1 /* 2 * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "asm/assembler.hpp" 29 #include "c1/c1_CodeStubs.hpp" 30 #include "c1/c1_Compilation.hpp" 31 #include "c1/c1_LIRAssembler.hpp" 32 #include "c1/c1_MacroAssembler.hpp" 33 #include "c1/c1_Runtime1.hpp" 34 #include "c1/c1_ValueStack.hpp" 35 #include "ci/ciArrayKlass.hpp" 36 #include "ci/ciInstance.hpp" 37 #include "code/compiledIC.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_aarch64.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 #include "vmreg_aarch64.inline.hpp" 47 48 49 #ifndef PRODUCT 50 #define COMMENT(x) do { __ block_comment(x); } while (0) 51 #else 52 #define COMMENT(x) 53 #endif 54 55 NEEDS_CLEANUP // remove this definitions ? 56 const Register IC_Klass = rscratch2; // where the IC klass is cached 57 const Register SYNC_header = r0; // synchronization header 58 const Register SHIFT_count = r0; // where count for shift operations must be 59 60 #define __ _masm-> 61 62 63 static void select_different_registers(Register preserve, 64 Register extra, 65 Register &tmp1, 66 Register &tmp2) { 67 if (tmp1 == preserve) { 68 assert_different_registers(tmp1, tmp2, extra); 69 tmp1 = extra; 70 } else if (tmp2 == preserve) { 71 assert_different_registers(tmp1, tmp2, extra); 72 tmp2 = extra; 73 } 74 assert_different_registers(preserve, tmp1, tmp2); 75 } 76 77 78 79 static void select_different_registers(Register preserve, 80 Register extra, 81 Register &tmp1, 82 Register &tmp2, 83 Register &tmp3) { 84 if (tmp1 == preserve) { 85 assert_different_registers(tmp1, tmp2, tmp3, extra); 86 tmp1 = extra; 87 } else if (tmp2 == preserve) { 88 assert_different_registers(tmp1, tmp2, tmp3, extra); 89 tmp2 = extra; 90 } else if (tmp3 == preserve) { 91 assert_different_registers(tmp1, tmp2, tmp3, extra); 92 tmp3 = extra; 93 } 94 assert_different_registers(preserve, tmp1, tmp2, tmp3); 95 } 96 97 98 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 99 100 101 LIR_Opr LIR_Assembler::receiverOpr() { 102 return FrameMap::receiver_opr; 103 } 104 105 LIR_Opr LIR_Assembler::osrBufferPointer() { 106 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 107 } 108 109 //--------------fpu register translations----------------------- 110 111 112 address LIR_Assembler::float_constant(float f) { 113 address const_addr = __ float_constant(f); 114 if (const_addr == NULL) { 115 bailout("const section overflow"); 116 return __ code()->consts()->start(); 117 } else { 118 return const_addr; 119 } 120 } 121 122 123 address LIR_Assembler::double_constant(double d) { 124 address const_addr = __ double_constant(d); 125 if (const_addr == NULL) { 126 bailout("const section overflow"); 127 return __ code()->consts()->start(); 128 } else { 129 return const_addr; 130 } 131 } 132 133 address LIR_Assembler::int_constant(jlong n) { 134 address const_addr = __ long_constant(n); 135 if (const_addr == NULL) { 136 bailout("const section overflow"); 137 return __ code()->consts()->start(); 138 } else { 139 return const_addr; 140 } 141 } 142 143 void LIR_Assembler::breakpoint() { Unimplemented(); } 144 145 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 146 147 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 148 149 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 150 //------------------------------------------- 151 152 static Register as_reg(LIR_Opr op) { 153 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 154 } 155 156 static jlong as_long(LIR_Opr data) { 157 jlong result; 158 switch (data->type()) { 159 case T_INT: 160 result = (data->as_jint()); 161 break; 162 case T_LONG: 163 result = (data->as_jlong()); 164 break; 165 default: 166 ShouldNotReachHere(); 167 result = 0; // unreachable 168 } 169 return result; 170 } 171 172 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 173 Register base = addr->base()->as_pointer_register(); 174 LIR_Opr opr = addr->index(); 175 if (opr->is_cpu_register()) { 176 Register index; 177 if (opr->is_single_cpu()) 178 index = opr->as_register(); 179 else 180 index = opr->as_register_lo(); 181 assert(addr->disp() == 0, "must be"); 182 switch(opr->type()) { 183 case T_INT: 184 return Address(base, index, Address::sxtw(addr->scale())); 185 case T_LONG: 186 return Address(base, index, Address::lsl(addr->scale())); 187 default: 188 ShouldNotReachHere(); 189 } 190 } else { 191 assert(addr->scale() == 0, 192 "expected for immediate operand, was: %d", addr->scale()); 193 ptrdiff_t offset = ptrdiff_t(addr->disp()); 194 // NOTE: Does not handle any 16 byte vector access. 195 const uint type_size = type2aelembytes(addr->type(), true); 196 return __ legitimize_address(Address(base, offset), type_size, tmp); 197 } 198 return Address(); 199 } 200 201 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 202 ShouldNotReachHere(); 203 return Address(); 204 } 205 206 Address LIR_Assembler::as_Address(LIR_Address* addr) { 207 return as_Address(addr, rscratch1); 208 } 209 210 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 211 return as_Address(addr, rscratch1); // Ouch 212 // FIXME: This needs to be much more clever. See x86. 213 } 214 215 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 216 // not encodable as a base + (immediate) offset, generate an explicit address 217 // calculation to hold the address in a temporary register. 218 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 219 precond(size == 4 || size == 8); 220 Address addr = frame_map()->address_for_slot(index, adjust); 221 precond(addr.getMode() == Address::base_plus_offset); 222 precond(addr.base() == sp); 223 precond(addr.offset() > 0); 224 uint mask = size - 1; 225 assert((addr.offset() & mask) == 0, "scaled offsets only"); 226 return __ legitimize_address(addr, size, tmp); 227 } 228 229 void LIR_Assembler::osr_entry() { 230 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 231 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 232 ValueStack* entry_state = osr_entry->state(); 233 int number_of_locks = entry_state->locks_size(); 234 235 // we jump here if osr happens with the interpreter 236 // state set up to continue at the beginning of the 237 // loop that triggered osr - in particular, we have 238 // the following registers setup: 239 // 240 // r2: osr buffer 241 // 242 243 // build frame 244 ciMethod* m = compilation()->method(); 245 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 246 247 // OSR buffer is 248 // 249 // locals[nlocals-1..0] 250 // monitors[0..number_of_locks] 251 // 252 // locals is a direct copy of the interpreter frame so in the osr buffer 253 // so first slot in the local array is the last local from the interpreter 254 // and last slot is local[0] (receiver) from the interpreter 255 // 256 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 257 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 258 // in the interpreter frame (the method lock if a sync method) 259 260 // Initialize monitors in the compiled activation. 261 // r2: pointer to osr buffer 262 // 263 // All other registers are dead at this point and the locals will be 264 // copied into place by code emitted in the IR. 265 266 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 267 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 268 int monitor_offset = BytesPerWord * method()->max_locals() + 269 (2 * BytesPerWord) * (number_of_locks - 1); 270 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 271 // the OSR buffer using 2 word entries: first the lock and then 272 // the oop. 273 for (int i = 0; i < number_of_locks; i++) { 274 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 275 #ifdef ASSERT 276 // verify the interpreter's monitor has a non-null object 277 { 278 Label L; 279 __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 280 __ cbnz(rscratch1, L); 281 __ stop("locked object is NULL"); 282 __ bind(L); 283 } 284 #endif 285 __ ldr(r19, Address(OSR_buf, slot_offset + 0)); 286 __ str(r19, frame_map()->address_for_monitor_lock(i)); 287 __ ldr(r19, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 288 __ str(r19, frame_map()->address_for_monitor_object(i)); 289 } 290 } 291 } 292 293 294 // inline cache check; done before the frame is built. 295 int LIR_Assembler::check_icache() { 296 Register receiver = FrameMap::receiver_opr->as_register(); 297 Register ic_klass = IC_Klass; 298 int start_offset = __ offset(); 299 __ inline_cache_check(receiver, ic_klass); 300 301 // if icache check fails, then jump to runtime routine 302 // Note: RECEIVER must still contain the receiver! 303 Label dont; 304 __ br(Assembler::EQ, dont); 305 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 306 307 // We align the verified entry point unless the method body 308 // (including its inline cache check) will fit in a single 64-byte 309 // icache line. 310 if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) { 311 // force alignment after the cache check. 312 __ align(CodeEntryAlignment); 313 } 314 315 __ bind(dont); 316 return start_offset; 317 } 318 319 void LIR_Assembler::clinit_barrier(ciMethod* method) { 320 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 321 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 322 323 Label L_skip_barrier; 324 325 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 326 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 327 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 328 __ bind(L_skip_barrier); 329 } 330 331 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 332 if (o == NULL) { 333 __ mov(reg, zr); 334 } else { 335 __ movoop(reg, o, /*immediate*/true); 336 } 337 } 338 339 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 340 address target = NULL; 341 relocInfo::relocType reloc_type = relocInfo::none; 342 343 switch (patching_id(info)) { 344 case PatchingStub::access_field_id: 345 target = Runtime1::entry_for(Runtime1::access_field_patching_id); 346 reloc_type = relocInfo::section_word_type; 347 break; 348 case PatchingStub::load_klass_id: 349 target = Runtime1::entry_for(Runtime1::load_klass_patching_id); 350 reloc_type = relocInfo::metadata_type; 351 break; 352 case PatchingStub::load_mirror_id: 353 target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); 354 reloc_type = relocInfo::oop_type; 355 break; 356 case PatchingStub::load_appendix_id: 357 target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); 358 reloc_type = relocInfo::oop_type; 359 break; 360 default: ShouldNotReachHere(); 361 } 362 363 __ far_call(RuntimeAddress(target)); 364 add_call_info_here(info); 365 } 366 367 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 368 deoptimize_trap(info); 369 } 370 371 372 // This specifies the rsp decrement needed to build the frame 373 int LIR_Assembler::initial_frame_size_in_bytes() const { 374 // if rounding, must let FrameMap know! 375 376 return in_bytes(frame_map()->framesize_in_bytes()); 377 } 378 379 380 int LIR_Assembler::emit_exception_handler() { 381 // if the last instruction is a call (typically to do a throw which 382 // is coming at the end after block reordering) the return address 383 // must still point into the code area in order to avoid assertion 384 // failures when searching for the corresponding bci => add a nop 385 // (was bug 5/14/1999 - gri) 386 __ nop(); 387 388 // generate code for exception handler 389 address handler_base = __ start_a_stub(exception_handler_size()); 390 if (handler_base == NULL) { 391 // not enough space left for the handler 392 bailout("exception handler overflow"); 393 return -1; 394 } 395 396 int offset = code_offset(); 397 398 // the exception oop and pc are in r0, and r3 399 // no other registers need to be preserved, so invalidate them 400 __ invalidate_registers(false, true, true, false, true, true); 401 402 // check that there is really an exception 403 __ verify_not_null_oop(r0); 404 405 // search an exception handler (r0: exception oop, r3: throwing pc) 406 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); __ should_not_reach_here(); 407 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 408 __ end_a_stub(); 409 410 return offset; 411 } 412 413 414 // Emit the code to remove the frame from the stack in the exception 415 // unwind path. 416 int LIR_Assembler::emit_unwind_handler() { 417 #ifndef PRODUCT 418 if (CommentedAssembly) { 419 _masm->block_comment("Unwind handler"); 420 } 421 #endif 422 423 int offset = code_offset(); 424 425 // Fetch the exception from TLS and clear out exception related thread state 426 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 427 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 428 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 429 430 __ bind(_unwind_handler_entry); 431 __ verify_not_null_oop(r0); 432 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 433 __ mov(r19, r0); // Preserve the exception 434 } 435 436 // Perform needed unlocking 437 MonitorExitStub* stub = NULL; 438 if (method()->is_synchronized()) { 439 monitor_address(0, FrameMap::r0_opr); 440 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 441 if (UseHeavyMonitors) { 442 __ b(*stub->entry()); 443 } else { 444 __ unlock_object(r5, r4, r0, *stub->entry()); 445 } 446 __ bind(*stub->continuation()); 447 } 448 449 if (compilation()->env()->dtrace_method_probes()) { 450 __ mov(c_rarg0, rthread); 451 __ mov_metadata(c_rarg1, method()->constant_encoding()); 452 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 453 } 454 455 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 456 __ mov(r0, r19); // Restore the exception 457 } 458 459 // remove the activation and dispatch to the unwind handler 460 __ block_comment("remove_frame and dispatch to the unwind handler"); 461 __ remove_frame(initial_frame_size_in_bytes()); 462 __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id))); 463 464 // Emit the slow path assembly 465 if (stub != NULL) { 466 stub->emit_code(this); 467 } 468 469 return offset; 470 } 471 472 473 int LIR_Assembler::emit_deopt_handler() { 474 // if the last instruction is a call (typically to do a throw which 475 // is coming at the end after block reordering) the return address 476 // must still point into the code area in order to avoid assertion 477 // failures when searching for the corresponding bci => add a nop 478 // (was bug 5/14/1999 - gri) 479 __ nop(); 480 481 // generate code for exception handler 482 address handler_base = __ start_a_stub(deopt_handler_size()); 483 if (handler_base == NULL) { 484 // not enough space left for the handler 485 bailout("deopt handler overflow"); 486 return -1; 487 } 488 489 int offset = code_offset(); 490 491 __ adr(lr, pc()); 492 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 493 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 494 __ end_a_stub(); 495 496 return offset; 497 } 498 499 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 500 _masm->code_section()->relocate(adr, relocInfo::poll_type); 501 int pc_offset = code_offset(); 502 flush_debug_info(pc_offset); 503 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 504 if (info->exception_handlers() != NULL) { 505 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 506 } 507 } 508 509 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 510 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 511 512 // Pop the stack before the safepoint code 513 __ remove_frame(initial_frame_size_in_bytes()); 514 515 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 516 __ reserved_stack_check(); 517 } 518 519 code_stub->set_safepoint_offset(__ offset()); 520 __ relocate(relocInfo::poll_return_type); 521 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */); 522 __ ret(lr); 523 } 524 525 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 526 guarantee(info != NULL, "Shouldn't be NULL"); 527 __ get_polling_page(rscratch1, relocInfo::poll_type); 528 add_debug_info_for_branch(info); // This isn't just debug info: 529 // it's the oop map 530 __ read_polling_page(rscratch1, relocInfo::poll_type); 531 return __ offset(); 532 } 533 534 535 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 536 if (from_reg == r31_sp) 537 from_reg = sp; 538 if (to_reg == r31_sp) 539 to_reg = sp; 540 __ mov(to_reg, from_reg); 541 } 542 543 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 544 545 546 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 547 assert(src->is_constant(), "should not call otherwise"); 548 assert(dest->is_register(), "should not call otherwise"); 549 LIR_Const* c = src->as_constant_ptr(); 550 551 switch (c->type()) { 552 case T_INT: { 553 assert(patch_code == lir_patch_none, "no patching handled here"); 554 __ movw(dest->as_register(), c->as_jint()); 555 break; 556 } 557 558 case T_ADDRESS: { 559 assert(patch_code == lir_patch_none, "no patching handled here"); 560 __ mov(dest->as_register(), c->as_jint()); 561 break; 562 } 563 564 case T_LONG: { 565 assert(patch_code == lir_patch_none, "no patching handled here"); 566 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 567 break; 568 } 569 570 case T_OBJECT: { 571 if (patch_code == lir_patch_none) { 572 jobject2reg(c->as_jobject(), dest->as_register()); 573 } else { 574 jobject2reg_with_patching(dest->as_register(), info); 575 } 576 break; 577 } 578 579 case T_METADATA: { 580 if (patch_code != lir_patch_none) { 581 klass2reg_with_patching(dest->as_register(), info); 582 } else { 583 __ mov_metadata(dest->as_register(), c->as_metadata()); 584 } 585 break; 586 } 587 588 case T_FLOAT: { 589 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 590 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 591 } else { 592 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 593 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 594 } 595 break; 596 } 597 598 case T_DOUBLE: { 599 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 600 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 601 } else { 602 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 603 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 604 } 605 break; 606 } 607 608 default: 609 ShouldNotReachHere(); 610 } 611 } 612 613 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 614 LIR_Const* c = src->as_constant_ptr(); 615 switch (c->type()) { 616 case T_OBJECT: 617 { 618 if (! c->as_jobject()) 619 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 620 else { 621 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL); 622 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 623 } 624 } 625 break; 626 case T_ADDRESS: 627 { 628 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL); 629 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 630 } 631 case T_INT: 632 case T_FLOAT: 633 { 634 Register reg = zr; 635 if (c->as_jint_bits() == 0) 636 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 637 else { 638 __ movw(rscratch1, c->as_jint_bits()); 639 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 640 } 641 } 642 break; 643 case T_LONG: 644 case T_DOUBLE: 645 { 646 Register reg = zr; 647 if (c->as_jlong_bits() == 0) 648 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 649 lo_word_offset_in_bytes)); 650 else { 651 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 652 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 653 lo_word_offset_in_bytes)); 654 } 655 } 656 break; 657 default: 658 ShouldNotReachHere(); 659 } 660 } 661 662 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 663 assert(src->is_constant(), "should not call otherwise"); 664 LIR_Const* c = src->as_constant_ptr(); 665 LIR_Address* to_addr = dest->as_address_ptr(); 666 667 void (Assembler::* insn)(Register Rt, const Address &adr); 668 669 switch (type) { 670 case T_ADDRESS: 671 assert(c->as_jint() == 0, "should be"); 672 insn = &Assembler::str; 673 break; 674 case T_LONG: 675 assert(c->as_jlong() == 0, "should be"); 676 insn = &Assembler::str; 677 break; 678 case T_INT: 679 assert(c->as_jint() == 0, "should be"); 680 insn = &Assembler::strw; 681 break; 682 case T_OBJECT: 683 case T_ARRAY: 684 assert(c->as_jobject() == 0, "should be"); 685 if (UseCompressedOops && !wide) { 686 insn = &Assembler::strw; 687 } else { 688 insn = &Assembler::str; 689 } 690 break; 691 case T_CHAR: 692 case T_SHORT: 693 assert(c->as_jint() == 0, "should be"); 694 insn = &Assembler::strh; 695 break; 696 case T_BOOLEAN: 697 case T_BYTE: 698 assert(c->as_jint() == 0, "should be"); 699 insn = &Assembler::strb; 700 break; 701 default: 702 ShouldNotReachHere(); 703 insn = &Assembler::str; // unreachable 704 } 705 706 if (info) add_debug_info_for_null_check_here(info); 707 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 708 } 709 710 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 711 assert(src->is_register(), "should not call otherwise"); 712 assert(dest->is_register(), "should not call otherwise"); 713 714 // move between cpu-registers 715 if (dest->is_single_cpu()) { 716 if (src->type() == T_LONG) { 717 // Can do LONG -> OBJECT 718 move_regs(src->as_register_lo(), dest->as_register()); 719 return; 720 } 721 assert(src->is_single_cpu(), "must match"); 722 if (src->type() == T_OBJECT) { 723 __ verify_oop(src->as_register()); 724 } 725 move_regs(src->as_register(), dest->as_register()); 726 727 } else if (dest->is_double_cpu()) { 728 if (is_reference_type(src->type())) { 729 // Surprising to me but we can see move of a long to t_object 730 __ verify_oop(src->as_register()); 731 move_regs(src->as_register(), dest->as_register_lo()); 732 return; 733 } 734 assert(src->is_double_cpu(), "must match"); 735 Register f_lo = src->as_register_lo(); 736 Register f_hi = src->as_register_hi(); 737 Register t_lo = dest->as_register_lo(); 738 Register t_hi = dest->as_register_hi(); 739 assert(f_hi == f_lo, "must be same"); 740 assert(t_hi == t_lo, "must be same"); 741 move_regs(f_lo, t_lo); 742 743 } else if (dest->is_single_fpu()) { 744 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 745 746 } else if (dest->is_double_fpu()) { 747 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 748 749 } else { 750 ShouldNotReachHere(); 751 } 752 } 753 754 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 755 precond(src->is_register() && dest->is_stack()); 756 757 uint const c_sz32 = sizeof(uint32_t); 758 uint const c_sz64 = sizeof(uint64_t); 759 760 if (src->is_single_cpu()) { 761 int index = dest->single_stack_ix(); 762 if (is_reference_type(type)) { 763 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 764 __ verify_oop(src->as_register()); 765 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 766 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 767 } else { 768 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 769 } 770 771 } else if (src->is_double_cpu()) { 772 int index = dest->double_stack_ix(); 773 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 774 __ str(src->as_register_lo(), dest_addr_LO); 775 776 } else if (src->is_single_fpu()) { 777 int index = dest->single_stack_ix(); 778 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 779 780 } else if (src->is_double_fpu()) { 781 int index = dest->double_stack_ix(); 782 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 783 784 } else { 785 ShouldNotReachHere(); 786 } 787 } 788 789 790 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) { 791 LIR_Address* to_addr = dest->as_address_ptr(); 792 PatchingStub* patch = NULL; 793 Register compressed_src = rscratch1; 794 795 if (patch_code != lir_patch_none) { 796 deoptimize_trap(info); 797 return; 798 } 799 800 if (is_reference_type(type)) { 801 __ verify_oop(src->as_register()); 802 803 if (UseCompressedOops && !wide) { 804 __ encode_heap_oop(compressed_src, src->as_register()); 805 } else { 806 compressed_src = src->as_register(); 807 } 808 } 809 810 int null_check_here = code_offset(); 811 switch (type) { 812 case T_FLOAT: { 813 __ strs(src->as_float_reg(), as_Address(to_addr)); 814 break; 815 } 816 817 case T_DOUBLE: { 818 __ strd(src->as_double_reg(), as_Address(to_addr)); 819 break; 820 } 821 822 case T_ARRAY: // fall through 823 case T_OBJECT: // fall through 824 if (UseCompressedOops && !wide) { 825 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 826 } else { 827 __ str(compressed_src, as_Address(to_addr)); 828 } 829 break; 830 case T_METADATA: 831 // We get here to store a method pointer to the stack to pass to 832 // a dtrace runtime call. This can't work on 64 bit with 833 // compressed klass ptrs: T_METADATA can be a compressed klass 834 // ptr or a 64 bit method pointer. 835 ShouldNotReachHere(); 836 __ str(src->as_register(), as_Address(to_addr)); 837 break; 838 case T_ADDRESS: 839 __ str(src->as_register(), as_Address(to_addr)); 840 break; 841 case T_INT: 842 __ strw(src->as_register(), as_Address(to_addr)); 843 break; 844 845 case T_LONG: { 846 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 847 break; 848 } 849 850 case T_BYTE: // fall through 851 case T_BOOLEAN: { 852 __ strb(src->as_register(), as_Address(to_addr)); 853 break; 854 } 855 856 case T_CHAR: // fall through 857 case T_SHORT: 858 __ strh(src->as_register(), as_Address(to_addr)); 859 break; 860 861 default: 862 ShouldNotReachHere(); 863 } 864 if (info != NULL) { 865 add_debug_info_for_null_check(null_check_here, info); 866 } 867 } 868 869 870 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 871 precond(src->is_stack() && dest->is_register()); 872 873 uint const c_sz32 = sizeof(uint32_t); 874 uint const c_sz64 = sizeof(uint64_t); 875 876 if (dest->is_single_cpu()) { 877 int index = src->single_stack_ix(); 878 if (is_reference_type(type)) { 879 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 880 __ verify_oop(dest->as_register()); 881 } else if (type == T_METADATA || type == T_ADDRESS) { 882 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 883 } else { 884 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 885 } 886 887 } else if (dest->is_double_cpu()) { 888 int index = src->double_stack_ix(); 889 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 890 __ ldr(dest->as_register_lo(), src_addr_LO); 891 892 } else if (dest->is_single_fpu()) { 893 int index = src->single_stack_ix(); 894 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 895 896 } else if (dest->is_double_fpu()) { 897 int index = src->double_stack_ix(); 898 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 899 900 } else { 901 ShouldNotReachHere(); 902 } 903 } 904 905 906 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 907 address target = NULL; 908 relocInfo::relocType reloc_type = relocInfo::none; 909 910 switch (patching_id(info)) { 911 case PatchingStub::access_field_id: 912 target = Runtime1::entry_for(Runtime1::access_field_patching_id); 913 reloc_type = relocInfo::section_word_type; 914 break; 915 case PatchingStub::load_klass_id: 916 target = Runtime1::entry_for(Runtime1::load_klass_patching_id); 917 reloc_type = relocInfo::metadata_type; 918 break; 919 case PatchingStub::load_mirror_id: 920 target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); 921 reloc_type = relocInfo::oop_type; 922 break; 923 case PatchingStub::load_appendix_id: 924 target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); 925 reloc_type = relocInfo::oop_type; 926 break; 927 default: ShouldNotReachHere(); 928 } 929 930 __ far_call(RuntimeAddress(target)); 931 add_call_info_here(info); 932 } 933 934 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 935 936 LIR_Opr temp; 937 if (type == T_LONG || type == T_DOUBLE) 938 temp = FrameMap::rscratch1_long_opr; 939 else 940 temp = FrameMap::rscratch1_opr; 941 942 stack2reg(src, temp, src->type()); 943 reg2stack(temp, dest, dest->type(), false); 944 } 945 946 947 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 948 LIR_Address* addr = src->as_address_ptr(); 949 LIR_Address* from_addr = src->as_address_ptr(); 950 951 if (addr->base()->type() == T_OBJECT) { 952 __ verify_oop(addr->base()->as_pointer_register()); 953 } 954 955 if (patch_code != lir_patch_none) { 956 deoptimize_trap(info); 957 return; 958 } 959 960 if (info != NULL) { 961 add_debug_info_for_null_check_here(info); 962 } 963 int null_check_here = code_offset(); 964 switch (type) { 965 case T_FLOAT: { 966 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 967 break; 968 } 969 970 case T_DOUBLE: { 971 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 972 break; 973 } 974 975 case T_ARRAY: // fall through 976 case T_OBJECT: // fall through 977 if (UseCompressedOops && !wide) { 978 __ ldrw(dest->as_register(), as_Address(from_addr)); 979 } else { 980 __ ldr(dest->as_register(), as_Address(from_addr)); 981 } 982 break; 983 case T_METADATA: 984 // We get here to store a method pointer to the stack to pass to 985 // a dtrace runtime call. This can't work on 64 bit with 986 // compressed klass ptrs: T_METADATA can be a compressed klass 987 // ptr or a 64 bit method pointer. 988 ShouldNotReachHere(); 989 __ ldr(dest->as_register(), as_Address(from_addr)); 990 break; 991 case T_ADDRESS: 992 __ ldr(dest->as_register(), as_Address(from_addr)); 993 break; 994 case T_INT: 995 __ ldrw(dest->as_register(), as_Address(from_addr)); 996 break; 997 998 case T_LONG: { 999 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 1000 break; 1001 } 1002 1003 case T_BYTE: 1004 __ ldrsb(dest->as_register(), as_Address(from_addr)); 1005 break; 1006 case T_BOOLEAN: { 1007 __ ldrb(dest->as_register(), as_Address(from_addr)); 1008 break; 1009 } 1010 1011 case T_CHAR: 1012 __ ldrh(dest->as_register(), as_Address(from_addr)); 1013 break; 1014 case T_SHORT: 1015 __ ldrsh(dest->as_register(), as_Address(from_addr)); 1016 break; 1017 1018 default: 1019 ShouldNotReachHere(); 1020 } 1021 1022 if (is_reference_type(type)) { 1023 if (UseCompressedOops && !wide) { 1024 __ decode_heap_oop(dest->as_register()); 1025 } 1026 1027 if (!UseZGC) { 1028 // Load barrier has not yet been applied, so ZGC can't verify the oop here 1029 __ verify_oop(dest->as_register()); 1030 } 1031 } 1032 } 1033 1034 1035 int LIR_Assembler::array_element_size(BasicType type) const { 1036 int elem_size = type2aelembytes(type); 1037 return exact_log2(elem_size); 1038 } 1039 1040 1041 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1042 switch (op->code()) { 1043 case lir_idiv: 1044 case lir_irem: 1045 arithmetic_idiv(op->code(), 1046 op->in_opr1(), 1047 op->in_opr2(), 1048 op->in_opr3(), 1049 op->result_opr(), 1050 op->info()); 1051 break; 1052 case lir_fmad: 1053 __ fmaddd(op->result_opr()->as_double_reg(), 1054 op->in_opr1()->as_double_reg(), 1055 op->in_opr2()->as_double_reg(), 1056 op->in_opr3()->as_double_reg()); 1057 break; 1058 case lir_fmaf: 1059 __ fmadds(op->result_opr()->as_float_reg(), 1060 op->in_opr1()->as_float_reg(), 1061 op->in_opr2()->as_float_reg(), 1062 op->in_opr3()->as_float_reg()); 1063 break; 1064 default: ShouldNotReachHere(); break; 1065 } 1066 } 1067 1068 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1069 #ifdef ASSERT 1070 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); 1071 if (op->block() != NULL) _branch_target_blocks.append(op->block()); 1072 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); 1073 #endif 1074 1075 if (op->cond() == lir_cond_always) { 1076 if (op->info() != NULL) add_debug_info_for_branch(op->info()); 1077 __ b(*(op->label())); 1078 } else { 1079 Assembler::Condition acond; 1080 if (op->code() == lir_cond_float_branch) { 1081 bool is_unordered = (op->ublock() == op->block()); 1082 // Assembler::EQ does not permit unordered branches, so we add 1083 // another branch here. Likewise, Assembler::NE does not permit 1084 // ordered branches. 1085 if ((is_unordered && op->cond() == lir_cond_equal) 1086 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1087 __ br(Assembler::VS, *(op->ublock()->label())); 1088 switch(op->cond()) { 1089 case lir_cond_equal: acond = Assembler::EQ; break; 1090 case lir_cond_notEqual: acond = Assembler::NE; break; 1091 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1092 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1093 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1094 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1095 default: ShouldNotReachHere(); 1096 acond = Assembler::EQ; // unreachable 1097 } 1098 } else { 1099 switch (op->cond()) { 1100 case lir_cond_equal: acond = Assembler::EQ; break; 1101 case lir_cond_notEqual: acond = Assembler::NE; break; 1102 case lir_cond_less: acond = Assembler::LT; break; 1103 case lir_cond_lessEqual: acond = Assembler::LE; break; 1104 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1105 case lir_cond_greater: acond = Assembler::GT; break; 1106 case lir_cond_belowEqual: acond = Assembler::LS; break; 1107 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1108 default: ShouldNotReachHere(); 1109 acond = Assembler::EQ; // unreachable 1110 } 1111 } 1112 __ br(acond,*(op->label())); 1113 } 1114 } 1115 1116 1117 1118 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1119 LIR_Opr src = op->in_opr(); 1120 LIR_Opr dest = op->result_opr(); 1121 1122 switch (op->bytecode()) { 1123 case Bytecodes::_i2f: 1124 { 1125 __ scvtfws(dest->as_float_reg(), src->as_register()); 1126 break; 1127 } 1128 case Bytecodes::_i2d: 1129 { 1130 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1131 break; 1132 } 1133 case Bytecodes::_l2d: 1134 { 1135 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1136 break; 1137 } 1138 case Bytecodes::_l2f: 1139 { 1140 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1141 break; 1142 } 1143 case Bytecodes::_f2d: 1144 { 1145 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1146 break; 1147 } 1148 case Bytecodes::_d2f: 1149 { 1150 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1151 break; 1152 } 1153 case Bytecodes::_i2c: 1154 { 1155 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1156 break; 1157 } 1158 case Bytecodes::_i2l: 1159 { 1160 __ sxtw(dest->as_register_lo(), src->as_register()); 1161 break; 1162 } 1163 case Bytecodes::_i2s: 1164 { 1165 __ sxth(dest->as_register(), src->as_register()); 1166 break; 1167 } 1168 case Bytecodes::_i2b: 1169 { 1170 __ sxtb(dest->as_register(), src->as_register()); 1171 break; 1172 } 1173 case Bytecodes::_l2i: 1174 { 1175 _masm->block_comment("FIXME: This could be a no-op"); 1176 __ uxtw(dest->as_register(), src->as_register_lo()); 1177 break; 1178 } 1179 case Bytecodes::_d2l: 1180 { 1181 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1182 break; 1183 } 1184 case Bytecodes::_f2i: 1185 { 1186 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1187 break; 1188 } 1189 case Bytecodes::_f2l: 1190 { 1191 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1192 break; 1193 } 1194 case Bytecodes::_d2i: 1195 { 1196 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1197 break; 1198 } 1199 default: ShouldNotReachHere(); 1200 } 1201 } 1202 1203 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1204 if (op->init_check()) { 1205 __ ldrb(rscratch1, Address(op->klass()->as_register(), 1206 InstanceKlass::init_state_offset())); 1207 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1208 add_debug_info_for_null_check_here(op->stub()->info()); 1209 __ br(Assembler::NE, *op->stub()->entry()); 1210 } 1211 __ allocate_object(op->obj()->as_register(), 1212 op->tmp1()->as_register(), 1213 op->tmp2()->as_register(), 1214 op->header_size(), 1215 op->object_size(), 1216 op->klass()->as_register(), 1217 *op->stub()->entry()); 1218 __ bind(*op->stub()->continuation()); 1219 } 1220 1221 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1222 Register len = op->len()->as_register(); 1223 __ uxtw(len, len); 1224 1225 if (UseSlowPath || 1226 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1227 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1228 __ b(*op->stub()->entry()); 1229 } else { 1230 Register tmp1 = op->tmp1()->as_register(); 1231 Register tmp2 = op->tmp2()->as_register(); 1232 Register tmp3 = op->tmp3()->as_register(); 1233 if (len == tmp1) { 1234 tmp1 = tmp3; 1235 } else if (len == tmp2) { 1236 tmp2 = tmp3; 1237 } else if (len == tmp3) { 1238 // everything is ok 1239 } else { 1240 __ mov(tmp3, len); 1241 } 1242 __ allocate_array(op->obj()->as_register(), 1243 len, 1244 tmp1, 1245 tmp2, 1246 arrayOopDesc::header_size(op->type()), 1247 array_element_size(op->type()), 1248 op->klass()->as_register(), 1249 *op->stub()->entry()); 1250 } 1251 __ bind(*op->stub()->continuation()); 1252 } 1253 1254 void LIR_Assembler::type_profile_helper(Register mdo, 1255 ciMethodData *md, ciProfileData *data, 1256 Register recv, Label* update_done) { 1257 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1258 Label next_test; 1259 // See if the receiver is receiver[n]. 1260 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1261 __ ldr(rscratch1, Address(rscratch2)); 1262 __ cmp(recv, rscratch1); 1263 __ br(Assembler::NE, next_test); 1264 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1265 __ addptr(data_addr, DataLayout::counter_increment); 1266 __ b(*update_done); 1267 __ bind(next_test); 1268 } 1269 1270 // Didn't find receiver; find next empty slot and fill it in 1271 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1272 Label next_test; 1273 __ lea(rscratch2, 1274 Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1275 Address recv_addr(rscratch2); 1276 __ ldr(rscratch1, recv_addr); 1277 __ cbnz(rscratch1, next_test); 1278 __ str(recv, recv_addr); 1279 __ mov(rscratch1, DataLayout::counter_increment); 1280 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)))); 1281 __ str(rscratch1, Address(rscratch2)); 1282 __ b(*update_done); 1283 __ bind(next_test); 1284 } 1285 } 1286 1287 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1288 // we always need a stub for the failure case. 1289 CodeStub* stub = op->stub(); 1290 Register obj = op->object()->as_register(); 1291 Register k_RInfo = op->tmp1()->as_register(); 1292 Register klass_RInfo = op->tmp2()->as_register(); 1293 Register dst = op->result_opr()->as_register(); 1294 ciKlass* k = op->klass(); 1295 Register Rtmp1 = noreg; 1296 1297 // check if it needs to be profiled 1298 ciMethodData* md; 1299 ciProfileData* data; 1300 1301 const bool should_profile = op->should_profile(); 1302 1303 if (should_profile) { 1304 ciMethod* method = op->profiled_method(); 1305 assert(method != NULL, "Should have method"); 1306 int bci = op->profiled_bci(); 1307 md = method->method_data_or_null(); 1308 assert(md != NULL, "Sanity"); 1309 data = md->bci_to_data(bci); 1310 assert(data != NULL, "need data for type check"); 1311 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1312 } 1313 Label profile_cast_success, profile_cast_failure; 1314 Label *success_target = should_profile ? &profile_cast_success : success; 1315 Label *failure_target = should_profile ? &profile_cast_failure : failure; 1316 1317 if (obj == k_RInfo) { 1318 k_RInfo = dst; 1319 } else if (obj == klass_RInfo) { 1320 klass_RInfo = dst; 1321 } 1322 if (k->is_loaded() && !UseCompressedClassPointers) { 1323 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1324 } else { 1325 Rtmp1 = op->tmp3()->as_register(); 1326 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1327 } 1328 1329 assert_different_registers(obj, k_RInfo, klass_RInfo); 1330 1331 if (should_profile) { 1332 Label not_null; 1333 __ cbnz(obj, not_null); 1334 // Object is null; update MDO and exit 1335 Register mdo = klass_RInfo; 1336 __ mov_metadata(mdo, md->constant_encoding()); 1337 Address data_addr 1338 = __ form_address(rscratch2, mdo, 1339 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1340 0); 1341 __ ldrb(rscratch1, data_addr); 1342 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1343 __ strb(rscratch1, data_addr); 1344 __ b(*obj_is_null); 1345 __ bind(not_null); 1346 } else { 1347 __ cbz(obj, *obj_is_null); 1348 } 1349 1350 if (!k->is_loaded()) { 1351 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1352 } else { 1353 __ mov_metadata(k_RInfo, k->constant_encoding()); 1354 } 1355 __ verify_oop(obj); 1356 1357 if (op->fast_check()) { 1358 // get object class 1359 // not a safepoint as obj null check happens earlier 1360 __ load_klass(rscratch1, obj); 1361 __ cmp( rscratch1, k_RInfo); 1362 1363 __ br(Assembler::NE, *failure_target); 1364 // successful cast, fall through to profile or jump 1365 } else { 1366 // get object class 1367 // not a safepoint as obj null check happens earlier 1368 __ load_klass(klass_RInfo, obj); 1369 if (k->is_loaded()) { 1370 // See if we get an immediate positive hit 1371 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1372 __ cmp(k_RInfo, rscratch1); 1373 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1374 __ br(Assembler::NE, *failure_target); 1375 // successful cast, fall through to profile or jump 1376 } else { 1377 // See if we get an immediate positive hit 1378 __ br(Assembler::EQ, *success_target); 1379 // check for self 1380 __ cmp(klass_RInfo, k_RInfo); 1381 __ br(Assembler::EQ, *success_target); 1382 1383 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1384 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1385 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1386 // result is a boolean 1387 __ cbzw(klass_RInfo, *failure_target); 1388 // successful cast, fall through to profile or jump 1389 } 1390 } else { 1391 // perform the fast part of the checking logic 1392 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1393 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1394 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1395 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1396 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1397 // result is a boolean 1398 __ cbz(k_RInfo, *failure_target); 1399 // successful cast, fall through to profile or jump 1400 } 1401 } 1402 if (should_profile) { 1403 Register mdo = klass_RInfo, recv = k_RInfo; 1404 __ bind(profile_cast_success); 1405 __ mov_metadata(mdo, md->constant_encoding()); 1406 __ load_klass(recv, obj); 1407 Label update_done; 1408 type_profile_helper(mdo, md, data, recv, success); 1409 __ b(*success); 1410 1411 __ bind(profile_cast_failure); 1412 __ mov_metadata(mdo, md->constant_encoding()); 1413 Address counter_addr 1414 = __ form_address(rscratch2, mdo, 1415 md->byte_offset_of_slot(data, CounterData::count_offset()), 1416 0); 1417 __ ldr(rscratch1, counter_addr); 1418 __ sub(rscratch1, rscratch1, DataLayout::counter_increment); 1419 __ str(rscratch1, counter_addr); 1420 __ b(*failure); 1421 } 1422 __ b(*success); 1423 } 1424 1425 1426 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1427 const bool should_profile = op->should_profile(); 1428 1429 LIR_Code code = op->code(); 1430 if (code == lir_store_check) { 1431 Register value = op->object()->as_register(); 1432 Register array = op->array()->as_register(); 1433 Register k_RInfo = op->tmp1()->as_register(); 1434 Register klass_RInfo = op->tmp2()->as_register(); 1435 Register Rtmp1 = op->tmp3()->as_register(); 1436 1437 CodeStub* stub = op->stub(); 1438 1439 // check if it needs to be profiled 1440 ciMethodData* md; 1441 ciProfileData* data; 1442 1443 if (should_profile) { 1444 ciMethod* method = op->profiled_method(); 1445 assert(method != NULL, "Should have method"); 1446 int bci = op->profiled_bci(); 1447 md = method->method_data_or_null(); 1448 assert(md != NULL, "Sanity"); 1449 data = md->bci_to_data(bci); 1450 assert(data != NULL, "need data for type check"); 1451 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1452 } 1453 Label profile_cast_success, profile_cast_failure, done; 1454 Label *success_target = should_profile ? &profile_cast_success : &done; 1455 Label *failure_target = should_profile ? &profile_cast_failure : stub->entry(); 1456 1457 if (should_profile) { 1458 Label not_null; 1459 __ cbnz(value, not_null); 1460 // Object is null; update MDO and exit 1461 Register mdo = klass_RInfo; 1462 __ mov_metadata(mdo, md->constant_encoding()); 1463 Address data_addr 1464 = __ form_address(rscratch2, mdo, 1465 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1466 0); 1467 __ ldrb(rscratch1, data_addr); 1468 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1469 __ strb(rscratch1, data_addr); 1470 __ b(done); 1471 __ bind(not_null); 1472 } else { 1473 __ cbz(value, done); 1474 } 1475 1476 add_debug_info_for_null_check_here(op->info_for_exception()); 1477 __ load_klass(k_RInfo, array); 1478 __ load_klass(klass_RInfo, value); 1479 1480 // get instance klass (it's already uncompressed) 1481 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1482 // perform the fast part of the checking logic 1483 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1484 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1485 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1486 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1487 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1488 // result is a boolean 1489 __ cbzw(k_RInfo, *failure_target); 1490 // fall through to the success case 1491 1492 if (should_profile) { 1493 Register mdo = klass_RInfo, recv = k_RInfo; 1494 __ bind(profile_cast_success); 1495 __ mov_metadata(mdo, md->constant_encoding()); 1496 __ load_klass(recv, value); 1497 Label update_done; 1498 type_profile_helper(mdo, md, data, recv, &done); 1499 __ b(done); 1500 1501 __ bind(profile_cast_failure); 1502 __ mov_metadata(mdo, md->constant_encoding()); 1503 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1504 __ lea(rscratch2, counter_addr); 1505 __ ldr(rscratch1, Address(rscratch2)); 1506 __ sub(rscratch1, rscratch1, DataLayout::counter_increment); 1507 __ str(rscratch1, Address(rscratch2)); 1508 __ b(*stub->entry()); 1509 } 1510 1511 __ bind(done); 1512 } else if (code == lir_checkcast) { 1513 Register obj = op->object()->as_register(); 1514 Register dst = op->result_opr()->as_register(); 1515 Label success; 1516 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1517 __ bind(success); 1518 if (dst != obj) { 1519 __ mov(dst, obj); 1520 } 1521 } else if (code == lir_instanceof) { 1522 Register obj = op->object()->as_register(); 1523 Register dst = op->result_opr()->as_register(); 1524 Label success, failure, done; 1525 emit_typecheck_helper(op, &success, &failure, &failure); 1526 __ bind(failure); 1527 __ mov(dst, zr); 1528 __ b(done); 1529 __ bind(success); 1530 __ mov(dst, 1); 1531 __ bind(done); 1532 } else { 1533 ShouldNotReachHere(); 1534 } 1535 } 1536 1537 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1538 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1539 __ cset(rscratch1, Assembler::NE); 1540 __ membar(__ AnyAny); 1541 } 1542 1543 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1544 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1545 __ cset(rscratch1, Assembler::NE); 1546 __ membar(__ AnyAny); 1547 } 1548 1549 1550 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1551 assert(VM_Version::supports_cx8(), "wrong machine"); 1552 Register addr; 1553 if (op->addr()->is_register()) { 1554 addr = as_reg(op->addr()); 1555 } else { 1556 assert(op->addr()->is_address(), "what else?"); 1557 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1558 assert(addr_ptr->disp() == 0, "need 0 disp"); 1559 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1560 addr = as_reg(addr_ptr->base()); 1561 } 1562 Register newval = as_reg(op->new_value()); 1563 Register cmpval = as_reg(op->cmp_value()); 1564 1565 if (op->code() == lir_cas_obj) { 1566 if (UseCompressedOops) { 1567 Register t1 = op->tmp1()->as_register(); 1568 assert(op->tmp1()->is_valid(), "must be"); 1569 __ encode_heap_oop(t1, cmpval); 1570 cmpval = t1; 1571 __ encode_heap_oop(rscratch2, newval); 1572 newval = rscratch2; 1573 casw(addr, newval, cmpval); 1574 } else { 1575 casl(addr, newval, cmpval); 1576 } 1577 } else if (op->code() == lir_cas_int) { 1578 casw(addr, newval, cmpval); 1579 } else { 1580 casl(addr, newval, cmpval); 1581 } 1582 } 1583 1584 1585 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1586 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1587 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1588 1589 Assembler::Condition acond, ncond; 1590 switch (condition) { 1591 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1592 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1593 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1594 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1595 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1596 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1597 case lir_cond_belowEqual: 1598 case lir_cond_aboveEqual: 1599 default: ShouldNotReachHere(); 1600 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1601 } 1602 1603 assert(result->is_single_cpu() || result->is_double_cpu(), 1604 "expect single register for result"); 1605 if (opr1->is_constant() && opr2->is_constant() 1606 && opr1->type() == T_INT && opr2->type() == T_INT) { 1607 jint val1 = opr1->as_jint(); 1608 jint val2 = opr2->as_jint(); 1609 if (val1 == 0 && val2 == 1) { 1610 __ cset(result->as_register(), ncond); 1611 return; 1612 } else if (val1 == 1 && val2 == 0) { 1613 __ cset(result->as_register(), acond); 1614 return; 1615 } 1616 } 1617 1618 if (opr1->is_constant() && opr2->is_constant() 1619 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1620 jlong val1 = opr1->as_jlong(); 1621 jlong val2 = opr2->as_jlong(); 1622 if (val1 == 0 && val2 == 1) { 1623 __ cset(result->as_register_lo(), ncond); 1624 return; 1625 } else if (val1 == 1 && val2 == 0) { 1626 __ cset(result->as_register_lo(), acond); 1627 return; 1628 } 1629 } 1630 1631 if (opr1->is_stack()) { 1632 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1633 opr1 = FrameMap::rscratch1_opr; 1634 } else if (opr1->is_constant()) { 1635 LIR_Opr tmp 1636 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1637 const2reg(opr1, tmp, lir_patch_none, NULL); 1638 opr1 = tmp; 1639 } 1640 1641 if (opr2->is_stack()) { 1642 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1643 opr2 = FrameMap::rscratch2_opr; 1644 } else if (opr2->is_constant()) { 1645 LIR_Opr tmp 1646 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1647 const2reg(opr2, tmp, lir_patch_none, NULL); 1648 opr2 = tmp; 1649 } 1650 1651 if (result->type() == T_LONG) 1652 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1653 else 1654 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1655 } 1656 1657 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 1658 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1659 1660 if (left->is_single_cpu()) { 1661 Register lreg = left->as_register(); 1662 Register dreg = as_reg(dest); 1663 1664 if (right->is_single_cpu()) { 1665 // cpu register - cpu register 1666 1667 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1668 "should be"); 1669 Register rreg = right->as_register(); 1670 switch (code) { 1671 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1672 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1673 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1674 default: ShouldNotReachHere(); 1675 } 1676 1677 } else if (right->is_double_cpu()) { 1678 Register rreg = right->as_register_lo(); 1679 // single_cpu + double_cpu: can happen with obj+long 1680 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1681 switch (code) { 1682 case lir_add: __ add(dreg, lreg, rreg); break; 1683 case lir_sub: __ sub(dreg, lreg, rreg); break; 1684 default: ShouldNotReachHere(); 1685 } 1686 } else if (right->is_constant()) { 1687 // cpu register - constant 1688 jlong c; 1689 1690 // FIXME. This is fugly: we really need to factor all this logic. 1691 switch(right->type()) { 1692 case T_LONG: 1693 c = right->as_constant_ptr()->as_jlong(); 1694 break; 1695 case T_INT: 1696 case T_ADDRESS: 1697 c = right->as_constant_ptr()->as_jint(); 1698 break; 1699 default: 1700 ShouldNotReachHere(); 1701 c = 0; // unreachable 1702 break; 1703 } 1704 1705 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1706 if (c == 0 && dreg == lreg) { 1707 COMMENT("effective nop elided"); 1708 return; 1709 } 1710 switch(left->type()) { 1711 case T_INT: 1712 switch (code) { 1713 case lir_add: __ addw(dreg, lreg, c); break; 1714 case lir_sub: __ subw(dreg, lreg, c); break; 1715 default: ShouldNotReachHere(); 1716 } 1717 break; 1718 case T_OBJECT: 1719 case T_ADDRESS: 1720 switch (code) { 1721 case lir_add: __ add(dreg, lreg, c); break; 1722 case lir_sub: __ sub(dreg, lreg, c); break; 1723 default: ShouldNotReachHere(); 1724 } 1725 break; 1726 default: 1727 ShouldNotReachHere(); 1728 } 1729 } else { 1730 ShouldNotReachHere(); 1731 } 1732 1733 } else if (left->is_double_cpu()) { 1734 Register lreg_lo = left->as_register_lo(); 1735 1736 if (right->is_double_cpu()) { 1737 // cpu register - cpu register 1738 Register rreg_lo = right->as_register_lo(); 1739 switch (code) { 1740 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1741 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1742 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1743 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1744 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1745 default: 1746 ShouldNotReachHere(); 1747 } 1748 1749 } else if (right->is_constant()) { 1750 jlong c = right->as_constant_ptr()->as_jlong(); 1751 Register dreg = as_reg(dest); 1752 switch (code) { 1753 case lir_add: 1754 case lir_sub: 1755 if (c == 0 && dreg == lreg_lo) { 1756 COMMENT("effective nop elided"); 1757 return; 1758 } 1759 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1760 break; 1761 case lir_div: 1762 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1763 if (c == 1) { 1764 // move lreg_lo to dreg if divisor is 1 1765 __ mov(dreg, lreg_lo); 1766 } else { 1767 unsigned int shift = log2i_exact(c); 1768 // use rscratch1 as intermediate result register 1769 __ asr(rscratch1, lreg_lo, 63); 1770 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1771 __ asr(dreg, rscratch1, shift); 1772 } 1773 break; 1774 case lir_rem: 1775 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1776 if (c == 1) { 1777 // move 0 to dreg if divisor is 1 1778 __ mov(dreg, zr); 1779 } else { 1780 // use rscratch1 as intermediate result register 1781 __ negs(rscratch1, lreg_lo); 1782 __ andr(dreg, lreg_lo, c - 1); 1783 __ andr(rscratch1, rscratch1, c - 1); 1784 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1785 } 1786 break; 1787 default: 1788 ShouldNotReachHere(); 1789 } 1790 } else { 1791 ShouldNotReachHere(); 1792 } 1793 } else if (left->is_single_fpu()) { 1794 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1795 switch (code) { 1796 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1797 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1798 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1799 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1800 default: 1801 ShouldNotReachHere(); 1802 } 1803 } else if (left->is_double_fpu()) { 1804 if (right->is_double_fpu()) { 1805 // fpu register - fpu register 1806 switch (code) { 1807 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1808 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1809 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1810 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1811 default: 1812 ShouldNotReachHere(); 1813 } 1814 } else { 1815 if (right->is_constant()) { 1816 ShouldNotReachHere(); 1817 } 1818 ShouldNotReachHere(); 1819 } 1820 } else if (left->is_single_stack() || left->is_address()) { 1821 assert(left == dest, "left and dest must be equal"); 1822 ShouldNotReachHere(); 1823 } else { 1824 ShouldNotReachHere(); 1825 } 1826 } 1827 1828 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); } 1829 1830 1831 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) { 1832 switch(code) { 1833 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1834 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1835 default : ShouldNotReachHere(); 1836 } 1837 } 1838 1839 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1840 1841 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1842 Register Rleft = left->is_single_cpu() ? left->as_register() : 1843 left->as_register_lo(); 1844 if (dst->is_single_cpu()) { 1845 Register Rdst = dst->as_register(); 1846 if (right->is_constant()) { 1847 switch (code) { 1848 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1849 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1850 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1851 default: ShouldNotReachHere(); break; 1852 } 1853 } else { 1854 Register Rright = right->is_single_cpu() ? right->as_register() : 1855 right->as_register_lo(); 1856 switch (code) { 1857 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1858 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1859 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1860 default: ShouldNotReachHere(); break; 1861 } 1862 } 1863 } else { 1864 Register Rdst = dst->as_register_lo(); 1865 if (right->is_constant()) { 1866 switch (code) { 1867 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1868 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1869 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1870 default: ShouldNotReachHere(); break; 1871 } 1872 } else { 1873 Register Rright = right->is_single_cpu() ? right->as_register() : 1874 right->as_register_lo(); 1875 switch (code) { 1876 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1877 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1878 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1879 default: ShouldNotReachHere(); break; 1880 } 1881 } 1882 } 1883 } 1884 1885 1886 1887 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1888 1889 // opcode check 1890 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1891 bool is_irem = (code == lir_irem); 1892 1893 // operand check 1894 assert(left->is_single_cpu(), "left must be register"); 1895 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1896 assert(result->is_single_cpu(), "result must be register"); 1897 Register lreg = left->as_register(); 1898 Register dreg = result->as_register(); 1899 1900 // power-of-2 constant check and codegen 1901 if (right->is_constant()) { 1902 int c = right->as_constant_ptr()->as_jint(); 1903 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1904 if (is_irem) { 1905 if (c == 1) { 1906 // move 0 to dreg if divisor is 1 1907 __ movw(dreg, zr); 1908 } else { 1909 // use rscratch1 as intermediate result register 1910 __ negsw(rscratch1, lreg); 1911 __ andw(dreg, lreg, c - 1); 1912 __ andw(rscratch1, rscratch1, c - 1); 1913 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 1914 } 1915 } else { 1916 if (c == 1) { 1917 // move lreg to dreg if divisor is 1 1918 __ movw(dreg, lreg); 1919 } else { 1920 unsigned int shift = exact_log2(c); 1921 // use rscratch1 as intermediate result register 1922 __ asrw(rscratch1, lreg, 31); 1923 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 1924 __ asrw(dreg, rscratch1, shift); 1925 } 1926 } 1927 } else { 1928 Register rreg = right->as_register(); 1929 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 1930 } 1931 } 1932 1933 1934 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1935 if (opr1->is_constant() && opr2->is_single_cpu()) { 1936 // tableswitch 1937 Register reg = as_reg(opr2); 1938 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 1939 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 1940 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 1941 Register reg1 = as_reg(opr1); 1942 if (opr2->is_single_cpu()) { 1943 // cpu register - cpu register 1944 Register reg2 = opr2->as_register(); 1945 if (is_reference_type(opr1->type())) { 1946 __ cmpoop(reg1, reg2); 1947 } else { 1948 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1949 __ cmpw(reg1, reg2); 1950 } 1951 return; 1952 } 1953 if (opr2->is_double_cpu()) { 1954 // cpu register - cpu register 1955 Register reg2 = opr2->as_register_lo(); 1956 __ cmp(reg1, reg2); 1957 return; 1958 } 1959 1960 if (opr2->is_constant()) { 1961 bool is_32bit = false; // width of register operand 1962 jlong imm; 1963 1964 switch(opr2->type()) { 1965 case T_INT: 1966 imm = opr2->as_constant_ptr()->as_jint(); 1967 is_32bit = true; 1968 break; 1969 case T_LONG: 1970 imm = opr2->as_constant_ptr()->as_jlong(); 1971 break; 1972 case T_ADDRESS: 1973 imm = opr2->as_constant_ptr()->as_jint(); 1974 break; 1975 case T_METADATA: 1976 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 1977 break; 1978 case T_OBJECT: 1979 case T_ARRAY: 1980 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 1981 __ cmpoop(reg1, rscratch1); 1982 return; 1983 default: 1984 ShouldNotReachHere(); 1985 imm = 0; // unreachable 1986 break; 1987 } 1988 1989 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 1990 if (is_32bit) 1991 __ cmpw(reg1, imm); 1992 else 1993 __ subs(zr, reg1, imm); 1994 return; 1995 } else { 1996 __ mov(rscratch1, imm); 1997 if (is_32bit) 1998 __ cmpw(reg1, rscratch1); 1999 else 2000 __ cmp(reg1, rscratch1); 2001 return; 2002 } 2003 } else 2004 ShouldNotReachHere(); 2005 } else if (opr1->is_single_fpu()) { 2006 FloatRegister reg1 = opr1->as_float_reg(); 2007 assert(opr2->is_single_fpu(), "expect single float register"); 2008 FloatRegister reg2 = opr2->as_float_reg(); 2009 __ fcmps(reg1, reg2); 2010 } else if (opr1->is_double_fpu()) { 2011 FloatRegister reg1 = opr1->as_double_reg(); 2012 assert(opr2->is_double_fpu(), "expect double float register"); 2013 FloatRegister reg2 = opr2->as_double_reg(); 2014 __ fcmpd(reg1, reg2); 2015 } else { 2016 ShouldNotReachHere(); 2017 } 2018 } 2019 2020 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 2021 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2022 bool is_unordered_less = (code == lir_ucmp_fd2i); 2023 if (left->is_single_fpu()) { 2024 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 2025 } else if (left->is_double_fpu()) { 2026 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 2027 } else { 2028 ShouldNotReachHere(); 2029 } 2030 } else if (code == lir_cmp_l2i) { 2031 Label done; 2032 __ cmp(left->as_register_lo(), right->as_register_lo()); 2033 __ mov(dst->as_register(), (uint64_t)-1L); 2034 __ br(Assembler::LT, done); 2035 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 2036 __ bind(done); 2037 } else { 2038 ShouldNotReachHere(); 2039 } 2040 } 2041 2042 2043 void LIR_Assembler::align_call(LIR_Code code) { } 2044 2045 2046 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2047 address call = __ trampoline_call(Address(op->addr(), rtype)); 2048 if (call == NULL) { 2049 bailout("trampoline stub overflow"); 2050 return; 2051 } 2052 add_call_info(code_offset(), op->info()); 2053 } 2054 2055 2056 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2057 address call = __ ic_call(op->addr()); 2058 if (call == NULL) { 2059 bailout("trampoline stub overflow"); 2060 return; 2061 } 2062 add_call_info(code_offset(), op->info()); 2063 } 2064 2065 void LIR_Assembler::emit_static_call_stub() { 2066 address call_pc = __ pc(); 2067 address stub = __ start_a_stub(call_stub_size()); 2068 if (stub == NULL) { 2069 bailout("static call stub overflow"); 2070 return; 2071 } 2072 2073 int start = __ offset(); 2074 2075 __ relocate(static_stub_Relocation::spec(call_pc)); 2076 __ emit_static_call_stub(); 2077 2078 assert(__ offset() - start + CompiledStaticCall::to_trampoline_stub_size() 2079 <= call_stub_size(), "stub too big"); 2080 __ end_a_stub(); 2081 } 2082 2083 2084 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2085 assert(exceptionOop->as_register() == r0, "must match"); 2086 assert(exceptionPC->as_register() == r3, "must match"); 2087 2088 // exception object is not added to oop map by LinearScan 2089 // (LinearScan assumes that no oops are in fixed registers) 2090 info->add_register_oop(exceptionOop); 2091 Runtime1::StubID unwind_id; 2092 2093 // get current pc information 2094 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2095 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2096 // As no instructions have been generated yet for this LIR node it's 2097 // possible that an oop map already exists for the current offset. 2098 // In that case insert an dummy NOP here to ensure all oop map PCs 2099 // are unique. See JDK-8237483. 2100 __ nop(); 2101 } 2102 int pc_for_athrow_offset = __ offset(); 2103 InternalAddress pc_for_athrow(__ pc()); 2104 __ adr(exceptionPC->as_register(), pc_for_athrow); 2105 add_call_info(pc_for_athrow_offset, info); // for exception handler 2106 2107 __ verify_not_null_oop(r0); 2108 // search an exception handler (r0: exception oop, r3: throwing pc) 2109 if (compilation()->has_fpu_code()) { 2110 unwind_id = Runtime1::handle_exception_id; 2111 } else { 2112 unwind_id = Runtime1::handle_exception_nofpu_id; 2113 } 2114 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2115 2116 // FIXME: enough room for two byte trap ???? 2117 __ nop(); 2118 } 2119 2120 2121 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2122 assert(exceptionOop->as_register() == r0, "must match"); 2123 2124 __ b(_unwind_handler_entry); 2125 } 2126 2127 2128 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2129 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2130 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2131 2132 switch (left->type()) { 2133 case T_INT: { 2134 switch (code) { 2135 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2136 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2137 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2138 default: 2139 ShouldNotReachHere(); 2140 break; 2141 } 2142 break; 2143 case T_LONG: 2144 case T_ADDRESS: 2145 case T_OBJECT: 2146 switch (code) { 2147 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2148 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2149 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2150 default: 2151 ShouldNotReachHere(); 2152 break; 2153 } 2154 break; 2155 default: 2156 ShouldNotReachHere(); 2157 break; 2158 } 2159 } 2160 } 2161 2162 2163 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2164 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2165 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2166 2167 switch (left->type()) { 2168 case T_INT: { 2169 switch (code) { 2170 case lir_shl: __ lslw (dreg, lreg, count); break; 2171 case lir_shr: __ asrw (dreg, lreg, count); break; 2172 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2173 default: 2174 ShouldNotReachHere(); 2175 break; 2176 } 2177 break; 2178 case T_LONG: 2179 case T_ADDRESS: 2180 case T_OBJECT: 2181 switch (code) { 2182 case lir_shl: __ lsl (dreg, lreg, count); break; 2183 case lir_shr: __ asr (dreg, lreg, count); break; 2184 case lir_ushr: __ lsr (dreg, lreg, count); break; 2185 default: 2186 ShouldNotReachHere(); 2187 break; 2188 } 2189 break; 2190 default: 2191 ShouldNotReachHere(); 2192 break; 2193 } 2194 } 2195 } 2196 2197 2198 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2199 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2200 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2201 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2202 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2203 } 2204 2205 2206 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2207 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2208 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2209 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2210 __ mov (rscratch1, c); 2211 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2212 } 2213 2214 2215 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2216 ShouldNotReachHere(); 2217 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2218 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2219 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2220 __ lea(rscratch1, __ constant_oop_address(o)); 2221 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2222 } 2223 2224 2225 // This code replaces a call to arraycopy; no exception may 2226 // be thrown in this code, they must be thrown in the System.arraycopy 2227 // activation frame; we could save some checks if this would not be the case 2228 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2229 ciArrayKlass* default_type = op->expected_type(); 2230 Register src = op->src()->as_register(); 2231 Register dst = op->dst()->as_register(); 2232 Register src_pos = op->src_pos()->as_register(); 2233 Register dst_pos = op->dst_pos()->as_register(); 2234 Register length = op->length()->as_register(); 2235 Register tmp = op->tmp()->as_register(); 2236 2237 CodeStub* stub = op->stub(); 2238 int flags = op->flags(); 2239 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; 2240 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2241 2242 // if we don't know anything, just go through the generic arraycopy 2243 if (default_type == NULL // || basic_type == T_OBJECT 2244 ) { 2245 Label done; 2246 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2247 2248 // Save the arguments in case the generic arraycopy fails and we 2249 // have to fall back to the JNI stub 2250 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2251 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2252 __ str(src, Address(sp, 4*BytesPerWord)); 2253 2254 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2255 assert(copyfunc_addr != NULL, "generic arraycopy stub required"); 2256 2257 // The arguments are in java calling convention so we shift them 2258 // to C convention 2259 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2260 __ mov(c_rarg0, j_rarg0); 2261 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2262 __ mov(c_rarg1, j_rarg1); 2263 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2264 __ mov(c_rarg2, j_rarg2); 2265 assert_different_registers(c_rarg3, j_rarg4); 2266 __ mov(c_rarg3, j_rarg3); 2267 __ mov(c_rarg4, j_rarg4); 2268 #ifndef PRODUCT 2269 if (PrintC1Statistics) { 2270 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2271 } 2272 #endif 2273 __ far_call(RuntimeAddress(copyfunc_addr)); 2274 2275 __ cbz(r0, *stub->continuation()); 2276 2277 // Reload values from the stack so they are where the stub 2278 // expects them. 2279 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2280 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2281 __ ldr(src, Address(sp, 4*BytesPerWord)); 2282 2283 // r0 is -1^K where K == partial copied count 2284 __ eonw(rscratch1, r0, zr); 2285 // adjust length down and src/end pos up by partial copied count 2286 __ subw(length, length, rscratch1); 2287 __ addw(src_pos, src_pos, rscratch1); 2288 __ addw(dst_pos, dst_pos, rscratch1); 2289 __ b(*stub->entry()); 2290 2291 __ bind(*stub->continuation()); 2292 return; 2293 } 2294 2295 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2296 2297 int elem_size = type2aelembytes(basic_type); 2298 int scale = exact_log2(elem_size); 2299 2300 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2301 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2302 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 2303 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 2304 2305 // test for NULL 2306 if (flags & LIR_OpArrayCopy::src_null_check) { 2307 __ cbz(src, *stub->entry()); 2308 } 2309 if (flags & LIR_OpArrayCopy::dst_null_check) { 2310 __ cbz(dst, *stub->entry()); 2311 } 2312 2313 // If the compiler was not able to prove that exact type of the source or the destination 2314 // of the arraycopy is an array type, check at runtime if the source or the destination is 2315 // an instance type. 2316 if (flags & LIR_OpArrayCopy::type_check) { 2317 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2318 __ load_klass(tmp, dst); 2319 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2320 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2321 __ br(Assembler::GE, *stub->entry()); 2322 } 2323 2324 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2325 __ load_klass(tmp, src); 2326 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2327 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2328 __ br(Assembler::GE, *stub->entry()); 2329 } 2330 } 2331 2332 // check if negative 2333 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2334 __ cmpw(src_pos, 0); 2335 __ br(Assembler::LT, *stub->entry()); 2336 } 2337 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2338 __ cmpw(dst_pos, 0); 2339 __ br(Assembler::LT, *stub->entry()); 2340 } 2341 2342 if (flags & LIR_OpArrayCopy::length_positive_check) { 2343 __ cmpw(length, 0); 2344 __ br(Assembler::LT, *stub->entry()); 2345 } 2346 2347 if (flags & LIR_OpArrayCopy::src_range_check) { 2348 __ addw(tmp, src_pos, length); 2349 __ ldrw(rscratch1, src_length_addr); 2350 __ cmpw(tmp, rscratch1); 2351 __ br(Assembler::HI, *stub->entry()); 2352 } 2353 if (flags & LIR_OpArrayCopy::dst_range_check) { 2354 __ addw(tmp, dst_pos, length); 2355 __ ldrw(rscratch1, dst_length_addr); 2356 __ cmpw(tmp, rscratch1); 2357 __ br(Assembler::HI, *stub->entry()); 2358 } 2359 2360 if (flags & LIR_OpArrayCopy::type_check) { 2361 // We don't know the array types are compatible 2362 if (basic_type != T_OBJECT) { 2363 // Simple test for basic type arrays 2364 if (UseCompressedClassPointers) { 2365 __ ldrw(tmp, src_klass_addr); 2366 __ ldrw(rscratch1, dst_klass_addr); 2367 __ cmpw(tmp, rscratch1); 2368 } else { 2369 __ ldr(tmp, src_klass_addr); 2370 __ ldr(rscratch1, dst_klass_addr); 2371 __ cmp(tmp, rscratch1); 2372 } 2373 __ br(Assembler::NE, *stub->entry()); 2374 } else { 2375 // For object arrays, if src is a sub class of dst then we can 2376 // safely do the copy. 2377 Label cont, slow; 2378 2379 #define PUSH(r1, r2) \ 2380 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2381 2382 #define POP(r1, r2) \ 2383 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2384 2385 __ PUSH(src, dst); 2386 2387 __ load_klass(src, src); 2388 __ load_klass(dst, dst); 2389 2390 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL); 2391 2392 __ PUSH(src, dst); 2393 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 2394 __ POP(src, dst); 2395 2396 __ cbnz(src, cont); 2397 2398 __ bind(slow); 2399 __ POP(src, dst); 2400 2401 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2402 if (copyfunc_addr != NULL) { // use stub if available 2403 // src is not a sub class of dst so we have to do a 2404 // per-element check. 2405 2406 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2407 if ((flags & mask) != mask) { 2408 // Check that at least both of them object arrays. 2409 assert(flags & mask, "one of the two should be known to be an object array"); 2410 2411 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2412 __ load_klass(tmp, src); 2413 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2414 __ load_klass(tmp, dst); 2415 } 2416 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2417 Address klass_lh_addr(tmp, lh_offset); 2418 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2419 __ ldrw(rscratch1, klass_lh_addr); 2420 __ mov(rscratch2, objArray_lh); 2421 __ eorw(rscratch1, rscratch1, rscratch2); 2422 __ cbnzw(rscratch1, *stub->entry()); 2423 } 2424 2425 // Spill because stubs can use any register they like and it's 2426 // easier to restore just those that we care about. 2427 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2428 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2429 __ str(src, Address(sp, 4*BytesPerWord)); 2430 2431 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2432 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2433 assert_different_registers(c_rarg0, dst, dst_pos, length); 2434 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2435 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2436 assert_different_registers(c_rarg1, dst, length); 2437 __ uxtw(c_rarg2, length); 2438 assert_different_registers(c_rarg2, dst); 2439 2440 __ load_klass(c_rarg4, dst); 2441 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2442 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2443 __ far_call(RuntimeAddress(copyfunc_addr)); 2444 2445 #ifndef PRODUCT 2446 if (PrintC1Statistics) { 2447 Label failed; 2448 __ cbnz(r0, failed); 2449 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2450 __ bind(failed); 2451 } 2452 #endif 2453 2454 __ cbz(r0, *stub->continuation()); 2455 2456 #ifndef PRODUCT 2457 if (PrintC1Statistics) { 2458 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2459 } 2460 #endif 2461 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2462 2463 // Restore previously spilled arguments 2464 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2465 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2466 __ ldr(src, Address(sp, 4*BytesPerWord)); 2467 2468 // return value is -1^K where K is partial copied count 2469 __ eonw(rscratch1, r0, zr); 2470 // adjust length down and src/end pos up by partial copied count 2471 __ subw(length, length, rscratch1); 2472 __ addw(src_pos, src_pos, rscratch1); 2473 __ addw(dst_pos, dst_pos, rscratch1); 2474 } 2475 2476 __ b(*stub->entry()); 2477 2478 __ bind(cont); 2479 __ POP(src, dst); 2480 } 2481 } 2482 2483 #ifdef ASSERT 2484 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2485 // Sanity check the known type with the incoming class. For the 2486 // primitive case the types must match exactly with src.klass and 2487 // dst.klass each exactly matching the default type. For the 2488 // object array case, if no type check is needed then either the 2489 // dst type is exactly the expected type and the src type is a 2490 // subtype which we can't check or src is the same array as dst 2491 // but not necessarily exactly of type default_type. 2492 Label known_ok, halt; 2493 __ mov_metadata(tmp, default_type->constant_encoding()); 2494 if (UseCompressedClassPointers) { 2495 __ encode_klass_not_null(tmp); 2496 } 2497 2498 if (basic_type != T_OBJECT) { 2499 2500 if (UseCompressedClassPointers) { 2501 __ ldrw(rscratch1, dst_klass_addr); 2502 __ cmpw(tmp, rscratch1); 2503 } else { 2504 __ ldr(rscratch1, dst_klass_addr); 2505 __ cmp(tmp, rscratch1); 2506 } 2507 __ br(Assembler::NE, halt); 2508 if (UseCompressedClassPointers) { 2509 __ ldrw(rscratch1, src_klass_addr); 2510 __ cmpw(tmp, rscratch1); 2511 } else { 2512 __ ldr(rscratch1, src_klass_addr); 2513 __ cmp(tmp, rscratch1); 2514 } 2515 __ br(Assembler::EQ, known_ok); 2516 } else { 2517 if (UseCompressedClassPointers) { 2518 __ ldrw(rscratch1, dst_klass_addr); 2519 __ cmpw(tmp, rscratch1); 2520 } else { 2521 __ ldr(rscratch1, dst_klass_addr); 2522 __ cmp(tmp, rscratch1); 2523 } 2524 __ br(Assembler::EQ, known_ok); 2525 __ cmp(src, dst); 2526 __ br(Assembler::EQ, known_ok); 2527 } 2528 __ bind(halt); 2529 __ stop("incorrect type information in arraycopy"); 2530 __ bind(known_ok); 2531 } 2532 #endif 2533 2534 #ifndef PRODUCT 2535 if (PrintC1Statistics) { 2536 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2537 } 2538 #endif 2539 2540 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2541 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2542 assert_different_registers(c_rarg0, dst, dst_pos, length); 2543 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2544 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2545 assert_different_registers(c_rarg1, dst, length); 2546 __ uxtw(c_rarg2, length); 2547 assert_different_registers(c_rarg2, dst); 2548 2549 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2550 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2551 const char *name; 2552 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2553 2554 CodeBlob *cb = CodeCache::find_blob(entry); 2555 if (cb) { 2556 __ far_call(RuntimeAddress(entry)); 2557 } else { 2558 __ call_VM_leaf(entry, 3); 2559 } 2560 2561 __ bind(*stub->continuation()); 2562 } 2563 2564 2565 2566 2567 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2568 Register obj = op->obj_opr()->as_register(); // may not be an oop 2569 Register hdr = op->hdr_opr()->as_register(); 2570 Register lock = op->lock_opr()->as_register(); 2571 if (UseHeavyMonitors) { 2572 __ b(*op->stub()->entry()); 2573 } else if (op->code() == lir_lock) { 2574 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2575 // add debug info for NullPointerException only if one is possible 2576 int null_check_offset = __ lock_object(hdr, obj, lock, *op->stub()->entry()); 2577 if (op->info() != NULL) { 2578 add_debug_info_for_null_check(null_check_offset, op->info()); 2579 } 2580 // done 2581 } else if (op->code() == lir_unlock) { 2582 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2583 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2584 } else { 2585 Unimplemented(); 2586 } 2587 __ bind(*op->stub()->continuation()); 2588 } 2589 2590 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2591 Register obj = op->obj()->as_pointer_register(); 2592 Register result = op->result_opr()->as_pointer_register(); 2593 2594 CodeEmitInfo* info = op->info(); 2595 if (info != NULL) { 2596 add_debug_info_for_null_check_here(info); 2597 } 2598 2599 if (UseCompressedClassPointers) { 2600 __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2601 __ decode_klass_not_null(result); 2602 } else { 2603 __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2604 } 2605 } 2606 2607 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2608 ciMethod* method = op->profiled_method(); 2609 int bci = op->profiled_bci(); 2610 ciMethod* callee = op->profiled_callee(); 2611 2612 // Update counter for all call types 2613 ciMethodData* md = method->method_data_or_null(); 2614 assert(md != NULL, "Sanity"); 2615 ciProfileData* data = md->bci_to_data(bci); 2616 assert(data != NULL && data->is_CounterData(), "need CounterData for calls"); 2617 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2618 Register mdo = op->mdo()->as_register(); 2619 __ mov_metadata(mdo, md->constant_encoding()); 2620 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2621 // Perform additional virtual call profiling for invokevirtual and 2622 // invokeinterface bytecodes 2623 if (op->should_profile_receiver_type()) { 2624 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2625 Register recv = op->recv()->as_register(); 2626 assert_different_registers(mdo, recv); 2627 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2628 ciKlass* known_klass = op->known_holder(); 2629 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { 2630 // We know the type that will be seen at this call site; we can 2631 // statically update the MethodData* rather than needing to do 2632 // dynamic tests on the receiver type 2633 2634 // NOTE: we should probably put a lock around this search to 2635 // avoid collisions by concurrent compilations 2636 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2637 uint i; 2638 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2639 ciKlass* receiver = vc_data->receiver(i); 2640 if (known_klass->equals(receiver)) { 2641 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2642 __ addptr(data_addr, DataLayout::counter_increment); 2643 return; 2644 } 2645 } 2646 2647 // Receiver type not found in profile data; select an empty slot 2648 2649 // Note that this is less efficient than it should be because it 2650 // always does a write to the receiver part of the 2651 // VirtualCallData rather than just the first time 2652 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2653 ciKlass* receiver = vc_data->receiver(i); 2654 if (receiver == NULL) { 2655 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2656 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2657 __ lea(rscratch2, recv_addr); 2658 __ str(rscratch1, Address(rscratch2)); 2659 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2660 __ addptr(data_addr, DataLayout::counter_increment); 2661 return; 2662 } 2663 } 2664 } else { 2665 __ load_klass(recv, recv); 2666 Label update_done; 2667 type_profile_helper(mdo, md, data, recv, &update_done); 2668 // Receiver did not match any saved receiver and there is no empty row for it. 2669 // Increment total counter to indicate polymorphic case. 2670 __ addptr(counter_addr, DataLayout::counter_increment); 2671 2672 __ bind(update_done); 2673 } 2674 } else { 2675 // Static call 2676 __ addptr(counter_addr, DataLayout::counter_increment); 2677 } 2678 } 2679 2680 2681 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2682 Unimplemented(); 2683 } 2684 2685 2686 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2687 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2688 } 2689 2690 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2691 assert(op->crc()->is_single_cpu(), "crc must be register"); 2692 assert(op->val()->is_single_cpu(), "byte value must be register"); 2693 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2694 Register crc = op->crc()->as_register(); 2695 Register val = op->val()->as_register(); 2696 Register res = op->result_opr()->as_register(); 2697 2698 assert_different_registers(val, crc, res); 2699 uint64_t offset; 2700 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2701 if (offset) __ add(res, res, offset); 2702 2703 __ mvnw(crc, crc); // ~crc 2704 __ update_byte_crc32(crc, val, res); 2705 __ mvnw(res, crc); // ~crc 2706 } 2707 2708 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2709 COMMENT("emit_profile_type {"); 2710 Register obj = op->obj()->as_register(); 2711 Register tmp = op->tmp()->as_pointer_register(); 2712 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2713 ciKlass* exact_klass = op->exact_klass(); 2714 intptr_t current_klass = op->current_klass(); 2715 bool not_null = op->not_null(); 2716 bool no_conflict = op->no_conflict(); 2717 2718 Label update, next, none; 2719 2720 bool do_null = !not_null; 2721 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2722 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2723 2724 assert(do_null || do_update, "why are we here?"); 2725 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2726 assert(mdo_addr.base() != rscratch1, "wrong register"); 2727 2728 __ verify_oop(obj); 2729 2730 if (tmp != obj) { 2731 __ mov(tmp, obj); 2732 } 2733 if (do_null) { 2734 __ cbnz(tmp, update); 2735 if (!TypeEntries::was_null_seen(current_klass)) { 2736 __ ldr(rscratch2, mdo_addr); 2737 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2738 __ str(rscratch2, mdo_addr); 2739 } 2740 if (do_update) { 2741 #ifndef ASSERT 2742 __ b(next); 2743 } 2744 #else 2745 __ b(next); 2746 } 2747 } else { 2748 __ cbnz(tmp, update); 2749 __ stop("unexpected null obj"); 2750 #endif 2751 } 2752 2753 __ bind(update); 2754 2755 if (do_update) { 2756 #ifdef ASSERT 2757 if (exact_klass != NULL) { 2758 Label ok; 2759 __ load_klass(tmp, tmp); 2760 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2761 __ eor(rscratch1, tmp, rscratch1); 2762 __ cbz(rscratch1, ok); 2763 __ stop("exact klass and actual klass differ"); 2764 __ bind(ok); 2765 } 2766 #endif 2767 if (!no_conflict) { 2768 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { 2769 if (exact_klass != NULL) { 2770 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2771 } else { 2772 __ load_klass(tmp, tmp); 2773 } 2774 2775 __ ldr(rscratch2, mdo_addr); 2776 __ eor(tmp, tmp, rscratch2); 2777 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2778 // klass seen before, nothing to do. The unknown bit may have been 2779 // set already but no need to check. 2780 __ cbz(rscratch1, next); 2781 2782 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2783 2784 if (TypeEntries::is_type_none(current_klass)) { 2785 __ cbz(rscratch2, none); 2786 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2787 __ br(Assembler::EQ, none); 2788 // There is a chance that the checks above (re-reading profiling 2789 // data from memory) fail if another thread has just set the 2790 // profiling to this obj's klass 2791 __ dmb(Assembler::ISHLD); 2792 __ ldr(rscratch2, mdo_addr); 2793 __ eor(tmp, tmp, rscratch2); 2794 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2795 __ cbz(rscratch1, next); 2796 } 2797 } else { 2798 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 2799 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2800 2801 __ ldr(tmp, mdo_addr); 2802 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2803 } 2804 2805 // different than before. Cannot keep accurate profile. 2806 __ ldr(rscratch2, mdo_addr); 2807 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2808 __ str(rscratch2, mdo_addr); 2809 2810 if (TypeEntries::is_type_none(current_klass)) { 2811 __ b(next); 2812 2813 __ bind(none); 2814 // first time here. Set profile type. 2815 __ str(tmp, mdo_addr); 2816 } 2817 } else { 2818 // There's a single possible klass at this profile point 2819 assert(exact_klass != NULL, "should be"); 2820 if (TypeEntries::is_type_none(current_klass)) { 2821 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2822 __ ldr(rscratch2, mdo_addr); 2823 __ eor(tmp, tmp, rscratch2); 2824 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2825 __ cbz(rscratch1, next); 2826 #ifdef ASSERT 2827 { 2828 Label ok; 2829 __ ldr(rscratch1, mdo_addr); 2830 __ cbz(rscratch1, ok); 2831 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2832 __ br(Assembler::EQ, ok); 2833 // may have been set by another thread 2834 __ dmb(Assembler::ISHLD); 2835 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2836 __ ldr(rscratch2, mdo_addr); 2837 __ eor(rscratch2, rscratch1, rscratch2); 2838 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2839 __ cbz(rscratch2, ok); 2840 2841 __ stop("unexpected profiling mismatch"); 2842 __ bind(ok); 2843 } 2844 #endif 2845 // first time here. Set profile type. 2846 __ str(tmp, mdo_addr); 2847 } else { 2848 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 2849 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2850 2851 __ ldr(tmp, mdo_addr); 2852 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2853 2854 __ orr(tmp, tmp, TypeEntries::type_unknown); 2855 __ str(tmp, mdo_addr); 2856 // FIXME: Write barrier needed here? 2857 } 2858 } 2859 2860 __ bind(next); 2861 } 2862 COMMENT("} emit_profile_type"); 2863 } 2864 2865 2866 void LIR_Assembler::align_backward_branch_target() { 2867 } 2868 2869 2870 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2871 // tmp must be unused 2872 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2873 2874 if (left->is_single_cpu()) { 2875 assert(dest->is_single_cpu(), "expect single result reg"); 2876 __ negw(dest->as_register(), left->as_register()); 2877 } else if (left->is_double_cpu()) { 2878 assert(dest->is_double_cpu(), "expect double result reg"); 2879 __ neg(dest->as_register_lo(), left->as_register_lo()); 2880 } else if (left->is_single_fpu()) { 2881 assert(dest->is_single_fpu(), "expect single float result reg"); 2882 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 2883 } else { 2884 assert(left->is_double_fpu(), "expect double float operand reg"); 2885 assert(dest->is_double_fpu(), "expect double float result reg"); 2886 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 2887 } 2888 } 2889 2890 2891 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2892 if (patch_code != lir_patch_none) { 2893 deoptimize_trap(info); 2894 return; 2895 } 2896 2897 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); 2898 } 2899 2900 2901 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2902 assert(!tmp->is_valid(), "don't need temporary"); 2903 2904 CodeBlob *cb = CodeCache::find_blob(dest); 2905 if (cb) { 2906 __ far_call(RuntimeAddress(dest)); 2907 } else { 2908 __ mov(rscratch1, RuntimeAddress(dest)); 2909 __ blr(rscratch1); 2910 } 2911 2912 if (info != NULL) { 2913 add_call_info_here(info); 2914 } 2915 } 2916 2917 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2918 if (dest->is_address() || src->is_address()) { 2919 move_op(src, dest, type, lir_patch_none, info, 2920 /*pop_fpu_stack*/false, /*wide*/false); 2921 } else { 2922 ShouldNotReachHere(); 2923 } 2924 } 2925 2926 #ifdef ASSERT 2927 // emit run-time assertion 2928 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2929 assert(op->code() == lir_assert, "must be"); 2930 2931 if (op->in_opr1()->is_valid()) { 2932 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2933 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2934 } else { 2935 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2936 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2937 } 2938 2939 Label ok; 2940 if (op->condition() != lir_cond_always) { 2941 Assembler::Condition acond = Assembler::AL; 2942 switch (op->condition()) { 2943 case lir_cond_equal: acond = Assembler::EQ; break; 2944 case lir_cond_notEqual: acond = Assembler::NE; break; 2945 case lir_cond_less: acond = Assembler::LT; break; 2946 case lir_cond_lessEqual: acond = Assembler::LE; break; 2947 case lir_cond_greaterEqual: acond = Assembler::GE; break; 2948 case lir_cond_greater: acond = Assembler::GT; break; 2949 case lir_cond_belowEqual: acond = Assembler::LS; break; 2950 case lir_cond_aboveEqual: acond = Assembler::HS; break; 2951 default: ShouldNotReachHere(); 2952 } 2953 __ br(acond, ok); 2954 } 2955 if (op->halt()) { 2956 const char* str = __ code_string(op->msg()); 2957 __ stop(str); 2958 } else { 2959 breakpoint(); 2960 } 2961 __ bind(ok); 2962 } 2963 #endif 2964 2965 #ifndef PRODUCT 2966 #define COMMENT(x) do { __ block_comment(x); } while (0) 2967 #else 2968 #define COMMENT(x) 2969 #endif 2970 2971 void LIR_Assembler::membar() { 2972 COMMENT("membar"); 2973 __ membar(MacroAssembler::AnyAny); 2974 } 2975 2976 void LIR_Assembler::membar_acquire() { 2977 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 2978 } 2979 2980 void LIR_Assembler::membar_release() { 2981 __ membar(Assembler::LoadStore|Assembler::StoreStore); 2982 } 2983 2984 void LIR_Assembler::membar_loadload() { 2985 __ membar(Assembler::LoadLoad); 2986 } 2987 2988 void LIR_Assembler::membar_storestore() { 2989 __ membar(MacroAssembler::StoreStore); 2990 } 2991 2992 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 2993 2994 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 2995 2996 void LIR_Assembler::on_spin_wait() { 2997 __ spin_wait(); 2998 } 2999 3000 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3001 __ mov(result_reg->as_register(), rthread); 3002 } 3003 3004 3005 void LIR_Assembler::peephole(LIR_List *lir) { 3006 #if 0 3007 if (tableswitch_count >= max_tableswitches) 3008 return; 3009 3010 /* 3011 This finite-state automaton recognizes sequences of compare-and- 3012 branch instructions. We will turn them into a tableswitch. You 3013 could argue that C1 really shouldn't be doing this sort of 3014 optimization, but without it the code is really horrible. 3015 */ 3016 3017 enum { start_s, cmp1_s, beq_s, cmp_s } state; 3018 int first_key, last_key = -2147483648; 3019 int next_key = 0; 3020 int start_insn = -1; 3021 int last_insn = -1; 3022 Register reg = noreg; 3023 LIR_Opr reg_opr; 3024 state = start_s; 3025 3026 LIR_OpList* inst = lir->instructions_list(); 3027 for (int i = 0; i < inst->length(); i++) { 3028 LIR_Op* op = inst->at(i); 3029 switch (state) { 3030 case start_s: 3031 first_key = -1; 3032 start_insn = i; 3033 switch (op->code()) { 3034 case lir_cmp: 3035 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3036 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3037 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3038 && opr2->is_constant() 3039 && opr2->type() == T_INT) { 3040 reg_opr = opr1; 3041 reg = opr1->as_register(); 3042 first_key = opr2->as_constant_ptr()->as_jint(); 3043 next_key = first_key + 1; 3044 state = cmp_s; 3045 goto next_state; 3046 } 3047 break; 3048 } 3049 break; 3050 case cmp_s: 3051 switch (op->code()) { 3052 case lir_branch: 3053 if (op->as_OpBranch()->cond() == lir_cond_equal) { 3054 state = beq_s; 3055 last_insn = i; 3056 goto next_state; 3057 } 3058 } 3059 state = start_s; 3060 break; 3061 case beq_s: 3062 switch (op->code()) { 3063 case lir_cmp: { 3064 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3065 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3066 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3067 && opr1->as_register() == reg 3068 && opr2->is_constant() 3069 && opr2->type() == T_INT 3070 && opr2->as_constant_ptr()->as_jint() == next_key) { 3071 last_key = next_key; 3072 next_key++; 3073 state = cmp_s; 3074 goto next_state; 3075 } 3076 } 3077 } 3078 last_key = next_key; 3079 state = start_s; 3080 break; 3081 default: 3082 assert(false, "impossible state"); 3083 } 3084 if (state == start_s) { 3085 if (first_key < last_key - 5L && reg != noreg) { 3086 { 3087 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3088 // reg->encoding(), 3089 // start_insn, first_key, last_key); 3090 // for (int i = 0; i < inst->length(); i++) { 3091 // inst->at(i)->print(); 3092 // tty->print("\n"); 3093 // } 3094 // tty->print("\n"); 3095 } 3096 3097 struct tableswitch *sw = &switches[tableswitch_count]; 3098 sw->_insn_index = start_insn, sw->_first_key = first_key, 3099 sw->_last_key = last_key, sw->_reg = reg; 3100 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3101 { 3102 // Insert the new table of branches 3103 int offset = last_insn; 3104 for (int n = first_key; n < last_key; n++) { 3105 inst->insert_before 3106 (last_insn + 1, 3107 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3108 inst->at(offset)->as_OpBranch()->label())); 3109 offset -= 2, i++; 3110 } 3111 } 3112 // Delete all the old compare-and-branch instructions 3113 for (int n = first_key; n < last_key; n++) { 3114 inst->remove_at(start_insn); 3115 inst->remove_at(start_insn); 3116 } 3117 // Insert the tableswitch instruction 3118 inst->insert_before(start_insn, 3119 new LIR_Op2(lir_cmp, lir_cond_always, 3120 LIR_OprFact::intConst(tableswitch_count), 3121 reg_opr)); 3122 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3123 tableswitch_count++; 3124 } 3125 reg = noreg; 3126 last_key = -2147483648; 3127 } 3128 next_state: 3129 ; 3130 } 3131 #endif 3132 } 3133 3134 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3135 Address addr = as_Address(src->as_address_ptr()); 3136 BasicType type = src->type(); 3137 bool is_oop = is_reference_type(type); 3138 3139 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3140 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3141 3142 switch(type) { 3143 case T_INT: 3144 xchg = &MacroAssembler::atomic_xchgalw; 3145 add = &MacroAssembler::atomic_addalw; 3146 break; 3147 case T_LONG: 3148 xchg = &MacroAssembler::atomic_xchgal; 3149 add = &MacroAssembler::atomic_addal; 3150 break; 3151 case T_OBJECT: 3152 case T_ARRAY: 3153 if (UseCompressedOops) { 3154 xchg = &MacroAssembler::atomic_xchgalw; 3155 add = &MacroAssembler::atomic_addalw; 3156 } else { 3157 xchg = &MacroAssembler::atomic_xchgal; 3158 add = &MacroAssembler::atomic_addal; 3159 } 3160 break; 3161 default: 3162 ShouldNotReachHere(); 3163 xchg = &MacroAssembler::atomic_xchgal; 3164 add = &MacroAssembler::atomic_addal; // unreachable 3165 } 3166 3167 switch (code) { 3168 case lir_xadd: 3169 { 3170 RegisterOrConstant inc; 3171 Register tmp = as_reg(tmp_op); 3172 Register dst = as_reg(dest); 3173 if (data->is_constant()) { 3174 inc = RegisterOrConstant(as_long(data)); 3175 assert_different_registers(dst, addr.base(), tmp, 3176 rscratch1, rscratch2); 3177 } else { 3178 inc = RegisterOrConstant(as_reg(data)); 3179 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3180 rscratch1, rscratch2); 3181 } 3182 __ lea(tmp, addr); 3183 (_masm->*add)(dst, inc, tmp); 3184 break; 3185 } 3186 case lir_xchg: 3187 { 3188 Register tmp = tmp_op->as_register(); 3189 Register obj = as_reg(data); 3190 Register dst = as_reg(dest); 3191 if (is_oop && UseCompressedOops) { 3192 __ encode_heap_oop(rscratch2, obj); 3193 obj = rscratch2; 3194 } 3195 assert_different_registers(obj, addr.base(), tmp, rscratch1, dst); 3196 __ lea(tmp, addr); 3197 (_masm->*xchg)(dst, obj, tmp); 3198 if (is_oop && UseCompressedOops) { 3199 __ decode_heap_oop(dst); 3200 } 3201 } 3202 break; 3203 default: 3204 ShouldNotReachHere(); 3205 } 3206 __ membar(__ AnyAny); 3207 } 3208 3209 #undef __ --- EOF ---