1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "ci/ciEnv.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "compiler/compileTask.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/cardTable.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/tlab_globals.hpp"
  40 #include "interpreter/bytecodeHistogram.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "jvm.h"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "nativeInst_aarch64.hpp"
  46 #include "oops/accessDecorators.hpp"
  47 #include "oops/compressedKlass.inline.hpp"
  48 #include "oops/compressedOops.inline.hpp"
  49 #include "oops/klass.inline.hpp"
  50 #include "runtime/continuation.hpp"
  51 #include "runtime/icache.hpp"
  52 #include "runtime/interfaceSupport.inline.hpp"
  53 #include "runtime/javaThread.hpp"
  54 #include "runtime/jniHandles.inline.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "utilities/globalDefinitions.hpp"
  58 #include "utilities/powerOfTwo.hpp"
  59 #ifdef COMPILER1
  60 #include "c1/c1_LIRAssembler.hpp"
  61 #endif
  62 #ifdef COMPILER2
  63 #include "oops/oop.hpp"
  64 #include "opto/compile.hpp"
  65 #include "opto/node.hpp"
  66 #include "opto/output.hpp"
  67 #endif
  68 
  69 #include <sys/types.h>
  70 
  71 #ifdef PRODUCT
  72 #define BLOCK_COMMENT(str) /* nothing */
  73 #else
  74 #define BLOCK_COMMENT(str) block_comment(str)
  75 #endif
  76 #define STOP(str) stop(str);
  77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  78 
  79 #ifdef ASSERT
  80 extern "C" void disnm(intptr_t p);
  81 #endif
  82 // Target-dependent relocation processing
  83 //
  84 // Instruction sequences whose target may need to be retrieved or
  85 // patched are distinguished by their leading instruction, sorting
  86 // them into three main instruction groups and related subgroups.
  87 //
  88 // 1) Branch, Exception and System (insn count = 1)
  89 //    1a) Unconditional branch (immediate):
  90 //      b/bl imm19
  91 //    1b) Compare & branch (immediate):
  92 //      cbz/cbnz Rt imm19
  93 //    1c) Test & branch (immediate):
  94 //      tbz/tbnz Rt imm14
  95 //    1d) Conditional branch (immediate):
  96 //      b.cond imm19
  97 //
  98 // 2) Loads and Stores (insn count = 1)
  99 //    2a) Load register literal:
 100 //      ldr Rt imm19
 101 //
 102 // 3) Data Processing Immediate (insn count = 2 or 3)
 103 //    3a) PC-rel. addressing
 104 //      adr/adrp Rx imm21; ldr/str Ry Rx  #imm12
 105 //      adr/adrp Rx imm21; add Ry Rx  #imm12
 106 //      adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page]
 107 //      adr/adrp Rx imm21
 108 //      adr/adrp Rx imm21; movk Rx #imm16<<32
 109 //      adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page
 110 //      The latter form can only happen when the target is an
 111 //      ExternalAddress, and (by definition) ExternalAddresses don't
 112 //      move. Because of that property, there is never any need to
 113 //      patch the last of the three instructions. However,
 114 //      MacroAssembler::target_addr_for_insn takes all three
 115 //      instructions into account and returns the correct address.
 116 //    3b) Move wide (immediate)
 117 //      movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32;
 118 //
 119 // A switch on a subset of the instruction's bits provides an
 120 // efficient dispatch to these subcases.
 121 //
 122 // insn[28:26] -> main group ('x' == don't care)
 123 //   00x -> UNALLOCATED
 124 //   100 -> Data Processing Immediate
 125 //   101 -> Branch, Exception and System
 126 //   x1x -> Loads and Stores
 127 //
 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care).
 129 // n.b. in some cases extra bits need to be checked to verify the
 130 // instruction is as expected
 131 //
 132 // 1) ... xx101x Branch, Exception and System
 133 //   1a)  00___x Unconditional branch (immediate)
 134 //   1b)  01___0 Compare & branch (immediate)
 135 //   1c)  01___1 Test & branch (immediate)
 136 //   1d)  10___0 Conditional branch (immediate)
 137 //        other  Should not happen
 138 //
 139 // 2) ... xxx1x0 Loads and Stores
 140 //   2a)  xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0)
 141 //   2aa) x01__00 Load register literal (i.e. requires insn[29] == 0)
 142 //                strictly should be 64 bit non-FP/SIMD i.e.
 143 //       0101_000 (i.e. requires insn[31:24] == 01011000)
 144 //
 145 // 3) ... xx100x Data Processing Immediate
 146 //   3a)  xx___00 PC-rel. addressing (n.b. requires insn[24] == 0)
 147 //   3b)  xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01)
 148 //                 strictly should be 64 bit movz #imm16<<0
 149 //       110___10100 (i.e. requires insn[31:21] == 11010010100)
 150 //
 151 class RelocActions {
 152 protected:
 153   typedef int (*reloc_insn)(address insn_addr, address &target);
 154 
 155   virtual reloc_insn adrpMem() = 0;
 156   virtual reloc_insn adrpAdd() = 0;
 157   virtual reloc_insn adrpMovk() = 0;
 158 
 159   const address _insn_addr;
 160   const uint32_t _insn;
 161 
 162   static uint32_t insn_at(address insn_addr, int n) {
 163     return ((uint32_t*)insn_addr)[n];
 164   }
 165   uint32_t insn_at(int n) const {
 166     return insn_at(_insn_addr, n);
 167   }
 168 
 169 public:
 170 
 171   RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {}
 172   RelocActions(address insn_addr, uint32_t insn)
 173     :  _insn_addr(insn_addr), _insn(insn) {}
 174 
 175   virtual int unconditionalBranch(address insn_addr, address &target) = 0;
 176   virtual int conditionalBranch(address insn_addr, address &target) = 0;
 177   virtual int testAndBranch(address insn_addr, address &target) = 0;
 178   virtual int loadStore(address insn_addr, address &target) = 0;
 179   virtual int adr(address insn_addr, address &target) = 0;
 180   virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0;
 181   virtual int immediate(address insn_addr, address &target) = 0;
 182   virtual void verify(address insn_addr, address &target) = 0;
 183 
 184   int ALWAYSINLINE run(address insn_addr, address &target) {
 185     int instructions = 1;
 186 
 187     uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25);
 188     switch(dispatch) {
 189       case 0b001010:
 190       case 0b001011: {
 191         instructions = unconditionalBranch(insn_addr, target);
 192         break;
 193       }
 194       case 0b101010:   // Conditional branch (immediate)
 195       case 0b011010: { // Compare & branch (immediate)
 196         instructions = conditionalBranch(insn_addr, target);
 197           break;
 198       }
 199       case 0b011011: {
 200         instructions = testAndBranch(insn_addr, target);
 201         break;
 202       }
 203       case 0b001100:
 204       case 0b001110:
 205       case 0b011100:
 206       case 0b011110:
 207       case 0b101100:
 208       case 0b101110:
 209       case 0b111100:
 210       case 0b111110: {
 211         // load/store
 212         if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) {
 213           // Load register (literal)
 214           instructions = loadStore(insn_addr, target);
 215           break;
 216         } else {
 217           // nothing to do
 218           assert(target == 0, "did not expect to relocate target for polling page load");
 219         }
 220         break;
 221       }
 222       case 0b001000:
 223       case 0b011000:
 224       case 0b101000:
 225       case 0b111000: {
 226         // adr/adrp
 227         assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 228         int shift = Instruction_aarch64::extract(_insn, 31, 31);
 229         if (shift) {
 230           uint32_t insn2 = insn_at(1);
 231           if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 232               Instruction_aarch64::extract(_insn, 4, 0) ==
 233               Instruction_aarch64::extract(insn2, 9, 5)) {
 234             instructions = adrp(insn_addr, target, adrpMem());
 235           } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 236                      Instruction_aarch64::extract(_insn, 4, 0) ==
 237                      Instruction_aarch64::extract(insn2, 4, 0)) {
 238             instructions = adrp(insn_addr, target, adrpAdd());
 239           } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
 240                      Instruction_aarch64::extract(_insn, 4, 0) ==
 241                      Instruction_aarch64::extract(insn2, 4, 0)) {
 242             instructions = adrp(insn_addr, target, adrpMovk());
 243           } else {
 244             ShouldNotReachHere();
 245           }
 246         } else {
 247           instructions = adr(insn_addr, target);
 248         }
 249         break;
 250       }
 251       case 0b001001:
 252       case 0b011001:
 253       case 0b101001:
 254       case 0b111001: {
 255         instructions = immediate(insn_addr, target);
 256         break;
 257       }
 258       default: {
 259         ShouldNotReachHere();
 260       }
 261     }
 262 
 263     verify(insn_addr, target);
 264     return instructions * NativeInstruction::instruction_size;
 265   }
 266 };
 267 
 268 class Patcher : public RelocActions {
 269   virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; }
 270   virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; }
 271   virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; }
 272 
 273 public:
 274   Patcher(address insn_addr) : RelocActions(insn_addr) {}
 275 
 276   virtual int unconditionalBranch(address insn_addr, address &target) {
 277     intptr_t offset = (target - insn_addr) >> 2;
 278     Instruction_aarch64::spatch(insn_addr, 25, 0, offset);
 279     return 1;
 280   }
 281   virtual int conditionalBranch(address insn_addr, address &target) {
 282     intptr_t offset = (target - insn_addr) >> 2;
 283     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 284     return 1;
 285   }
 286   virtual int testAndBranch(address insn_addr, address &target) {
 287     intptr_t offset = (target - insn_addr) >> 2;
 288     Instruction_aarch64::spatch(insn_addr, 18, 5, offset);
 289     return 1;
 290   }
 291   virtual int loadStore(address insn_addr, address &target) {
 292     intptr_t offset = (target - insn_addr) >> 2;
 293     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 294     return 1;
 295   }
 296   virtual int adr(address insn_addr, address &target) {
 297 #ifdef ASSERT
 298     assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 299 #endif
 300     // PC-rel. addressing
 301     ptrdiff_t offset = target - insn_addr;
 302     int offset_lo = offset & 3;
 303     offset >>= 2;
 304     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 305     Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
 306     return 1;
 307   }
 308   virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
 309     int instructions = 1;
 310 #ifdef ASSERT
 311     assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 312 #endif
 313     ptrdiff_t offset = target - insn_addr;
 314     instructions = 2;
 315     precond(inner != nullptr);
 316     // Give the inner reloc a chance to modify the target.
 317     address adjusted_target = target;
 318     instructions = (*inner)(insn_addr, adjusted_target);
 319     uintptr_t pc_page = (uintptr_t)insn_addr >> 12;
 320     uintptr_t adr_page = (uintptr_t)adjusted_target >> 12;
 321     offset = adr_page - pc_page;
 322     int offset_lo = offset & 3;
 323     offset >>= 2;
 324     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 325     Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
 326     return instructions;
 327   }
 328   static int adrpMem_impl(address insn_addr, address &target) {
 329     uintptr_t dest = (uintptr_t)target;
 330     int offset_lo = dest & 0xfff;
 331     uint32_t insn2 = insn_at(insn_addr, 1);
 332     uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
 333     Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size);
 334     guarantee(((dest >> size) << size) == dest, "misaligned target");
 335     return 2;
 336   }
 337   static int adrpAdd_impl(address insn_addr, address &target) {
 338     uintptr_t dest = (uintptr_t)target;
 339     int offset_lo = dest & 0xfff;
 340     Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo);
 341     return 2;
 342   }
 343   static int adrpMovk_impl(address insn_addr, address &target) {
 344     uintptr_t dest = uintptr_t(target);
 345     Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32);
 346     dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL);
 347     target = address(dest);
 348     return 2;
 349   }
 350   virtual int immediate(address insn_addr, address &target) {
 351     assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
 352     uint64_t dest = (uint64_t)target;
 353     // Move wide constant
 354     assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 355     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 356     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 357     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 358     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 359     return 3;
 360   }
 361   virtual void verify(address insn_addr, address &target) {
 362 #ifdef ASSERT
 363     address address_is = MacroAssembler::target_addr_for_insn(insn_addr);
 364     if (!(address_is == target)) {
 365       tty->print_cr("%p at %p should be %p", address_is, insn_addr, target);
 366       disnm((intptr_t)insn_addr);
 367       assert(address_is == target, "should be");
 368     }
 369 #endif
 370   }
 371 };
 372 
 373 // If insn1 and insn2 use the same register to form an address, either
 374 // by an offsetted LDR or a simple ADD, return the offset. If the
 375 // second instruction is an LDR, the offset may be scaled.
 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) {
 377   if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 378       Instruction_aarch64::extract(insn1, 4, 0) ==
 379       Instruction_aarch64::extract(insn2, 9, 5)) {
 380     // Load/store register (unsigned immediate)
 381     byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 382     uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
 383     byte_offset <<= size;
 384     return true;
 385   } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 386              Instruction_aarch64::extract(insn1, 4, 0) ==
 387              Instruction_aarch64::extract(insn2, 4, 0)) {
 388     // add (immediate)
 389     byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 390     return true;
 391   }
 392   return false;
 393 }
 394 
 395 class AArch64Decoder : public RelocActions {
 396   virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; }
 397   virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; }
 398   virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; }
 399 
 400 public:
 401   AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {}
 402 
 403   virtual int loadStore(address insn_addr, address &target) {
 404     intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
 405     target = insn_addr + (offset << 2);
 406     return 1;
 407   }
 408   virtual int unconditionalBranch(address insn_addr, address &target) {
 409     intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0);
 410     target = insn_addr + (offset << 2);
 411     return 1;
 412   }
 413   virtual int conditionalBranch(address insn_addr, address &target) {
 414     intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
 415     target = address(((uint64_t)insn_addr + (offset << 2)));
 416     return 1;
 417   }
 418   virtual int testAndBranch(address insn_addr, address &target) {
 419     intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5);
 420     target = address(((uint64_t)insn_addr + (offset << 2)));
 421     return 1;
 422   }
 423   virtual int adr(address insn_addr, address &target) {
 424     // PC-rel. addressing
 425     intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
 426     offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
 427     target = address((uint64_t)insn_addr + offset);
 428     return 1;
 429   }
 430   virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
 431     assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 432     intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
 433     offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
 434     int shift = 12;
 435     offset <<= shift;
 436     uint64_t target_page = ((uint64_t)insn_addr) + offset;
 437     target_page &= ((uint64_t)-1) << shift;
 438     uint32_t insn2 = insn_at(1);
 439     target = address(target_page);
 440     precond(inner != nullptr);
 441     (*inner)(insn_addr, target);
 442     return 2;
 443   }
 444   static int adrpMem_impl(address insn_addr, address &target) {
 445     uint32_t insn2 = insn_at(insn_addr, 1);
 446     // Load/store register (unsigned immediate)
 447     ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 448     uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
 449     byte_offset <<= size;
 450     target += byte_offset;
 451     return 2;
 452   }
 453   static int adrpAdd_impl(address insn_addr, address &target) {
 454     uint32_t insn2 = insn_at(insn_addr, 1);
 455     // add (immediate)
 456     ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 457     target += byte_offset;
 458     return 2;
 459   }
 460   static int adrpMovk_impl(address insn_addr, address &target) {
 461     uint32_t insn2 = insn_at(insn_addr, 1);
 462     uint64_t dest = uint64_t(target);
 463     dest = (dest & 0xffff0000ffffffff) |
 464       ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
 465     target = address(dest);
 466 
 467     // We know the destination 4k page. Maybe we have a third
 468     // instruction.
 469     uint32_t insn = insn_at(insn_addr, 0);
 470     uint32_t insn3 = insn_at(insn_addr, 2);
 471     ptrdiff_t byte_offset;
 472     if (offset_for(insn, insn3, byte_offset)) {
 473       target += byte_offset;
 474       return 3;
 475     } else {
 476       return 2;
 477     }
 478   }
 479   virtual int immediate(address insn_addr, address &target) {
 480     uint32_t *insns = (uint32_t *)insn_addr;
 481     assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
 482     // Move wide constant: movz, movk, movk.  See movptr().
 483     assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
 484     assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
 485     target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5))
 486                  + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
 487                  + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
 488     assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 489     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 490     return 3;
 491   }
 492   virtual void verify(address insn_addr, address &target) {
 493   }
 494 };
 495 
 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) {
 497   AArch64Decoder decoder(insn_addr, insn);
 498   address target;
 499   decoder.run(insn_addr, target);
 500   return target;
 501 }
 502 
 503 // Patch any kind of instruction; there may be several instructions.
 504 // Return the total length (in bytes) of the instructions.
 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) {
 506   Patcher patcher(insn_addr);
 507   return patcher.run(insn_addr, target);
 508 }
 509 
 510 int MacroAssembler::patch_oop(address insn_addr, address o) {
 511   int instructions;
 512   unsigned insn = *(unsigned*)insn_addr;
 513   assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 514 
 515   // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
 516   // narrow OOPs by setting the upper 16 bits in the first
 517   // instruction.
 518   if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
 519     // Move narrow OOP
 520     uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o));
 521     Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 522     Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 523     instructions = 2;
 524   } else {
 525     // Move wide OOP
 526     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 527     uintptr_t dest = (uintptr_t)o;
 528     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 529     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 530     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 531     instructions = 3;
 532   }
 533   return instructions * NativeInstruction::instruction_size;
 534 }
 535 
 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
 537   // Metadata pointers are either narrow (32 bits) or wide (48 bits).
 538   // We encode narrow ones by setting the upper 16 bits in the first
 539   // instruction.
 540   NativeInstruction *insn = nativeInstruction_at(insn_addr);
 541   assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
 542          nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 543 
 544   Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 545   Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 546   return 2 * NativeInstruction::instruction_size;
 547 }
 548 
 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) {
 550   if (NativeInstruction::is_ldrw_to_zr(address(&insn))) {
 551     return nullptr;
 552   }
 553   return MacroAssembler::target_addr_for_insn(insn_addr, insn);
 554 }
 555 
 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) {
 557   if (acquire) {
 558     lea(tmp, Address(rthread, JavaThread::polling_word_offset()));
 559     ldar(tmp, tmp);
 560   } else {
 561     ldr(tmp, Address(rthread, JavaThread::polling_word_offset()));
 562   }
 563   if (at_return) {
 564     // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
 565     // we may safely use the sp instead to perform the stack watermark check.
 566     cmp(in_nmethod ? sp : rfp, tmp);
 567     br(Assembler::HI, slow_path);
 568   } else {
 569     tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path);
 570   }
 571 }
 572 
 573 void MacroAssembler::rt_call(address dest, Register tmp) {
 574   CodeBlob *cb = CodeCache::find_blob(dest);
 575   if (cb) {
 576     far_call(RuntimeAddress(dest));
 577   } else {
 578     lea(tmp, RuntimeAddress(dest));
 579     blr(tmp);
 580   }
 581 }
 582 
 583 void MacroAssembler::push_cont_fastpath(Register java_thread) {
 584   if (!Continuations::enabled()) return;
 585   Label done;
 586   ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
 587   cmp(sp, rscratch1);
 588   br(Assembler::LS, done);
 589   mov(rscratch1, sp); // we can't use sp as the source in str
 590   str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
 591   bind(done);
 592 }
 593 
 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) {
 595   if (!Continuations::enabled()) return;
 596   Label done;
 597   ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
 598   cmp(sp, rscratch1);
 599   br(Assembler::LO, done);
 600   str(zr, Address(java_thread, JavaThread::cont_fastpath_offset()));
 601   bind(done);
 602 }
 603 
 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 605   // we must set sp to zero to clear frame
 606   str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
 607 
 608   // must clear fp, so that compiled frames are not confused; it is
 609   // possible that we need it only for debugging
 610   if (clear_fp) {
 611     str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
 612   }
 613 
 614   // Always clear the pc because it could have been set by make_walkable()
 615   str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
 616 }
 617 
 618 // Calls to C land
 619 //
 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded
 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 622 // has to be reset to 0. This is required to allow proper stack traversal.
 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 624                                          Register last_java_fp,
 625                                          Register last_java_pc,
 626                                          Register scratch) {
 627 
 628   if (last_java_pc->is_valid()) {
 629       str(last_java_pc, Address(rthread,
 630                                 JavaThread::frame_anchor_offset()
 631                                 + JavaFrameAnchor::last_Java_pc_offset()));
 632     }
 633 
 634   // determine last_java_sp register
 635   if (last_java_sp == sp) {
 636     mov(scratch, sp);
 637     last_java_sp = scratch;
 638   } else if (!last_java_sp->is_valid()) {
 639     last_java_sp = esp;
 640   }
 641 
 642   str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
 643 
 644   // last_java_fp is optional
 645   if (last_java_fp->is_valid()) {
 646     str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
 647   }
 648 }
 649 
 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 651                                          Register last_java_fp,
 652                                          address  last_java_pc,
 653                                          Register scratch) {
 654   assert(last_java_pc != nullptr, "must provide a valid PC");
 655 
 656   adr(scratch, last_java_pc);
 657   str(scratch, Address(rthread,
 658                        JavaThread::frame_anchor_offset()
 659                        + JavaFrameAnchor::last_Java_pc_offset()));
 660 
 661   set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
 662 }
 663 
 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 665                                          Register last_java_fp,
 666                                          Label &L,
 667                                          Register scratch) {
 668   if (L.is_bound()) {
 669     set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
 670   } else {
 671     InstructionMark im(this);
 672     L.add_patch_at(code(), locator());
 673     set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch);
 674   }
 675 }
 676 
 677 static inline bool target_needs_far_branch(address addr) {
 678   // codecache size <= 128M
 679   if (!MacroAssembler::far_branches()) {
 680     return false;
 681   }
 682   // codecache size > 240M
 683   if (MacroAssembler::codestub_branch_needs_far_jump()) {
 684     return true;
 685   }
 686   // codecache size: 128M..240M
 687   return !CodeCache::is_non_nmethod(addr);
 688 }
 689 
 690 void MacroAssembler::far_call(Address entry, Register tmp) {
 691   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 692   assert(CodeCache::find_blob(entry.target()) != nullptr,
 693          "destination of far call not found in code cache");
 694   assert(entry.rspec().type() == relocInfo::external_word_type
 695          || entry.rspec().type() == relocInfo::runtime_call_type
 696          || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
 697   if (target_needs_far_branch(entry.target())) {
 698     uint64_t offset;
 699     // We can use ADRP here because we know that the total size of
 700     // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
 701     adrp(tmp, entry, offset);
 702     add(tmp, tmp, offset);
 703     blr(tmp);
 704   } else {
 705     bl(entry);
 706   }
 707 }
 708 
 709 int MacroAssembler::far_jump(Address entry, Register tmp) {
 710   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 711   assert(CodeCache::find_blob(entry.target()) != nullptr,
 712          "destination of far call not found in code cache");
 713   assert(entry.rspec().type() == relocInfo::external_word_type
 714          || entry.rspec().type() == relocInfo::runtime_call_type
 715          || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
 716   address start = pc();
 717   if (target_needs_far_branch(entry.target())) {
 718     uint64_t offset;
 719     // We can use ADRP here because we know that the total size of
 720     // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
 721     adrp(tmp, entry, offset);
 722     add(tmp, tmp, offset);
 723     br(tmp);
 724   } else {
 725     b(entry);
 726   }
 727   return pc() - start;
 728 }
 729 
 730 void MacroAssembler::reserved_stack_check() {
 731     // testing if reserved zone needs to be enabled
 732     Label no_reserved_zone_enabling;
 733 
 734     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 735     cmp(sp, rscratch1);
 736     br(Assembler::LO, no_reserved_zone_enabling);
 737 
 738     enter();   // LR and FP are live.
 739     lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone));
 740     mov(c_rarg0, rthread);
 741     blr(rscratch1);
 742     leave();
 743 
 744     // We have already removed our own frame.
 745     // throw_delayed_StackOverflowError will think that it's been
 746     // called by our caller.
 747     lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
 748     br(rscratch1);
 749     should_not_reach_here();
 750 
 751     bind(no_reserved_zone_enabling);
 752 }
 753 
 754 static void pass_arg0(MacroAssembler* masm, Register arg) {
 755   if (c_rarg0 != arg ) {
 756     masm->mov(c_rarg0, arg);
 757   }
 758 }
 759 
 760 static void pass_arg1(MacroAssembler* masm, Register arg) {
 761   if (c_rarg1 != arg ) {
 762     masm->mov(c_rarg1, arg);
 763   }
 764 }
 765 
 766 static void pass_arg2(MacroAssembler* masm, Register arg) {
 767   if (c_rarg2 != arg ) {
 768     masm->mov(c_rarg2, arg);
 769   }
 770 }
 771 
 772 static void pass_arg3(MacroAssembler* masm, Register arg) {
 773   if (c_rarg3 != arg ) {
 774     masm->mov(c_rarg3, arg);
 775   }
 776 }
 777 
 778 void MacroAssembler::call_VM_base(Register oop_result,
 779                                   Register java_thread,
 780                                   Register last_java_sp,
 781                                   address  entry_point,
 782                                   int      number_of_arguments,
 783                                   bool     check_exceptions) {
 784    // determine java_thread register
 785   if (!java_thread->is_valid()) {
 786     java_thread = rthread;
 787   }
 788 
 789   // determine last_java_sp register
 790   if (!last_java_sp->is_valid()) {
 791     last_java_sp = esp;
 792   }
 793 
 794   // debugging support
 795   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 796   assert(java_thread == rthread, "unexpected register");
 797 #ifdef ASSERT
 798   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 799   // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
 800 #endif // ASSERT
 801 
 802   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 803   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 804 
 805   // push java thread (becomes first argument of C function)
 806 
 807   mov(c_rarg0, java_thread);
 808 
 809   // set last Java frame before call
 810   assert(last_java_sp != rfp, "can't use rfp");
 811 
 812   Label l;
 813   set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
 814 
 815   // do the call, remove parameters
 816   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
 817 
 818   // lr could be poisoned with PAC signature during throw_pending_exception
 819   // if it was tail-call optimized by compiler, since lr is not callee-saved
 820   // reload it with proper value
 821   adr(lr, l);
 822 
 823   // reset last Java frame
 824   // Only interpreter should have to clear fp
 825   reset_last_Java_frame(true);
 826 
 827    // C++ interp handles this in the interpreter
 828   check_and_handle_popframe(java_thread);
 829   check_and_handle_earlyret(java_thread);
 830 
 831   if (check_exceptions) {
 832     // check for pending exceptions (java_thread is set upon return)
 833     ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
 834     Label ok;
 835     cbz(rscratch1, ok);
 836     lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
 837     br(rscratch1);
 838     bind(ok);
 839   }
 840 
 841   // get oop result if there is one and reset the value in the thread
 842   if (oop_result->is_valid()) {
 843     get_vm_result(oop_result, java_thread);
 844   }
 845 }
 846 
 847 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 848   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
 849 }
 850 
 851 // Check the entry target is always reachable from any branch.
 852 static bool is_always_within_branch_range(Address entry) {
 853   const address target = entry.target();
 854 
 855   if (!CodeCache::contains(target)) {
 856     // We always use trampolines for callees outside CodeCache.
 857     assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target");
 858     return false;
 859   }
 860 
 861   if (!MacroAssembler::far_branches()) {
 862     return true;
 863   }
 864 
 865   if (entry.rspec().type() == relocInfo::runtime_call_type) {
 866     // Runtime calls are calls of a non-compiled method (stubs, adapters).
 867     // Non-compiled methods stay forever in CodeCache.
 868     // We check whether the longest possible branch is within the branch range.
 869     assert(CodeCache::find_blob(target) != nullptr &&
 870           !CodeCache::find_blob(target)->is_nmethod(),
 871           "runtime call of compiled method");
 872     const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size;
 873     const address left_longest_branch_start = CodeCache::low_bound();
 874     const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) &&
 875                               Assembler::reachable_from_branch_at(right_longest_branch_start, target);
 876     return is_reachable;
 877   }
 878 
 879   return false;
 880 }
 881 
 882 // Maybe emit a call via a trampoline. If the code cache is small
 883 // trampolines won't be emitted.
 884 address MacroAssembler::trampoline_call(Address entry) {
 885   assert(entry.rspec().type() == relocInfo::runtime_call_type
 886          || entry.rspec().type() == relocInfo::opt_virtual_call_type
 887          || entry.rspec().type() == relocInfo::static_call_type
 888          || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
 889 
 890   address target = entry.target();
 891 
 892   if (!is_always_within_branch_range(entry)) {
 893     if (!in_scratch_emit_size()) {
 894       // We don't want to emit a trampoline if C2 is generating dummy
 895       // code during its branch shortening phase.
 896       if (entry.rspec().type() == relocInfo::runtime_call_type) {
 897         assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs");
 898         code()->share_trampoline_for(entry.target(), offset());
 899       } else {
 900         address stub = emit_trampoline_stub(offset(), target);
 901         if (stub == nullptr) {
 902           postcond(pc() == badAddress);
 903           return nullptr; // CodeCache is full
 904         }
 905       }
 906     }
 907     target = pc();
 908   }
 909 
 910   address call_pc = pc();
 911   relocate(entry.rspec());
 912   bl(target);
 913 
 914   postcond(pc() != badAddress);
 915   return call_pc;
 916 }
 917 
 918 // Emit a trampoline stub for a call to a target which is too far away.
 919 //
 920 // code sequences:
 921 //
 922 // call-site:
 923 //   branch-and-link to <destination> or <trampoline stub>
 924 //
 925 // Related trampoline stub for this call site in the stub section:
 926 //   load the call target from the constant pool
 927 //   branch (LR still points to the call site above)
 928 
 929 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
 930                                              address dest) {
 931   // Max stub size: alignment nop, TrampolineStub.
 932   address stub = start_a_stub(max_trampoline_stub_size());
 933   if (stub == nullptr) {
 934     return nullptr;  // CodeBuffer::expand failed
 935   }
 936 
 937   // Create a trampoline stub relocation which relates this trampoline stub
 938   // with the call instruction at insts_call_instruction_offset in the
 939   // instructions code-section.
 940   align(wordSize);
 941   relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
 942                                             + insts_call_instruction_offset));
 943   const int stub_start_offset = offset();
 944 
 945   // Now, create the trampoline stub's code:
 946   // - load the call
 947   // - call
 948   Label target;
 949   ldr(rscratch1, target);
 950   br(rscratch1);
 951   bind(target);
 952   assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
 953          "should be");
 954   emit_int64((int64_t)dest);
 955 
 956   const address stub_start_addr = addr_at(stub_start_offset);
 957 
 958   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
 959 
 960   end_a_stub();
 961   return stub_start_addr;
 962 }
 963 
 964 int MacroAssembler::max_trampoline_stub_size() {
 965   // Max stub size: alignment nop, TrampolineStub.
 966   return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size;
 967 }
 968 
 969 void MacroAssembler::emit_static_call_stub() {
 970   // CompiledDirectCall::set_to_interpreted knows the
 971   // exact layout of this stub.
 972 
 973   isb();
 974   mov_metadata(rmethod, nullptr);
 975 
 976   // Jump to the entry point of the c2i stub.
 977   movptr(rscratch1, 0);
 978   br(rscratch1);
 979 }
 980 
 981 int MacroAssembler::static_call_stub_size() {
 982   // isb; movk; movz; movz; movk; movz; movz; br
 983   return 8 * NativeInstruction::instruction_size;
 984 }
 985 
 986 void MacroAssembler::c2bool(Register x) {
 987   // implements x == 0 ? 0 : 1
 988   // note: must only look at least-significant byte of x
 989   //       since C-style booleans are stored in one byte
 990   //       only! (was bug)
 991   tst(x, 0xff);
 992   cset(x, Assembler::NE);
 993 }
 994 
 995 address MacroAssembler::ic_call(address entry, jint method_index) {
 996   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 997   // address const_ptr = long_constant((jlong)Universe::non_oop_word());
 998   // uintptr_t offset;
 999   // ldr_constant(rscratch2, const_ptr);
1000   movptr(rscratch2, (intptr_t)Universe::non_oop_word());
1001   return trampoline_call(Address(entry, rh));
1002 }
1003 
1004 int MacroAssembler::ic_check_size() {
1005   if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) {
1006     return NativeInstruction::instruction_size * 7;
1007   } else {
1008     return NativeInstruction::instruction_size * 5;
1009   }
1010 }
1011 
1012 int MacroAssembler::ic_check(int end_alignment) {
1013   Register receiver = j_rarg0;
1014   Register data = rscratch2;
1015   Register tmp1 = rscratch1;
1016   Register tmp2 = r10;
1017 
1018   // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
1019   // before the inline cache check, so we don't have to execute any nop instructions when dispatching
1020   // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
1021   // before the inline cache check here, and not after
1022   align(end_alignment, offset() + ic_check_size());
1023 
1024   int uep_offset = offset();
1025 
1026   if (UseCompressedClassPointers) {
1027     ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
1028     ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
1029     cmpw(tmp1, tmp2);
1030   } else {
1031     ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
1032     ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
1033     cmp(tmp1, tmp2);
1034   }
1035 
1036   Label dont;
1037   br(Assembler::EQ, dont);
1038   far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1039   bind(dont);
1040   assert((offset() % end_alignment) == 0, "Misaligned verified entry point");
1041 
1042   return uep_offset;
1043 }
1044 
1045 // Implementation of call_VM versions
1046 
1047 void MacroAssembler::call_VM(Register oop_result,
1048                              address entry_point,
1049                              bool check_exceptions) {
1050   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
1051 }
1052 
1053 void MacroAssembler::call_VM(Register oop_result,
1054                              address entry_point,
1055                              Register arg_1,
1056                              bool check_exceptions) {
1057   pass_arg1(this, arg_1);
1058   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
1059 }
1060 
1061 void MacroAssembler::call_VM(Register oop_result,
1062                              address entry_point,
1063                              Register arg_1,
1064                              Register arg_2,
1065                              bool check_exceptions) {
1066   assert_different_registers(arg_1, c_rarg2);
1067   pass_arg2(this, arg_2);
1068   pass_arg1(this, arg_1);
1069   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
1070 }
1071 
1072 void MacroAssembler::call_VM(Register oop_result,
1073                              address entry_point,
1074                              Register arg_1,
1075                              Register arg_2,
1076                              Register arg_3,
1077                              bool check_exceptions) {
1078   assert_different_registers(arg_1, c_rarg2, c_rarg3);
1079   assert_different_registers(arg_2, c_rarg3);
1080   pass_arg3(this, arg_3);
1081 
1082   pass_arg2(this, arg_2);
1083 
1084   pass_arg1(this, arg_1);
1085   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
1086 }
1087 
1088 void MacroAssembler::call_VM(Register oop_result,
1089                              Register last_java_sp,
1090                              address entry_point,
1091                              int number_of_arguments,
1092                              bool check_exceptions) {
1093   call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1094 }
1095 
1096 void MacroAssembler::call_VM(Register oop_result,
1097                              Register last_java_sp,
1098                              address entry_point,
1099                              Register arg_1,
1100                              bool check_exceptions) {
1101   pass_arg1(this, arg_1);
1102   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1103 }
1104 
1105 void MacroAssembler::call_VM(Register oop_result,
1106                              Register last_java_sp,
1107                              address entry_point,
1108                              Register arg_1,
1109                              Register arg_2,
1110                              bool check_exceptions) {
1111 
1112   assert_different_registers(arg_1, c_rarg2);
1113   pass_arg2(this, arg_2);
1114   pass_arg1(this, arg_1);
1115   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1116 }
1117 
1118 void MacroAssembler::call_VM(Register oop_result,
1119                              Register last_java_sp,
1120                              address entry_point,
1121                              Register arg_1,
1122                              Register arg_2,
1123                              Register arg_3,
1124                              bool check_exceptions) {
1125   assert_different_registers(arg_1, c_rarg2, c_rarg3);
1126   assert_different_registers(arg_2, c_rarg3);
1127   pass_arg3(this, arg_3);
1128   pass_arg2(this, arg_2);
1129   pass_arg1(this, arg_1);
1130   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1131 }
1132 
1133 
1134 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
1135   ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
1136   str(zr, Address(java_thread, JavaThread::vm_result_offset()));
1137   verify_oop_msg(oop_result, "broken oop in call_VM_base");
1138 }
1139 
1140 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
1141   ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
1142   str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
1143 }
1144 
1145 void MacroAssembler::align(int modulus) {
1146   align(modulus, offset());
1147 }
1148 
1149 // Ensure that the code at target bytes offset from the current offset() is aligned
1150 // according to modulus.
1151 void MacroAssembler::align(int modulus, int target) {
1152   int delta = target - offset();
1153   while ((offset() + delta) % modulus != 0) nop();
1154 }
1155 
1156 void MacroAssembler::post_call_nop() {
1157   if (!Continuations::enabled()) {
1158     return;
1159   }
1160   InstructionMark im(this);
1161   relocate(post_call_nop_Relocation::spec());
1162   InlineSkippedInstructionsCounter skipCounter(this);
1163   nop();
1164   movk(zr, 0);
1165   movk(zr, 0);
1166 }
1167 
1168 // these are no-ops overridden by InterpreterMacroAssembler
1169 
1170 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1171 
1172 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1173 
1174 // Look up the method for a megamorphic invokeinterface call.
1175 // The target method is determined by <intf_klass, itable_index>.
1176 // The receiver klass is in recv_klass.
1177 // On success, the result will be in method_result, and execution falls through.
1178 // On failure, execution transfers to the given label.
1179 void MacroAssembler::lookup_interface_method(Register recv_klass,
1180                                              Register intf_klass,
1181                                              RegisterOrConstant itable_index,
1182                                              Register method_result,
1183                                              Register scan_temp,
1184                                              Label& L_no_such_interface,
1185                          bool return_method) {
1186   assert_different_registers(recv_klass, intf_klass, scan_temp);
1187   assert_different_registers(method_result, intf_klass, scan_temp);
1188   assert(recv_klass != method_result || !return_method,
1189      "recv_klass can be destroyed when method isn't needed");
1190   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1191          "caller must use same register for non-constant itable index as for method");
1192 
1193   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
1194   int vtable_base = in_bytes(Klass::vtable_start_offset());
1195   int itentry_off = in_bytes(itableMethodEntry::method_offset());
1196   int scan_step   = itableOffsetEntry::size() * wordSize;
1197   int vte_size    = vtableEntry::size_in_bytes();
1198   assert(vte_size == wordSize, "else adjust times_vte_scale");
1199 
1200   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1201 
1202   // Could store the aligned, prescaled offset in the klass.
1203   // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
1204   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
1205   add(scan_temp, scan_temp, vtable_base);
1206 
1207   if (return_method) {
1208     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1209     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1210     // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
1211     lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
1212     if (itentry_off)
1213       add(recv_klass, recv_klass, itentry_off);
1214   }
1215 
1216   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
1217   //   if (scan->interface() == intf) {
1218   //     result = (klass + scan->offset() + itable_index);
1219   //   }
1220   // }
1221   Label search, found_method;
1222 
1223   ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1224   cmp(intf_klass, method_result);
1225   br(Assembler::EQ, found_method);
1226   bind(search);
1227   // Check that the previous entry is non-null.  A null entry means that
1228   // the receiver class doesn't implement the interface, and wasn't the
1229   // same as when the caller was compiled.
1230   cbz(method_result, L_no_such_interface);
1231   if (itableOffsetEntry::interface_offset() != 0) {
1232     add(scan_temp, scan_temp, scan_step);
1233     ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1234   } else {
1235     ldr(method_result, Address(pre(scan_temp, scan_step)));
1236   }
1237   cmp(intf_klass, method_result);
1238   br(Assembler::NE, search);
1239 
1240   bind(found_method);
1241 
1242   // Got a hit.
1243   if (return_method) {
1244     ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
1245     ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0)));
1246   }
1247 }
1248 
1249 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
1250 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
1251 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
1252 // The target method is determined by <holder_klass, itable_index>.
1253 // The receiver klass is in recv_klass.
1254 // On success, the result will be in method_result, and execution falls through.
1255 // On failure, execution transfers to the given label.
1256 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
1257                                                   Register holder_klass,
1258                                                   Register resolved_klass,
1259                                                   Register method_result,
1260                                                   Register temp_itbl_klass,
1261                                                   Register scan_temp,
1262                                                   int itable_index,
1263                                                   Label& L_no_such_interface) {
1264   // 'method_result' is only used as output register at the very end of this method.
1265   // Until then we can reuse it as 'holder_offset'.
1266   Register holder_offset = method_result;
1267   assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset);
1268 
1269   int vtable_start_offset = in_bytes(Klass::vtable_start_offset());
1270   int itable_offset_entry_size = itableOffsetEntry::size() * wordSize;
1271   int ioffset = in_bytes(itableOffsetEntry::interface_offset());
1272   int ooffset = in_bytes(itableOffsetEntry::offset_offset());
1273 
1274   Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found;
1275 
1276   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1277   add(recv_klass, recv_klass, vtable_start_offset + ioffset);
1278   // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len;
1279   // temp_itbl_klass = itable[0]._interface;
1280   int vtblEntrySize = vtableEntry::size_in_bytes();
1281   assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3");
1282   ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1283   mov(holder_offset, zr);
1284   // scan_temp = &(itable[0]._interface)
1285   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1286 
1287   // Initial checks:
1288   //   - if (holder_klass != resolved_klass), go to "scan for resolved"
1289   //   - if (itable[0] == holder_klass), shortcut to "holder found"
1290   //   - if (itable[0] == 0), no such interface
1291   cmp(resolved_klass, holder_klass);
1292   br(Assembler::NE, L_loop_search_resolved_entry);
1293   cmp(holder_klass, temp_itbl_klass);
1294   br(Assembler::EQ, L_holder_found);
1295   cbz(temp_itbl_klass, L_no_such_interface);
1296 
1297   // Loop: Look for holder_klass record in itable
1298   //   do {
1299   //     temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1300   //     if (temp_itbl_klass == holder_klass) {
1301   //       goto L_holder_found; // Found!
1302   //     }
1303   //   } while (temp_itbl_klass != 0);
1304   //   goto L_no_such_interface // Not found.
1305   Label L_search_holder;
1306   bind(L_search_holder);
1307     ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1308     cmp(holder_klass, temp_itbl_klass);
1309     br(Assembler::EQ, L_holder_found);
1310     cbnz(temp_itbl_klass, L_search_holder);
1311 
1312   b(L_no_such_interface);
1313 
1314   // Loop: Look for resolved_class record in itable
1315   //   while (true) {
1316   //     temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1317   //     if (temp_itbl_klass == 0) {
1318   //       goto L_no_such_interface;
1319   //     }
1320   //     if (temp_itbl_klass == resolved_klass) {
1321   //        goto L_resolved_found;  // Found!
1322   //     }
1323   //     if (temp_itbl_klass == holder_klass) {
1324   //        holder_offset = scan_temp;
1325   //     }
1326   //   }
1327   //
1328   Label L_loop_search_resolved;
1329   bind(L_loop_search_resolved);
1330     ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1331   bind(L_loop_search_resolved_entry);
1332     cbz(temp_itbl_klass, L_no_such_interface);
1333     cmp(resolved_klass, temp_itbl_klass);
1334     br(Assembler::EQ, L_resolved_found);
1335     cmp(holder_klass, temp_itbl_klass);
1336     br(Assembler::NE, L_loop_search_resolved);
1337     mov(holder_offset, scan_temp);
1338     b(L_loop_search_resolved);
1339 
1340   // See if we already have a holder klass. If not, go and scan for it.
1341   bind(L_resolved_found);
1342   cbz(holder_offset, L_search_holder);
1343   mov(scan_temp, holder_offset);
1344 
1345   // Finally, scan_temp contains holder_klass vtable offset
1346   bind(L_holder_found);
1347   ldrw(method_result, Address(scan_temp, ooffset - ioffset));
1348   add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset())
1349     - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass
1350   ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0)));
1351 }
1352 
1353 // virtual method calling
1354 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1355                                            RegisterOrConstant vtable_index,
1356                                            Register method_result) {
1357   assert(vtableEntry::size() * wordSize == 8,
1358          "adjust the scaling in the code below");
1359   int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset());
1360 
1361   if (vtable_index.is_register()) {
1362     lea(method_result, Address(recv_klass,
1363                                vtable_index.as_register(),
1364                                Address::lsl(LogBytesPerWord)));
1365     ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1366   } else {
1367     vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1368     ldr(method_result,
1369         form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0));
1370   }
1371 }
1372 
1373 void MacroAssembler::check_klass_subtype(Register sub_klass,
1374                            Register super_klass,
1375                            Register temp_reg,
1376                            Label& L_success) {
1377   Label L_failure;
1378   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
1379   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
1380   bind(L_failure);
1381 }
1382 
1383 
1384 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1385                                                    Register super_klass,
1386                                                    Register temp_reg,
1387                                                    Label* L_success,
1388                                                    Label* L_failure,
1389                                                    Label* L_slow_path,
1390                                         RegisterOrConstant super_check_offset) {
1391   assert_different_registers(sub_klass, super_klass, temp_reg);
1392   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1393   if (super_check_offset.is_register()) {
1394     assert_different_registers(sub_klass, super_klass,
1395                                super_check_offset.as_register());
1396   } else if (must_load_sco) {
1397     assert(temp_reg != noreg, "supply either a temp or a register offset");
1398   }
1399 
1400   Label L_fallthrough;
1401   int label_nulls = 0;
1402   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
1403   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
1404   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
1405   assert(label_nulls <= 1, "at most one null in the batch");
1406 
1407   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1408   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1409   Address super_check_offset_addr(super_klass, sco_offset);
1410 
1411   // Hacked jmp, which may only be used just before L_fallthrough.
1412 #define final_jmp(label)                                                \
1413   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1414   else                            b(label)                /*omit semi*/
1415 
1416   // If the pointers are equal, we are done (e.g., String[] elements).
1417   // This self-check enables sharing of secondary supertype arrays among
1418   // non-primary types such as array-of-interface.  Otherwise, each such
1419   // type would need its own customized SSA.
1420   // We move this check to the front of the fast path because many
1421   // type checks are in fact trivially successful in this manner,
1422   // so we get a nicely predicted branch right at the start of the check.
1423   cmp(sub_klass, super_klass);
1424   br(Assembler::EQ, *L_success);
1425 
1426   // Check the supertype display:
1427   if (must_load_sco) {
1428     ldrw(temp_reg, super_check_offset_addr);
1429     super_check_offset = RegisterOrConstant(temp_reg);
1430   }
1431   Address super_check_addr(sub_klass, super_check_offset);
1432   ldr(rscratch1, super_check_addr);
1433   cmp(super_klass, rscratch1); // load displayed supertype
1434 
1435   // This check has worked decisively for primary supers.
1436   // Secondary supers are sought in the super_cache ('super_cache_addr').
1437   // (Secondary supers are interfaces and very deeply nested subtypes.)
1438   // This works in the same check above because of a tricky aliasing
1439   // between the super_cache and the primary super display elements.
1440   // (The 'super_check_addr' can address either, as the case requires.)
1441   // Note that the cache is updated below if it does not help us find
1442   // what we need immediately.
1443   // So if it was a primary super, we can just fail immediately.
1444   // Otherwise, it's the slow path for us (no success at this point).
1445 
1446   if (super_check_offset.is_register()) {
1447     br(Assembler::EQ, *L_success);
1448     subs(zr, super_check_offset.as_register(), sc_offset);
1449     if (L_failure == &L_fallthrough) {
1450       br(Assembler::EQ, *L_slow_path);
1451     } else {
1452       br(Assembler::NE, *L_failure);
1453       final_jmp(*L_slow_path);
1454     }
1455   } else if (super_check_offset.as_constant() == sc_offset) {
1456     // Need a slow path; fast failure is impossible.
1457     if (L_slow_path == &L_fallthrough) {
1458       br(Assembler::EQ, *L_success);
1459     } else {
1460       br(Assembler::NE, *L_slow_path);
1461       final_jmp(*L_success);
1462     }
1463   } else {
1464     // No slow path; it's a fast decision.
1465     if (L_failure == &L_fallthrough) {
1466       br(Assembler::EQ, *L_success);
1467     } else {
1468       br(Assembler::NE, *L_failure);
1469       final_jmp(*L_success);
1470     }
1471   }
1472 
1473   bind(L_fallthrough);
1474 
1475 #undef final_jmp
1476 }
1477 
1478 // These two are taken from x86, but they look generally useful
1479 
1480 // scans count pointer sized words at [addr] for occurrence of value,
1481 // generic
1482 void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1483                                 Register scratch) {
1484   Label Lloop, Lexit;
1485   cbz(count, Lexit);
1486   bind(Lloop);
1487   ldr(scratch, post(addr, wordSize));
1488   cmp(value, scratch);
1489   br(EQ, Lexit);
1490   sub(count, count, 1);
1491   cbnz(count, Lloop);
1492   bind(Lexit);
1493 }
1494 
1495 // scans count 4 byte words at [addr] for occurrence of value,
1496 // generic
1497 void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1498                                 Register scratch) {
1499   Label Lloop, Lexit;
1500   cbz(count, Lexit);
1501   bind(Lloop);
1502   ldrw(scratch, post(addr, wordSize));
1503   cmpw(value, scratch);
1504   br(EQ, Lexit);
1505   sub(count, count, 1);
1506   cbnz(count, Lloop);
1507   bind(Lexit);
1508 }
1509 
1510 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1511                                                    Register super_klass,
1512                                                    Register temp_reg,
1513                                                    Register temp2_reg,
1514                                                    Label* L_success,
1515                                                    Label* L_failure,
1516                                                    bool set_cond_codes) {
1517   // NB! Callers may assume that, when temp2_reg is a valid register,
1518   // this code sets it to a nonzero value.
1519 
1520   assert_different_registers(sub_klass, super_klass, temp_reg);
1521   if (temp2_reg != noreg)
1522     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1523 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1524 
1525   Label L_fallthrough;
1526   int label_nulls = 0;
1527   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
1528   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
1529   assert(label_nulls <= 1, "at most one null in the batch");
1530 
1531   // a couple of useful fields in sub_klass:
1532   int ss_offset = in_bytes(Klass::secondary_supers_offset());
1533   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1534   Address secondary_supers_addr(sub_klass, ss_offset);
1535   Address super_cache_addr(     sub_klass, sc_offset);
1536 
1537   BLOCK_COMMENT("check_klass_subtype_slow_path");
1538 
1539   // Do a linear scan of the secondary super-klass chain.
1540   // This code is rarely used, so simplicity is a virtue here.
1541   // The repne_scan instruction uses fixed registers, which we must spill.
1542   // Don't worry too much about pre-existing connections with the input regs.
1543 
1544   assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1545   assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1546 
1547   RegSet pushed_registers;
1548   if (!IS_A_TEMP(r2))    pushed_registers += r2;
1549   if (!IS_A_TEMP(r5))    pushed_registers += r5;
1550 
1551   if (super_klass != r0) {
1552     if (!IS_A_TEMP(r0))   pushed_registers += r0;
1553   }
1554 
1555   push(pushed_registers, sp);
1556 
1557   // Get super_klass value into r0 (even if it was in r5 or r2).
1558   if (super_klass != r0) {
1559     mov(r0, super_klass);
1560   }
1561 
1562 #ifndef PRODUCT
1563   incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
1564 #endif //PRODUCT
1565 
1566   // We will consult the secondary-super array.
1567   ldr(r5, secondary_supers_addr);
1568   // Load the array length.
1569   ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1570   // Skip to start of data.
1571   add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1572 
1573   cmp(sp, zr); // Clear Z flag; SP is never zero
1574   // Scan R2 words at [R5] for an occurrence of R0.
1575   // Set NZ/Z based on last compare.
1576   repne_scan(r5, r0, r2, rscratch1);
1577 
1578   // Unspill the temp. registers:
1579   pop(pushed_registers, sp);
1580 
1581   br(Assembler::NE, *L_failure);
1582 
1583   // Success.  Cache the super we found and proceed in triumph.
1584   str(super_klass, super_cache_addr);
1585 
1586   if (L_success != &L_fallthrough) {
1587     b(*L_success);
1588   }
1589 
1590 #undef IS_A_TEMP
1591 
1592   bind(L_fallthrough);
1593 }
1594 
1595 // Ensure that the inline code and the stub are using the same registers.
1596 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS                    \
1597 do {                                                               \
1598   assert(r_super_klass  == r0                                   && \
1599          r_array_base   == r1                                   && \
1600          r_array_length == r2                                   && \
1601          (r_array_index == r3        || r_array_index == noreg) && \
1602          (r_sub_klass   == r4        || r_sub_klass   == noreg) && \
1603          (r_bitmap      == rscratch2 || r_bitmap      == noreg) && \
1604          (result        == r5        || result        == noreg), "registers must match aarch64.ad"); \
1605 } while(0)
1606 
1607 // Return true: we succeeded in generating this code
1608 bool MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass,
1609                                                    Register r_super_klass,
1610                                                    Register temp1,
1611                                                    Register temp2,
1612                                                    Register temp3,
1613                                                    FloatRegister vtemp,
1614                                                    Register result,
1615                                                    u1 super_klass_slot,
1616                                                    bool stub_is_near) {
1617   assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2);
1618 
1619   Label L_fallthrough;
1620 
1621   BLOCK_COMMENT("lookup_secondary_supers_table {");
1622 
1623   const Register
1624     r_array_base   = temp1, // r1
1625     r_array_length = temp2, // r2
1626     r_array_index  = temp3, // r3
1627     r_bitmap       = rscratch2;
1628 
1629   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1630 
1631   u1 bit = super_klass_slot;
1632 
1633   // Make sure that result is nonzero if the TBZ below misses.
1634   mov(result, 1);
1635 
1636   // We're going to need the bitmap in a vector reg and in a core reg,
1637   // so load both now.
1638   ldr(r_bitmap, Address(r_sub_klass, Klass::bitmap_offset()));
1639   if (bit != 0) {
1640     ldrd(vtemp, Address(r_sub_klass, Klass::bitmap_offset()));
1641   }
1642   // First check the bitmap to see if super_klass might be present. If
1643   // the bit is zero, we are certain that super_klass is not one of
1644   // the secondary supers.
1645   tbz(r_bitmap, bit, L_fallthrough);
1646 
1647   // Get the first array index that can contain super_klass into r_array_index.
1648   if (bit != 0) {
1649     shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit);
1650     cnt(vtemp, T8B, vtemp);
1651     addv(vtemp, T8B, vtemp);
1652     fmovd(r_array_index, vtemp);
1653   } else {
1654     mov(r_array_index, (u1)1);
1655   }
1656   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
1657 
1658   // We will consult the secondary-super array.
1659   ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
1660 
1661   // The value i in r_array_index is >= 1, so even though r_array_base
1662   // points to the length, we don't need to adjust it to point to the
1663   // data.
1664   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
1665   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
1666 
1667   ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
1668   eor(result, result, r_super_klass);
1669   cbz(result, L_fallthrough); // Found a match
1670 
1671   // Is there another entry to check? Consult the bitmap.
1672   tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough);
1673 
1674   // Linear probe.
1675   if (bit != 0) {
1676     ror(r_bitmap, r_bitmap, bit);
1677   }
1678 
1679   // The slot we just inspected is at secondary_supers[r_array_index - 1].
1680   // The next slot to be inspected, by the stub we're about to call,
1681   // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap
1682   // have been checked.
1683   Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub());
1684   if (stub_is_near) {
1685     bl(stub);
1686   } else {
1687     address call = trampoline_call(stub);
1688     if (call == nullptr) {
1689       return false; // trampoline allocation failed
1690     }
1691   }
1692 
1693   BLOCK_COMMENT("} lookup_secondary_supers_table");
1694 
1695   bind(L_fallthrough);
1696 
1697   if (VerifySecondarySupers) {
1698     verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0
1699                                   temp1, temp2, result);      // r1, r2, r5
1700   }
1701   return true;
1702 }
1703 
1704 // Called by code generated by check_klass_subtype_slow_path
1705 // above. This is called when there is a collision in the hashed
1706 // lookup in the secondary supers array.
1707 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
1708                                                              Register r_array_base,
1709                                                              Register r_array_index,
1710                                                              Register r_bitmap,
1711                                                              Register temp1,
1712                                                              Register result) {
1713   assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1);
1714 
1715   const Register
1716     r_array_length = temp1,
1717     r_sub_klass    = noreg; // unused
1718 
1719   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1720 
1721   Label L_fallthrough, L_huge;
1722 
1723   // Load the array length.
1724   ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
1725   // And adjust the array base to point to the data.
1726   // NB! Effectively increments current slot index by 1.
1727   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
1728   add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
1729 
1730   // The bitmap is full to bursting.
1731   // Implicit invariant: BITMAP_FULL implies (length > 0)
1732   assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), "");
1733   cmn(r_bitmap, (u1)1);
1734   br(EQ, L_huge);
1735 
1736   // NB! Our caller has checked bits 0 and 1 in the bitmap. The
1737   // current slot (at secondary_supers[r_array_index]) has not yet
1738   // been inspected, and r_array_index may be out of bounds if we
1739   // wrapped around the end of the array.
1740 
1741   { // This is conventional linear probing, but instead of terminating
1742     // when a null entry is found in the table, we maintain a bitmap
1743     // in which a 0 indicates missing entries.
1744     // The check above guarantees there are 0s in the bitmap, so the loop
1745     // eventually terminates.
1746     Label L_loop;
1747     bind(L_loop);
1748 
1749     // Check for wraparound.
1750     cmp(r_array_index, r_array_length);
1751     csel(r_array_index, zr, r_array_index, GE);
1752 
1753     ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
1754     eor(result, rscratch1, r_super_klass);
1755     cbz(result, L_fallthrough);
1756 
1757     tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero
1758 
1759     ror(r_bitmap, r_bitmap, 1);
1760     add(r_array_index, r_array_index, 1);
1761     b(L_loop);
1762   }
1763 
1764   { // Degenerate case: more than 64 secondary supers.
1765     // FIXME: We could do something smarter here, maybe a vectorized
1766     // comparison or a binary search, but is that worth any added
1767     // complexity?
1768     bind(L_huge);
1769     cmp(sp, zr); // Clear Z flag; SP is never zero
1770     repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1);
1771     cset(result, NE); // result == 0 iff we got a match.
1772   }
1773 
1774   bind(L_fallthrough);
1775 }
1776 
1777 // Make sure that the hashed lookup and a linear scan agree.
1778 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
1779                                                    Register r_super_klass,
1780                                                    Register temp1,
1781                                                    Register temp2,
1782                                                    Register result) {
1783   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1);
1784 
1785   const Register
1786     r_array_base   = temp1,
1787     r_array_length = temp2,
1788     r_array_index  = noreg, // unused
1789     r_bitmap       = noreg; // unused
1790 
1791   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1792 
1793   BLOCK_COMMENT("verify_secondary_supers_table {");
1794 
1795   // We will consult the secondary-super array.
1796   ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
1797 
1798   // Load the array length.
1799   ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
1800   // And adjust the array base to point to the data.
1801   add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
1802 
1803   cmp(sp, zr); // Clear Z flag; SP is never zero
1804   // Scan R2 words at [R5] for an occurrence of R0.
1805   // Set NZ/Z based on last compare.
1806   repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2);
1807   // rscratch1 == 0 iff we got a match.
1808   cset(rscratch1, NE);
1809 
1810   Label passed;
1811   cmp(result, zr);
1812   cset(result, NE); // normalize result to 0/1 for comparison
1813 
1814   cmp(rscratch1, result);
1815   br(EQ, passed);
1816   {
1817     mov(r0, r_super_klass);         // r0 <- r0
1818     mov(r1, r_sub_klass);           // r1 <- r4
1819     mov(r2, /*expected*/rscratch1); // r2 <- r8
1820     mov(r3, result);                // r3 <- r5
1821     mov(r4, (address)("mismatch")); // r4 <- const
1822     rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2);
1823     should_not_reach_here();
1824   }
1825   bind(passed);
1826 
1827   BLOCK_COMMENT("} verify_secondary_supers_table");
1828 }
1829 
1830 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) {
1831   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
1832   assert_different_registers(klass, rthread, scratch);
1833 
1834   Label L_fallthrough, L_tmp;
1835   if (L_fast_path == nullptr) {
1836     L_fast_path = &L_fallthrough;
1837   } else if (L_slow_path == nullptr) {
1838     L_slow_path = &L_fallthrough;
1839   }
1840   // Fast path check: class is fully initialized
1841   ldrb(scratch, Address(klass, InstanceKlass::init_state_offset()));
1842   subs(zr, scratch, InstanceKlass::fully_initialized);
1843   br(Assembler::EQ, *L_fast_path);
1844 
1845   // Fast path check: current thread is initializer thread
1846   ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
1847   cmp(rthread, scratch);
1848 
1849   if (L_slow_path == &L_fallthrough) {
1850     br(Assembler::EQ, *L_fast_path);
1851     bind(*L_slow_path);
1852   } else if (L_fast_path == &L_fallthrough) {
1853     br(Assembler::NE, *L_slow_path);
1854     bind(*L_fast_path);
1855   } else {
1856     Unimplemented();
1857   }
1858 }
1859 
1860 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
1861   if (!VerifyOops) return;
1862 
1863   // Pass register number to verify_oop_subroutine
1864   const char* b = nullptr;
1865   {
1866     ResourceMark rm;
1867     stringStream ss;
1868     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
1869     b = code_string(ss.as_string());
1870   }
1871   BLOCK_COMMENT("verify_oop {");
1872 
1873   strip_return_address(); // This might happen within a stack frame.
1874   protect_return_address();
1875   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1876   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1877 
1878   mov(r0, reg);
1879   movptr(rscratch1, (uintptr_t)(address)b);
1880 
1881   // call indirectly to solve generation ordering problem
1882   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1883   ldr(rscratch2, Address(rscratch2));
1884   blr(rscratch2);
1885 
1886   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1887   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1888   authenticate_return_address();
1889 
1890   BLOCK_COMMENT("} verify_oop");
1891 }
1892 
1893 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
1894   if (!VerifyOops) return;
1895 
1896   const char* b = nullptr;
1897   {
1898     ResourceMark rm;
1899     stringStream ss;
1900     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
1901     b = code_string(ss.as_string());
1902   }
1903   BLOCK_COMMENT("verify_oop_addr {");
1904 
1905   strip_return_address(); // This might happen within a stack frame.
1906   protect_return_address();
1907   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1908   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1909 
1910   // addr may contain sp so we will have to adjust it based on the
1911   // pushes that we just did.
1912   if (addr.uses(sp)) {
1913     lea(r0, addr);
1914     ldr(r0, Address(r0, 4 * wordSize));
1915   } else {
1916     ldr(r0, addr);
1917   }
1918   movptr(rscratch1, (uintptr_t)(address)b);
1919 
1920   // call indirectly to solve generation ordering problem
1921   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1922   ldr(rscratch2, Address(rscratch2));
1923   blr(rscratch2);
1924 
1925   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1926   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1927   authenticate_return_address();
1928 
1929   BLOCK_COMMENT("} verify_oop_addr");
1930 }
1931 
1932 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1933                                          int extra_slot_offset) {
1934   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1935   int stackElementSize = Interpreter::stackElementSize;
1936   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1937 #ifdef ASSERT
1938   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1939   assert(offset1 - offset == stackElementSize, "correct arithmetic");
1940 #endif
1941   if (arg_slot.is_constant()) {
1942     return Address(esp, arg_slot.as_constant() * stackElementSize
1943                    + offset);
1944   } else {
1945     add(rscratch1, esp, arg_slot.as_register(),
1946         ext::uxtx, exact_log2(stackElementSize));
1947     return Address(rscratch1, offset);
1948   }
1949 }
1950 
1951 void MacroAssembler::call_VM_leaf_base(address entry_point,
1952                                        int number_of_arguments,
1953                                        Label *retaddr) {
1954   Label E, L;
1955 
1956   stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1957 
1958   mov(rscratch1, entry_point);
1959   blr(rscratch1);
1960   if (retaddr)
1961     bind(*retaddr);
1962 
1963   ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1964 }
1965 
1966 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1967   call_VM_leaf_base(entry_point, number_of_arguments);
1968 }
1969 
1970 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1971   pass_arg0(this, arg_0);
1972   call_VM_leaf_base(entry_point, 1);
1973 }
1974 
1975 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1976   assert_different_registers(arg_1, c_rarg0);
1977   pass_arg0(this, arg_0);
1978   pass_arg1(this, arg_1);
1979   call_VM_leaf_base(entry_point, 2);
1980 }
1981 
1982 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1983                                   Register arg_1, Register arg_2) {
1984   assert_different_registers(arg_1, c_rarg0);
1985   assert_different_registers(arg_2, c_rarg0, c_rarg1);
1986   pass_arg0(this, arg_0);
1987   pass_arg1(this, arg_1);
1988   pass_arg2(this, arg_2);
1989   call_VM_leaf_base(entry_point, 3);
1990 }
1991 
1992 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1993   pass_arg0(this, arg_0);
1994   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1995 }
1996 
1997 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1998 
1999   assert_different_registers(arg_0, c_rarg1);
2000   pass_arg1(this, arg_1);
2001   pass_arg0(this, arg_0);
2002   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2003 }
2004 
2005 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2006   assert_different_registers(arg_0, c_rarg1, c_rarg2);
2007   assert_different_registers(arg_1, c_rarg2);
2008   pass_arg2(this, arg_2);
2009   pass_arg1(this, arg_1);
2010   pass_arg0(this, arg_0);
2011   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2012 }
2013 
2014 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2015   assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
2016   assert_different_registers(arg_1, c_rarg2, c_rarg3);
2017   assert_different_registers(arg_2, c_rarg3);
2018   pass_arg3(this, arg_3);
2019   pass_arg2(this, arg_2);
2020   pass_arg1(this, arg_1);
2021   pass_arg0(this, arg_0);
2022   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2023 }
2024 
2025 void MacroAssembler::null_check(Register reg, int offset) {
2026   if (needs_explicit_null_check(offset)) {
2027     // provoke OS null exception if reg is null by
2028     // accessing M[reg] w/o changing any registers
2029     // NOTE: this is plenty to provoke a segv
2030     ldr(zr, Address(reg));
2031   } else {
2032     // nothing to do, (later) access of M[reg + offset]
2033     // will provoke OS null exception if reg is null
2034   }
2035 }
2036 
2037 // MacroAssembler protected routines needed to implement
2038 // public methods
2039 
2040 void MacroAssembler::mov(Register r, Address dest) {
2041   code_section()->relocate(pc(), dest.rspec());
2042   uint64_t imm64 = (uint64_t)dest.target();
2043   movptr(r, imm64);
2044 }
2045 
2046 // Move a constant pointer into r.  In AArch64 mode the virtual
2047 // address space is 48 bits in size, so we only need three
2048 // instructions to create a patchable instruction sequence that can
2049 // reach anywhere.
2050 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
2051 #ifndef PRODUCT
2052   {
2053     char buffer[64];
2054     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
2055     block_comment(buffer);
2056   }
2057 #endif
2058   assert(imm64 < (1ull << 48), "48-bit overflow in address constant");
2059   movz(r, imm64 & 0xffff);
2060   imm64 >>= 16;
2061   movk(r, imm64 & 0xffff, 16);
2062   imm64 >>= 16;
2063   movk(r, imm64 & 0xffff, 32);
2064 }
2065 
2066 // Macro to mov replicated immediate to vector register.
2067 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is,
2068 //        the upper 56/48/32 bits must be zeros for B/H/S type.
2069 // Vd will get the following values for different arrangements in T
2070 //   imm64 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
2071 //   imm64 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
2072 //   imm64 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
2073 //   imm64 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
2074 //   imm64 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
2075 //   imm64 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
2076 //   imm64 == hex abcdefgh  T1D:  Vd = 00000000abcdefgh
2077 //   imm64 == hex abcdefgh  T2D:  Vd = 00000000abcdefgh00000000abcdefgh
2078 // Clobbers rscratch1
2079 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) {
2080   assert(T != T1Q, "unsupported");
2081   if (T == T1D || T == T2D) {
2082     int imm = operand_valid_for_movi_immediate(imm64, T);
2083     if (-1 != imm) {
2084       movi(Vd, T, imm);
2085     } else {
2086       mov(rscratch1, imm64);
2087       dup(Vd, T, rscratch1);
2088     }
2089     return;
2090   }
2091 
2092 #ifdef ASSERT
2093   if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)");
2094   if (T == T4H || T == T8H) assert((imm64  & ~0xffff) == 0, "extraneous bits (T4H/T8H)");
2095   if (T == T2S || T == T4S) assert((imm64  & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)");
2096 #endif
2097   int shift = operand_valid_for_movi_immediate(imm64, T);
2098   uint32_t imm32 = imm64 & 0xffffffffULL;
2099   if (shift >= 0) {
2100     movi(Vd, T, (imm32 >> shift) & 0xff, shift);
2101   } else {
2102     movw(rscratch1, imm32);
2103     dup(Vd, T, rscratch1);
2104   }
2105 }
2106 
2107 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64)
2108 {
2109 #ifndef PRODUCT
2110   {
2111     char buffer[64];
2112     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64);
2113     block_comment(buffer);
2114   }
2115 #endif
2116   if (operand_valid_for_logical_immediate(false, imm64)) {
2117     orr(dst, zr, imm64);
2118   } else {
2119     // we can use a combination of MOVZ or MOVN with
2120     // MOVK to build up the constant
2121     uint64_t imm_h[4];
2122     int zero_count = 0;
2123     int neg_count = 0;
2124     int i;
2125     for (i = 0; i < 4; i++) {
2126       imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
2127       if (imm_h[i] == 0) {
2128         zero_count++;
2129       } else if (imm_h[i] == 0xffffL) {
2130         neg_count++;
2131       }
2132     }
2133     if (zero_count == 4) {
2134       // one MOVZ will do
2135       movz(dst, 0);
2136     } else if (neg_count == 4) {
2137       // one MOVN will do
2138       movn(dst, 0);
2139     } else if (zero_count == 3) {
2140       for (i = 0; i < 4; i++) {
2141         if (imm_h[i] != 0L) {
2142           movz(dst, (uint32_t)imm_h[i], (i << 4));
2143           break;
2144         }
2145       }
2146     } else if (neg_count == 3) {
2147       // one MOVN will do
2148       for (int i = 0; i < 4; i++) {
2149         if (imm_h[i] != 0xffffL) {
2150           movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2151           break;
2152         }
2153       }
2154     } else if (zero_count == 2) {
2155       // one MOVZ and one MOVK will do
2156       for (i = 0; i < 3; i++) {
2157         if (imm_h[i] != 0L) {
2158           movz(dst, (uint32_t)imm_h[i], (i << 4));
2159           i++;
2160           break;
2161         }
2162       }
2163       for (;i < 4; i++) {
2164         if (imm_h[i] != 0L) {
2165           movk(dst, (uint32_t)imm_h[i], (i << 4));
2166         }
2167       }
2168     } else if (neg_count == 2) {
2169       // one MOVN and one MOVK will do
2170       for (i = 0; i < 4; i++) {
2171         if (imm_h[i] != 0xffffL) {
2172           movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2173           i++;
2174           break;
2175         }
2176       }
2177       for (;i < 4; i++) {
2178         if (imm_h[i] != 0xffffL) {
2179           movk(dst, (uint32_t)imm_h[i], (i << 4));
2180         }
2181       }
2182     } else if (zero_count == 1) {
2183       // one MOVZ and two MOVKs will do
2184       for (i = 0; i < 4; i++) {
2185         if (imm_h[i] != 0L) {
2186           movz(dst, (uint32_t)imm_h[i], (i << 4));
2187           i++;
2188           break;
2189         }
2190       }
2191       for (;i < 4; i++) {
2192         if (imm_h[i] != 0x0L) {
2193           movk(dst, (uint32_t)imm_h[i], (i << 4));
2194         }
2195       }
2196     } else if (neg_count == 1) {
2197       // one MOVN and two MOVKs will do
2198       for (i = 0; i < 4; i++) {
2199         if (imm_h[i] != 0xffffL) {
2200           movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2201           i++;
2202           break;
2203         }
2204       }
2205       for (;i < 4; i++) {
2206         if (imm_h[i] != 0xffffL) {
2207           movk(dst, (uint32_t)imm_h[i], (i << 4));
2208         }
2209       }
2210     } else {
2211       // use a MOVZ and 3 MOVKs (makes it easier to debug)
2212       movz(dst, (uint32_t)imm_h[0], 0);
2213       for (i = 1; i < 4; i++) {
2214         movk(dst, (uint32_t)imm_h[i], (i << 4));
2215       }
2216     }
2217   }
2218 }
2219 
2220 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32)
2221 {
2222 #ifndef PRODUCT
2223     {
2224       char buffer[64];
2225       snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32);
2226       block_comment(buffer);
2227     }
2228 #endif
2229   if (operand_valid_for_logical_immediate(true, imm32)) {
2230     orrw(dst, zr, imm32);
2231   } else {
2232     // we can use MOVZ, MOVN or two calls to MOVK to build up the
2233     // constant
2234     uint32_t imm_h[2];
2235     imm_h[0] = imm32 & 0xffff;
2236     imm_h[1] = ((imm32 >> 16) & 0xffff);
2237     if (imm_h[0] == 0) {
2238       movzw(dst, imm_h[1], 16);
2239     } else if (imm_h[0] == 0xffff) {
2240       movnw(dst, imm_h[1] ^ 0xffff, 16);
2241     } else if (imm_h[1] == 0) {
2242       movzw(dst, imm_h[0], 0);
2243     } else if (imm_h[1] == 0xffff) {
2244       movnw(dst, imm_h[0] ^ 0xffff, 0);
2245     } else {
2246       // use a MOVZ and MOVK (makes it easier to debug)
2247       movzw(dst, imm_h[0], 0);
2248       movkw(dst, imm_h[1], 16);
2249     }
2250   }
2251 }
2252 
2253 // Form an address from base + offset in Rd.  Rd may or may
2254 // not actually be used: you must use the Address that is returned.
2255 // It is up to you to ensure that the shift provided matches the size
2256 // of your data.
2257 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) {
2258   if (Address::offset_ok_for_immed(byte_offset, shift))
2259     // It fits; no need for any heroics
2260     return Address(base, byte_offset);
2261 
2262   // Don't do anything clever with negative or misaligned offsets
2263   unsigned mask = (1 << shift) - 1;
2264   if (byte_offset < 0 || byte_offset & mask) {
2265     mov(Rd, byte_offset);
2266     add(Rd, base, Rd);
2267     return Address(Rd);
2268   }
2269 
2270   // See if we can do this with two 12-bit offsets
2271   {
2272     uint64_t word_offset = byte_offset >> shift;
2273     uint64_t masked_offset = word_offset & 0xfff000;
2274     if (Address::offset_ok_for_immed(word_offset - masked_offset, 0)
2275         && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
2276       add(Rd, base, masked_offset << shift);
2277       word_offset -= masked_offset;
2278       return Address(Rd, word_offset << shift);
2279     }
2280   }
2281 
2282   // Do it the hard way
2283   mov(Rd, byte_offset);
2284   add(Rd, base, Rd);
2285   return Address(Rd);
2286 }
2287 
2288 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
2289                                     bool want_remainder, Register scratch)
2290 {
2291   // Full implementation of Java idiv and irem.  The function
2292   // returns the (pc) offset of the div instruction - may be needed
2293   // for implicit exceptions.
2294   //
2295   // constraint : ra/rb =/= scratch
2296   //         normal case
2297   //
2298   // input : ra: dividend
2299   //         rb: divisor
2300   //
2301   // result: either
2302   //         quotient  (= ra idiv rb)
2303   //         remainder (= ra irem rb)
2304 
2305   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2306 
2307   int idivl_offset = offset();
2308   if (! want_remainder) {
2309     sdivw(result, ra, rb);
2310   } else {
2311     sdivw(scratch, ra, rb);
2312     Assembler::msubw(result, scratch, rb, ra);
2313   }
2314 
2315   return idivl_offset;
2316 }
2317 
2318 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
2319                                     bool want_remainder, Register scratch)
2320 {
2321   // Full implementation of Java ldiv and lrem.  The function
2322   // returns the (pc) offset of the div instruction - may be needed
2323   // for implicit exceptions.
2324   //
2325   // constraint : ra/rb =/= scratch
2326   //         normal case
2327   //
2328   // input : ra: dividend
2329   //         rb: divisor
2330   //
2331   // result: either
2332   //         quotient  (= ra idiv rb)
2333   //         remainder (= ra irem rb)
2334 
2335   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2336 
2337   int idivq_offset = offset();
2338   if (! want_remainder) {
2339     sdiv(result, ra, rb);
2340   } else {
2341     sdiv(scratch, ra, rb);
2342     Assembler::msub(result, scratch, rb, ra);
2343   }
2344 
2345   return idivq_offset;
2346 }
2347 
2348 void MacroAssembler::membar(Membar_mask_bits order_constraint) {
2349   address prev = pc() - NativeMembar::instruction_size;
2350   address last = code()->last_insn();
2351   if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) {
2352     NativeMembar *bar = NativeMembar_at(prev);
2353     if (AlwaysMergeDMB) {
2354       bar->set_kind(bar->get_kind() | order_constraint);
2355       BLOCK_COMMENT("merged membar(always)");
2356       return;
2357     }
2358     // Don't promote DMB ST|DMB LD to DMB (a full barrier) because
2359     // doing so would introduce a StoreLoad which the caller did not
2360     // intend
2361     if (bar->get_kind() == order_constraint
2362         || bar->get_kind() == AnyAny
2363         || order_constraint == AnyAny) {
2364       // We are merging two memory barrier instructions.  On AArch64 we
2365       // can do this simply by ORing them together.
2366       bar->set_kind(bar->get_kind() | order_constraint);
2367       BLOCK_COMMENT("merged membar");
2368       return;
2369     } else {
2370       // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped
2371       // We need check the last 2 instructions
2372       address prev2 = prev - NativeMembar::instruction_size;
2373       if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) {
2374         NativeMembar *bar2 = NativeMembar_at(prev2);
2375         assert(bar2->get_kind() == order_constraint, "it should be merged before");
2376         BLOCK_COMMENT("merged membar(elided)");
2377         return;
2378       }
2379     }
2380   }
2381   code()->set_last_insn(pc());
2382   dmb(Assembler::barrier(order_constraint));
2383 }
2384 
2385 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) {
2386   if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) {
2387     merge_ldst(rt, adr, size_in_bytes, is_store);
2388     code()->clear_last_insn();
2389     return true;
2390   } else {
2391     assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported.");
2392     const uint64_t mask = size_in_bytes - 1;
2393     if (adr.getMode() == Address::base_plus_offset &&
2394         (adr.offset() & mask) == 0) { // only supports base_plus_offset.
2395       code()->set_last_insn(pc());
2396     }
2397     return false;
2398   }
2399 }
2400 
2401 void MacroAssembler::ldr(Register Rx, const Address &adr) {
2402   // We always try to merge two adjacent loads into one ldp.
2403   if (!try_merge_ldst(Rx, adr, 8, false)) {
2404     Assembler::ldr(Rx, adr);
2405   }
2406 }
2407 
2408 void MacroAssembler::ldrw(Register Rw, const Address &adr) {
2409   // We always try to merge two adjacent loads into one ldp.
2410   if (!try_merge_ldst(Rw, adr, 4, false)) {
2411     Assembler::ldrw(Rw, adr);
2412   }
2413 }
2414 
2415 void MacroAssembler::str(Register Rx, const Address &adr) {
2416   // We always try to merge two adjacent stores into one stp.
2417   if (!try_merge_ldst(Rx, adr, 8, true)) {
2418     Assembler::str(Rx, adr);
2419   }
2420 }
2421 
2422 void MacroAssembler::strw(Register Rw, const Address &adr) {
2423   // We always try to merge two adjacent stores into one stp.
2424   if (!try_merge_ldst(Rw, adr, 4, true)) {
2425     Assembler::strw(Rw, adr);
2426   }
2427 }
2428 
2429 // MacroAssembler routines found actually to be needed
2430 
2431 void MacroAssembler::push(Register src)
2432 {
2433   str(src, Address(pre(esp, -1 * wordSize)));
2434 }
2435 
2436 void MacroAssembler::pop(Register dst)
2437 {
2438   ldr(dst, Address(post(esp, 1 * wordSize)));
2439 }
2440 
2441 // Note: load_unsigned_short used to be called load_unsigned_word.
2442 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
2443   int off = offset();
2444   ldrh(dst, src);
2445   return off;
2446 }
2447 
2448 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
2449   int off = offset();
2450   ldrb(dst, src);
2451   return off;
2452 }
2453 
2454 int MacroAssembler::load_signed_short(Register dst, Address src) {
2455   int off = offset();
2456   ldrsh(dst, src);
2457   return off;
2458 }
2459 
2460 int MacroAssembler::load_signed_byte(Register dst, Address src) {
2461   int off = offset();
2462   ldrsb(dst, src);
2463   return off;
2464 }
2465 
2466 int MacroAssembler::load_signed_short32(Register dst, Address src) {
2467   int off = offset();
2468   ldrshw(dst, src);
2469   return off;
2470 }
2471 
2472 int MacroAssembler::load_signed_byte32(Register dst, Address src) {
2473   int off = offset();
2474   ldrsbw(dst, src);
2475   return off;
2476 }
2477 
2478 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
2479   switch (size_in_bytes) {
2480   case  8:  ldr(dst, src); break;
2481   case  4:  ldrw(dst, src); break;
2482   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
2483   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
2484   default:  ShouldNotReachHere();
2485   }
2486 }
2487 
2488 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) {
2489   switch (size_in_bytes) {
2490   case  8:  str(src, dst); break;
2491   case  4:  strw(src, dst); break;
2492   case  2:  strh(src, dst); break;
2493   case  1:  strb(src, dst); break;
2494   default:  ShouldNotReachHere();
2495   }
2496 }
2497 
2498 void MacroAssembler::decrementw(Register reg, int value)
2499 {
2500   if (value < 0)  { incrementw(reg, -value);      return; }
2501   if (value == 0) {                               return; }
2502   if (value < (1 << 12)) { subw(reg, reg, value); return; }
2503   /* else */ {
2504     guarantee(reg != rscratch2, "invalid dst for register decrement");
2505     movw(rscratch2, (unsigned)value);
2506     subw(reg, reg, rscratch2);
2507   }
2508 }
2509 
2510 void MacroAssembler::decrement(Register reg, int value)
2511 {
2512   if (value < 0)  { increment(reg, -value);      return; }
2513   if (value == 0) {                              return; }
2514   if (value < (1 << 12)) { sub(reg, reg, value); return; }
2515   /* else */ {
2516     assert(reg != rscratch2, "invalid dst for register decrement");
2517     mov(rscratch2, (uint64_t)value);
2518     sub(reg, reg, rscratch2);
2519   }
2520 }
2521 
2522 void MacroAssembler::decrementw(Address dst, int value)
2523 {
2524   assert(!dst.uses(rscratch1), "invalid dst for address decrement");
2525   if (dst.getMode() == Address::literal) {
2526     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2527     lea(rscratch2, dst);
2528     dst = Address(rscratch2);
2529   }
2530   ldrw(rscratch1, dst);
2531   decrementw(rscratch1, value);
2532   strw(rscratch1, dst);
2533 }
2534 
2535 void MacroAssembler::decrement(Address dst, int value)
2536 {
2537   assert(!dst.uses(rscratch1), "invalid address for decrement");
2538   if (dst.getMode() == Address::literal) {
2539     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2540     lea(rscratch2, dst);
2541     dst = Address(rscratch2);
2542   }
2543   ldr(rscratch1, dst);
2544   decrement(rscratch1, value);
2545   str(rscratch1, dst);
2546 }
2547 
2548 void MacroAssembler::incrementw(Register reg, int value)
2549 {
2550   if (value < 0)  { decrementw(reg, -value);      return; }
2551   if (value == 0) {                               return; }
2552   if (value < (1 << 12)) { addw(reg, reg, value); return; }
2553   /* else */ {
2554     assert(reg != rscratch2, "invalid dst for register increment");
2555     movw(rscratch2, (unsigned)value);
2556     addw(reg, reg, rscratch2);
2557   }
2558 }
2559 
2560 void MacroAssembler::increment(Register reg, int value)
2561 {
2562   if (value < 0)  { decrement(reg, -value);      return; }
2563   if (value == 0) {                              return; }
2564   if (value < (1 << 12)) { add(reg, reg, value); return; }
2565   /* else */ {
2566     assert(reg != rscratch2, "invalid dst for register increment");
2567     movw(rscratch2, (unsigned)value);
2568     add(reg, reg, rscratch2);
2569   }
2570 }
2571 
2572 void MacroAssembler::incrementw(Address dst, int value)
2573 {
2574   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2575   if (dst.getMode() == Address::literal) {
2576     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2577     lea(rscratch2, dst);
2578     dst = Address(rscratch2);
2579   }
2580   ldrw(rscratch1, dst);
2581   incrementw(rscratch1, value);
2582   strw(rscratch1, dst);
2583 }
2584 
2585 void MacroAssembler::increment(Address dst, int value)
2586 {
2587   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2588   if (dst.getMode() == Address::literal) {
2589     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2590     lea(rscratch2, dst);
2591     dst = Address(rscratch2);
2592   }
2593   ldr(rscratch1, dst);
2594   increment(rscratch1, value);
2595   str(rscratch1, dst);
2596 }
2597 
2598 // Push lots of registers in the bit set supplied.  Don't push sp.
2599 // Return the number of words pushed
2600 int MacroAssembler::push(unsigned int bitset, Register stack) {
2601   int words_pushed = 0;
2602 
2603   // Scan bitset to accumulate register pairs
2604   unsigned char regs[32];
2605   int count = 0;
2606   for (int reg = 0; reg <= 30; reg++) {
2607     if (1 & bitset)
2608       regs[count++] = reg;
2609     bitset >>= 1;
2610   }
2611   regs[count++] = zr->raw_encoding();
2612   count &= ~1;  // Only push an even number of regs
2613 
2614   if (count) {
2615     stp(as_Register(regs[0]), as_Register(regs[1]),
2616        Address(pre(stack, -count * wordSize)));
2617     words_pushed += 2;
2618   }
2619   for (int i = 2; i < count; i += 2) {
2620     stp(as_Register(regs[i]), as_Register(regs[i+1]),
2621        Address(stack, i * wordSize));
2622     words_pushed += 2;
2623   }
2624 
2625   assert(words_pushed == count, "oops, pushed != count");
2626 
2627   return count;
2628 }
2629 
2630 int MacroAssembler::pop(unsigned int bitset, Register stack) {
2631   int words_pushed = 0;
2632 
2633   // Scan bitset to accumulate register pairs
2634   unsigned char regs[32];
2635   int count = 0;
2636   for (int reg = 0; reg <= 30; reg++) {
2637     if (1 & bitset)
2638       regs[count++] = reg;
2639     bitset >>= 1;
2640   }
2641   regs[count++] = zr->raw_encoding();
2642   count &= ~1;
2643 
2644   for (int i = 2; i < count; i += 2) {
2645     ldp(as_Register(regs[i]), as_Register(regs[i+1]),
2646        Address(stack, i * wordSize));
2647     words_pushed += 2;
2648   }
2649   if (count) {
2650     ldp(as_Register(regs[0]), as_Register(regs[1]),
2651        Address(post(stack, count * wordSize)));
2652     words_pushed += 2;
2653   }
2654 
2655   assert(words_pushed == count, "oops, pushed != count");
2656 
2657   return count;
2658 }
2659 
2660 // Push lots of registers in the bit set supplied.  Don't push sp.
2661 // Return the number of dwords pushed
2662 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
2663   int words_pushed = 0;
2664   bool use_sve = false;
2665   int sve_vector_size_in_bytes = 0;
2666 
2667 #ifdef COMPILER2
2668   use_sve = Matcher::supports_scalable_vector();
2669   sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
2670 #endif
2671 
2672   // Scan bitset to accumulate register pairs
2673   unsigned char regs[32];
2674   int count = 0;
2675   for (int reg = 0; reg <= 31; reg++) {
2676     if (1 & bitset)
2677       regs[count++] = reg;
2678     bitset >>= 1;
2679   }
2680 
2681   if (count == 0) {
2682     return 0;
2683   }
2684 
2685   if (mode == PushPopFull) {
2686     if (use_sve && sve_vector_size_in_bytes > 16) {
2687       mode = PushPopSVE;
2688     } else {
2689       mode = PushPopNeon;
2690     }
2691   }
2692 
2693 #ifndef PRODUCT
2694   {
2695     char buffer[48];
2696     if (mode == PushPopSVE) {
2697       snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count);
2698     } else if (mode == PushPopNeon) {
2699       snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count);
2700     } else {
2701       snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count);
2702     }
2703     block_comment(buffer);
2704   }
2705 #endif
2706 
2707   if (mode == PushPopSVE) {
2708     sub(stack, stack, sve_vector_size_in_bytes * count);
2709     for (int i = 0; i < count; i++) {
2710       sve_str(as_FloatRegister(regs[i]), Address(stack, i));
2711     }
2712     return count * sve_vector_size_in_bytes / 8;
2713   }
2714 
2715   if (mode == PushPopNeon) {
2716     if (count == 1) {
2717       strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2)));
2718       return 2;
2719     }
2720 
2721     bool odd = (count & 1) == 1;
2722     int push_slots = count + (odd ? 1 : 0);
2723 
2724     // Always pushing full 128 bit registers.
2725     stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2)));
2726     words_pushed += 2;
2727 
2728     for (int i = 2; i + 1 < count; i += 2) {
2729       stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
2730       words_pushed += 2;
2731     }
2732 
2733     if (odd) {
2734       strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
2735       words_pushed++;
2736     }
2737 
2738     assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
2739     return count * 2;
2740   }
2741 
2742   if (mode == PushPopFp) {
2743     bool odd = (count & 1) == 1;
2744     int push_slots = count + (odd ? 1 : 0);
2745 
2746     if (count == 1) {
2747       // Stack pointer must be 16 bytes aligned
2748       strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize)));
2749       return 1;
2750     }
2751 
2752     stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize)));
2753     words_pushed += 2;
2754 
2755     for (int i = 2; i + 1 < count; i += 2) {
2756       stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
2757       words_pushed += 2;
2758     }
2759 
2760     if (odd) {
2761       // Stack pointer must be 16 bytes aligned
2762       strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
2763       words_pushed++;
2764     }
2765 
2766     assert(words_pushed == count, "oops, pushed != count");
2767 
2768     return count;
2769   }
2770 
2771   return 0;
2772 }
2773 
2774 // Return the number of dwords popped
2775 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
2776   int words_pushed = 0;
2777   bool use_sve = false;
2778   int sve_vector_size_in_bytes = 0;
2779 
2780 #ifdef COMPILER2
2781   use_sve = Matcher::supports_scalable_vector();
2782   sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
2783 #endif
2784   // Scan bitset to accumulate register pairs
2785   unsigned char regs[32];
2786   int count = 0;
2787   for (int reg = 0; reg <= 31; reg++) {
2788     if (1 & bitset)
2789       regs[count++] = reg;
2790     bitset >>= 1;
2791   }
2792 
2793   if (count == 0) {
2794     return 0;
2795   }
2796 
2797   if (mode == PushPopFull) {
2798     if (use_sve && sve_vector_size_in_bytes > 16) {
2799       mode = PushPopSVE;
2800     } else {
2801       mode = PushPopNeon;
2802     }
2803   }
2804 
2805 #ifndef PRODUCT
2806   {
2807     char buffer[48];
2808     if (mode == PushPopSVE) {
2809       snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count);
2810     } else if (mode == PushPopNeon) {
2811       snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count);
2812     } else {
2813       snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count);
2814     }
2815     block_comment(buffer);
2816   }
2817 #endif
2818 
2819   if (mode == PushPopSVE) {
2820     for (int i = count - 1; i >= 0; i--) {
2821       sve_ldr(as_FloatRegister(regs[i]), Address(stack, i));
2822     }
2823     add(stack, stack, sve_vector_size_in_bytes * count);
2824     return count * sve_vector_size_in_bytes / 8;
2825   }
2826 
2827   if (mode == PushPopNeon) {
2828     if (count == 1) {
2829       ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2)));
2830       return 2;
2831     }
2832 
2833     bool odd = (count & 1) == 1;
2834     int push_slots = count + (odd ? 1 : 0);
2835 
2836     if (odd) {
2837       ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
2838       words_pushed++;
2839     }
2840 
2841     for (int i = 2; i + 1 < count; i += 2) {
2842       ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
2843       words_pushed += 2;
2844     }
2845 
2846     ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2)));
2847     words_pushed += 2;
2848 
2849     assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
2850 
2851     return count * 2;
2852   }
2853 
2854   if (mode == PushPopFp) {
2855     bool odd = (count & 1) == 1;
2856     int push_slots = count + (odd ? 1 : 0);
2857 
2858     if (count == 1) {
2859       ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize)));
2860       return 1;
2861     }
2862 
2863     if (odd) {
2864       ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
2865       words_pushed++;
2866     }
2867 
2868     for (int i = 2; i + 1 < count; i += 2) {
2869       ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
2870       words_pushed += 2;
2871     }
2872 
2873     ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize)));
2874     words_pushed += 2;
2875 
2876     assert(words_pushed == count, "oops, pushed != count");
2877 
2878     return count;
2879   }
2880 
2881   return 0;
2882 }
2883 
2884 // Return the number of dwords pushed
2885 int MacroAssembler::push_p(unsigned int bitset, Register stack) {
2886   bool use_sve = false;
2887   int sve_predicate_size_in_slots = 0;
2888 
2889 #ifdef COMPILER2
2890   use_sve = Matcher::supports_scalable_vector();
2891   if (use_sve) {
2892     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
2893   }
2894 #endif
2895 
2896   if (!use_sve) {
2897     return 0;
2898   }
2899 
2900   unsigned char regs[PRegister::number_of_registers];
2901   int count = 0;
2902   for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
2903     if (1 & bitset)
2904       regs[count++] = reg;
2905     bitset >>= 1;
2906   }
2907 
2908   if (count == 0) {
2909     return 0;
2910   }
2911 
2912   int total_push_bytes = align_up(sve_predicate_size_in_slots *
2913                                   VMRegImpl::stack_slot_size * count, 16);
2914   sub(stack, stack, total_push_bytes);
2915   for (int i = 0; i < count; i++) {
2916     sve_str(as_PRegister(regs[i]), Address(stack, i));
2917   }
2918   return total_push_bytes / 8;
2919 }
2920 
2921 // Return the number of dwords popped
2922 int MacroAssembler::pop_p(unsigned int bitset, Register stack) {
2923   bool use_sve = false;
2924   int sve_predicate_size_in_slots = 0;
2925 
2926 #ifdef COMPILER2
2927   use_sve = Matcher::supports_scalable_vector();
2928   if (use_sve) {
2929     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
2930   }
2931 #endif
2932 
2933   if (!use_sve) {
2934     return 0;
2935   }
2936 
2937   unsigned char regs[PRegister::number_of_registers];
2938   int count = 0;
2939   for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
2940     if (1 & bitset)
2941       regs[count++] = reg;
2942     bitset >>= 1;
2943   }
2944 
2945   if (count == 0) {
2946     return 0;
2947   }
2948 
2949   int total_pop_bytes = align_up(sve_predicate_size_in_slots *
2950                                  VMRegImpl::stack_slot_size * count, 16);
2951   for (int i = count - 1; i >= 0; i--) {
2952     sve_ldr(as_PRegister(regs[i]), Address(stack, i));
2953   }
2954   add(stack, stack, total_pop_bytes);
2955   return total_pop_bytes / 8;
2956 }
2957 
2958 #ifdef ASSERT
2959 void MacroAssembler::verify_heapbase(const char* msg) {
2960 #if 0
2961   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
2962   assert (Universe::heap() != nullptr, "java heap should be initialized");
2963   if (!UseCompressedOops || Universe::ptr_base() == nullptr) {
2964     // rheapbase is allocated as general register
2965     return;
2966   }
2967   if (CheckCompressedOops) {
2968     Label ok;
2969     push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
2970     cmpptr(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr()));
2971     br(Assembler::EQ, ok);
2972     stop(msg);
2973     bind(ok);
2974     pop(1 << rscratch1->encoding(), sp);
2975   }
2976 #endif
2977 }
2978 #endif
2979 
2980 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
2981   assert_different_registers(value, tmp1, tmp2);
2982   Label done, tagged, weak_tagged;
2983 
2984   cbz(value, done);           // Use null as-is.
2985   tst(value, JNIHandles::tag_mask); // Test for tag.
2986   br(Assembler::NE, tagged);
2987 
2988   // Resolve local handle
2989   access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2);
2990   verify_oop(value);
2991   b(done);
2992 
2993   bind(tagged);
2994   STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1);
2995   tbnz(value, 0, weak_tagged);    // Test for weak tag.
2996 
2997   // Resolve global handle
2998   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
2999   verify_oop(value);
3000   b(done);
3001 
3002   bind(weak_tagged);
3003   // Resolve jweak.
3004   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
3005                  value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2);
3006   verify_oop(value);
3007 
3008   bind(done);
3009 }
3010 
3011 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) {
3012   assert_different_registers(value, tmp1, tmp2);
3013   Label done;
3014 
3015   cbz(value, done);           // Use null as-is.
3016 
3017 #ifdef ASSERT
3018   {
3019     STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10);
3020     Label valid_global_tag;
3021     tbnz(value, 1, valid_global_tag); // Test for global tag
3022     stop("non global jobject using resolve_global_jobject");
3023     bind(valid_global_tag);
3024   }
3025 #endif
3026 
3027   // Resolve global handle
3028   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
3029   verify_oop(value);
3030 
3031   bind(done);
3032 }
3033 
3034 void MacroAssembler::stop(const char* msg) {
3035   BLOCK_COMMENT(msg);
3036   dcps1(0xdeae);
3037   emit_int64((uintptr_t)msg);
3038 }
3039 
3040 void MacroAssembler::unimplemented(const char* what) {
3041   const char* buf = nullptr;
3042   {
3043     ResourceMark rm;
3044     stringStream ss;
3045     ss.print("unimplemented: %s", what);
3046     buf = code_string(ss.as_string());
3047   }
3048   stop(buf);
3049 }
3050 
3051 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) {
3052 #ifdef ASSERT
3053   Label OK;
3054   br(cc, OK);
3055   stop(msg);
3056   bind(OK);
3057 #endif
3058 }
3059 
3060 // If a constant does not fit in an immediate field, generate some
3061 // number of MOV instructions and then perform the operation.
3062 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
3063                                            add_sub_imm_insn insn1,
3064                                            add_sub_reg_insn insn2,
3065                                            bool is32) {
3066   assert(Rd != zr, "Rd = zr and not setting flags?");
3067   bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
3068   if (fits) {
3069     (this->*insn1)(Rd, Rn, imm);
3070   } else {
3071     if (uabs(imm) < (1 << 24)) {
3072        (this->*insn1)(Rd, Rn, imm & -(1 << 12));
3073        (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
3074     } else {
3075        assert_different_registers(Rd, Rn);
3076        mov(Rd, imm);
3077        (this->*insn2)(Rd, Rn, Rd, LSL, 0);
3078     }
3079   }
3080 }
3081 
3082 // Separate vsn which sets the flags. Optimisations are more restricted
3083 // because we must set the flags correctly.
3084 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
3085                                              add_sub_imm_insn insn1,
3086                                              add_sub_reg_insn insn2,
3087                                              bool is32) {
3088   bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
3089   if (fits) {
3090     (this->*insn1)(Rd, Rn, imm);
3091   } else {
3092     assert_different_registers(Rd, Rn);
3093     assert(Rd != zr, "overflow in immediate operand");
3094     mov(Rd, imm);
3095     (this->*insn2)(Rd, Rn, Rd, LSL, 0);
3096   }
3097 }
3098 
3099 
3100 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
3101   if (increment.is_register()) {
3102     add(Rd, Rn, increment.as_register());
3103   } else {
3104     add(Rd, Rn, increment.as_constant());
3105   }
3106 }
3107 
3108 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
3109   if (increment.is_register()) {
3110     addw(Rd, Rn, increment.as_register());
3111   } else {
3112     addw(Rd, Rn, increment.as_constant());
3113   }
3114 }
3115 
3116 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
3117   if (decrement.is_register()) {
3118     sub(Rd, Rn, decrement.as_register());
3119   } else {
3120     sub(Rd, Rn, decrement.as_constant());
3121   }
3122 }
3123 
3124 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
3125   if (decrement.is_register()) {
3126     subw(Rd, Rn, decrement.as_register());
3127   } else {
3128     subw(Rd, Rn, decrement.as_constant());
3129   }
3130 }
3131 
3132 void MacroAssembler::reinit_heapbase()
3133 {
3134   if (UseCompressedOops) {
3135     if (Universe::is_fully_initialized()) {
3136       mov(rheapbase, CompressedOops::ptrs_base());
3137     } else {
3138       lea(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr()));
3139       ldr(rheapbase, Address(rheapbase));
3140     }
3141   }
3142 }
3143 
3144 // this simulates the behaviour of the x86 cmpxchg instruction using a
3145 // load linked/store conditional pair. we use the acquire/release
3146 // versions of these instructions so that we flush pending writes as
3147 // per Java semantics.
3148 
3149 // n.b the x86 version assumes the old value to be compared against is
3150 // in rax and updates rax with the value located in memory if the
3151 // cmpxchg fails. we supply a register for the old value explicitly
3152 
3153 // the aarch64 load linked/store conditional instructions do not
3154 // accept an offset. so, unlike x86, we must provide a plain register
3155 // to identify the memory word to be compared/exchanged rather than a
3156 // register+offset Address.
3157 
3158 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
3159                                 Label &succeed, Label *fail) {
3160   // oldv holds comparison value
3161   // newv holds value to write in exchange
3162   // addr identifies memory word to compare against/update
3163   if (UseLSE) {
3164     mov(tmp, oldv);
3165     casal(Assembler::xword, oldv, newv, addr);
3166     cmp(tmp, oldv);
3167     br(Assembler::EQ, succeed);
3168     membar(AnyAny);
3169   } else {
3170     Label retry_load, nope;
3171     prfm(Address(addr), PSTL1STRM);
3172     bind(retry_load);
3173     // flush and load exclusive from the memory location
3174     // and fail if it is not what we expect
3175     ldaxr(tmp, addr);
3176     cmp(tmp, oldv);
3177     br(Assembler::NE, nope);
3178     // if we store+flush with no intervening write tmp will be zero
3179     stlxr(tmp, newv, addr);
3180     cbzw(tmp, succeed);
3181     // retry so we only ever return after a load fails to compare
3182     // ensures we don't return a stale value after a failed write.
3183     b(retry_load);
3184     // if the memory word differs we return it in oldv and signal a fail
3185     bind(nope);
3186     membar(AnyAny);
3187     mov(oldv, tmp);
3188   }
3189   if (fail)
3190     b(*fail);
3191 }
3192 
3193 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
3194                                         Label &succeed, Label *fail) {
3195   assert(oopDesc::mark_offset_in_bytes() == 0, "assumption");
3196   cmpxchgptr(oldv, newv, obj, tmp, succeed, fail);
3197 }
3198 
3199 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
3200                                 Label &succeed, Label *fail) {
3201   // oldv holds comparison value
3202   // newv holds value to write in exchange
3203   // addr identifies memory word to compare against/update
3204   // tmp returns 0/1 for success/failure
3205   if (UseLSE) {
3206     mov(tmp, oldv);
3207     casal(Assembler::word, oldv, newv, addr);
3208     cmp(tmp, oldv);
3209     br(Assembler::EQ, succeed);
3210     membar(AnyAny);
3211   } else {
3212     Label retry_load, nope;
3213     prfm(Address(addr), PSTL1STRM);
3214     bind(retry_load);
3215     // flush and load exclusive from the memory location
3216     // and fail if it is not what we expect
3217     ldaxrw(tmp, addr);
3218     cmp(tmp, oldv);
3219     br(Assembler::NE, nope);
3220     // if we store+flush with no intervening write tmp will be zero
3221     stlxrw(tmp, newv, addr);
3222     cbzw(tmp, succeed);
3223     // retry so we only ever return after a load fails to compare
3224     // ensures we don't return a stale value after a failed write.
3225     b(retry_load);
3226     // if the memory word differs we return it in oldv and signal a fail
3227     bind(nope);
3228     membar(AnyAny);
3229     mov(oldv, tmp);
3230   }
3231   if (fail)
3232     b(*fail);
3233 }
3234 
3235 // A generic CAS; success or failure is in the EQ flag.  A weak CAS
3236 // doesn't retry and may fail spuriously.  If the oldval is wanted,
3237 // Pass a register for the result, otherwise pass noreg.
3238 
3239 // Clobbers rscratch1
3240 void MacroAssembler::cmpxchg(Register addr, Register expected,
3241                              Register new_val,
3242                              enum operand_size size,
3243                              bool acquire, bool release,
3244                              bool weak,
3245                              Register result) {
3246   if (result == noreg)  result = rscratch1;
3247   BLOCK_COMMENT("cmpxchg {");
3248   if (UseLSE) {
3249     mov(result, expected);
3250     lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
3251     compare_eq(result, expected, size);
3252 #ifdef ASSERT
3253     // Poison rscratch1 which is written on !UseLSE branch
3254     mov(rscratch1, 0x1f1f1f1f1f1f1f1f);
3255 #endif
3256   } else {
3257     Label retry_load, done;
3258     prfm(Address(addr), PSTL1STRM);
3259     bind(retry_load);
3260     load_exclusive(result, addr, size, acquire);
3261     compare_eq(result, expected, size);
3262     br(Assembler::NE, done);
3263     store_exclusive(rscratch1, new_val, addr, size, release);
3264     if (weak) {
3265       cmpw(rscratch1, 0u);  // If the store fails, return NE to our caller.
3266     } else {
3267       cbnzw(rscratch1, retry_load);
3268     }
3269     bind(done);
3270   }
3271   BLOCK_COMMENT("} cmpxchg");
3272 }
3273 
3274 // A generic comparison. Only compares for equality, clobbers rscratch1.
3275 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) {
3276   if (size == xword) {
3277     cmp(rm, rn);
3278   } else if (size == word) {
3279     cmpw(rm, rn);
3280   } else if (size == halfword) {
3281     eorw(rscratch1, rm, rn);
3282     ands(zr, rscratch1, 0xffff);
3283   } else if (size == byte) {
3284     eorw(rscratch1, rm, rn);
3285     ands(zr, rscratch1, 0xff);
3286   } else {
3287     ShouldNotReachHere();
3288   }
3289 }
3290 
3291 
3292 static bool different(Register a, RegisterOrConstant b, Register c) {
3293   if (b.is_constant())
3294     return a != c;
3295   else
3296     return a != b.as_register() && a != c && b.as_register() != c;
3297 }
3298 
3299 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz)                   \
3300 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
3301   if (UseLSE) {                                                         \
3302     prev = prev->is_valid() ? prev : zr;                                \
3303     if (incr.is_register()) {                                           \
3304       AOP(sz, incr.as_register(), prev, addr);                          \
3305     } else {                                                            \
3306       mov(rscratch2, incr.as_constant());                               \
3307       AOP(sz, rscratch2, prev, addr);                                   \
3308     }                                                                   \
3309     return;                                                             \
3310   }                                                                     \
3311   Register result = rscratch2;                                          \
3312   if (prev->is_valid())                                                 \
3313     result = different(prev, incr, addr) ? prev : rscratch2;            \
3314                                                                         \
3315   Label retry_load;                                                     \
3316   prfm(Address(addr), PSTL1STRM);                                       \
3317   bind(retry_load);                                                     \
3318   LDXR(result, addr);                                                   \
3319   OP(rscratch1, result, incr);                                          \
3320   STXR(rscratch2, rscratch1, addr);                                     \
3321   cbnzw(rscratch2, retry_load);                                         \
3322   if (prev->is_valid() && prev != result) {                             \
3323     IOP(prev, rscratch1, incr);                                         \
3324   }                                                                     \
3325 }
3326 
3327 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
3328 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
3329 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
3330 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
3331 
3332 #undef ATOMIC_OP
3333 
3334 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz)                            \
3335 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
3336   if (UseLSE) {                                                         \
3337     prev = prev->is_valid() ? prev : zr;                                \
3338     AOP(sz, newv, prev, addr);                                          \
3339     return;                                                             \
3340   }                                                                     \
3341   Register result = rscratch2;                                          \
3342   if (prev->is_valid())                                                 \
3343     result = different(prev, newv, addr) ? prev : rscratch2;            \
3344                                                                         \
3345   Label retry_load;                                                     \
3346   prfm(Address(addr), PSTL1STRM);                                       \
3347   bind(retry_load);                                                     \
3348   LDXR(result, addr);                                                   \
3349   STXR(rscratch1, newv, addr);                                          \
3350   cbnzw(rscratch1, retry_load);                                         \
3351   if (prev->is_valid() && prev != result)                               \
3352     mov(prev, result);                                                  \
3353 }
3354 
3355 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
3356 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
3357 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword)
3358 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word)
3359 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
3360 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
3361 
3362 #undef ATOMIC_XCHG
3363 
3364 #ifndef PRODUCT
3365 extern "C" void findpc(intptr_t x);
3366 #endif
3367 
3368 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
3369 {
3370   // In order to get locks to work, we need to fake a in_VM state
3371   if (ShowMessageBoxOnError ) {
3372     JavaThread* thread = JavaThread::current();
3373     JavaThreadState saved_state = thread->thread_state();
3374     thread->set_thread_state(_thread_in_vm);
3375 #ifndef PRODUCT
3376     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
3377       ttyLocker ttyl;
3378       BytecodeCounter::print();
3379     }
3380 #endif
3381     if (os::message_box(msg, "Execution stopped, print registers?")) {
3382       ttyLocker ttyl;
3383       tty->print_cr(" pc = 0x%016" PRIx64, pc);
3384 #ifndef PRODUCT
3385       tty->cr();
3386       findpc(pc);
3387       tty->cr();
3388 #endif
3389       tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]);
3390       tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]);
3391       tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]);
3392       tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]);
3393       tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]);
3394       tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]);
3395       tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]);
3396       tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]);
3397       tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]);
3398       tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]);
3399       tty->print_cr("r10 = 0x%016" PRIx64, regs[10]);
3400       tty->print_cr("r11 = 0x%016" PRIx64, regs[11]);
3401       tty->print_cr("r12 = 0x%016" PRIx64, regs[12]);
3402       tty->print_cr("r13 = 0x%016" PRIx64, regs[13]);
3403       tty->print_cr("r14 = 0x%016" PRIx64, regs[14]);
3404       tty->print_cr("r15 = 0x%016" PRIx64, regs[15]);
3405       tty->print_cr("r16 = 0x%016" PRIx64, regs[16]);
3406       tty->print_cr("r17 = 0x%016" PRIx64, regs[17]);
3407       tty->print_cr("r18 = 0x%016" PRIx64, regs[18]);
3408       tty->print_cr("r19 = 0x%016" PRIx64, regs[19]);
3409       tty->print_cr("r20 = 0x%016" PRIx64, regs[20]);
3410       tty->print_cr("r21 = 0x%016" PRIx64, regs[21]);
3411       tty->print_cr("r22 = 0x%016" PRIx64, regs[22]);
3412       tty->print_cr("r23 = 0x%016" PRIx64, regs[23]);
3413       tty->print_cr("r24 = 0x%016" PRIx64, regs[24]);
3414       tty->print_cr("r25 = 0x%016" PRIx64, regs[25]);
3415       tty->print_cr("r26 = 0x%016" PRIx64, regs[26]);
3416       tty->print_cr("r27 = 0x%016" PRIx64, regs[27]);
3417       tty->print_cr("r28 = 0x%016" PRIx64, regs[28]);
3418       tty->print_cr("r30 = 0x%016" PRIx64, regs[30]);
3419       tty->print_cr("r31 = 0x%016" PRIx64, regs[31]);
3420       BREAKPOINT;
3421     }
3422   }
3423   fatal("DEBUG MESSAGE: %s", msg);
3424 }
3425 
3426 RegSet MacroAssembler::call_clobbered_gp_registers() {
3427   RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2);
3428 #ifndef R18_RESERVED
3429   regs += r18_tls;
3430 #endif
3431   return regs;
3432 }
3433 
3434 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) {
3435   int step = 4 * wordSize;
3436   push(call_clobbered_gp_registers() - exclude, sp);
3437   sub(sp, sp, step);
3438   mov(rscratch1, -step);
3439   // Push v0-v7, v16-v31.
3440   for (int i = 31; i>= 4; i -= 4) {
3441     if (i <= v7->encoding() || i >= v16->encoding())
3442       st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1),
3443           as_FloatRegister(i), T1D, Address(post(sp, rscratch1)));
3444   }
3445   st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2),
3446       as_FloatRegister(3), T1D, Address(sp));
3447 }
3448 
3449 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) {
3450   for (int i = 0; i < 32; i += 4) {
3451     if (i <= v7->encoding() || i >= v16->encoding())
3452       ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3453           as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize)));
3454   }
3455 
3456   reinitialize_ptrue();
3457 
3458   pop(call_clobbered_gp_registers() - exclude, sp);
3459 }
3460 
3461 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve,
3462                                     int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3463   push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
3464   if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3465     sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3466     for (int i = 0; i < FloatRegister::number_of_registers; i++) {
3467       sve_str(as_FloatRegister(i), Address(sp, i));
3468     }
3469   } else {
3470     int step = (save_vectors ? 8 : 4) * wordSize;
3471     mov(rscratch1, -step);
3472     sub(sp, sp, step);
3473     for (int i = 28; i >= 4; i -= 4) {
3474       st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3475           as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1)));
3476     }
3477     st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp);
3478   }
3479   if (save_vectors && use_sve && total_predicate_in_bytes > 0) {
3480     sub(sp, sp, total_predicate_in_bytes);
3481     for (int i = 0; i < PRegister::number_of_registers; i++) {
3482       sve_str(as_PRegister(i), Address(sp, i));
3483     }
3484   }
3485 }
3486 
3487 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve,
3488                                    int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3489   if (restore_vectors && use_sve && total_predicate_in_bytes > 0) {
3490     for (int i = PRegister::number_of_registers - 1; i >= 0; i--) {
3491       sve_ldr(as_PRegister(i), Address(sp, i));
3492     }
3493     add(sp, sp, total_predicate_in_bytes);
3494   }
3495   if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3496     for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) {
3497       sve_ldr(as_FloatRegister(i), Address(sp, i));
3498     }
3499     add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3500   } else {
3501     int step = (restore_vectors ? 8 : 4) * wordSize;
3502     for (int i = 0; i <= 28; i += 4)
3503       ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3504           as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step)));
3505   }
3506 
3507   // We may use predicate registers and rely on ptrue with SVE,
3508   // regardless of wide vector (> 8 bytes) used or not.
3509   if (use_sve) {
3510     reinitialize_ptrue();
3511   }
3512 
3513   // integer registers except lr & sp
3514   pop(RegSet::range(r0, r17), sp);
3515 #ifdef R18_RESERVED
3516   ldp(zr, r19, Address(post(sp, 2 * wordSize)));
3517   pop(RegSet::range(r20, r29), sp);
3518 #else
3519   pop(RegSet::range(r18_tls, r29), sp);
3520 #endif
3521 }
3522 
3523 /**
3524  * Helpers for multiply_to_len().
3525  */
3526 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
3527                                      Register src1, Register src2) {
3528   adds(dest_lo, dest_lo, src1);
3529   adc(dest_hi, dest_hi, zr);
3530   adds(dest_lo, dest_lo, src2);
3531   adc(final_dest_hi, dest_hi, zr);
3532 }
3533 
3534 // Generate an address from (r + r1 extend offset).  "size" is the
3535 // size of the operand.  The result may be in rscratch2.
3536 Address MacroAssembler::offsetted_address(Register r, Register r1,
3537                                           Address::extend ext, int offset, int size) {
3538   if (offset || (ext.shift() % size != 0)) {
3539     lea(rscratch2, Address(r, r1, ext));
3540     return Address(rscratch2, offset);
3541   } else {
3542     return Address(r, r1, ext);
3543   }
3544 }
3545 
3546 Address MacroAssembler::spill_address(int size, int offset, Register tmp)
3547 {
3548   assert(offset >= 0, "spill to negative address?");
3549   // Offset reachable ?
3550   //   Not aligned - 9 bits signed offset
3551   //   Aligned - 12 bits unsigned offset shifted
3552   Register base = sp;
3553   if ((offset & (size-1)) && offset >= (1<<8)) {
3554     add(tmp, base, offset & ((1<<12)-1));
3555     base = tmp;
3556     offset &= -1u<<12;
3557   }
3558 
3559   if (offset >= (1<<12) * size) {
3560     add(tmp, base, offset & (((1<<12)-1)<<12));
3561     base = tmp;
3562     offset &= ~(((1<<12)-1)<<12);
3563   }
3564 
3565   return Address(base, offset);
3566 }
3567 
3568 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) {
3569   assert(offset >= 0, "spill to negative address?");
3570 
3571   Register base = sp;
3572 
3573   // An immediate offset in the range 0 to 255 which is multiplied
3574   // by the current vector or predicate register size in bytes.
3575   if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) {
3576     return Address(base, offset / sve_reg_size_in_bytes);
3577   }
3578 
3579   add(tmp, base, offset);
3580   return Address(tmp);
3581 }
3582 
3583 // Checks whether offset is aligned.
3584 // Returns true if it is, else false.
3585 bool MacroAssembler::merge_alignment_check(Register base,
3586                                            size_t size,
3587                                            int64_t cur_offset,
3588                                            int64_t prev_offset) const {
3589   if (AvoidUnalignedAccesses) {
3590     if (base == sp) {
3591       // Checks whether low offset if aligned to pair of registers.
3592       int64_t pair_mask = size * 2 - 1;
3593       int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3594       return (offset & pair_mask) == 0;
3595     } else { // If base is not sp, we can't guarantee the access is aligned.
3596       return false;
3597     }
3598   } else {
3599     int64_t mask = size - 1;
3600     // Load/store pair instruction only supports element size aligned offset.
3601     return (cur_offset & mask) == 0 && (prev_offset & mask) == 0;
3602   }
3603 }
3604 
3605 // Checks whether current and previous loads/stores can be merged.
3606 // Returns true if it can be merged, else false.
3607 bool MacroAssembler::ldst_can_merge(Register rt,
3608                                     const Address &adr,
3609                                     size_t cur_size_in_bytes,
3610                                     bool is_store) const {
3611   address prev = pc() - NativeInstruction::instruction_size;
3612   address last = code()->last_insn();
3613 
3614   if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) {
3615     return false;
3616   }
3617 
3618   if (adr.getMode() != Address::base_plus_offset || prev != last) {
3619     return false;
3620   }
3621 
3622   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3623   size_t prev_size_in_bytes = prev_ldst->size_in_bytes();
3624 
3625   assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging.");
3626   assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging.");
3627 
3628   if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) {
3629     return false;
3630   }
3631 
3632   int64_t max_offset = 63 * prev_size_in_bytes;
3633   int64_t min_offset = -64 * prev_size_in_bytes;
3634 
3635   assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged.");
3636 
3637   // Only same base can be merged.
3638   if (adr.base() != prev_ldst->base()) {
3639     return false;
3640   }
3641 
3642   int64_t cur_offset = adr.offset();
3643   int64_t prev_offset = prev_ldst->offset();
3644   size_t diff = abs(cur_offset - prev_offset);
3645   if (diff != prev_size_in_bytes) {
3646     return false;
3647   }
3648 
3649   // Following cases can not be merged:
3650   // ldr x2, [x2, #8]
3651   // ldr x3, [x2, #16]
3652   // or:
3653   // ldr x2, [x3, #8]
3654   // ldr x2, [x3, #16]
3655   // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL.
3656   if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) {
3657     return false;
3658   }
3659 
3660   int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3661   // Offset range must be in ldp/stp instruction's range.
3662   if (low_offset > max_offset || low_offset < min_offset) {
3663     return false;
3664   }
3665 
3666   if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) {
3667     return true;
3668   }
3669 
3670   return false;
3671 }
3672 
3673 // Merge current load/store with previous load/store into ldp/stp.
3674 void MacroAssembler::merge_ldst(Register rt,
3675                                 const Address &adr,
3676                                 size_t cur_size_in_bytes,
3677                                 bool is_store) {
3678 
3679   assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged.");
3680 
3681   Register rt_low, rt_high;
3682   address prev = pc() - NativeInstruction::instruction_size;
3683   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3684 
3685   int64_t offset;
3686 
3687   if (adr.offset() < prev_ldst->offset()) {
3688     offset = adr.offset();
3689     rt_low = rt;
3690     rt_high = prev_ldst->target();
3691   } else {
3692     offset = prev_ldst->offset();
3693     rt_low = prev_ldst->target();
3694     rt_high = rt;
3695   }
3696 
3697   Address adr_p = Address(prev_ldst->base(), offset);
3698   // Overwrite previous generated binary.
3699   code_section()->set_end(prev);
3700 
3701   const size_t sz = prev_ldst->size_in_bytes();
3702   assert(sz == 8 || sz == 4, "only supports 64/32bit merging.");
3703   if (!is_store) {
3704     BLOCK_COMMENT("merged ldr pair");
3705     if (sz == 8) {
3706       ldp(rt_low, rt_high, adr_p);
3707     } else {
3708       ldpw(rt_low, rt_high, adr_p);
3709     }
3710   } else {
3711     BLOCK_COMMENT("merged str pair");
3712     if (sz == 8) {
3713       stp(rt_low, rt_high, adr_p);
3714     } else {
3715       stpw(rt_low, rt_high, adr_p);
3716     }
3717   }
3718 }
3719 
3720 /**
3721  * Multiply 64 bit by 64 bit first loop.
3722  */
3723 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
3724                                            Register y, Register y_idx, Register z,
3725                                            Register carry, Register product,
3726                                            Register idx, Register kdx) {
3727   //
3728   //  jlong carry, x[], y[], z[];
3729   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3730   //    huge_128 product = y[idx] * x[xstart] + carry;
3731   //    z[kdx] = (jlong)product;
3732   //    carry  = (jlong)(product >>> 64);
3733   //  }
3734   //  z[xstart] = carry;
3735   //
3736 
3737   Label L_first_loop, L_first_loop_exit;
3738   Label L_one_x, L_one_y, L_multiply;
3739 
3740   subsw(xstart, xstart, 1);
3741   br(Assembler::MI, L_one_x);
3742 
3743   lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
3744   ldr(x_xstart, Address(rscratch1));
3745   ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
3746 
3747   bind(L_first_loop);
3748   subsw(idx, idx, 1);
3749   br(Assembler::MI, L_first_loop_exit);
3750   subsw(idx, idx, 1);
3751   br(Assembler::MI, L_one_y);
3752   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3753   ldr(y_idx, Address(rscratch1));
3754   ror(y_idx, y_idx, 32); // convert big-endian to little-endian
3755   bind(L_multiply);
3756 
3757   // AArch64 has a multiply-accumulate instruction that we can't use
3758   // here because it has no way to process carries, so we have to use
3759   // separate add and adc instructions.  Bah.
3760   umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
3761   mul(product, x_xstart, y_idx);
3762   adds(product, product, carry);
3763   adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
3764 
3765   subw(kdx, kdx, 2);
3766   ror(product, product, 32); // back to big-endian
3767   str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
3768 
3769   b(L_first_loop);
3770 
3771   bind(L_one_y);
3772   ldrw(y_idx, Address(y,  0));
3773   b(L_multiply);
3774 
3775   bind(L_one_x);
3776   ldrw(x_xstart, Address(x,  0));
3777   b(L_first_loop);
3778 
3779   bind(L_first_loop_exit);
3780 }
3781 
3782 /**
3783  * Multiply 128 bit by 128. Unrolled inner loop.
3784  *
3785  */
3786 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
3787                                              Register carry, Register carry2,
3788                                              Register idx, Register jdx,
3789                                              Register yz_idx1, Register yz_idx2,
3790                                              Register tmp, Register tmp3, Register tmp4,
3791                                              Register tmp6, Register product_hi) {
3792 
3793   //   jlong carry, x[], y[], z[];
3794   //   int kdx = ystart+1;
3795   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
3796   //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
3797   //     jlong carry2  = (jlong)(tmp3 >>> 64);
3798   //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
3799   //     carry  = (jlong)(tmp4 >>> 64);
3800   //     z[kdx+idx+1] = (jlong)tmp3;
3801   //     z[kdx+idx] = (jlong)tmp4;
3802   //   }
3803   //   idx += 2;
3804   //   if (idx > 0) {
3805   //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
3806   //     z[kdx+idx] = (jlong)yz_idx1;
3807   //     carry  = (jlong)(yz_idx1 >>> 64);
3808   //   }
3809   //
3810 
3811   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
3812 
3813   lsrw(jdx, idx, 2);
3814 
3815   bind(L_third_loop);
3816 
3817   subsw(jdx, jdx, 1);
3818   br(Assembler::MI, L_third_loop_exit);
3819   subw(idx, idx, 4);
3820 
3821   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3822 
3823   ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
3824 
3825   lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3826 
3827   ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
3828   ror(yz_idx2, yz_idx2, 32);
3829 
3830   ldp(rscratch2, rscratch1, Address(tmp6, 0));
3831 
3832   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
3833   umulh(tmp4, product_hi, yz_idx1);
3834 
3835   ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
3836   ror(rscratch2, rscratch2, 32);
3837 
3838   mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
3839   umulh(carry2, product_hi, yz_idx2);
3840 
3841   // propagate sum of both multiplications into carry:tmp4:tmp3
3842   adds(tmp3, tmp3, carry);
3843   adc(tmp4, tmp4, zr);
3844   adds(tmp3, tmp3, rscratch1);
3845   adcs(tmp4, tmp4, tmp);
3846   adc(carry, carry2, zr);
3847   adds(tmp4, tmp4, rscratch2);
3848   adc(carry, carry, zr);
3849 
3850   ror(tmp3, tmp3, 32); // convert little-endian to big-endian
3851   ror(tmp4, tmp4, 32);
3852   stp(tmp4, tmp3, Address(tmp6, 0));
3853 
3854   b(L_third_loop);
3855   bind (L_third_loop_exit);
3856 
3857   andw (idx, idx, 0x3);
3858   cbz(idx, L_post_third_loop_done);
3859 
3860   Label L_check_1;
3861   subsw(idx, idx, 2);
3862   br(Assembler::MI, L_check_1);
3863 
3864   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3865   ldr(yz_idx1, Address(rscratch1, 0));
3866   ror(yz_idx1, yz_idx1, 32);
3867   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
3868   umulh(tmp4, product_hi, yz_idx1);
3869   lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3870   ldr(yz_idx2, Address(rscratch1, 0));
3871   ror(yz_idx2, yz_idx2, 32);
3872 
3873   add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
3874 
3875   ror(tmp3, tmp3, 32);
3876   str(tmp3, Address(rscratch1, 0));
3877 
3878   bind (L_check_1);
3879 
3880   andw (idx, idx, 0x1);
3881   subsw(idx, idx, 1);
3882   br(Assembler::MI, L_post_third_loop_done);
3883   ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3884   mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
3885   umulh(carry2, tmp4, product_hi);
3886   ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3887 
3888   add2_with_carry(carry2, tmp3, tmp4, carry);
3889 
3890   strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3891   extr(carry, carry2, tmp3, 32);
3892 
3893   bind(L_post_third_loop_done);
3894 }
3895 
3896 /**
3897  * Code for BigInteger::multiplyToLen() intrinsic.
3898  *
3899  * r0: x
3900  * r1: xlen
3901  * r2: y
3902  * r3: ylen
3903  * r4:  z
3904  * r5: tmp0
3905  * r10: tmp1
3906  * r11: tmp2
3907  * r12: tmp3
3908  * r13: tmp4
3909  * r14: tmp5
3910  * r15: tmp6
3911  * r16: tmp7
3912  *
3913  */
3914 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
3915                                      Register z, Register tmp0,
3916                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4,
3917                                      Register tmp5, Register tmp6, Register product_hi) {
3918 
3919   assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi);
3920 
3921   const Register idx = tmp1;
3922   const Register kdx = tmp2;
3923   const Register xstart = tmp3;
3924 
3925   const Register y_idx = tmp4;
3926   const Register carry = tmp5;
3927   const Register product  = xlen;
3928   const Register x_xstart = tmp0;
3929 
3930   // First Loop.
3931   //
3932   //  final static long LONG_MASK = 0xffffffffL;
3933   //  int xstart = xlen - 1;
3934   //  int ystart = ylen - 1;
3935   //  long carry = 0;
3936   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3937   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
3938   //    z[kdx] = (int)product;
3939   //    carry = product >>> 32;
3940   //  }
3941   //  z[xstart] = (int)carry;
3942   //
3943 
3944   movw(idx, ylen);       // idx = ylen;
3945   addw(kdx, xlen, ylen); // kdx = xlen+ylen;
3946   mov(carry, zr);        // carry = 0;
3947 
3948   Label L_done;
3949 
3950   movw(xstart, xlen);
3951   subsw(xstart, xstart, 1);
3952   br(Assembler::MI, L_done);
3953 
3954   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
3955 
3956   Label L_second_loop;
3957   cbzw(kdx, L_second_loop);
3958 
3959   Label L_carry;
3960   subw(kdx, kdx, 1);
3961   cbzw(kdx, L_carry);
3962 
3963   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3964   lsr(carry, carry, 32);
3965   subw(kdx, kdx, 1);
3966 
3967   bind(L_carry);
3968   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3969 
3970   // Second and third (nested) loops.
3971   //
3972   // for (int i = xstart-1; i >= 0; i--) { // Second loop
3973   //   carry = 0;
3974   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
3975   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
3976   //                    (z[k] & LONG_MASK) + carry;
3977   //     z[k] = (int)product;
3978   //     carry = product >>> 32;
3979   //   }
3980   //   z[i] = (int)carry;
3981   // }
3982   //
3983   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
3984 
3985   const Register jdx = tmp1;
3986 
3987   bind(L_second_loop);
3988   mov(carry, zr);                // carry = 0;
3989   movw(jdx, ylen);               // j = ystart+1
3990 
3991   subsw(xstart, xstart, 1);      // i = xstart-1;
3992   br(Assembler::MI, L_done);
3993 
3994   str(z, Address(pre(sp, -4 * wordSize)));
3995 
3996   Label L_last_x;
3997   lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
3998   subsw(xstart, xstart, 1);       // i = xstart-1;
3999   br(Assembler::MI, L_last_x);
4000 
4001   lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
4002   ldr(product_hi, Address(rscratch1));
4003   ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
4004 
4005   Label L_third_loop_prologue;
4006   bind(L_third_loop_prologue);
4007 
4008   str(ylen, Address(sp, wordSize));
4009   stp(x, xstart, Address(sp, 2 * wordSize));
4010   multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
4011                           tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
4012   ldp(z, ylen, Address(post(sp, 2 * wordSize)));
4013   ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
4014 
4015   addw(tmp3, xlen, 1);
4016   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
4017   subsw(tmp3, tmp3, 1);
4018   br(Assembler::MI, L_done);
4019 
4020   lsr(carry, carry, 32);
4021   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
4022   b(L_second_loop);
4023 
4024   // Next infrequent code is moved outside loops.
4025   bind(L_last_x);
4026   ldrw(product_hi, Address(x,  0));
4027   b(L_third_loop_prologue);
4028 
4029   bind(L_done);
4030 }
4031 
4032 // Code for BigInteger::mulAdd intrinsic
4033 // out     = r0
4034 // in      = r1
4035 // offset  = r2  (already out.length-offset)
4036 // len     = r3
4037 // k       = r4
4038 //
4039 // pseudo code from java implementation:
4040 // carry = 0;
4041 // offset = out.length-offset - 1;
4042 // for (int j=len-1; j >= 0; j--) {
4043 //     product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry;
4044 //     out[offset--] = (int)product;
4045 //     carry = product >>> 32;
4046 // }
4047 // return (int)carry;
4048 void MacroAssembler::mul_add(Register out, Register in, Register offset,
4049       Register len, Register k) {
4050     Label LOOP, END;
4051     // pre-loop
4052     cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches
4053     csel(out, zr, out, Assembler::EQ);
4054     br(Assembler::EQ, END);
4055     add(in, in, len, LSL, 2); // in[j+1] address
4056     add(offset, out, offset, LSL, 2); // out[offset + 1] address
4057     mov(out, zr); // used to keep carry now
4058     BIND(LOOP);
4059     ldrw(rscratch1, Address(pre(in, -4)));
4060     madd(rscratch1, rscratch1, k, out);
4061     ldrw(rscratch2, Address(pre(offset, -4)));
4062     add(rscratch1, rscratch1, rscratch2);
4063     strw(rscratch1, Address(offset));
4064     lsr(out, rscratch1, 32);
4065     subs(len, len, 1);
4066     br(Assembler::NE, LOOP);
4067     BIND(END);
4068 }
4069 
4070 /**
4071  * Emits code to update CRC-32 with a byte value according to constants in table
4072  *
4073  * @param [in,out]crc   Register containing the crc.
4074  * @param [in]val       Register containing the byte to fold into the CRC.
4075  * @param [in]table     Register containing the table of crc constants.
4076  *
4077  * uint32_t crc;
4078  * val = crc_table[(val ^ crc) & 0xFF];
4079  * crc = val ^ (crc >> 8);
4080  *
4081  */
4082 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4083   eor(val, val, crc);
4084   andr(val, val, 0xff);
4085   ldrw(val, Address(table, val, Address::lsl(2)));
4086   eor(crc, val, crc, Assembler::LSR, 8);
4087 }
4088 
4089 /**
4090  * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
4091  *
4092  * @param [in,out]crc   Register containing the crc.
4093  * @param [in]v         Register containing the 32-bit to fold into the CRC.
4094  * @param [in]table0    Register containing table 0 of crc constants.
4095  * @param [in]table1    Register containing table 1 of crc constants.
4096  * @param [in]table2    Register containing table 2 of crc constants.
4097  * @param [in]table3    Register containing table 3 of crc constants.
4098  *
4099  * uint32_t crc;
4100  *   v = crc ^ v
4101  *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
4102  *
4103  */
4104 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
4105         Register table0, Register table1, Register table2, Register table3,
4106         bool upper) {
4107   eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
4108   uxtb(tmp, v);
4109   ldrw(crc, Address(table3, tmp, Address::lsl(2)));
4110   ubfx(tmp, v, 8, 8);
4111   ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
4112   eor(crc, crc, tmp);
4113   ubfx(tmp, v, 16, 8);
4114   ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
4115   eor(crc, crc, tmp);
4116   ubfx(tmp, v, 24, 8);
4117   ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
4118   eor(crc, crc, tmp);
4119 }
4120 
4121 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf,
4122         Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
4123     Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
4124     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4125 
4126     subs(tmp0, len, 384);
4127     mvnw(crc, crc);
4128     br(Assembler::GE, CRC_by128_pre);
4129   BIND(CRC_less128);
4130     subs(len, len, 32);
4131     br(Assembler::GE, CRC_by32_loop);
4132   BIND(CRC_less32);
4133     adds(len, len, 32 - 4);
4134     br(Assembler::GE, CRC_by4_loop);
4135     adds(len, len, 4);
4136     br(Assembler::GT, CRC_by1_loop);
4137     b(L_exit);
4138 
4139   BIND(CRC_by32_loop);
4140     ldp(tmp0, tmp1, Address(buf));
4141     crc32x(crc, crc, tmp0);
4142     ldp(tmp2, tmp3, Address(buf, 16));
4143     crc32x(crc, crc, tmp1);
4144     add(buf, buf, 32);
4145     crc32x(crc, crc, tmp2);
4146     subs(len, len, 32);
4147     crc32x(crc, crc, tmp3);
4148     br(Assembler::GE, CRC_by32_loop);
4149     cmn(len, (u1)32);
4150     br(Assembler::NE, CRC_less32);
4151     b(L_exit);
4152 
4153   BIND(CRC_by4_loop);
4154     ldrw(tmp0, Address(post(buf, 4)));
4155     subs(len, len, 4);
4156     crc32w(crc, crc, tmp0);
4157     br(Assembler::GE, CRC_by4_loop);
4158     adds(len, len, 4);
4159     br(Assembler::LE, L_exit);
4160   BIND(CRC_by1_loop);
4161     ldrb(tmp0, Address(post(buf, 1)));
4162     subs(len, len, 1);
4163     crc32b(crc, crc, tmp0);
4164     br(Assembler::GT, CRC_by1_loop);
4165     b(L_exit);
4166 
4167   BIND(CRC_by128_pre);
4168     kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
4169       4*256*sizeof(juint) + 8*sizeof(juint));
4170     mov(crc, 0);
4171     crc32x(crc, crc, tmp0);
4172     crc32x(crc, crc, tmp1);
4173 
4174     cbnz(len, CRC_less128);
4175 
4176   BIND(L_exit);
4177     mvnw(crc, crc);
4178 }
4179 
4180 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf,
4181         Register len, Register tmp0, Register tmp1, Register tmp2,
4182         Register tmp3) {
4183     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
4184     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
4185 
4186     mvnw(crc, crc);
4187 
4188     subs(len, len, 128);
4189     br(Assembler::GE, CRC_by64_pre);
4190   BIND(CRC_less64);
4191     adds(len, len, 128-32);
4192     br(Assembler::GE, CRC_by32_loop);
4193   BIND(CRC_less32);
4194     adds(len, len, 32-4);
4195     br(Assembler::GE, CRC_by4_loop);
4196     adds(len, len, 4);
4197     br(Assembler::GT, CRC_by1_loop);
4198     b(L_exit);
4199 
4200   BIND(CRC_by32_loop);
4201     ldp(tmp0, tmp1, Address(post(buf, 16)));
4202     subs(len, len, 32);
4203     crc32x(crc, crc, tmp0);
4204     ldr(tmp2, Address(post(buf, 8)));
4205     crc32x(crc, crc, tmp1);
4206     ldr(tmp3, Address(post(buf, 8)));
4207     crc32x(crc, crc, tmp2);
4208     crc32x(crc, crc, tmp3);
4209     br(Assembler::GE, CRC_by32_loop);
4210     cmn(len, (u1)32);
4211     br(Assembler::NE, CRC_less32);
4212     b(L_exit);
4213 
4214   BIND(CRC_by4_loop);
4215     ldrw(tmp0, Address(post(buf, 4)));
4216     subs(len, len, 4);
4217     crc32w(crc, crc, tmp0);
4218     br(Assembler::GE, CRC_by4_loop);
4219     adds(len, len, 4);
4220     br(Assembler::LE, L_exit);
4221   BIND(CRC_by1_loop);
4222     ldrb(tmp0, Address(post(buf, 1)));
4223     subs(len, len, 1);
4224     crc32b(crc, crc, tmp0);
4225     br(Assembler::GT, CRC_by1_loop);
4226     b(L_exit);
4227 
4228   BIND(CRC_by64_pre);
4229     sub(buf, buf, 8);
4230     ldp(tmp0, tmp1, Address(buf, 8));
4231     crc32x(crc, crc, tmp0);
4232     ldr(tmp2, Address(buf, 24));
4233     crc32x(crc, crc, tmp1);
4234     ldr(tmp3, Address(buf, 32));
4235     crc32x(crc, crc, tmp2);
4236     ldr(tmp0, Address(buf, 40));
4237     crc32x(crc, crc, tmp3);
4238     ldr(tmp1, Address(buf, 48));
4239     crc32x(crc, crc, tmp0);
4240     ldr(tmp2, Address(buf, 56));
4241     crc32x(crc, crc, tmp1);
4242     ldr(tmp3, Address(pre(buf, 64)));
4243 
4244     b(CRC_by64_loop);
4245 
4246     align(CodeEntryAlignment);
4247   BIND(CRC_by64_loop);
4248     subs(len, len, 64);
4249     crc32x(crc, crc, tmp2);
4250     ldr(tmp0, Address(buf, 8));
4251     crc32x(crc, crc, tmp3);
4252     ldr(tmp1, Address(buf, 16));
4253     crc32x(crc, crc, tmp0);
4254     ldr(tmp2, Address(buf, 24));
4255     crc32x(crc, crc, tmp1);
4256     ldr(tmp3, Address(buf, 32));
4257     crc32x(crc, crc, tmp2);
4258     ldr(tmp0, Address(buf, 40));
4259     crc32x(crc, crc, tmp3);
4260     ldr(tmp1, Address(buf, 48));
4261     crc32x(crc, crc, tmp0);
4262     ldr(tmp2, Address(buf, 56));
4263     crc32x(crc, crc, tmp1);
4264     ldr(tmp3, Address(pre(buf, 64)));
4265     br(Assembler::GE, CRC_by64_loop);
4266 
4267     // post-loop
4268     crc32x(crc, crc, tmp2);
4269     crc32x(crc, crc, tmp3);
4270 
4271     sub(len, len, 64);
4272     add(buf, buf, 8);
4273     cmn(len, (u1)128);
4274     br(Assembler::NE, CRC_less64);
4275   BIND(L_exit);
4276     mvnw(crc, crc);
4277 }
4278 
4279 /**
4280  * @param crc   register containing existing CRC (32-bit)
4281  * @param buf   register pointing to input byte buffer (byte*)
4282  * @param len   register containing number of bytes
4283  * @param table register that will contain address of CRC table
4284  * @param tmp   scratch register
4285  */
4286 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
4287         Register table0, Register table1, Register table2, Register table3,
4288         Register tmp, Register tmp2, Register tmp3) {
4289   Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
4290 
4291   if (UseCryptoPmullForCRC32) {
4292       kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
4293       return;
4294   }
4295 
4296   if (UseCRC32) {
4297       kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3);
4298       return;
4299   }
4300 
4301     mvnw(crc, crc);
4302 
4303     {
4304       uint64_t offset;
4305       adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
4306       add(table0, table0, offset);
4307     }
4308     add(table1, table0, 1*256*sizeof(juint));
4309     add(table2, table0, 2*256*sizeof(juint));
4310     add(table3, table0, 3*256*sizeof(juint));
4311 
4312     { // Neon code start
4313       cmp(len, (u1)64);
4314       br(Assembler::LT, L_by16);
4315       eor(v16, T16B, v16, v16);
4316 
4317     Label L_fold;
4318 
4319       add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
4320 
4321       ld1(v0, v1, T2D, post(buf, 32));
4322       ld1r(v4, T2D, post(tmp, 8));
4323       ld1r(v5, T2D, post(tmp, 8));
4324       ld1r(v6, T2D, post(tmp, 8));
4325       ld1r(v7, T2D, post(tmp, 8));
4326       mov(v16, S, 0, crc);
4327 
4328       eor(v0, T16B, v0, v16);
4329       sub(len, len, 64);
4330 
4331     BIND(L_fold);
4332       pmull(v22, T8H, v0, v5, T8B);
4333       pmull(v20, T8H, v0, v7, T8B);
4334       pmull(v23, T8H, v0, v4, T8B);
4335       pmull(v21, T8H, v0, v6, T8B);
4336 
4337       pmull2(v18, T8H, v0, v5, T16B);
4338       pmull2(v16, T8H, v0, v7, T16B);
4339       pmull2(v19, T8H, v0, v4, T16B);
4340       pmull2(v17, T8H, v0, v6, T16B);
4341 
4342       uzp1(v24, T8H, v20, v22);
4343       uzp2(v25, T8H, v20, v22);
4344       eor(v20, T16B, v24, v25);
4345 
4346       uzp1(v26, T8H, v16, v18);
4347       uzp2(v27, T8H, v16, v18);
4348       eor(v16, T16B, v26, v27);
4349 
4350       ushll2(v22, T4S, v20, T8H, 8);
4351       ushll(v20, T4S, v20, T4H, 8);
4352 
4353       ushll2(v18, T4S, v16, T8H, 8);
4354       ushll(v16, T4S, v16, T4H, 8);
4355 
4356       eor(v22, T16B, v23, v22);
4357       eor(v18, T16B, v19, v18);
4358       eor(v20, T16B, v21, v20);
4359       eor(v16, T16B, v17, v16);
4360 
4361       uzp1(v17, T2D, v16, v20);
4362       uzp2(v21, T2D, v16, v20);
4363       eor(v17, T16B, v17, v21);
4364 
4365       ushll2(v20, T2D, v17, T4S, 16);
4366       ushll(v16, T2D, v17, T2S, 16);
4367 
4368       eor(v20, T16B, v20, v22);
4369       eor(v16, T16B, v16, v18);
4370 
4371       uzp1(v17, T2D, v20, v16);
4372       uzp2(v21, T2D, v20, v16);
4373       eor(v28, T16B, v17, v21);
4374 
4375       pmull(v22, T8H, v1, v5, T8B);
4376       pmull(v20, T8H, v1, v7, T8B);
4377       pmull(v23, T8H, v1, v4, T8B);
4378       pmull(v21, T8H, v1, v6, T8B);
4379 
4380       pmull2(v18, T8H, v1, v5, T16B);
4381       pmull2(v16, T8H, v1, v7, T16B);
4382       pmull2(v19, T8H, v1, v4, T16B);
4383       pmull2(v17, T8H, v1, v6, T16B);
4384 
4385       ld1(v0, v1, T2D, post(buf, 32));
4386 
4387       uzp1(v24, T8H, v20, v22);
4388       uzp2(v25, T8H, v20, v22);
4389       eor(v20, T16B, v24, v25);
4390 
4391       uzp1(v26, T8H, v16, v18);
4392       uzp2(v27, T8H, v16, v18);
4393       eor(v16, T16B, v26, v27);
4394 
4395       ushll2(v22, T4S, v20, T8H, 8);
4396       ushll(v20, T4S, v20, T4H, 8);
4397 
4398       ushll2(v18, T4S, v16, T8H, 8);
4399       ushll(v16, T4S, v16, T4H, 8);
4400 
4401       eor(v22, T16B, v23, v22);
4402       eor(v18, T16B, v19, v18);
4403       eor(v20, T16B, v21, v20);
4404       eor(v16, T16B, v17, v16);
4405 
4406       uzp1(v17, T2D, v16, v20);
4407       uzp2(v21, T2D, v16, v20);
4408       eor(v16, T16B, v17, v21);
4409 
4410       ushll2(v20, T2D, v16, T4S, 16);
4411       ushll(v16, T2D, v16, T2S, 16);
4412 
4413       eor(v20, T16B, v22, v20);
4414       eor(v16, T16B, v16, v18);
4415 
4416       uzp1(v17, T2D, v20, v16);
4417       uzp2(v21, T2D, v20, v16);
4418       eor(v20, T16B, v17, v21);
4419 
4420       shl(v16, T2D, v28, 1);
4421       shl(v17, T2D, v20, 1);
4422 
4423       eor(v0, T16B, v0, v16);
4424       eor(v1, T16B, v1, v17);
4425 
4426       subs(len, len, 32);
4427       br(Assembler::GE, L_fold);
4428 
4429       mov(crc, 0);
4430       mov(tmp, v0, D, 0);
4431       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4432       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4433       mov(tmp, v0, D, 1);
4434       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4435       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4436       mov(tmp, v1, D, 0);
4437       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4438       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4439       mov(tmp, v1, D, 1);
4440       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4441       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4442 
4443       add(len, len, 32);
4444     } // Neon code end
4445 
4446   BIND(L_by16);
4447     subs(len, len, 16);
4448     br(Assembler::GE, L_by16_loop);
4449     adds(len, len, 16-4);
4450     br(Assembler::GE, L_by4_loop);
4451     adds(len, len, 4);
4452     br(Assembler::GT, L_by1_loop);
4453     b(L_exit);
4454 
4455   BIND(L_by4_loop);
4456     ldrw(tmp, Address(post(buf, 4)));
4457     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
4458     subs(len, len, 4);
4459     br(Assembler::GE, L_by4_loop);
4460     adds(len, len, 4);
4461     br(Assembler::LE, L_exit);
4462   BIND(L_by1_loop);
4463     subs(len, len, 1);
4464     ldrb(tmp, Address(post(buf, 1)));
4465     update_byte_crc32(crc, tmp, table0);
4466     br(Assembler::GT, L_by1_loop);
4467     b(L_exit);
4468 
4469     align(CodeEntryAlignment);
4470   BIND(L_by16_loop);
4471     subs(len, len, 16);
4472     ldp(tmp, tmp3, Address(post(buf, 16)));
4473     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4474     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4475     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
4476     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
4477     br(Assembler::GE, L_by16_loop);
4478     adds(len, len, 16-4);
4479     br(Assembler::GE, L_by4_loop);
4480     adds(len, len, 4);
4481     br(Assembler::GT, L_by1_loop);
4482   BIND(L_exit);
4483     mvnw(crc, crc);
4484 }
4485 
4486 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
4487         Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
4488     Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
4489     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4490 
4491     subs(tmp0, len, 384);
4492     br(Assembler::GE, CRC_by128_pre);
4493   BIND(CRC_less128);
4494     subs(len, len, 32);
4495     br(Assembler::GE, CRC_by32_loop);
4496   BIND(CRC_less32);
4497     adds(len, len, 32 - 4);
4498     br(Assembler::GE, CRC_by4_loop);
4499     adds(len, len, 4);
4500     br(Assembler::GT, CRC_by1_loop);
4501     b(L_exit);
4502 
4503   BIND(CRC_by32_loop);
4504     ldp(tmp0, tmp1, Address(buf));
4505     crc32cx(crc, crc, tmp0);
4506     ldr(tmp2, Address(buf, 16));
4507     crc32cx(crc, crc, tmp1);
4508     ldr(tmp3, Address(buf, 24));
4509     crc32cx(crc, crc, tmp2);
4510     add(buf, buf, 32);
4511     subs(len, len, 32);
4512     crc32cx(crc, crc, tmp3);
4513     br(Assembler::GE, CRC_by32_loop);
4514     cmn(len, (u1)32);
4515     br(Assembler::NE, CRC_less32);
4516     b(L_exit);
4517 
4518   BIND(CRC_by4_loop);
4519     ldrw(tmp0, Address(post(buf, 4)));
4520     subs(len, len, 4);
4521     crc32cw(crc, crc, tmp0);
4522     br(Assembler::GE, CRC_by4_loop);
4523     adds(len, len, 4);
4524     br(Assembler::LE, L_exit);
4525   BIND(CRC_by1_loop);
4526     ldrb(tmp0, Address(post(buf, 1)));
4527     subs(len, len, 1);
4528     crc32cb(crc, crc, tmp0);
4529     br(Assembler::GT, CRC_by1_loop);
4530     b(L_exit);
4531 
4532   BIND(CRC_by128_pre);
4533     kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
4534       4*256*sizeof(juint) + 8*sizeof(juint) + 0x50);
4535     mov(crc, 0);
4536     crc32cx(crc, crc, tmp0);
4537     crc32cx(crc, crc, tmp1);
4538 
4539     cbnz(len, CRC_less128);
4540 
4541   BIND(L_exit);
4542 }
4543 
4544 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf,
4545         Register len, Register tmp0, Register tmp1, Register tmp2,
4546         Register tmp3) {
4547     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
4548     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
4549 
4550     subs(len, len, 128);
4551     br(Assembler::GE, CRC_by64_pre);
4552   BIND(CRC_less64);
4553     adds(len, len, 128-32);
4554     br(Assembler::GE, CRC_by32_loop);
4555   BIND(CRC_less32);
4556     adds(len, len, 32-4);
4557     br(Assembler::GE, CRC_by4_loop);
4558     adds(len, len, 4);
4559     br(Assembler::GT, CRC_by1_loop);
4560     b(L_exit);
4561 
4562   BIND(CRC_by32_loop);
4563     ldp(tmp0, tmp1, Address(post(buf, 16)));
4564     subs(len, len, 32);
4565     crc32cx(crc, crc, tmp0);
4566     ldr(tmp2, Address(post(buf, 8)));
4567     crc32cx(crc, crc, tmp1);
4568     ldr(tmp3, Address(post(buf, 8)));
4569     crc32cx(crc, crc, tmp2);
4570     crc32cx(crc, crc, tmp3);
4571     br(Assembler::GE, CRC_by32_loop);
4572     cmn(len, (u1)32);
4573     br(Assembler::NE, CRC_less32);
4574     b(L_exit);
4575 
4576   BIND(CRC_by4_loop);
4577     ldrw(tmp0, Address(post(buf, 4)));
4578     subs(len, len, 4);
4579     crc32cw(crc, crc, tmp0);
4580     br(Assembler::GE, CRC_by4_loop);
4581     adds(len, len, 4);
4582     br(Assembler::LE, L_exit);
4583   BIND(CRC_by1_loop);
4584     ldrb(tmp0, Address(post(buf, 1)));
4585     subs(len, len, 1);
4586     crc32cb(crc, crc, tmp0);
4587     br(Assembler::GT, CRC_by1_loop);
4588     b(L_exit);
4589 
4590   BIND(CRC_by64_pre);
4591     sub(buf, buf, 8);
4592     ldp(tmp0, tmp1, Address(buf, 8));
4593     crc32cx(crc, crc, tmp0);
4594     ldr(tmp2, Address(buf, 24));
4595     crc32cx(crc, crc, tmp1);
4596     ldr(tmp3, Address(buf, 32));
4597     crc32cx(crc, crc, tmp2);
4598     ldr(tmp0, Address(buf, 40));
4599     crc32cx(crc, crc, tmp3);
4600     ldr(tmp1, Address(buf, 48));
4601     crc32cx(crc, crc, tmp0);
4602     ldr(tmp2, Address(buf, 56));
4603     crc32cx(crc, crc, tmp1);
4604     ldr(tmp3, Address(pre(buf, 64)));
4605 
4606     b(CRC_by64_loop);
4607 
4608     align(CodeEntryAlignment);
4609   BIND(CRC_by64_loop);
4610     subs(len, len, 64);
4611     crc32cx(crc, crc, tmp2);
4612     ldr(tmp0, Address(buf, 8));
4613     crc32cx(crc, crc, tmp3);
4614     ldr(tmp1, Address(buf, 16));
4615     crc32cx(crc, crc, tmp0);
4616     ldr(tmp2, Address(buf, 24));
4617     crc32cx(crc, crc, tmp1);
4618     ldr(tmp3, Address(buf, 32));
4619     crc32cx(crc, crc, tmp2);
4620     ldr(tmp0, Address(buf, 40));
4621     crc32cx(crc, crc, tmp3);
4622     ldr(tmp1, Address(buf, 48));
4623     crc32cx(crc, crc, tmp0);
4624     ldr(tmp2, Address(buf, 56));
4625     crc32cx(crc, crc, tmp1);
4626     ldr(tmp3, Address(pre(buf, 64)));
4627     br(Assembler::GE, CRC_by64_loop);
4628 
4629     // post-loop
4630     crc32cx(crc, crc, tmp2);
4631     crc32cx(crc, crc, tmp3);
4632 
4633     sub(len, len, 64);
4634     add(buf, buf, 8);
4635     cmn(len, (u1)128);
4636     br(Assembler::NE, CRC_less64);
4637   BIND(L_exit);
4638 }
4639 
4640 /**
4641  * @param crc   register containing existing CRC (32-bit)
4642  * @param buf   register pointing to input byte buffer (byte*)
4643  * @param len   register containing number of bytes
4644  * @param table register that will contain address of CRC table
4645  * @param tmp   scratch register
4646  */
4647 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
4648         Register table0, Register table1, Register table2, Register table3,
4649         Register tmp, Register tmp2, Register tmp3) {
4650   if (UseCryptoPmullForCRC32) {
4651     kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
4652   } else {
4653     kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3);
4654   }
4655 }
4656 
4657 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
4658         Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) {
4659     Label CRC_by128_loop;
4660     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4661 
4662     sub(len, len, 256);
4663     Register table = tmp0;
4664     {
4665       uint64_t offset;
4666       adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset);
4667       add(table, table, offset);
4668     }
4669     add(table, table, table_offset);
4670 
4671     // Registers v0..v7 are used as data registers.
4672     // Registers v16..v31 are used as tmp registers.
4673     sub(buf, buf, 0x10);
4674     ldrq(v0, Address(buf, 0x10));
4675     ldrq(v1, Address(buf, 0x20));
4676     ldrq(v2, Address(buf, 0x30));
4677     ldrq(v3, Address(buf, 0x40));
4678     ldrq(v4, Address(buf, 0x50));
4679     ldrq(v5, Address(buf, 0x60));
4680     ldrq(v6, Address(buf, 0x70));
4681     ldrq(v7, Address(pre(buf, 0x80)));
4682 
4683     movi(v31, T4S, 0);
4684     mov(v31, S, 0, crc);
4685     eor(v0, T16B, v0, v31);
4686 
4687     // Register v16 contains constants from the crc table.
4688     ldrq(v16, Address(table));
4689     b(CRC_by128_loop);
4690 
4691     align(OptoLoopAlignment);
4692   BIND(CRC_by128_loop);
4693     pmull (v17,  T1Q, v0, v16, T1D);
4694     pmull2(v18, T1Q, v0, v16, T2D);
4695     ldrq(v0, Address(buf, 0x10));
4696     eor3(v0, T16B, v17,  v18, v0);
4697 
4698     pmull (v19, T1Q, v1, v16, T1D);
4699     pmull2(v20, T1Q, v1, v16, T2D);
4700     ldrq(v1, Address(buf, 0x20));
4701     eor3(v1, T16B, v19, v20, v1);
4702 
4703     pmull (v21, T1Q, v2, v16, T1D);
4704     pmull2(v22, T1Q, v2, v16, T2D);
4705     ldrq(v2, Address(buf, 0x30));
4706     eor3(v2, T16B, v21, v22, v2);
4707 
4708     pmull (v23, T1Q, v3, v16, T1D);
4709     pmull2(v24, T1Q, v3, v16, T2D);
4710     ldrq(v3, Address(buf, 0x40));
4711     eor3(v3, T16B, v23, v24, v3);
4712 
4713     pmull (v25, T1Q, v4, v16, T1D);
4714     pmull2(v26, T1Q, v4, v16, T2D);
4715     ldrq(v4, Address(buf, 0x50));
4716     eor3(v4, T16B, v25, v26, v4);
4717 
4718     pmull (v27, T1Q, v5, v16, T1D);
4719     pmull2(v28, T1Q, v5, v16, T2D);
4720     ldrq(v5, Address(buf, 0x60));
4721     eor3(v5, T16B, v27, v28, v5);
4722 
4723     pmull (v29, T1Q, v6, v16, T1D);
4724     pmull2(v30, T1Q, v6, v16, T2D);
4725     ldrq(v6, Address(buf, 0x70));
4726     eor3(v6, T16B, v29, v30, v6);
4727 
4728     // Reuse registers v23, v24.
4729     // Using them won't block the first instruction of the next iteration.
4730     pmull (v23, T1Q, v7, v16, T1D);
4731     pmull2(v24, T1Q, v7, v16, T2D);
4732     ldrq(v7, Address(pre(buf, 0x80)));
4733     eor3(v7, T16B, v23, v24, v7);
4734 
4735     subs(len, len, 0x80);
4736     br(Assembler::GE, CRC_by128_loop);
4737 
4738     // fold into 512 bits
4739     // Use v31 for constants because v16 can be still in use.
4740     ldrq(v31, Address(table, 0x10));
4741 
4742     pmull (v17,  T1Q, v0, v31, T1D);
4743     pmull2(v18, T1Q, v0, v31, T2D);
4744     eor3(v0, T16B, v17, v18, v4);
4745 
4746     pmull (v19, T1Q, v1, v31, T1D);
4747     pmull2(v20, T1Q, v1, v31, T2D);
4748     eor3(v1, T16B, v19, v20, v5);
4749 
4750     pmull (v21, T1Q, v2, v31, T1D);
4751     pmull2(v22, T1Q, v2, v31, T2D);
4752     eor3(v2, T16B, v21, v22, v6);
4753 
4754     pmull (v23, T1Q, v3, v31, T1D);
4755     pmull2(v24, T1Q, v3, v31, T2D);
4756     eor3(v3, T16B, v23, v24, v7);
4757 
4758     // fold into 128 bits
4759     // Use v17 for constants because v31 can be still in use.
4760     ldrq(v17, Address(table, 0x20));
4761     pmull (v25, T1Q, v0, v17, T1D);
4762     pmull2(v26, T1Q, v0, v17, T2D);
4763     eor3(v3, T16B, v3, v25, v26);
4764 
4765     // Use v18 for constants because v17 can be still in use.
4766     ldrq(v18, Address(table, 0x30));
4767     pmull (v27, T1Q, v1, v18, T1D);
4768     pmull2(v28, T1Q, v1, v18, T2D);
4769     eor3(v3, T16B, v3, v27, v28);
4770 
4771     // Use v19 for constants because v18 can be still in use.
4772     ldrq(v19, Address(table, 0x40));
4773     pmull (v29, T1Q, v2, v19, T1D);
4774     pmull2(v30, T1Q, v2, v19, T2D);
4775     eor3(v0, T16B, v3, v29, v30);
4776 
4777     add(len, len, 0x80);
4778     add(buf, buf, 0x10);
4779 
4780     mov(tmp0, v0, D, 0);
4781     mov(tmp1, v0, D, 1);
4782 }
4783 
4784 SkipIfEqual::SkipIfEqual(
4785     MacroAssembler* masm, const bool* flag_addr, bool value) {
4786   _masm = masm;
4787   uint64_t offset;
4788   _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
4789   _masm->ldrb(rscratch1, Address(rscratch1, offset));
4790   if (value) {
4791     _masm->cbnzw(rscratch1, _label);
4792   } else {
4793     _masm->cbzw(rscratch1, _label);
4794   }
4795 }
4796 
4797 SkipIfEqual::~SkipIfEqual() {
4798   _masm->bind(_label);
4799 }
4800 
4801 void MacroAssembler::addptr(const Address &dst, int32_t src) {
4802   Address adr;
4803   switch(dst.getMode()) {
4804   case Address::base_plus_offset:
4805     // This is the expected mode, although we allow all the other
4806     // forms below.
4807     adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
4808     break;
4809   default:
4810     lea(rscratch2, dst);
4811     adr = Address(rscratch2);
4812     break;
4813   }
4814   ldr(rscratch1, adr);
4815   add(rscratch1, rscratch1, src);
4816   str(rscratch1, adr);
4817 }
4818 
4819 void MacroAssembler::cmpptr(Register src1, Address src2) {
4820   uint64_t offset;
4821   adrp(rscratch1, src2, offset);
4822   ldr(rscratch1, Address(rscratch1, offset));
4823   cmp(src1, rscratch1);
4824 }
4825 
4826 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
4827   cmp(obj1, obj2);
4828 }
4829 
4830 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
4831   load_method_holder(rresult, rmethod);
4832   ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
4833 }
4834 
4835 void MacroAssembler::load_method_holder(Register holder, Register method) {
4836   ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
4837   ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
4838   ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
4839 }
4840 
4841 void MacroAssembler::load_klass(Register dst, Register src) {
4842   if (UseCompressedClassPointers) {
4843     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4844     decode_klass_not_null(dst);
4845   } else {
4846     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4847   }
4848 }
4849 
4850 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
4851   if (RestoreMXCSROnJNICalls) {
4852     Label OK;
4853     get_fpcr(tmp1);
4854     mov(tmp2, tmp1);
4855     // Set FPCR to the state we need. We do want Round to Nearest. We
4856     // don't want non-IEEE rounding modes or floating-point traps.
4857     bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
4858     bfi(tmp1, zr, 8, 5);  // Clear exception-control bits (8-12)
4859     bfi(tmp1, zr, 0, 2);  // Clear AH:FIZ
4860     eor(tmp2, tmp1, tmp2);
4861     cbz(tmp2, OK);        // Only reset FPCR if it's wrong
4862     set_fpcr(tmp1);
4863     bind(OK);
4864   }
4865 }
4866 
4867 // ((OopHandle)result).resolve();
4868 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) {
4869   // OopHandle::resolve is an indirection.
4870   access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2);
4871 }
4872 
4873 // ((WeakHandle)result).resolve();
4874 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) {
4875   assert_different_registers(result, tmp1, tmp2);
4876   Label resolved;
4877 
4878   // A null weak handle resolves to null.
4879   cbz(result, resolved);
4880 
4881   // Only 64 bit platforms support GCs that require a tmp register
4882   // WeakHandle::resolve is an indirection like jweak.
4883   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4884                  result, Address(result), tmp1, tmp2);
4885   bind(resolved);
4886 }
4887 
4888 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) {
4889   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
4890   ldr(dst, Address(rmethod, Method::const_offset()));
4891   ldr(dst, Address(dst, ConstMethod::constants_offset()));
4892   ldr(dst, Address(dst, ConstantPool::pool_holder_offset()));
4893   ldr(dst, Address(dst, mirror_offset));
4894   resolve_oop_handle(dst, tmp1, tmp2);
4895 }
4896 
4897 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
4898   if (UseCompressedClassPointers) {
4899     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4900     if (CompressedKlassPointers::base() == nullptr) {
4901       cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
4902       return;
4903     } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
4904                && CompressedKlassPointers::shift() == 0) {
4905       // Only the bottom 32 bits matter
4906       cmpw(trial_klass, tmp);
4907       return;
4908     }
4909     decode_klass_not_null(tmp);
4910   } else {
4911     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4912   }
4913   cmp(trial_klass, tmp);
4914 }
4915 
4916 void MacroAssembler::store_klass(Register dst, Register src) {
4917   // FIXME: Should this be a store release?  concurrent gcs assumes
4918   // klass length is valid if klass field is not null.
4919   if (UseCompressedClassPointers) {
4920     encode_klass_not_null(src);
4921     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4922   } else {
4923     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4924   }
4925 }
4926 
4927 void MacroAssembler::store_klass_gap(Register dst, Register src) {
4928   if (UseCompressedClassPointers) {
4929     // Store to klass gap in destination
4930     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
4931   }
4932 }
4933 
4934 // Algorithm must match CompressedOops::encode.
4935 void MacroAssembler::encode_heap_oop(Register d, Register s) {
4936 #ifdef ASSERT
4937   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
4938 #endif
4939   verify_oop_msg(s, "broken oop in encode_heap_oop");
4940   if (CompressedOops::base() == nullptr) {
4941     if (CompressedOops::shift() != 0) {
4942       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4943       lsr(d, s, LogMinObjAlignmentInBytes);
4944     } else {
4945       mov(d, s);
4946     }
4947   } else {
4948     subs(d, s, rheapbase);
4949     csel(d, d, zr, Assembler::HS);
4950     lsr(d, d, LogMinObjAlignmentInBytes);
4951 
4952     /*  Old algorithm: is this any worse?
4953     Label nonnull;
4954     cbnz(r, nonnull);
4955     sub(r, r, rheapbase);
4956     bind(nonnull);
4957     lsr(r, r, LogMinObjAlignmentInBytes);
4958     */
4959   }
4960 }
4961 
4962 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4963 #ifdef ASSERT
4964   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
4965   if (CheckCompressedOops) {
4966     Label ok;
4967     cbnz(r, ok);
4968     stop("null oop passed to encode_heap_oop_not_null");
4969     bind(ok);
4970   }
4971 #endif
4972   verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
4973   if (CompressedOops::base() != nullptr) {
4974     sub(r, r, rheapbase);
4975   }
4976   if (CompressedOops::shift() != 0) {
4977     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4978     lsr(r, r, LogMinObjAlignmentInBytes);
4979   }
4980 }
4981 
4982 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
4983 #ifdef ASSERT
4984   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
4985   if (CheckCompressedOops) {
4986     Label ok;
4987     cbnz(src, ok);
4988     stop("null oop passed to encode_heap_oop_not_null2");
4989     bind(ok);
4990   }
4991 #endif
4992   verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
4993 
4994   Register data = src;
4995   if (CompressedOops::base() != nullptr) {
4996     sub(dst, src, rheapbase);
4997     data = dst;
4998   }
4999   if (CompressedOops::shift() != 0) {
5000     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5001     lsr(dst, data, LogMinObjAlignmentInBytes);
5002     data = dst;
5003   }
5004   if (data == src)
5005     mov(dst, src);
5006 }
5007 
5008 void  MacroAssembler::decode_heap_oop(Register d, Register s) {
5009 #ifdef ASSERT
5010   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5011 #endif
5012   if (CompressedOops::base() == nullptr) {
5013     if (CompressedOops::shift() != 0 || d != s) {
5014       lsl(d, s, CompressedOops::shift());
5015     }
5016   } else {
5017     Label done;
5018     if (d != s)
5019       mov(d, s);
5020     cbz(s, done);
5021     add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
5022     bind(done);
5023   }
5024   verify_oop_msg(d, "broken oop in decode_heap_oop");
5025 }
5026 
5027 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5028   assert (UseCompressedOops, "should only be used for compressed headers");
5029   assert (Universe::heap() != nullptr, "java heap should be initialized");
5030   // Cannot assert, unverified entry point counts instructions (see .ad file)
5031   // vtableStubs also counts instructions in pd_code_size_limit.
5032   // Also do not verify_oop as this is called by verify_oop.
5033   if (CompressedOops::shift() != 0) {
5034     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5035     if (CompressedOops::base() != nullptr) {
5036       add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
5037     } else {
5038       add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
5039     }
5040   } else {
5041     assert (CompressedOops::base() == nullptr, "sanity");
5042   }
5043 }
5044 
5045 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5046   assert (UseCompressedOops, "should only be used for compressed headers");
5047   assert (Universe::heap() != nullptr, "java heap should be initialized");
5048   // Cannot assert, unverified entry point counts instructions (see .ad file)
5049   // vtableStubs also counts instructions in pd_code_size_limit.
5050   // Also do not verify_oop as this is called by verify_oop.
5051   if (CompressedOops::shift() != 0) {
5052     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5053     if (CompressedOops::base() != nullptr) {
5054       add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
5055     } else {
5056       add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
5057     }
5058   } else {
5059     assert (CompressedOops::base() == nullptr, "sanity");
5060     if (dst != src) {
5061       mov(dst, src);
5062     }
5063   }
5064 }
5065 
5066 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone);
5067 
5068 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() {
5069   assert(UseCompressedClassPointers, "not using compressed class pointers");
5070   assert(Metaspace::initialized(), "metaspace not initialized yet");
5071 
5072   if (_klass_decode_mode != KlassDecodeNone) {
5073     return _klass_decode_mode;
5074   }
5075 
5076   assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift()
5077          || 0 == CompressedKlassPointers::shift(), "decode alg wrong");
5078 
5079   if (CompressedKlassPointers::base() == nullptr) {
5080     return (_klass_decode_mode = KlassDecodeZero);
5081   }
5082 
5083   if (operand_valid_for_logical_immediate(
5084         /*is32*/false, (uint64_t)CompressedKlassPointers::base())) {
5085     const uint64_t range_mask =
5086       (1ULL << log2i(CompressedKlassPointers::range())) - 1;
5087     if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) {
5088       return (_klass_decode_mode = KlassDecodeXor);
5089     }
5090   }
5091 
5092   const uint64_t shifted_base =
5093     (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
5094   guarantee((shifted_base & 0xffff0000ffffffff) == 0,
5095             "compressed class base bad alignment");
5096 
5097   return (_klass_decode_mode = KlassDecodeMovk);
5098 }
5099 
5100 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5101   switch (klass_decode_mode()) {
5102   case KlassDecodeZero:
5103     if (CompressedKlassPointers::shift() != 0) {
5104       lsr(dst, src, LogKlassAlignmentInBytes);
5105     } else {
5106       if (dst != src) mov(dst, src);
5107     }
5108     break;
5109 
5110   case KlassDecodeXor:
5111     if (CompressedKlassPointers::shift() != 0) {
5112       eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5113       lsr(dst, dst, LogKlassAlignmentInBytes);
5114     } else {
5115       eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5116     }
5117     break;
5118 
5119   case KlassDecodeMovk:
5120     if (CompressedKlassPointers::shift() != 0) {
5121       ubfx(dst, src, LogKlassAlignmentInBytes, 32);
5122     } else {
5123       movw(dst, src);
5124     }
5125     break;
5126 
5127   case KlassDecodeNone:
5128     ShouldNotReachHere();
5129     break;
5130   }
5131 }
5132 
5133 void MacroAssembler::encode_klass_not_null(Register r) {
5134   encode_klass_not_null(r, r);
5135 }
5136 
5137 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5138   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5139 
5140   switch (klass_decode_mode()) {
5141   case KlassDecodeZero:
5142     if (CompressedKlassPointers::shift() != 0) {
5143       lsl(dst, src, LogKlassAlignmentInBytes);
5144     } else {
5145       if (dst != src) mov(dst, src);
5146     }
5147     break;
5148 
5149   case KlassDecodeXor:
5150     if (CompressedKlassPointers::shift() != 0) {
5151       lsl(dst, src, LogKlassAlignmentInBytes);
5152       eor(dst, dst, (uint64_t)CompressedKlassPointers::base());
5153     } else {
5154       eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5155     }
5156     break;
5157 
5158   case KlassDecodeMovk: {
5159     const uint64_t shifted_base =
5160       (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
5161 
5162     if (dst != src) movw(dst, src);
5163     movk(dst, shifted_base >> 32, 32);
5164 
5165     if (CompressedKlassPointers::shift() != 0) {
5166       lsl(dst, dst, LogKlassAlignmentInBytes);
5167     }
5168 
5169     break;
5170   }
5171 
5172   case KlassDecodeNone:
5173     ShouldNotReachHere();
5174     break;
5175   }
5176 }
5177 
5178 void  MacroAssembler::decode_klass_not_null(Register r) {
5179   decode_klass_not_null(r, r);
5180 }
5181 
5182 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5183 #ifdef ASSERT
5184   {
5185     ThreadInVMfromUnknown tiv;
5186     assert (UseCompressedOops, "should only be used for compressed oops");
5187     assert (Universe::heap() != nullptr, "java heap should be initialized");
5188     assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5189     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
5190   }
5191 #endif
5192   int oop_index = oop_recorder()->find_index(obj);
5193   InstructionMark im(this);
5194   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5195   code_section()->relocate(inst_mark(), rspec);
5196   movz(dst, 0xDEAD, 16);
5197   movk(dst, 0xBEEF);
5198 }
5199 
5200 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5201   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5202   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5203   int index = oop_recorder()->find_index(k);
5204   assert(! Universe::heap()->is_in(k), "should not be an oop");
5205 
5206   InstructionMark im(this);
5207   RelocationHolder rspec = metadata_Relocation::spec(index);
5208   code_section()->relocate(inst_mark(), rspec);
5209   narrowKlass nk = CompressedKlassPointers::encode(k);
5210   movz(dst, (nk >> 16), 16);
5211   movk(dst, nk & 0xffff);
5212 }
5213 
5214 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
5215                                     Register dst, Address src,
5216                                     Register tmp1, Register tmp2) {
5217   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5218   decorators = AccessInternal::decorator_fixup(decorators, type);
5219   bool as_raw = (decorators & AS_RAW) != 0;
5220   if (as_raw) {
5221     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
5222   } else {
5223     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
5224   }
5225 }
5226 
5227 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
5228                                      Address dst, Register val,
5229                                      Register tmp1, Register tmp2, Register tmp3) {
5230   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5231   decorators = AccessInternal::decorator_fixup(decorators, type);
5232   bool as_raw = (decorators & AS_RAW) != 0;
5233   if (as_raw) {
5234     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5235   } else {
5236     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5237   }
5238 }
5239 
5240 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5241                                    Register tmp2, DecoratorSet decorators) {
5242   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5243 }
5244 
5245 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5246                                             Register tmp2, DecoratorSet decorators) {
5247   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
5248 }
5249 
5250 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5251                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
5252   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5253 }
5254 
5255 // Used for storing nulls.
5256 void MacroAssembler::store_heap_oop_null(Address dst) {
5257   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5258 }
5259 
5260 Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
5261   assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
5262   int index = oop_recorder()->allocate_metadata_index(obj);
5263   RelocationHolder rspec = metadata_Relocation::spec(index);
5264   return Address((address)obj, rspec);
5265 }
5266 
5267 // Move an oop into a register.
5268 void MacroAssembler::movoop(Register dst, jobject obj) {
5269   int oop_index;
5270   if (obj == nullptr) {
5271     oop_index = oop_recorder()->allocate_oop_index(obj);
5272   } else {
5273 #ifdef ASSERT
5274     {
5275       ThreadInVMfromUnknown tiv;
5276       assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
5277     }
5278 #endif
5279     oop_index = oop_recorder()->find_index(obj);
5280   }
5281   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5282 
5283   if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) {
5284     mov(dst, Address((address)obj, rspec));
5285   } else {
5286     address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
5287     ldr_constant(dst, Address(dummy, rspec));
5288   }
5289 
5290 }
5291 
5292 // Move a metadata address into a register.
5293 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
5294   int oop_index;
5295   if (obj == nullptr) {
5296     oop_index = oop_recorder()->allocate_metadata_index(obj);
5297   } else {
5298     oop_index = oop_recorder()->find_index(obj);
5299   }
5300   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
5301   mov(dst, Address((address)obj, rspec));
5302 }
5303 
5304 Address MacroAssembler::constant_oop_address(jobject obj) {
5305 #ifdef ASSERT
5306   {
5307     ThreadInVMfromUnknown tiv;
5308     assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5309     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
5310   }
5311 #endif
5312   int oop_index = oop_recorder()->find_index(obj);
5313   return Address((address)obj, oop_Relocation::spec(oop_index));
5314 }
5315 
5316 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5317 void MacroAssembler::tlab_allocate(Register obj,
5318                                    Register var_size_in_bytes,
5319                                    int con_size_in_bytes,
5320                                    Register t1,
5321                                    Register t2,
5322                                    Label& slow_case) {
5323   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5324   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5325 }
5326 
5327 void MacroAssembler::verify_tlab() {
5328 #ifdef ASSERT
5329   if (UseTLAB && VerifyOops) {
5330     Label next, ok;
5331 
5332     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
5333 
5334     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5335     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
5336     cmp(rscratch2, rscratch1);
5337     br(Assembler::HS, next);
5338     STOP("assert(top >= start)");
5339     should_not_reach_here();
5340 
5341     bind(next);
5342     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
5343     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5344     cmp(rscratch2, rscratch1);
5345     br(Assembler::HS, ok);
5346     STOP("assert(top <= end)");
5347     should_not_reach_here();
5348 
5349     bind(ok);
5350     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
5351   }
5352 #endif
5353 }
5354 
5355 // Writes to stack successive pages until offset reached to check for
5356 // stack overflow + shadow pages.  This clobbers tmp.
5357 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5358   assert_different_registers(tmp, size, rscratch1);
5359   mov(tmp, sp);
5360   // Bang stack for total size given plus shadow page size.
5361   // Bang one page at a time because large size can bang beyond yellow and
5362   // red zones.
5363   Label loop;
5364   mov(rscratch1, (int)os::vm_page_size());
5365   bind(loop);
5366   lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5367   subsw(size, size, rscratch1);
5368   str(size, Address(tmp));
5369   br(Assembler::GT, loop);
5370 
5371   // Bang down shadow pages too.
5372   // At this point, (tmp-0) is the last address touched, so don't
5373   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
5374   // was post-decremented.)  Skip this address by starting at i=1, and
5375   // touch a few more pages below.  N.B.  It is important to touch all
5376   // the way down to and including i=StackShadowPages.
5377   for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) {
5378     // this could be any sized move but this is can be a debugging crumb
5379     // so the bigger the better.
5380     lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5381     str(size, Address(tmp));
5382   }
5383 }
5384 
5385 // Move the address of the polling page into dest.
5386 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) {
5387   ldr(dest, Address(rthread, JavaThread::polling_page_offset()));
5388 }
5389 
5390 // Read the polling page.  The address of the polling page must
5391 // already be in r.
5392 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
5393   address mark;
5394   {
5395     InstructionMark im(this);
5396     code_section()->relocate(inst_mark(), rtype);
5397     ldrw(zr, Address(r, 0));
5398     mark = inst_mark();
5399   }
5400   verify_cross_modify_fence_not_required();
5401   return mark;
5402 }
5403 
5404 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) {
5405   relocInfo::relocType rtype = dest.rspec().reloc()->type();
5406   uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12;
5407   uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12;
5408   uint64_t dest_page = (uint64_t)dest.target() >> 12;
5409   int64_t offset_low = dest_page - low_page;
5410   int64_t offset_high = dest_page - high_page;
5411 
5412   assert(is_valid_AArch64_address(dest.target()), "bad address");
5413   assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
5414 
5415   InstructionMark im(this);
5416   code_section()->relocate(inst_mark(), dest.rspec());
5417   // 8143067: Ensure that the adrp can reach the dest from anywhere within
5418   // the code cache so that if it is relocated we know it will still reach
5419   if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
5420     _adrp(reg1, dest.target());
5421   } else {
5422     uint64_t target = (uint64_t)dest.target();
5423     uint64_t adrp_target
5424       = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL);
5425 
5426     _adrp(reg1, (address)adrp_target);
5427     movk(reg1, target >> 32, 32);
5428   }
5429   byte_offset = (uint64_t)dest.target() & 0xfff;
5430 }
5431 
5432 void MacroAssembler::load_byte_map_base(Register reg) {
5433   CardTable::CardValue* byte_map_base =
5434     ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
5435 
5436   // Strictly speaking the byte_map_base isn't an address at all, and it might
5437   // even be negative. It is thus materialised as a constant.
5438   mov(reg, (uint64_t)byte_map_base);
5439 }
5440 
5441 void MacroAssembler::build_frame(int framesize) {
5442   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5443   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5444   protect_return_address();
5445   if (framesize < ((1 << 9) + 2 * wordSize)) {
5446     sub(sp, sp, framesize);
5447     stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5448     if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
5449   } else {
5450     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
5451     if (PreserveFramePointer) mov(rfp, sp);
5452     if (framesize < ((1 << 12) + 2 * wordSize))
5453       sub(sp, sp, framesize - 2 * wordSize);
5454     else {
5455       mov(rscratch1, framesize - 2 * wordSize);
5456       sub(sp, sp, rscratch1);
5457     }
5458   }
5459   verify_cross_modify_fence_not_required();
5460 }
5461 
5462 void MacroAssembler::remove_frame(int framesize) {
5463   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5464   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5465   if (framesize < ((1 << 9) + 2 * wordSize)) {
5466     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5467     add(sp, sp, framesize);
5468   } else {
5469     if (framesize < ((1 << 12) + 2 * wordSize))
5470       add(sp, sp, framesize - 2 * wordSize);
5471     else {
5472       mov(rscratch1, framesize - 2 * wordSize);
5473       add(sp, sp, rscratch1);
5474     }
5475     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5476   }
5477   authenticate_return_address();
5478 }
5479 
5480 
5481 // This method counts leading positive bytes (highest bit not set) in provided byte array
5482 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5483     // Simple and most common case of aligned small array which is not at the
5484     // end of memory page is placed here. All other cases are in stub.
5485     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5486     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5487     assert_different_registers(ary1, len, result);
5488 
5489     mov(result, len);
5490     cmpw(len, 0);
5491     br(LE, DONE);
5492     cmpw(len, 4 * wordSize);
5493     br(GE, STUB_LONG); // size > 32 then go to stub
5494 
5495     int shift = 64 - exact_log2(os::vm_page_size());
5496     lsl(rscratch1, ary1, shift);
5497     mov(rscratch2, (size_t)(4 * wordSize) << shift);
5498     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
5499     br(CS, STUB); // at the end of page then go to stub
5500     subs(len, len, wordSize);
5501     br(LT, END);
5502 
5503   BIND(LOOP);
5504     ldr(rscratch1, Address(post(ary1, wordSize)));
5505     tst(rscratch1, UPPER_BIT_MASK);
5506     br(NE, SET_RESULT);
5507     subs(len, len, wordSize);
5508     br(GE, LOOP);
5509     cmpw(len, -wordSize);
5510     br(EQ, DONE);
5511 
5512   BIND(END);
5513     ldr(rscratch1, Address(ary1));
5514     sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes
5515     lslv(rscratch1, rscratch1, rscratch2);
5516     tst(rscratch1, UPPER_BIT_MASK);
5517     br(NE, SET_RESULT);
5518     b(DONE);
5519 
5520   BIND(STUB);
5521     RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives());
5522     assert(count_pos.target() != nullptr, "count_positives stub has not been generated");
5523     address tpc1 = trampoline_call(count_pos);
5524     if (tpc1 == nullptr) {
5525       DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE));
5526       postcond(pc() == badAddress);
5527       return nullptr;
5528     }
5529     b(DONE);
5530 
5531   BIND(STUB_LONG);
5532     RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long());
5533     assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated");
5534     address tpc2 = trampoline_call(count_pos_long);
5535     if (tpc2 == nullptr) {
5536       DEBUG_ONLY(reset_labels(SET_RESULT, DONE));
5537       postcond(pc() == badAddress);
5538       return nullptr;
5539     }
5540     b(DONE);
5541 
5542   BIND(SET_RESULT);
5543 
5544     add(len, len, wordSize);
5545     sub(result, result, len);
5546 
5547   BIND(DONE);
5548   postcond(pc() != badAddress);
5549   return pc();
5550 }
5551 
5552 // Clobbers: rscratch1, rscratch2, rflags
5553 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals)
5554 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
5555                                       Register tmp4, Register tmp5, Register result,
5556                                       Register cnt1, int elem_size) {
5557   Label DONE, SAME;
5558   Register tmp1 = rscratch1;
5559   Register tmp2 = rscratch2;
5560   int elem_per_word = wordSize/elem_size;
5561   int log_elem_size = exact_log2(elem_size);
5562   int klass_offset  = arrayOopDesc::klass_offset_in_bytes();
5563   int length_offset = arrayOopDesc::length_offset_in_bytes();
5564   int base_offset
5565     = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
5566   // When the length offset is not aligned to 8 bytes,
5567   // then we align it down. This is valid because the new
5568   // offset will always be the klass which is the same
5569   // for type arrays.
5570   int start_offset = align_down(length_offset, BytesPerWord);
5571   int extra_length = base_offset - start_offset;
5572   assert(start_offset == length_offset || start_offset == klass_offset,
5573          "start offset must be 8-byte-aligned or be the klass offset");
5574   assert(base_offset != start_offset, "must include the length field");
5575   extra_length = extra_length / elem_size; // We count in elements, not bytes.
5576   int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16);
5577 
5578   assert(elem_size == 1 || elem_size == 2, "must be char or byte");
5579   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5580 
5581 #ifndef PRODUCT
5582   {
5583     const char kind = (elem_size == 2) ? 'U' : 'L';
5584     char comment[64];
5585     snprintf(comment, sizeof comment, "array_equals%c{", kind);
5586     BLOCK_COMMENT(comment);
5587   }
5588 #endif
5589 
5590   // if (a1 == a2)
5591   //     return true;
5592   cmpoop(a1, a2); // May have read barriers for a1 and a2.
5593   br(EQ, SAME);
5594 
5595   if (UseSimpleArrayEquals) {
5596     Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL;
5597     // if (a1 == nullptr || a2 == nullptr)
5598     //     return false;
5599     // a1 & a2 == 0 means (some-pointer is null) or
5600     // (very-rare-or-even-probably-impossible-pointer-values)
5601     // so, we can save one branch in most cases
5602     tst(a1, a2);
5603     mov(result, false);
5604     br(EQ, A_MIGHT_BE_NULL);
5605     // if (a1.length != a2.length)
5606     //      return false;
5607     bind(A_IS_NOT_NULL);
5608     ldrw(cnt1, Address(a1, length_offset));
5609     // Increase loop counter by diff between base- and actual start-offset.
5610     addw(cnt1, cnt1, extra_length);
5611     lea(a1, Address(a1, start_offset));
5612     lea(a2, Address(a2, start_offset));
5613     // Check for short strings, i.e. smaller than wordSize.
5614     subs(cnt1, cnt1, elem_per_word);
5615     br(Assembler::LT, SHORT);
5616     // Main 8 byte comparison loop.
5617     bind(NEXT_WORD); {
5618       ldr(tmp1, Address(post(a1, wordSize)));
5619       ldr(tmp2, Address(post(a2, wordSize)));
5620       subs(cnt1, cnt1, elem_per_word);
5621       eor(tmp5, tmp1, tmp2);
5622       cbnz(tmp5, DONE);
5623     } br(GT, NEXT_WORD);
5624     // Last longword.  In the case where length == 4 we compare the
5625     // same longword twice, but that's still faster than another
5626     // conditional branch.
5627     // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5628     // length == 4.
5629     if (log_elem_size > 0)
5630       lsl(cnt1, cnt1, log_elem_size);
5631     ldr(tmp3, Address(a1, cnt1));
5632     ldr(tmp4, Address(a2, cnt1));
5633     eor(tmp5, tmp3, tmp4);
5634     cbnz(tmp5, DONE);
5635     b(SAME);
5636     bind(A_MIGHT_BE_NULL);
5637     // in case both a1 and a2 are not-null, proceed with loads
5638     cbz(a1, DONE);
5639     cbz(a2, DONE);
5640     b(A_IS_NOT_NULL);
5641     bind(SHORT);
5642 
5643     tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
5644     {
5645       ldrw(tmp1, Address(post(a1, 4)));
5646       ldrw(tmp2, Address(post(a2, 4)));
5647       eorw(tmp5, tmp1, tmp2);
5648       cbnzw(tmp5, DONE);
5649     }
5650     bind(TAIL03);
5651     tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
5652     {
5653       ldrh(tmp3, Address(post(a1, 2)));
5654       ldrh(tmp4, Address(post(a2, 2)));
5655       eorw(tmp5, tmp3, tmp4);
5656       cbnzw(tmp5, DONE);
5657     }
5658     bind(TAIL01);
5659     if (elem_size == 1) { // Only needed when comparing byte arrays.
5660       tbz(cnt1, 0, SAME); // 0-1 bytes left.
5661       {
5662         ldrb(tmp1, a1);
5663         ldrb(tmp2, a2);
5664         eorw(tmp5, tmp1, tmp2);
5665         cbnzw(tmp5, DONE);
5666       }
5667     }
5668   } else {
5669     Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB,
5670         CSET_EQ, LAST_CHECK;
5671     mov(result, false);
5672     cbz(a1, DONE);
5673     ldrw(cnt1, Address(a1, length_offset));
5674     cbz(a2, DONE);
5675     // Increase loop counter by diff between base- and actual start-offset.
5676     addw(cnt1, cnt1, extra_length);
5677 
5678     // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's
5679     // faster to perform another branch before comparing a1 and a2
5680     cmp(cnt1, (u1)elem_per_word);
5681     br(LE, SHORT); // short or same
5682     ldr(tmp3, Address(pre(a1, start_offset)));
5683     subs(zr, cnt1, stubBytesThreshold);
5684     br(GE, STUB);
5685     ldr(tmp4, Address(pre(a2, start_offset)));
5686     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5687 
5688     // Main 16 byte comparison loop with 2 exits
5689     bind(NEXT_DWORD); {
5690       ldr(tmp1, Address(pre(a1, wordSize)));
5691       ldr(tmp2, Address(pre(a2, wordSize)));
5692       subs(cnt1, cnt1, 2 * elem_per_word);
5693       br(LE, TAIL);
5694       eor(tmp4, tmp3, tmp4);
5695       cbnz(tmp4, DONE);
5696       ldr(tmp3, Address(pre(a1, wordSize)));
5697       ldr(tmp4, Address(pre(a2, wordSize)));
5698       cmp(cnt1, (u1)elem_per_word);
5699       br(LE, TAIL2);
5700       cmp(tmp1, tmp2);
5701     } br(EQ, NEXT_DWORD);
5702     b(DONE);
5703 
5704     bind(TAIL);
5705     eor(tmp4, tmp3, tmp4);
5706     eor(tmp2, tmp1, tmp2);
5707     lslv(tmp2, tmp2, tmp5);
5708     orr(tmp5, tmp4, tmp2);
5709     cmp(tmp5, zr);
5710     b(CSET_EQ);
5711 
5712     bind(TAIL2);
5713     eor(tmp2, tmp1, tmp2);
5714     cbnz(tmp2, DONE);
5715     b(LAST_CHECK);
5716 
5717     bind(STUB);
5718     ldr(tmp4, Address(pre(a2, start_offset)));
5719     if (elem_size == 2) { // convert to byte counter
5720       lsl(cnt1, cnt1, 1);
5721     }
5722     eor(tmp5, tmp3, tmp4);
5723     cbnz(tmp5, DONE);
5724     RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals());
5725     assert(stub.target() != nullptr, "array_equals_long stub has not been generated");
5726     address tpc = trampoline_call(stub);
5727     if (tpc == nullptr) {
5728       DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE));
5729       postcond(pc() == badAddress);
5730       return nullptr;
5731     }
5732     b(DONE);
5733 
5734     // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2)
5735     // so, if a2 == null => return false(0), else return true, so we can return a2
5736     mov(result, a2);
5737     b(DONE);
5738     bind(SHORT);
5739     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5740     ldr(tmp3, Address(a1, start_offset));
5741     ldr(tmp4, Address(a2, start_offset));
5742     bind(LAST_CHECK);
5743     eor(tmp4, tmp3, tmp4);
5744     lslv(tmp5, tmp4, tmp5);
5745     cmp(tmp5, zr);
5746     bind(CSET_EQ);
5747     cset(result, EQ);
5748     b(DONE);
5749   }
5750 
5751   bind(SAME);
5752   mov(result, true);
5753   // That's it.
5754   bind(DONE);
5755 
5756   BLOCK_COMMENT("} array_equals");
5757   postcond(pc() != badAddress);
5758   return pc();
5759 }
5760 
5761 // Compare Strings
5762 
5763 // For Strings we're passed the address of the first characters in a1
5764 // and a2 and the length in cnt1.
5765 // There are two implementations.  For arrays >= 8 bytes, all
5766 // comparisons (including the final one, which may overlap) are
5767 // performed 8 bytes at a time.  For strings < 8 bytes, we compare a
5768 // halfword, then a short, and then a byte.
5769 
5770 void MacroAssembler::string_equals(Register a1, Register a2,
5771                                    Register result, Register cnt1)
5772 {
5773   Label SAME, DONE, SHORT, NEXT_WORD;
5774   Register tmp1 = rscratch1;
5775   Register tmp2 = rscratch2;
5776   Register cnt2 = tmp2;  // cnt2 only used in array length compare
5777 
5778   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5779 
5780 #ifndef PRODUCT
5781   {
5782     char comment[64];
5783     snprintf(comment, sizeof comment, "{string_equalsL");
5784     BLOCK_COMMENT(comment);
5785   }
5786 #endif
5787 
5788   mov(result, false);
5789 
5790   // Check for short strings, i.e. smaller than wordSize.
5791   subs(cnt1, cnt1, wordSize);
5792   br(Assembler::LT, SHORT);
5793   // Main 8 byte comparison loop.
5794   bind(NEXT_WORD); {
5795     ldr(tmp1, Address(post(a1, wordSize)));
5796     ldr(tmp2, Address(post(a2, wordSize)));
5797     subs(cnt1, cnt1, wordSize);
5798     eor(tmp1, tmp1, tmp2);
5799     cbnz(tmp1, DONE);
5800   } br(GT, NEXT_WORD);
5801   // Last longword.  In the case where length == 4 we compare the
5802   // same longword twice, but that's still faster than another
5803   // conditional branch.
5804   // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5805   // length == 4.
5806   ldr(tmp1, Address(a1, cnt1));
5807   ldr(tmp2, Address(a2, cnt1));
5808   eor(tmp2, tmp1, tmp2);
5809   cbnz(tmp2, DONE);
5810   b(SAME);
5811 
5812   bind(SHORT);
5813   Label TAIL03, TAIL01;
5814 
5815   tbz(cnt1, 2, TAIL03); // 0-7 bytes left.
5816   {
5817     ldrw(tmp1, Address(post(a1, 4)));
5818     ldrw(tmp2, Address(post(a2, 4)));
5819     eorw(tmp1, tmp1, tmp2);
5820     cbnzw(tmp1, DONE);
5821   }
5822   bind(TAIL03);
5823   tbz(cnt1, 1, TAIL01); // 0-3 bytes left.
5824   {
5825     ldrh(tmp1, Address(post(a1, 2)));
5826     ldrh(tmp2, Address(post(a2, 2)));
5827     eorw(tmp1, tmp1, tmp2);
5828     cbnzw(tmp1, DONE);
5829   }
5830   bind(TAIL01);
5831   tbz(cnt1, 0, SAME); // 0-1 bytes left.
5832     {
5833     ldrb(tmp1, a1);
5834     ldrb(tmp2, a2);
5835     eorw(tmp1, tmp1, tmp2);
5836     cbnzw(tmp1, DONE);
5837   }
5838   // Arrays are equal.
5839   bind(SAME);
5840   mov(result, true);
5841 
5842   // That's it.
5843   bind(DONE);
5844   BLOCK_COMMENT("} string_equals");
5845 }
5846 
5847 
5848 // The size of the blocks erased by the zero_blocks stub.  We must
5849 // handle anything smaller than this ourselves in zero_words().
5850 const int MacroAssembler::zero_words_block_size = 8;
5851 
5852 // zero_words() is used by C2 ClearArray patterns and by
5853 // C1_MacroAssembler.  It is as small as possible, handling small word
5854 // counts locally and delegating anything larger to the zero_blocks
5855 // stub.  It is expanded many times in compiled code, so it is
5856 // important to keep it short.
5857 
5858 // ptr:   Address of a buffer to be zeroed.
5859 // cnt:   Count in HeapWords.
5860 //
5861 // ptr, cnt, rscratch1, and rscratch2 are clobbered.
5862 address MacroAssembler::zero_words(Register ptr, Register cnt)
5863 {
5864   assert(is_power_of_2(zero_words_block_size), "adjust this");
5865 
5866   BLOCK_COMMENT("zero_words {");
5867   assert(ptr == r10 && cnt == r11, "mismatch in register usage");
5868   RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5869   assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
5870 
5871   subs(rscratch1, cnt, zero_words_block_size);
5872   Label around;
5873   br(LO, around);
5874   {
5875     RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5876     assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
5877     // Make sure this is a C2 compilation. C1 allocates space only for
5878     // trampoline stubs generated by Call LIR ops, and in any case it
5879     // makes sense for a C1 compilation task to proceed as quickly as
5880     // possible.
5881     CompileTask* task;
5882     if (StubRoutines::aarch64::complete()
5883         && Thread::current()->is_Compiler_thread()
5884         && (task = ciEnv::current()->task())
5885         && is_c2_compile(task->comp_level())) {
5886       address tpc = trampoline_call(zero_blocks);
5887       if (tpc == nullptr) {
5888         DEBUG_ONLY(reset_labels(around));
5889         return nullptr;
5890       }
5891     } else {
5892       far_call(zero_blocks);
5893     }
5894   }
5895   bind(around);
5896 
5897   // We have a few words left to do. zero_blocks has adjusted r10 and r11
5898   // for us.
5899   for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
5900     Label l;
5901     tbz(cnt, exact_log2(i), l);
5902     for (int j = 0; j < i; j += 2) {
5903       stp(zr, zr, post(ptr, 2 * BytesPerWord));
5904     }
5905     bind(l);
5906   }
5907   {
5908     Label l;
5909     tbz(cnt, 0, l);
5910     str(zr, Address(ptr));
5911     bind(l);
5912   }
5913 
5914   BLOCK_COMMENT("} zero_words");
5915   return pc();
5916 }
5917 
5918 // base:         Address of a buffer to be zeroed, 8 bytes aligned.
5919 // cnt:          Immediate count in HeapWords.
5920 //
5921 // r10, r11, rscratch1, and rscratch2 are clobbered.
5922 address MacroAssembler::zero_words(Register base, uint64_t cnt)
5923 {
5924   assert(wordSize <= BlockZeroingLowLimit,
5925             "increase BlockZeroingLowLimit");
5926   address result = nullptr;
5927   if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) {
5928 #ifndef PRODUCT
5929     {
5930       char buf[64];
5931       snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt);
5932       BLOCK_COMMENT(buf);
5933     }
5934 #endif
5935     if (cnt >= 16) {
5936       uint64_t loops = cnt/16;
5937       if (loops > 1) {
5938         mov(rscratch2, loops - 1);
5939       }
5940       {
5941         Label loop;
5942         bind(loop);
5943         for (int i = 0; i < 16; i += 2) {
5944           stp(zr, zr, Address(base, i * BytesPerWord));
5945         }
5946         add(base, base, 16 * BytesPerWord);
5947         if (loops > 1) {
5948           subs(rscratch2, rscratch2, 1);
5949           br(GE, loop);
5950         }
5951       }
5952     }
5953     cnt %= 16;
5954     int i = cnt & 1;  // store any odd word to start
5955     if (i) str(zr, Address(base));
5956     for (; i < (int)cnt; i += 2) {
5957       stp(zr, zr, Address(base, i * wordSize));
5958     }
5959     BLOCK_COMMENT("} zero_words");
5960     result = pc();
5961   } else {
5962     mov(r10, base); mov(r11, cnt);
5963     result = zero_words(r10, r11);
5964   }
5965   return result;
5966 }
5967 
5968 // Zero blocks of memory by using DC ZVA.
5969 //
5970 // Aligns the base address first sufficiently for DC ZVA, then uses
5971 // DC ZVA repeatedly for every full block.  cnt is the size to be
5972 // zeroed in HeapWords.  Returns the count of words left to be zeroed
5973 // in cnt.
5974 //
5975 // NOTE: This is intended to be used in the zero_blocks() stub.  If
5976 // you want to use it elsewhere, note that cnt must be >= 2*zva_length.
5977 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) {
5978   Register tmp = rscratch1;
5979   Register tmp2 = rscratch2;
5980   int zva_length = VM_Version::zva_length();
5981   Label initial_table_end, loop_zva;
5982   Label fini;
5983 
5984   // Base must be 16 byte aligned. If not just return and let caller handle it
5985   tst(base, 0x0f);
5986   br(Assembler::NE, fini);
5987   // Align base with ZVA length.
5988   neg(tmp, base);
5989   andr(tmp, tmp, zva_length - 1);
5990 
5991   // tmp: the number of bytes to be filled to align the base with ZVA length.
5992   add(base, base, tmp);
5993   sub(cnt, cnt, tmp, Assembler::ASR, 3);
5994   adr(tmp2, initial_table_end);
5995   sub(tmp2, tmp2, tmp, Assembler::LSR, 2);
5996   br(tmp2);
5997 
5998   for (int i = -zva_length + 16; i < 0; i += 16)
5999     stp(zr, zr, Address(base, i));
6000   bind(initial_table_end);
6001 
6002   sub(cnt, cnt, zva_length >> 3);
6003   bind(loop_zva);
6004   dc(Assembler::ZVA, base);
6005   subs(cnt, cnt, zva_length >> 3);
6006   add(base, base, zva_length);
6007   br(Assembler::GE, loop_zva);
6008   add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA
6009   bind(fini);
6010 }
6011 
6012 // base:   Address of a buffer to be filled, 8 bytes aligned.
6013 // cnt:    Count in 8-byte unit.
6014 // value:  Value to be filled with.
6015 // base will point to the end of the buffer after filling.
6016 void MacroAssembler::fill_words(Register base, Register cnt, Register value)
6017 {
6018 //  Algorithm:
6019 //
6020 //    if (cnt == 0) {
6021 //      return;
6022 //    }
6023 //    if ((p & 8) != 0) {
6024 //      *p++ = v;
6025 //    }
6026 //
6027 //    scratch1 = cnt & 14;
6028 //    cnt -= scratch1;
6029 //    p += scratch1;
6030 //    switch (scratch1 / 2) {
6031 //      do {
6032 //        cnt -= 16;
6033 //          p[-16] = v;
6034 //          p[-15] = v;
6035 //        case 7:
6036 //          p[-14] = v;
6037 //          p[-13] = v;
6038 //        case 6:
6039 //          p[-12] = v;
6040 //          p[-11] = v;
6041 //          // ...
6042 //        case 1:
6043 //          p[-2] = v;
6044 //          p[-1] = v;
6045 //        case 0:
6046 //          p += 16;
6047 //      } while (cnt);
6048 //    }
6049 //    if ((cnt & 1) == 1) {
6050 //      *p++ = v;
6051 //    }
6052 
6053   assert_different_registers(base, cnt, value, rscratch1, rscratch2);
6054 
6055   Label fini, skip, entry, loop;
6056   const int unroll = 8; // Number of stp instructions we'll unroll
6057 
6058   cbz(cnt, fini);
6059   tbz(base, 3, skip);
6060   str(value, Address(post(base, 8)));
6061   sub(cnt, cnt, 1);
6062   bind(skip);
6063 
6064   andr(rscratch1, cnt, (unroll-1) * 2);
6065   sub(cnt, cnt, rscratch1);
6066   add(base, base, rscratch1, Assembler::LSL, 3);
6067   adr(rscratch2, entry);
6068   sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
6069   br(rscratch2);
6070 
6071   bind(loop);
6072   add(base, base, unroll * 16);
6073   for (int i = -unroll; i < 0; i++)
6074     stp(value, value, Address(base, i * 16));
6075   bind(entry);
6076   subs(cnt, cnt, unroll * 2);
6077   br(Assembler::GE, loop);
6078 
6079   tbz(cnt, 0, fini);
6080   str(value, Address(post(base, 8)));
6081   bind(fini);
6082 }
6083 
6084 // Intrinsic for
6085 //
6086 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray
6087 //     return the number of characters copied.
6088 // - java/lang/StringUTF16.compress
6089 //     return index of non-latin1 character if copy fails, otherwise 'len'.
6090 //
6091 // This version always returns the number of characters copied, and does not
6092 // clobber the 'len' register. A successful copy will complete with the post-
6093 // condition: 'res' == 'len', while an unsuccessful copy will exit with the
6094 // post-condition: 0 <= 'res' < 'len'.
6095 //
6096 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to
6097 //       degrade performance (on Ampere Altra - Neoverse N1), to an extent
6098 //       beyond the acceptable, even though the footprint would be smaller.
6099 //       Using 'umaxv' in the ASCII-case comes with a small penalty but does
6100 //       avoid additional bloat.
6101 //
6102 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags
6103 void MacroAssembler::encode_iso_array(Register src, Register dst,
6104                                       Register len, Register res, bool ascii,
6105                                       FloatRegister vtmp0, FloatRegister vtmp1,
6106                                       FloatRegister vtmp2, FloatRegister vtmp3,
6107                                       FloatRegister vtmp4, FloatRegister vtmp5)
6108 {
6109   Register cnt = res;
6110   Register max = rscratch1;
6111   Register chk = rscratch2;
6112 
6113   prfm(Address(src), PLDL1STRM);
6114   movw(cnt, len);
6115 
6116 #define ASCII(insn) do { if (ascii) { insn; } } while (0)
6117 
6118   Label LOOP_32, DONE_32, FAIL_32;
6119 
6120   BIND(LOOP_32);
6121   {
6122     cmpw(cnt, 32);
6123     br(LT, DONE_32);
6124     ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64)));
6125     // Extract lower bytes.
6126     FloatRegister vlo0 = vtmp4;
6127     FloatRegister vlo1 = vtmp5;
6128     uzp1(vlo0, T16B, vtmp0, vtmp1);
6129     uzp1(vlo1, T16B, vtmp2, vtmp3);
6130     // Merge bits...
6131     orr(vtmp0, T16B, vtmp0, vtmp1);
6132     orr(vtmp2, T16B, vtmp2, vtmp3);
6133     // Extract merged upper bytes.
6134     FloatRegister vhix = vtmp0;
6135     uzp2(vhix, T16B, vtmp0, vtmp2);
6136     // ISO-check on hi-parts (all zero).
6137     //                          ASCII-check on lo-parts (no sign).
6138     FloatRegister vlox = vtmp1; // Merge lower bytes.
6139                                 ASCII(orr(vlox, T16B, vlo0, vlo1));
6140     umov(chk, vhix, D, 1);      ASCII(cm(LT, vlox, T16B, vlox));
6141     fmovd(max, vhix);           ASCII(umaxv(vlox, T16B, vlox));
6142     orr(chk, chk, max);         ASCII(umov(max, vlox, B, 0));
6143                                 ASCII(orr(chk, chk, max));
6144     cbnz(chk, FAIL_32);
6145     subw(cnt, cnt, 32);
6146     st1(vlo0, vlo1, T16B, Address(post(dst, 32)));
6147     b(LOOP_32);
6148   }
6149   BIND(FAIL_32);
6150   sub(src, src, 64);
6151   BIND(DONE_32);
6152 
6153   Label LOOP_8, SKIP_8;
6154 
6155   BIND(LOOP_8);
6156   {
6157     cmpw(cnt, 8);
6158     br(LT, SKIP_8);
6159     FloatRegister vhi = vtmp0;
6160     FloatRegister vlo = vtmp1;
6161     ld1(vtmp3, T8H, src);
6162     uzp1(vlo, T16B, vtmp3, vtmp3);
6163     uzp2(vhi, T16B, vtmp3, vtmp3);
6164     // ISO-check on hi-parts (all zero).
6165     //                          ASCII-check on lo-parts (no sign).
6166                                 ASCII(cm(LT, vtmp2, T16B, vlo));
6167     fmovd(chk, vhi);            ASCII(umaxv(vtmp2, T16B, vtmp2));
6168                                 ASCII(umov(max, vtmp2, B, 0));
6169                                 ASCII(orr(chk, chk, max));
6170     cbnz(chk, SKIP_8);
6171 
6172     strd(vlo, Address(post(dst, 8)));
6173     subw(cnt, cnt, 8);
6174     add(src, src, 16);
6175     b(LOOP_8);
6176   }
6177   BIND(SKIP_8);
6178 
6179 #undef ASCII
6180 
6181   Label LOOP, DONE;
6182 
6183   cbz(cnt, DONE);
6184   BIND(LOOP);
6185   {
6186     Register chr = rscratch1;
6187     ldrh(chr, Address(post(src, 2)));
6188     tst(chr, ascii ? 0xff80 : 0xff00);
6189     br(NE, DONE);
6190     strb(chr, Address(post(dst, 1)));
6191     subs(cnt, cnt, 1);
6192     br(GT, LOOP);
6193   }
6194   BIND(DONE);
6195   // Return index where we stopped.
6196   subw(res, len, cnt);
6197 }
6198 
6199 // Inflate byte[] array to char[].
6200 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6
6201 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
6202                                            FloatRegister vtmp1, FloatRegister vtmp2,
6203                                            FloatRegister vtmp3, Register tmp4) {
6204   Label big, done, after_init, to_stub;
6205 
6206   assert_different_registers(src, dst, len, tmp4, rscratch1);
6207 
6208   fmovd(vtmp1, 0.0);
6209   lsrw(tmp4, len, 3);
6210   bind(after_init);
6211   cbnzw(tmp4, big);
6212   // Short string: less than 8 bytes.
6213   {
6214     Label loop, tiny;
6215 
6216     cmpw(len, 4);
6217     br(LT, tiny);
6218     // Use SIMD to do 4 bytes.
6219     ldrs(vtmp2, post(src, 4));
6220     zip1(vtmp3, T8B, vtmp2, vtmp1);
6221     subw(len, len, 4);
6222     strd(vtmp3, post(dst, 8));
6223 
6224     cbzw(len, done);
6225 
6226     // Do the remaining bytes by steam.
6227     bind(loop);
6228     ldrb(tmp4, post(src, 1));
6229     strh(tmp4, post(dst, 2));
6230     subw(len, len, 1);
6231 
6232     bind(tiny);
6233     cbnz(len, loop);
6234 
6235     b(done);
6236   }
6237 
6238   if (SoftwarePrefetchHintDistance >= 0) {
6239     bind(to_stub);
6240       RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate());
6241       assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated");
6242       address tpc = trampoline_call(stub);
6243       if (tpc == nullptr) {
6244         DEBUG_ONLY(reset_labels(big, done));
6245         postcond(pc() == badAddress);
6246         return nullptr;
6247       }
6248       b(after_init);
6249   }
6250 
6251   // Unpack the bytes 8 at a time.
6252   bind(big);
6253   {
6254     Label loop, around, loop_last, loop_start;
6255 
6256     if (SoftwarePrefetchHintDistance >= 0) {
6257       const int large_loop_threshold = (64 + 16)/8;
6258       ldrd(vtmp2, post(src, 8));
6259       andw(len, len, 7);
6260       cmp(tmp4, (u1)large_loop_threshold);
6261       br(GE, to_stub);
6262       b(loop_start);
6263 
6264       bind(loop);
6265       ldrd(vtmp2, post(src, 8));
6266       bind(loop_start);
6267       subs(tmp4, tmp4, 1);
6268       br(EQ, loop_last);
6269       zip1(vtmp2, T16B, vtmp2, vtmp1);
6270       ldrd(vtmp3, post(src, 8));
6271       st1(vtmp2, T8H, post(dst, 16));
6272       subs(tmp4, tmp4, 1);
6273       zip1(vtmp3, T16B, vtmp3, vtmp1);
6274       st1(vtmp3, T8H, post(dst, 16));
6275       br(NE, loop);
6276       b(around);
6277       bind(loop_last);
6278       zip1(vtmp2, T16B, vtmp2, vtmp1);
6279       st1(vtmp2, T8H, post(dst, 16));
6280       bind(around);
6281       cbz(len, done);
6282     } else {
6283       andw(len, len, 7);
6284       bind(loop);
6285       ldrd(vtmp2, post(src, 8));
6286       sub(tmp4, tmp4, 1);
6287       zip1(vtmp3, T16B, vtmp2, vtmp1);
6288       st1(vtmp3, T8H, post(dst, 16));
6289       cbnz(tmp4, loop);
6290     }
6291   }
6292 
6293   // Do the tail of up to 8 bytes.
6294   add(src, src, len);
6295   ldrd(vtmp3, Address(src, -8));
6296   add(dst, dst, len, ext::uxtw, 1);
6297   zip1(vtmp3, T16B, vtmp3, vtmp1);
6298   strq(vtmp3, Address(dst, -16));
6299 
6300   bind(done);
6301   postcond(pc() != badAddress);
6302   return pc();
6303 }
6304 
6305 // Compress char[] array to byte[].
6306 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
6307 // Return the array length if every element in array can be encoded,
6308 // otherwise, the index of first non-latin1 (> 0xff) character.
6309 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
6310                                          Register res,
6311                                          FloatRegister tmp0, FloatRegister tmp1,
6312                                          FloatRegister tmp2, FloatRegister tmp3,
6313                                          FloatRegister tmp4, FloatRegister tmp5) {
6314   encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
6315 }
6316 
6317 // java.math.round(double a)
6318 // Returns the closest long to the argument, with ties rounding to
6319 // positive infinity.  This requires some fiddling for corner
6320 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5).
6321 void MacroAssembler::java_round_double(Register dst, FloatRegister src,
6322                                        FloatRegister ftmp) {
6323   Label DONE;
6324   BLOCK_COMMENT("java_round_double: { ");
6325   fmovd(rscratch1, src);
6326   // Use RoundToNearestTiesAway unless src small and -ve.
6327   fcvtasd(dst, src);
6328   // Test if src >= 0 || abs(src) >= 0x1.0p52
6329   eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit
6330   mov(rscratch2, julong_cast(0x1.0p52));
6331   cmp(rscratch1, rscratch2);
6332   br(HS, DONE); {
6333     // src < 0 && abs(src) < 0x1.0p52
6334     // src may have a fractional part, so add 0.5
6335     fmovd(ftmp, 0.5);
6336     faddd(ftmp, src, ftmp);
6337     // Convert double to jlong, use RoundTowardsNegative
6338     fcvtmsd(dst, ftmp);
6339   }
6340   bind(DONE);
6341   BLOCK_COMMENT("} java_round_double");
6342 }
6343 
6344 void MacroAssembler::java_round_float(Register dst, FloatRegister src,
6345                                       FloatRegister ftmp) {
6346   Label DONE;
6347   BLOCK_COMMENT("java_round_float: { ");
6348   fmovs(rscratch1, src);
6349   // Use RoundToNearestTiesAway unless src small and -ve.
6350   fcvtassw(dst, src);
6351   // Test if src >= 0 || abs(src) >= 0x1.0p23
6352   eor(rscratch1, rscratch1, 0x80000000); // flip sign bit
6353   mov(rscratch2, jint_cast(0x1.0p23f));
6354   cmp(rscratch1, rscratch2);
6355   br(HS, DONE); {
6356     // src < 0 && |src| < 0x1.0p23
6357     // src may have a fractional part, so add 0.5
6358     fmovs(ftmp, 0.5f);
6359     fadds(ftmp, src, ftmp);
6360     // Convert float to jint, use RoundTowardsNegative
6361     fcvtmssw(dst, ftmp);
6362   }
6363   bind(DONE);
6364   BLOCK_COMMENT("} java_round_float");
6365 }
6366 
6367 // get_thread() can be called anywhere inside generated code so we
6368 // need to save whatever non-callee save context might get clobbered
6369 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
6370 // the call setup code.
6371 //
6372 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags.
6373 // On other systems, the helper is a usual C function.
6374 //
6375 void MacroAssembler::get_thread(Register dst) {
6376   RegSet saved_regs =
6377     LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
6378     NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6379 
6380   protect_return_address();
6381   push(saved_regs, sp);
6382 
6383   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
6384   blr(lr);
6385   if (dst != c_rarg0) {
6386     mov(dst, c_rarg0);
6387   }
6388 
6389   pop(saved_regs, sp);
6390   authenticate_return_address();
6391 }
6392 
6393 void MacroAssembler::cache_wb(Address line) {
6394   assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
6395   assert(line.index() == noreg, "index should be noreg");
6396   assert(line.offset() == 0, "offset should be 0");
6397   // would like to assert this
6398   // assert(line._ext.shift == 0, "shift should be zero");
6399   if (VM_Version::supports_dcpop()) {
6400     // writeback using clear virtual address to point of persistence
6401     dc(Assembler::CVAP, line.base());
6402   } else {
6403     // no need to generate anything as Unsafe.writebackMemory should
6404     // never invoke this stub
6405   }
6406 }
6407 
6408 void MacroAssembler::cache_wbsync(bool is_pre) {
6409   // we only need a barrier post sync
6410   if (!is_pre) {
6411     membar(Assembler::AnyAny);
6412   }
6413 }
6414 
6415 void MacroAssembler::verify_sve_vector_length(Register tmp) {
6416   // Make sure that native code does not change SVE vector length.
6417   if (!UseSVE) return;
6418   Label verify_ok;
6419   movw(tmp, zr);
6420   sve_inc(tmp, B);
6421   subsw(zr, tmp, VM_Version::get_initial_sve_vector_length());
6422   br(EQ, verify_ok);
6423   stop("Error: SVE vector length has changed since jvm startup");
6424   bind(verify_ok);
6425 }
6426 
6427 void MacroAssembler::verify_ptrue() {
6428   Label verify_ok;
6429   if (!UseSVE) {
6430     return;
6431   }
6432   sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count.
6433   sve_dec(rscratch1, B);
6434   cbz(rscratch1, verify_ok);
6435   stop("Error: the preserved predicate register (p7) elements are not all true");
6436   bind(verify_ok);
6437 }
6438 
6439 void MacroAssembler::safepoint_isb() {
6440   isb();
6441 #ifndef PRODUCT
6442   if (VerifyCrossModifyFence) {
6443     // Clear the thread state.
6444     strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6445   }
6446 #endif
6447 }
6448 
6449 #ifndef PRODUCT
6450 void MacroAssembler::verify_cross_modify_fence_not_required() {
6451   if (VerifyCrossModifyFence) {
6452     // Check if thread needs a cross modify fence.
6453     ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6454     Label fence_not_required;
6455     cbz(rscratch1, fence_not_required);
6456     // If it does then fail.
6457     lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure));
6458     mov(c_rarg0, rthread);
6459     blr(rscratch1);
6460     bind(fence_not_required);
6461   }
6462 }
6463 #endif
6464 
6465 void MacroAssembler::spin_wait() {
6466   for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) {
6467     switch (VM_Version::spin_wait_desc().inst()) {
6468       case SpinWait::NOP:
6469         nop();
6470         break;
6471       case SpinWait::ISB:
6472         isb();
6473         break;
6474       case SpinWait::YIELD:
6475         yield();
6476         break;
6477       default:
6478         ShouldNotReachHere();
6479     }
6480   }
6481 }
6482 
6483 // Stack frame creation/removal
6484 
6485 void MacroAssembler::enter(bool strip_ret_addr) {
6486   if (strip_ret_addr) {
6487     // Addresses can only be signed once. If there are multiple nested frames being created
6488     // in the same function, then the return address needs stripping first.
6489     strip_return_address();
6490   }
6491   protect_return_address();
6492   stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
6493   mov(rfp, sp);
6494 }
6495 
6496 void MacroAssembler::leave() {
6497   mov(sp, rfp);
6498   ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
6499   authenticate_return_address();
6500 }
6501 
6502 // ROP Protection
6503 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/
6504 // destroying stack frames or whenever directly loading/storing the LR to memory.
6505 // If ROP protection is not set then these functions are no-ops.
6506 // For more details on PAC see pauth_aarch64.hpp.
6507 
6508 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory.
6509 // Uses value zero as the modifier.
6510 //
6511 void MacroAssembler::protect_return_address() {
6512   if (VM_Version::use_rop_protection()) {
6513     check_return_address();
6514     paciaz();
6515   }
6516 }
6517 
6518 // Sign the return value in the given register. Use before updating the LR in the existing stack
6519 // frame for the current function.
6520 // Uses value zero as the modifier.
6521 //
6522 void MacroAssembler::protect_return_address(Register return_reg) {
6523   if (VM_Version::use_rop_protection()) {
6524     check_return_address(return_reg);
6525     paciza(return_reg);
6526   }
6527 }
6528 
6529 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory.
6530 // Uses value zero as the modifier.
6531 //
6532 void MacroAssembler::authenticate_return_address() {
6533   if (VM_Version::use_rop_protection()) {
6534     autiaz();
6535     check_return_address();
6536   }
6537 }
6538 
6539 // Authenticate the return value in the given register. Use before updating the LR in the existing
6540 // stack frame for the current function.
6541 // Uses value zero as the modifier.
6542 //
6543 void MacroAssembler::authenticate_return_address(Register return_reg) {
6544   if (VM_Version::use_rop_protection()) {
6545     autiza(return_reg);
6546     check_return_address(return_reg);
6547   }
6548 }
6549 
6550 // Strip any PAC data from LR without performing any authentication. Use with caution - only if
6551 // there is no guaranteed way of authenticating the LR.
6552 //
6553 void MacroAssembler::strip_return_address() {
6554   if (VM_Version::use_rop_protection()) {
6555     xpaclri();
6556   }
6557 }
6558 
6559 #ifndef PRODUCT
6560 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only
6561 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point
6562 // it is difficult to debug back to the callee function.
6563 // This function simply loads from the address in the given register.
6564 // Use directly after authentication to catch authentication failures.
6565 // Also use before signing to check that the pointer is valid and hasn't already been signed.
6566 //
6567 void MacroAssembler::check_return_address(Register return_reg) {
6568   if (VM_Version::use_rop_protection()) {
6569     ldr(zr, Address(return_reg));
6570   }
6571 }
6572 #endif
6573 
6574 // The java_calling_convention describes stack locations as ideal slots on
6575 // a frame with no abi restrictions. Since we must observe abi restrictions
6576 // (like the placement of the register window) the slots must be biased by
6577 // the following value.
6578 static int reg2offset_in(VMReg r) {
6579   // Account for saved rfp and lr
6580   // This should really be in_preserve_stack_slots
6581   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
6582 }
6583 
6584 static int reg2offset_out(VMReg r) {
6585   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
6586 }
6587 
6588 // On 64bit we will store integer like items to the stack as
6589 // 64bits items (AArch64 ABI) even though java would only store
6590 // 32bits for a parameter. On 32bit it will simply be 32bits
6591 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
6592 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) {
6593   if (src.first()->is_stack()) {
6594     if (dst.first()->is_stack()) {
6595       // stack to stack
6596       ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6597       str(tmp, Address(sp, reg2offset_out(dst.first())));
6598     } else {
6599       // stack to reg
6600       ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
6601     }
6602   } else if (dst.first()->is_stack()) {
6603     // reg to stack
6604     str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
6605   } else {
6606     if (dst.first() != src.first()) {
6607       sxtw(dst.first()->as_Register(), src.first()->as_Register());
6608     }
6609   }
6610 }
6611 
6612 // An oop arg. Must pass a handle not the oop itself
6613 void MacroAssembler::object_move(
6614                         OopMap* map,
6615                         int oop_handle_offset,
6616                         int framesize_in_slots,
6617                         VMRegPair src,
6618                         VMRegPair dst,
6619                         bool is_receiver,
6620                         int* receiver_offset) {
6621 
6622   // must pass a handle. First figure out the location we use as a handle
6623 
6624   Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
6625 
6626   // See if oop is null if it is we need no handle
6627 
6628   if (src.first()->is_stack()) {
6629 
6630     // Oop is already on the stack as an argument
6631     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
6632     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
6633     if (is_receiver) {
6634       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
6635     }
6636 
6637     ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
6638     lea(rHandle, Address(rfp, reg2offset_in(src.first())));
6639     // conditionally move a null
6640     cmp(rscratch1, zr);
6641     csel(rHandle, zr, rHandle, Assembler::EQ);
6642   } else {
6643 
6644     // Oop is in an a register we must store it to the space we reserve
6645     // on the stack for oop_handles and pass a handle if oop is non-null
6646 
6647     const Register rOop = src.first()->as_Register();
6648     int oop_slot;
6649     if (rOop == j_rarg0)
6650       oop_slot = 0;
6651     else if (rOop == j_rarg1)
6652       oop_slot = 1;
6653     else if (rOop == j_rarg2)
6654       oop_slot = 2;
6655     else if (rOop == j_rarg3)
6656       oop_slot = 3;
6657     else if (rOop == j_rarg4)
6658       oop_slot = 4;
6659     else if (rOop == j_rarg5)
6660       oop_slot = 5;
6661     else if (rOop == j_rarg6)
6662       oop_slot = 6;
6663     else {
6664       assert(rOop == j_rarg7, "wrong register");
6665       oop_slot = 7;
6666     }
6667 
6668     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
6669     int offset = oop_slot*VMRegImpl::stack_slot_size;
6670 
6671     map->set_oop(VMRegImpl::stack2reg(oop_slot));
6672     // Store oop in handle area, may be null
6673     str(rOop, Address(sp, offset));
6674     if (is_receiver) {
6675       *receiver_offset = offset;
6676     }
6677 
6678     cmp(rOop, zr);
6679     lea(rHandle, Address(sp, offset));
6680     // conditionally move a null
6681     csel(rHandle, zr, rHandle, Assembler::EQ);
6682   }
6683 
6684   // If arg is on the stack then place it otherwise it is already in correct reg.
6685   if (dst.first()->is_stack()) {
6686     str(rHandle, Address(sp, reg2offset_out(dst.first())));
6687   }
6688 }
6689 
6690 // A float arg may have to do float reg int reg conversion
6691 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) {
6692  if (src.first()->is_stack()) {
6693     if (dst.first()->is_stack()) {
6694       ldrw(tmp, Address(rfp, reg2offset_in(src.first())));
6695       strw(tmp, Address(sp, reg2offset_out(dst.first())));
6696     } else {
6697       ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
6698     }
6699   } else if (src.first() != dst.first()) {
6700     if (src.is_single_phys_reg() && dst.is_single_phys_reg())
6701       fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
6702     else
6703       strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
6704   }
6705 }
6706 
6707 // A long move
6708 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) {
6709   if (src.first()->is_stack()) {
6710     if (dst.first()->is_stack()) {
6711       // stack to stack
6712       ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6713       str(tmp, Address(sp, reg2offset_out(dst.first())));
6714     } else {
6715       // stack to reg
6716       ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
6717     }
6718   } else if (dst.first()->is_stack()) {
6719     // reg to stack
6720     // Do we really have to sign extend???
6721     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
6722     str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
6723   } else {
6724     if (dst.first() != src.first()) {
6725       mov(dst.first()->as_Register(), src.first()->as_Register());
6726     }
6727   }
6728 }
6729 
6730 
6731 // A double move
6732 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) {
6733  if (src.first()->is_stack()) {
6734     if (dst.first()->is_stack()) {
6735       ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6736       str(tmp, Address(sp, reg2offset_out(dst.first())));
6737     } else {
6738       ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
6739     }
6740   } else if (src.first() != dst.first()) {
6741     if (src.is_single_phys_reg() && dst.is_single_phys_reg())
6742       fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
6743     else
6744       strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
6745   }
6746 }
6747 
6748 // Implements lightweight-locking.
6749 //
6750 //  - obj: the object to be locked
6751 //  - t1, t2, t3: temporary registers, will be destroyed
6752 //  - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding).
6753 void MacroAssembler::lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
6754   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6755   assert_different_registers(obj, t1, t2, t3, rscratch1);
6756 
6757   Label push;
6758   const Register top = t1;
6759   const Register mark = t2;
6760   const Register t = t3;
6761 
6762   // Preload the markWord. It is important that this is the first
6763   // instruction emitted as it is part of C1's null check semantics.
6764   ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
6765 
6766   // Check if the lock-stack is full.
6767   ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6768   cmpw(top, (unsigned)LockStack::end_offset());
6769   br(Assembler::GE, slow);
6770 
6771   // Check for recursion.
6772   subw(t, top, oopSize);
6773   ldr(t, Address(rthread, t));
6774   cmp(obj, t);
6775   br(Assembler::EQ, push);
6776 
6777   // Check header for monitor (0b10).
6778   tst(mark, markWord::monitor_value);
6779   br(Assembler::NE, slow);
6780 
6781   // Try to lock. Transition lock bits 0b01 => 0b00
6782   assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
6783   orr(mark, mark, markWord::unlocked_value);
6784   eor(t, mark, markWord::unlocked_value);
6785   cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword,
6786           /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg);
6787   br(Assembler::NE, slow);
6788 
6789   bind(push);
6790   // After successful lock, push object on lock-stack.
6791   str(obj, Address(rthread, top));
6792   addw(top, top, oopSize);
6793   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6794 }
6795 
6796 // Implements lightweight-unlocking.
6797 //
6798 // - obj: the object to be unlocked
6799 // - t1, t2, t3: temporary registers
6800 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding).
6801 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
6802   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6803   // cmpxchg clobbers rscratch1.
6804   assert_different_registers(obj, t1, t2, t3, rscratch1);
6805 
6806 #ifdef ASSERT
6807   {
6808     // Check for lock-stack underflow.
6809     Label stack_ok;
6810     ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6811     cmpw(t1, (unsigned)LockStack::start_offset());
6812     br(Assembler::GE, stack_ok);
6813     STOP("Lock-stack underflow");
6814     bind(stack_ok);
6815   }
6816 #endif
6817 
6818   Label unlocked, push_and_slow;
6819   const Register top = t1;
6820   const Register mark = t2;
6821   const Register t = t3;
6822 
6823   // Check if obj is top of lock-stack.
6824   ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6825   subw(top, top, oopSize);
6826   ldr(t, Address(rthread, top));
6827   cmp(obj, t);
6828   br(Assembler::NE, slow);
6829 
6830   // Pop lock-stack.
6831   DEBUG_ONLY(str(zr, Address(rthread, top));)
6832   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6833 
6834   // Check if recursive.
6835   subw(t, top, oopSize);
6836   ldr(t, Address(rthread, t));
6837   cmp(obj, t);
6838   br(Assembler::EQ, unlocked);
6839 
6840   // Not recursive. Check header for monitor (0b10).
6841   ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
6842   tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow);
6843 
6844 #ifdef ASSERT
6845   // Check header not unlocked (0b01).
6846   Label not_unlocked;
6847   tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked);
6848   stop("lightweight_unlock already unlocked");
6849   bind(not_unlocked);
6850 #endif
6851 
6852   // Try to unlock. Transition lock bits 0b00 => 0b01
6853   assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
6854   orr(t, mark, markWord::unlocked_value);
6855   cmpxchg(obj, mark, t, Assembler::xword,
6856           /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg);
6857   br(Assembler::EQ, unlocked);
6858 
6859   bind(push_and_slow);
6860   // Restore lock-stack and handle the unlock in runtime.
6861   DEBUG_ONLY(str(obj, Address(rthread, top));)
6862   addw(top, top, oopSize);
6863   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6864   b(slow);
6865 
6866   bind(unlocked);
6867 }