1 /* 2 * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/thread.inline.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 void InterpreterMacroAssembler::narrow(Register result) { 49 50 // Get method->_constMethod->_result_type 51 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 52 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 53 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 54 55 Label done, notBool, notByte, notChar; 56 57 // common case first 58 cmpw(rscratch1, T_INT); 59 br(Assembler::EQ, done); 60 61 // mask integer result to narrower return type. 62 cmpw(rscratch1, T_BOOLEAN); 63 br(Assembler::NE, notBool); 64 andw(result, result, 0x1); 65 b(done); 66 67 bind(notBool); 68 cmpw(rscratch1, T_BYTE); 69 br(Assembler::NE, notByte); 70 sbfx(result, result, 0, 8); 71 b(done); 72 73 bind(notByte); 74 cmpw(rscratch1, T_CHAR); 75 br(Assembler::NE, notChar); 76 ubfx(result, result, 0, 16); // truncate upper 16 bits 77 b(done); 78 79 bind(notChar); 80 sbfx(result, result, 0, 16); // sign-extend short 81 82 // Nothing to do for T_INT 83 bind(done); 84 } 85 86 void InterpreterMacroAssembler::jump_to_entry(address entry) { 87 assert(entry, "Entry must have been generated by now"); 88 b(entry); 89 } 90 91 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 92 if (JvmtiExport::can_pop_frame()) { 93 Label L; 94 // Initiate popframe handling only if it is not already being 95 // processed. If the flag has the popframe_processing bit set, it 96 // means that this code is called *during* popframe handling - we 97 // don't want to reenter. 98 // This method is only called just after the call into the vm in 99 // call_VM_base, so the arg registers are available. 100 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 101 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 102 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 103 // Call Interpreter::remove_activation_preserving_args_entry() to get the 104 // address of the same-named entrypoint in the generated interpreter code. 105 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 106 br(r0); 107 bind(L); 108 } 109 } 110 111 112 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 113 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 114 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 115 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 116 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 117 switch (state) { 118 case atos: ldr(r0, oop_addr); 119 str(zr, oop_addr); 120 interp_verify_oop(r0, state); break; 121 case ltos: ldr(r0, val_addr); break; 122 case btos: // fall through 123 case ztos: // fall through 124 case ctos: // fall through 125 case stos: // fall through 126 case itos: ldrw(r0, val_addr); break; 127 case ftos: ldrs(v0, val_addr); break; 128 case dtos: ldrd(v0, val_addr); break; 129 case vtos: /* nothing to do */ break; 130 default : ShouldNotReachHere(); 131 } 132 // Clean up tos value in the thread object 133 movw(rscratch1, (int) ilgl); 134 strw(rscratch1, tos_addr); 135 strw(zr, val_addr); 136 } 137 138 139 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 140 if (JvmtiExport::can_force_early_return()) { 141 Label L; 142 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 143 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit; 144 145 // Initiate earlyret handling only if it is not already being processed. 146 // If the flag has the earlyret_processing bit set, it means that this code 147 // is called *during* earlyret handling - we don't want to reenter. 148 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 149 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 150 br(Assembler::NE, L); 151 152 // Call Interpreter::remove_activation_early_entry() to get the address of the 153 // same-named entrypoint in the generated interpreter code. 154 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 155 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 156 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 157 br(r0); 158 bind(L); 159 } 160 } 161 162 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 163 Register reg, 164 int bcp_offset) { 165 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 166 ldrh(reg, Address(rbcp, bcp_offset)); 167 rev16(reg, reg); 168 } 169 170 void InterpreterMacroAssembler::get_dispatch() { 171 uint64_t offset; 172 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 173 lea(rdispatch, Address(rdispatch, offset)); 174 } 175 176 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 177 int bcp_offset, 178 size_t index_size) { 179 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 180 if (index_size == sizeof(u2)) { 181 load_unsigned_short(index, Address(rbcp, bcp_offset)); 182 } else if (index_size == sizeof(u4)) { 183 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 184 ldrw(index, Address(rbcp, bcp_offset)); 185 // Check if the secondary index definition is still ~x, otherwise 186 // we have to change the following assembler code to calculate the 187 // plain index. 188 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 189 eonw(index, index, zr); // convert to plain index 190 } else if (index_size == sizeof(u1)) { 191 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 192 } else { 193 ShouldNotReachHere(); 194 } 195 } 196 197 // Return 198 // Rindex: index into constant pool 199 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 200 // 201 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 202 // the true address of the cache entry. 203 // 204 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 205 Register index, 206 int bcp_offset, 207 size_t index_size) { 208 assert_different_registers(cache, index); 209 assert_different_registers(cache, rcpool); 210 get_cache_index_at_bcp(index, bcp_offset, index_size); 211 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 212 // convert from field index to ConstantPoolCacheEntry 213 // aarch64 already has the cache in rcpool so there is no need to 214 // install it in cache. instead we pre-add the indexed offset to 215 // rcpool and return it in cache. All clients of this method need to 216 // be modified accordingly. 217 add(cache, rcpool, index, Assembler::LSL, 5); 218 } 219 220 221 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 222 Register index, 223 Register bytecode, 224 int byte_no, 225 int bcp_offset, 226 size_t index_size) { 227 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 228 // We use a 32-bit load here since the layout of 64-bit words on 229 // little-endian machines allow us that. 230 // n.b. unlike x86 cache already includes the index offset 231 lea(bytecode, Address(cache, 232 ConstantPoolCache::base_offset() 233 + ConstantPoolCacheEntry::indices_offset())); 234 ldarw(bytecode, bytecode); 235 const int shift_count = (1 + byte_no) * BitsPerByte; 236 ubfx(bytecode, bytecode, shift_count, BitsPerByte); 237 } 238 239 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 240 Register tmp, 241 int bcp_offset, 242 size_t index_size) { 243 assert(cache != tmp, "must use different register"); 244 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 245 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 246 // convert from field index to ConstantPoolCacheEntry index 247 // and from word offset to byte offset 248 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 249 ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize)); 250 // skip past the header 251 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 252 add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord); // construct pointer to cache entry 253 } 254 255 void InterpreterMacroAssembler::get_method_counters(Register method, 256 Register mcs, Label& skip) { 257 Label has_counters; 258 ldr(mcs, Address(method, Method::method_counters_offset())); 259 cbnz(mcs, has_counters); 260 call_VM(noreg, CAST_FROM_FN_PTR(address, 261 InterpreterRuntime::build_method_counters), method); 262 ldr(mcs, Address(method, Method::method_counters_offset())); 263 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 264 bind(has_counters); 265 } 266 267 // Load object from cpool->resolved_references(index) 268 void InterpreterMacroAssembler::load_resolved_reference_at_index( 269 Register result, Register index, Register tmp) { 270 assert_different_registers(result, index); 271 272 get_constant_pool(result); 273 // load pointer for resolved_references[] objArray 274 ldr(result, Address(result, ConstantPool::cache_offset_in_bytes())); 275 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 276 resolve_oop_handle(result, tmp); 277 // Add in the index 278 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 279 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop))); 280 } 281 282 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 283 Register cpool, Register index, Register klass, Register temp) { 284 add(temp, cpool, index, LSL, LogBytesPerWord); 285 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 286 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses 287 add(klass, klass, temp, LSL, LogBytesPerWord); 288 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 289 } 290 291 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 292 Register method, 293 Register cache) { 294 const int method_offset = in_bytes( 295 ConstantPoolCache::base_offset() + 296 ((byte_no == TemplateTable::f2_byte) 297 ? ConstantPoolCacheEntry::f2_offset() 298 : ConstantPoolCacheEntry::f1_offset())); 299 300 ldr(method, Address(cache, method_offset)); // get f1 Method* 301 } 302 303 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 304 // subtype of super_klass. 305 // 306 // Args: 307 // r0: superklass 308 // Rsub_klass: subklass 309 // 310 // Kills: 311 // r2, r5 312 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 313 Label& ok_is_subtype) { 314 assert(Rsub_klass != r0, "r0 holds superklass"); 315 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 316 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 317 318 // Profile the not-null value's klass. 319 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 320 321 // Do the check. 322 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 323 324 // Profile the failure of the check. 325 profile_typecheck_failed(r2); // blows r2 326 } 327 328 // Java Expression Stack 329 330 void InterpreterMacroAssembler::pop_ptr(Register r) { 331 ldr(r, post(esp, wordSize)); 332 } 333 334 void InterpreterMacroAssembler::pop_i(Register r) { 335 ldrw(r, post(esp, wordSize)); 336 } 337 338 void InterpreterMacroAssembler::pop_l(Register r) { 339 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 340 } 341 342 void InterpreterMacroAssembler::push_ptr(Register r) { 343 str(r, pre(esp, -wordSize)); 344 } 345 346 void InterpreterMacroAssembler::push_i(Register r) { 347 str(r, pre(esp, -wordSize)); 348 } 349 350 void InterpreterMacroAssembler::push_l(Register r) { 351 str(zr, pre(esp, -wordSize)); 352 str(r, pre(esp, - wordSize)); 353 } 354 355 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 356 ldrs(r, post(esp, wordSize)); 357 } 358 359 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 360 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 361 } 362 363 void InterpreterMacroAssembler::push_f(FloatRegister r) { 364 strs(r, pre(esp, -wordSize)); 365 } 366 367 void InterpreterMacroAssembler::push_d(FloatRegister r) { 368 strd(r, pre(esp, 2* -wordSize)); 369 } 370 371 void InterpreterMacroAssembler::pop(TosState state) { 372 switch (state) { 373 case atos: pop_ptr(); break; 374 case btos: 375 case ztos: 376 case ctos: 377 case stos: 378 case itos: pop_i(); break; 379 case ltos: pop_l(); break; 380 case ftos: pop_f(); break; 381 case dtos: pop_d(); break; 382 case vtos: /* nothing to do */ break; 383 default: ShouldNotReachHere(); 384 } 385 interp_verify_oop(r0, state); 386 } 387 388 void InterpreterMacroAssembler::push(TosState state) { 389 interp_verify_oop(r0, state); 390 switch (state) { 391 case atos: push_ptr(); break; 392 case btos: 393 case ztos: 394 case ctos: 395 case stos: 396 case itos: push_i(); break; 397 case ltos: push_l(); break; 398 case ftos: push_f(); break; 399 case dtos: push_d(); break; 400 case vtos: /* nothing to do */ break; 401 default : ShouldNotReachHere(); 402 } 403 } 404 405 // Helpers for swap and dup 406 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 407 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 408 } 409 410 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 411 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 412 } 413 414 void InterpreterMacroAssembler::load_float(Address src) { 415 ldrs(v0, src); 416 } 417 418 void InterpreterMacroAssembler::load_double(Address src) { 419 ldrd(v0, src); 420 } 421 422 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 423 // set sender sp 424 mov(r13, sp); 425 // record last_sp 426 str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 427 } 428 429 // Jump to from_interpreted entry of a call unless single stepping is possible 430 // in this thread in which case we must call the i2i entry 431 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 432 prepare_to_jump_from_interpreted(); 433 434 if (JvmtiExport::can_post_interpreter_events()) { 435 Label run_compiled_code; 436 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 437 // compiled code in threads for which the event is enabled. Check here for 438 // interp_only_mode if these events CAN be enabled. 439 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 440 cbzw(rscratch1, run_compiled_code); 441 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 442 br(rscratch1); 443 bind(run_compiled_code); 444 } 445 446 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 447 br(rscratch1); 448 } 449 450 // The following two routines provide a hook so that an implementation 451 // can schedule the dispatch in two parts. amd64 does not do this. 452 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 453 } 454 455 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 456 dispatch_next(state, step); 457 } 458 459 void InterpreterMacroAssembler::dispatch_base(TosState state, 460 address* table, 461 bool verifyoop, 462 bool generate_poll) { 463 if (VerifyActivationFrameSize) { 464 Unimplemented(); 465 } 466 if (verifyoop) { 467 interp_verify_oop(r0, state); 468 } 469 470 Label safepoint; 471 address* const safepoint_table = Interpreter::safept_table(state); 472 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 473 474 if (needs_thread_local_poll) { 475 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 476 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 477 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 478 } 479 480 if (table == Interpreter::dispatch_table(state)) { 481 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 482 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 483 } else { 484 mov(rscratch2, (address)table); 485 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 486 } 487 br(rscratch2); 488 489 if (needs_thread_local_poll) { 490 bind(safepoint); 491 lea(rscratch2, ExternalAddress((address)safepoint_table)); 492 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 493 br(rscratch2); 494 } 495 } 496 497 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 498 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 499 } 500 501 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 502 dispatch_base(state, Interpreter::normal_table(state)); 503 } 504 505 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 506 dispatch_base(state, Interpreter::normal_table(state), false); 507 } 508 509 510 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 511 // load next bytecode 512 ldrb(rscratch1, Address(pre(rbcp, step))); 513 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 514 } 515 516 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 517 // load current bytecode 518 ldrb(rscratch1, Address(rbcp, 0)); 519 dispatch_base(state, table); 520 } 521 522 // remove activation 523 // 524 // Apply stack watermark barrier. 525 // Unlock the receiver if this is a synchronized method. 526 // Unlock any Java monitors from synchronized blocks. 527 // Remove the activation from the stack. 528 // 529 // If there are locked Java monitors 530 // If throw_monitor_exception 531 // throws IllegalMonitorStateException 532 // Else if install_monitor_exception 533 // installs IllegalMonitorStateException 534 // Else 535 // no error processing 536 void InterpreterMacroAssembler::remove_activation( 537 TosState state, 538 bool throw_monitor_exception, 539 bool install_monitor_exception, 540 bool notify_jvmdi) { 541 // Note: Registers r3 xmm0 may be in use for the 542 // result check if synchronized method 543 Label unlocked, unlock, no_unlock; 544 545 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 546 // that would normally not be safe to use. Such bad returns into unsafe territory of 547 // the stack, will call InterpreterRuntime::at_unwind. 548 Label slow_path; 549 Label fast_path; 550 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 551 br(Assembler::AL, fast_path); 552 bind(slow_path); 553 push(state); 554 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 555 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 556 reset_last_Java_frame(true); 557 pop(state); 558 bind(fast_path); 559 560 // get the value of _do_not_unlock_if_synchronized into r3 561 const Address do_not_unlock_if_synchronized(rthread, 562 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 563 ldrb(r3, do_not_unlock_if_synchronized); 564 strb(zr, do_not_unlock_if_synchronized); // reset the flag 565 566 // get method access flags 567 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 568 ldr(r2, Address(r1, Method::access_flags_offset())); 569 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 570 571 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 572 // is set. 573 cbnz(r3, no_unlock); 574 575 // unlock monitor 576 push(state); // save result 577 578 // BasicObjectLock will be first in list, since this is a 579 // synchronized method. However, need to check that the object has 580 // not been unlocked by an explicit monitorexit bytecode. 581 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 582 wordSize - (int) sizeof(BasicObjectLock)); 583 // We use c_rarg1 so that if we go slow path it will be the correct 584 // register for unlock_object to pass to VM directly 585 lea(c_rarg1, monitor); // address of first monitor 586 587 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 588 cbnz(r0, unlock); 589 590 pop(state); 591 if (throw_monitor_exception) { 592 // Entry already unlocked, need to throw exception 593 call_VM(noreg, CAST_FROM_FN_PTR(address, 594 InterpreterRuntime::throw_illegal_monitor_state_exception)); 595 should_not_reach_here(); 596 } else { 597 // Monitor already unlocked during a stack unroll. If requested, 598 // install an illegal_monitor_state_exception. Continue with 599 // stack unrolling. 600 if (install_monitor_exception) { 601 call_VM(noreg, CAST_FROM_FN_PTR(address, 602 InterpreterRuntime::new_illegal_monitor_state_exception)); 603 } 604 b(unlocked); 605 } 606 607 bind(unlock); 608 unlock_object(c_rarg1); 609 pop(state); 610 611 // Check that for block-structured locking (i.e., that all locked 612 // objects has been unlocked) 613 bind(unlocked); 614 615 // r0: Might contain return value 616 617 // Check that all monitors are unlocked 618 { 619 Label loop, exception, entry, restart; 620 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 621 const Address monitor_block_top( 622 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 623 const Address monitor_block_bot( 624 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 625 626 bind(restart); 627 // We use c_rarg1 so that if we go slow path it will be the correct 628 // register for unlock_object to pass to VM directly 629 ldr(c_rarg1, monitor_block_top); // points to current entry, starting 630 // with top-most entry 631 lea(r19, monitor_block_bot); // points to word before bottom of 632 // monitor block 633 b(entry); 634 635 // Entry already locked, need to throw exception 636 bind(exception); 637 638 if (throw_monitor_exception) { 639 // Throw exception 640 MacroAssembler::call_VM(noreg, 641 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 642 throw_illegal_monitor_state_exception)); 643 should_not_reach_here(); 644 } else { 645 // Stack unrolling. Unlock object and install illegal_monitor_exception. 646 // Unlock does not block, so don't have to worry about the frame. 647 // We don't have to preserve c_rarg1 since we are going to throw an exception. 648 649 push(state); 650 unlock_object(c_rarg1); 651 pop(state); 652 653 if (install_monitor_exception) { 654 call_VM(noreg, CAST_FROM_FN_PTR(address, 655 InterpreterRuntime:: 656 new_illegal_monitor_state_exception)); 657 } 658 659 b(restart); 660 } 661 662 bind(loop); 663 // check if current entry is used 664 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 665 cbnz(rscratch1, exception); 666 667 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 668 bind(entry); 669 cmp(c_rarg1, r19); // check if bottom reached 670 br(Assembler::NE, loop); // if not at bottom then check this entry 671 } 672 673 bind(no_unlock); 674 675 // jvmti support 676 if (notify_jvmdi) { 677 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 678 } else { 679 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 680 } 681 682 // remove activation 683 // get sender esp 684 ldr(rscratch2, 685 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 686 if (StackReservedPages > 0) { 687 // testing if reserved zone needs to be re-enabled 688 Label no_reserved_zone_enabling; 689 690 // look for an overflow into the stack reserved zone, i.e. 691 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 692 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 693 cmp(rscratch2, rscratch1); 694 br(Assembler::LS, no_reserved_zone_enabling); 695 696 call_VM_leaf( 697 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 698 call_VM(noreg, CAST_FROM_FN_PTR(address, 699 InterpreterRuntime::throw_delayed_StackOverflowError)); 700 should_not_reach_here(); 701 702 bind(no_reserved_zone_enabling); 703 } 704 705 // restore sender esp 706 mov(esp, rscratch2); 707 // remove frame anchor 708 leave(); 709 // If we're returning to interpreted code we will shortly be 710 // adjusting SP to allow some space for ESP. If we're returning to 711 // compiled code the saved sender SP was saved in sender_sp, so this 712 // restores it. 713 andr(sp, esp, -16); 714 } 715 716 // Lock object 717 // 718 // Args: 719 // c_rarg1: BasicObjectLock to be used for locking 720 // 721 // Kills: 722 // r0 723 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) 724 // rscratch1, rscratch2 (scratch regs) 725 void InterpreterMacroAssembler::lock_object(Register lock_reg) 726 { 727 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 728 if (UseHeavyMonitors) { 729 call_VM(noreg, 730 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 731 lock_reg); 732 } else { 733 Label done; 734 735 const Register swap_reg = r0; 736 const Register tmp = c_rarg2; 737 const Register obj_reg = c_rarg3; // Will contain the oop 738 739 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 740 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 741 const int mark_offset = lock_offset + 742 BasicLock::displaced_header_offset_in_bytes(); 743 744 Label slow_case; 745 746 // Load object pointer into obj_reg %c_rarg3 747 ldr(obj_reg, Address(lock_reg, obj_offset)); 748 749 if (DiagnoseSyncOnValueBasedClasses != 0) { 750 load_klass(tmp, obj_reg); 751 ldrw(tmp, Address(tmp, Klass::access_flags_offset())); 752 tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 753 br(Assembler::NE, slow_case); 754 } 755 756 // Load (object->mark() | 1) into swap_reg 757 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 758 orr(swap_reg, rscratch1, 1); 759 760 // Save (object->mark() | 1) into BasicLock's displaced header 761 str(swap_reg, Address(lock_reg, mark_offset)); 762 763 assert(lock_offset == 0, 764 "displached header must be first word in BasicObjectLock"); 765 766 Label fail; 767 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL); 768 769 // Fast check for recursive lock. 770 // 771 // Can apply the optimization only if this is a stack lock 772 // allocated in this thread. For efficiency, we can focus on 773 // recently allocated stack locks (instead of reading the stack 774 // base and checking whether 'mark' points inside the current 775 // thread stack): 776 // 1) (mark & 7) == 0, and 777 // 2) sp <= mark < mark + os::pagesize() 778 // 779 // Warning: sp + os::pagesize can overflow the stack base. We must 780 // neither apply the optimization for an inflated lock allocated 781 // just above the thread stack (this is why condition 1 matters) 782 // nor apply the optimization if the stack lock is inside the stack 783 // of another thread. The latter is avoided even in case of overflow 784 // because we have guard pages at the end of all stacks. Hence, if 785 // we go over the stack base and hit the stack of another thread, 786 // this should not be in a writeable area that could contain a 787 // stack lock allocated by that thread. As a consequence, a stack 788 // lock less than page size away from sp is guaranteed to be 789 // owned by the current thread. 790 // 791 // These 3 tests can be done by evaluating the following 792 // expression: ((mark - sp) & (7 - os::vm_page_size())), 793 // assuming both stack pointer and pagesize have their 794 // least significant 3 bits clear. 795 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 796 // NOTE2: aarch64 does not like to subtract sp from rn so take a 797 // copy 798 mov(rscratch1, sp); 799 sub(swap_reg, swap_reg, rscratch1); 800 ands(swap_reg, swap_reg, (uint64_t)(7 - os::vm_page_size())); 801 802 // Save the test result, for recursive case, the result is zero 803 str(swap_reg, Address(lock_reg, mark_offset)); 804 br(Assembler::EQ, done); 805 806 bind(slow_case); 807 808 // Call the runtime routine for slow case 809 call_VM(noreg, 810 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 811 lock_reg); 812 813 bind(done); 814 } 815 } 816 817 818 // Unlocks an object. Used in monitorexit bytecode and 819 // remove_activation. Throws an IllegalMonitorException if object is 820 // not locked by current thread. 821 // 822 // Args: 823 // c_rarg1: BasicObjectLock for lock 824 // 825 // Kills: 826 // r0 827 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 828 // rscratch1, rscratch2 (scratch regs) 829 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 830 { 831 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 832 833 if (UseHeavyMonitors) { 834 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 835 } else { 836 Label done; 837 838 const Register swap_reg = r0; 839 const Register header_reg = c_rarg2; // Will contain the old oopMark 840 const Register obj_reg = c_rarg3; // Will contain the oop 841 842 save_bcp(); // Save in case of exception 843 844 // Convert from BasicObjectLock structure to object and BasicLock 845 // structure Store the BasicLock address into %r0 846 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 847 848 // Load oop into obj_reg(%c_rarg3) 849 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 850 851 // Free entry 852 str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 853 854 // Load the old header from BasicLock structure 855 ldr(header_reg, Address(swap_reg, 856 BasicLock::displaced_header_offset_in_bytes())); 857 858 // Test for recursion 859 cbz(header_reg, done); 860 861 // Atomic swap back the old header 862 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL); 863 864 // Call the runtime routine for slow case. 865 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj 866 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 867 868 bind(done); 869 870 restore_bcp(); 871 } 872 } 873 874 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 875 Label& zero_continue) { 876 assert(ProfileInterpreter, "must be profiling interpreter"); 877 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 878 cbz(mdp, zero_continue); 879 } 880 881 // Set the method data pointer for the current bcp. 882 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 883 assert(ProfileInterpreter, "must be profiling interpreter"); 884 Label set_mdp; 885 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 886 887 // Test MDO to avoid the call if it is NULL. 888 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 889 cbz(r0, set_mdp); 890 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 891 // r0: mdi 892 // mdo is guaranteed to be non-zero here, we checked for it before the call. 893 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 894 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 895 add(r0, r1, r0); 896 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 897 bind(set_mdp); 898 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 899 } 900 901 void InterpreterMacroAssembler::verify_method_data_pointer() { 902 assert(ProfileInterpreter, "must be profiling interpreter"); 903 #ifdef ASSERT 904 Label verify_continue; 905 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 906 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 907 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 908 get_method(r1); 909 910 // If the mdp is valid, it will point to a DataLayout header which is 911 // consistent with the bcp. The converse is highly probable also. 912 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 913 ldr(rscratch1, Address(r1, Method::const_offset())); 914 add(r2, r2, rscratch1, Assembler::LSL); 915 lea(r2, Address(r2, ConstMethod::codes_offset())); 916 cmp(r2, rbcp); 917 br(Assembler::EQ, verify_continue); 918 // r1: method 919 // rbcp: bcp // rbcp == 22 920 // r3: mdp 921 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 922 r1, rbcp, r3); 923 bind(verify_continue); 924 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 925 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 926 #endif // ASSERT 927 } 928 929 930 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 931 int constant, 932 Register value) { 933 assert(ProfileInterpreter, "must be profiling interpreter"); 934 Address data(mdp_in, constant); 935 str(value, data); 936 } 937 938 939 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 940 int constant, 941 bool decrement) { 942 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 943 } 944 945 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 946 Register reg, 947 int constant, 948 bool decrement) { 949 assert(ProfileInterpreter, "must be profiling interpreter"); 950 // %%% this does 64bit counters at best it is wasting space 951 // at worst it is a rare bug when counters overflow 952 953 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 954 955 Address addr1(mdp_in, constant); 956 Address addr2(rscratch2, reg, Address::lsl(0)); 957 Address &addr = addr1; 958 if (reg != noreg) { 959 lea(rscratch2, addr1); 960 addr = addr2; 961 } 962 963 if (decrement) { 964 // Decrement the register. Set condition codes. 965 // Intel does this 966 // addptr(data, (int32_t) -DataLayout::counter_increment); 967 // If the decrement causes the counter to overflow, stay negative 968 // Label L; 969 // jcc(Assembler::negative, L); 970 // addptr(data, (int32_t) DataLayout::counter_increment); 971 // so we do this 972 ldr(rscratch1, addr); 973 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 974 Label L; 975 br(Assembler::LO, L); // skip store if counter underflow 976 str(rscratch1, addr); 977 bind(L); 978 } else { 979 assert(DataLayout::counter_increment == 1, 980 "flow-free idiom only works with 1"); 981 // Intel does this 982 // Increment the register. Set carry flag. 983 // addptr(data, DataLayout::counter_increment); 984 // If the increment causes the counter to overflow, pull back by 1. 985 // sbbptr(data, (int32_t)0); 986 // so we do this 987 ldr(rscratch1, addr); 988 adds(rscratch1, rscratch1, DataLayout::counter_increment); 989 Label L; 990 br(Assembler::CS, L); // skip store if counter overflow 991 str(rscratch1, addr); 992 bind(L); 993 } 994 } 995 996 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 997 int flag_byte_constant) { 998 assert(ProfileInterpreter, "must be profiling interpreter"); 999 int flags_offset = in_bytes(DataLayout::flags_offset()); 1000 // Set the flag 1001 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1002 orr(rscratch1, rscratch1, flag_byte_constant); 1003 strb(rscratch1, Address(mdp_in, flags_offset)); 1004 } 1005 1006 1007 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1008 int offset, 1009 Register value, 1010 Register test_value_out, 1011 Label& not_equal_continue) { 1012 assert(ProfileInterpreter, "must be profiling interpreter"); 1013 if (test_value_out == noreg) { 1014 ldr(rscratch1, Address(mdp_in, offset)); 1015 cmp(value, rscratch1); 1016 } else { 1017 // Put the test value into a register, so caller can use it: 1018 ldr(test_value_out, Address(mdp_in, offset)); 1019 cmp(value, test_value_out); 1020 } 1021 br(Assembler::NE, not_equal_continue); 1022 } 1023 1024 1025 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1026 int offset_of_disp) { 1027 assert(ProfileInterpreter, "must be profiling interpreter"); 1028 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1029 add(mdp_in, mdp_in, rscratch1, LSL); 1030 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1031 } 1032 1033 1034 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1035 Register reg, 1036 int offset_of_disp) { 1037 assert(ProfileInterpreter, "must be profiling interpreter"); 1038 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1039 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1040 add(mdp_in, mdp_in, rscratch1, LSL); 1041 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1042 } 1043 1044 1045 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1046 int constant) { 1047 assert(ProfileInterpreter, "must be profiling interpreter"); 1048 add(mdp_in, mdp_in, (unsigned)constant); 1049 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1050 } 1051 1052 1053 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1054 assert(ProfileInterpreter, "must be profiling interpreter"); 1055 // save/restore across call_VM 1056 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1057 call_VM(noreg, 1058 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1059 return_bci); 1060 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1061 } 1062 1063 1064 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1065 Register bumped_count) { 1066 if (ProfileInterpreter) { 1067 Label profile_continue; 1068 1069 // If no method data exists, go to profile_continue. 1070 // Otherwise, assign to mdp 1071 test_method_data_pointer(mdp, profile_continue); 1072 1073 // We are taking a branch. Increment the taken count. 1074 // We inline increment_mdp_data_at to return bumped_count in a register 1075 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1076 Address data(mdp, in_bytes(JumpData::taken_offset())); 1077 ldr(bumped_count, data); 1078 assert(DataLayout::counter_increment == 1, 1079 "flow-free idiom only works with 1"); 1080 // Intel does this to catch overflow 1081 // addptr(bumped_count, DataLayout::counter_increment); 1082 // sbbptr(bumped_count, 0); 1083 // so we do this 1084 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1085 Label L; 1086 br(Assembler::CS, L); // skip store if counter overflow 1087 str(bumped_count, data); 1088 bind(L); 1089 // The method data pointer needs to be updated to reflect the new target. 1090 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1091 bind(profile_continue); 1092 } 1093 } 1094 1095 1096 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1097 if (ProfileInterpreter) { 1098 Label profile_continue; 1099 1100 // If no method data exists, go to profile_continue. 1101 test_method_data_pointer(mdp, profile_continue); 1102 1103 // We are taking a branch. Increment the not taken count. 1104 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1105 1106 // The method data pointer needs to be updated to correspond to 1107 // the next bytecode 1108 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1109 bind(profile_continue); 1110 } 1111 } 1112 1113 1114 void InterpreterMacroAssembler::profile_call(Register mdp) { 1115 if (ProfileInterpreter) { 1116 Label profile_continue; 1117 1118 // If no method data exists, go to profile_continue. 1119 test_method_data_pointer(mdp, profile_continue); 1120 1121 // We are making a call. Increment the count. 1122 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1123 1124 // The method data pointer needs to be updated to reflect the new target. 1125 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1126 bind(profile_continue); 1127 } 1128 } 1129 1130 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1131 if (ProfileInterpreter) { 1132 Label profile_continue; 1133 1134 // If no method data exists, go to profile_continue. 1135 test_method_data_pointer(mdp, profile_continue); 1136 1137 // We are making a call. Increment the count. 1138 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1139 1140 // The method data pointer needs to be updated to reflect the new target. 1141 update_mdp_by_constant(mdp, 1142 in_bytes(VirtualCallData:: 1143 virtual_call_data_size())); 1144 bind(profile_continue); 1145 } 1146 } 1147 1148 1149 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1150 Register mdp, 1151 Register reg2, 1152 bool receiver_can_be_null) { 1153 if (ProfileInterpreter) { 1154 Label profile_continue; 1155 1156 // If no method data exists, go to profile_continue. 1157 test_method_data_pointer(mdp, profile_continue); 1158 1159 Label skip_receiver_profile; 1160 if (receiver_can_be_null) { 1161 Label not_null; 1162 // We are making a call. Increment the count for null receiver. 1163 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1164 b(skip_receiver_profile); 1165 bind(not_null); 1166 } 1167 1168 // Record the receiver type. 1169 record_klass_in_profile(receiver, mdp, reg2, true); 1170 bind(skip_receiver_profile); 1171 1172 // The method data pointer needs to be updated to reflect the new target. 1173 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1174 bind(profile_continue); 1175 } 1176 } 1177 1178 // This routine creates a state machine for updating the multi-row 1179 // type profile at a virtual call site (or other type-sensitive bytecode). 1180 // The machine visits each row (of receiver/count) until the receiver type 1181 // is found, or until it runs out of rows. At the same time, it remembers 1182 // the location of the first empty row. (An empty row records null for its 1183 // receiver, and can be allocated for a newly-observed receiver type.) 1184 // Because there are two degrees of freedom in the state, a simple linear 1185 // search will not work; it must be a decision tree. Hence this helper 1186 // function is recursive, to generate the required tree structured code. 1187 // It's the interpreter, so we are trading off code space for speed. 1188 // See below for example code. 1189 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1190 Register receiver, Register mdp, 1191 Register reg2, int start_row, 1192 Label& done, bool is_virtual_call) { 1193 if (TypeProfileWidth == 0) { 1194 if (is_virtual_call) { 1195 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1196 } 1197 #if INCLUDE_JVMCI 1198 else if (EnableJVMCI) { 1199 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1200 } 1201 #endif // INCLUDE_JVMCI 1202 } else { 1203 int non_profiled_offset = -1; 1204 if (is_virtual_call) { 1205 non_profiled_offset = in_bytes(CounterData::count_offset()); 1206 } 1207 #if INCLUDE_JVMCI 1208 else if (EnableJVMCI) { 1209 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1210 } 1211 #endif // INCLUDE_JVMCI 1212 1213 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1214 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1215 } 1216 } 1217 1218 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1219 Register reg2, int start_row, Label& done, int total_rows, 1220 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1221 int non_profiled_offset) { 1222 int last_row = total_rows - 1; 1223 assert(start_row <= last_row, "must be work left to do"); 1224 // Test this row for both the item and for null. 1225 // Take any of three different outcomes: 1226 // 1. found item => increment count and goto done 1227 // 2. found null => keep looking for case 1, maybe allocate this cell 1228 // 3. found something else => keep looking for cases 1 and 2 1229 // Case 3 is handled by a recursive call. 1230 for (int row = start_row; row <= last_row; row++) { 1231 Label next_test; 1232 bool test_for_null_also = (row == start_row); 1233 1234 // See if the item is item[n]. 1235 int item_offset = in_bytes(item_offset_fn(row)); 1236 test_mdp_data_at(mdp, item_offset, item, 1237 (test_for_null_also ? reg2 : noreg), 1238 next_test); 1239 // (Reg2 now contains the item from the CallData.) 1240 1241 // The item is item[n]. Increment count[n]. 1242 int count_offset = in_bytes(item_count_offset_fn(row)); 1243 increment_mdp_data_at(mdp, count_offset); 1244 b(done); 1245 bind(next_test); 1246 1247 if (test_for_null_also) { 1248 Label found_null; 1249 // Failed the equality check on item[n]... Test for null. 1250 if (start_row == last_row) { 1251 // The only thing left to do is handle the null case. 1252 if (non_profiled_offset >= 0) { 1253 cbz(reg2, found_null); 1254 // Item did not match any saved item and there is no empty row for it. 1255 // Increment total counter to indicate polymorphic case. 1256 increment_mdp_data_at(mdp, non_profiled_offset); 1257 b(done); 1258 bind(found_null); 1259 } else { 1260 cbnz(reg2, done); 1261 } 1262 break; 1263 } 1264 // Since null is rare, make it be the branch-taken case. 1265 cbz(reg2, found_null); 1266 1267 // Put all the "Case 3" tests here. 1268 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1269 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1270 1271 // Found a null. Keep searching for a matching item, 1272 // but remember that this is an empty (unused) slot. 1273 bind(found_null); 1274 } 1275 } 1276 1277 // In the fall-through case, we found no matching item, but we 1278 // observed the item[start_row] is NULL. 1279 1280 // Fill in the item field and increment the count. 1281 int item_offset = in_bytes(item_offset_fn(start_row)); 1282 set_mdp_data_at(mdp, item_offset, item); 1283 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1284 mov(reg2, DataLayout::counter_increment); 1285 set_mdp_data_at(mdp, count_offset, reg2); 1286 if (start_row > 0) { 1287 b(done); 1288 } 1289 } 1290 1291 // Example state machine code for three profile rows: 1292 // // main copy of decision tree, rooted at row[1] 1293 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1294 // if (row[0].rec != NULL) { 1295 // // inner copy of decision tree, rooted at row[1] 1296 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1297 // if (row[1].rec != NULL) { 1298 // // degenerate decision tree, rooted at row[2] 1299 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1300 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow 1301 // row[2].init(rec); goto done; 1302 // } else { 1303 // // remember row[1] is empty 1304 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1305 // row[1].init(rec); goto done; 1306 // } 1307 // } else { 1308 // // remember row[0] is empty 1309 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1310 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1311 // row[0].init(rec); goto done; 1312 // } 1313 // done: 1314 1315 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1316 Register mdp, Register reg2, 1317 bool is_virtual_call) { 1318 assert(ProfileInterpreter, "must be profiling"); 1319 Label done; 1320 1321 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1322 1323 bind (done); 1324 } 1325 1326 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1327 Register mdp) { 1328 if (ProfileInterpreter) { 1329 Label profile_continue; 1330 uint row; 1331 1332 // If no method data exists, go to profile_continue. 1333 test_method_data_pointer(mdp, profile_continue); 1334 1335 // Update the total ret count. 1336 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1337 1338 for (row = 0; row < RetData::row_limit(); row++) { 1339 Label next_test; 1340 1341 // See if return_bci is equal to bci[n]: 1342 test_mdp_data_at(mdp, 1343 in_bytes(RetData::bci_offset(row)), 1344 return_bci, noreg, 1345 next_test); 1346 1347 // return_bci is equal to bci[n]. Increment the count. 1348 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1349 1350 // The method data pointer needs to be updated to reflect the new target. 1351 update_mdp_by_offset(mdp, 1352 in_bytes(RetData::bci_displacement_offset(row))); 1353 b(profile_continue); 1354 bind(next_test); 1355 } 1356 1357 update_mdp_for_ret(return_bci); 1358 1359 bind(profile_continue); 1360 } 1361 } 1362 1363 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1364 if (ProfileInterpreter) { 1365 Label profile_continue; 1366 1367 // If no method data exists, go to profile_continue. 1368 test_method_data_pointer(mdp, profile_continue); 1369 1370 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1371 1372 // The method data pointer needs to be updated. 1373 int mdp_delta = in_bytes(BitData::bit_data_size()); 1374 if (TypeProfileCasts) { 1375 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1376 } 1377 update_mdp_by_constant(mdp, mdp_delta); 1378 1379 bind(profile_continue); 1380 } 1381 } 1382 1383 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1384 if (ProfileInterpreter && TypeProfileCasts) { 1385 Label profile_continue; 1386 1387 // If no method data exists, go to profile_continue. 1388 test_method_data_pointer(mdp, profile_continue); 1389 1390 int count_offset = in_bytes(CounterData::count_offset()); 1391 // Back up the address, since we have already bumped the mdp. 1392 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1393 1394 // *Decrement* the counter. We expect to see zero or small negatives. 1395 increment_mdp_data_at(mdp, count_offset, true); 1396 1397 bind (profile_continue); 1398 } 1399 } 1400 1401 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1402 if (ProfileInterpreter) { 1403 Label profile_continue; 1404 1405 // If no method data exists, go to profile_continue. 1406 test_method_data_pointer(mdp, profile_continue); 1407 1408 // The method data pointer needs to be updated. 1409 int mdp_delta = in_bytes(BitData::bit_data_size()); 1410 if (TypeProfileCasts) { 1411 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1412 1413 // Record the object type. 1414 record_klass_in_profile(klass, mdp, reg2, false); 1415 } 1416 update_mdp_by_constant(mdp, mdp_delta); 1417 1418 bind(profile_continue); 1419 } 1420 } 1421 1422 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1423 if (ProfileInterpreter) { 1424 Label profile_continue; 1425 1426 // If no method data exists, go to profile_continue. 1427 test_method_data_pointer(mdp, profile_continue); 1428 1429 // Update the default case count 1430 increment_mdp_data_at(mdp, 1431 in_bytes(MultiBranchData::default_count_offset())); 1432 1433 // The method data pointer needs to be updated. 1434 update_mdp_by_offset(mdp, 1435 in_bytes(MultiBranchData:: 1436 default_displacement_offset())); 1437 1438 bind(profile_continue); 1439 } 1440 } 1441 1442 void InterpreterMacroAssembler::profile_switch_case(Register index, 1443 Register mdp, 1444 Register reg2) { 1445 if (ProfileInterpreter) { 1446 Label profile_continue; 1447 1448 // If no method data exists, go to profile_continue. 1449 test_method_data_pointer(mdp, profile_continue); 1450 1451 // Build the base (index * per_case_size_in_bytes()) + 1452 // case_array_offset_in_bytes() 1453 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1454 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1455 Assembler::maddw(index, index, reg2, rscratch1); 1456 1457 // Update the case count 1458 increment_mdp_data_at(mdp, 1459 index, 1460 in_bytes(MultiBranchData::relative_count_offset())); 1461 1462 // The method data pointer needs to be updated. 1463 update_mdp_by_offset(mdp, 1464 index, 1465 in_bytes(MultiBranchData:: 1466 relative_displacement_offset())); 1467 1468 bind(profile_continue); 1469 } 1470 } 1471 1472 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1473 if (state == atos) { 1474 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1475 } 1476 } 1477 1478 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1479 1480 1481 void InterpreterMacroAssembler::notify_method_entry() { 1482 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1483 // track stack depth. If it is possible to enter interp_only_mode we add 1484 // the code to check if the event should be sent. 1485 if (JvmtiExport::can_post_interpreter_events()) { 1486 Label L; 1487 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1488 cbzw(r3, L); 1489 call_VM(noreg, CAST_FROM_FN_PTR(address, 1490 InterpreterRuntime::post_method_entry)); 1491 bind(L); 1492 } 1493 1494 { 1495 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1496 get_method(c_rarg1); 1497 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1498 rthread, c_rarg1); 1499 } 1500 1501 // RedefineClasses() tracing support for obsolete method entry 1502 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1503 get_method(c_rarg1); 1504 call_VM_leaf( 1505 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1506 rthread, c_rarg1); 1507 } 1508 1509 } 1510 1511 1512 void InterpreterMacroAssembler::notify_method_exit( 1513 TosState state, NotifyMethodExitMode mode) { 1514 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1515 // track stack depth. If it is possible to enter interp_only_mode we add 1516 // the code to check if the event should be sent. 1517 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1518 Label L; 1519 // Note: frame::interpreter_frame_result has a dependency on how the 1520 // method result is saved across the call to post_method_exit. If this 1521 // is changed then the interpreter_frame_result implementation will 1522 // need to be updated too. 1523 1524 // template interpreter will leave the result on the top of the stack. 1525 push(state); 1526 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1527 cbz(r3, L); 1528 call_VM(noreg, 1529 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1530 bind(L); 1531 pop(state); 1532 } 1533 1534 { 1535 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1536 push(state); 1537 get_method(c_rarg1); 1538 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1539 rthread, c_rarg1); 1540 pop(state); 1541 } 1542 } 1543 1544 1545 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1546 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1547 int increment, Address mask, 1548 Register scratch, Register scratch2, 1549 bool preloaded, Condition cond, 1550 Label* where) { 1551 if (!preloaded) { 1552 ldrw(scratch, counter_addr); 1553 } 1554 add(scratch, scratch, increment); 1555 strw(scratch, counter_addr); 1556 ldrw(scratch2, mask); 1557 ands(scratch, scratch, scratch2); 1558 br(cond, *where); 1559 } 1560 1561 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1562 int number_of_arguments) { 1563 // interpreter specific 1564 // 1565 // Note: No need to save/restore rbcp & rlocals pointer since these 1566 // are callee saved registers and no blocking/ GC can happen 1567 // in leaf calls. 1568 #ifdef ASSERT 1569 { 1570 Label L; 1571 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1572 cbz(rscratch1, L); 1573 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1574 " last_sp != NULL"); 1575 bind(L); 1576 } 1577 #endif /* ASSERT */ 1578 // super call 1579 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1580 } 1581 1582 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1583 Register java_thread, 1584 Register last_java_sp, 1585 address entry_point, 1586 int number_of_arguments, 1587 bool check_exceptions) { 1588 // interpreter specific 1589 // 1590 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1591 // really make a difference for these runtime calls, since they are 1592 // slow anyway. Btw., bcp must be saved/restored since it may change 1593 // due to GC. 1594 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1595 save_bcp(); 1596 #ifdef ASSERT 1597 { 1598 Label L; 1599 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1600 cbz(rscratch1, L); 1601 stop("InterpreterMacroAssembler::call_VM_base:" 1602 " last_sp != NULL"); 1603 bind(L); 1604 } 1605 #endif /* ASSERT */ 1606 // super call 1607 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1608 entry_point, number_of_arguments, 1609 check_exceptions); 1610 // interpreter specific 1611 restore_bcp(); 1612 restore_locals(); 1613 } 1614 1615 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1616 assert_different_registers(obj, rscratch1); 1617 Label update, next, none; 1618 1619 verify_oop(obj); 1620 1621 cbnz(obj, update); 1622 orptr(mdo_addr, TypeEntries::null_seen); 1623 b(next); 1624 1625 bind(update); 1626 load_klass(obj, obj); 1627 1628 ldr(rscratch1, mdo_addr); 1629 eor(obj, obj, rscratch1); 1630 tst(obj, TypeEntries::type_klass_mask); 1631 br(Assembler::EQ, next); // klass seen before, nothing to 1632 // do. The unknown bit may have been 1633 // set already but no need to check. 1634 1635 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1636 // already unknown. Nothing to do anymore. 1637 1638 ldr(rscratch1, mdo_addr); 1639 cbz(rscratch1, none); 1640 cmp(rscratch1, (u1)TypeEntries::null_seen); 1641 br(Assembler::EQ, none); 1642 // There is a chance that the checks above (re-reading profiling 1643 // data from memory) fail if another thread has just set the 1644 // profiling to this obj's klass 1645 ldr(rscratch1, mdo_addr); 1646 eor(obj, obj, rscratch1); 1647 tst(obj, TypeEntries::type_klass_mask); 1648 br(Assembler::EQ, next); 1649 1650 // different than before. Cannot keep accurate profile. 1651 orptr(mdo_addr, TypeEntries::type_unknown); 1652 b(next); 1653 1654 bind(none); 1655 // first time here. Set profile type. 1656 str(obj, mdo_addr); 1657 1658 bind(next); 1659 } 1660 1661 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1662 if (!ProfileInterpreter) { 1663 return; 1664 } 1665 1666 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1667 Label profile_continue; 1668 1669 test_method_data_pointer(mdp, profile_continue); 1670 1671 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1672 1673 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1674 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1675 br(Assembler::NE, profile_continue); 1676 1677 if (MethodData::profile_arguments()) { 1678 Label done; 1679 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1680 1681 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1682 if (i > 0 || MethodData::profile_return()) { 1683 // If return value type is profiled we may have no argument to profile 1684 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1685 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1686 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1687 add(rscratch1, mdp, off_to_args); 1688 br(Assembler::LT, done); 1689 } 1690 ldr(tmp, Address(callee, Method::const_offset())); 1691 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1692 // stack offset o (zero based) from the start of the argument 1693 // list, for n arguments translates into offset n - o - 1 from 1694 // the end of the argument list 1695 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1696 sub(tmp, tmp, rscratch1); 1697 sub(tmp, tmp, 1); 1698 Address arg_addr = argument_address(tmp); 1699 ldr(tmp, arg_addr); 1700 1701 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1702 profile_obj_type(tmp, mdo_arg_addr); 1703 1704 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1705 off_to_args += to_add; 1706 } 1707 1708 if (MethodData::profile_return()) { 1709 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1710 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1711 } 1712 1713 add(rscratch1, mdp, off_to_args); 1714 bind(done); 1715 mov(mdp, rscratch1); 1716 1717 if (MethodData::profile_return()) { 1718 // We're right after the type profile for the last 1719 // argument. tmp is the number of cells left in the 1720 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1721 // if there's a return to profile. 1722 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1723 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1724 } 1725 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1726 } else { 1727 assert(MethodData::profile_return(), "either profile call args or call ret"); 1728 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1729 } 1730 1731 // mdp points right after the end of the 1732 // CallTypeData/VirtualCallTypeData, right after the cells for the 1733 // return value type if there's one 1734 1735 bind(profile_continue); 1736 } 1737 } 1738 1739 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1740 assert_different_registers(mdp, ret, tmp, rbcp); 1741 if (ProfileInterpreter && MethodData::profile_return()) { 1742 Label profile_continue, done; 1743 1744 test_method_data_pointer(mdp, profile_continue); 1745 1746 if (MethodData::profile_return_jsr292_only()) { 1747 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1748 1749 // If we don't profile all invoke bytecodes we must make sure 1750 // it's a bytecode we indeed profile. We can't go back to the 1751 // beginning of the ProfileData we intend to update to check its 1752 // type because we're right after it and we don't known its 1753 // length 1754 Label do_profile; 1755 ldrb(rscratch1, Address(rbcp, 0)); 1756 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1757 br(Assembler::EQ, do_profile); 1758 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1759 br(Assembler::EQ, do_profile); 1760 get_method(tmp); 1761 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes())); 1762 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1763 br(Assembler::NE, profile_continue); 1764 1765 bind(do_profile); 1766 } 1767 1768 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1769 mov(tmp, ret); 1770 profile_obj_type(tmp, mdo_ret_addr); 1771 1772 bind(profile_continue); 1773 } 1774 } 1775 1776 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1777 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1778 if (ProfileInterpreter && MethodData::profile_parameters()) { 1779 Label profile_continue, done; 1780 1781 test_method_data_pointer(mdp, profile_continue); 1782 1783 // Load the offset of the area within the MDO used for 1784 // parameters. If it's negative we're not profiling any parameters 1785 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1786 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1787 1788 // Compute a pointer to the area for parameters from the offset 1789 // and move the pointer to the slot for the last 1790 // parameters. Collect profiling from last parameter down. 1791 // mdo start + parameters offset + array length - 1 1792 add(mdp, mdp, tmp1); 1793 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1794 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1795 1796 Label loop; 1797 bind(loop); 1798 1799 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1800 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1801 int per_arg_scale = exact_log2(DataLayout::cell_size); 1802 add(rscratch1, mdp, off_base); 1803 add(rscratch2, mdp, type_base); 1804 1805 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1806 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1807 1808 // load offset on the stack from the slot for this parameter 1809 ldr(tmp2, arg_off); 1810 neg(tmp2, tmp2); 1811 // read the parameter from the local area 1812 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1813 1814 // profile the parameter 1815 profile_obj_type(tmp2, arg_type); 1816 1817 // go to next parameter 1818 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1819 br(Assembler::GE, loop); 1820 1821 bind(profile_continue); 1822 } 1823 }