 %}
16029 
16030 // And far variants
16031 instruct far_cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{
16032   match(If cmp (CmpL op1 op2));
16033   effect(USE labl);
16034 
16035   ins_cost(BRANCH_COST);
16036   format %{ "cb$cmp   $op1, $labl # long" %}
16037   ins_encode %{
16038     Label* L = $labl$$label;
16039     Assembler::Condition cond =
16040       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
16041     __ tbr(cond, $op1$$Register, 63, *L, /*far*/true);
16042   %}
16043   ins_pipe(pipe_cmp_branch);
16044 %}
16045 
16046 instruct far_cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{
16047   match(If cmp (CmpI op1 op2));
16048   effect(USE labl);
16049 
16050   ins_cost(BRANCH_COST);
16051   format %{ "cb$cmp   $op1, $labl # int" %}
16052   ins_encode %{
16053     Label* L = $labl$$label;
16054     Assembler::Condition cond =
16055       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
16056     __ tbr(cond, $op1$$Register, 31, *L, /*far*/true);
16057   %}
16058   ins_pipe(pipe_cmp_branch);
16059 %}
16060 
16061 instruct far_cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{
16062   match(If cmp (CmpL (AndL op1 op2) op3));
16063   predicate(is_power_of_2((julong)n->in(2)->in(1)->in(2)->get_long()));
16064   effect(USE labl);
16065 
16066   ins_cost(BRANCH_COST);
16067   format %{ "tb$cmp   $op1, $op2, $labl" %}
16068   ins_encode %{
16069     Label* L = $labl$$label;
16070     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
16071     int bit = exact_log2_long($op2$$constant);
16072     __ tbr(cond, $op1$$Register, bit, *L, /*far*/true);
16073   %}
16074   ins_pipe(pipe_cmp_branch);
16075 %}
16076 
16077 instruct far_cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{
16078   match(If cmp (CmpI (AndI op1 op2) op3));
16079   predicate(is_power_of_2((juint)n->in(2)->in(1)->in(2)->get_int()));
16080   effect(USE labl);
16081 
16082   ins_cost(BRANCH_COST);
16083   format %{ "tb$cmp   $op1, $op2, $labl" %}
16084   ins_encode %{
16085     Label* L = $labl$$label;
16086     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
16087     int bit = exact_log2((juint)$op2$$constant);
16088     __ tbr(cond, $op1$$Register, bit, *L, /*far*/true);
16089   %}
16090   ins_pipe(pipe_cmp_branch);
16091 %}
16092 
16093 // Test bits
16094 
16095 instruct cmpL_and(cmpOp cmp, iRegL op1, immL op2, immL0 op3, rFlagsReg cr) %{
16096   match(Set cr (CmpL (AndL op1 op2) op3));
16097   predicate(Assembler::operand_valid_for_logical_immediate
16098             (/*is_32*/false, n->in(1)->in(2)->get_long()));
16099 
16100   ins_cost(INSN_COST);
16101   format %{ "tst $op1, $op2 # long" %}
16102   ins_encode %{
16103     __ tst($op1$$Register, $op2$$constant);
16104   %}
16105   ins_pipe(ialu_reg_reg);
16106 %}
16107 
16108 instruct cmpI_and(cmpOp cmp, iRegIorL2I op1, immI op2, immI0 op3, rFlagsReg cr) %{
16109   match(Set cr (CmpI (AndI op1 op2) op3));
16110   predicate(Assembler::operand_valid_for_logical_immediate
16111             (/*is_32*/true, n->in(1)->in(2)->get_int()));
16112 
16113   ins_cost(INSN_COST);
16114   format %{ "tst $op1, $op2 # int" %}
16115   ins_encode %{
16116     __ tstw($op1$$Register, $op2$$constant);
16117   %}
16118   ins_pipe(ialu_reg_reg);
16119 %}
16120 
16121 instruct cmpL_and_reg(cmpOp cmp, iRegL op1, iRegL op2, immL0 op3, rFlagsReg cr) %{
16122   match(Set cr (CmpL (AndL op1 op2) op3));
16123 
16124   ins_cost(INSN_COST);
16125   format %{ "tst $op1, $op2 # long" %}
16126   ins_encode %{
16127     __ tst($op1$$Register, $op2$$Register);
16128   %}
16129   ins_pipe(ialu_reg_reg);
16130 %}
16131 
16132 instruct cmpI_and_reg(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, immI0 op3, rFlagsReg cr) %{
16133   match(Set cr (CmpI (AndI op1 op2) op3));
16134 
16135   ins_cost(INSN_COST);
16136   format %{ "tstw $op1, $op2 # int" %}
16137   ins_encode %{
16138     __ tstw($op1$$Register, $op2$$Register);
16139   %}
16140   ins_pipe(ialu_reg_reg);
16141 %}
16142 
16143 
16144 // Conditional Far Branch
16145 // Conditional Far Branch Unsigned
16146 // TODO: fixme
16147 
16148 // counted loop end branch near
16149 instruct branchLoopEnd(cmpOp cmp, rFlagsReg cr, label lbl)
16150 %{
16151   match(CountedLoopEnd cmp cr);
16152 
16153   effect(USE lbl);
16154 
16155   ins_cost(BRANCH_COST);
16156   // short variant.
16157   // ins_short_branch(1);
16158   format %{ "b$cmp $lbl \t// counted loop end" %}
16159 
16160   ins_encode(aarch64_enc_br_con(cmp, lbl));
16161 
16162   ins_pipe(pipe_branch);
16163 %}
16164 
16165 // counted loop end branch far
16166 // TODO: fixme
16167 
16168 // ============================================================================
16169 // inlined locking and unlocking
16170 
16171 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2, iRegPNoSp tmp3)
16172 %{
16173   predicate(LockingMode != LM_LIGHTWEIGHT);
16174   match(Set cr (FastLock object box));
16175   effect(TEMP tmp, TEMP tmp2, TEMP tmp3);
16176 
16177   ins_cost(5 * INSN_COST);
16178   format %{ "fastlock $object,$box\t! kills $tmp,$tmp2,$tmp3" %}
16179 
16180   ins_encode %{
16181     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register, $tmp3$$Register);
16182   %}
16183 
16184   ins_pipe(pipe_serial);
16185 %}
16186 
16187 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2)
16188 %{
16189   predicate(LockingMode != LM_LIGHTWEIGHT);
16190   match(Set cr (FastUnlock object box));
16191   effect(TEMP tmp, TEMP tmp2);
16192 
16193   ins_cost(5 * INSN_COST);
16194   format %{ "fastunlock $object,$box\t! kills $tmp, $tmp2" %}
16195 
16196   ins_encode %{
16197     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register);
16198   %}
16199 
16200   ins_pipe(pipe_serial);
16201 %}
16202 
16203 instruct cmpFastLockLightweight(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2, iRegPNoSp tmp3)
16204 %{
16205   predicate(LockingMode == LM_LIGHTWEIGHT);
16206   match(Set cr (FastLock object box));
16207   effect(TEMP tmp, TEMP tmp2, TEMP tmp3);
16208 
16209   ins_cost(5 * INSN_COST);
16210   format %{ "fastlock $object,$box\t! kills $tmp,$tmp2,$tmp3" %}
16211 
16212   ins_encode %{
16213     __ fast_lock_lightweight($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register, $tmp3$$Register);
16214   %}
16215 
16216   ins_pipe(pipe_serial);
16217 %}
16218 
16219 instruct cmpFastUnlockLightweight(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2, iRegPNoSp tmp3)
16220 %{
16221   predicate(LockingMode == LM_LIGHTWEIGHT);
16222   match(Set cr (FastUnlock object box));
16223   effect(TEMP tmp, TEMP tmp2, TEMP tmp3);
16224 
16225   ins_cost(5 * INSN_COST);
16226   format %{ "fastunlock $object,$box\t! kills $tmp, $tmp2, $tmp3" %}
16227 
16228   ins_encode %{
16229     __ fast_unlock_lightweight($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register, $tmp3$$Register);
16230   %}
16231 
16232   ins_pipe(pipe_serial);
16233 %}
16234 
16235 // ============================================================================
16236 // Safepoint Instructions
16237 
16238 // TODO
16239 // provide a near and far version of this code
16240 
16241 instruct safePoint(rFlagsReg cr, iRegP poll)
16242 %{
16243   match(SafePoint poll);
16244   effect(KILL cr);
16245 
16246   format %{
16247     "ldrw zr, [$poll]\t# Safepoint: poll for GC"
16248   %}
16249   ins_encode %{
16250     __ read_polling_page(as_Register($poll$$reg), relocInfo::poll_type);
16251   %}
16252   ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem);
16253 %}
16254 
16255 
16256 // ============================================================================
16257 // Procedure Call/Return Instructions
16258 
16259 // Call Java Static Instruction
16260 
16261 instruct CallStaticJavaDirect(method meth)
16262 %{
16263   match(CallStaticJava);
16264 
16265   effect(USE meth);
16266 
16267   ins_cost(CALL_COST);
16268 
16269   format %{ "call,static $meth \t// ==> " %}
16270 
16271   ins_encode(aarch64_enc_java_static_call(meth),
16272              aarch64_enc_call_epilog);
16273 
16274   ins_pipe(pipe_class_call);
16275 %}
16276 
16277 // TO HERE
16278 
16279 // Call Java Dynamic Instruction
16280 instruct CallDynamicJavaDirect(method meth)
16281 %{
16282   match(CallDynamicJava);
16283 
16284   effect(USE meth);
16285 
16286   ins_cost(CALL_COST);
16287 
16288   format %{ "CALL,dynamic $meth \t// ==> " %}
16289 
16290   ins_encode(aarch64_enc_java_dynamic_call(meth),
16291              aarch64_enc_call_epilog);
16292 
16293   ins_pipe(pipe_class_call);
16294 %}
16295 
16296 // Call Runtime Instruction
16297 
16298 instruct CallRuntimeDirect(method meth)
16299 %{
16300   match(CallRuntime);
16301 
16302   effect(USE meth);
16303 
16304   ins_cost(CALL_COST);
16305 
16306   format %{ "CALL, runtime $meth" %}
16307 
16308   ins_encode( aarch64_enc_java_to_runtime(meth) );
16309 
16310   ins_pipe(pipe_class_call);
16311 %}
16312 
16313 // Call Runtime Instruction
16314 
16315 instruct CallLeafDirect(method meth)
16316 %{
16317   match(CallLeaf);
16318 
16319   effect(USE meth);
16320 
16321   ins_cost(CALL_COST);
16322 
16323   format %{ "CALL, runtime leaf $meth" %}
16324 
16325   ins_encode( aarch64_enc_java_to_runtime(meth) );
16326 
16327   ins_pipe(pipe_class_call);
16328 %}
16329 
16330 // Call Runtime Instruction without safepoint and with vector arguments
16331 instruct CallLeafDirectVector(method meth)
16332 %{
16333   match(CallLeafVector);
16334 
16335   effect(USE meth);
16336 
16337   ins_cost(CALL_COST);
16338 
16339   format %{ "CALL, runtime leaf vector $meth" %}
16340 
16341   ins_encode(aarch64_enc_java_to_runtime(meth));
16342 
16343   ins_pipe(pipe_class_call);
16344 %}
16345 
16346 // Call Runtime Instruction
16347 
16348 instruct CallLeafNoFPDirect(method meth)
16349 %{
16350   match(CallLeafNoFP);
16351 
16352   effect(USE meth);
16353 
16354   ins_cost(CALL_COST);
16355 
16356   format %{ "CALL, runtime leaf nofp $meth" %}
16357 
16358   ins_encode( aarch64_enc_java_to_runtime(meth) );
16359 
16360   ins_pipe(pipe_class_call);
16361 %}
16362 
16363 // Tail Call; Jump from runtime stub to Java code.
16364 // Also known as an 'interprocedural jump'.
16365 // Target of jump will eventually return to caller.
16366 // TailJump below removes the return address.
16367 // Don't use rfp for 'jump_target' because a MachEpilogNode has already been
16368 // emitted just above the TailCall which has reset rfp to the caller state.
16369 instruct TailCalljmpInd(iRegPNoSpNoRfp jump_target, inline_cache_RegP method_ptr)
16370 %{
16371   match(TailCall jump_target method_ptr);
16372 
16373   ins_cost(CALL_COST);
16374 
16375   format %{ "br $jump_target\t# $method_ptr holds method" %}
16376 
16377   ins_encode(aarch64_enc_tail_call(jump_target));
16378 
16379   ins_pipe(pipe_class_call);
16380 %}
16381 
16382 instruct TailjmpInd(iRegPNoSpNoRfp jump_target, iRegP_R0 ex_oop)
16383 %{
16384   match(TailJump jump_target ex_oop);
16385 
16386   ins_cost(CALL_COST);
16387 
16388   format %{ "br $jump_target\t# $ex_oop holds exception oop" %}
16389 
16390   ins_encode(aarch64_enc_tail_jmp(jump_target));
16391 
16392   ins_pipe(pipe_class_call);
16393 %}
16394 
16395 // Forward exception.
16396 instruct ForwardExceptionjmp()
16397 %{
16398   match(ForwardException);
16399   ins_cost(CALL_COST);
16400 
16401   format %{ "b forward_exception_stub" %}
16402   ins_encode %{
16403     __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
16404   %}
16405   ins_pipe(pipe_class_call);
16406 %}
16407 
16408 // Create exception oop: created by stack-crawling runtime code.
16409 // Created exception is now available to this handler, and is setup
16410 // just prior to jumping to this handler. No code emitted.
16411 // TODO check
16412 // should ex_oop be in r0? intel uses rax, ppc cannot use r0 so uses rarg1
16413 instruct CreateException(iRegP_R0 ex_oop)
16414 %{
16415   match(Set ex_oop (CreateEx));
16416 
16417   format %{ " -- \t// exception oop; no code emitted" %}
16418 
16419   size(0);
16420 
16421   ins_encode( /*empty*/ );
16422 
16423   ins_pipe(pipe_class_empty);
16424 %}
16425 
16426 // Rethrow exception: The exception oop will come in the first
16427 // argument position. Then JUMP (not call) to the rethrow stub code.
16428 instruct RethrowException() %{
16429   match(Rethrow);
16430   ins_cost(CALL_COST);
16431 
16432   format %{ "b rethrow_stub" %}
16433 
16434   ins_encode( aarch64_enc_rethrow() );
16435 
16436   ins_pipe(pipe_class_call);
16437 %}
16438 
16439 
16440 // Return Instruction
16441 // epilog node loads ret address into lr as part of frame pop
16442 instruct Ret()
16443 %{
16444   match(Return);
16445 
16446   format %{ "ret\t// return register" %}
16447 
16448   ins_encode( aarch64_enc_ret() );
16449 
16450   ins_pipe(pipe_branch);
16451 %}
16452 
16453 // Die now.
16454 instruct ShouldNotReachHere() %{
16455   match(Halt);
16456 
16457   ins_cost(CALL_COST);
16458   format %{ "ShouldNotReachHere" %}
16459 
16460   ins_encode %{
16461     if (is_reachable()) {
16462       const char* str = __ code_string(_halt_reason);
16463       __ stop(str);
16464     }
16465   %}
16466 
16467   ins_pipe(pipe_class_default);
16468 %}
16469 
16470 // ============================================================================
16471 // Partial Subtype Check
16472 //
16473 // superklass array for an instance of the superklass.  Set a hidden
16474 // internal cache on a hit (cache is checked with exposed code in
16475 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
16476 // encoding ALSO sets flags.
16477 
16478 instruct partialSubtypeCheck(iRegP_R4 sub, iRegP_R0 super, iRegP_R2 temp, iRegP_R5 result, rFlagsReg cr)
16479 %{
16480   match(Set result (PartialSubtypeCheck sub super));
16481   predicate(!UseSecondarySupersTable);
16482   effect(KILL cr, KILL temp);
16483 
16484   ins_cost(20 * INSN_COST);  // slightly larger than the next version
16485   format %{ "partialSubtypeCheck $result, $sub, $super" %}
16486 
16487   ins_encode(aarch64_enc_partial_subtype_check(sub, super, temp, result));
16488 
16489   opcode(0x1); // Force zero of result reg on hit
16490 
16491   ins_pipe(pipe_class_memory);
16492 %}
16493 
16494 // Two versions of partialSubtypeCheck, both used when we need to
16495 // search for a super class in the secondary supers array. The first
16496 // is used when we don't know _a priori_ the class being searched
16497 // for. The second, far more common, is used when we do know: this is
16498 // used for instanceof, checkcast, and any case where C2 can determine
16499 // it by constant propagation.
16500 
16501 instruct partialSubtypeCheckVarSuper(iRegP_R4 sub, iRegP_R0 super, vRegD_V0 vtemp, iRegP_R5 result,
16502                                      iRegP_R1 tempR1, iRegP_R2 tempR2, iRegP_R3 tempR3,
16503                                      rFlagsReg cr)
16504 %{
16505   match(Set result (PartialSubtypeCheck sub super));
16506   predicate(UseSecondarySupersTable);
16507   effect(KILL cr, TEMP tempR1, TEMP tempR2, TEMP tempR3, TEMP vtemp);
16508 
16509   ins_cost(10 * INSN_COST);  // slightly larger than the next version
16510   format %{ "partialSubtypeCheck $result, $sub, $super" %}
16511 
16512   ins_encode %{
16513     __ lookup_secondary_supers_table_var($sub$$Register, $super$$Register,
16514                                          $tempR1$$Register, $tempR2$$Register, $tempR3$$Register,
16515                                          $vtemp$$FloatRegister,
16516                                          $result$$Register, /*L_success*/nullptr);
16517   %}
16518 
16519   ins_pipe(pipe_class_memory);
16520 %}
16521 
16522 instruct partialSubtypeCheckConstSuper(iRegP_R4 sub, iRegP_R0 super_reg, immP super_con, vRegD_V0 vtemp, iRegP_R5 result,
16523                                        iRegP_R1 tempR1, iRegP_R2 tempR2, iRegP_R3 tempR3,
16524                                        rFlagsReg cr)
16525 %{
16526   match(Set result (PartialSubtypeCheck sub (Binary super_reg super_con)));
16527   predicate(UseSecondarySupersTable);
16528   effect(KILL cr, TEMP tempR1, TEMP tempR2, TEMP tempR3, TEMP vtemp);
16529 
16530   ins_cost(5 * INSN_COST);  // smaller than the next version
16531   format %{ "partialSubtypeCheck $result, $sub, $super_reg, $super_con" %}
16532 
16533   ins_encode %{
16534     bool success = false;
16535     u1 super_klass_slot = ((Klass*)$super_con$$constant)->hash_slot();
16536     if (InlineSecondarySupersTest) {
16537       success =
16538         __ lookup_secondary_supers_table_const($sub$$Register, $super_reg$$Register,
16539                                                $tempR1$$Register, $tempR2$$Register, $tempR3$$Register,
16540                                                $vtemp$$FloatRegister,
16541                                                $result$$Register,
16542                                                super_klass_slot);
16543     } else {
16544       address call = __ trampoline_call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_stub(super_klass_slot)));
16545       success = (call != nullptr);
16546     }
16547     if (!success) {
16548       ciEnv::current()->record_failure("CodeCache is full");
16549       return;
16550     }
16551   %}
16552 
16553   ins_pipe(pipe_class_memory);
16554 %}
16555 
16556 // Intrisics for String.compareTo()
16557 
16558 instruct string_compareU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16559                         iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, rFlagsReg cr)
16560 %{
16561   predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU));
16562   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16563   effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16564 
16565   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1" %}
16566   ins_encode %{
16567     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16568     __ string_compare($str1$$Register, $str2$$Register,
16569                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16570                       $tmp1$$Register, $tmp2$$Register,
16571                       fnoreg, fnoreg, fnoreg, pnoreg, pnoreg, StrIntrinsicNode::UU);
16572   %}
16573   ins_pipe(pipe_class_memory);
16574 %}
16575 
16576 instruct string_compareL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16577                         iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, rFlagsReg cr)
16578 %{
16579   predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL));
16580   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16581   effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16582 
16583   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1" %}
16584   ins_encode %{
16585     __ string_compare($str1$$Register, $str2$$Register,
16586                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16587                       $tmp1$$Register, $tmp2$$Register,
16588                       fnoreg, fnoreg, fnoreg, pnoreg, pnoreg, StrIntrinsicNode::LL);
16589   %}
16590   ins_pipe(pipe_class_memory);
16591 %}
16592 
16593 instruct string_compareUL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16594                         iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16595                         vRegD_V0 vtmp1, vRegD_V1 vtmp2, vRegD_V2 vtmp3, rFlagsReg cr)
16596 %{
16597   predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL));
16598   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16599   effect(KILL tmp1, KILL tmp2, KILL vtmp1, KILL vtmp2, KILL vtmp3,
16600          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16601 
16602   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1, $tmp2, $vtmp1, $vtmp2, $vtmp3" %}
16603   ins_encode %{
16604     __ string_compare($str1$$Register, $str2$$Register,
16605                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16606                       $tmp1$$Register, $tmp2$$Register,
16607                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister,
16608                       $vtmp3$$FloatRegister, pnoreg, pnoreg, StrIntrinsicNode::UL);
16609   %}
16610   ins_pipe(pipe_class_memory);
16611 %}
16612 
16613 instruct string_compareLU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16614                         iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16615                         vRegD_V0 vtmp1, vRegD_V1 vtmp2, vRegD_V2 vtmp3, rFlagsReg cr)
16616 %{
16617   predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU));
16618   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16619   effect(KILL tmp1, KILL tmp2, KILL vtmp1, KILL vtmp2, KILL vtmp3,
16620          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16621 
16622   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1, $tmp2, $vtmp1, $vtmp2, $vtmp3" %}
16623   ins_encode %{
16624     __ string_compare($str1$$Register, $str2$$Register,
16625                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16626                       $tmp1$$Register, $tmp2$$Register,
16627                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister,
16628                       $vtmp3$$FloatRegister, pnoreg, pnoreg, StrIntrinsicNode::LU);
16629   %}
16630   ins_pipe(pipe_class_memory);
16631 %}
16632 
16633 // Note that Z registers alias the corresponding NEON registers, we declare the vector operands of
16634 // these string_compare variants as NEON register type for convenience so that the prototype of
16635 // string_compare can be shared with all variants.
16636 
16637 instruct string_compareLL_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16638                               iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16639                               vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1,
16640                               pRegGov_P1 pgtmp2, rFlagsReg cr)
16641 %{
16642   predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL));
16643   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16644   effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2,
16645          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16646 
16647   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # USE sve" %}
16648   ins_encode %{
16649     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16650     __ string_compare($str1$$Register, $str2$$Register,
16651                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16652                       $tmp1$$Register, $tmp2$$Register,
16653                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg,
16654                       as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg),
16655                       StrIntrinsicNode::LL);
16656   %}
16657   ins_pipe(pipe_class_memory);
16658 %}
16659 
16660 instruct string_compareLU_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16661                               iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16662                               vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1,
16663                               pRegGov_P1 pgtmp2, rFlagsReg cr)
16664 %{
16665   predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU));
16666   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16667   effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2,
16668          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16669 
16670   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # USE sve" %}
16671   ins_encode %{
16672     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16673     __ string_compare($str1$$Register, $str2$$Register,
16674                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16675                       $tmp1$$Register, $tmp2$$Register,
16676                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg,
16677                       as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg),
16678                       StrIntrinsicNode::LU);
16679   %}
16680   ins_pipe(pipe_class_memory);
16681 %}
16682 
16683 instruct string_compareUL_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16684                               iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16685                               vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1,
16686                               pRegGov_P1 pgtmp2, rFlagsReg cr)
16687 %{
16688   predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL));
16689   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16690   effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2,
16691          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16692 
16693   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # USE sve" %}
16694   ins_encode %{
16695     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16696     __ string_compare($str1$$Register, $str2$$Register,
16697                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16698                       $tmp1$$Register, $tmp2$$Register,
16699                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg,
16700                       as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg),
16701                       StrIntrinsicNode::UL);
16702   %}
16703   ins_pipe(pipe_class_memory);
16704 %}
16705 
16706 instruct string_compareUU_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16707                               iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16708                               vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1,
16709                               pRegGov_P1 pgtmp2, rFlagsReg cr)
16710 %{
16711   predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU));
16712   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16713   effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2,
16714          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16715 
16716   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # USE sve" %}
16717   ins_encode %{
16718     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16719     __ string_compare($str1$$Register, $str2$$Register,
16720                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16721                       $tmp1$$Register, $tmp2$$Register,
16722                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg,
16723                       as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg),
16724                       StrIntrinsicNode::UU);
16725   %}
16726   ins_pipe(pipe_class_memory);
16727 %}
16728 
16729 instruct string_indexofUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
16730                           iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2,
16731                           iRegINoSp tmp3, iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6,
16732                           vRegD_V0 vtmp0, vRegD_V1 vtmp1, rFlagsReg cr)
16733 %{
16734   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
16735   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
16736   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
16737          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6,
16738          TEMP vtmp0, TEMP vtmp1, KILL cr);
16739   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU) "
16740             "# KILL $str1 $cnt1 $str2 $cnt2 $tmp1 $tmp2 $tmp3 $tmp4 $tmp5 $tmp6 V0-V1 cr" %}
16741 
16742   ins_encode %{
16743     __ string_indexof($str1$$Register, $str2$$Register,
16744                       $cnt1$$Register, $cnt2$$Register,
16745                       $tmp1$$Register, $tmp2$$Register,
16746                       $tmp3$$Register, $tmp4$$Register,
16747                       $tmp5$$Register, $tmp6$$Register,
16748                       -1, $result$$Register, StrIntrinsicNode::UU);
16749   %}
16750   ins_pipe(pipe_class_memory);
16751 %}
16752 
16753 instruct string_indexofLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
16754                           iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
16755                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6,
16756                           vRegD_V0 vtmp0, vRegD_V1 vtmp1, rFlagsReg cr)
16757 %{
16758   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
16759   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
16760   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
16761          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6,
16762          TEMP vtmp0, TEMP vtmp1, KILL cr);
16763   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL) "
16764             "# KILL $str1 $cnt1 $str2 $cnt2 $tmp1 $tmp2 $tmp3 $tmp4 $tmp5 $tmp6 V0-V1 cr" %}
16765 
16766   ins_encode %{
16767     __ string_indexof($str1$$Register, $str2$$Register,
16768                       $cnt1$$Register, $cnt2$$Register,
16769                       $tmp1$$Register, $tmp2$$Register,
16770                       $tmp3$$Register, $tmp4$$Register,
16771                       $tmp5$$Register, $tmp6$$Register,
16772                       -1, $result$$Register, StrIntrinsicNode::LL);
16773   %}
16774   ins_pipe(pipe_class_memory);
16775 %}
16776 
16777 instruct string_indexofUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
16778                           iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2,iRegINoSp tmp3,
16779                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6,
16780                           vRegD_V0 vtmp0, vRegD_V1 vtmp1, rFlagsReg cr)
16781 %{
16782   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
16783   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
16784   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
16785          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
16786          TEMP tmp6, TEMP vtmp0, TEMP vtmp1, KILL cr);
16787   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL) "
16788             "# KILL $str1 cnt1 $str2 $cnt2 $tmp1 $tmp2 $tmp3 $tmp4 $tmp5 $tmp6 V0-V1 cr" %}
16789 
16790   ins_encode %{
16791     __ string_indexof($str1$$Register, $str2$$Register,
16792                       $cnt1$$Register, $cnt2$$Register,
16793                       $tmp1$$Register, $tmp2$$Register,
16794                       $tmp3$$Register, $tmp4$$Register,
16795                       $tmp5$$Register, $tmp6$$Register,
16796                       -1, $result$$Register, StrIntrinsicNode::UL);
16797   %}
16798   ins_pipe(pipe_class_memory);
16799 %}
16800 
16801 instruct string_indexof_conUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
16802                               immI_le_4 int_cnt2, iRegI_R0 result, iRegINoSp tmp1,
16803                               iRegINoSp tmp2, iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
16804 %{
16805   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
16806   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
16807   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
16808          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
16809   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU) "
16810             "# KILL $str1 $cnt1 $str2 $tmp1 $tmp2 $tmp3 $tmp4 cr" %}
16811 
16812   ins_encode %{
16813     int icnt2 = (int)$int_cnt2$$constant;
16814     __ string_indexof($str1$$Register, $str2$$Register,
16815                       $cnt1$$Register, zr,
16816                       $tmp1$$Register, $tmp2$$Register,
16817                       $tmp3$$Register, $tmp4$$Register, zr, zr,
16818                       icnt2, $result$$Register, StrIntrinsicNode::UU);
16819   %}
16820   ins_pipe(pipe_class_memory);
16821 %}
16822 
16823 instruct string_indexof_conLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
16824                               immI_le_4 int_cnt2, iRegI_R0 result, iRegINoSp tmp1,
16825                               iRegINoSp tmp2, iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
16826 %{
16827   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
16828   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
16829   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
16830          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
16831   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL) "
16832             "# KILL $str1 $cnt1 $str2 $tmp1 $tmp2 $tmp3 $tmp4 cr" %}
16833 
16834   ins_encode %{
16835     int icnt2 = (int)$int_cnt2$$constant;
16836     __ string_indexof($str1$$Register, $str2$$Register,
16837                       $cnt1$$Register, zr,
16838                       $tmp1$$Register, $tmp2$$Register,
16839                       $tmp3$$Register, $tmp4$$Register, zr, zr,
16840                       icnt2, $result$$Register, StrIntrinsicNode::LL);
16841   %}
16842   ins_pipe(pipe_class_memory);
16843 %}
16844 
16845 instruct string_indexof_conUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
16846                               immI_1 int_cnt2, iRegI_R0 result, iRegINoSp tmp1,
16847                               iRegINoSp tmp2, iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
16848 %{
16849   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
16850   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
16851   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
16852          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
16853   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL) "
16854             "# KILL $str1 $cnt1 $str2 $tmp1 $tmp2 $tmp3 $tmp4 cr" %}
16855 
16856   ins_encode %{
16857     int icnt2 = (int)$int_cnt2$$constant;
16858     __ string_indexof($str1$$Register, $str2$$Register,
16859                       $cnt1$$Register, zr,
16860                       $tmp1$$Register, $tmp2$$Register,
16861                       $tmp3$$Register, $tmp4$$Register, zr, zr,
16862                       icnt2, $result$$Register, StrIntrinsicNode::UL);
16863   %}
16864   ins_pipe(pipe_class_memory);
16865 %}
16866 
16867 instruct string_indexof_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
16868                              iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2,
16869                              iRegINoSp tmp3, rFlagsReg cr)
16870 %{
16871   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
16872   predicate((UseSVE == 0) && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U));
16873   effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch,
16874          TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
16875 
16876   format %{ "StringUTF16 IndexOf char[] $str1,$cnt1,$ch -> $result" %}
16877 
16878   ins_encode %{
16879     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
16880                            $result$$Register, $tmp1$$Register, $tmp2$$Register,
16881                            $tmp3$$Register);
16882   %}
16883   ins_pipe(pipe_class_memory);
16884 %}
16885 
16886 instruct stringL_indexof_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
16887                               iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2,
16888                               iRegINoSp tmp3, rFlagsReg cr)
16889 %{
16890   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
16891   predicate((UseSVE == 0) && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L));
16892   effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch,
16893          TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
16894 
16895   format %{ "StringLatin1 IndexOf char[] $str1,$cnt1,$ch -> $result" %}
16896 
16897   ins_encode %{
16898     __ stringL_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
16899                             $result$$Register, $tmp1$$Register, $tmp2$$Register,
16900                             $tmp3$$Register);
16901   %}
16902   ins_pipe(pipe_class_memory);
16903 %}
16904 
16905 instruct stringL_indexof_char_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
16906                                   iRegI_R0 result, vecA ztmp1, vecA ztmp2,
16907                                   pRegGov pgtmp, pReg ptmp, rFlagsReg cr) %{
16908   predicate(UseSVE > 0 && ((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L);
16909   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
16910   effect(TEMP ztmp1, TEMP ztmp2, TEMP pgtmp, TEMP ptmp, KILL cr);
16911   format %{ "StringLatin1 IndexOf char[] $str1,$cnt1,$ch -> $result # use sve" %}
16912   ins_encode %{
16913     __ string_indexof_char_sve($str1$$Register, $cnt1$$Register, $ch$$Register,
16914                                $result$$Register, $ztmp1$$FloatRegister,
16915                                $ztmp2$$FloatRegister, $pgtmp$$PRegister,
16916                                $ptmp$$PRegister, true /* isL */);
16917   %}
16918   ins_pipe(pipe_class_memory);
16919 %}
16920 
16921 instruct stringU_indexof_char_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
16922                                   iRegI_R0 result, vecA ztmp1, vecA ztmp2,
16923                                   pRegGov pgtmp, pReg ptmp, rFlagsReg cr) %{
16924   predicate(UseSVE > 0 && ((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U);
16925   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
16926   effect(TEMP ztmp1, TEMP ztmp2, TEMP pgtmp, TEMP ptmp, KILL cr);
16927   format %{ "StringUTF16 IndexOf char[] $str1,$cnt1,$ch -> $result # use sve" %}
16928   ins_encode %{
16929     __ string_indexof_char_sve($str1$$Register, $cnt1$$Register, $ch$$Register,
16930                                $result$$Register, $ztmp1$$FloatRegister,
16931                                $ztmp2$$FloatRegister, $pgtmp$$PRegister,
16932                                $ptmp$$PRegister, false /* isL */);
16933   %}
16934   ins_pipe(pipe_class_memory);
16935 %}
16936 
16937 instruct string_equalsL(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt,
16938                         iRegI_R0 result, rFlagsReg cr)
16939 %{
16940   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
16941   match(Set result (StrEquals (Binary str1 str2) cnt));
16942   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
16943 
16944   format %{ "String Equals $str1,$str2,$cnt -> $result" %}
16945   ins_encode %{
16946     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16947     __ string_equals($str1$$Register, $str2$$Register,
16948                      $result$$Register, $cnt$$Register);
16949   %}
16950   ins_pipe(pipe_class_memory);
16951 %}
16952 
16953 instruct array_equalsB(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
16954                        iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3,
16955                        vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3,
16956                        vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, vRegD_V7 vtmp7,
16957                        iRegP_R10 tmp, rFlagsReg cr)
16958 %{
16959   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
16960   match(Set result (AryEq ary1 ary2));
16961   effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3,
16962          TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5,
16963          TEMP vtmp6, TEMP vtmp7, KILL cr);
16964 
16965   format %{ "Array Equals $ary1,ary2 -> $result # KILL $ary1 $ary2 $tmp $tmp1 $tmp2 $tmp3 V0-V7 cr" %}
16966   ins_encode %{
16967     address tpc = __ arrays_equals($ary1$$Register, $ary2$$Register,
16968                                    $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
16969                                    $result$$Register, $tmp$$Register, 1);
16970     if (tpc == nullptr) {
16971       ciEnv::current()->record_failure("CodeCache is full");
16972       return;
16973     }
16974   %}
16975   ins_pipe(pipe_class_memory);
16976 %}
16977 
16978 instruct array_equalsC(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
16979                        iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3,
16980                        vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3,
16981                        vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, vRegD_V7 vtmp7,
16982                        iRegP_R10 tmp, rFlagsReg cr)
16983 %{
16984   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
16985   match(Set result (AryEq ary1 ary2));
16986   effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3,
16987          TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5,
16988          TEMP vtmp6, TEMP vtmp7, KILL cr);
16989 
16990   format %{ "Array Equals $ary1,ary2 -> $result # KILL $ary1 $ary2 $tmp $tmp1 $tmp2 $tmp3 V0-V7 cr" %}
16991   ins_encode %{
16992     address tpc = __ arrays_equals($ary1$$Register, $ary2$$Register,
16993                                    $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
16994                                    $result$$Register, $tmp$$Register, 2);
16995     if (tpc == nullptr) {
16996       ciEnv::current()->record_failure("CodeCache is full");
16997       return;
16998     }
16999   %}
17000   ins_pipe(pipe_class_memory);
17001 %}
17002 
17003 instruct arrays_hashcode(iRegP_R1 ary, iRegI_R2 cnt, iRegI_R0 result, immI basic_type,
17004                          vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3,
17005                          vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, vRegD_V7 vtmp7,
17006                          vRegD_V12 vtmp8, vRegD_V13 vtmp9, rFlagsReg cr)
17007 %{
17008   match(Set result (VectorizedHashCode (Binary ary cnt) (Binary result basic_type)));
17009   effect(TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5, TEMP vtmp6,
17010          TEMP vtmp7, TEMP vtmp8, TEMP vtmp9, USE_KILL ary, USE_KILL cnt, USE basic_type, KILL cr);
17011 
17012   format %{ "Array HashCode array[] $ary,$cnt,$result,$basic_type -> $result   // KILL all" %}
17013   ins_encode %{
17014     address tpc = __ arrays_hashcode($ary$$Register, $cnt$$Register, $result$$Register,
17015                                      $vtmp3$$FloatRegister, $vtmp2$$FloatRegister,
17016                                      $vtmp1$$FloatRegister, $vtmp0$$FloatRegister,
17017                                      $vtmp4$$FloatRegister, $vtmp5$$FloatRegister,
17018                                      $vtmp6$$FloatRegister, $vtmp7$$FloatRegister,
17019                                      $vtmp8$$FloatRegister, $vtmp9$$FloatRegister,
17020                                      (BasicType)$basic_type$$constant);
17021     if (tpc == nullptr) {
17022       ciEnv::current()->record_failure("CodeCache is full");
17023       return;
17024     }
17025   %}
17026   ins_pipe(pipe_class_memory);
17027 %}
17028 
17029 instruct count_positives(iRegP_R1 ary1, iRegI_R2 len, iRegI_R0 result, rFlagsReg cr)
17030 %{
17031   match(Set result (CountPositives ary1 len));
17032   effect(USE_KILL ary1, USE_KILL len, KILL cr);
17033   format %{ "count positives byte[] $ary1,$len -> $result" %}
17034   ins_encode %{
17035     address tpc = __ count_positives($ary1$$Register, $len$$Register, $result$$Register);
17036     if (tpc == nullptr) {
17037       ciEnv::current()->record_failure("CodeCache is full");
17038       return;
17039     }
17040   %}
17041   ins_pipe( pipe_slow );
17042 %}
17043 
17044 // fast char[] to byte[] compression
17045 instruct string_compress(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
17046                          vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2,
17047                          vRegD_V3 vtmp3, vRegD_V4 vtmp4, vRegD_V5 vtmp5,
17048                          iRegI_R0 result, rFlagsReg cr)
17049 %{
17050   match(Set result (StrCompressedCopy src (Binary dst len)));
17051   effect(TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5,
17052          USE_KILL src, USE_KILL dst, USE len, KILL cr);
17053 
17054   format %{ "String Compress $src,$dst,$len -> $result # KILL $src $dst V0-V5 cr" %}
17055   ins_encode %{
17056     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
17057                            $result$$Register, $vtmp0$$FloatRegister, $vtmp1$$FloatRegister,
17058                            $vtmp2$$FloatRegister, $vtmp3$$FloatRegister,
17059                            $vtmp4$$FloatRegister, $vtmp5$$FloatRegister);
17060   %}
17061   ins_pipe(pipe_slow);
17062 %}
17063 
17064 // fast byte[] to char[] inflation
17065 instruct string_inflate(Universe dummy, iRegP_R0 src, iRegP_R1 dst, iRegI_R2 len, iRegP_R3 tmp,
17066                         vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3,
17067                         vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, rFlagsReg cr)
17068 %{
17069   match(Set dummy (StrInflatedCopy src (Binary dst len)));
17070   effect(TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3,
17071          TEMP vtmp4, TEMP vtmp5, TEMP vtmp6, TEMP tmp,
17072          USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
17073 
17074   format %{ "String Inflate $src,$dst # KILL $tmp $src $dst $len V0-V6 cr" %}
17075   ins_encode %{
17076     address tpc = __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
17077                                         $vtmp0$$FloatRegister, $vtmp1$$FloatRegister,
17078                                         $vtmp2$$FloatRegister, $tmp$$Register);
17079     if (tpc == nullptr) {
17080       ciEnv::current()->record_failure("CodeCache is full");
17081       return;
17082     }
17083   %}
17084   ins_pipe(pipe_class_memory);
17085 %}
17086 
17087 // encode char[] to byte[] in ISO_8859_1
17088 instruct encode_iso_array(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
17089                           vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2,
17090                           vRegD_V3 vtmp3, vRegD_V4 vtmp4, vRegD_V5 vtmp5,
17091                           iRegI_R0 result, rFlagsReg cr)
17092 %{
17093   predicate(!((EncodeISOArrayNode*)n)->is_ascii());
17094   match(Set result (EncodeISOArray src (Binary dst len)));
17095   effect(USE_KILL src, USE_KILL dst, USE len, KILL vtmp0, KILL vtmp1,
17096          KILL vtmp2, KILL vtmp3, KILL vtmp4, KILL vtmp5, KILL cr);
17097 
17098   format %{ "Encode ISO array $src,$dst,$len -> $result # KILL $src $dst V0-V5 cr" %}
17099   ins_encode %{
17100     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
17101                         $result$$Register, false,
17102                         $vtmp0$$FloatRegister, $vtmp1$$FloatRegister,
17103                         $vtmp2$$FloatRegister, $vtmp3$$FloatRegister,
17104                         $vtmp4$$FloatRegister, $vtmp5$$FloatRegister);
17105   %}
17106   ins_pipe(pipe_class_memory);
17107 %}
17108 
17109 instruct encode_ascii_array(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
17110                             vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2,
17111                             vRegD_V3 vtmp3, vRegD_V4 vtmp4, vRegD_V5 vtmp5,
17112                             iRegI_R0 result, rFlagsReg cr)
17113 %{
17114   predicate(((EncodeISOArrayNode*)n)->is_ascii());
17115   match(Set result (EncodeISOArray src (Binary dst len)));
17116   effect(USE_KILL src, USE_KILL dst, USE len, KILL vtmp0, KILL vtmp1,
17117          KILL vtmp2, KILL vtmp3, KILL vtmp4, KILL vtmp5, KILL cr);
17118 
17119   format %{ "Encode ASCII array $src,$dst,$len -> $result # KILL $src $dst V0-V5 cr" %}
17120   ins_encode %{
17121     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
17122                         $result$$Register, true,
17123                         $vtmp0$$FloatRegister, $vtmp1$$FloatRegister,
17124                         $vtmp2$$FloatRegister, $vtmp3$$FloatRegister,
17125                         $vtmp4$$FloatRegister, $vtmp5$$FloatRegister);
17126   %}
17127   ins_pipe(pipe_class_memory);
17128 %}
17129 
17130 //----------------------------- CompressBits/ExpandBits ------------------------
17131 
17132 instruct compressBitsI_reg(iRegINoSp dst, iRegIorL2I src, iRegIorL2I mask,
17133                            vRegF tdst, vRegF tsrc, vRegF tmask) %{
17134   match(Set dst (CompressBits src mask));
17135   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17136   format %{ "mov    $tsrc, $src\n\t"
17137             "mov    $tmask, $mask\n\t"
17138             "bext   $tdst, $tsrc, $tmask\n\t"
17139             "mov    $dst, $tdst"
17140           %}
17141   ins_encode %{
17142     __ mov($tsrc$$FloatRegister, __ S, 0, $src$$Register);
17143     __ mov($tmask$$FloatRegister, __ S, 0, $mask$$Register);
17144     __ sve_bext($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17145     __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0);
17146   %}
17147   ins_pipe(pipe_slow);
17148 %}
17149 
17150 instruct compressBitsI_memcon(iRegINoSp dst, memory4 mem, immI mask,
17151                            vRegF tdst, vRegF tsrc, vRegF tmask) %{
17152   match(Set dst (CompressBits (LoadI mem) mask));
17153   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17154   format %{ "ldrs   $tsrc, $mem\n\t"
17155             "ldrs   $tmask, $mask\n\t"
17156             "bext   $tdst, $tsrc, $tmask\n\t"
17157             "mov    $dst, $tdst"
17158           %}
17159   ins_encode %{
17160     loadStore(masm, &MacroAssembler::ldrs, $tsrc$$FloatRegister, $mem->opcode(),
17161               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
17162     __ ldrs($tmask$$FloatRegister, $constantaddress($mask));
17163     __ sve_bext($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17164     __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0);
17165   %}
17166   ins_pipe(pipe_slow);
17167 %}
17168 
17169 instruct compressBitsL_reg(iRegLNoSp dst, iRegL src, iRegL mask,
17170                            vRegD tdst, vRegD tsrc, vRegD tmask) %{
17171   match(Set dst (CompressBits src mask));
17172   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17173   format %{ "mov    $tsrc, $src\n\t"
17174             "mov    $tmask, $mask\n\t"
17175             "bext   $tdst, $tsrc, $tmask\n\t"
17176             "mov    $dst, $tdst"
17177           %}
17178   ins_encode %{
17179     __ mov($tsrc$$FloatRegister, __ D, 0, $src$$Register);
17180     __ mov($tmask$$FloatRegister, __ D, 0, $mask$$Register);
17181     __ sve_bext($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17182     __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0);
17183   %}
17184   ins_pipe(pipe_slow);
17185 %}
17186 
17187 instruct compressBitsL_memcon(iRegLNoSp dst, memory8 mem, immL mask,
17188                            vRegF tdst, vRegF tsrc, vRegF tmask) %{
17189   match(Set dst (CompressBits (LoadL mem) mask));
17190   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17191   format %{ "ldrd   $tsrc, $mem\n\t"
17192             "ldrd   $tmask, $mask\n\t"
17193             "bext   $tdst, $tsrc, $tmask\n\t"
17194             "mov    $dst, $tdst"
17195           %}
17196   ins_encode %{
17197     loadStore(masm, &MacroAssembler::ldrd, $tsrc$$FloatRegister, $mem->opcode(),
17198               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
17199     __ ldrd($tmask$$FloatRegister, $constantaddress($mask));
17200     __ sve_bext($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17201     __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0);
17202   %}
17203   ins_pipe(pipe_slow);
17204 %}
17205 
17206 instruct expandBitsI_reg(iRegINoSp dst, iRegIorL2I src, iRegIorL2I mask,
17207                          vRegF tdst, vRegF tsrc, vRegF tmask) %{
17208   match(Set dst (ExpandBits src mask));
17209   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17210   format %{ "mov    $tsrc, $src\n\t"
17211             "mov    $tmask, $mask\n\t"
17212             "bdep   $tdst, $tsrc, $tmask\n\t"
17213             "mov    $dst, $tdst"
17214           %}
17215   ins_encode %{
17216     __ mov($tsrc$$FloatRegister, __ S, 0, $src$$Register);
17217     __ mov($tmask$$FloatRegister, __ S, 0, $mask$$Register);
17218     __ sve_bdep($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17219     __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0);
17220   %}
17221   ins_pipe(pipe_slow);
17222 %}
17223 
17224 instruct expandBitsI_memcon(iRegINoSp dst, memory4 mem, immI mask,
17225                          vRegF tdst, vRegF tsrc, vRegF tmask) %{
17226   match(Set dst (ExpandBits (LoadI mem) mask));
17227   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17228   format %{ "ldrs   $tsrc, $mem\n\t"
17229             "ldrs   $tmask, $mask\n\t"
17230             "bdep   $tdst, $tsrc, $tmask\n\t"
17231             "mov    $dst, $tdst"
17232           %}
17233   ins_encode %{
17234     loadStore(masm, &MacroAssembler::ldrs, $tsrc$$FloatRegister, $mem->opcode(),
17235               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
17236     __ ldrs($tmask$$FloatRegister, $constantaddress($mask));
17237     __ sve_bdep($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17238     __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0);
17239   %}
17240   ins_pipe(pipe_slow);
17241 %}
17242 
17243 instruct expandBitsL_reg(iRegLNoSp dst, iRegL src, iRegL mask,
17244                          vRegD tdst, vRegD tsrc, vRegD tmask) %{
17245   match(Set dst (ExpandBits src mask));
17246   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17247   format %{ "mov    $tsrc, $src\n\t"
17248             "mov    $tmask, $mask\n\t"
17249             "bdep   $tdst, $tsrc, $tmask\n\t"
17250             "mov    $dst, $tdst"
17251           %}
17252   ins_encode %{
17253     __ mov($tsrc$$FloatRegister, __ D, 0, $src$$Register);
17254     __ mov($tmask$$FloatRegister, __ D, 0, $mask$$Register);
17255     __ sve_bdep($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17256     __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0);
17257   %}
17258   ins_pipe(pipe_slow);
17259 %}
17260 
17261 
17262 instruct expandBitsL_memcon(iRegINoSp dst, memory8 mem, immL mask,
17263                          vRegF tdst, vRegF tsrc, vRegF tmask) %{
17264   match(Set dst (ExpandBits (LoadL mem) mask));
17265   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17266   format %{ "ldrd   $tsrc, $mem\n\t"
17267             "ldrd   $tmask, $mask\n\t"
17268             "bdep   $tdst, $tsrc, $tmask\n\t"
17269             "mov    $dst, $tdst"
17270           %}
17271   ins_encode %{
17272     loadStore(masm, &MacroAssembler::ldrd, $tsrc$$FloatRegister, $mem->opcode(),
17273               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
17274     __ ldrd($tmask$$FloatRegister, $constantaddress($mask));
17275     __ sve_bdep($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17276     __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0);
17277   %}
17278   ins_pipe(pipe_slow);
17279 %}
17280 
17281 //----------------------------- Reinterpret ----------------------------------
17282 // Reinterpret a half-precision float value in a floating point register to a general purpose register
17283 instruct reinterpretHF2S(iRegINoSp dst, vRegF src) %{
17284   match(Set dst (ReinterpretHF2S src));
17285   format %{ "reinterpretHF2S $dst, $src" %}
17286   ins_encode %{
17287     __ smov($dst$$Register, $src$$FloatRegister, __ H, 0);
17288   %}
17289   ins_pipe(pipe_slow);
17290 %}
17291 
17292 // Reinterpret a half-precision float value in a general purpose register to a floating point register
17293 instruct reinterpretS2HF(vRegF dst, iRegINoSp src) %{
17294   match(Set dst (ReinterpretS2HF src));
17295   format %{ "reinterpretS2HF $dst, $src" %}
17296   ins_encode %{
17297     __ mov($dst$$FloatRegister, __ H, 0, $src$$Register);
17298   %}
17299   ins_pipe(pipe_slow);
17300 %}
17301 
17302 // Without this optimization, ReinterpretS2HF (ConvF2HF src) would result in the following
17303 // instructions (the first two are for ConvF2HF and the last instruction is for ReinterpretS2HF) -
17304 // fcvt $tmp1_fpr, $src_fpr    // Convert float to half-precision float
17305 // mov  $tmp2_gpr, $tmp1_fpr   // Move half-precision float in FPR to a GPR
17306 // mov  $dst_fpr,  $tmp2_gpr   // Move the result from a GPR to an FPR
17307 // The move from FPR to GPR in ConvF2HF and the move from GPR to FPR in ReinterpretS2HF
17308 // can be omitted in this pattern, resulting in -
17309 // fcvt $dst, $src  // Convert float to half-precision float
17310 instruct convF2HFAndS2HF(vRegF dst, vRegF src)
17311 %{
17312   match(Set dst (ReinterpretS2HF (ConvF2HF src)));
17313   format %{ "convF2HFAndS2HF $dst, $src" %}
17314   ins_encode %{
17315     __ fcvtsh($dst$$FloatRegister, $src$$FloatRegister);
17316   %}
17317   ins_pipe(pipe_slow);
17318 %}
17319 
17320 // Without this optimization, ConvHF2F (ReinterpretHF2S src) would result in the following
17321 // instructions (the first one is for ReinterpretHF2S and the last two are for ConvHF2F) -
17322 // mov  $tmp1_gpr, $src_fpr  // Move the half-precision float from an FPR to a GPR
17323 // mov  $tmp2_fpr, $tmp1_gpr // Move the same value from GPR to an FPR
17324 // fcvt $dst_fpr,  $tmp2_fpr // Convert the half-precision float to 32-bit float
17325 // The move from FPR to GPR in ReinterpretHF2S and the move from GPR to FPR in ConvHF2F
17326 // can be omitted as the input (src) is already in an FPR required for the fcvths instruction
17327 // resulting in -
17328 // fcvt $dst, $src  // Convert half-precision float to a 32-bit float
17329 instruct convHF2SAndHF2F(vRegF dst, vRegF src)
17330 %{
17331   match(Set dst (ConvHF2F (ReinterpretHF2S src)));
17332   format %{ "convHF2SAndHF2F $dst, $src" %}
17333   ins_encode %{
17334     __ fcvths($dst$$FloatRegister, $src$$FloatRegister);
17335   %}
17336   ins_pipe(pipe_slow);
17337 %}
17338 
17339 // ============================================================================
17340 // This name is KNOWN by the ADLC and cannot be changed.
17341 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
17342 // for this guy.
17343 instruct tlsLoadP(thread_RegP dst)
17344 %{
17345   match(Set dst (ThreadLocal));
17346 
17347   ins_cost(0);
17348 
17349   format %{ " -- \t// $dst=Thread::current(), empty" %}
17350 
17351   size(0);
17352 
17353   ins_encode( /*empty*/ );
17354 
17355   ins_pipe(pipe_class_empty);
17356 %}
17357 
17358 //----------PEEPHOLE RULES-----------------------------------------------------
17359 // These must follow all instruction definitions as they use the names
17360 // defined in the instructions definitions.
17361 //
17362 // peepmatch ( root_instr_name [preceding_instruction]* );
17363 //
17364 // peepconstraint %{
17365 // (instruction_number.operand_name relational_op instruction_number.operand_name
17366 //  [, ...] );
17367 // // instruction numbers are zero-based using left to right order in peepmatch
17368 //
17369 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
17370 // // provide an instruction_number.operand_name for each operand that appears
17371 // // in the replacement instruction's match rule
17372 //
17373 // ---------VM FLAGS---------------------------------------------------------
17374 //
17375 // All peephole optimizations can be turned off using -XX:-OptoPeephole
17376 //
17377 // Each peephole rule is given an identifying number starting with zero and
17378 // increasing by one in the order seen by the parser.  An individual peephole
17379 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
17380 // on the command-line.
17381 //
17382 // ---------CURRENT LIMITATIONS----------------------------------------------
17383 //
17384 // Only match adjacent instructions in same basic block
17385 // Only equality constraints
17386 // Only constraints between operands, not (0.dest_reg == RAX_enc)
17387 // Only one replacement instruction
17388 //
17389 // ---------EXAMPLE----------------------------------------------------------
17390 //
17391 // // pertinent parts of existing instructions in architecture description
17392 // instruct movI(iRegINoSp dst, iRegI src)
17393 // %{
17394 //   match(Set dst (CopyI src));
17395 // %}
17396 //
17397 // instruct incI_iReg(iRegINoSp dst, immI1 src, rFlagsReg cr)
17398 // %{
17399 //   match(Set dst (AddI dst src));
17400 //   effect(KILL cr);
17401 // %}
17402 //
17403 // // Change (inc mov) to lea
17404 // peephole %{
17405 //   // increment preceded by register-register move
17406 //   peepmatch ( incI_iReg movI );
17407 //   // require that the destination register of the increment
17408 //   // match the destination register of the move
17409 //   peepconstraint ( 0.dst == 1.dst );
17410 //   // construct a replacement instruction that sets
17411 //   // the destination to ( move's source register + one )
17412 //   peepreplace ( leaI_iReg_immI( 0.dst 1.src 0.src ) );
17413 // %}
17414 //
17415 
17416 // Implementation no longer uses movX instructions since
17417 // machine-independent system no longer uses CopyX nodes.
17418 //
17419 // peephole
17420 // %{
17421 //   peepmatch (incI_iReg movI);
17422 //   peepconstraint (0.dst == 1.dst);
17423 //   peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
17424 // %}
17425 
17426 // peephole
17427 // %{
17428 //   peepmatch (decI_iReg movI);
17429 //   peepconstraint (0.dst == 1.dst);
17430 //   peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
17431 // %}
17432 
17433 // peephole
17434 // %{
17435 //   peepmatch (addI_iReg_imm movI);
17436 //   peepconstraint (0.dst == 1.dst);
17437 //   peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
17438 // %}
17439 
17440 // peephole
17441 // %{
17442 //   peepmatch (incL_iReg movL);
17443 //   peepconstraint (0.dst == 1.dst);
17444 //   peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
17445 // %}
17446 
17447 // peephole
17448 // %{
17449 //   peepmatch (decL_iReg movL);
17450 //   peepconstraint (0.dst == 1.dst);
17451 //   peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
17452 // %}
17453 
17454 // peephole
17455 // %{
17456 //   peepmatch (addL_iReg_imm movL);
17457 //   peepconstraint (0.dst == 1.dst);
17458 //   peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
17459 // %}
17460 
17461 // peephole
17462 // %{
17463 //   peepmatch (addP_iReg_imm movP);
17464 //   peepconstraint (0.dst == 1.dst);
17465 //   peepreplace (leaP_iReg_imm(0.dst 1.src 0.src));
17466 // %}
17467 
17468 // // Change load of spilled value to only a spill
17469 // instruct storeI(memory mem, iRegI src)
17470 // %{
17471 //   match(Set mem (StoreI mem src));
17472 // %}
17473 //
17474 // instruct loadI(iRegINoSp dst, memory mem)
17475 // %{
17476 //   match(Set dst (LoadI mem));
17477 // %}
17478 //
17479 
17480 //----------SMARTSPILL RULES---------------------------------------------------
17481 // These must follow all instruction definitions as they use the names
17482 // defined in the instructions definitions.
17483 
17484 // Local Variables:
17485 // mode: c++
17486 // End: