1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 void InterpreterMacroAssembler::narrow(Register result) { 49 50 // Get method->_constMethod->_result_type 51 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 52 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 53 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 54 55 Label done, notBool, notByte, notChar; 56 57 // common case first 58 cmpw(rscratch1, T_INT); 59 br(Assembler::EQ, done); 60 61 // mask integer result to narrower return type. 62 cmpw(rscratch1, T_BOOLEAN); 63 br(Assembler::NE, notBool); 64 andw(result, result, 0x1); 65 b(done); 66 67 bind(notBool); 68 cmpw(rscratch1, T_BYTE); 69 br(Assembler::NE, notByte); 70 sbfx(result, result, 0, 8); 71 b(done); 72 73 bind(notByte); 74 cmpw(rscratch1, T_CHAR); 75 br(Assembler::NE, notChar); 76 ubfx(result, result, 0, 16); // truncate upper 16 bits 77 b(done); 78 79 bind(notChar); 80 sbfx(result, result, 0, 16); // sign-extend short 81 82 // Nothing to do for T_INT 83 bind(done); 84 } 85 86 void InterpreterMacroAssembler::jump_to_entry(address entry) { 87 assert(entry, "Entry must have been generated by now"); 88 b(entry); 89 } 90 91 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 92 if (JvmtiExport::can_pop_frame()) { 93 Label L; 94 // Initiate popframe handling only if it is not already being 95 // processed. If the flag has the popframe_processing bit set, it 96 // means that this code is called *during* popframe handling - we 97 // don't want to reenter. 98 // This method is only called just after the call into the vm in 99 // call_VM_base, so the arg registers are available. 100 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 101 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 102 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 103 // Call Interpreter::remove_activation_preserving_args_entry() to get the 104 // address of the same-named entrypoint in the generated interpreter code. 105 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 106 br(r0); 107 bind(L); 108 } 109 } 110 111 112 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 113 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 114 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 115 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 116 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 117 switch (state) { 118 case atos: ldr(r0, oop_addr); 119 str(zr, oop_addr); 120 interp_verify_oop(r0, state); break; 121 case ltos: ldr(r0, val_addr); break; 122 case btos: // fall through 123 case ztos: // fall through 124 case ctos: // fall through 125 case stos: // fall through 126 case itos: ldrw(r0, val_addr); break; 127 case ftos: ldrs(v0, val_addr); break; 128 case dtos: ldrd(v0, val_addr); break; 129 case vtos: /* nothing to do */ break; 130 default : ShouldNotReachHere(); 131 } 132 // Clean up tos value in the thread object 133 movw(rscratch1, (int) ilgl); 134 strw(rscratch1, tos_addr); 135 strw(zr, val_addr); 136 } 137 138 139 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 140 if (JvmtiExport::can_force_early_return()) { 141 Label L; 142 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 143 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit; 144 145 // Initiate earlyret handling only if it is not already being processed. 146 // If the flag has the earlyret_processing bit set, it means that this code 147 // is called *during* earlyret handling - we don't want to reenter. 148 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 149 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 150 br(Assembler::NE, L); 151 152 // Call Interpreter::remove_activation_early_entry() to get the address of the 153 // same-named entrypoint in the generated interpreter code. 154 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 155 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 156 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 157 br(r0); 158 bind(L); 159 } 160 } 161 162 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 163 Register reg, 164 int bcp_offset) { 165 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 166 ldrh(reg, Address(rbcp, bcp_offset)); 167 rev16(reg, reg); 168 } 169 170 void InterpreterMacroAssembler::get_dispatch() { 171 uint64_t offset; 172 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 173 // Use add() here after ARDP, rather than lea(). 174 // lea() does not generate anything if its offset is zero. 175 // However, relocs expect to find either an ADD or a load/store 176 // insn after an ADRP. add() always generates an ADD insn, even 177 // for add(Rn, Rn, 0). 178 add(rdispatch, rdispatch, offset); 179 } 180 181 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 182 int bcp_offset, 183 size_t index_size) { 184 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 185 if (index_size == sizeof(u2)) { 186 load_unsigned_short(index, Address(rbcp, bcp_offset)); 187 } else if (index_size == sizeof(u4)) { 188 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 189 ldrw(index, Address(rbcp, bcp_offset)); 190 // Check if the secondary index definition is still ~x, otherwise 191 // we have to change the following assembler code to calculate the 192 // plain index. 193 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 194 eonw(index, index, zr); // convert to plain index 195 } else if (index_size == sizeof(u1)) { 196 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 197 } else { 198 ShouldNotReachHere(); 199 } 200 } 201 202 // Return 203 // Rindex: index into constant pool 204 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 205 // 206 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 207 // the true address of the cache entry. 208 // 209 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 210 Register index, 211 int bcp_offset, 212 size_t index_size) { 213 assert_different_registers(cache, index); 214 assert_different_registers(cache, rcpool); 215 get_cache_index_at_bcp(index, bcp_offset, index_size); 216 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 217 // convert from field index to ConstantPoolCacheEntry 218 // aarch64 already has the cache in rcpool so there is no need to 219 // install it in cache. instead we pre-add the indexed offset to 220 // rcpool and return it in cache. All clients of this method need to 221 // be modified accordingly. 222 add(cache, rcpool, index, Assembler::LSL, 5); 223 } 224 225 226 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 227 Register index, 228 Register bytecode, 229 int byte_no, 230 int bcp_offset, 231 size_t index_size) { 232 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 233 // We use a 32-bit load here since the layout of 64-bit words on 234 // little-endian machines allow us that. 235 // n.b. unlike x86 cache already includes the index offset 236 lea(bytecode, Address(cache, 237 ConstantPoolCache::base_offset() 238 + ConstantPoolCacheEntry::indices_offset())); 239 ldarw(bytecode, bytecode); 240 const int shift_count = (1 + byte_no) * BitsPerByte; 241 ubfx(bytecode, bytecode, shift_count, BitsPerByte); 242 } 243 244 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 245 Register tmp, 246 int bcp_offset, 247 size_t index_size) { 248 assert(cache != tmp, "must use different register"); 249 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 250 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 251 // convert from field index to ConstantPoolCacheEntry index 252 // and from word offset to byte offset 253 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 254 ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize)); 255 // skip past the header 256 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 257 add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord); // construct pointer to cache entry 258 } 259 260 void InterpreterMacroAssembler::get_method_counters(Register method, 261 Register mcs, Label& skip) { 262 Label has_counters; 263 ldr(mcs, Address(method, Method::method_counters_offset())); 264 cbnz(mcs, has_counters); 265 call_VM(noreg, CAST_FROM_FN_PTR(address, 266 InterpreterRuntime::build_method_counters), method); 267 ldr(mcs, Address(method, Method::method_counters_offset())); 268 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 269 bind(has_counters); 270 } 271 272 // Load object from cpool->resolved_references(index) 273 void InterpreterMacroAssembler::load_resolved_reference_at_index( 274 Register result, Register index, Register tmp) { 275 assert_different_registers(result, index); 276 277 get_constant_pool(result); 278 // load pointer for resolved_references[] objArray 279 ldr(result, Address(result, ConstantPool::cache_offset_in_bytes())); 280 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 281 resolve_oop_handle(result, tmp, rscratch2); 282 // Add in the index 283 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 284 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 285 } 286 287 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 288 Register cpool, Register index, Register klass, Register temp) { 289 add(temp, cpool, index, LSL, LogBytesPerWord); 290 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 291 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses 292 add(klass, klass, temp, LSL, LogBytesPerWord); 293 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 294 } 295 296 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 297 Register method, 298 Register cache) { 299 const int method_offset = in_bytes( 300 ConstantPoolCache::base_offset() + 301 ((byte_no == TemplateTable::f2_byte) 302 ? ConstantPoolCacheEntry::f2_offset() 303 : ConstantPoolCacheEntry::f1_offset())); 304 305 ldr(method, Address(cache, method_offset)); // get f1 Method* 306 } 307 308 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 309 // subtype of super_klass. 310 // 311 // Args: 312 // r0: superklass 313 // Rsub_klass: subklass 314 // 315 // Kills: 316 // r2, r5 317 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 318 Label& ok_is_subtype) { 319 assert(Rsub_klass != r0, "r0 holds superklass"); 320 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 321 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 322 323 // Profile the not-null value's klass. 324 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 325 326 // Do the check. 327 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 328 329 // Profile the failure of the check. 330 profile_typecheck_failed(r2); // blows r2 331 } 332 333 // Java Expression Stack 334 335 void InterpreterMacroAssembler::pop_ptr(Register r) { 336 ldr(r, post(esp, wordSize)); 337 } 338 339 void InterpreterMacroAssembler::pop_i(Register r) { 340 ldrw(r, post(esp, wordSize)); 341 } 342 343 void InterpreterMacroAssembler::pop_l(Register r) { 344 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 345 } 346 347 void InterpreterMacroAssembler::push_ptr(Register r) { 348 str(r, pre(esp, -wordSize)); 349 } 350 351 void InterpreterMacroAssembler::push_i(Register r) { 352 str(r, pre(esp, -wordSize)); 353 } 354 355 void InterpreterMacroAssembler::push_l(Register r) { 356 str(zr, pre(esp, -wordSize)); 357 str(r, pre(esp, - wordSize)); 358 } 359 360 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 361 ldrs(r, post(esp, wordSize)); 362 } 363 364 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 365 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 366 } 367 368 void InterpreterMacroAssembler::push_f(FloatRegister r) { 369 strs(r, pre(esp, -wordSize)); 370 } 371 372 void InterpreterMacroAssembler::push_d(FloatRegister r) { 373 strd(r, pre(esp, 2* -wordSize)); 374 } 375 376 void InterpreterMacroAssembler::pop(TosState state) { 377 switch (state) { 378 case atos: pop_ptr(); break; 379 case btos: 380 case ztos: 381 case ctos: 382 case stos: 383 case itos: pop_i(); break; 384 case ltos: pop_l(); break; 385 case ftos: pop_f(); break; 386 case dtos: pop_d(); break; 387 case vtos: /* nothing to do */ break; 388 default: ShouldNotReachHere(); 389 } 390 interp_verify_oop(r0, state); 391 } 392 393 void InterpreterMacroAssembler::push(TosState state) { 394 interp_verify_oop(r0, state); 395 switch (state) { 396 case atos: push_ptr(); break; 397 case btos: 398 case ztos: 399 case ctos: 400 case stos: 401 case itos: push_i(); break; 402 case ltos: push_l(); break; 403 case ftos: push_f(); break; 404 case dtos: push_d(); break; 405 case vtos: /* nothing to do */ break; 406 default : ShouldNotReachHere(); 407 } 408 } 409 410 // Helpers for swap and dup 411 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 412 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 413 } 414 415 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 416 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 417 } 418 419 void InterpreterMacroAssembler::load_float(Address src) { 420 ldrs(v0, src); 421 } 422 423 void InterpreterMacroAssembler::load_double(Address src) { 424 ldrd(v0, src); 425 } 426 427 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 428 // set sender sp 429 mov(r19_sender_sp, sp); 430 // record last_sp 431 str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 432 } 433 434 // Jump to from_interpreted entry of a call unless single stepping is possible 435 // in this thread in which case we must call the i2i entry 436 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 437 prepare_to_jump_from_interpreted(); 438 439 if (JvmtiExport::can_post_interpreter_events()) { 440 Label run_compiled_code; 441 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 442 // compiled code in threads for which the event is enabled. Check here for 443 // interp_only_mode if these events CAN be enabled. 444 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 445 cbzw(rscratch1, run_compiled_code); 446 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 447 br(rscratch1); 448 bind(run_compiled_code); 449 } 450 451 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 452 br(rscratch1); 453 } 454 455 // The following two routines provide a hook so that an implementation 456 // can schedule the dispatch in two parts. amd64 does not do this. 457 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 458 } 459 460 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 461 dispatch_next(state, step); 462 } 463 464 void InterpreterMacroAssembler::dispatch_base(TosState state, 465 address* table, 466 bool verifyoop, 467 bool generate_poll) { 468 if (VerifyActivationFrameSize) { 469 Unimplemented(); 470 } 471 if (verifyoop) { 472 interp_verify_oop(r0, state); 473 } 474 475 Label safepoint; 476 address* const safepoint_table = Interpreter::safept_table(state); 477 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 478 479 if (needs_thread_local_poll) { 480 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 481 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 482 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 483 } 484 485 if (table == Interpreter::dispatch_table(state)) { 486 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 487 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 488 } else { 489 mov(rscratch2, (address)table); 490 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 491 } 492 br(rscratch2); 493 494 if (needs_thread_local_poll) { 495 bind(safepoint); 496 lea(rscratch2, ExternalAddress((address)safepoint_table)); 497 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 498 br(rscratch2); 499 } 500 } 501 502 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 503 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 504 } 505 506 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 507 dispatch_base(state, Interpreter::normal_table(state)); 508 } 509 510 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 511 dispatch_base(state, Interpreter::normal_table(state), false); 512 } 513 514 515 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 516 // load next bytecode 517 ldrb(rscratch1, Address(pre(rbcp, step))); 518 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 519 } 520 521 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 522 // load current bytecode 523 ldrb(rscratch1, Address(rbcp, 0)); 524 dispatch_base(state, table); 525 } 526 527 // remove activation 528 // 529 // Apply stack watermark barrier. 530 // Unlock the receiver if this is a synchronized method. 531 // Unlock any Java monitors from synchronized blocks. 532 // Remove the activation from the stack. 533 // 534 // If there are locked Java monitors 535 // If throw_monitor_exception 536 // throws IllegalMonitorStateException 537 // Else if install_monitor_exception 538 // installs IllegalMonitorStateException 539 // Else 540 // no error processing 541 void InterpreterMacroAssembler::remove_activation( 542 TosState state, 543 bool throw_monitor_exception, 544 bool install_monitor_exception, 545 bool notify_jvmdi) { 546 // Note: Registers r3 xmm0 may be in use for the 547 // result check if synchronized method 548 Label unlocked, unlock, no_unlock; 549 550 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 551 // that would normally not be safe to use. Such bad returns into unsafe territory of 552 // the stack, will call InterpreterRuntime::at_unwind. 553 Label slow_path; 554 Label fast_path; 555 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 556 br(Assembler::AL, fast_path); 557 bind(slow_path); 558 push(state); 559 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 560 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 561 reset_last_Java_frame(true); 562 pop(state); 563 bind(fast_path); 564 565 // get the value of _do_not_unlock_if_synchronized into r3 566 const Address do_not_unlock_if_synchronized(rthread, 567 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 568 ldrb(r3, do_not_unlock_if_synchronized); 569 strb(zr, do_not_unlock_if_synchronized); // reset the flag 570 571 // get method access flags 572 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 573 ldr(r2, Address(r1, Method::access_flags_offset())); 574 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 575 576 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 577 // is set. 578 cbnz(r3, no_unlock); 579 580 // unlock monitor 581 push(state); // save result 582 583 // BasicObjectLock will be first in list, since this is a 584 // synchronized method. However, need to check that the object has 585 // not been unlocked by an explicit monitorexit bytecode. 586 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 587 wordSize - (int) sizeof(BasicObjectLock)); 588 // We use c_rarg1 so that if we go slow path it will be the correct 589 // register for unlock_object to pass to VM directly 590 lea(c_rarg1, monitor); // address of first monitor 591 592 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 593 cbnz(r0, unlock); 594 595 pop(state); 596 if (throw_monitor_exception) { 597 // Entry already unlocked, need to throw exception 598 call_VM(noreg, CAST_FROM_FN_PTR(address, 599 InterpreterRuntime::throw_illegal_monitor_state_exception)); 600 should_not_reach_here(); 601 } else { 602 // Monitor already unlocked during a stack unroll. If requested, 603 // install an illegal_monitor_state_exception. Continue with 604 // stack unrolling. 605 if (install_monitor_exception) { 606 call_VM(noreg, CAST_FROM_FN_PTR(address, 607 InterpreterRuntime::new_illegal_monitor_state_exception)); 608 } 609 b(unlocked); 610 } 611 612 bind(unlock); 613 unlock_object(c_rarg1); 614 pop(state); 615 616 // Check that for block-structured locking (i.e., that all locked 617 // objects has been unlocked) 618 bind(unlocked); 619 620 // r0: Might contain return value 621 622 // Check that all monitors are unlocked 623 { 624 Label loop, exception, entry, restart; 625 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 626 const Address monitor_block_top( 627 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 628 const Address monitor_block_bot( 629 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 630 631 bind(restart); 632 // We use c_rarg1 so that if we go slow path it will be the correct 633 // register for unlock_object to pass to VM directly 634 ldr(c_rarg1, monitor_block_top); // points to current entry, starting 635 // with top-most entry 636 lea(r19, monitor_block_bot); // points to word before bottom of 637 // monitor block 638 b(entry); 639 640 // Entry already locked, need to throw exception 641 bind(exception); 642 643 if (throw_monitor_exception) { 644 // Throw exception 645 MacroAssembler::call_VM(noreg, 646 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 647 throw_illegal_monitor_state_exception)); 648 should_not_reach_here(); 649 } else { 650 // Stack unrolling. Unlock object and install illegal_monitor_exception. 651 // Unlock does not block, so don't have to worry about the frame. 652 // We don't have to preserve c_rarg1 since we are going to throw an exception. 653 654 push(state); 655 unlock_object(c_rarg1); 656 pop(state); 657 658 if (install_monitor_exception) { 659 call_VM(noreg, CAST_FROM_FN_PTR(address, 660 InterpreterRuntime:: 661 new_illegal_monitor_state_exception)); 662 } 663 664 b(restart); 665 } 666 667 bind(loop); 668 // check if current entry is used 669 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 670 cbnz(rscratch1, exception); 671 672 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 673 bind(entry); 674 cmp(c_rarg1, r19); // check if bottom reached 675 br(Assembler::NE, loop); // if not at bottom then check this entry 676 } 677 678 bind(no_unlock); 679 680 // jvmti support 681 if (notify_jvmdi) { 682 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 683 } else { 684 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 685 } 686 687 // remove activation 688 // get sender esp 689 ldr(rscratch2, 690 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 691 if (StackReservedPages > 0) { 692 // testing if reserved zone needs to be re-enabled 693 Label no_reserved_zone_enabling; 694 695 // look for an overflow into the stack reserved zone, i.e. 696 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 697 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 698 cmp(rscratch2, rscratch1); 699 br(Assembler::LS, no_reserved_zone_enabling); 700 701 call_VM_leaf( 702 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 703 call_VM(noreg, CAST_FROM_FN_PTR(address, 704 InterpreterRuntime::throw_delayed_StackOverflowError)); 705 should_not_reach_here(); 706 707 bind(no_reserved_zone_enabling); 708 } 709 710 // restore sender esp 711 mov(esp, rscratch2); 712 // remove frame anchor 713 leave(); 714 // If we're returning to interpreted code we will shortly be 715 // adjusting SP to allow some space for ESP. If we're returning to 716 // compiled code the saved sender SP was saved in sender_sp, so this 717 // restores it. 718 andr(sp, esp, -16); 719 } 720 721 // Lock object 722 // 723 // Args: 724 // c_rarg1: BasicObjectLock to be used for locking 725 // 726 // Kills: 727 // r0 728 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) 729 // rscratch1, rscratch2 (scratch regs) 730 void InterpreterMacroAssembler::lock_object(Register lock_reg) 731 { 732 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 733 if (UseHeavyMonitors) { 734 call_VM(noreg, 735 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 736 lock_reg); 737 } else { 738 Label count, done; 739 740 const Register swap_reg = r0; 741 const Register tmp = c_rarg2; 742 const Register obj_reg = c_rarg3; // Will contain the oop 743 744 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 745 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 746 const int mark_offset = lock_offset + 747 BasicLock::displaced_header_offset_in_bytes(); 748 749 Label slow_case; 750 751 // Load object pointer into obj_reg %c_rarg3 752 ldr(obj_reg, Address(lock_reg, obj_offset)); 753 754 if (DiagnoseSyncOnValueBasedClasses != 0) { 755 load_klass(tmp, obj_reg); 756 ldrw(tmp, Address(tmp, Klass::access_flags_offset())); 757 tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 758 br(Assembler::NE, slow_case); 759 } 760 761 // Load (object->mark() | 1) into swap_reg 762 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 763 orr(swap_reg, rscratch1, 1); 764 765 // Save (object->mark() | 1) into BasicLock's displaced header 766 str(swap_reg, Address(lock_reg, mark_offset)); 767 768 assert(lock_offset == 0, 769 "displached header must be first word in BasicObjectLock"); 770 771 Label fail; 772 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/NULL); 773 774 // Fast check for recursive lock. 775 // 776 // Can apply the optimization only if this is a stack lock 777 // allocated in this thread. For efficiency, we can focus on 778 // recently allocated stack locks (instead of reading the stack 779 // base and checking whether 'mark' points inside the current 780 // thread stack): 781 // 1) (mark & 7) == 0, and 782 // 2) sp <= mark < mark + os::pagesize() 783 // 784 // Warning: sp + os::pagesize can overflow the stack base. We must 785 // neither apply the optimization for an inflated lock allocated 786 // just above the thread stack (this is why condition 1 matters) 787 // nor apply the optimization if the stack lock is inside the stack 788 // of another thread. The latter is avoided even in case of overflow 789 // because we have guard pages at the end of all stacks. Hence, if 790 // we go over the stack base and hit the stack of another thread, 791 // this should not be in a writeable area that could contain a 792 // stack lock allocated by that thread. As a consequence, a stack 793 // lock less than page size away from sp is guaranteed to be 794 // owned by the current thread. 795 // 796 // These 3 tests can be done by evaluating the following 797 // expression: ((mark - sp) & (7 - os::vm_page_size())), 798 // assuming both stack pointer and pagesize have their 799 // least significant 3 bits clear. 800 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 801 // NOTE2: aarch64 does not like to subtract sp from rn so take a 802 // copy 803 mov(rscratch1, sp); 804 sub(swap_reg, swap_reg, rscratch1); 805 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 806 807 // Save the test result, for recursive case, the result is zero 808 str(swap_reg, Address(lock_reg, mark_offset)); 809 br(Assembler::EQ, count); 810 811 bind(slow_case); 812 813 // Call the runtime routine for slow case 814 call_VM(noreg, 815 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 816 lock_reg); 817 b(done); 818 819 bind(count); 820 increment(Address(rthread, JavaThread::held_monitor_count_offset())); 821 822 bind(done); 823 } 824 } 825 826 827 // Unlocks an object. Used in monitorexit bytecode and 828 // remove_activation. Throws an IllegalMonitorException if object is 829 // not locked by current thread. 830 // 831 // Args: 832 // c_rarg1: BasicObjectLock for lock 833 // 834 // Kills: 835 // r0 836 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 837 // rscratch1, rscratch2 (scratch regs) 838 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 839 { 840 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 841 842 if (UseHeavyMonitors) { 843 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 844 } else { 845 Label count, done; 846 847 const Register swap_reg = r0; 848 const Register header_reg = c_rarg2; // Will contain the old oopMark 849 const Register obj_reg = c_rarg3; // Will contain the oop 850 851 save_bcp(); // Save in case of exception 852 853 // Convert from BasicObjectLock structure to object and BasicLock 854 // structure Store the BasicLock address into %r0 855 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 856 857 // Load oop into obj_reg(%c_rarg3) 858 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 859 860 // Free entry 861 str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 862 863 // Load the old header from BasicLock structure 864 ldr(header_reg, Address(swap_reg, 865 BasicLock::displaced_header_offset_in_bytes())); 866 867 // Test for recursion 868 cbz(header_reg, count); 869 870 // Atomic swap back the old header 871 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, /*fallthrough*/NULL); 872 873 // Call the runtime routine for slow case. 874 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj 875 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 876 b(done); 877 878 bind(count); 879 decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 880 881 bind(done); 882 restore_bcp(); 883 } 884 } 885 886 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 887 Label& zero_continue) { 888 assert(ProfileInterpreter, "must be profiling interpreter"); 889 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 890 cbz(mdp, zero_continue); 891 } 892 893 // Set the method data pointer for the current bcp. 894 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 895 assert(ProfileInterpreter, "must be profiling interpreter"); 896 Label set_mdp; 897 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 898 899 // Test MDO to avoid the call if it is NULL. 900 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 901 cbz(r0, set_mdp); 902 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 903 // r0: mdi 904 // mdo is guaranteed to be non-zero here, we checked for it before the call. 905 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 906 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 907 add(r0, r1, r0); 908 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 909 bind(set_mdp); 910 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 911 } 912 913 void InterpreterMacroAssembler::verify_method_data_pointer() { 914 assert(ProfileInterpreter, "must be profiling interpreter"); 915 #ifdef ASSERT 916 Label verify_continue; 917 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 918 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 919 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 920 get_method(r1); 921 922 // If the mdp is valid, it will point to a DataLayout header which is 923 // consistent with the bcp. The converse is highly probable also. 924 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 925 ldr(rscratch1, Address(r1, Method::const_offset())); 926 add(r2, r2, rscratch1, Assembler::LSL); 927 lea(r2, Address(r2, ConstMethod::codes_offset())); 928 cmp(r2, rbcp); 929 br(Assembler::EQ, verify_continue); 930 // r1: method 931 // rbcp: bcp // rbcp == 22 932 // r3: mdp 933 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 934 r1, rbcp, r3); 935 bind(verify_continue); 936 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 937 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 938 #endif // ASSERT 939 } 940 941 942 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 943 int constant, 944 Register value) { 945 assert(ProfileInterpreter, "must be profiling interpreter"); 946 Address data(mdp_in, constant); 947 str(value, data); 948 } 949 950 951 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 952 int constant, 953 bool decrement) { 954 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 955 } 956 957 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 958 Register reg, 959 int constant, 960 bool decrement) { 961 assert(ProfileInterpreter, "must be profiling interpreter"); 962 // %%% this does 64bit counters at best it is wasting space 963 // at worst it is a rare bug when counters overflow 964 965 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 966 967 Address addr1(mdp_in, constant); 968 Address addr2(rscratch2, reg, Address::lsl(0)); 969 Address &addr = addr1; 970 if (reg != noreg) { 971 lea(rscratch2, addr1); 972 addr = addr2; 973 } 974 975 if (decrement) { 976 // Decrement the register. Set condition codes. 977 // Intel does this 978 // addptr(data, (int32_t) -DataLayout::counter_increment); 979 // If the decrement causes the counter to overflow, stay negative 980 // Label L; 981 // jcc(Assembler::negative, L); 982 // addptr(data, (int32_t) DataLayout::counter_increment); 983 // so we do this 984 ldr(rscratch1, addr); 985 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 986 Label L; 987 br(Assembler::LO, L); // skip store if counter underflow 988 str(rscratch1, addr); 989 bind(L); 990 } else { 991 assert(DataLayout::counter_increment == 1, 992 "flow-free idiom only works with 1"); 993 // Intel does this 994 // Increment the register. Set carry flag. 995 // addptr(data, DataLayout::counter_increment); 996 // If the increment causes the counter to overflow, pull back by 1. 997 // sbbptr(data, (int32_t)0); 998 // so we do this 999 ldr(rscratch1, addr); 1000 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1001 Label L; 1002 br(Assembler::CS, L); // skip store if counter overflow 1003 str(rscratch1, addr); 1004 bind(L); 1005 } 1006 } 1007 1008 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1009 int flag_byte_constant) { 1010 assert(ProfileInterpreter, "must be profiling interpreter"); 1011 int flags_offset = in_bytes(DataLayout::flags_offset()); 1012 // Set the flag 1013 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1014 orr(rscratch1, rscratch1, flag_byte_constant); 1015 strb(rscratch1, Address(mdp_in, flags_offset)); 1016 } 1017 1018 1019 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1020 int offset, 1021 Register value, 1022 Register test_value_out, 1023 Label& not_equal_continue) { 1024 assert(ProfileInterpreter, "must be profiling interpreter"); 1025 if (test_value_out == noreg) { 1026 ldr(rscratch1, Address(mdp_in, offset)); 1027 cmp(value, rscratch1); 1028 } else { 1029 // Put the test value into a register, so caller can use it: 1030 ldr(test_value_out, Address(mdp_in, offset)); 1031 cmp(value, test_value_out); 1032 } 1033 br(Assembler::NE, not_equal_continue); 1034 } 1035 1036 1037 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1038 int offset_of_disp) { 1039 assert(ProfileInterpreter, "must be profiling interpreter"); 1040 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1041 add(mdp_in, mdp_in, rscratch1, LSL); 1042 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1043 } 1044 1045 1046 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1047 Register reg, 1048 int offset_of_disp) { 1049 assert(ProfileInterpreter, "must be profiling interpreter"); 1050 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1051 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1052 add(mdp_in, mdp_in, rscratch1, LSL); 1053 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1054 } 1055 1056 1057 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1058 int constant) { 1059 assert(ProfileInterpreter, "must be profiling interpreter"); 1060 add(mdp_in, mdp_in, (unsigned)constant); 1061 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1062 } 1063 1064 1065 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1066 assert(ProfileInterpreter, "must be profiling interpreter"); 1067 // save/restore across call_VM 1068 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1069 call_VM(noreg, 1070 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1071 return_bci); 1072 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1073 } 1074 1075 1076 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1077 Register bumped_count) { 1078 if (ProfileInterpreter) { 1079 Label profile_continue; 1080 1081 // If no method data exists, go to profile_continue. 1082 // Otherwise, assign to mdp 1083 test_method_data_pointer(mdp, profile_continue); 1084 1085 // We are taking a branch. Increment the taken count. 1086 // We inline increment_mdp_data_at to return bumped_count in a register 1087 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1088 Address data(mdp, in_bytes(JumpData::taken_offset())); 1089 ldr(bumped_count, data); 1090 assert(DataLayout::counter_increment == 1, 1091 "flow-free idiom only works with 1"); 1092 // Intel does this to catch overflow 1093 // addptr(bumped_count, DataLayout::counter_increment); 1094 // sbbptr(bumped_count, 0); 1095 // so we do this 1096 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1097 Label L; 1098 br(Assembler::CS, L); // skip store if counter overflow 1099 str(bumped_count, data); 1100 bind(L); 1101 // The method data pointer needs to be updated to reflect the new target. 1102 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1103 bind(profile_continue); 1104 } 1105 } 1106 1107 1108 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1109 if (ProfileInterpreter) { 1110 Label profile_continue; 1111 1112 // If no method data exists, go to profile_continue. 1113 test_method_data_pointer(mdp, profile_continue); 1114 1115 // We are taking a branch. Increment the not taken count. 1116 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1117 1118 // The method data pointer needs to be updated to correspond to 1119 // the next bytecode 1120 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1121 bind(profile_continue); 1122 } 1123 } 1124 1125 1126 void InterpreterMacroAssembler::profile_call(Register mdp) { 1127 if (ProfileInterpreter) { 1128 Label profile_continue; 1129 1130 // If no method data exists, go to profile_continue. 1131 test_method_data_pointer(mdp, profile_continue); 1132 1133 // We are making a call. Increment the count. 1134 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1135 1136 // The method data pointer needs to be updated to reflect the new target. 1137 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1138 bind(profile_continue); 1139 } 1140 } 1141 1142 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1143 if (ProfileInterpreter) { 1144 Label profile_continue; 1145 1146 // If no method data exists, go to profile_continue. 1147 test_method_data_pointer(mdp, profile_continue); 1148 1149 // We are making a call. Increment the count. 1150 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1151 1152 // The method data pointer needs to be updated to reflect the new target. 1153 update_mdp_by_constant(mdp, 1154 in_bytes(VirtualCallData:: 1155 virtual_call_data_size())); 1156 bind(profile_continue); 1157 } 1158 } 1159 1160 1161 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1162 Register mdp, 1163 Register reg2, 1164 bool receiver_can_be_null) { 1165 if (ProfileInterpreter) { 1166 Label profile_continue; 1167 1168 // If no method data exists, go to profile_continue. 1169 test_method_data_pointer(mdp, profile_continue); 1170 1171 Label skip_receiver_profile; 1172 if (receiver_can_be_null) { 1173 Label not_null; 1174 // We are making a call. Increment the count for null receiver. 1175 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1176 b(skip_receiver_profile); 1177 bind(not_null); 1178 } 1179 1180 // Record the receiver type. 1181 record_klass_in_profile(receiver, mdp, reg2, true); 1182 bind(skip_receiver_profile); 1183 1184 // The method data pointer needs to be updated to reflect the new target. 1185 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1186 bind(profile_continue); 1187 } 1188 } 1189 1190 // This routine creates a state machine for updating the multi-row 1191 // type profile at a virtual call site (or other type-sensitive bytecode). 1192 // The machine visits each row (of receiver/count) until the receiver type 1193 // is found, or until it runs out of rows. At the same time, it remembers 1194 // the location of the first empty row. (An empty row records null for its 1195 // receiver, and can be allocated for a newly-observed receiver type.) 1196 // Because there are two degrees of freedom in the state, a simple linear 1197 // search will not work; it must be a decision tree. Hence this helper 1198 // function is recursive, to generate the required tree structured code. 1199 // It's the interpreter, so we are trading off code space for speed. 1200 // See below for example code. 1201 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1202 Register receiver, Register mdp, 1203 Register reg2, int start_row, 1204 Label& done, bool is_virtual_call) { 1205 if (TypeProfileWidth == 0) { 1206 if (is_virtual_call) { 1207 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1208 } 1209 #if INCLUDE_JVMCI 1210 else if (EnableJVMCI) { 1211 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1212 } 1213 #endif // INCLUDE_JVMCI 1214 } else { 1215 int non_profiled_offset = -1; 1216 if (is_virtual_call) { 1217 non_profiled_offset = in_bytes(CounterData::count_offset()); 1218 } 1219 #if INCLUDE_JVMCI 1220 else if (EnableJVMCI) { 1221 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1222 } 1223 #endif // INCLUDE_JVMCI 1224 1225 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1226 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1227 } 1228 } 1229 1230 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1231 Register reg2, int start_row, Label& done, int total_rows, 1232 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1233 int non_profiled_offset) { 1234 int last_row = total_rows - 1; 1235 assert(start_row <= last_row, "must be work left to do"); 1236 // Test this row for both the item and for null. 1237 // Take any of three different outcomes: 1238 // 1. found item => increment count and goto done 1239 // 2. found null => keep looking for case 1, maybe allocate this cell 1240 // 3. found something else => keep looking for cases 1 and 2 1241 // Case 3 is handled by a recursive call. 1242 for (int row = start_row; row <= last_row; row++) { 1243 Label next_test; 1244 bool test_for_null_also = (row == start_row); 1245 1246 // See if the item is item[n]. 1247 int item_offset = in_bytes(item_offset_fn(row)); 1248 test_mdp_data_at(mdp, item_offset, item, 1249 (test_for_null_also ? reg2 : noreg), 1250 next_test); 1251 // (Reg2 now contains the item from the CallData.) 1252 1253 // The item is item[n]. Increment count[n]. 1254 int count_offset = in_bytes(item_count_offset_fn(row)); 1255 increment_mdp_data_at(mdp, count_offset); 1256 b(done); 1257 bind(next_test); 1258 1259 if (test_for_null_also) { 1260 Label found_null; 1261 // Failed the equality check on item[n]... Test for null. 1262 if (start_row == last_row) { 1263 // The only thing left to do is handle the null case. 1264 if (non_profiled_offset >= 0) { 1265 cbz(reg2, found_null); 1266 // Item did not match any saved item and there is no empty row for it. 1267 // Increment total counter to indicate polymorphic case. 1268 increment_mdp_data_at(mdp, non_profiled_offset); 1269 b(done); 1270 bind(found_null); 1271 } else { 1272 cbnz(reg2, done); 1273 } 1274 break; 1275 } 1276 // Since null is rare, make it be the branch-taken case. 1277 cbz(reg2, found_null); 1278 1279 // Put all the "Case 3" tests here. 1280 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1281 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1282 1283 // Found a null. Keep searching for a matching item, 1284 // but remember that this is an empty (unused) slot. 1285 bind(found_null); 1286 } 1287 } 1288 1289 // In the fall-through case, we found no matching item, but we 1290 // observed the item[start_row] is NULL. 1291 1292 // Fill in the item field and increment the count. 1293 int item_offset = in_bytes(item_offset_fn(start_row)); 1294 set_mdp_data_at(mdp, item_offset, item); 1295 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1296 mov(reg2, DataLayout::counter_increment); 1297 set_mdp_data_at(mdp, count_offset, reg2); 1298 if (start_row > 0) { 1299 b(done); 1300 } 1301 } 1302 1303 // Example state machine code for three profile rows: 1304 // // main copy of decision tree, rooted at row[1] 1305 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1306 // if (row[0].rec != NULL) { 1307 // // inner copy of decision tree, rooted at row[1] 1308 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1309 // if (row[1].rec != NULL) { 1310 // // degenerate decision tree, rooted at row[2] 1311 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1312 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow 1313 // row[2].init(rec); goto done; 1314 // } else { 1315 // // remember row[1] is empty 1316 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1317 // row[1].init(rec); goto done; 1318 // } 1319 // } else { 1320 // // remember row[0] is empty 1321 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1322 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1323 // row[0].init(rec); goto done; 1324 // } 1325 // done: 1326 1327 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1328 Register mdp, Register reg2, 1329 bool is_virtual_call) { 1330 assert(ProfileInterpreter, "must be profiling"); 1331 Label done; 1332 1333 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1334 1335 bind (done); 1336 } 1337 1338 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1339 Register mdp) { 1340 if (ProfileInterpreter) { 1341 Label profile_continue; 1342 uint row; 1343 1344 // If no method data exists, go to profile_continue. 1345 test_method_data_pointer(mdp, profile_continue); 1346 1347 // Update the total ret count. 1348 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1349 1350 for (row = 0; row < RetData::row_limit(); row++) { 1351 Label next_test; 1352 1353 // See if return_bci is equal to bci[n]: 1354 test_mdp_data_at(mdp, 1355 in_bytes(RetData::bci_offset(row)), 1356 return_bci, noreg, 1357 next_test); 1358 1359 // return_bci is equal to bci[n]. Increment the count. 1360 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1361 1362 // The method data pointer needs to be updated to reflect the new target. 1363 update_mdp_by_offset(mdp, 1364 in_bytes(RetData::bci_displacement_offset(row))); 1365 b(profile_continue); 1366 bind(next_test); 1367 } 1368 1369 update_mdp_for_ret(return_bci); 1370 1371 bind(profile_continue); 1372 } 1373 } 1374 1375 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1376 if (ProfileInterpreter) { 1377 Label profile_continue; 1378 1379 // If no method data exists, go to profile_continue. 1380 test_method_data_pointer(mdp, profile_continue); 1381 1382 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1383 1384 // The method data pointer needs to be updated. 1385 int mdp_delta = in_bytes(BitData::bit_data_size()); 1386 if (TypeProfileCasts) { 1387 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1388 } 1389 update_mdp_by_constant(mdp, mdp_delta); 1390 1391 bind(profile_continue); 1392 } 1393 } 1394 1395 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1396 if (ProfileInterpreter && TypeProfileCasts) { 1397 Label profile_continue; 1398 1399 // If no method data exists, go to profile_continue. 1400 test_method_data_pointer(mdp, profile_continue); 1401 1402 int count_offset = in_bytes(CounterData::count_offset()); 1403 // Back up the address, since we have already bumped the mdp. 1404 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1405 1406 // *Decrement* the counter. We expect to see zero or small negatives. 1407 increment_mdp_data_at(mdp, count_offset, true); 1408 1409 bind (profile_continue); 1410 } 1411 } 1412 1413 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1414 if (ProfileInterpreter) { 1415 Label profile_continue; 1416 1417 // If no method data exists, go to profile_continue. 1418 test_method_data_pointer(mdp, profile_continue); 1419 1420 // The method data pointer needs to be updated. 1421 int mdp_delta = in_bytes(BitData::bit_data_size()); 1422 if (TypeProfileCasts) { 1423 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1424 1425 // Record the object type. 1426 record_klass_in_profile(klass, mdp, reg2, false); 1427 } 1428 update_mdp_by_constant(mdp, mdp_delta); 1429 1430 bind(profile_continue); 1431 } 1432 } 1433 1434 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1435 if (ProfileInterpreter) { 1436 Label profile_continue; 1437 1438 // If no method data exists, go to profile_continue. 1439 test_method_data_pointer(mdp, profile_continue); 1440 1441 // Update the default case count 1442 increment_mdp_data_at(mdp, 1443 in_bytes(MultiBranchData::default_count_offset())); 1444 1445 // The method data pointer needs to be updated. 1446 update_mdp_by_offset(mdp, 1447 in_bytes(MultiBranchData:: 1448 default_displacement_offset())); 1449 1450 bind(profile_continue); 1451 } 1452 } 1453 1454 void InterpreterMacroAssembler::profile_switch_case(Register index, 1455 Register mdp, 1456 Register reg2) { 1457 if (ProfileInterpreter) { 1458 Label profile_continue; 1459 1460 // If no method data exists, go to profile_continue. 1461 test_method_data_pointer(mdp, profile_continue); 1462 1463 // Build the base (index * per_case_size_in_bytes()) + 1464 // case_array_offset_in_bytes() 1465 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1466 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1467 Assembler::maddw(index, index, reg2, rscratch1); 1468 1469 // Update the case count 1470 increment_mdp_data_at(mdp, 1471 index, 1472 in_bytes(MultiBranchData::relative_count_offset())); 1473 1474 // The method data pointer needs to be updated. 1475 update_mdp_by_offset(mdp, 1476 index, 1477 in_bytes(MultiBranchData:: 1478 relative_displacement_offset())); 1479 1480 bind(profile_continue); 1481 } 1482 } 1483 1484 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1485 if (state == atos) { 1486 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1487 } 1488 } 1489 1490 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1491 1492 1493 void InterpreterMacroAssembler::notify_method_entry() { 1494 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1495 // track stack depth. If it is possible to enter interp_only_mode we add 1496 // the code to check if the event should be sent. 1497 if (JvmtiExport::can_post_interpreter_events()) { 1498 Label L; 1499 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1500 cbzw(r3, L); 1501 call_VM(noreg, CAST_FROM_FN_PTR(address, 1502 InterpreterRuntime::post_method_entry)); 1503 bind(L); 1504 } 1505 1506 { 1507 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1508 get_method(c_rarg1); 1509 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1510 rthread, c_rarg1); 1511 } 1512 1513 // RedefineClasses() tracing support for obsolete method entry 1514 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1515 get_method(c_rarg1); 1516 call_VM_leaf( 1517 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1518 rthread, c_rarg1); 1519 } 1520 1521 } 1522 1523 1524 void InterpreterMacroAssembler::notify_method_exit( 1525 TosState state, NotifyMethodExitMode mode) { 1526 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1527 // track stack depth. If it is possible to enter interp_only_mode we add 1528 // the code to check if the event should be sent. 1529 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1530 Label L; 1531 // Note: frame::interpreter_frame_result has a dependency on how the 1532 // method result is saved across the call to post_method_exit. If this 1533 // is changed then the interpreter_frame_result implementation will 1534 // need to be updated too. 1535 1536 // template interpreter will leave the result on the top of the stack. 1537 push(state); 1538 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1539 cbz(r3, L); 1540 call_VM(noreg, 1541 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1542 bind(L); 1543 pop(state); 1544 } 1545 1546 { 1547 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1548 push(state); 1549 get_method(c_rarg1); 1550 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1551 rthread, c_rarg1); 1552 pop(state); 1553 } 1554 } 1555 1556 1557 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1558 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1559 int increment, Address mask, 1560 Register scratch, Register scratch2, 1561 bool preloaded, Condition cond, 1562 Label* where) { 1563 if (!preloaded) { 1564 ldrw(scratch, counter_addr); 1565 } 1566 add(scratch, scratch, increment); 1567 strw(scratch, counter_addr); 1568 ldrw(scratch2, mask); 1569 ands(scratch, scratch, scratch2); 1570 br(cond, *where); 1571 } 1572 1573 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1574 int number_of_arguments) { 1575 // interpreter specific 1576 // 1577 // Note: No need to save/restore rbcp & rlocals pointer since these 1578 // are callee saved registers and no blocking/ GC can happen 1579 // in leaf calls. 1580 #ifdef ASSERT 1581 { 1582 Label L; 1583 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1584 cbz(rscratch1, L); 1585 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1586 " last_sp != NULL"); 1587 bind(L); 1588 } 1589 #endif /* ASSERT */ 1590 // super call 1591 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1592 } 1593 1594 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1595 Register java_thread, 1596 Register last_java_sp, 1597 address entry_point, 1598 int number_of_arguments, 1599 bool check_exceptions) { 1600 // interpreter specific 1601 // 1602 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1603 // really make a difference for these runtime calls, since they are 1604 // slow anyway. Btw., bcp must be saved/restored since it may change 1605 // due to GC. 1606 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1607 save_bcp(); 1608 #ifdef ASSERT 1609 { 1610 Label L; 1611 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1612 cbz(rscratch1, L); 1613 stop("InterpreterMacroAssembler::call_VM_base:" 1614 " last_sp != NULL"); 1615 bind(L); 1616 } 1617 #endif /* ASSERT */ 1618 // super call 1619 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1620 entry_point, number_of_arguments, 1621 check_exceptions); 1622 // interpreter specific 1623 restore_bcp(); 1624 restore_locals(); 1625 } 1626 1627 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1628 assert_different_registers(obj, rscratch1); 1629 Label update, next, none; 1630 1631 verify_oop(obj); 1632 1633 cbnz(obj, update); 1634 orptr(mdo_addr, TypeEntries::null_seen); 1635 b(next); 1636 1637 bind(update); 1638 load_klass(obj, obj); 1639 1640 ldr(rscratch1, mdo_addr); 1641 eor(obj, obj, rscratch1); 1642 tst(obj, TypeEntries::type_klass_mask); 1643 br(Assembler::EQ, next); // klass seen before, nothing to 1644 // do. The unknown bit may have been 1645 // set already but no need to check. 1646 1647 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1648 // already unknown. Nothing to do anymore. 1649 1650 ldr(rscratch1, mdo_addr); 1651 cbz(rscratch1, none); 1652 cmp(rscratch1, (u1)TypeEntries::null_seen); 1653 br(Assembler::EQ, none); 1654 // There is a chance that the checks above (re-reading profiling 1655 // data from memory) fail if another thread has just set the 1656 // profiling to this obj's klass 1657 ldr(rscratch1, mdo_addr); 1658 eor(obj, obj, rscratch1); 1659 tst(obj, TypeEntries::type_klass_mask); 1660 br(Assembler::EQ, next); 1661 1662 // different than before. Cannot keep accurate profile. 1663 orptr(mdo_addr, TypeEntries::type_unknown); 1664 b(next); 1665 1666 bind(none); 1667 // first time here. Set profile type. 1668 str(obj, mdo_addr); 1669 1670 bind(next); 1671 } 1672 1673 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1674 if (!ProfileInterpreter) { 1675 return; 1676 } 1677 1678 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1679 Label profile_continue; 1680 1681 test_method_data_pointer(mdp, profile_continue); 1682 1683 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1684 1685 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1686 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1687 br(Assembler::NE, profile_continue); 1688 1689 if (MethodData::profile_arguments()) { 1690 Label done; 1691 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1692 1693 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1694 if (i > 0 || MethodData::profile_return()) { 1695 // If return value type is profiled we may have no argument to profile 1696 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1697 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1698 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1699 add(rscratch1, mdp, off_to_args); 1700 br(Assembler::LT, done); 1701 } 1702 ldr(tmp, Address(callee, Method::const_offset())); 1703 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1704 // stack offset o (zero based) from the start of the argument 1705 // list, for n arguments translates into offset n - o - 1 from 1706 // the end of the argument list 1707 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1708 sub(tmp, tmp, rscratch1); 1709 sub(tmp, tmp, 1); 1710 Address arg_addr = argument_address(tmp); 1711 ldr(tmp, arg_addr); 1712 1713 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1714 profile_obj_type(tmp, mdo_arg_addr); 1715 1716 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1717 off_to_args += to_add; 1718 } 1719 1720 if (MethodData::profile_return()) { 1721 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1722 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1723 } 1724 1725 add(rscratch1, mdp, off_to_args); 1726 bind(done); 1727 mov(mdp, rscratch1); 1728 1729 if (MethodData::profile_return()) { 1730 // We're right after the type profile for the last 1731 // argument. tmp is the number of cells left in the 1732 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1733 // if there's a return to profile. 1734 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1735 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1736 } 1737 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1738 } else { 1739 assert(MethodData::profile_return(), "either profile call args or call ret"); 1740 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1741 } 1742 1743 // mdp points right after the end of the 1744 // CallTypeData/VirtualCallTypeData, right after the cells for the 1745 // return value type if there's one 1746 1747 bind(profile_continue); 1748 } 1749 } 1750 1751 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1752 assert_different_registers(mdp, ret, tmp, rbcp); 1753 if (ProfileInterpreter && MethodData::profile_return()) { 1754 Label profile_continue, done; 1755 1756 test_method_data_pointer(mdp, profile_continue); 1757 1758 if (MethodData::profile_return_jsr292_only()) { 1759 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1760 1761 // If we don't profile all invoke bytecodes we must make sure 1762 // it's a bytecode we indeed profile. We can't go back to the 1763 // beginning of the ProfileData we intend to update to check its 1764 // type because we're right after it and we don't known its 1765 // length 1766 Label do_profile; 1767 ldrb(rscratch1, Address(rbcp, 0)); 1768 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1769 br(Assembler::EQ, do_profile); 1770 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1771 br(Assembler::EQ, do_profile); 1772 get_method(tmp); 1773 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes())); 1774 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1775 br(Assembler::NE, profile_continue); 1776 1777 bind(do_profile); 1778 } 1779 1780 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1781 mov(tmp, ret); 1782 profile_obj_type(tmp, mdo_ret_addr); 1783 1784 bind(profile_continue); 1785 } 1786 } 1787 1788 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1789 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1790 if (ProfileInterpreter && MethodData::profile_parameters()) { 1791 Label profile_continue, done; 1792 1793 test_method_data_pointer(mdp, profile_continue); 1794 1795 // Load the offset of the area within the MDO used for 1796 // parameters. If it's negative we're not profiling any parameters 1797 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1798 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1799 1800 // Compute a pointer to the area for parameters from the offset 1801 // and move the pointer to the slot for the last 1802 // parameters. Collect profiling from last parameter down. 1803 // mdo start + parameters offset + array length - 1 1804 add(mdp, mdp, tmp1); 1805 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1806 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1807 1808 Label loop; 1809 bind(loop); 1810 1811 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1812 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1813 int per_arg_scale = exact_log2(DataLayout::cell_size); 1814 add(rscratch1, mdp, off_base); 1815 add(rscratch2, mdp, type_base); 1816 1817 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1818 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1819 1820 // load offset on the stack from the slot for this parameter 1821 ldr(tmp2, arg_off); 1822 neg(tmp2, tmp2); 1823 // read the parameter from the local area 1824 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1825 1826 // profile the parameter 1827 profile_obj_type(tmp2, arg_type); 1828 1829 // go to next parameter 1830 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1831 br(Assembler::GE, loop); 1832 1833 bind(profile_continue); 1834 } 1835 }