1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include <sys/types.h> 27 28 #include "precompiled.hpp" 29 #include "asm/assembler.hpp" 30 #include "asm/assembler.inline.hpp" 31 #include "ci/ciEnv.hpp" 32 #include "compiler/compileTask.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/barrierSetAssembler.hpp" 37 #include "gc/shared/cardTableBarrierSet.hpp" 38 #include "gc/shared/cardTable.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/tlab_globals.hpp" 41 #include "interpreter/bytecodeHistogram.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "runtime/continuation.hpp" 52 #include "runtime/icache.hpp" 53 #include "runtime/interfaceSupport.inline.hpp" 54 #include "runtime/javaThread.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/stubRoutines.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #ifdef COMPILER1 60 #include "c1/c1_LIRAssembler.hpp" 61 #endif 62 #ifdef COMPILER2 63 #include "oops/oop.hpp" 64 #include "opto/compile.hpp" 65 #include "opto/node.hpp" 66 #include "opto/output.hpp" 67 #endif 68 69 #ifdef PRODUCT 70 #define BLOCK_COMMENT(str) /* nothing */ 71 #else 72 #define BLOCK_COMMENT(str) block_comment(str) 73 #endif 74 #define STOP(str) stop(str); 75 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 76 77 #ifdef ASSERT 78 extern "C" void disnm(intptr_t p); 79 #endif 80 // Target-dependent relocation processing 81 // 82 // Instruction sequences whose target may need to be retrieved or 83 // patched are distinguished by their leading instruction, sorting 84 // them into three main instruction groups and related subgroups. 85 // 86 // 1) Branch, Exception and System (insn count = 1) 87 // 1a) Unconditional branch (immediate): 88 // b/bl imm19 89 // 1b) Compare & branch (immediate): 90 // cbz/cbnz Rt imm19 91 // 1c) Test & branch (immediate): 92 // tbz/tbnz Rt imm14 93 // 1d) Conditional branch (immediate): 94 // b.cond imm19 95 // 96 // 2) Loads and Stores (insn count = 1) 97 // 2a) Load register literal: 98 // ldr Rt imm19 99 // 100 // 3) Data Processing Immediate (insn count = 2 or 3) 101 // 3a) PC-rel. addressing 102 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 103 // adr/adrp Rx imm21; add Ry Rx #imm12 104 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 105 // adr/adrp Rx imm21 106 // adr/adrp Rx imm21; movk Rx #imm16<<32 107 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 108 // The latter form can only happen when the target is an 109 // ExternalAddress, and (by definition) ExternalAddresses don't 110 // move. Because of that property, there is never any need to 111 // patch the last of the three instructions. However, 112 // MacroAssembler::target_addr_for_insn takes all three 113 // instructions into account and returns the correct address. 114 // 3b) Move wide (immediate) 115 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 116 // 117 // A switch on a subset of the instruction's bits provides an 118 // efficient dispatch to these subcases. 119 // 120 // insn[28:26] -> main group ('x' == don't care) 121 // 00x -> UNALLOCATED 122 // 100 -> Data Processing Immediate 123 // 101 -> Branch, Exception and System 124 // x1x -> Loads and Stores 125 // 126 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 127 // n.b. in some cases extra bits need to be checked to verify the 128 // instruction is as expected 129 // 130 // 1) ... xx101x Branch, Exception and System 131 // 1a) 00___x Unconditional branch (immediate) 132 // 1b) 01___0 Compare & branch (immediate) 133 // 1c) 01___1 Test & branch (immediate) 134 // 1d) 10___0 Conditional branch (immediate) 135 // other Should not happen 136 // 137 // 2) ... xxx1x0 Loads and Stores 138 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 139 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 140 // strictly should be 64 bit non-FP/SIMD i.e. 141 // 0101_000 (i.e. requires insn[31:24] == 01011000) 142 // 143 // 3) ... xx100x Data Processing Immediate 144 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 145 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 146 // strictly should be 64 bit movz #imm16<<0 147 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 148 // 149 class RelocActions { 150 protected: 151 typedef int (*reloc_insn)(address insn_addr, address &target); 152 153 virtual reloc_insn adrpMem() = 0; 154 virtual reloc_insn adrpAdd() = 0; 155 virtual reloc_insn adrpMovk() = 0; 156 157 const address _insn_addr; 158 const uint32_t _insn; 159 160 static uint32_t insn_at(address insn_addr, int n) { 161 return ((uint32_t*)insn_addr)[n]; 162 } 163 uint32_t insn_at(int n) const { 164 return insn_at(_insn_addr, n); 165 } 166 167 public: 168 169 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 170 RelocActions(address insn_addr, uint32_t insn) 171 : _insn_addr(insn_addr), _insn(insn) {} 172 173 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 174 virtual int conditionalBranch(address insn_addr, address &target) = 0; 175 virtual int testAndBranch(address insn_addr, address &target) = 0; 176 virtual int loadStore(address insn_addr, address &target) = 0; 177 virtual int adr(address insn_addr, address &target) = 0; 178 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 179 virtual int immediate(address insn_addr, address &target) = 0; 180 virtual void verify(address insn_addr, address &target) = 0; 181 182 int ALWAYSINLINE run(address insn_addr, address &target) { 183 int instructions = 1; 184 185 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 186 switch(dispatch) { 187 case 0b001010: 188 case 0b001011: { 189 instructions = unconditionalBranch(insn_addr, target); 190 break; 191 } 192 case 0b101010: // Conditional branch (immediate) 193 case 0b011010: { // Compare & branch (immediate) 194 instructions = conditionalBranch(insn_addr, target); 195 break; 196 } 197 case 0b011011: { 198 instructions = testAndBranch(insn_addr, target); 199 break; 200 } 201 case 0b001100: 202 case 0b001110: 203 case 0b011100: 204 case 0b011110: 205 case 0b101100: 206 case 0b101110: 207 case 0b111100: 208 case 0b111110: { 209 // load/store 210 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 211 // Load register (literal) 212 instructions = loadStore(insn_addr, target); 213 break; 214 } else { 215 // nothing to do 216 assert(target == 0, "did not expect to relocate target for polling page load"); 217 } 218 break; 219 } 220 case 0b001000: 221 case 0b011000: 222 case 0b101000: 223 case 0b111000: { 224 // adr/adrp 225 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 226 int shift = Instruction_aarch64::extract(_insn, 31, 31); 227 if (shift) { 228 uint32_t insn2 = insn_at(1); 229 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 230 Instruction_aarch64::extract(_insn, 4, 0) == 231 Instruction_aarch64::extract(insn2, 9, 5)) { 232 instructions = adrp(insn_addr, target, adrpMem()); 233 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 234 Instruction_aarch64::extract(_insn, 4, 0) == 235 Instruction_aarch64::extract(insn2, 4, 0)) { 236 instructions = adrp(insn_addr, target, adrpAdd()); 237 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 238 Instruction_aarch64::extract(_insn, 4, 0) == 239 Instruction_aarch64::extract(insn2, 4, 0)) { 240 instructions = adrp(insn_addr, target, adrpMovk()); 241 } else { 242 ShouldNotReachHere(); 243 } 244 } else { 245 instructions = adr(insn_addr, target); 246 } 247 break; 248 } 249 case 0b001001: 250 case 0b011001: 251 case 0b101001: 252 case 0b111001: { 253 instructions = immediate(insn_addr, target); 254 break; 255 } 256 default: { 257 ShouldNotReachHere(); 258 } 259 } 260 261 verify(insn_addr, target); 262 return instructions * NativeInstruction::instruction_size; 263 } 264 }; 265 266 class Patcher : public RelocActions { 267 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 268 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 269 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 270 271 public: 272 Patcher(address insn_addr) : RelocActions(insn_addr) {} 273 274 virtual int unconditionalBranch(address insn_addr, address &target) { 275 intptr_t offset = (target - insn_addr) >> 2; 276 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 277 return 1; 278 } 279 virtual int conditionalBranch(address insn_addr, address &target) { 280 intptr_t offset = (target - insn_addr) >> 2; 281 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 282 return 1; 283 } 284 virtual int testAndBranch(address insn_addr, address &target) { 285 intptr_t offset = (target - insn_addr) >> 2; 286 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 287 return 1; 288 } 289 virtual int loadStore(address insn_addr, address &target) { 290 intptr_t offset = (target - insn_addr) >> 2; 291 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 292 return 1; 293 } 294 virtual int adr(address insn_addr, address &target) { 295 #ifdef ASSERT 296 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 297 #endif 298 // PC-rel. addressing 299 ptrdiff_t offset = target - insn_addr; 300 int offset_lo = offset & 3; 301 offset >>= 2; 302 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 303 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 304 return 1; 305 } 306 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 307 int instructions = 1; 308 #ifdef ASSERT 309 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 310 #endif 311 ptrdiff_t offset = target - insn_addr; 312 instructions = 2; 313 precond(inner != nullptr); 314 // Give the inner reloc a chance to modify the target. 315 address adjusted_target = target; 316 instructions = (*inner)(insn_addr, adjusted_target); 317 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 318 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 319 offset = adr_page - pc_page; 320 int offset_lo = offset & 3; 321 offset >>= 2; 322 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 323 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 324 return instructions; 325 } 326 static int adrpMem_impl(address insn_addr, address &target) { 327 uintptr_t dest = (uintptr_t)target; 328 int offset_lo = dest & 0xfff; 329 uint32_t insn2 = insn_at(insn_addr, 1); 330 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 331 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 332 guarantee(((dest >> size) << size) == dest, "misaligned target"); 333 return 2; 334 } 335 static int adrpAdd_impl(address insn_addr, address &target) { 336 uintptr_t dest = (uintptr_t)target; 337 int offset_lo = dest & 0xfff; 338 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 339 return 2; 340 } 341 static int adrpMovk_impl(address insn_addr, address &target) { 342 uintptr_t dest = uintptr_t(target); 343 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 344 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 345 target = address(dest); 346 return 2; 347 } 348 virtual int immediate(address insn_addr, address &target) { 349 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 350 uint64_t dest = (uint64_t)target; 351 // Move wide constant 352 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 353 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 354 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 355 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 356 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 357 return 3; 358 } 359 virtual void verify(address insn_addr, address &target) { 360 #ifdef ASSERT 361 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 362 if (!(address_is == target)) { 363 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 364 disnm((intptr_t)insn_addr); 365 assert(address_is == target, "should be"); 366 } 367 #endif 368 } 369 }; 370 371 // If insn1 and insn2 use the same register to form an address, either 372 // by an offsetted LDR or a simple ADD, return the offset. If the 373 // second instruction is an LDR, the offset may be scaled. 374 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 375 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 376 Instruction_aarch64::extract(insn1, 4, 0) == 377 Instruction_aarch64::extract(insn2, 9, 5)) { 378 // Load/store register (unsigned immediate) 379 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 380 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 381 byte_offset <<= size; 382 return true; 383 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 384 Instruction_aarch64::extract(insn1, 4, 0) == 385 Instruction_aarch64::extract(insn2, 4, 0)) { 386 // add (immediate) 387 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 388 return true; 389 } 390 return false; 391 } 392 393 class Decoder : public RelocActions { 394 virtual reloc_insn adrpMem() { return &Decoder::adrpMem_impl; } 395 virtual reloc_insn adrpAdd() { return &Decoder::adrpAdd_impl; } 396 virtual reloc_insn adrpMovk() { return &Decoder::adrpMovk_impl; } 397 398 public: 399 Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 400 401 virtual int loadStore(address insn_addr, address &target) { 402 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 403 target = insn_addr + (offset << 2); 404 return 1; 405 } 406 virtual int unconditionalBranch(address insn_addr, address &target) { 407 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 408 target = insn_addr + (offset << 2); 409 return 1; 410 } 411 virtual int conditionalBranch(address insn_addr, address &target) { 412 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 413 target = address(((uint64_t)insn_addr + (offset << 2))); 414 return 1; 415 } 416 virtual int testAndBranch(address insn_addr, address &target) { 417 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 418 target = address(((uint64_t)insn_addr + (offset << 2))); 419 return 1; 420 } 421 virtual int adr(address insn_addr, address &target) { 422 // PC-rel. addressing 423 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 424 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 425 target = address((uint64_t)insn_addr + offset); 426 return 1; 427 } 428 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 429 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 430 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 431 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 432 int shift = 12; 433 offset <<= shift; 434 uint64_t target_page = ((uint64_t)insn_addr) + offset; 435 target_page &= ((uint64_t)-1) << shift; 436 uint32_t insn2 = insn_at(1); 437 target = address(target_page); 438 precond(inner != nullptr); 439 (*inner)(insn_addr, target); 440 return 2; 441 } 442 static int adrpMem_impl(address insn_addr, address &target) { 443 uint32_t insn2 = insn_at(insn_addr, 1); 444 // Load/store register (unsigned immediate) 445 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 446 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 447 byte_offset <<= size; 448 target += byte_offset; 449 return 2; 450 } 451 static int adrpAdd_impl(address insn_addr, address &target) { 452 uint32_t insn2 = insn_at(insn_addr, 1); 453 // add (immediate) 454 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 455 target += byte_offset; 456 return 2; 457 } 458 static int adrpMovk_impl(address insn_addr, address &target) { 459 uint32_t insn2 = insn_at(insn_addr, 1); 460 uint64_t dest = uint64_t(target); 461 dest = (dest & 0xffff0000ffffffff) | 462 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 463 target = address(dest); 464 465 // We know the destination 4k page. Maybe we have a third 466 // instruction. 467 uint32_t insn = insn_at(insn_addr, 0); 468 uint32_t insn3 = insn_at(insn_addr, 2); 469 ptrdiff_t byte_offset; 470 if (offset_for(insn, insn3, byte_offset)) { 471 target += byte_offset; 472 return 3; 473 } else { 474 return 2; 475 } 476 } 477 virtual int immediate(address insn_addr, address &target) { 478 uint32_t *insns = (uint32_t *)insn_addr; 479 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 480 // Move wide constant: movz, movk, movk. See movptr(). 481 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 482 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 483 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 484 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 485 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 486 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 487 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 488 return 3; 489 } 490 virtual void verify(address insn_addr, address &target) { 491 } 492 }; 493 494 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 495 Decoder decoder(insn_addr, insn); 496 address target; 497 decoder.run(insn_addr, target); 498 return target; 499 } 500 501 // Patch any kind of instruction; there may be several instructions. 502 // Return the total length (in bytes) of the instructions. 503 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 504 Patcher patcher(insn_addr); 505 return patcher.run(insn_addr, target); 506 } 507 508 int MacroAssembler::patch_oop(address insn_addr, address o) { 509 int instructions; 510 unsigned insn = *(unsigned*)insn_addr; 511 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 512 513 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 514 // narrow OOPs by setting the upper 16 bits in the first 515 // instruction. 516 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 517 // Move narrow OOP 518 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 519 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 520 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 521 instructions = 2; 522 } else { 523 // Move wide OOP 524 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 525 uintptr_t dest = (uintptr_t)o; 526 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 527 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 528 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 529 instructions = 3; 530 } 531 return instructions * NativeInstruction::instruction_size; 532 } 533 534 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 535 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 536 // We encode narrow ones by setting the upper 16 bits in the first 537 // instruction. 538 NativeInstruction *insn = nativeInstruction_at(insn_addr); 539 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 540 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 541 542 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 543 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 544 return 2 * NativeInstruction::instruction_size; 545 } 546 547 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 548 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 549 return nullptr; 550 } 551 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 552 } 553 554 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 555 if (acquire) { 556 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 557 ldar(tmp, tmp); 558 } else { 559 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 560 } 561 if (at_return) { 562 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 563 // we may safely use the sp instead to perform the stack watermark check. 564 cmp(in_nmethod ? sp : rfp, tmp); 565 br(Assembler::HI, slow_path); 566 } else { 567 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 568 } 569 } 570 571 void MacroAssembler::rt_call(address dest, Register tmp) { 572 CodeBlob *cb = CodeCache::find_blob(dest); 573 if (cb) { 574 far_call(RuntimeAddress(dest)); 575 } else { 576 lea(tmp, RuntimeAddress(dest)); 577 blr(tmp); 578 } 579 } 580 581 void MacroAssembler::push_cont_fastpath(Register java_thread) { 582 if (!Continuations::enabled()) return; 583 Label done; 584 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 585 cmp(sp, rscratch1); 586 br(Assembler::LS, done); 587 mov(rscratch1, sp); // we can't use sp as the source in str 588 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 589 bind(done); 590 } 591 592 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 593 if (!Continuations::enabled()) return; 594 Label done; 595 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 596 cmp(sp, rscratch1); 597 br(Assembler::LO, done); 598 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 599 bind(done); 600 } 601 602 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 603 // we must set sp to zero to clear frame 604 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 605 606 // must clear fp, so that compiled frames are not confused; it is 607 // possible that we need it only for debugging 608 if (clear_fp) { 609 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 610 } 611 612 // Always clear the pc because it could have been set by make_walkable() 613 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 614 } 615 616 // Calls to C land 617 // 618 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 619 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 620 // has to be reset to 0. This is required to allow proper stack traversal. 621 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 622 Register last_java_fp, 623 Register last_java_pc, 624 Register scratch) { 625 626 if (last_java_pc->is_valid()) { 627 str(last_java_pc, Address(rthread, 628 JavaThread::frame_anchor_offset() 629 + JavaFrameAnchor::last_Java_pc_offset())); 630 } 631 632 // determine last_java_sp register 633 if (last_java_sp == sp) { 634 mov(scratch, sp); 635 last_java_sp = scratch; 636 } else if (!last_java_sp->is_valid()) { 637 last_java_sp = esp; 638 } 639 640 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 641 642 // last_java_fp is optional 643 if (last_java_fp->is_valid()) { 644 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 645 } 646 } 647 648 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 649 Register last_java_fp, 650 address last_java_pc, 651 Register scratch) { 652 assert(last_java_pc != nullptr, "must provide a valid PC"); 653 654 adr(scratch, last_java_pc); 655 str(scratch, Address(rthread, 656 JavaThread::frame_anchor_offset() 657 + JavaFrameAnchor::last_Java_pc_offset())); 658 659 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 660 } 661 662 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 663 Register last_java_fp, 664 Label &L, 665 Register scratch) { 666 if (L.is_bound()) { 667 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 668 } else { 669 InstructionMark im(this); 670 L.add_patch_at(code(), locator()); 671 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 672 } 673 } 674 675 static inline bool target_needs_far_branch(address addr) { 676 // codecache size <= 128M 677 if (!MacroAssembler::far_branches()) { 678 return false; 679 } 680 // codecache size > 240M 681 if (MacroAssembler::codestub_branch_needs_far_jump()) { 682 return true; 683 } 684 // codecache size: 128M..240M 685 return !CodeCache::is_non_nmethod(addr); 686 } 687 688 void MacroAssembler::far_call(Address entry, Register tmp) { 689 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 690 assert(CodeCache::find_blob(entry.target()) != nullptr, 691 "destination of far call not found in code cache"); 692 assert(entry.rspec().type() == relocInfo::external_word_type 693 || entry.rspec().type() == relocInfo::runtime_call_type 694 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 695 if (target_needs_far_branch(entry.target())) { 696 uint64_t offset; 697 // We can use ADRP here because we know that the total size of 698 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 699 adrp(tmp, entry, offset); 700 add(tmp, tmp, offset); 701 blr(tmp); 702 } else { 703 bl(entry); 704 } 705 } 706 707 int MacroAssembler::far_jump(Address entry, Register tmp) { 708 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 709 assert(CodeCache::find_blob(entry.target()) != nullptr, 710 "destination of far call not found in code cache"); 711 assert(entry.rspec().type() == relocInfo::external_word_type 712 || entry.rspec().type() == relocInfo::runtime_call_type 713 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 714 address start = pc(); 715 if (target_needs_far_branch(entry.target())) { 716 uint64_t offset; 717 // We can use ADRP here because we know that the total size of 718 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 719 adrp(tmp, entry, offset); 720 add(tmp, tmp, offset); 721 br(tmp); 722 } else { 723 b(entry); 724 } 725 return pc() - start; 726 } 727 728 void MacroAssembler::reserved_stack_check() { 729 // testing if reserved zone needs to be enabled 730 Label no_reserved_zone_enabling; 731 732 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 733 cmp(sp, rscratch1); 734 br(Assembler::LO, no_reserved_zone_enabling); 735 736 enter(); // LR and FP are live. 737 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 738 mov(c_rarg0, rthread); 739 blr(rscratch1); 740 leave(); 741 742 // We have already removed our own frame. 743 // throw_delayed_StackOverflowError will think that it's been 744 // called by our caller. 745 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 746 br(rscratch1); 747 should_not_reach_here(); 748 749 bind(no_reserved_zone_enabling); 750 } 751 752 static void pass_arg0(MacroAssembler* masm, Register arg) { 753 if (c_rarg0 != arg ) { 754 masm->mov(c_rarg0, arg); 755 } 756 } 757 758 static void pass_arg1(MacroAssembler* masm, Register arg) { 759 if (c_rarg1 != arg ) { 760 masm->mov(c_rarg1, arg); 761 } 762 } 763 764 static void pass_arg2(MacroAssembler* masm, Register arg) { 765 if (c_rarg2 != arg ) { 766 masm->mov(c_rarg2, arg); 767 } 768 } 769 770 static void pass_arg3(MacroAssembler* masm, Register arg) { 771 if (c_rarg3 != arg ) { 772 masm->mov(c_rarg3, arg); 773 } 774 } 775 776 void MacroAssembler::call_VM_base(Register oop_result, 777 Register java_thread, 778 Register last_java_sp, 779 address entry_point, 780 int number_of_arguments, 781 bool check_exceptions) { 782 // determine java_thread register 783 if (!java_thread->is_valid()) { 784 java_thread = rthread; 785 } 786 787 // determine last_java_sp register 788 if (!last_java_sp->is_valid()) { 789 last_java_sp = esp; 790 } 791 792 // debugging support 793 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 794 assert(java_thread == rthread, "unexpected register"); 795 #ifdef ASSERT 796 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 797 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 798 #endif // ASSERT 799 800 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 801 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 802 803 // push java thread (becomes first argument of C function) 804 805 mov(c_rarg0, java_thread); 806 807 // set last Java frame before call 808 assert(last_java_sp != rfp, "can't use rfp"); 809 810 Label l; 811 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 812 813 // do the call, remove parameters 814 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 815 816 // lr could be poisoned with PAC signature during throw_pending_exception 817 // if it was tail-call optimized by compiler, since lr is not callee-saved 818 // reload it with proper value 819 adr(lr, l); 820 821 // reset last Java frame 822 // Only interpreter should have to clear fp 823 reset_last_Java_frame(true); 824 825 // C++ interp handles this in the interpreter 826 check_and_handle_popframe(java_thread); 827 check_and_handle_earlyret(java_thread); 828 829 if (check_exceptions) { 830 // check for pending exceptions (java_thread is set upon return) 831 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 832 Label ok; 833 cbz(rscratch1, ok); 834 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 835 br(rscratch1); 836 bind(ok); 837 } 838 839 // get oop result if there is one and reset the value in the thread 840 if (oop_result->is_valid()) { 841 get_vm_result(oop_result, java_thread); 842 } 843 } 844 845 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 846 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 847 } 848 849 // Check the entry target is always reachable from any branch. 850 static bool is_always_within_branch_range(Address entry) { 851 const address target = entry.target(); 852 853 if (!CodeCache::contains(target)) { 854 // We always use trampolines for callees outside CodeCache. 855 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 856 return false; 857 } 858 859 if (!MacroAssembler::far_branches()) { 860 return true; 861 } 862 863 if (entry.rspec().type() == relocInfo::runtime_call_type) { 864 // Runtime calls are calls of a non-compiled method (stubs, adapters). 865 // Non-compiled methods stay forever in CodeCache. 866 // We check whether the longest possible branch is within the branch range. 867 assert(CodeCache::find_blob(target) != nullptr && 868 !CodeCache::find_blob(target)->is_compiled(), 869 "runtime call of compiled method"); 870 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 871 const address left_longest_branch_start = CodeCache::low_bound(); 872 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 873 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 874 return is_reachable; 875 } 876 877 return false; 878 } 879 880 // Maybe emit a call via a trampoline. If the code cache is small 881 // trampolines won't be emitted. 882 address MacroAssembler::trampoline_call(Address entry) { 883 assert(entry.rspec().type() == relocInfo::runtime_call_type 884 || entry.rspec().type() == relocInfo::opt_virtual_call_type 885 || entry.rspec().type() == relocInfo::static_call_type 886 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 887 888 address target = entry.target(); 889 890 if (!is_always_within_branch_range(entry)) { 891 if (!in_scratch_emit_size()) { 892 // We don't want to emit a trampoline if C2 is generating dummy 893 // code during its branch shortening phase. 894 if (entry.rspec().type() == relocInfo::runtime_call_type) { 895 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 896 code()->share_trampoline_for(entry.target(), offset()); 897 } else { 898 address stub = emit_trampoline_stub(offset(), target); 899 if (stub == nullptr) { 900 postcond(pc() == badAddress); 901 return nullptr; // CodeCache is full 902 } 903 } 904 } 905 target = pc(); 906 } 907 908 address call_pc = pc(); 909 relocate(entry.rspec()); 910 bl(target); 911 912 postcond(pc() != badAddress); 913 return call_pc; 914 } 915 916 // Emit a trampoline stub for a call to a target which is too far away. 917 // 918 // code sequences: 919 // 920 // call-site: 921 // branch-and-link to <destination> or <trampoline stub> 922 // 923 // Related trampoline stub for this call site in the stub section: 924 // load the call target from the constant pool 925 // branch (LR still points to the call site above) 926 927 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 928 address dest) { 929 // Max stub size: alignment nop, TrampolineStub. 930 address stub = start_a_stub(max_trampoline_stub_size()); 931 if (stub == nullptr) { 932 return nullptr; // CodeBuffer::expand failed 933 } 934 935 // Create a trampoline stub relocation which relates this trampoline stub 936 // with the call instruction at insts_call_instruction_offset in the 937 // instructions code-section. 938 align(wordSize); 939 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 940 + insts_call_instruction_offset)); 941 const int stub_start_offset = offset(); 942 943 // Now, create the trampoline stub's code: 944 // - load the call 945 // - call 946 Label target; 947 ldr(rscratch1, target); 948 br(rscratch1); 949 bind(target); 950 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 951 "should be"); 952 emit_int64((int64_t)dest); 953 954 const address stub_start_addr = addr_at(stub_start_offset); 955 956 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 957 958 end_a_stub(); 959 return stub_start_addr; 960 } 961 962 int MacroAssembler::max_trampoline_stub_size() { 963 // Max stub size: alignment nop, TrampolineStub. 964 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 965 } 966 967 void MacroAssembler::emit_static_call_stub() { 968 // CompiledDirectStaticCall::set_to_interpreted knows the 969 // exact layout of this stub. 970 971 isb(); 972 mov_metadata(rmethod, nullptr); 973 974 // Jump to the entry point of the c2i stub. 975 movptr(rscratch1, 0); 976 br(rscratch1); 977 } 978 979 int MacroAssembler::static_call_stub_size() { 980 // isb; movk; movz; movz; movk; movz; movz; br 981 return 8 * NativeInstruction::instruction_size; 982 } 983 984 void MacroAssembler::c2bool(Register x) { 985 // implements x == 0 ? 0 : 1 986 // note: must only look at least-significant byte of x 987 // since C-style booleans are stored in one byte 988 // only! (was bug) 989 tst(x, 0xff); 990 cset(x, Assembler::NE); 991 } 992 993 address MacroAssembler::ic_call(address entry, jint method_index) { 994 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 995 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 996 // uintptr_t offset; 997 // ldr_constant(rscratch2, const_ptr); 998 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 999 return trampoline_call(Address(entry, rh)); 1000 } 1001 1002 // Implementation of call_VM versions 1003 1004 void MacroAssembler::call_VM(Register oop_result, 1005 address entry_point, 1006 bool check_exceptions) { 1007 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1008 } 1009 1010 void MacroAssembler::call_VM(Register oop_result, 1011 address entry_point, 1012 Register arg_1, 1013 bool check_exceptions) { 1014 pass_arg1(this, arg_1); 1015 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1016 } 1017 1018 void MacroAssembler::call_VM(Register oop_result, 1019 address entry_point, 1020 Register arg_1, 1021 Register arg_2, 1022 bool check_exceptions) { 1023 assert_different_registers(arg_1, c_rarg2); 1024 pass_arg2(this, arg_2); 1025 pass_arg1(this, arg_1); 1026 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1027 } 1028 1029 void MacroAssembler::call_VM(Register oop_result, 1030 address entry_point, 1031 Register arg_1, 1032 Register arg_2, 1033 Register arg_3, 1034 bool check_exceptions) { 1035 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1036 assert_different_registers(arg_2, c_rarg3); 1037 pass_arg3(this, arg_3); 1038 1039 pass_arg2(this, arg_2); 1040 1041 pass_arg1(this, arg_1); 1042 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1043 } 1044 1045 void MacroAssembler::call_VM(Register oop_result, 1046 Register last_java_sp, 1047 address entry_point, 1048 int number_of_arguments, 1049 bool check_exceptions) { 1050 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1051 } 1052 1053 void MacroAssembler::call_VM(Register oop_result, 1054 Register last_java_sp, 1055 address entry_point, 1056 Register arg_1, 1057 bool check_exceptions) { 1058 pass_arg1(this, arg_1); 1059 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1060 } 1061 1062 void MacroAssembler::call_VM(Register oop_result, 1063 Register last_java_sp, 1064 address entry_point, 1065 Register arg_1, 1066 Register arg_2, 1067 bool check_exceptions) { 1068 1069 assert_different_registers(arg_1, c_rarg2); 1070 pass_arg2(this, arg_2); 1071 pass_arg1(this, arg_1); 1072 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1073 } 1074 1075 void MacroAssembler::call_VM(Register oop_result, 1076 Register last_java_sp, 1077 address entry_point, 1078 Register arg_1, 1079 Register arg_2, 1080 Register arg_3, 1081 bool check_exceptions) { 1082 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1083 assert_different_registers(arg_2, c_rarg3); 1084 pass_arg3(this, arg_3); 1085 pass_arg2(this, arg_2); 1086 pass_arg1(this, arg_1); 1087 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1088 } 1089 1090 1091 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1092 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1093 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1094 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1095 } 1096 1097 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1098 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1099 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1100 } 1101 1102 void MacroAssembler::align(int modulus) { 1103 while (offset() % modulus != 0) nop(); 1104 } 1105 1106 void MacroAssembler::post_call_nop() { 1107 if (!Continuations::enabled()) { 1108 return; 1109 } 1110 InstructionMark im(this); 1111 relocate(post_call_nop_Relocation::spec()); 1112 InlineSkippedInstructionsCounter skipCounter(this); 1113 nop(); 1114 movk(zr, 0); 1115 movk(zr, 0); 1116 } 1117 1118 // these are no-ops overridden by InterpreterMacroAssembler 1119 1120 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1121 1122 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1123 1124 // Look up the method for a megamorphic invokeinterface call. 1125 // The target method is determined by <intf_klass, itable_index>. 1126 // The receiver klass is in recv_klass. 1127 // On success, the result will be in method_result, and execution falls through. 1128 // On failure, execution transfers to the given label. 1129 void MacroAssembler::lookup_interface_method(Register recv_klass, 1130 Register intf_klass, 1131 RegisterOrConstant itable_index, 1132 Register method_result, 1133 Register scan_temp, 1134 Label& L_no_such_interface, 1135 bool return_method) { 1136 assert_different_registers(recv_klass, intf_klass, scan_temp); 1137 assert_different_registers(method_result, intf_klass, scan_temp); 1138 assert(recv_klass != method_result || !return_method, 1139 "recv_klass can be destroyed when method isn't needed"); 1140 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1141 "caller must use same register for non-constant itable index as for method"); 1142 1143 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1144 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1145 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1146 int scan_step = itableOffsetEntry::size() * wordSize; 1147 int vte_size = vtableEntry::size_in_bytes(); 1148 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1149 1150 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1151 1152 // %%% Could store the aligned, prescaled offset in the klassoop. 1153 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1154 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1155 add(scan_temp, scan_temp, vtable_base); 1156 1157 if (return_method) { 1158 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1159 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1160 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1161 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1162 if (itentry_off) 1163 add(recv_klass, recv_klass, itentry_off); 1164 } 1165 1166 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1167 // if (scan->interface() == intf) { 1168 // result = (klass + scan->offset() + itable_index); 1169 // } 1170 // } 1171 Label search, found_method; 1172 1173 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1174 cmp(intf_klass, method_result); 1175 br(Assembler::EQ, found_method); 1176 bind(search); 1177 // Check that the previous entry is non-null. A null entry means that 1178 // the receiver class doesn't implement the interface, and wasn't the 1179 // same as when the caller was compiled. 1180 cbz(method_result, L_no_such_interface); 1181 if (itableOffsetEntry::interface_offset() != 0) { 1182 add(scan_temp, scan_temp, scan_step); 1183 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1184 } else { 1185 ldr(method_result, Address(pre(scan_temp, scan_step))); 1186 } 1187 cmp(intf_klass, method_result); 1188 br(Assembler::NE, search); 1189 1190 bind(found_method); 1191 1192 // Got a hit. 1193 if (return_method) { 1194 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1195 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1196 } 1197 } 1198 1199 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1200 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICHolder 1201 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1202 // The target method is determined by <holder_klass, itable_index>. 1203 // The receiver klass is in recv_klass. 1204 // On success, the result will be in method_result, and execution falls through. 1205 // On failure, execution transfers to the given label. 1206 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1207 Register holder_klass, 1208 Register resolved_klass, 1209 Register method_result, 1210 Register temp_itbl_klass, 1211 Register scan_temp, 1212 int itable_index, 1213 Label& L_no_such_interface) { 1214 // 'method_result' is only used as output register at the very end of this method. 1215 // Until then we can reuse it as 'holder_offset'. 1216 Register holder_offset = method_result; 1217 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1218 1219 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1220 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1221 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1222 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1223 1224 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1225 1226 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1227 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1228 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1229 // temp_itbl_klass = itable[0]._interface; 1230 int vtblEntrySize = vtableEntry::size_in_bytes(); 1231 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1232 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1233 mov(holder_offset, zr); 1234 // scan_temp = &(itable[0]._interface) 1235 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1236 1237 // Initial checks: 1238 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1239 // - if (itable[0] == holder_klass), shortcut to "holder found" 1240 // - if (itable[0] == 0), no such interface 1241 cmp(resolved_klass, holder_klass); 1242 br(Assembler::NE, L_loop_search_resolved_entry); 1243 cmp(holder_klass, temp_itbl_klass); 1244 br(Assembler::EQ, L_holder_found); 1245 cbz(temp_itbl_klass, L_no_such_interface); 1246 1247 // Loop: Look for holder_klass record in itable 1248 // do { 1249 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1250 // if (temp_itbl_klass == holder_klass) { 1251 // goto L_holder_found; // Found! 1252 // } 1253 // } while (temp_itbl_klass != 0); 1254 // goto L_no_such_interface // Not found. 1255 Label L_search_holder; 1256 bind(L_search_holder); 1257 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1258 cmp(holder_klass, temp_itbl_klass); 1259 br(Assembler::EQ, L_holder_found); 1260 cbnz(temp_itbl_klass, L_search_holder); 1261 1262 b(L_no_such_interface); 1263 1264 // Loop: Look for resolved_class record in itable 1265 // while (true) { 1266 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1267 // if (temp_itbl_klass == 0) { 1268 // goto L_no_such_interface; 1269 // } 1270 // if (temp_itbl_klass == resolved_klass) { 1271 // goto L_resolved_found; // Found! 1272 // } 1273 // if (temp_itbl_klass == holder_klass) { 1274 // holder_offset = scan_temp; 1275 // } 1276 // } 1277 // 1278 Label L_loop_search_resolved; 1279 bind(L_loop_search_resolved); 1280 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1281 bind(L_loop_search_resolved_entry); 1282 cbz(temp_itbl_klass, L_no_such_interface); 1283 cmp(resolved_klass, temp_itbl_klass); 1284 br(Assembler::EQ, L_resolved_found); 1285 cmp(holder_klass, temp_itbl_klass); 1286 br(Assembler::NE, L_loop_search_resolved); 1287 mov(holder_offset, scan_temp); 1288 b(L_loop_search_resolved); 1289 1290 // See if we already have a holder klass. If not, go and scan for it. 1291 bind(L_resolved_found); 1292 cbz(holder_offset, L_search_holder); 1293 mov(scan_temp, holder_offset); 1294 1295 // Finally, scan_temp contains holder_klass vtable offset 1296 bind(L_holder_found); 1297 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1298 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1299 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1300 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1301 } 1302 1303 // virtual method calling 1304 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1305 RegisterOrConstant vtable_index, 1306 Register method_result) { 1307 assert(vtableEntry::size() * wordSize == 8, 1308 "adjust the scaling in the code below"); 1309 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1310 1311 if (vtable_index.is_register()) { 1312 lea(method_result, Address(recv_klass, 1313 vtable_index.as_register(), 1314 Address::lsl(LogBytesPerWord))); 1315 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1316 } else { 1317 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1318 ldr(method_result, 1319 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1320 } 1321 } 1322 1323 void MacroAssembler::check_klass_subtype(Register sub_klass, 1324 Register super_klass, 1325 Register temp_reg, 1326 Label& L_success) { 1327 Label L_failure; 1328 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1329 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1330 bind(L_failure); 1331 } 1332 1333 1334 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1335 Register super_klass, 1336 Register temp_reg, 1337 Label* L_success, 1338 Label* L_failure, 1339 Label* L_slow_path, 1340 RegisterOrConstant super_check_offset) { 1341 assert_different_registers(sub_klass, super_klass, temp_reg); 1342 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1343 if (super_check_offset.is_register()) { 1344 assert_different_registers(sub_klass, super_klass, 1345 super_check_offset.as_register()); 1346 } else if (must_load_sco) { 1347 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1348 } 1349 1350 Label L_fallthrough; 1351 int label_nulls = 0; 1352 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1353 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1354 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1355 assert(label_nulls <= 1, "at most one null in the batch"); 1356 1357 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1358 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1359 Address super_check_offset_addr(super_klass, sco_offset); 1360 1361 // Hacked jmp, which may only be used just before L_fallthrough. 1362 #define final_jmp(label) \ 1363 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1364 else b(label) /*omit semi*/ 1365 1366 // If the pointers are equal, we are done (e.g., String[] elements). 1367 // This self-check enables sharing of secondary supertype arrays among 1368 // non-primary types such as array-of-interface. Otherwise, each such 1369 // type would need its own customized SSA. 1370 // We move this check to the front of the fast path because many 1371 // type checks are in fact trivially successful in this manner, 1372 // so we get a nicely predicted branch right at the start of the check. 1373 cmp(sub_klass, super_klass); 1374 br(Assembler::EQ, *L_success); 1375 1376 // Check the supertype display: 1377 if (must_load_sco) { 1378 ldrw(temp_reg, super_check_offset_addr); 1379 super_check_offset = RegisterOrConstant(temp_reg); 1380 } 1381 Address super_check_addr(sub_klass, super_check_offset); 1382 ldr(rscratch1, super_check_addr); 1383 cmp(super_klass, rscratch1); // load displayed supertype 1384 1385 // This check has worked decisively for primary supers. 1386 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1387 // (Secondary supers are interfaces and very deeply nested subtypes.) 1388 // This works in the same check above because of a tricky aliasing 1389 // between the super_cache and the primary super display elements. 1390 // (The 'super_check_addr' can address either, as the case requires.) 1391 // Note that the cache is updated below if it does not help us find 1392 // what we need immediately. 1393 // So if it was a primary super, we can just fail immediately. 1394 // Otherwise, it's the slow path for us (no success at this point). 1395 1396 if (super_check_offset.is_register()) { 1397 br(Assembler::EQ, *L_success); 1398 subs(zr, super_check_offset.as_register(), sc_offset); 1399 if (L_failure == &L_fallthrough) { 1400 br(Assembler::EQ, *L_slow_path); 1401 } else { 1402 br(Assembler::NE, *L_failure); 1403 final_jmp(*L_slow_path); 1404 } 1405 } else if (super_check_offset.as_constant() == sc_offset) { 1406 // Need a slow path; fast failure is impossible. 1407 if (L_slow_path == &L_fallthrough) { 1408 br(Assembler::EQ, *L_success); 1409 } else { 1410 br(Assembler::NE, *L_slow_path); 1411 final_jmp(*L_success); 1412 } 1413 } else { 1414 // No slow path; it's a fast decision. 1415 if (L_failure == &L_fallthrough) { 1416 br(Assembler::EQ, *L_success); 1417 } else { 1418 br(Assembler::NE, *L_failure); 1419 final_jmp(*L_success); 1420 } 1421 } 1422 1423 bind(L_fallthrough); 1424 1425 #undef final_jmp 1426 } 1427 1428 // These two are taken from x86, but they look generally useful 1429 1430 // scans count pointer sized words at [addr] for occurrence of value, 1431 // generic 1432 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1433 Register scratch) { 1434 Label Lloop, Lexit; 1435 cbz(count, Lexit); 1436 bind(Lloop); 1437 ldr(scratch, post(addr, wordSize)); 1438 cmp(value, scratch); 1439 br(EQ, Lexit); 1440 sub(count, count, 1); 1441 cbnz(count, Lloop); 1442 bind(Lexit); 1443 } 1444 1445 // scans count 4 byte words at [addr] for occurrence of value, 1446 // generic 1447 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1448 Register scratch) { 1449 Label Lloop, Lexit; 1450 cbz(count, Lexit); 1451 bind(Lloop); 1452 ldrw(scratch, post(addr, wordSize)); 1453 cmpw(value, scratch); 1454 br(EQ, Lexit); 1455 sub(count, count, 1); 1456 cbnz(count, Lloop); 1457 bind(Lexit); 1458 } 1459 1460 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1461 Register super_klass, 1462 Register temp_reg, 1463 Register temp2_reg, 1464 Label* L_success, 1465 Label* L_failure, 1466 bool set_cond_codes) { 1467 assert_different_registers(sub_klass, super_klass, temp_reg); 1468 if (temp2_reg != noreg) 1469 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1470 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1471 1472 Label L_fallthrough; 1473 int label_nulls = 0; 1474 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1475 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1476 assert(label_nulls <= 1, "at most one null in the batch"); 1477 1478 // a couple of useful fields in sub_klass: 1479 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1480 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1481 Address secondary_supers_addr(sub_klass, ss_offset); 1482 Address super_cache_addr( sub_klass, sc_offset); 1483 1484 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1485 1486 // Do a linear scan of the secondary super-klass chain. 1487 // This code is rarely used, so simplicity is a virtue here. 1488 // The repne_scan instruction uses fixed registers, which we must spill. 1489 // Don't worry too much about pre-existing connections with the input regs. 1490 1491 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1492 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1493 1494 RegSet pushed_registers; 1495 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1496 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1497 1498 if (super_klass != r0) { 1499 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1500 } 1501 1502 push(pushed_registers, sp); 1503 1504 // Get super_klass value into r0 (even if it was in r5 or r2). 1505 if (super_klass != r0) { 1506 mov(r0, super_klass); 1507 } 1508 1509 #ifndef PRODUCT 1510 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1511 Address pst_counter_addr(rscratch2); 1512 ldr(rscratch1, pst_counter_addr); 1513 add(rscratch1, rscratch1, 1); 1514 str(rscratch1, pst_counter_addr); 1515 #endif //PRODUCT 1516 1517 // We will consult the secondary-super array. 1518 ldr(r5, secondary_supers_addr); 1519 // Load the array length. 1520 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1521 // Skip to start of data. 1522 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1523 1524 cmp(sp, zr); // Clear Z flag; SP is never zero 1525 // Scan R2 words at [R5] for an occurrence of R0. 1526 // Set NZ/Z based on last compare. 1527 repne_scan(r5, r0, r2, rscratch1); 1528 1529 // Unspill the temp. registers: 1530 pop(pushed_registers, sp); 1531 1532 br(Assembler::NE, *L_failure); 1533 1534 // Success. Cache the super we found and proceed in triumph. 1535 str(super_klass, super_cache_addr); 1536 1537 if (L_success != &L_fallthrough) { 1538 b(*L_success); 1539 } 1540 1541 #undef IS_A_TEMP 1542 1543 bind(L_fallthrough); 1544 } 1545 1546 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1547 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 1548 assert_different_registers(klass, rthread, scratch); 1549 1550 Label L_fallthrough, L_tmp; 1551 if (L_fast_path == nullptr) { 1552 L_fast_path = &L_fallthrough; 1553 } else if (L_slow_path == nullptr) { 1554 L_slow_path = &L_fallthrough; 1555 } 1556 // Fast path check: class is fully initialized 1557 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1558 subs(zr, scratch, InstanceKlass::fully_initialized); 1559 br(Assembler::EQ, *L_fast_path); 1560 1561 // Fast path check: current thread is initializer thread 1562 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1563 cmp(rthread, scratch); 1564 1565 if (L_slow_path == &L_fallthrough) { 1566 br(Assembler::EQ, *L_fast_path); 1567 bind(*L_slow_path); 1568 } else if (L_fast_path == &L_fallthrough) { 1569 br(Assembler::NE, *L_slow_path); 1570 bind(*L_fast_path); 1571 } else { 1572 Unimplemented(); 1573 } 1574 } 1575 1576 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 1577 if (!VerifyOops) return; 1578 1579 // Pass register number to verify_oop_subroutine 1580 const char* b = nullptr; 1581 { 1582 ResourceMark rm; 1583 stringStream ss; 1584 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 1585 b = code_string(ss.as_string()); 1586 } 1587 BLOCK_COMMENT("verify_oop {"); 1588 1589 strip_return_address(); // This might happen within a stack frame. 1590 protect_return_address(); 1591 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1592 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1593 1594 mov(r0, reg); 1595 movptr(rscratch1, (uintptr_t)(address)b); 1596 1597 // call indirectly to solve generation ordering problem 1598 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1599 ldr(rscratch2, Address(rscratch2)); 1600 blr(rscratch2); 1601 1602 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1603 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1604 authenticate_return_address(); 1605 1606 BLOCK_COMMENT("} verify_oop"); 1607 } 1608 1609 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 1610 if (!VerifyOops) return; 1611 1612 const char* b = nullptr; 1613 { 1614 ResourceMark rm; 1615 stringStream ss; 1616 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 1617 b = code_string(ss.as_string()); 1618 } 1619 BLOCK_COMMENT("verify_oop_addr {"); 1620 1621 strip_return_address(); // This might happen within a stack frame. 1622 protect_return_address(); 1623 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1624 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1625 1626 // addr may contain sp so we will have to adjust it based on the 1627 // pushes that we just did. 1628 if (addr.uses(sp)) { 1629 lea(r0, addr); 1630 ldr(r0, Address(r0, 4 * wordSize)); 1631 } else { 1632 ldr(r0, addr); 1633 } 1634 movptr(rscratch1, (uintptr_t)(address)b); 1635 1636 // call indirectly to solve generation ordering problem 1637 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1638 ldr(rscratch2, Address(rscratch2)); 1639 blr(rscratch2); 1640 1641 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1642 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1643 authenticate_return_address(); 1644 1645 BLOCK_COMMENT("} verify_oop_addr"); 1646 } 1647 1648 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1649 int extra_slot_offset) { 1650 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1651 int stackElementSize = Interpreter::stackElementSize; 1652 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1653 #ifdef ASSERT 1654 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1655 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1656 #endif 1657 if (arg_slot.is_constant()) { 1658 return Address(esp, arg_slot.as_constant() * stackElementSize 1659 + offset); 1660 } else { 1661 add(rscratch1, esp, arg_slot.as_register(), 1662 ext::uxtx, exact_log2(stackElementSize)); 1663 return Address(rscratch1, offset); 1664 } 1665 } 1666 1667 void MacroAssembler::call_VM_leaf_base(address entry_point, 1668 int number_of_arguments, 1669 Label *retaddr) { 1670 Label E, L; 1671 1672 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1673 1674 mov(rscratch1, entry_point); 1675 blr(rscratch1); 1676 if (retaddr) 1677 bind(*retaddr); 1678 1679 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1680 } 1681 1682 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1683 call_VM_leaf_base(entry_point, number_of_arguments); 1684 } 1685 1686 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1687 pass_arg0(this, arg_0); 1688 call_VM_leaf_base(entry_point, 1); 1689 } 1690 1691 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1692 assert_different_registers(arg_1, c_rarg0); 1693 pass_arg0(this, arg_0); 1694 pass_arg1(this, arg_1); 1695 call_VM_leaf_base(entry_point, 2); 1696 } 1697 1698 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1699 Register arg_1, Register arg_2) { 1700 assert_different_registers(arg_1, c_rarg0); 1701 assert_different_registers(arg_2, c_rarg0, c_rarg1); 1702 pass_arg0(this, arg_0); 1703 pass_arg1(this, arg_1); 1704 pass_arg2(this, arg_2); 1705 call_VM_leaf_base(entry_point, 3); 1706 } 1707 1708 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1709 pass_arg0(this, arg_0); 1710 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1711 } 1712 1713 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1714 1715 assert_different_registers(arg_0, c_rarg1); 1716 pass_arg1(this, arg_1); 1717 pass_arg0(this, arg_0); 1718 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1719 } 1720 1721 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1722 assert_different_registers(arg_0, c_rarg1, c_rarg2); 1723 assert_different_registers(arg_1, c_rarg2); 1724 pass_arg2(this, arg_2); 1725 pass_arg1(this, arg_1); 1726 pass_arg0(this, arg_0); 1727 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1728 } 1729 1730 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1731 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 1732 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1733 assert_different_registers(arg_2, c_rarg3); 1734 pass_arg3(this, arg_3); 1735 pass_arg2(this, arg_2); 1736 pass_arg1(this, arg_1); 1737 pass_arg0(this, arg_0); 1738 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1739 } 1740 1741 void MacroAssembler::null_check(Register reg, int offset) { 1742 if (needs_explicit_null_check(offset)) { 1743 // provoke OS null exception if reg is null by 1744 // accessing M[reg] w/o changing any registers 1745 // NOTE: this is plenty to provoke a segv 1746 ldr(zr, Address(reg)); 1747 } else { 1748 // nothing to do, (later) access of M[reg + offset] 1749 // will provoke OS null exception if reg is null 1750 } 1751 } 1752 1753 // MacroAssembler protected routines needed to implement 1754 // public methods 1755 1756 void MacroAssembler::mov(Register r, Address dest) { 1757 code_section()->relocate(pc(), dest.rspec()); 1758 uint64_t imm64 = (uint64_t)dest.target(); 1759 movptr(r, imm64); 1760 } 1761 1762 // Move a constant pointer into r. In AArch64 mode the virtual 1763 // address space is 48 bits in size, so we only need three 1764 // instructions to create a patchable instruction sequence that can 1765 // reach anywhere. 1766 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1767 #ifndef PRODUCT 1768 { 1769 char buffer[64]; 1770 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 1771 block_comment(buffer); 1772 } 1773 #endif 1774 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 1775 movz(r, imm64 & 0xffff); 1776 imm64 >>= 16; 1777 movk(r, imm64 & 0xffff, 16); 1778 imm64 >>= 16; 1779 movk(r, imm64 & 0xffff, 32); 1780 } 1781 1782 // Macro to mov replicated immediate to vector register. 1783 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 1784 // the upper 56/48/32 bits must be zeros for B/H/S type. 1785 // Vd will get the following values for different arrangements in T 1786 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 1787 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1788 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 1789 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1790 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1791 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1792 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 1793 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 1794 // Clobbers rscratch1 1795 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 1796 assert(T != T1Q, "unsupported"); 1797 if (T == T1D || T == T2D) { 1798 int imm = operand_valid_for_movi_immediate(imm64, T); 1799 if (-1 != imm) { 1800 movi(Vd, T, imm); 1801 } else { 1802 mov(rscratch1, imm64); 1803 dup(Vd, T, rscratch1); 1804 } 1805 return; 1806 } 1807 1808 #ifdef ASSERT 1809 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 1810 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 1811 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 1812 #endif 1813 int shift = operand_valid_for_movi_immediate(imm64, T); 1814 uint32_t imm32 = imm64 & 0xffffffffULL; 1815 if (shift >= 0) { 1816 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 1817 } else { 1818 movw(rscratch1, imm32); 1819 dup(Vd, T, rscratch1); 1820 } 1821 } 1822 1823 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 1824 { 1825 #ifndef PRODUCT 1826 { 1827 char buffer[64]; 1828 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1829 block_comment(buffer); 1830 } 1831 #endif 1832 if (operand_valid_for_logical_immediate(false, imm64)) { 1833 orr(dst, zr, imm64); 1834 } else { 1835 // we can use a combination of MOVZ or MOVN with 1836 // MOVK to build up the constant 1837 uint64_t imm_h[4]; 1838 int zero_count = 0; 1839 int neg_count = 0; 1840 int i; 1841 for (i = 0; i < 4; i++) { 1842 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1843 if (imm_h[i] == 0) { 1844 zero_count++; 1845 } else if (imm_h[i] == 0xffffL) { 1846 neg_count++; 1847 } 1848 } 1849 if (zero_count == 4) { 1850 // one MOVZ will do 1851 movz(dst, 0); 1852 } else if (neg_count == 4) { 1853 // one MOVN will do 1854 movn(dst, 0); 1855 } else if (zero_count == 3) { 1856 for (i = 0; i < 4; i++) { 1857 if (imm_h[i] != 0L) { 1858 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1859 break; 1860 } 1861 } 1862 } else if (neg_count == 3) { 1863 // one MOVN will do 1864 for (int i = 0; i < 4; i++) { 1865 if (imm_h[i] != 0xffffL) { 1866 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1867 break; 1868 } 1869 } 1870 } else if (zero_count == 2) { 1871 // one MOVZ and one MOVK will do 1872 for (i = 0; i < 3; i++) { 1873 if (imm_h[i] != 0L) { 1874 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1875 i++; 1876 break; 1877 } 1878 } 1879 for (;i < 4; i++) { 1880 if (imm_h[i] != 0L) { 1881 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1882 } 1883 } 1884 } else if (neg_count == 2) { 1885 // one MOVN and one MOVK will do 1886 for (i = 0; i < 4; i++) { 1887 if (imm_h[i] != 0xffffL) { 1888 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1889 i++; 1890 break; 1891 } 1892 } 1893 for (;i < 4; i++) { 1894 if (imm_h[i] != 0xffffL) { 1895 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1896 } 1897 } 1898 } else if (zero_count == 1) { 1899 // one MOVZ and two MOVKs will do 1900 for (i = 0; i < 4; i++) { 1901 if (imm_h[i] != 0L) { 1902 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1903 i++; 1904 break; 1905 } 1906 } 1907 for (;i < 4; i++) { 1908 if (imm_h[i] != 0x0L) { 1909 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1910 } 1911 } 1912 } else if (neg_count == 1) { 1913 // one MOVN and two MOVKs will do 1914 for (i = 0; i < 4; i++) { 1915 if (imm_h[i] != 0xffffL) { 1916 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1917 i++; 1918 break; 1919 } 1920 } 1921 for (;i < 4; i++) { 1922 if (imm_h[i] != 0xffffL) { 1923 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1924 } 1925 } 1926 } else { 1927 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1928 movz(dst, (uint32_t)imm_h[0], 0); 1929 for (i = 1; i < 4; i++) { 1930 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1931 } 1932 } 1933 } 1934 } 1935 1936 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 1937 { 1938 #ifndef PRODUCT 1939 { 1940 char buffer[64]; 1941 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 1942 block_comment(buffer); 1943 } 1944 #endif 1945 if (operand_valid_for_logical_immediate(true, imm32)) { 1946 orrw(dst, zr, imm32); 1947 } else { 1948 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1949 // constant 1950 uint32_t imm_h[2]; 1951 imm_h[0] = imm32 & 0xffff; 1952 imm_h[1] = ((imm32 >> 16) & 0xffff); 1953 if (imm_h[0] == 0) { 1954 movzw(dst, imm_h[1], 16); 1955 } else if (imm_h[0] == 0xffff) { 1956 movnw(dst, imm_h[1] ^ 0xffff, 16); 1957 } else if (imm_h[1] == 0) { 1958 movzw(dst, imm_h[0], 0); 1959 } else if (imm_h[1] == 0xffff) { 1960 movnw(dst, imm_h[0] ^ 0xffff, 0); 1961 } else { 1962 // use a MOVZ and MOVK (makes it easier to debug) 1963 movzw(dst, imm_h[0], 0); 1964 movkw(dst, imm_h[1], 16); 1965 } 1966 } 1967 } 1968 1969 // Form an address from base + offset in Rd. Rd may or may 1970 // not actually be used: you must use the Address that is returned. 1971 // It is up to you to ensure that the shift provided matches the size 1972 // of your data. 1973 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 1974 if (Address::offset_ok_for_immed(byte_offset, shift)) 1975 // It fits; no need for any heroics 1976 return Address(base, byte_offset); 1977 1978 // Don't do anything clever with negative or misaligned offsets 1979 unsigned mask = (1 << shift) - 1; 1980 if (byte_offset < 0 || byte_offset & mask) { 1981 mov(Rd, byte_offset); 1982 add(Rd, base, Rd); 1983 return Address(Rd); 1984 } 1985 1986 // See if we can do this with two 12-bit offsets 1987 { 1988 uint64_t word_offset = byte_offset >> shift; 1989 uint64_t masked_offset = word_offset & 0xfff000; 1990 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 1991 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1992 add(Rd, base, masked_offset << shift); 1993 word_offset -= masked_offset; 1994 return Address(Rd, word_offset << shift); 1995 } 1996 } 1997 1998 // Do it the hard way 1999 mov(Rd, byte_offset); 2000 add(Rd, base, Rd); 2001 return Address(Rd); 2002 } 2003 2004 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2005 bool want_remainder, Register scratch) 2006 { 2007 // Full implementation of Java idiv and irem. The function 2008 // returns the (pc) offset of the div instruction - may be needed 2009 // for implicit exceptions. 2010 // 2011 // constraint : ra/rb =/= scratch 2012 // normal case 2013 // 2014 // input : ra: dividend 2015 // rb: divisor 2016 // 2017 // result: either 2018 // quotient (= ra idiv rb) 2019 // remainder (= ra irem rb) 2020 2021 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2022 2023 int idivl_offset = offset(); 2024 if (! want_remainder) { 2025 sdivw(result, ra, rb); 2026 } else { 2027 sdivw(scratch, ra, rb); 2028 Assembler::msubw(result, scratch, rb, ra); 2029 } 2030 2031 return idivl_offset; 2032 } 2033 2034 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2035 bool want_remainder, Register scratch) 2036 { 2037 // Full implementation of Java ldiv and lrem. The function 2038 // returns the (pc) offset of the div instruction - may be needed 2039 // for implicit exceptions. 2040 // 2041 // constraint : ra/rb =/= scratch 2042 // normal case 2043 // 2044 // input : ra: dividend 2045 // rb: divisor 2046 // 2047 // result: either 2048 // quotient (= ra idiv rb) 2049 // remainder (= ra irem rb) 2050 2051 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2052 2053 int idivq_offset = offset(); 2054 if (! want_remainder) { 2055 sdiv(result, ra, rb); 2056 } else { 2057 sdiv(scratch, ra, rb); 2058 Assembler::msub(result, scratch, rb, ra); 2059 } 2060 2061 return idivq_offset; 2062 } 2063 2064 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2065 address prev = pc() - NativeMembar::instruction_size; 2066 address last = code()->last_insn(); 2067 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2068 NativeMembar *bar = NativeMembar_at(prev); 2069 // We are merging two memory barrier instructions. On AArch64 we 2070 // can do this simply by ORing them together. 2071 bar->set_kind(bar->get_kind() | order_constraint); 2072 BLOCK_COMMENT("merged membar"); 2073 } else { 2074 code()->set_last_insn(pc()); 2075 dmb(Assembler::barrier(order_constraint)); 2076 } 2077 } 2078 2079 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2080 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2081 merge_ldst(rt, adr, size_in_bytes, is_store); 2082 code()->clear_last_insn(); 2083 return true; 2084 } else { 2085 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2086 const uint64_t mask = size_in_bytes - 1; 2087 if (adr.getMode() == Address::base_plus_offset && 2088 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2089 code()->set_last_insn(pc()); 2090 } 2091 return false; 2092 } 2093 } 2094 2095 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2096 // We always try to merge two adjacent loads into one ldp. 2097 if (!try_merge_ldst(Rx, adr, 8, false)) { 2098 Assembler::ldr(Rx, adr); 2099 } 2100 } 2101 2102 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2103 // We always try to merge two adjacent loads into one ldp. 2104 if (!try_merge_ldst(Rw, adr, 4, false)) { 2105 Assembler::ldrw(Rw, adr); 2106 } 2107 } 2108 2109 void MacroAssembler::str(Register Rx, const Address &adr) { 2110 // We always try to merge two adjacent stores into one stp. 2111 if (!try_merge_ldst(Rx, adr, 8, true)) { 2112 Assembler::str(Rx, adr); 2113 } 2114 } 2115 2116 void MacroAssembler::strw(Register Rw, const Address &adr) { 2117 // We always try to merge two adjacent stores into one stp. 2118 if (!try_merge_ldst(Rw, adr, 4, true)) { 2119 Assembler::strw(Rw, adr); 2120 } 2121 } 2122 2123 // MacroAssembler routines found actually to be needed 2124 2125 void MacroAssembler::push(Register src) 2126 { 2127 str(src, Address(pre(esp, -1 * wordSize))); 2128 } 2129 2130 void MacroAssembler::pop(Register dst) 2131 { 2132 ldr(dst, Address(post(esp, 1 * wordSize))); 2133 } 2134 2135 // Note: load_unsigned_short used to be called load_unsigned_word. 2136 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2137 int off = offset(); 2138 ldrh(dst, src); 2139 return off; 2140 } 2141 2142 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2143 int off = offset(); 2144 ldrb(dst, src); 2145 return off; 2146 } 2147 2148 int MacroAssembler::load_signed_short(Register dst, Address src) { 2149 int off = offset(); 2150 ldrsh(dst, src); 2151 return off; 2152 } 2153 2154 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2155 int off = offset(); 2156 ldrsb(dst, src); 2157 return off; 2158 } 2159 2160 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2161 int off = offset(); 2162 ldrshw(dst, src); 2163 return off; 2164 } 2165 2166 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2167 int off = offset(); 2168 ldrsbw(dst, src); 2169 return off; 2170 } 2171 2172 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2173 switch (size_in_bytes) { 2174 case 8: ldr(dst, src); break; 2175 case 4: ldrw(dst, src); break; 2176 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2177 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2178 default: ShouldNotReachHere(); 2179 } 2180 } 2181 2182 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2183 switch (size_in_bytes) { 2184 case 8: str(src, dst); break; 2185 case 4: strw(src, dst); break; 2186 case 2: strh(src, dst); break; 2187 case 1: strb(src, dst); break; 2188 default: ShouldNotReachHere(); 2189 } 2190 } 2191 2192 void MacroAssembler::decrementw(Register reg, int value) 2193 { 2194 if (value < 0) { incrementw(reg, -value); return; } 2195 if (value == 0) { return; } 2196 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2197 /* else */ { 2198 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2199 movw(rscratch2, (unsigned)value); 2200 subw(reg, reg, rscratch2); 2201 } 2202 } 2203 2204 void MacroAssembler::decrement(Register reg, int value) 2205 { 2206 if (value < 0) { increment(reg, -value); return; } 2207 if (value == 0) { return; } 2208 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2209 /* else */ { 2210 assert(reg != rscratch2, "invalid dst for register decrement"); 2211 mov(rscratch2, (uint64_t)value); 2212 sub(reg, reg, rscratch2); 2213 } 2214 } 2215 2216 void MacroAssembler::decrementw(Address dst, int value) 2217 { 2218 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2219 if (dst.getMode() == Address::literal) { 2220 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2221 lea(rscratch2, dst); 2222 dst = Address(rscratch2); 2223 } 2224 ldrw(rscratch1, dst); 2225 decrementw(rscratch1, value); 2226 strw(rscratch1, dst); 2227 } 2228 2229 void MacroAssembler::decrement(Address dst, int value) 2230 { 2231 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2232 if (dst.getMode() == Address::literal) { 2233 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2234 lea(rscratch2, dst); 2235 dst = Address(rscratch2); 2236 } 2237 ldr(rscratch1, dst); 2238 decrement(rscratch1, value); 2239 str(rscratch1, dst); 2240 } 2241 2242 void MacroAssembler::incrementw(Register reg, int value) 2243 { 2244 if (value < 0) { decrementw(reg, -value); return; } 2245 if (value == 0) { return; } 2246 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2247 /* else */ { 2248 assert(reg != rscratch2, "invalid dst for register increment"); 2249 movw(rscratch2, (unsigned)value); 2250 addw(reg, reg, rscratch2); 2251 } 2252 } 2253 2254 void MacroAssembler::increment(Register reg, int value) 2255 { 2256 if (value < 0) { decrement(reg, -value); return; } 2257 if (value == 0) { return; } 2258 if (value < (1 << 12)) { add(reg, reg, value); return; } 2259 /* else */ { 2260 assert(reg != rscratch2, "invalid dst for register increment"); 2261 movw(rscratch2, (unsigned)value); 2262 add(reg, reg, rscratch2); 2263 } 2264 } 2265 2266 void MacroAssembler::incrementw(Address dst, int value) 2267 { 2268 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2269 if (dst.getMode() == Address::literal) { 2270 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2271 lea(rscratch2, dst); 2272 dst = Address(rscratch2); 2273 } 2274 ldrw(rscratch1, dst); 2275 incrementw(rscratch1, value); 2276 strw(rscratch1, dst); 2277 } 2278 2279 void MacroAssembler::increment(Address dst, int value) 2280 { 2281 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2282 if (dst.getMode() == Address::literal) { 2283 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2284 lea(rscratch2, dst); 2285 dst = Address(rscratch2); 2286 } 2287 ldr(rscratch1, dst); 2288 increment(rscratch1, value); 2289 str(rscratch1, dst); 2290 } 2291 2292 // Push lots of registers in the bit set supplied. Don't push sp. 2293 // Return the number of words pushed 2294 int MacroAssembler::push(unsigned int bitset, Register stack) { 2295 int words_pushed = 0; 2296 2297 // Scan bitset to accumulate register pairs 2298 unsigned char regs[32]; 2299 int count = 0; 2300 for (int reg = 0; reg <= 30; reg++) { 2301 if (1 & bitset) 2302 regs[count++] = reg; 2303 bitset >>= 1; 2304 } 2305 regs[count++] = zr->raw_encoding(); 2306 count &= ~1; // Only push an even number of regs 2307 2308 if (count) { 2309 stp(as_Register(regs[0]), as_Register(regs[1]), 2310 Address(pre(stack, -count * wordSize))); 2311 words_pushed += 2; 2312 } 2313 for (int i = 2; i < count; i += 2) { 2314 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2315 Address(stack, i * wordSize)); 2316 words_pushed += 2; 2317 } 2318 2319 assert(words_pushed == count, "oops, pushed != count"); 2320 2321 return count; 2322 } 2323 2324 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2325 int words_pushed = 0; 2326 2327 // Scan bitset to accumulate register pairs 2328 unsigned char regs[32]; 2329 int count = 0; 2330 for (int reg = 0; reg <= 30; reg++) { 2331 if (1 & bitset) 2332 regs[count++] = reg; 2333 bitset >>= 1; 2334 } 2335 regs[count++] = zr->raw_encoding(); 2336 count &= ~1; 2337 2338 for (int i = 2; i < count; i += 2) { 2339 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2340 Address(stack, i * wordSize)); 2341 words_pushed += 2; 2342 } 2343 if (count) { 2344 ldp(as_Register(regs[0]), as_Register(regs[1]), 2345 Address(post(stack, count * wordSize))); 2346 words_pushed += 2; 2347 } 2348 2349 assert(words_pushed == count, "oops, pushed != count"); 2350 2351 return count; 2352 } 2353 2354 // Push lots of registers in the bit set supplied. Don't push sp. 2355 // Return the number of dwords pushed 2356 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 2357 int words_pushed = 0; 2358 bool use_sve = false; 2359 int sve_vector_size_in_bytes = 0; 2360 2361 #ifdef COMPILER2 2362 use_sve = Matcher::supports_scalable_vector(); 2363 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2364 #endif 2365 2366 // Scan bitset to accumulate register pairs 2367 unsigned char regs[32]; 2368 int count = 0; 2369 for (int reg = 0; reg <= 31; reg++) { 2370 if (1 & bitset) 2371 regs[count++] = reg; 2372 bitset >>= 1; 2373 } 2374 2375 if (count == 0) { 2376 return 0; 2377 } 2378 2379 // SVE 2380 if (use_sve && sve_vector_size_in_bytes > 16) { 2381 sub(stack, stack, sve_vector_size_in_bytes * count); 2382 for (int i = 0; i < count; i++) { 2383 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2384 } 2385 return count * sve_vector_size_in_bytes / 8; 2386 } 2387 2388 // NEON 2389 if (count == 1) { 2390 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2391 return 2; 2392 } 2393 2394 bool odd = (count & 1) == 1; 2395 int push_slots = count + (odd ? 1 : 0); 2396 2397 // Always pushing full 128 bit registers. 2398 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2399 words_pushed += 2; 2400 2401 for (int i = 2; i + 1 < count; i += 2) { 2402 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2403 words_pushed += 2; 2404 } 2405 2406 if (odd) { 2407 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2408 words_pushed++; 2409 } 2410 2411 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2412 return count * 2; 2413 } 2414 2415 // Return the number of dwords popped 2416 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 2417 int words_pushed = 0; 2418 bool use_sve = false; 2419 int sve_vector_size_in_bytes = 0; 2420 2421 #ifdef COMPILER2 2422 use_sve = Matcher::supports_scalable_vector(); 2423 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2424 #endif 2425 // Scan bitset to accumulate register pairs 2426 unsigned char regs[32]; 2427 int count = 0; 2428 for (int reg = 0; reg <= 31; reg++) { 2429 if (1 & bitset) 2430 regs[count++] = reg; 2431 bitset >>= 1; 2432 } 2433 2434 if (count == 0) { 2435 return 0; 2436 } 2437 2438 // SVE 2439 if (use_sve && sve_vector_size_in_bytes > 16) { 2440 for (int i = count - 1; i >= 0; i--) { 2441 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 2442 } 2443 add(stack, stack, sve_vector_size_in_bytes * count); 2444 return count * sve_vector_size_in_bytes / 8; 2445 } 2446 2447 // NEON 2448 if (count == 1) { 2449 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 2450 return 2; 2451 } 2452 2453 bool odd = (count & 1) == 1; 2454 int push_slots = count + (odd ? 1 : 0); 2455 2456 if (odd) { 2457 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2458 words_pushed++; 2459 } 2460 2461 for (int i = 2; i + 1 < count; i += 2) { 2462 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2463 words_pushed += 2; 2464 } 2465 2466 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 2467 words_pushed += 2; 2468 2469 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2470 2471 return count * 2; 2472 } 2473 2474 // Return the number of dwords pushed 2475 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 2476 bool use_sve = false; 2477 int sve_predicate_size_in_slots = 0; 2478 2479 #ifdef COMPILER2 2480 use_sve = Matcher::supports_scalable_vector(); 2481 if (use_sve) { 2482 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2483 } 2484 #endif 2485 2486 if (!use_sve) { 2487 return 0; 2488 } 2489 2490 unsigned char regs[PRegister::number_of_registers]; 2491 int count = 0; 2492 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2493 if (1 & bitset) 2494 regs[count++] = reg; 2495 bitset >>= 1; 2496 } 2497 2498 if (count == 0) { 2499 return 0; 2500 } 2501 2502 int total_push_bytes = align_up(sve_predicate_size_in_slots * 2503 VMRegImpl::stack_slot_size * count, 16); 2504 sub(stack, stack, total_push_bytes); 2505 for (int i = 0; i < count; i++) { 2506 sve_str(as_PRegister(regs[i]), Address(stack, i)); 2507 } 2508 return total_push_bytes / 8; 2509 } 2510 2511 // Return the number of dwords popped 2512 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 2513 bool use_sve = false; 2514 int sve_predicate_size_in_slots = 0; 2515 2516 #ifdef COMPILER2 2517 use_sve = Matcher::supports_scalable_vector(); 2518 if (use_sve) { 2519 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2520 } 2521 #endif 2522 2523 if (!use_sve) { 2524 return 0; 2525 } 2526 2527 unsigned char regs[PRegister::number_of_registers]; 2528 int count = 0; 2529 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2530 if (1 & bitset) 2531 regs[count++] = reg; 2532 bitset >>= 1; 2533 } 2534 2535 if (count == 0) { 2536 return 0; 2537 } 2538 2539 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 2540 VMRegImpl::stack_slot_size * count, 16); 2541 for (int i = count - 1; i >= 0; i--) { 2542 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 2543 } 2544 add(stack, stack, total_pop_bytes); 2545 return total_pop_bytes / 8; 2546 } 2547 2548 #ifdef ASSERT 2549 void MacroAssembler::verify_heapbase(const char* msg) { 2550 #if 0 2551 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2552 assert (Universe::heap() != nullptr, "java heap should be initialized"); 2553 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 2554 // rheapbase is allocated as general register 2555 return; 2556 } 2557 if (CheckCompressedOops) { 2558 Label ok; 2559 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2560 cmpptr(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 2561 br(Assembler::EQ, ok); 2562 stop(msg); 2563 bind(ok); 2564 pop(1 << rscratch1->encoding(), sp); 2565 } 2566 #endif 2567 } 2568 #endif 2569 2570 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 2571 assert_different_registers(value, tmp1, tmp2); 2572 Label done, tagged, weak_tagged; 2573 2574 cbz(value, done); // Use null as-is. 2575 tst(value, JNIHandles::tag_mask); // Test for tag. 2576 br(Assembler::NE, tagged); 2577 2578 // Resolve local handle 2579 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 2580 verify_oop(value); 2581 b(done); 2582 2583 bind(tagged); 2584 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 2585 tbnz(value, 0, weak_tagged); // Test for weak tag. 2586 2587 // Resolve global handle 2588 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 2589 verify_oop(value); 2590 b(done); 2591 2592 bind(weak_tagged); 2593 // Resolve jweak. 2594 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 2595 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 2596 verify_oop(value); 2597 2598 bind(done); 2599 } 2600 2601 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 2602 assert_different_registers(value, tmp1, tmp2); 2603 Label done; 2604 2605 cbz(value, done); // Use null as-is. 2606 2607 #ifdef ASSERT 2608 { 2609 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 2610 Label valid_global_tag; 2611 tbnz(value, 1, valid_global_tag); // Test for global tag 2612 stop("non global jobject using resolve_global_jobject"); 2613 bind(valid_global_tag); 2614 } 2615 #endif 2616 2617 // Resolve global handle 2618 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 2619 verify_oop(value); 2620 2621 bind(done); 2622 } 2623 2624 void MacroAssembler::stop(const char* msg) { 2625 BLOCK_COMMENT(msg); 2626 dcps1(0xdeae); 2627 emit_int64((uintptr_t)msg); 2628 } 2629 2630 void MacroAssembler::unimplemented(const char* what) { 2631 const char* buf = nullptr; 2632 { 2633 ResourceMark rm; 2634 stringStream ss; 2635 ss.print("unimplemented: %s", what); 2636 buf = code_string(ss.as_string()); 2637 } 2638 stop(buf); 2639 } 2640 2641 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 2642 #ifdef ASSERT 2643 Label OK; 2644 br(cc, OK); 2645 stop(msg); 2646 bind(OK); 2647 #endif 2648 } 2649 2650 // If a constant does not fit in an immediate field, generate some 2651 // number of MOV instructions and then perform the operation. 2652 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 2653 add_sub_imm_insn insn1, 2654 add_sub_reg_insn insn2, 2655 bool is32) { 2656 assert(Rd != zr, "Rd = zr and not setting flags?"); 2657 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2658 if (fits) { 2659 (this->*insn1)(Rd, Rn, imm); 2660 } else { 2661 if (uabs(imm) < (1 << 24)) { 2662 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2663 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2664 } else { 2665 assert_different_registers(Rd, Rn); 2666 mov(Rd, imm); 2667 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2668 } 2669 } 2670 } 2671 2672 // Separate vsn which sets the flags. Optimisations are more restricted 2673 // because we must set the flags correctly. 2674 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 2675 add_sub_imm_insn insn1, 2676 add_sub_reg_insn insn2, 2677 bool is32) { 2678 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2679 if (fits) { 2680 (this->*insn1)(Rd, Rn, imm); 2681 } else { 2682 assert_different_registers(Rd, Rn); 2683 assert(Rd != zr, "overflow in immediate operand"); 2684 mov(Rd, imm); 2685 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2686 } 2687 } 2688 2689 2690 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2691 if (increment.is_register()) { 2692 add(Rd, Rn, increment.as_register()); 2693 } else { 2694 add(Rd, Rn, increment.as_constant()); 2695 } 2696 } 2697 2698 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2699 if (increment.is_register()) { 2700 addw(Rd, Rn, increment.as_register()); 2701 } else { 2702 addw(Rd, Rn, increment.as_constant()); 2703 } 2704 } 2705 2706 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2707 if (decrement.is_register()) { 2708 sub(Rd, Rn, decrement.as_register()); 2709 } else { 2710 sub(Rd, Rn, decrement.as_constant()); 2711 } 2712 } 2713 2714 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2715 if (decrement.is_register()) { 2716 subw(Rd, Rn, decrement.as_register()); 2717 } else { 2718 subw(Rd, Rn, decrement.as_constant()); 2719 } 2720 } 2721 2722 void MacroAssembler::reinit_heapbase() 2723 { 2724 if (UseCompressedOops) { 2725 if (Universe::is_fully_initialized()) { 2726 mov(rheapbase, CompressedOops::ptrs_base()); 2727 } else { 2728 lea(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 2729 ldr(rheapbase, Address(rheapbase)); 2730 } 2731 } 2732 } 2733 2734 // this simulates the behaviour of the x86 cmpxchg instruction using a 2735 // load linked/store conditional pair. we use the acquire/release 2736 // versions of these instructions so that we flush pending writes as 2737 // per Java semantics. 2738 2739 // n.b the x86 version assumes the old value to be compared against is 2740 // in rax and updates rax with the value located in memory if the 2741 // cmpxchg fails. we supply a register for the old value explicitly 2742 2743 // the aarch64 load linked/store conditional instructions do not 2744 // accept an offset. so, unlike x86, we must provide a plain register 2745 // to identify the memory word to be compared/exchanged rather than a 2746 // register+offset Address. 2747 2748 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2749 Label &succeed, Label *fail) { 2750 // oldv holds comparison value 2751 // newv holds value to write in exchange 2752 // addr identifies memory word to compare against/update 2753 if (UseLSE) { 2754 mov(tmp, oldv); 2755 casal(Assembler::xword, oldv, newv, addr); 2756 cmp(tmp, oldv); 2757 br(Assembler::EQ, succeed); 2758 membar(AnyAny); 2759 } else { 2760 Label retry_load, nope; 2761 prfm(Address(addr), PSTL1STRM); 2762 bind(retry_load); 2763 // flush and load exclusive from the memory location 2764 // and fail if it is not what we expect 2765 ldaxr(tmp, addr); 2766 cmp(tmp, oldv); 2767 br(Assembler::NE, nope); 2768 // if we store+flush with no intervening write tmp will be zero 2769 stlxr(tmp, newv, addr); 2770 cbzw(tmp, succeed); 2771 // retry so we only ever return after a load fails to compare 2772 // ensures we don't return a stale value after a failed write. 2773 b(retry_load); 2774 // if the memory word differs we return it in oldv and signal a fail 2775 bind(nope); 2776 membar(AnyAny); 2777 mov(oldv, tmp); 2778 } 2779 if (fail) 2780 b(*fail); 2781 } 2782 2783 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2784 Label &succeed, Label *fail) { 2785 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2786 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2787 } 2788 2789 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2790 Label &succeed, Label *fail) { 2791 // oldv holds comparison value 2792 // newv holds value to write in exchange 2793 // addr identifies memory word to compare against/update 2794 // tmp returns 0/1 for success/failure 2795 if (UseLSE) { 2796 mov(tmp, oldv); 2797 casal(Assembler::word, oldv, newv, addr); 2798 cmp(tmp, oldv); 2799 br(Assembler::EQ, succeed); 2800 membar(AnyAny); 2801 } else { 2802 Label retry_load, nope; 2803 prfm(Address(addr), PSTL1STRM); 2804 bind(retry_load); 2805 // flush and load exclusive from the memory location 2806 // and fail if it is not what we expect 2807 ldaxrw(tmp, addr); 2808 cmp(tmp, oldv); 2809 br(Assembler::NE, nope); 2810 // if we store+flush with no intervening write tmp will be zero 2811 stlxrw(tmp, newv, addr); 2812 cbzw(tmp, succeed); 2813 // retry so we only ever return after a load fails to compare 2814 // ensures we don't return a stale value after a failed write. 2815 b(retry_load); 2816 // if the memory word differs we return it in oldv and signal a fail 2817 bind(nope); 2818 membar(AnyAny); 2819 mov(oldv, tmp); 2820 } 2821 if (fail) 2822 b(*fail); 2823 } 2824 2825 // A generic CAS; success or failure is in the EQ flag. A weak CAS 2826 // doesn't retry and may fail spuriously. If the oldval is wanted, 2827 // Pass a register for the result, otherwise pass noreg. 2828 2829 // Clobbers rscratch1 2830 void MacroAssembler::cmpxchg(Register addr, Register expected, 2831 Register new_val, 2832 enum operand_size size, 2833 bool acquire, bool release, 2834 bool weak, 2835 Register result) { 2836 if (result == noreg) result = rscratch1; 2837 BLOCK_COMMENT("cmpxchg {"); 2838 if (UseLSE) { 2839 mov(result, expected); 2840 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 2841 compare_eq(result, expected, size); 2842 #ifdef ASSERT 2843 // Poison rscratch1 which is written on !UseLSE branch 2844 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 2845 #endif 2846 } else { 2847 Label retry_load, done; 2848 prfm(Address(addr), PSTL1STRM); 2849 bind(retry_load); 2850 load_exclusive(result, addr, size, acquire); 2851 compare_eq(result, expected, size); 2852 br(Assembler::NE, done); 2853 store_exclusive(rscratch1, new_val, addr, size, release); 2854 if (weak) { 2855 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 2856 } else { 2857 cbnzw(rscratch1, retry_load); 2858 } 2859 bind(done); 2860 } 2861 BLOCK_COMMENT("} cmpxchg"); 2862 } 2863 2864 // A generic comparison. Only compares for equality, clobbers rscratch1. 2865 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 2866 if (size == xword) { 2867 cmp(rm, rn); 2868 } else if (size == word) { 2869 cmpw(rm, rn); 2870 } else if (size == halfword) { 2871 eorw(rscratch1, rm, rn); 2872 ands(zr, rscratch1, 0xffff); 2873 } else if (size == byte) { 2874 eorw(rscratch1, rm, rn); 2875 ands(zr, rscratch1, 0xff); 2876 } else { 2877 ShouldNotReachHere(); 2878 } 2879 } 2880 2881 2882 static bool different(Register a, RegisterOrConstant b, Register c) { 2883 if (b.is_constant()) 2884 return a != c; 2885 else 2886 return a != b.as_register() && a != c && b.as_register() != c; 2887 } 2888 2889 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2890 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2891 if (UseLSE) { \ 2892 prev = prev->is_valid() ? prev : zr; \ 2893 if (incr.is_register()) { \ 2894 AOP(sz, incr.as_register(), prev, addr); \ 2895 } else { \ 2896 mov(rscratch2, incr.as_constant()); \ 2897 AOP(sz, rscratch2, prev, addr); \ 2898 } \ 2899 return; \ 2900 } \ 2901 Register result = rscratch2; \ 2902 if (prev->is_valid()) \ 2903 result = different(prev, incr, addr) ? prev : rscratch2; \ 2904 \ 2905 Label retry_load; \ 2906 prfm(Address(addr), PSTL1STRM); \ 2907 bind(retry_load); \ 2908 LDXR(result, addr); \ 2909 OP(rscratch1, result, incr); \ 2910 STXR(rscratch2, rscratch1, addr); \ 2911 cbnzw(rscratch2, retry_load); \ 2912 if (prev->is_valid() && prev != result) { \ 2913 IOP(prev, rscratch1, incr); \ 2914 } \ 2915 } 2916 2917 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2918 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2919 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2920 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2921 2922 #undef ATOMIC_OP 2923 2924 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2925 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2926 if (UseLSE) { \ 2927 prev = prev->is_valid() ? prev : zr; \ 2928 AOP(sz, newv, prev, addr); \ 2929 return; \ 2930 } \ 2931 Register result = rscratch2; \ 2932 if (prev->is_valid()) \ 2933 result = different(prev, newv, addr) ? prev : rscratch2; \ 2934 \ 2935 Label retry_load; \ 2936 prfm(Address(addr), PSTL1STRM); \ 2937 bind(retry_load); \ 2938 LDXR(result, addr); \ 2939 STXR(rscratch1, newv, addr); \ 2940 cbnzw(rscratch1, retry_load); \ 2941 if (prev->is_valid() && prev != result) \ 2942 mov(prev, result); \ 2943 } 2944 2945 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2946 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2947 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 2948 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 2949 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2950 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2951 2952 #undef ATOMIC_XCHG 2953 2954 #ifndef PRODUCT 2955 extern "C" void findpc(intptr_t x); 2956 #endif 2957 2958 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2959 { 2960 // In order to get locks to work, we need to fake a in_VM state 2961 if (ShowMessageBoxOnError ) { 2962 JavaThread* thread = JavaThread::current(); 2963 JavaThreadState saved_state = thread->thread_state(); 2964 thread->set_thread_state(_thread_in_vm); 2965 #ifndef PRODUCT 2966 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2967 ttyLocker ttyl; 2968 BytecodeCounter::print(); 2969 } 2970 #endif 2971 if (os::message_box(msg, "Execution stopped, print registers?")) { 2972 ttyLocker ttyl; 2973 tty->print_cr(" pc = 0x%016" PRIx64, pc); 2974 #ifndef PRODUCT 2975 tty->cr(); 2976 findpc(pc); 2977 tty->cr(); 2978 #endif 2979 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 2980 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 2981 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 2982 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 2983 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 2984 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 2985 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 2986 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 2987 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 2988 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 2989 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 2990 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 2991 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 2992 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 2993 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 2994 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 2995 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 2996 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 2997 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 2998 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 2999 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3000 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3001 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3002 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3003 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3004 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3005 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3006 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3007 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3008 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3009 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3010 BREAKPOINT; 3011 } 3012 } 3013 fatal("DEBUG MESSAGE: %s", msg); 3014 } 3015 3016 RegSet MacroAssembler::call_clobbered_gp_registers() { 3017 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3018 #ifndef R18_RESERVED 3019 regs += r18_tls; 3020 #endif 3021 return regs; 3022 } 3023 3024 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3025 int step = 4 * wordSize; 3026 push(call_clobbered_gp_registers() - exclude, sp); 3027 sub(sp, sp, step); 3028 mov(rscratch1, -step); 3029 // Push v0-v7, v16-v31. 3030 for (int i = 31; i>= 4; i -= 4) { 3031 if (i <= v7->encoding() || i >= v16->encoding()) 3032 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3033 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3034 } 3035 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3036 as_FloatRegister(3), T1D, Address(sp)); 3037 } 3038 3039 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3040 for (int i = 0; i < 32; i += 4) { 3041 if (i <= v7->encoding() || i >= v16->encoding()) 3042 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3043 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3044 } 3045 3046 reinitialize_ptrue(); 3047 3048 pop(call_clobbered_gp_registers() - exclude, sp); 3049 } 3050 3051 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3052 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3053 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3054 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3055 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3056 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3057 sve_str(as_FloatRegister(i), Address(sp, i)); 3058 } 3059 } else { 3060 int step = (save_vectors ? 8 : 4) * wordSize; 3061 mov(rscratch1, -step); 3062 sub(sp, sp, step); 3063 for (int i = 28; i >= 4; i -= 4) { 3064 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3065 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3066 } 3067 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3068 } 3069 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3070 sub(sp, sp, total_predicate_in_bytes); 3071 for (int i = 0; i < PRegister::number_of_registers; i++) { 3072 sve_str(as_PRegister(i), Address(sp, i)); 3073 } 3074 } 3075 } 3076 3077 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3078 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3079 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3080 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3081 sve_ldr(as_PRegister(i), Address(sp, i)); 3082 } 3083 add(sp, sp, total_predicate_in_bytes); 3084 } 3085 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3086 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3087 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3088 } 3089 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3090 } else { 3091 int step = (restore_vectors ? 8 : 4) * wordSize; 3092 for (int i = 0; i <= 28; i += 4) 3093 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3094 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3095 } 3096 3097 // We may use predicate registers and rely on ptrue with SVE, 3098 // regardless of wide vector (> 8 bytes) used or not. 3099 if (use_sve) { 3100 reinitialize_ptrue(); 3101 } 3102 3103 // integer registers except lr & sp 3104 pop(RegSet::range(r0, r17), sp); 3105 #ifdef R18_RESERVED 3106 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3107 pop(RegSet::range(r20, r29), sp); 3108 #else 3109 pop(RegSet::range(r18_tls, r29), sp); 3110 #endif 3111 } 3112 3113 /** 3114 * Helpers for multiply_to_len(). 3115 */ 3116 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3117 Register src1, Register src2) { 3118 adds(dest_lo, dest_lo, src1); 3119 adc(dest_hi, dest_hi, zr); 3120 adds(dest_lo, dest_lo, src2); 3121 adc(final_dest_hi, dest_hi, zr); 3122 } 3123 3124 // Generate an address from (r + r1 extend offset). "size" is the 3125 // size of the operand. The result may be in rscratch2. 3126 Address MacroAssembler::offsetted_address(Register r, Register r1, 3127 Address::extend ext, int offset, int size) { 3128 if (offset || (ext.shift() % size != 0)) { 3129 lea(rscratch2, Address(r, r1, ext)); 3130 return Address(rscratch2, offset); 3131 } else { 3132 return Address(r, r1, ext); 3133 } 3134 } 3135 3136 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3137 { 3138 assert(offset >= 0, "spill to negative address?"); 3139 // Offset reachable ? 3140 // Not aligned - 9 bits signed offset 3141 // Aligned - 12 bits unsigned offset shifted 3142 Register base = sp; 3143 if ((offset & (size-1)) && offset >= (1<<8)) { 3144 add(tmp, base, offset & ((1<<12)-1)); 3145 base = tmp; 3146 offset &= -1u<<12; 3147 } 3148 3149 if (offset >= (1<<12) * size) { 3150 add(tmp, base, offset & (((1<<12)-1)<<12)); 3151 base = tmp; 3152 offset &= ~(((1<<12)-1)<<12); 3153 } 3154 3155 return Address(base, offset); 3156 } 3157 3158 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3159 assert(offset >= 0, "spill to negative address?"); 3160 3161 Register base = sp; 3162 3163 // An immediate offset in the range 0 to 255 which is multiplied 3164 // by the current vector or predicate register size in bytes. 3165 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3166 return Address(base, offset / sve_reg_size_in_bytes); 3167 } 3168 3169 add(tmp, base, offset); 3170 return Address(tmp); 3171 } 3172 3173 // Checks whether offset is aligned. 3174 // Returns true if it is, else false. 3175 bool MacroAssembler::merge_alignment_check(Register base, 3176 size_t size, 3177 int64_t cur_offset, 3178 int64_t prev_offset) const { 3179 if (AvoidUnalignedAccesses) { 3180 if (base == sp) { 3181 // Checks whether low offset if aligned to pair of registers. 3182 int64_t pair_mask = size * 2 - 1; 3183 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3184 return (offset & pair_mask) == 0; 3185 } else { // If base is not sp, we can't guarantee the access is aligned. 3186 return false; 3187 } 3188 } else { 3189 int64_t mask = size - 1; 3190 // Load/store pair instruction only supports element size aligned offset. 3191 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3192 } 3193 } 3194 3195 // Checks whether current and previous loads/stores can be merged. 3196 // Returns true if it can be merged, else false. 3197 bool MacroAssembler::ldst_can_merge(Register rt, 3198 const Address &adr, 3199 size_t cur_size_in_bytes, 3200 bool is_store) const { 3201 address prev = pc() - NativeInstruction::instruction_size; 3202 address last = code()->last_insn(); 3203 3204 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3205 return false; 3206 } 3207 3208 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3209 return false; 3210 } 3211 3212 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3213 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3214 3215 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3216 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3217 3218 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3219 return false; 3220 } 3221 3222 int64_t max_offset = 63 * prev_size_in_bytes; 3223 int64_t min_offset = -64 * prev_size_in_bytes; 3224 3225 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3226 3227 // Only same base can be merged. 3228 if (adr.base() != prev_ldst->base()) { 3229 return false; 3230 } 3231 3232 int64_t cur_offset = adr.offset(); 3233 int64_t prev_offset = prev_ldst->offset(); 3234 size_t diff = abs(cur_offset - prev_offset); 3235 if (diff != prev_size_in_bytes) { 3236 return false; 3237 } 3238 3239 // Following cases can not be merged: 3240 // ldr x2, [x2, #8] 3241 // ldr x3, [x2, #16] 3242 // or: 3243 // ldr x2, [x3, #8] 3244 // ldr x2, [x3, #16] 3245 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3246 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3247 return false; 3248 } 3249 3250 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3251 // Offset range must be in ldp/stp instruction's range. 3252 if (low_offset > max_offset || low_offset < min_offset) { 3253 return false; 3254 } 3255 3256 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3257 return true; 3258 } 3259 3260 return false; 3261 } 3262 3263 // Merge current load/store with previous load/store into ldp/stp. 3264 void MacroAssembler::merge_ldst(Register rt, 3265 const Address &adr, 3266 size_t cur_size_in_bytes, 3267 bool is_store) { 3268 3269 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3270 3271 Register rt_low, rt_high; 3272 address prev = pc() - NativeInstruction::instruction_size; 3273 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3274 3275 int64_t offset; 3276 3277 if (adr.offset() < prev_ldst->offset()) { 3278 offset = adr.offset(); 3279 rt_low = rt; 3280 rt_high = prev_ldst->target(); 3281 } else { 3282 offset = prev_ldst->offset(); 3283 rt_low = prev_ldst->target(); 3284 rt_high = rt; 3285 } 3286 3287 Address adr_p = Address(prev_ldst->base(), offset); 3288 // Overwrite previous generated binary. 3289 code_section()->set_end(prev); 3290 3291 const size_t sz = prev_ldst->size_in_bytes(); 3292 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3293 if (!is_store) { 3294 BLOCK_COMMENT("merged ldr pair"); 3295 if (sz == 8) { 3296 ldp(rt_low, rt_high, adr_p); 3297 } else { 3298 ldpw(rt_low, rt_high, adr_p); 3299 } 3300 } else { 3301 BLOCK_COMMENT("merged str pair"); 3302 if (sz == 8) { 3303 stp(rt_low, rt_high, adr_p); 3304 } else { 3305 stpw(rt_low, rt_high, adr_p); 3306 } 3307 } 3308 } 3309 3310 /** 3311 * Multiply 64 bit by 64 bit first loop. 3312 */ 3313 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3314 Register y, Register y_idx, Register z, 3315 Register carry, Register product, 3316 Register idx, Register kdx) { 3317 // 3318 // jlong carry, x[], y[], z[]; 3319 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3320 // huge_128 product = y[idx] * x[xstart] + carry; 3321 // z[kdx] = (jlong)product; 3322 // carry = (jlong)(product >>> 64); 3323 // } 3324 // z[xstart] = carry; 3325 // 3326 3327 Label L_first_loop, L_first_loop_exit; 3328 Label L_one_x, L_one_y, L_multiply; 3329 3330 subsw(xstart, xstart, 1); 3331 br(Assembler::MI, L_one_x); 3332 3333 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3334 ldr(x_xstart, Address(rscratch1)); 3335 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3336 3337 bind(L_first_loop); 3338 subsw(idx, idx, 1); 3339 br(Assembler::MI, L_first_loop_exit); 3340 subsw(idx, idx, 1); 3341 br(Assembler::MI, L_one_y); 3342 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3343 ldr(y_idx, Address(rscratch1)); 3344 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3345 bind(L_multiply); 3346 3347 // AArch64 has a multiply-accumulate instruction that we can't use 3348 // here because it has no way to process carries, so we have to use 3349 // separate add and adc instructions. Bah. 3350 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3351 mul(product, x_xstart, y_idx); 3352 adds(product, product, carry); 3353 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3354 3355 subw(kdx, kdx, 2); 3356 ror(product, product, 32); // back to big-endian 3357 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3358 3359 b(L_first_loop); 3360 3361 bind(L_one_y); 3362 ldrw(y_idx, Address(y, 0)); 3363 b(L_multiply); 3364 3365 bind(L_one_x); 3366 ldrw(x_xstart, Address(x, 0)); 3367 b(L_first_loop); 3368 3369 bind(L_first_loop_exit); 3370 } 3371 3372 /** 3373 * Multiply 128 bit by 128. Unrolled inner loop. 3374 * 3375 */ 3376 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3377 Register carry, Register carry2, 3378 Register idx, Register jdx, 3379 Register yz_idx1, Register yz_idx2, 3380 Register tmp, Register tmp3, Register tmp4, 3381 Register tmp6, Register product_hi) { 3382 3383 // jlong carry, x[], y[], z[]; 3384 // int kdx = ystart+1; 3385 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3386 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3387 // jlong carry2 = (jlong)(tmp3 >>> 64); 3388 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3389 // carry = (jlong)(tmp4 >>> 64); 3390 // z[kdx+idx+1] = (jlong)tmp3; 3391 // z[kdx+idx] = (jlong)tmp4; 3392 // } 3393 // idx += 2; 3394 // if (idx > 0) { 3395 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3396 // z[kdx+idx] = (jlong)yz_idx1; 3397 // carry = (jlong)(yz_idx1 >>> 64); 3398 // } 3399 // 3400 3401 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 3402 3403 lsrw(jdx, idx, 2); 3404 3405 bind(L_third_loop); 3406 3407 subsw(jdx, jdx, 1); 3408 br(Assembler::MI, L_third_loop_exit); 3409 subw(idx, idx, 4); 3410 3411 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3412 3413 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 3414 3415 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3416 3417 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 3418 ror(yz_idx2, yz_idx2, 32); 3419 3420 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 3421 3422 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3423 umulh(tmp4, product_hi, yz_idx1); 3424 3425 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 3426 ror(rscratch2, rscratch2, 32); 3427 3428 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 3429 umulh(carry2, product_hi, yz_idx2); 3430 3431 // propagate sum of both multiplications into carry:tmp4:tmp3 3432 adds(tmp3, tmp3, carry); 3433 adc(tmp4, tmp4, zr); 3434 adds(tmp3, tmp3, rscratch1); 3435 adcs(tmp4, tmp4, tmp); 3436 adc(carry, carry2, zr); 3437 adds(tmp4, tmp4, rscratch2); 3438 adc(carry, carry, zr); 3439 3440 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 3441 ror(tmp4, tmp4, 32); 3442 stp(tmp4, tmp3, Address(tmp6, 0)); 3443 3444 b(L_third_loop); 3445 bind (L_third_loop_exit); 3446 3447 andw (idx, idx, 0x3); 3448 cbz(idx, L_post_third_loop_done); 3449 3450 Label L_check_1; 3451 subsw(idx, idx, 2); 3452 br(Assembler::MI, L_check_1); 3453 3454 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3455 ldr(yz_idx1, Address(rscratch1, 0)); 3456 ror(yz_idx1, yz_idx1, 32); 3457 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3458 umulh(tmp4, product_hi, yz_idx1); 3459 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3460 ldr(yz_idx2, Address(rscratch1, 0)); 3461 ror(yz_idx2, yz_idx2, 32); 3462 3463 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 3464 3465 ror(tmp3, tmp3, 32); 3466 str(tmp3, Address(rscratch1, 0)); 3467 3468 bind (L_check_1); 3469 3470 andw (idx, idx, 0x1); 3471 subsw(idx, idx, 1); 3472 br(Assembler::MI, L_post_third_loop_done); 3473 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3474 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3475 umulh(carry2, tmp4, product_hi); 3476 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3477 3478 add2_with_carry(carry2, tmp3, tmp4, carry); 3479 3480 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3481 extr(carry, carry2, tmp3, 32); 3482 3483 bind(L_post_third_loop_done); 3484 } 3485 3486 /** 3487 * Code for BigInteger::multiplyToLen() intrinsic. 3488 * 3489 * r0: x 3490 * r1: xlen 3491 * r2: y 3492 * r3: ylen 3493 * r4: z 3494 * r5: zlen 3495 * r10: tmp1 3496 * r11: tmp2 3497 * r12: tmp3 3498 * r13: tmp4 3499 * r14: tmp5 3500 * r15: tmp6 3501 * r16: tmp7 3502 * 3503 */ 3504 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3505 Register z, Register zlen, 3506 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3507 Register tmp5, Register tmp6, Register product_hi) { 3508 3509 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3510 3511 const Register idx = tmp1; 3512 const Register kdx = tmp2; 3513 const Register xstart = tmp3; 3514 3515 const Register y_idx = tmp4; 3516 const Register carry = tmp5; 3517 const Register product = xlen; 3518 const Register x_xstart = zlen; // reuse register 3519 3520 // First Loop. 3521 // 3522 // final static long LONG_MASK = 0xffffffffL; 3523 // int xstart = xlen - 1; 3524 // int ystart = ylen - 1; 3525 // long carry = 0; 3526 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3527 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3528 // z[kdx] = (int)product; 3529 // carry = product >>> 32; 3530 // } 3531 // z[xstart] = (int)carry; 3532 // 3533 3534 movw(idx, ylen); // idx = ylen; 3535 movw(kdx, zlen); // kdx = xlen+ylen; 3536 mov(carry, zr); // carry = 0; 3537 3538 Label L_done; 3539 3540 movw(xstart, xlen); 3541 subsw(xstart, xstart, 1); 3542 br(Assembler::MI, L_done); 3543 3544 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3545 3546 Label L_second_loop; 3547 cbzw(kdx, L_second_loop); 3548 3549 Label L_carry; 3550 subw(kdx, kdx, 1); 3551 cbzw(kdx, L_carry); 3552 3553 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3554 lsr(carry, carry, 32); 3555 subw(kdx, kdx, 1); 3556 3557 bind(L_carry); 3558 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3559 3560 // Second and third (nested) loops. 3561 // 3562 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3563 // carry = 0; 3564 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3565 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3566 // (z[k] & LONG_MASK) + carry; 3567 // z[k] = (int)product; 3568 // carry = product >>> 32; 3569 // } 3570 // z[i] = (int)carry; 3571 // } 3572 // 3573 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3574 3575 const Register jdx = tmp1; 3576 3577 bind(L_second_loop); 3578 mov(carry, zr); // carry = 0; 3579 movw(jdx, ylen); // j = ystart+1 3580 3581 subsw(xstart, xstart, 1); // i = xstart-1; 3582 br(Assembler::MI, L_done); 3583 3584 str(z, Address(pre(sp, -4 * wordSize))); 3585 3586 Label L_last_x; 3587 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3588 subsw(xstart, xstart, 1); // i = xstart-1; 3589 br(Assembler::MI, L_last_x); 3590 3591 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 3592 ldr(product_hi, Address(rscratch1)); 3593 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 3594 3595 Label L_third_loop_prologue; 3596 bind(L_third_loop_prologue); 3597 3598 str(ylen, Address(sp, wordSize)); 3599 stp(x, xstart, Address(sp, 2 * wordSize)); 3600 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3601 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3602 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 3603 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 3604 3605 addw(tmp3, xlen, 1); 3606 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3607 subsw(tmp3, tmp3, 1); 3608 br(Assembler::MI, L_done); 3609 3610 lsr(carry, carry, 32); 3611 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3612 b(L_second_loop); 3613 3614 // Next infrequent code is moved outside loops. 3615 bind(L_last_x); 3616 ldrw(product_hi, Address(x, 0)); 3617 b(L_third_loop_prologue); 3618 3619 bind(L_done); 3620 } 3621 3622 // Code for BigInteger::mulAdd intrinsic 3623 // out = r0 3624 // in = r1 3625 // offset = r2 (already out.length-offset) 3626 // len = r3 3627 // k = r4 3628 // 3629 // pseudo code from java implementation: 3630 // carry = 0; 3631 // offset = out.length-offset - 1; 3632 // for (int j=len-1; j >= 0; j--) { 3633 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3634 // out[offset--] = (int)product; 3635 // carry = product >>> 32; 3636 // } 3637 // return (int)carry; 3638 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3639 Register len, Register k) { 3640 Label LOOP, END; 3641 // pre-loop 3642 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 3643 csel(out, zr, out, Assembler::EQ); 3644 br(Assembler::EQ, END); 3645 add(in, in, len, LSL, 2); // in[j+1] address 3646 add(offset, out, offset, LSL, 2); // out[offset + 1] address 3647 mov(out, zr); // used to keep carry now 3648 BIND(LOOP); 3649 ldrw(rscratch1, Address(pre(in, -4))); 3650 madd(rscratch1, rscratch1, k, out); 3651 ldrw(rscratch2, Address(pre(offset, -4))); 3652 add(rscratch1, rscratch1, rscratch2); 3653 strw(rscratch1, Address(offset)); 3654 lsr(out, rscratch1, 32); 3655 subs(len, len, 1); 3656 br(Assembler::NE, LOOP); 3657 BIND(END); 3658 } 3659 3660 /** 3661 * Emits code to update CRC-32 with a byte value according to constants in table 3662 * 3663 * @param [in,out]crc Register containing the crc. 3664 * @param [in]val Register containing the byte to fold into the CRC. 3665 * @param [in]table Register containing the table of crc constants. 3666 * 3667 * uint32_t crc; 3668 * val = crc_table[(val ^ crc) & 0xFF]; 3669 * crc = val ^ (crc >> 8); 3670 * 3671 */ 3672 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 3673 eor(val, val, crc); 3674 andr(val, val, 0xff); 3675 ldrw(val, Address(table, val, Address::lsl(2))); 3676 eor(crc, val, crc, Assembler::LSR, 8); 3677 } 3678 3679 /** 3680 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 3681 * 3682 * @param [in,out]crc Register containing the crc. 3683 * @param [in]v Register containing the 32-bit to fold into the CRC. 3684 * @param [in]table0 Register containing table 0 of crc constants. 3685 * @param [in]table1 Register containing table 1 of crc constants. 3686 * @param [in]table2 Register containing table 2 of crc constants. 3687 * @param [in]table3 Register containing table 3 of crc constants. 3688 * 3689 * uint32_t crc; 3690 * v = crc ^ v 3691 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 3692 * 3693 */ 3694 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 3695 Register table0, Register table1, Register table2, Register table3, 3696 bool upper) { 3697 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 3698 uxtb(tmp, v); 3699 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 3700 ubfx(tmp, v, 8, 8); 3701 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 3702 eor(crc, crc, tmp); 3703 ubfx(tmp, v, 16, 8); 3704 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 3705 eor(crc, crc, tmp); 3706 ubfx(tmp, v, 24, 8); 3707 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 3708 eor(crc, crc, tmp); 3709 } 3710 3711 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 3712 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 3713 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 3714 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 3715 3716 subs(tmp0, len, 384); 3717 mvnw(crc, crc); 3718 br(Assembler::GE, CRC_by128_pre); 3719 BIND(CRC_less128); 3720 subs(len, len, 32); 3721 br(Assembler::GE, CRC_by32_loop); 3722 BIND(CRC_less32); 3723 adds(len, len, 32 - 4); 3724 br(Assembler::GE, CRC_by4_loop); 3725 adds(len, len, 4); 3726 br(Assembler::GT, CRC_by1_loop); 3727 b(L_exit); 3728 3729 BIND(CRC_by32_loop); 3730 ldp(tmp0, tmp1, Address(buf)); 3731 crc32x(crc, crc, tmp0); 3732 ldp(tmp2, tmp3, Address(buf, 16)); 3733 crc32x(crc, crc, tmp1); 3734 add(buf, buf, 32); 3735 crc32x(crc, crc, tmp2); 3736 subs(len, len, 32); 3737 crc32x(crc, crc, tmp3); 3738 br(Assembler::GE, CRC_by32_loop); 3739 cmn(len, (u1)32); 3740 br(Assembler::NE, CRC_less32); 3741 b(L_exit); 3742 3743 BIND(CRC_by4_loop); 3744 ldrw(tmp0, Address(post(buf, 4))); 3745 subs(len, len, 4); 3746 crc32w(crc, crc, tmp0); 3747 br(Assembler::GE, CRC_by4_loop); 3748 adds(len, len, 4); 3749 br(Assembler::LE, L_exit); 3750 BIND(CRC_by1_loop); 3751 ldrb(tmp0, Address(post(buf, 1))); 3752 subs(len, len, 1); 3753 crc32b(crc, crc, tmp0); 3754 br(Assembler::GT, CRC_by1_loop); 3755 b(L_exit); 3756 3757 BIND(CRC_by128_pre); 3758 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 3759 4*256*sizeof(juint) + 8*sizeof(juint)); 3760 mov(crc, 0); 3761 crc32x(crc, crc, tmp0); 3762 crc32x(crc, crc, tmp1); 3763 3764 cbnz(len, CRC_less128); 3765 3766 BIND(L_exit); 3767 mvnw(crc, crc); 3768 } 3769 3770 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 3771 Register len, Register tmp0, Register tmp1, Register tmp2, 3772 Register tmp3) { 3773 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3774 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3775 3776 mvnw(crc, crc); 3777 3778 subs(len, len, 128); 3779 br(Assembler::GE, CRC_by64_pre); 3780 BIND(CRC_less64); 3781 adds(len, len, 128-32); 3782 br(Assembler::GE, CRC_by32_loop); 3783 BIND(CRC_less32); 3784 adds(len, len, 32-4); 3785 br(Assembler::GE, CRC_by4_loop); 3786 adds(len, len, 4); 3787 br(Assembler::GT, CRC_by1_loop); 3788 b(L_exit); 3789 3790 BIND(CRC_by32_loop); 3791 ldp(tmp0, tmp1, Address(post(buf, 16))); 3792 subs(len, len, 32); 3793 crc32x(crc, crc, tmp0); 3794 ldr(tmp2, Address(post(buf, 8))); 3795 crc32x(crc, crc, tmp1); 3796 ldr(tmp3, Address(post(buf, 8))); 3797 crc32x(crc, crc, tmp2); 3798 crc32x(crc, crc, tmp3); 3799 br(Assembler::GE, CRC_by32_loop); 3800 cmn(len, (u1)32); 3801 br(Assembler::NE, CRC_less32); 3802 b(L_exit); 3803 3804 BIND(CRC_by4_loop); 3805 ldrw(tmp0, Address(post(buf, 4))); 3806 subs(len, len, 4); 3807 crc32w(crc, crc, tmp0); 3808 br(Assembler::GE, CRC_by4_loop); 3809 adds(len, len, 4); 3810 br(Assembler::LE, L_exit); 3811 BIND(CRC_by1_loop); 3812 ldrb(tmp0, Address(post(buf, 1))); 3813 subs(len, len, 1); 3814 crc32b(crc, crc, tmp0); 3815 br(Assembler::GT, CRC_by1_loop); 3816 b(L_exit); 3817 3818 BIND(CRC_by64_pre); 3819 sub(buf, buf, 8); 3820 ldp(tmp0, tmp1, Address(buf, 8)); 3821 crc32x(crc, crc, tmp0); 3822 ldr(tmp2, Address(buf, 24)); 3823 crc32x(crc, crc, tmp1); 3824 ldr(tmp3, Address(buf, 32)); 3825 crc32x(crc, crc, tmp2); 3826 ldr(tmp0, Address(buf, 40)); 3827 crc32x(crc, crc, tmp3); 3828 ldr(tmp1, Address(buf, 48)); 3829 crc32x(crc, crc, tmp0); 3830 ldr(tmp2, Address(buf, 56)); 3831 crc32x(crc, crc, tmp1); 3832 ldr(tmp3, Address(pre(buf, 64))); 3833 3834 b(CRC_by64_loop); 3835 3836 align(CodeEntryAlignment); 3837 BIND(CRC_by64_loop); 3838 subs(len, len, 64); 3839 crc32x(crc, crc, tmp2); 3840 ldr(tmp0, Address(buf, 8)); 3841 crc32x(crc, crc, tmp3); 3842 ldr(tmp1, Address(buf, 16)); 3843 crc32x(crc, crc, tmp0); 3844 ldr(tmp2, Address(buf, 24)); 3845 crc32x(crc, crc, tmp1); 3846 ldr(tmp3, Address(buf, 32)); 3847 crc32x(crc, crc, tmp2); 3848 ldr(tmp0, Address(buf, 40)); 3849 crc32x(crc, crc, tmp3); 3850 ldr(tmp1, Address(buf, 48)); 3851 crc32x(crc, crc, tmp0); 3852 ldr(tmp2, Address(buf, 56)); 3853 crc32x(crc, crc, tmp1); 3854 ldr(tmp3, Address(pre(buf, 64))); 3855 br(Assembler::GE, CRC_by64_loop); 3856 3857 // post-loop 3858 crc32x(crc, crc, tmp2); 3859 crc32x(crc, crc, tmp3); 3860 3861 sub(len, len, 64); 3862 add(buf, buf, 8); 3863 cmn(len, (u1)128); 3864 br(Assembler::NE, CRC_less64); 3865 BIND(L_exit); 3866 mvnw(crc, crc); 3867 } 3868 3869 /** 3870 * @param crc register containing existing CRC (32-bit) 3871 * @param buf register pointing to input byte buffer (byte*) 3872 * @param len register containing number of bytes 3873 * @param table register that will contain address of CRC table 3874 * @param tmp scratch register 3875 */ 3876 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 3877 Register table0, Register table1, Register table2, Register table3, 3878 Register tmp, Register tmp2, Register tmp3) { 3879 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 3880 3881 if (UseCryptoPmullForCRC32) { 3882 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 3883 return; 3884 } 3885 3886 if (UseCRC32) { 3887 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 3888 return; 3889 } 3890 3891 mvnw(crc, crc); 3892 3893 { 3894 uint64_t offset; 3895 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 3896 add(table0, table0, offset); 3897 } 3898 add(table1, table0, 1*256*sizeof(juint)); 3899 add(table2, table0, 2*256*sizeof(juint)); 3900 add(table3, table0, 3*256*sizeof(juint)); 3901 3902 if (UseNeon) { 3903 cmp(len, (u1)64); 3904 br(Assembler::LT, L_by16); 3905 eor(v16, T16B, v16, v16); 3906 3907 Label L_fold; 3908 3909 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 3910 3911 ld1(v0, v1, T2D, post(buf, 32)); 3912 ld1r(v4, T2D, post(tmp, 8)); 3913 ld1r(v5, T2D, post(tmp, 8)); 3914 ld1r(v6, T2D, post(tmp, 8)); 3915 ld1r(v7, T2D, post(tmp, 8)); 3916 mov(v16, S, 0, crc); 3917 3918 eor(v0, T16B, v0, v16); 3919 sub(len, len, 64); 3920 3921 BIND(L_fold); 3922 pmull(v22, T8H, v0, v5, T8B); 3923 pmull(v20, T8H, v0, v7, T8B); 3924 pmull(v23, T8H, v0, v4, T8B); 3925 pmull(v21, T8H, v0, v6, T8B); 3926 3927 pmull2(v18, T8H, v0, v5, T16B); 3928 pmull2(v16, T8H, v0, v7, T16B); 3929 pmull2(v19, T8H, v0, v4, T16B); 3930 pmull2(v17, T8H, v0, v6, T16B); 3931 3932 uzp1(v24, T8H, v20, v22); 3933 uzp2(v25, T8H, v20, v22); 3934 eor(v20, T16B, v24, v25); 3935 3936 uzp1(v26, T8H, v16, v18); 3937 uzp2(v27, T8H, v16, v18); 3938 eor(v16, T16B, v26, v27); 3939 3940 ushll2(v22, T4S, v20, T8H, 8); 3941 ushll(v20, T4S, v20, T4H, 8); 3942 3943 ushll2(v18, T4S, v16, T8H, 8); 3944 ushll(v16, T4S, v16, T4H, 8); 3945 3946 eor(v22, T16B, v23, v22); 3947 eor(v18, T16B, v19, v18); 3948 eor(v20, T16B, v21, v20); 3949 eor(v16, T16B, v17, v16); 3950 3951 uzp1(v17, T2D, v16, v20); 3952 uzp2(v21, T2D, v16, v20); 3953 eor(v17, T16B, v17, v21); 3954 3955 ushll2(v20, T2D, v17, T4S, 16); 3956 ushll(v16, T2D, v17, T2S, 16); 3957 3958 eor(v20, T16B, v20, v22); 3959 eor(v16, T16B, v16, v18); 3960 3961 uzp1(v17, T2D, v20, v16); 3962 uzp2(v21, T2D, v20, v16); 3963 eor(v28, T16B, v17, v21); 3964 3965 pmull(v22, T8H, v1, v5, T8B); 3966 pmull(v20, T8H, v1, v7, T8B); 3967 pmull(v23, T8H, v1, v4, T8B); 3968 pmull(v21, T8H, v1, v6, T8B); 3969 3970 pmull2(v18, T8H, v1, v5, T16B); 3971 pmull2(v16, T8H, v1, v7, T16B); 3972 pmull2(v19, T8H, v1, v4, T16B); 3973 pmull2(v17, T8H, v1, v6, T16B); 3974 3975 ld1(v0, v1, T2D, post(buf, 32)); 3976 3977 uzp1(v24, T8H, v20, v22); 3978 uzp2(v25, T8H, v20, v22); 3979 eor(v20, T16B, v24, v25); 3980 3981 uzp1(v26, T8H, v16, v18); 3982 uzp2(v27, T8H, v16, v18); 3983 eor(v16, T16B, v26, v27); 3984 3985 ushll2(v22, T4S, v20, T8H, 8); 3986 ushll(v20, T4S, v20, T4H, 8); 3987 3988 ushll2(v18, T4S, v16, T8H, 8); 3989 ushll(v16, T4S, v16, T4H, 8); 3990 3991 eor(v22, T16B, v23, v22); 3992 eor(v18, T16B, v19, v18); 3993 eor(v20, T16B, v21, v20); 3994 eor(v16, T16B, v17, v16); 3995 3996 uzp1(v17, T2D, v16, v20); 3997 uzp2(v21, T2D, v16, v20); 3998 eor(v16, T16B, v17, v21); 3999 4000 ushll2(v20, T2D, v16, T4S, 16); 4001 ushll(v16, T2D, v16, T2S, 16); 4002 4003 eor(v20, T16B, v22, v20); 4004 eor(v16, T16B, v16, v18); 4005 4006 uzp1(v17, T2D, v20, v16); 4007 uzp2(v21, T2D, v20, v16); 4008 eor(v20, T16B, v17, v21); 4009 4010 shl(v16, T2D, v28, 1); 4011 shl(v17, T2D, v20, 1); 4012 4013 eor(v0, T16B, v0, v16); 4014 eor(v1, T16B, v1, v17); 4015 4016 subs(len, len, 32); 4017 br(Assembler::GE, L_fold); 4018 4019 mov(crc, 0); 4020 mov(tmp, v0, D, 0); 4021 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4022 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4023 mov(tmp, v0, D, 1); 4024 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4025 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4026 mov(tmp, v1, D, 0); 4027 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4028 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4029 mov(tmp, v1, D, 1); 4030 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4031 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4032 4033 add(len, len, 32); 4034 } 4035 4036 BIND(L_by16); 4037 subs(len, len, 16); 4038 br(Assembler::GE, L_by16_loop); 4039 adds(len, len, 16-4); 4040 br(Assembler::GE, L_by4_loop); 4041 adds(len, len, 4); 4042 br(Assembler::GT, L_by1_loop); 4043 b(L_exit); 4044 4045 BIND(L_by4_loop); 4046 ldrw(tmp, Address(post(buf, 4))); 4047 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4048 subs(len, len, 4); 4049 br(Assembler::GE, L_by4_loop); 4050 adds(len, len, 4); 4051 br(Assembler::LE, L_exit); 4052 BIND(L_by1_loop); 4053 subs(len, len, 1); 4054 ldrb(tmp, Address(post(buf, 1))); 4055 update_byte_crc32(crc, tmp, table0); 4056 br(Assembler::GT, L_by1_loop); 4057 b(L_exit); 4058 4059 align(CodeEntryAlignment); 4060 BIND(L_by16_loop); 4061 subs(len, len, 16); 4062 ldp(tmp, tmp3, Address(post(buf, 16))); 4063 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4064 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4065 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4066 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4067 br(Assembler::GE, L_by16_loop); 4068 adds(len, len, 16-4); 4069 br(Assembler::GE, L_by4_loop); 4070 adds(len, len, 4); 4071 br(Assembler::GT, L_by1_loop); 4072 BIND(L_exit); 4073 mvnw(crc, crc); 4074 } 4075 4076 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4077 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4078 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4079 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4080 4081 subs(tmp0, len, 384); 4082 br(Assembler::GE, CRC_by128_pre); 4083 BIND(CRC_less128); 4084 subs(len, len, 32); 4085 br(Assembler::GE, CRC_by32_loop); 4086 BIND(CRC_less32); 4087 adds(len, len, 32 - 4); 4088 br(Assembler::GE, CRC_by4_loop); 4089 adds(len, len, 4); 4090 br(Assembler::GT, CRC_by1_loop); 4091 b(L_exit); 4092 4093 BIND(CRC_by32_loop); 4094 ldp(tmp0, tmp1, Address(buf)); 4095 crc32cx(crc, crc, tmp0); 4096 ldr(tmp2, Address(buf, 16)); 4097 crc32cx(crc, crc, tmp1); 4098 ldr(tmp3, Address(buf, 24)); 4099 crc32cx(crc, crc, tmp2); 4100 add(buf, buf, 32); 4101 subs(len, len, 32); 4102 crc32cx(crc, crc, tmp3); 4103 br(Assembler::GE, CRC_by32_loop); 4104 cmn(len, (u1)32); 4105 br(Assembler::NE, CRC_less32); 4106 b(L_exit); 4107 4108 BIND(CRC_by4_loop); 4109 ldrw(tmp0, Address(post(buf, 4))); 4110 subs(len, len, 4); 4111 crc32cw(crc, crc, tmp0); 4112 br(Assembler::GE, CRC_by4_loop); 4113 adds(len, len, 4); 4114 br(Assembler::LE, L_exit); 4115 BIND(CRC_by1_loop); 4116 ldrb(tmp0, Address(post(buf, 1))); 4117 subs(len, len, 1); 4118 crc32cb(crc, crc, tmp0); 4119 br(Assembler::GT, CRC_by1_loop); 4120 b(L_exit); 4121 4122 BIND(CRC_by128_pre); 4123 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4124 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4125 mov(crc, 0); 4126 crc32cx(crc, crc, tmp0); 4127 crc32cx(crc, crc, tmp1); 4128 4129 cbnz(len, CRC_less128); 4130 4131 BIND(L_exit); 4132 } 4133 4134 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4135 Register len, Register tmp0, Register tmp1, Register tmp2, 4136 Register tmp3) { 4137 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4138 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4139 4140 subs(len, len, 128); 4141 br(Assembler::GE, CRC_by64_pre); 4142 BIND(CRC_less64); 4143 adds(len, len, 128-32); 4144 br(Assembler::GE, CRC_by32_loop); 4145 BIND(CRC_less32); 4146 adds(len, len, 32-4); 4147 br(Assembler::GE, CRC_by4_loop); 4148 adds(len, len, 4); 4149 br(Assembler::GT, CRC_by1_loop); 4150 b(L_exit); 4151 4152 BIND(CRC_by32_loop); 4153 ldp(tmp0, tmp1, Address(post(buf, 16))); 4154 subs(len, len, 32); 4155 crc32cx(crc, crc, tmp0); 4156 ldr(tmp2, Address(post(buf, 8))); 4157 crc32cx(crc, crc, tmp1); 4158 ldr(tmp3, Address(post(buf, 8))); 4159 crc32cx(crc, crc, tmp2); 4160 crc32cx(crc, crc, tmp3); 4161 br(Assembler::GE, CRC_by32_loop); 4162 cmn(len, (u1)32); 4163 br(Assembler::NE, CRC_less32); 4164 b(L_exit); 4165 4166 BIND(CRC_by4_loop); 4167 ldrw(tmp0, Address(post(buf, 4))); 4168 subs(len, len, 4); 4169 crc32cw(crc, crc, tmp0); 4170 br(Assembler::GE, CRC_by4_loop); 4171 adds(len, len, 4); 4172 br(Assembler::LE, L_exit); 4173 BIND(CRC_by1_loop); 4174 ldrb(tmp0, Address(post(buf, 1))); 4175 subs(len, len, 1); 4176 crc32cb(crc, crc, tmp0); 4177 br(Assembler::GT, CRC_by1_loop); 4178 b(L_exit); 4179 4180 BIND(CRC_by64_pre); 4181 sub(buf, buf, 8); 4182 ldp(tmp0, tmp1, Address(buf, 8)); 4183 crc32cx(crc, crc, tmp0); 4184 ldr(tmp2, Address(buf, 24)); 4185 crc32cx(crc, crc, tmp1); 4186 ldr(tmp3, Address(buf, 32)); 4187 crc32cx(crc, crc, tmp2); 4188 ldr(tmp0, Address(buf, 40)); 4189 crc32cx(crc, crc, tmp3); 4190 ldr(tmp1, Address(buf, 48)); 4191 crc32cx(crc, crc, tmp0); 4192 ldr(tmp2, Address(buf, 56)); 4193 crc32cx(crc, crc, tmp1); 4194 ldr(tmp3, Address(pre(buf, 64))); 4195 4196 b(CRC_by64_loop); 4197 4198 align(CodeEntryAlignment); 4199 BIND(CRC_by64_loop); 4200 subs(len, len, 64); 4201 crc32cx(crc, crc, tmp2); 4202 ldr(tmp0, Address(buf, 8)); 4203 crc32cx(crc, crc, tmp3); 4204 ldr(tmp1, Address(buf, 16)); 4205 crc32cx(crc, crc, tmp0); 4206 ldr(tmp2, Address(buf, 24)); 4207 crc32cx(crc, crc, tmp1); 4208 ldr(tmp3, Address(buf, 32)); 4209 crc32cx(crc, crc, tmp2); 4210 ldr(tmp0, Address(buf, 40)); 4211 crc32cx(crc, crc, tmp3); 4212 ldr(tmp1, Address(buf, 48)); 4213 crc32cx(crc, crc, tmp0); 4214 ldr(tmp2, Address(buf, 56)); 4215 crc32cx(crc, crc, tmp1); 4216 ldr(tmp3, Address(pre(buf, 64))); 4217 br(Assembler::GE, CRC_by64_loop); 4218 4219 // post-loop 4220 crc32cx(crc, crc, tmp2); 4221 crc32cx(crc, crc, tmp3); 4222 4223 sub(len, len, 64); 4224 add(buf, buf, 8); 4225 cmn(len, (u1)128); 4226 br(Assembler::NE, CRC_less64); 4227 BIND(L_exit); 4228 } 4229 4230 /** 4231 * @param crc register containing existing CRC (32-bit) 4232 * @param buf register pointing to input byte buffer (byte*) 4233 * @param len register containing number of bytes 4234 * @param table register that will contain address of CRC table 4235 * @param tmp scratch register 4236 */ 4237 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4238 Register table0, Register table1, Register table2, Register table3, 4239 Register tmp, Register tmp2, Register tmp3) { 4240 if (UseCryptoPmullForCRC32) { 4241 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4242 } else { 4243 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4244 } 4245 } 4246 4247 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4248 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4249 Label CRC_by128_loop; 4250 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4251 4252 sub(len, len, 256); 4253 Register table = tmp0; 4254 { 4255 uint64_t offset; 4256 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4257 add(table, table, offset); 4258 } 4259 add(table, table, table_offset); 4260 4261 sub(buf, buf, 0x10); 4262 ldrq(v1, Address(buf, 0x10)); 4263 ldrq(v2, Address(buf, 0x20)); 4264 ldrq(v3, Address(buf, 0x30)); 4265 ldrq(v4, Address(buf, 0x40)); 4266 ldrq(v5, Address(buf, 0x50)); 4267 ldrq(v6, Address(buf, 0x60)); 4268 ldrq(v7, Address(buf, 0x70)); 4269 ldrq(v8, Address(pre(buf, 0x80))); 4270 4271 movi(v25, T4S, 0); 4272 mov(v25, S, 0, crc); 4273 eor(v1, T16B, v1, v25); 4274 4275 ldrq(v0, Address(table)); 4276 b(CRC_by128_loop); 4277 4278 align(OptoLoopAlignment); 4279 BIND(CRC_by128_loop); 4280 pmull (v9, T1Q, v1, v0, T1D); 4281 pmull2(v10, T1Q, v1, v0, T2D); 4282 ldrq(v1, Address(buf, 0x10)); 4283 eor3(v1, T16B, v9, v10, v1); 4284 4285 pmull (v11, T1Q, v2, v0, T1D); 4286 pmull2(v12, T1Q, v2, v0, T2D); 4287 ldrq(v2, Address(buf, 0x20)); 4288 eor3(v2, T16B, v11, v12, v2); 4289 4290 pmull (v13, T1Q, v3, v0, T1D); 4291 pmull2(v14, T1Q, v3, v0, T2D); 4292 ldrq(v3, Address(buf, 0x30)); 4293 eor3(v3, T16B, v13, v14, v3); 4294 4295 pmull (v15, T1Q, v4, v0, T1D); 4296 pmull2(v16, T1Q, v4, v0, T2D); 4297 ldrq(v4, Address(buf, 0x40)); 4298 eor3(v4, T16B, v15, v16, v4); 4299 4300 pmull (v17, T1Q, v5, v0, T1D); 4301 pmull2(v18, T1Q, v5, v0, T2D); 4302 ldrq(v5, Address(buf, 0x50)); 4303 eor3(v5, T16B, v17, v18, v5); 4304 4305 pmull (v19, T1Q, v6, v0, T1D); 4306 pmull2(v20, T1Q, v6, v0, T2D); 4307 ldrq(v6, Address(buf, 0x60)); 4308 eor3(v6, T16B, v19, v20, v6); 4309 4310 pmull (v21, T1Q, v7, v0, T1D); 4311 pmull2(v22, T1Q, v7, v0, T2D); 4312 ldrq(v7, Address(buf, 0x70)); 4313 eor3(v7, T16B, v21, v22, v7); 4314 4315 pmull (v23, T1Q, v8, v0, T1D); 4316 pmull2(v24, T1Q, v8, v0, T2D); 4317 ldrq(v8, Address(pre(buf, 0x80))); 4318 eor3(v8, T16B, v23, v24, v8); 4319 4320 subs(len, len, 0x80); 4321 br(Assembler::GE, CRC_by128_loop); 4322 4323 // fold into 512 bits 4324 ldrq(v0, Address(table, 0x10)); 4325 4326 pmull (v10, T1Q, v1, v0, T1D); 4327 pmull2(v11, T1Q, v1, v0, T2D); 4328 eor3(v1, T16B, v10, v11, v5); 4329 4330 pmull (v12, T1Q, v2, v0, T1D); 4331 pmull2(v13, T1Q, v2, v0, T2D); 4332 eor3(v2, T16B, v12, v13, v6); 4333 4334 pmull (v14, T1Q, v3, v0, T1D); 4335 pmull2(v15, T1Q, v3, v0, T2D); 4336 eor3(v3, T16B, v14, v15, v7); 4337 4338 pmull (v16, T1Q, v4, v0, T1D); 4339 pmull2(v17, T1Q, v4, v0, T2D); 4340 eor3(v4, T16B, v16, v17, v8); 4341 4342 // fold into 128 bits 4343 ldrq(v5, Address(table, 0x20)); 4344 pmull (v10, T1Q, v1, v5, T1D); 4345 pmull2(v11, T1Q, v1, v5, T2D); 4346 eor3(v4, T16B, v4, v10, v11); 4347 4348 ldrq(v6, Address(table, 0x30)); 4349 pmull (v12, T1Q, v2, v6, T1D); 4350 pmull2(v13, T1Q, v2, v6, T2D); 4351 eor3(v4, T16B, v4, v12, v13); 4352 4353 ldrq(v7, Address(table, 0x40)); 4354 pmull (v14, T1Q, v3, v7, T1D); 4355 pmull2(v15, T1Q, v3, v7, T2D); 4356 eor3(v1, T16B, v4, v14, v15); 4357 4358 add(len, len, 0x80); 4359 add(buf, buf, 0x10); 4360 4361 mov(tmp0, v1, D, 0); 4362 mov(tmp1, v1, D, 1); 4363 } 4364 4365 SkipIfEqual::SkipIfEqual( 4366 MacroAssembler* masm, const bool* flag_addr, bool value) { 4367 _masm = masm; 4368 uint64_t offset; 4369 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 4370 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 4371 if (value) { 4372 _masm->cbnzw(rscratch1, _label); 4373 } else { 4374 _masm->cbzw(rscratch1, _label); 4375 } 4376 } 4377 4378 SkipIfEqual::~SkipIfEqual() { 4379 _masm->bind(_label); 4380 } 4381 4382 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4383 Address adr; 4384 switch(dst.getMode()) { 4385 case Address::base_plus_offset: 4386 // This is the expected mode, although we allow all the other 4387 // forms below. 4388 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4389 break; 4390 default: 4391 lea(rscratch2, dst); 4392 adr = Address(rscratch2); 4393 break; 4394 } 4395 ldr(rscratch1, adr); 4396 add(rscratch1, rscratch1, src); 4397 str(rscratch1, adr); 4398 } 4399 4400 void MacroAssembler::cmpptr(Register src1, Address src2) { 4401 uint64_t offset; 4402 adrp(rscratch1, src2, offset); 4403 ldr(rscratch1, Address(rscratch1, offset)); 4404 cmp(src1, rscratch1); 4405 } 4406 4407 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 4408 cmp(obj1, obj2); 4409 } 4410 4411 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 4412 load_method_holder(rresult, rmethod); 4413 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 4414 } 4415 4416 void MacroAssembler::load_method_holder(Register holder, Register method) { 4417 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 4418 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 4419 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 4420 } 4421 4422 void MacroAssembler::load_klass(Register dst, Register src) { 4423 if (UseCompressedClassPointers) { 4424 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4425 decode_klass_not_null(dst); 4426 } else { 4427 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4428 } 4429 } 4430 4431 // ((OopHandle)result).resolve(); 4432 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 4433 // OopHandle::resolve is an indirection. 4434 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 4435 } 4436 4437 // ((WeakHandle)result).resolve(); 4438 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 4439 assert_different_registers(result, tmp1, tmp2); 4440 Label resolved; 4441 4442 // A null weak handle resolves to null. 4443 cbz(result, resolved); 4444 4445 // Only 64 bit platforms support GCs that require a tmp register 4446 // WeakHandle::resolve is an indirection like jweak. 4447 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4448 result, Address(result), tmp1, tmp2); 4449 bind(resolved); 4450 } 4451 4452 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 4453 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 4454 ldr(dst, Address(rmethod, Method::const_offset())); 4455 ldr(dst, Address(dst, ConstMethod::constants_offset())); 4456 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 4457 ldr(dst, Address(dst, mirror_offset)); 4458 resolve_oop_handle(dst, tmp1, tmp2); 4459 } 4460 4461 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 4462 if (UseCompressedClassPointers) { 4463 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4464 if (CompressedKlassPointers::base() == nullptr) { 4465 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 4466 return; 4467 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 4468 && CompressedKlassPointers::shift() == 0) { 4469 // Only the bottom 32 bits matter 4470 cmpw(trial_klass, tmp); 4471 return; 4472 } 4473 decode_klass_not_null(tmp); 4474 } else { 4475 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4476 } 4477 cmp(trial_klass, tmp); 4478 } 4479 4480 void MacroAssembler::store_klass(Register dst, Register src) { 4481 // FIXME: Should this be a store release? concurrent gcs assumes 4482 // klass length is valid if klass field is not null. 4483 if (UseCompressedClassPointers) { 4484 encode_klass_not_null(src); 4485 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4486 } else { 4487 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4488 } 4489 } 4490 4491 void MacroAssembler::store_klass_gap(Register dst, Register src) { 4492 if (UseCompressedClassPointers) { 4493 // Store to klass gap in destination 4494 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 4495 } 4496 } 4497 4498 // Algorithm must match CompressedOops::encode. 4499 void MacroAssembler::encode_heap_oop(Register d, Register s) { 4500 #ifdef ASSERT 4501 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 4502 #endif 4503 verify_oop_msg(s, "broken oop in encode_heap_oop"); 4504 if (CompressedOops::base() == nullptr) { 4505 if (CompressedOops::shift() != 0) { 4506 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4507 lsr(d, s, LogMinObjAlignmentInBytes); 4508 } else { 4509 mov(d, s); 4510 } 4511 } else { 4512 subs(d, s, rheapbase); 4513 csel(d, d, zr, Assembler::HS); 4514 lsr(d, d, LogMinObjAlignmentInBytes); 4515 4516 /* Old algorithm: is this any worse? 4517 Label nonnull; 4518 cbnz(r, nonnull); 4519 sub(r, r, rheapbase); 4520 bind(nonnull); 4521 lsr(r, r, LogMinObjAlignmentInBytes); 4522 */ 4523 } 4524 } 4525 4526 void MacroAssembler::encode_heap_oop_not_null(Register r) { 4527 #ifdef ASSERT 4528 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 4529 if (CheckCompressedOops) { 4530 Label ok; 4531 cbnz(r, ok); 4532 stop("null oop passed to encode_heap_oop_not_null"); 4533 bind(ok); 4534 } 4535 #endif 4536 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 4537 if (CompressedOops::base() != nullptr) { 4538 sub(r, r, rheapbase); 4539 } 4540 if (CompressedOops::shift() != 0) { 4541 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4542 lsr(r, r, LogMinObjAlignmentInBytes); 4543 } 4544 } 4545 4546 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 4547 #ifdef ASSERT 4548 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 4549 if (CheckCompressedOops) { 4550 Label ok; 4551 cbnz(src, ok); 4552 stop("null oop passed to encode_heap_oop_not_null2"); 4553 bind(ok); 4554 } 4555 #endif 4556 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 4557 4558 Register data = src; 4559 if (CompressedOops::base() != nullptr) { 4560 sub(dst, src, rheapbase); 4561 data = dst; 4562 } 4563 if (CompressedOops::shift() != 0) { 4564 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4565 lsr(dst, data, LogMinObjAlignmentInBytes); 4566 data = dst; 4567 } 4568 if (data == src) 4569 mov(dst, src); 4570 } 4571 4572 void MacroAssembler::decode_heap_oop(Register d, Register s) { 4573 #ifdef ASSERT 4574 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 4575 #endif 4576 if (CompressedOops::base() == nullptr) { 4577 if (CompressedOops::shift() != 0 || d != s) { 4578 lsl(d, s, CompressedOops::shift()); 4579 } 4580 } else { 4581 Label done; 4582 if (d != s) 4583 mov(d, s); 4584 cbz(s, done); 4585 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 4586 bind(done); 4587 } 4588 verify_oop_msg(d, "broken oop in decode_heap_oop"); 4589 } 4590 4591 void MacroAssembler::decode_heap_oop_not_null(Register r) { 4592 assert (UseCompressedOops, "should only be used for compressed headers"); 4593 assert (Universe::heap() != nullptr, "java heap should be initialized"); 4594 // Cannot assert, unverified entry point counts instructions (see .ad file) 4595 // vtableStubs also counts instructions in pd_code_size_limit. 4596 // Also do not verify_oop as this is called by verify_oop. 4597 if (CompressedOops::shift() != 0) { 4598 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4599 if (CompressedOops::base() != nullptr) { 4600 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4601 } else { 4602 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4603 } 4604 } else { 4605 assert (CompressedOops::base() == nullptr, "sanity"); 4606 } 4607 } 4608 4609 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 4610 assert (UseCompressedOops, "should only be used for compressed headers"); 4611 assert (Universe::heap() != nullptr, "java heap should be initialized"); 4612 // Cannot assert, unverified entry point counts instructions (see .ad file) 4613 // vtableStubs also counts instructions in pd_code_size_limit. 4614 // Also do not verify_oop as this is called by verify_oop. 4615 if (CompressedOops::shift() != 0) { 4616 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4617 if (CompressedOops::base() != nullptr) { 4618 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4619 } else { 4620 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4621 } 4622 } else { 4623 assert (CompressedOops::base() == nullptr, "sanity"); 4624 if (dst != src) { 4625 mov(dst, src); 4626 } 4627 } 4628 } 4629 4630 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 4631 4632 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 4633 assert(UseCompressedClassPointers, "not using compressed class pointers"); 4634 assert(Metaspace::initialized(), "metaspace not initialized yet"); 4635 4636 if (_klass_decode_mode != KlassDecodeNone) { 4637 return _klass_decode_mode; 4638 } 4639 4640 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 4641 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 4642 4643 if (CompressedKlassPointers::base() == nullptr) { 4644 return (_klass_decode_mode = KlassDecodeZero); 4645 } 4646 4647 if (operand_valid_for_logical_immediate( 4648 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 4649 const uint64_t range_mask = 4650 (1ULL << log2i(CompressedKlassPointers::range())) - 1; 4651 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 4652 return (_klass_decode_mode = KlassDecodeXor); 4653 } 4654 } 4655 4656 const uint64_t shifted_base = 4657 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4658 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 4659 "compressed class base bad alignment"); 4660 4661 return (_klass_decode_mode = KlassDecodeMovk); 4662 } 4663 4664 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 4665 switch (klass_decode_mode()) { 4666 case KlassDecodeZero: 4667 if (CompressedKlassPointers::shift() != 0) { 4668 lsr(dst, src, LogKlassAlignmentInBytes); 4669 } else { 4670 if (dst != src) mov(dst, src); 4671 } 4672 break; 4673 4674 case KlassDecodeXor: 4675 if (CompressedKlassPointers::shift() != 0) { 4676 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4677 lsr(dst, dst, LogKlassAlignmentInBytes); 4678 } else { 4679 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4680 } 4681 break; 4682 4683 case KlassDecodeMovk: 4684 if (CompressedKlassPointers::shift() != 0) { 4685 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 4686 } else { 4687 movw(dst, src); 4688 } 4689 break; 4690 4691 case KlassDecodeNone: 4692 ShouldNotReachHere(); 4693 break; 4694 } 4695 } 4696 4697 void MacroAssembler::encode_klass_not_null(Register r) { 4698 encode_klass_not_null(r, r); 4699 } 4700 4701 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 4702 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4703 4704 switch (klass_decode_mode()) { 4705 case KlassDecodeZero: 4706 if (CompressedKlassPointers::shift() != 0) { 4707 lsl(dst, src, LogKlassAlignmentInBytes); 4708 } else { 4709 if (dst != src) mov(dst, src); 4710 } 4711 break; 4712 4713 case KlassDecodeXor: 4714 if (CompressedKlassPointers::shift() != 0) { 4715 lsl(dst, src, LogKlassAlignmentInBytes); 4716 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 4717 } else { 4718 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4719 } 4720 break; 4721 4722 case KlassDecodeMovk: { 4723 const uint64_t shifted_base = 4724 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4725 4726 if (dst != src) movw(dst, src); 4727 movk(dst, shifted_base >> 32, 32); 4728 4729 if (CompressedKlassPointers::shift() != 0) { 4730 lsl(dst, dst, LogKlassAlignmentInBytes); 4731 } 4732 4733 break; 4734 } 4735 4736 case KlassDecodeNone: 4737 ShouldNotReachHere(); 4738 break; 4739 } 4740 } 4741 4742 void MacroAssembler::decode_klass_not_null(Register r) { 4743 decode_klass_not_null(r, r); 4744 } 4745 4746 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 4747 #ifdef ASSERT 4748 { 4749 ThreadInVMfromUnknown tiv; 4750 assert (UseCompressedOops, "should only be used for compressed oops"); 4751 assert (Universe::heap() != nullptr, "java heap should be initialized"); 4752 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 4753 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4754 } 4755 #endif 4756 int oop_index = oop_recorder()->find_index(obj); 4757 InstructionMark im(this); 4758 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4759 code_section()->relocate(inst_mark(), rspec); 4760 movz(dst, 0xDEAD, 16); 4761 movk(dst, 0xBEEF); 4762 } 4763 4764 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 4765 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4766 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 4767 int index = oop_recorder()->find_index(k); 4768 assert(! Universe::heap()->is_in(k), "should not be an oop"); 4769 4770 InstructionMark im(this); 4771 RelocationHolder rspec = metadata_Relocation::spec(index); 4772 code_section()->relocate(inst_mark(), rspec); 4773 narrowKlass nk = CompressedKlassPointers::encode(k); 4774 movz(dst, (nk >> 16), 16); 4775 movk(dst, nk & 0xffff); 4776 } 4777 4778 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 4779 Register dst, Address src, 4780 Register tmp1, Register tmp2) { 4781 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4782 decorators = AccessInternal::decorator_fixup(decorators, type); 4783 bool as_raw = (decorators & AS_RAW) != 0; 4784 if (as_raw) { 4785 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 4786 } else { 4787 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 4788 } 4789 } 4790 4791 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 4792 Address dst, Register val, 4793 Register tmp1, Register tmp2, Register tmp3) { 4794 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4795 decorators = AccessInternal::decorator_fixup(decorators, type); 4796 bool as_raw = (decorators & AS_RAW) != 0; 4797 if (as_raw) { 4798 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 4799 } else { 4800 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 4801 } 4802 } 4803 4804 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 4805 Register tmp2, DecoratorSet decorators) { 4806 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 4807 } 4808 4809 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 4810 Register tmp2, DecoratorSet decorators) { 4811 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 4812 } 4813 4814 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 4815 Register tmp2, Register tmp3, DecoratorSet decorators) { 4816 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 4817 } 4818 4819 // Used for storing nulls. 4820 void MacroAssembler::store_heap_oop_null(Address dst) { 4821 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 4822 } 4823 4824 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 4825 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 4826 int index = oop_recorder()->allocate_metadata_index(obj); 4827 RelocationHolder rspec = metadata_Relocation::spec(index); 4828 return Address((address)obj, rspec); 4829 } 4830 4831 // Move an oop into a register. 4832 void MacroAssembler::movoop(Register dst, jobject obj) { 4833 int oop_index; 4834 if (obj == nullptr) { 4835 oop_index = oop_recorder()->allocate_oop_index(obj); 4836 } else { 4837 #ifdef ASSERT 4838 { 4839 ThreadInVMfromUnknown tiv; 4840 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4841 } 4842 #endif 4843 oop_index = oop_recorder()->find_index(obj); 4844 } 4845 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4846 4847 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 4848 mov(dst, Address((address)obj, rspec)); 4849 } else { 4850 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 4851 ldr_constant(dst, Address(dummy, rspec)); 4852 } 4853 4854 } 4855 4856 // Move a metadata address into a register. 4857 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 4858 int oop_index; 4859 if (obj == nullptr) { 4860 oop_index = oop_recorder()->allocate_metadata_index(obj); 4861 } else { 4862 oop_index = oop_recorder()->find_index(obj); 4863 } 4864 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 4865 mov(dst, Address((address)obj, rspec)); 4866 } 4867 4868 Address MacroAssembler::constant_oop_address(jobject obj) { 4869 #ifdef ASSERT 4870 { 4871 ThreadInVMfromUnknown tiv; 4872 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 4873 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 4874 } 4875 #endif 4876 int oop_index = oop_recorder()->find_index(obj); 4877 return Address((address)obj, oop_Relocation::spec(oop_index)); 4878 } 4879 4880 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4881 void MacroAssembler::tlab_allocate(Register obj, 4882 Register var_size_in_bytes, 4883 int con_size_in_bytes, 4884 Register t1, 4885 Register t2, 4886 Label& slow_case) { 4887 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4888 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4889 } 4890 4891 void MacroAssembler::verify_tlab() { 4892 #ifdef ASSERT 4893 if (UseTLAB && VerifyOops) { 4894 Label next, ok; 4895 4896 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 4897 4898 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4899 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 4900 cmp(rscratch2, rscratch1); 4901 br(Assembler::HS, next); 4902 STOP("assert(top >= start)"); 4903 should_not_reach_here(); 4904 4905 bind(next); 4906 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 4907 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4908 cmp(rscratch2, rscratch1); 4909 br(Assembler::HS, ok); 4910 STOP("assert(top <= end)"); 4911 should_not_reach_here(); 4912 4913 bind(ok); 4914 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 4915 } 4916 #endif 4917 } 4918 4919 // Writes to stack successive pages until offset reached to check for 4920 // stack overflow + shadow pages. This clobbers tmp. 4921 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 4922 assert_different_registers(tmp, size, rscratch1); 4923 mov(tmp, sp); 4924 // Bang stack for total size given plus shadow page size. 4925 // Bang one page at a time because large size can bang beyond yellow and 4926 // red zones. 4927 Label loop; 4928 mov(rscratch1, (int)os::vm_page_size()); 4929 bind(loop); 4930 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 4931 subsw(size, size, rscratch1); 4932 str(size, Address(tmp)); 4933 br(Assembler::GT, loop); 4934 4935 // Bang down shadow pages too. 4936 // At this point, (tmp-0) is the last address touched, so don't 4937 // touch it again. (It was touched as (tmp-pagesize) but then tmp 4938 // was post-decremented.) Skip this address by starting at i=1, and 4939 // touch a few more pages below. N.B. It is important to touch all 4940 // the way down to and including i=StackShadowPages. 4941 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 4942 // this could be any sized move but this is can be a debugging crumb 4943 // so the bigger the better. 4944 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 4945 str(size, Address(tmp)); 4946 } 4947 } 4948 4949 // Move the address of the polling page into dest. 4950 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 4951 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 4952 } 4953 4954 // Read the polling page. The address of the polling page must 4955 // already be in r. 4956 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 4957 address mark; 4958 { 4959 InstructionMark im(this); 4960 code_section()->relocate(inst_mark(), rtype); 4961 ldrw(zr, Address(r, 0)); 4962 mark = inst_mark(); 4963 } 4964 verify_cross_modify_fence_not_required(); 4965 return mark; 4966 } 4967 4968 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 4969 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 4970 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 4971 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 4972 uint64_t dest_page = (uint64_t)dest.target() >> 12; 4973 int64_t offset_low = dest_page - low_page; 4974 int64_t offset_high = dest_page - high_page; 4975 4976 assert(is_valid_AArch64_address(dest.target()), "bad address"); 4977 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 4978 4979 InstructionMark im(this); 4980 code_section()->relocate(inst_mark(), dest.rspec()); 4981 // 8143067: Ensure that the adrp can reach the dest from anywhere within 4982 // the code cache so that if it is relocated we know it will still reach 4983 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 4984 _adrp(reg1, dest.target()); 4985 } else { 4986 uint64_t target = (uint64_t)dest.target(); 4987 uint64_t adrp_target 4988 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 4989 4990 _adrp(reg1, (address)adrp_target); 4991 movk(reg1, target >> 32, 32); 4992 } 4993 byte_offset = (uint64_t)dest.target() & 0xfff; 4994 } 4995 4996 void MacroAssembler::load_byte_map_base(Register reg) { 4997 CardTable::CardValue* byte_map_base = 4998 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 4999 5000 // Strictly speaking the byte_map_base isn't an address at all, and it might 5001 // even be negative. It is thus materialised as a constant. 5002 mov(reg, (uint64_t)byte_map_base); 5003 } 5004 5005 void MacroAssembler::build_frame(int framesize) { 5006 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5007 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5008 protect_return_address(); 5009 if (framesize < ((1 << 9) + 2 * wordSize)) { 5010 sub(sp, sp, framesize); 5011 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5012 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5013 } else { 5014 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5015 if (PreserveFramePointer) mov(rfp, sp); 5016 if (framesize < ((1 << 12) + 2 * wordSize)) 5017 sub(sp, sp, framesize - 2 * wordSize); 5018 else { 5019 mov(rscratch1, framesize - 2 * wordSize); 5020 sub(sp, sp, rscratch1); 5021 } 5022 } 5023 verify_cross_modify_fence_not_required(); 5024 } 5025 5026 void MacroAssembler::remove_frame(int framesize) { 5027 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5028 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5029 if (framesize < ((1 << 9) + 2 * wordSize)) { 5030 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5031 add(sp, sp, framesize); 5032 } else { 5033 if (framesize < ((1 << 12) + 2 * wordSize)) 5034 add(sp, sp, framesize - 2 * wordSize); 5035 else { 5036 mov(rscratch1, framesize - 2 * wordSize); 5037 add(sp, sp, rscratch1); 5038 } 5039 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5040 } 5041 authenticate_return_address(); 5042 } 5043 5044 5045 // This method counts leading positive bytes (highest bit not set) in provided byte array 5046 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5047 // Simple and most common case of aligned small array which is not at the 5048 // end of memory page is placed here. All other cases are in stub. 5049 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5050 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5051 assert_different_registers(ary1, len, result); 5052 5053 mov(result, len); 5054 cmpw(len, 0); 5055 br(LE, DONE); 5056 cmpw(len, 4 * wordSize); 5057 br(GE, STUB_LONG); // size > 32 then go to stub 5058 5059 int shift = 64 - exact_log2(os::vm_page_size()); 5060 lsl(rscratch1, ary1, shift); 5061 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5062 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5063 br(CS, STUB); // at the end of page then go to stub 5064 subs(len, len, wordSize); 5065 br(LT, END); 5066 5067 BIND(LOOP); 5068 ldr(rscratch1, Address(post(ary1, wordSize))); 5069 tst(rscratch1, UPPER_BIT_MASK); 5070 br(NE, SET_RESULT); 5071 subs(len, len, wordSize); 5072 br(GE, LOOP); 5073 cmpw(len, -wordSize); 5074 br(EQ, DONE); 5075 5076 BIND(END); 5077 ldr(rscratch1, Address(ary1)); 5078 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5079 lslv(rscratch1, rscratch1, rscratch2); 5080 tst(rscratch1, UPPER_BIT_MASK); 5081 br(NE, SET_RESULT); 5082 b(DONE); 5083 5084 BIND(STUB); 5085 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5086 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5087 address tpc1 = trampoline_call(count_pos); 5088 if (tpc1 == nullptr) { 5089 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5090 postcond(pc() == badAddress); 5091 return nullptr; 5092 } 5093 b(DONE); 5094 5095 BIND(STUB_LONG); 5096 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5097 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5098 address tpc2 = trampoline_call(count_pos_long); 5099 if (tpc2 == nullptr) { 5100 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5101 postcond(pc() == badAddress); 5102 return nullptr; 5103 } 5104 b(DONE); 5105 5106 BIND(SET_RESULT); 5107 5108 add(len, len, wordSize); 5109 sub(result, result, len); 5110 5111 BIND(DONE); 5112 postcond(pc() != badAddress); 5113 return pc(); 5114 } 5115 5116 // Clobbers: rscratch1, rscratch2, rflags 5117 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5118 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5119 Register tmp4, Register tmp5, Register result, 5120 Register cnt1, int elem_size) { 5121 Label DONE, SAME; 5122 Register tmp1 = rscratch1; 5123 Register tmp2 = rscratch2; 5124 Register cnt2 = tmp2; // cnt2 only used in array length compare 5125 int elem_per_word = wordSize/elem_size; 5126 int log_elem_size = exact_log2(elem_size); 5127 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5128 int base_offset 5129 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5130 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5131 5132 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5133 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5134 5135 #ifndef PRODUCT 5136 { 5137 const char kind = (elem_size == 2) ? 'U' : 'L'; 5138 char comment[64]; 5139 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5140 BLOCK_COMMENT(comment); 5141 } 5142 #endif 5143 5144 // if (a1 == a2) 5145 // return true; 5146 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5147 br(EQ, SAME); 5148 5149 if (UseSimpleArrayEquals) { 5150 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5151 // if (a1 == nullptr || a2 == nullptr) 5152 // return false; 5153 // a1 & a2 == 0 means (some-pointer is null) or 5154 // (very-rare-or-even-probably-impossible-pointer-values) 5155 // so, we can save one branch in most cases 5156 tst(a1, a2); 5157 mov(result, false); 5158 br(EQ, A_MIGHT_BE_NULL); 5159 // if (a1.length != a2.length) 5160 // return false; 5161 bind(A_IS_NOT_NULL); 5162 ldrw(cnt1, Address(a1, length_offset)); 5163 ldrw(cnt2, Address(a2, length_offset)); 5164 eorw(tmp5, cnt1, cnt2); 5165 cbnzw(tmp5, DONE); 5166 lea(a1, Address(a1, base_offset)); 5167 lea(a2, Address(a2, base_offset)); 5168 // Check for short strings, i.e. smaller than wordSize. 5169 subs(cnt1, cnt1, elem_per_word); 5170 br(Assembler::LT, SHORT); 5171 // Main 8 byte comparison loop. 5172 bind(NEXT_WORD); { 5173 ldr(tmp1, Address(post(a1, wordSize))); 5174 ldr(tmp2, Address(post(a2, wordSize))); 5175 subs(cnt1, cnt1, elem_per_word); 5176 eor(tmp5, tmp1, tmp2); 5177 cbnz(tmp5, DONE); 5178 } br(GT, NEXT_WORD); 5179 // Last longword. In the case where length == 4 we compare the 5180 // same longword twice, but that's still faster than another 5181 // conditional branch. 5182 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5183 // length == 4. 5184 if (log_elem_size > 0) 5185 lsl(cnt1, cnt1, log_elem_size); 5186 ldr(tmp3, Address(a1, cnt1)); 5187 ldr(tmp4, Address(a2, cnt1)); 5188 eor(tmp5, tmp3, tmp4); 5189 cbnz(tmp5, DONE); 5190 b(SAME); 5191 bind(A_MIGHT_BE_NULL); 5192 // in case both a1 and a2 are not-null, proceed with loads 5193 cbz(a1, DONE); 5194 cbz(a2, DONE); 5195 b(A_IS_NOT_NULL); 5196 bind(SHORT); 5197 5198 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5199 { 5200 ldrw(tmp1, Address(post(a1, 4))); 5201 ldrw(tmp2, Address(post(a2, 4))); 5202 eorw(tmp5, tmp1, tmp2); 5203 cbnzw(tmp5, DONE); 5204 } 5205 bind(TAIL03); 5206 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5207 { 5208 ldrh(tmp3, Address(post(a1, 2))); 5209 ldrh(tmp4, Address(post(a2, 2))); 5210 eorw(tmp5, tmp3, tmp4); 5211 cbnzw(tmp5, DONE); 5212 } 5213 bind(TAIL01); 5214 if (elem_size == 1) { // Only needed when comparing byte arrays. 5215 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5216 { 5217 ldrb(tmp1, a1); 5218 ldrb(tmp2, a2); 5219 eorw(tmp5, tmp1, tmp2); 5220 cbnzw(tmp5, DONE); 5221 } 5222 } 5223 } else { 5224 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5225 CSET_EQ, LAST_CHECK; 5226 mov(result, false); 5227 cbz(a1, DONE); 5228 ldrw(cnt1, Address(a1, length_offset)); 5229 cbz(a2, DONE); 5230 ldrw(cnt2, Address(a2, length_offset)); 5231 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5232 // faster to perform another branch before comparing a1 and a2 5233 cmp(cnt1, (u1)elem_per_word); 5234 br(LE, SHORT); // short or same 5235 ldr(tmp3, Address(pre(a1, base_offset))); 5236 subs(zr, cnt1, stubBytesThreshold); 5237 br(GE, STUB); 5238 ldr(tmp4, Address(pre(a2, base_offset))); 5239 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5240 cmp(cnt2, cnt1); 5241 br(NE, DONE); 5242 5243 // Main 16 byte comparison loop with 2 exits 5244 bind(NEXT_DWORD); { 5245 ldr(tmp1, Address(pre(a1, wordSize))); 5246 ldr(tmp2, Address(pre(a2, wordSize))); 5247 subs(cnt1, cnt1, 2 * elem_per_word); 5248 br(LE, TAIL); 5249 eor(tmp4, tmp3, tmp4); 5250 cbnz(tmp4, DONE); 5251 ldr(tmp3, Address(pre(a1, wordSize))); 5252 ldr(tmp4, Address(pre(a2, wordSize))); 5253 cmp(cnt1, (u1)elem_per_word); 5254 br(LE, TAIL2); 5255 cmp(tmp1, tmp2); 5256 } br(EQ, NEXT_DWORD); 5257 b(DONE); 5258 5259 bind(TAIL); 5260 eor(tmp4, tmp3, tmp4); 5261 eor(tmp2, tmp1, tmp2); 5262 lslv(tmp2, tmp2, tmp5); 5263 orr(tmp5, tmp4, tmp2); 5264 cmp(tmp5, zr); 5265 b(CSET_EQ); 5266 5267 bind(TAIL2); 5268 eor(tmp2, tmp1, tmp2); 5269 cbnz(tmp2, DONE); 5270 b(LAST_CHECK); 5271 5272 bind(STUB); 5273 ldr(tmp4, Address(pre(a2, base_offset))); 5274 cmp(cnt2, cnt1); 5275 br(NE, DONE); 5276 if (elem_size == 2) { // convert to byte counter 5277 lsl(cnt1, cnt1, 1); 5278 } 5279 eor(tmp5, tmp3, tmp4); 5280 cbnz(tmp5, DONE); 5281 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5282 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 5283 address tpc = trampoline_call(stub); 5284 if (tpc == nullptr) { 5285 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 5286 postcond(pc() == badAddress); 5287 return nullptr; 5288 } 5289 b(DONE); 5290 5291 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 5292 // so, if a2 == null => return false(0), else return true, so we can return a2 5293 mov(result, a2); 5294 b(DONE); 5295 bind(SHORT); 5296 cmp(cnt2, cnt1); 5297 br(NE, DONE); 5298 cbz(cnt1, SAME); 5299 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5300 ldr(tmp3, Address(a1, base_offset)); 5301 ldr(tmp4, Address(a2, base_offset)); 5302 bind(LAST_CHECK); 5303 eor(tmp4, tmp3, tmp4); 5304 lslv(tmp5, tmp4, tmp5); 5305 cmp(tmp5, zr); 5306 bind(CSET_EQ); 5307 cset(result, EQ); 5308 b(DONE); 5309 } 5310 5311 bind(SAME); 5312 mov(result, true); 5313 // That's it. 5314 bind(DONE); 5315 5316 BLOCK_COMMENT("} array_equals"); 5317 postcond(pc() != badAddress); 5318 return pc(); 5319 } 5320 5321 // Compare Strings 5322 5323 // For Strings we're passed the address of the first characters in a1 5324 // and a2 and the length in cnt1. 5325 // elem_size is the element size in bytes: either 1 or 2. 5326 // There are two implementations. For arrays >= 8 bytes, all 5327 // comparisons (including the final one, which may overlap) are 5328 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 5329 // halfword, then a short, and then a byte. 5330 5331 void MacroAssembler::string_equals(Register a1, Register a2, 5332 Register result, Register cnt1, int elem_size) 5333 { 5334 Label SAME, DONE, SHORT, NEXT_WORD; 5335 Register tmp1 = rscratch1; 5336 Register tmp2 = rscratch2; 5337 Register cnt2 = tmp2; // cnt2 only used in array length compare 5338 5339 assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); 5340 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5341 5342 #ifndef PRODUCT 5343 { 5344 const char kind = (elem_size == 2) ? 'U' : 'L'; 5345 char comment[64]; 5346 snprintf(comment, sizeof comment, "{string_equals%c", kind); 5347 BLOCK_COMMENT(comment); 5348 } 5349 #endif 5350 5351 mov(result, false); 5352 5353 // Check for short strings, i.e. smaller than wordSize. 5354 subs(cnt1, cnt1, wordSize); 5355 br(Assembler::LT, SHORT); 5356 // Main 8 byte comparison loop. 5357 bind(NEXT_WORD); { 5358 ldr(tmp1, Address(post(a1, wordSize))); 5359 ldr(tmp2, Address(post(a2, wordSize))); 5360 subs(cnt1, cnt1, wordSize); 5361 eor(tmp1, tmp1, tmp2); 5362 cbnz(tmp1, DONE); 5363 } br(GT, NEXT_WORD); 5364 // Last longword. In the case where length == 4 we compare the 5365 // same longword twice, but that's still faster than another 5366 // conditional branch. 5367 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5368 // length == 4. 5369 ldr(tmp1, Address(a1, cnt1)); 5370 ldr(tmp2, Address(a2, cnt1)); 5371 eor(tmp2, tmp1, tmp2); 5372 cbnz(tmp2, DONE); 5373 b(SAME); 5374 5375 bind(SHORT); 5376 Label TAIL03, TAIL01; 5377 5378 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 5379 { 5380 ldrw(tmp1, Address(post(a1, 4))); 5381 ldrw(tmp2, Address(post(a2, 4))); 5382 eorw(tmp1, tmp1, tmp2); 5383 cbnzw(tmp1, DONE); 5384 } 5385 bind(TAIL03); 5386 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 5387 { 5388 ldrh(tmp1, Address(post(a1, 2))); 5389 ldrh(tmp2, Address(post(a2, 2))); 5390 eorw(tmp1, tmp1, tmp2); 5391 cbnzw(tmp1, DONE); 5392 } 5393 bind(TAIL01); 5394 if (elem_size == 1) { // Only needed when comparing 1-byte elements 5395 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5396 { 5397 ldrb(tmp1, a1); 5398 ldrb(tmp2, a2); 5399 eorw(tmp1, tmp1, tmp2); 5400 cbnzw(tmp1, DONE); 5401 } 5402 } 5403 // Arrays are equal. 5404 bind(SAME); 5405 mov(result, true); 5406 5407 // That's it. 5408 bind(DONE); 5409 BLOCK_COMMENT("} string_equals"); 5410 } 5411 5412 5413 // The size of the blocks erased by the zero_blocks stub. We must 5414 // handle anything smaller than this ourselves in zero_words(). 5415 const int MacroAssembler::zero_words_block_size = 8; 5416 5417 // zero_words() is used by C2 ClearArray patterns and by 5418 // C1_MacroAssembler. It is as small as possible, handling small word 5419 // counts locally and delegating anything larger to the zero_blocks 5420 // stub. It is expanded many times in compiled code, so it is 5421 // important to keep it short. 5422 5423 // ptr: Address of a buffer to be zeroed. 5424 // cnt: Count in HeapWords. 5425 // 5426 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 5427 address MacroAssembler::zero_words(Register ptr, Register cnt) 5428 { 5429 assert(is_power_of_2(zero_words_block_size), "adjust this"); 5430 5431 BLOCK_COMMENT("zero_words {"); 5432 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 5433 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5434 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 5435 5436 subs(rscratch1, cnt, zero_words_block_size); 5437 Label around; 5438 br(LO, around); 5439 { 5440 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5441 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 5442 // Make sure this is a C2 compilation. C1 allocates space only for 5443 // trampoline stubs generated by Call LIR ops, and in any case it 5444 // makes sense for a C1 compilation task to proceed as quickly as 5445 // possible. 5446 CompileTask* task; 5447 if (StubRoutines::aarch64::complete() 5448 && Thread::current()->is_Compiler_thread() 5449 && (task = ciEnv::current()->task()) 5450 && is_c2_compile(task->comp_level())) { 5451 address tpc = trampoline_call(zero_blocks); 5452 if (tpc == nullptr) { 5453 DEBUG_ONLY(reset_labels(around)); 5454 return nullptr; 5455 } 5456 } else { 5457 far_call(zero_blocks); 5458 } 5459 } 5460 bind(around); 5461 5462 // We have a few words left to do. zero_blocks has adjusted r10 and r11 5463 // for us. 5464 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 5465 Label l; 5466 tbz(cnt, exact_log2(i), l); 5467 for (int j = 0; j < i; j += 2) { 5468 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 5469 } 5470 bind(l); 5471 } 5472 { 5473 Label l; 5474 tbz(cnt, 0, l); 5475 str(zr, Address(ptr)); 5476 bind(l); 5477 } 5478 5479 BLOCK_COMMENT("} zero_words"); 5480 return pc(); 5481 } 5482 5483 // base: Address of a buffer to be zeroed, 8 bytes aligned. 5484 // cnt: Immediate count in HeapWords. 5485 // 5486 // r10, r11, rscratch1, and rscratch2 are clobbered. 5487 address MacroAssembler::zero_words(Register base, uint64_t cnt) 5488 { 5489 assert(wordSize <= BlockZeroingLowLimit, 5490 "increase BlockZeroingLowLimit"); 5491 address result = nullptr; 5492 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 5493 #ifndef PRODUCT 5494 { 5495 char buf[64]; 5496 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 5497 BLOCK_COMMENT(buf); 5498 } 5499 #endif 5500 if (cnt >= 16) { 5501 uint64_t loops = cnt/16; 5502 if (loops > 1) { 5503 mov(rscratch2, loops - 1); 5504 } 5505 { 5506 Label loop; 5507 bind(loop); 5508 for (int i = 0; i < 16; i += 2) { 5509 stp(zr, zr, Address(base, i * BytesPerWord)); 5510 } 5511 add(base, base, 16 * BytesPerWord); 5512 if (loops > 1) { 5513 subs(rscratch2, rscratch2, 1); 5514 br(GE, loop); 5515 } 5516 } 5517 } 5518 cnt %= 16; 5519 int i = cnt & 1; // store any odd word to start 5520 if (i) str(zr, Address(base)); 5521 for (; i < (int)cnt; i += 2) { 5522 stp(zr, zr, Address(base, i * wordSize)); 5523 } 5524 BLOCK_COMMENT("} zero_words"); 5525 result = pc(); 5526 } else { 5527 mov(r10, base); mov(r11, cnt); 5528 result = zero_words(r10, r11); 5529 } 5530 return result; 5531 } 5532 5533 // Zero blocks of memory by using DC ZVA. 5534 // 5535 // Aligns the base address first sufficiently for DC ZVA, then uses 5536 // DC ZVA repeatedly for every full block. cnt is the size to be 5537 // zeroed in HeapWords. Returns the count of words left to be zeroed 5538 // in cnt. 5539 // 5540 // NOTE: This is intended to be used in the zero_blocks() stub. If 5541 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 5542 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 5543 Register tmp = rscratch1; 5544 Register tmp2 = rscratch2; 5545 int zva_length = VM_Version::zva_length(); 5546 Label initial_table_end, loop_zva; 5547 Label fini; 5548 5549 // Base must be 16 byte aligned. If not just return and let caller handle it 5550 tst(base, 0x0f); 5551 br(Assembler::NE, fini); 5552 // Align base with ZVA length. 5553 neg(tmp, base); 5554 andr(tmp, tmp, zva_length - 1); 5555 5556 // tmp: the number of bytes to be filled to align the base with ZVA length. 5557 add(base, base, tmp); 5558 sub(cnt, cnt, tmp, Assembler::ASR, 3); 5559 adr(tmp2, initial_table_end); 5560 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 5561 br(tmp2); 5562 5563 for (int i = -zva_length + 16; i < 0; i += 16) 5564 stp(zr, zr, Address(base, i)); 5565 bind(initial_table_end); 5566 5567 sub(cnt, cnt, zva_length >> 3); 5568 bind(loop_zva); 5569 dc(Assembler::ZVA, base); 5570 subs(cnt, cnt, zva_length >> 3); 5571 add(base, base, zva_length); 5572 br(Assembler::GE, loop_zva); 5573 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 5574 bind(fini); 5575 } 5576 5577 // base: Address of a buffer to be filled, 8 bytes aligned. 5578 // cnt: Count in 8-byte unit. 5579 // value: Value to be filled with. 5580 // base will point to the end of the buffer after filling. 5581 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 5582 { 5583 // Algorithm: 5584 // 5585 // if (cnt == 0) { 5586 // return; 5587 // } 5588 // if ((p & 8) != 0) { 5589 // *p++ = v; 5590 // } 5591 // 5592 // scratch1 = cnt & 14; 5593 // cnt -= scratch1; 5594 // p += scratch1; 5595 // switch (scratch1 / 2) { 5596 // do { 5597 // cnt -= 16; 5598 // p[-16] = v; 5599 // p[-15] = v; 5600 // case 7: 5601 // p[-14] = v; 5602 // p[-13] = v; 5603 // case 6: 5604 // p[-12] = v; 5605 // p[-11] = v; 5606 // // ... 5607 // case 1: 5608 // p[-2] = v; 5609 // p[-1] = v; 5610 // case 0: 5611 // p += 16; 5612 // } while (cnt); 5613 // } 5614 // if ((cnt & 1) == 1) { 5615 // *p++ = v; 5616 // } 5617 5618 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 5619 5620 Label fini, skip, entry, loop; 5621 const int unroll = 8; // Number of stp instructions we'll unroll 5622 5623 cbz(cnt, fini); 5624 tbz(base, 3, skip); 5625 str(value, Address(post(base, 8))); 5626 sub(cnt, cnt, 1); 5627 bind(skip); 5628 5629 andr(rscratch1, cnt, (unroll-1) * 2); 5630 sub(cnt, cnt, rscratch1); 5631 add(base, base, rscratch1, Assembler::LSL, 3); 5632 adr(rscratch2, entry); 5633 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 5634 br(rscratch2); 5635 5636 bind(loop); 5637 add(base, base, unroll * 16); 5638 for (int i = -unroll; i < 0; i++) 5639 stp(value, value, Address(base, i * 16)); 5640 bind(entry); 5641 subs(cnt, cnt, unroll * 2); 5642 br(Assembler::GE, loop); 5643 5644 tbz(cnt, 0, fini); 5645 str(value, Address(post(base, 8))); 5646 bind(fini); 5647 } 5648 5649 // Intrinsic for 5650 // 5651 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 5652 // return the number of characters copied. 5653 // - java/lang/StringUTF16.compress 5654 // return zero (0) if copy fails, otherwise 'len'. 5655 // 5656 // This version always returns the number of characters copied, and does not 5657 // clobber the 'len' register. A successful copy will complete with the post- 5658 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 5659 // post-condition: 0 <= 'res' < 'len'. 5660 // 5661 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 5662 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 5663 // beyond the acceptable, even though the footprint would be smaller. 5664 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 5665 // avoid additional bloat. 5666 // 5667 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 5668 void MacroAssembler::encode_iso_array(Register src, Register dst, 5669 Register len, Register res, bool ascii, 5670 FloatRegister vtmp0, FloatRegister vtmp1, 5671 FloatRegister vtmp2, FloatRegister vtmp3, 5672 FloatRegister vtmp4, FloatRegister vtmp5) 5673 { 5674 Register cnt = res; 5675 Register max = rscratch1; 5676 Register chk = rscratch2; 5677 5678 prfm(Address(src), PLDL1STRM); 5679 movw(cnt, len); 5680 5681 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 5682 5683 Label LOOP_32, DONE_32, FAIL_32; 5684 5685 BIND(LOOP_32); 5686 { 5687 cmpw(cnt, 32); 5688 br(LT, DONE_32); 5689 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 5690 // Extract lower bytes. 5691 FloatRegister vlo0 = vtmp4; 5692 FloatRegister vlo1 = vtmp5; 5693 uzp1(vlo0, T16B, vtmp0, vtmp1); 5694 uzp1(vlo1, T16B, vtmp2, vtmp3); 5695 // Merge bits... 5696 orr(vtmp0, T16B, vtmp0, vtmp1); 5697 orr(vtmp2, T16B, vtmp2, vtmp3); 5698 // Extract merged upper bytes. 5699 FloatRegister vhix = vtmp0; 5700 uzp2(vhix, T16B, vtmp0, vtmp2); 5701 // ISO-check on hi-parts (all zero). 5702 // ASCII-check on lo-parts (no sign). 5703 FloatRegister vlox = vtmp1; // Merge lower bytes. 5704 ASCII(orr(vlox, T16B, vlo0, vlo1)); 5705 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 5706 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 5707 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 5708 ASCII(orr(chk, chk, max)); 5709 cbnz(chk, FAIL_32); 5710 subw(cnt, cnt, 32); 5711 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 5712 b(LOOP_32); 5713 } 5714 BIND(FAIL_32); 5715 sub(src, src, 64); 5716 BIND(DONE_32); 5717 5718 Label LOOP_8, SKIP_8; 5719 5720 BIND(LOOP_8); 5721 { 5722 cmpw(cnt, 8); 5723 br(LT, SKIP_8); 5724 FloatRegister vhi = vtmp0; 5725 FloatRegister vlo = vtmp1; 5726 ld1(vtmp3, T8H, src); 5727 uzp1(vlo, T16B, vtmp3, vtmp3); 5728 uzp2(vhi, T16B, vtmp3, vtmp3); 5729 // ISO-check on hi-parts (all zero). 5730 // ASCII-check on lo-parts (no sign). 5731 ASCII(cm(LT, vtmp2, T16B, vlo)); 5732 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 5733 ASCII(umov(max, vtmp2, B, 0)); 5734 ASCII(orr(chk, chk, max)); 5735 cbnz(chk, SKIP_8); 5736 5737 strd(vlo, Address(post(dst, 8))); 5738 subw(cnt, cnt, 8); 5739 add(src, src, 16); 5740 b(LOOP_8); 5741 } 5742 BIND(SKIP_8); 5743 5744 #undef ASCII 5745 5746 Label LOOP, DONE; 5747 5748 cbz(cnt, DONE); 5749 BIND(LOOP); 5750 { 5751 Register chr = rscratch1; 5752 ldrh(chr, Address(post(src, 2))); 5753 tst(chr, ascii ? 0xff80 : 0xff00); 5754 br(NE, DONE); 5755 strb(chr, Address(post(dst, 1))); 5756 subs(cnt, cnt, 1); 5757 br(GT, LOOP); 5758 } 5759 BIND(DONE); 5760 // Return index where we stopped. 5761 subw(res, len, cnt); 5762 } 5763 5764 // Inflate byte[] array to char[]. 5765 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 5766 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 5767 FloatRegister vtmp1, FloatRegister vtmp2, 5768 FloatRegister vtmp3, Register tmp4) { 5769 Label big, done, after_init, to_stub; 5770 5771 assert_different_registers(src, dst, len, tmp4, rscratch1); 5772 5773 fmovd(vtmp1, 0.0); 5774 lsrw(tmp4, len, 3); 5775 bind(after_init); 5776 cbnzw(tmp4, big); 5777 // Short string: less than 8 bytes. 5778 { 5779 Label loop, tiny; 5780 5781 cmpw(len, 4); 5782 br(LT, tiny); 5783 // Use SIMD to do 4 bytes. 5784 ldrs(vtmp2, post(src, 4)); 5785 zip1(vtmp3, T8B, vtmp2, vtmp1); 5786 subw(len, len, 4); 5787 strd(vtmp3, post(dst, 8)); 5788 5789 cbzw(len, done); 5790 5791 // Do the remaining bytes by steam. 5792 bind(loop); 5793 ldrb(tmp4, post(src, 1)); 5794 strh(tmp4, post(dst, 2)); 5795 subw(len, len, 1); 5796 5797 bind(tiny); 5798 cbnz(len, loop); 5799 5800 b(done); 5801 } 5802 5803 if (SoftwarePrefetchHintDistance >= 0) { 5804 bind(to_stub); 5805 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 5806 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 5807 address tpc = trampoline_call(stub); 5808 if (tpc == nullptr) { 5809 DEBUG_ONLY(reset_labels(big, done)); 5810 postcond(pc() == badAddress); 5811 return nullptr; 5812 } 5813 b(after_init); 5814 } 5815 5816 // Unpack the bytes 8 at a time. 5817 bind(big); 5818 { 5819 Label loop, around, loop_last, loop_start; 5820 5821 if (SoftwarePrefetchHintDistance >= 0) { 5822 const int large_loop_threshold = (64 + 16)/8; 5823 ldrd(vtmp2, post(src, 8)); 5824 andw(len, len, 7); 5825 cmp(tmp4, (u1)large_loop_threshold); 5826 br(GE, to_stub); 5827 b(loop_start); 5828 5829 bind(loop); 5830 ldrd(vtmp2, post(src, 8)); 5831 bind(loop_start); 5832 subs(tmp4, tmp4, 1); 5833 br(EQ, loop_last); 5834 zip1(vtmp2, T16B, vtmp2, vtmp1); 5835 ldrd(vtmp3, post(src, 8)); 5836 st1(vtmp2, T8H, post(dst, 16)); 5837 subs(tmp4, tmp4, 1); 5838 zip1(vtmp3, T16B, vtmp3, vtmp1); 5839 st1(vtmp3, T8H, post(dst, 16)); 5840 br(NE, loop); 5841 b(around); 5842 bind(loop_last); 5843 zip1(vtmp2, T16B, vtmp2, vtmp1); 5844 st1(vtmp2, T8H, post(dst, 16)); 5845 bind(around); 5846 cbz(len, done); 5847 } else { 5848 andw(len, len, 7); 5849 bind(loop); 5850 ldrd(vtmp2, post(src, 8)); 5851 sub(tmp4, tmp4, 1); 5852 zip1(vtmp3, T16B, vtmp2, vtmp1); 5853 st1(vtmp3, T8H, post(dst, 16)); 5854 cbnz(tmp4, loop); 5855 } 5856 } 5857 5858 // Do the tail of up to 8 bytes. 5859 add(src, src, len); 5860 ldrd(vtmp3, Address(src, -8)); 5861 add(dst, dst, len, ext::uxtw, 1); 5862 zip1(vtmp3, T16B, vtmp3, vtmp1); 5863 strq(vtmp3, Address(dst, -16)); 5864 5865 bind(done); 5866 postcond(pc() != badAddress); 5867 return pc(); 5868 } 5869 5870 // Compress char[] array to byte[]. 5871 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 5872 Register res, 5873 FloatRegister tmp0, FloatRegister tmp1, 5874 FloatRegister tmp2, FloatRegister tmp3, 5875 FloatRegister tmp4, FloatRegister tmp5) { 5876 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 5877 // Adjust result: res == len ? len : 0 5878 cmp(len, res); 5879 csel(res, res, zr, EQ); 5880 } 5881 5882 // java.math.round(double a) 5883 // Returns the closest long to the argument, with ties rounding to 5884 // positive infinity. This requires some fiddling for corner 5885 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 5886 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 5887 FloatRegister ftmp) { 5888 Label DONE; 5889 BLOCK_COMMENT("java_round_double: { "); 5890 fmovd(rscratch1, src); 5891 // Use RoundToNearestTiesAway unless src small and -ve. 5892 fcvtasd(dst, src); 5893 // Test if src >= 0 || abs(src) >= 0x1.0p52 5894 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 5895 mov(rscratch2, julong_cast(0x1.0p52)); 5896 cmp(rscratch1, rscratch2); 5897 br(HS, DONE); { 5898 // src < 0 && abs(src) < 0x1.0p52 5899 // src may have a fractional part, so add 0.5 5900 fmovd(ftmp, 0.5); 5901 faddd(ftmp, src, ftmp); 5902 // Convert double to jlong, use RoundTowardsNegative 5903 fcvtmsd(dst, ftmp); 5904 } 5905 bind(DONE); 5906 BLOCK_COMMENT("} java_round_double"); 5907 } 5908 5909 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 5910 FloatRegister ftmp) { 5911 Label DONE; 5912 BLOCK_COMMENT("java_round_float: { "); 5913 fmovs(rscratch1, src); 5914 // Use RoundToNearestTiesAway unless src small and -ve. 5915 fcvtassw(dst, src); 5916 // Test if src >= 0 || abs(src) >= 0x1.0p23 5917 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 5918 mov(rscratch2, jint_cast(0x1.0p23f)); 5919 cmp(rscratch1, rscratch2); 5920 br(HS, DONE); { 5921 // src < 0 && |src| < 0x1.0p23 5922 // src may have a fractional part, so add 0.5 5923 fmovs(ftmp, 0.5f); 5924 fadds(ftmp, src, ftmp); 5925 // Convert float to jint, use RoundTowardsNegative 5926 fcvtmssw(dst, ftmp); 5927 } 5928 bind(DONE); 5929 BLOCK_COMMENT("} java_round_float"); 5930 } 5931 5932 // get_thread() can be called anywhere inside generated code so we 5933 // need to save whatever non-callee save context might get clobbered 5934 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 5935 // the call setup code. 5936 // 5937 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 5938 // On other systems, the helper is a usual C function. 5939 // 5940 void MacroAssembler::get_thread(Register dst) { 5941 RegSet saved_regs = 5942 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 5943 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 5944 5945 protect_return_address(); 5946 push(saved_regs, sp); 5947 5948 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 5949 blr(lr); 5950 if (dst != c_rarg0) { 5951 mov(dst, c_rarg0); 5952 } 5953 5954 pop(saved_regs, sp); 5955 authenticate_return_address(); 5956 } 5957 5958 void MacroAssembler::cache_wb(Address line) { 5959 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 5960 assert(line.index() == noreg, "index should be noreg"); 5961 assert(line.offset() == 0, "offset should be 0"); 5962 // would like to assert this 5963 // assert(line._ext.shift == 0, "shift should be zero"); 5964 if (VM_Version::supports_dcpop()) { 5965 // writeback using clear virtual address to point of persistence 5966 dc(Assembler::CVAP, line.base()); 5967 } else { 5968 // no need to generate anything as Unsafe.writebackMemory should 5969 // never invoke this stub 5970 } 5971 } 5972 5973 void MacroAssembler::cache_wbsync(bool is_pre) { 5974 // we only need a barrier post sync 5975 if (!is_pre) { 5976 membar(Assembler::AnyAny); 5977 } 5978 } 5979 5980 void MacroAssembler::verify_sve_vector_length(Register tmp) { 5981 // Make sure that native code does not change SVE vector length. 5982 if (!UseSVE) return; 5983 Label verify_ok; 5984 movw(tmp, zr); 5985 sve_inc(tmp, B); 5986 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 5987 br(EQ, verify_ok); 5988 stop("Error: SVE vector length has changed since jvm startup"); 5989 bind(verify_ok); 5990 } 5991 5992 void MacroAssembler::verify_ptrue() { 5993 Label verify_ok; 5994 if (!UseSVE) { 5995 return; 5996 } 5997 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 5998 sve_dec(rscratch1, B); 5999 cbz(rscratch1, verify_ok); 6000 stop("Error: the preserved predicate register (p7) elements are not all true"); 6001 bind(verify_ok); 6002 } 6003 6004 void MacroAssembler::safepoint_isb() { 6005 isb(); 6006 #ifndef PRODUCT 6007 if (VerifyCrossModifyFence) { 6008 // Clear the thread state. 6009 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6010 } 6011 #endif 6012 } 6013 6014 #ifndef PRODUCT 6015 void MacroAssembler::verify_cross_modify_fence_not_required() { 6016 if (VerifyCrossModifyFence) { 6017 // Check if thread needs a cross modify fence. 6018 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6019 Label fence_not_required; 6020 cbz(rscratch1, fence_not_required); 6021 // If it does then fail. 6022 lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)); 6023 mov(c_rarg0, rthread); 6024 blr(rscratch1); 6025 bind(fence_not_required); 6026 } 6027 } 6028 #endif 6029 6030 void MacroAssembler::spin_wait() { 6031 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6032 switch (VM_Version::spin_wait_desc().inst()) { 6033 case SpinWait::NOP: 6034 nop(); 6035 break; 6036 case SpinWait::ISB: 6037 isb(); 6038 break; 6039 case SpinWait::YIELD: 6040 yield(); 6041 break; 6042 default: 6043 ShouldNotReachHere(); 6044 } 6045 } 6046 } 6047 6048 // Stack frame creation/removal 6049 6050 void MacroAssembler::enter(bool strip_ret_addr) { 6051 if (strip_ret_addr) { 6052 // Addresses can only be signed once. If there are multiple nested frames being created 6053 // in the same function, then the return address needs stripping first. 6054 strip_return_address(); 6055 } 6056 protect_return_address(); 6057 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6058 mov(rfp, sp); 6059 } 6060 6061 void MacroAssembler::leave() { 6062 mov(sp, rfp); 6063 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6064 authenticate_return_address(); 6065 } 6066 6067 // ROP Protection 6068 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6069 // destroying stack frames or whenever directly loading/storing the LR to memory. 6070 // If ROP protection is not set then these functions are no-ops. 6071 // For more details on PAC see pauth_aarch64.hpp. 6072 6073 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6074 // Uses value zero as the modifier. 6075 // 6076 void MacroAssembler::protect_return_address() { 6077 if (VM_Version::use_rop_protection()) { 6078 check_return_address(); 6079 paciaz(); 6080 } 6081 } 6082 6083 // Sign the return value in the given register. Use before updating the LR in the existing stack 6084 // frame for the current function. 6085 // Uses value zero as the modifier. 6086 // 6087 void MacroAssembler::protect_return_address(Register return_reg) { 6088 if (VM_Version::use_rop_protection()) { 6089 check_return_address(return_reg); 6090 paciza(return_reg); 6091 } 6092 } 6093 6094 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6095 // Uses value zero as the modifier. 6096 // 6097 void MacroAssembler::authenticate_return_address() { 6098 if (VM_Version::use_rop_protection()) { 6099 autiaz(); 6100 check_return_address(); 6101 } 6102 } 6103 6104 // Authenticate the return value in the given register. Use before updating the LR in the existing 6105 // stack frame for the current function. 6106 // Uses value zero as the modifier. 6107 // 6108 void MacroAssembler::authenticate_return_address(Register return_reg) { 6109 if (VM_Version::use_rop_protection()) { 6110 autiza(return_reg); 6111 check_return_address(return_reg); 6112 } 6113 } 6114 6115 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6116 // there is no guaranteed way of authenticating the LR. 6117 // 6118 void MacroAssembler::strip_return_address() { 6119 if (VM_Version::use_rop_protection()) { 6120 xpaclri(); 6121 } 6122 } 6123 6124 #ifndef PRODUCT 6125 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6126 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6127 // it is difficult to debug back to the callee function. 6128 // This function simply loads from the address in the given register. 6129 // Use directly after authentication to catch authentication failures. 6130 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6131 // 6132 void MacroAssembler::check_return_address(Register return_reg) { 6133 if (VM_Version::use_rop_protection()) { 6134 ldr(zr, Address(return_reg)); 6135 } 6136 } 6137 #endif 6138 6139 // The java_calling_convention describes stack locations as ideal slots on 6140 // a frame with no abi restrictions. Since we must observe abi restrictions 6141 // (like the placement of the register window) the slots must be biased by 6142 // the following value. 6143 static int reg2offset_in(VMReg r) { 6144 // Account for saved rfp and lr 6145 // This should really be in_preserve_stack_slots 6146 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6147 } 6148 6149 static int reg2offset_out(VMReg r) { 6150 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6151 } 6152 6153 // On 64bit we will store integer like items to the stack as 6154 // 64bits items (AArch64 ABI) even though java would only store 6155 // 32bits for a parameter. On 32bit it will simply be 32bits 6156 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6157 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6158 if (src.first()->is_stack()) { 6159 if (dst.first()->is_stack()) { 6160 // stack to stack 6161 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6162 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6163 } else { 6164 // stack to reg 6165 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6166 } 6167 } else if (dst.first()->is_stack()) { 6168 // reg to stack 6169 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6170 } else { 6171 if (dst.first() != src.first()) { 6172 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6173 } 6174 } 6175 } 6176 6177 // An oop arg. Must pass a handle not the oop itself 6178 void MacroAssembler::object_move( 6179 OopMap* map, 6180 int oop_handle_offset, 6181 int framesize_in_slots, 6182 VMRegPair src, 6183 VMRegPair dst, 6184 bool is_receiver, 6185 int* receiver_offset) { 6186 6187 // must pass a handle. First figure out the location we use as a handle 6188 6189 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6190 6191 // See if oop is null if it is we need no handle 6192 6193 if (src.first()->is_stack()) { 6194 6195 // Oop is already on the stack as an argument 6196 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6197 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6198 if (is_receiver) { 6199 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6200 } 6201 6202 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6203 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6204 // conditionally move a null 6205 cmp(rscratch1, zr); 6206 csel(rHandle, zr, rHandle, Assembler::EQ); 6207 } else { 6208 6209 // Oop is in an a register we must store it to the space we reserve 6210 // on the stack for oop_handles and pass a handle if oop is non-null 6211 6212 const Register rOop = src.first()->as_Register(); 6213 int oop_slot; 6214 if (rOop == j_rarg0) 6215 oop_slot = 0; 6216 else if (rOop == j_rarg1) 6217 oop_slot = 1; 6218 else if (rOop == j_rarg2) 6219 oop_slot = 2; 6220 else if (rOop == j_rarg3) 6221 oop_slot = 3; 6222 else if (rOop == j_rarg4) 6223 oop_slot = 4; 6224 else if (rOop == j_rarg5) 6225 oop_slot = 5; 6226 else if (rOop == j_rarg6) 6227 oop_slot = 6; 6228 else { 6229 assert(rOop == j_rarg7, "wrong register"); 6230 oop_slot = 7; 6231 } 6232 6233 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6234 int offset = oop_slot*VMRegImpl::stack_slot_size; 6235 6236 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6237 // Store oop in handle area, may be null 6238 str(rOop, Address(sp, offset)); 6239 if (is_receiver) { 6240 *receiver_offset = offset; 6241 } 6242 6243 cmp(rOop, zr); 6244 lea(rHandle, Address(sp, offset)); 6245 // conditionally move a null 6246 csel(rHandle, zr, rHandle, Assembler::EQ); 6247 } 6248 6249 // If arg is on the stack then place it otherwise it is already in correct reg. 6250 if (dst.first()->is_stack()) { 6251 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6252 } 6253 } 6254 6255 // A float arg may have to do float reg int reg conversion 6256 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6257 if (src.first()->is_stack()) { 6258 if (dst.first()->is_stack()) { 6259 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6260 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6261 } else { 6262 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6263 } 6264 } else if (src.first() != dst.first()) { 6265 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6266 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6267 else 6268 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6269 } 6270 } 6271 6272 // A long move 6273 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6274 if (src.first()->is_stack()) { 6275 if (dst.first()->is_stack()) { 6276 // stack to stack 6277 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6278 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6279 } else { 6280 // stack to reg 6281 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6282 } 6283 } else if (dst.first()->is_stack()) { 6284 // reg to stack 6285 // Do we really have to sign extend??? 6286 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 6287 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6288 } else { 6289 if (dst.first() != src.first()) { 6290 mov(dst.first()->as_Register(), src.first()->as_Register()); 6291 } 6292 } 6293 } 6294 6295 6296 // A double move 6297 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 6298 if (src.first()->is_stack()) { 6299 if (dst.first()->is_stack()) { 6300 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6301 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6302 } else { 6303 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6304 } 6305 } else if (src.first() != dst.first()) { 6306 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6307 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6308 else 6309 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6310 } 6311 } 6312 6313 // Implements lightweight-locking. 6314 // Branches to slow upon failure to lock the object, with ZF cleared. 6315 // Falls through upon success with ZF set. 6316 // 6317 // - obj: the object to be locked 6318 // - hdr: the header, already loaded from obj, will be destroyed 6319 // - t1, t2: temporary registers, will be destroyed 6320 void MacroAssembler::lightweight_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow) { 6321 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6322 assert_different_registers(obj, hdr, t1, t2, rscratch1); 6323 6324 // Check if we would have space on lock-stack for the object. 6325 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6326 cmpw(t1, (unsigned)LockStack::end_offset() - 1); 6327 br(Assembler::GT, slow); 6328 6329 // Load (object->mark() | 1) into hdr 6330 orr(hdr, hdr, markWord::unlocked_value); 6331 // Clear lock-bits, into t2 6332 eor(t2, hdr, markWord::unlocked_value); 6333 // Try to swing header from unlocked to locked 6334 // Clobbers rscratch1 when UseLSE is false 6335 cmpxchg(/*addr*/ obj, /*expected*/ hdr, /*new*/ t2, Assembler::xword, 6336 /*acquire*/ true, /*release*/ true, /*weak*/ false, t1); 6337 br(Assembler::NE, slow); 6338 6339 // After successful lock, push object on lock-stack 6340 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6341 str(obj, Address(rthread, t1)); 6342 addw(t1, t1, oopSize); 6343 strw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6344 } 6345 6346 // Implements lightweight-unlocking. 6347 // Branches to slow upon failure, with ZF cleared. 6348 // Falls through upon success, with ZF set. 6349 // 6350 // - obj: the object to be unlocked 6351 // - hdr: the (pre-loaded) header of the object 6352 // - t1, t2: temporary registers 6353 void MacroAssembler::lightweight_unlock(Register obj, Register hdr, Register t1, Register t2, Label& slow) { 6354 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6355 assert_different_registers(obj, hdr, t1, t2, rscratch1); 6356 6357 #ifdef ASSERT 6358 { 6359 // The following checks rely on the fact that LockStack is only ever modified by 6360 // its owning thread, even if the lock got inflated concurrently; removal of LockStack 6361 // entries after inflation will happen delayed in that case. 6362 6363 // Check for lock-stack underflow. 6364 Label stack_ok; 6365 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6366 cmpw(t1, (unsigned)LockStack::start_offset()); 6367 br(Assembler::GT, stack_ok); 6368 STOP("Lock-stack underflow"); 6369 bind(stack_ok); 6370 } 6371 { 6372 // Check if the top of the lock-stack matches the unlocked object. 6373 Label tos_ok; 6374 subw(t1, t1, oopSize); 6375 ldr(t1, Address(rthread, t1)); 6376 cmpoop(t1, obj); 6377 br(Assembler::EQ, tos_ok); 6378 STOP("Top of lock-stack does not match the unlocked object"); 6379 bind(tos_ok); 6380 } 6381 { 6382 // Check that hdr is fast-locked. 6383 Label hdr_ok; 6384 tst(hdr, markWord::lock_mask_in_place); 6385 br(Assembler::EQ, hdr_ok); 6386 STOP("Header is not fast-locked"); 6387 bind(hdr_ok); 6388 } 6389 #endif 6390 6391 // Load the new header (unlocked) into t1 6392 orr(t1, hdr, markWord::unlocked_value); 6393 6394 // Try to swing header from locked to unlocked 6395 // Clobbers rscratch1 when UseLSE is false 6396 cmpxchg(obj, hdr, t1, Assembler::xword, 6397 /*acquire*/ true, /*release*/ true, /*weak*/ false, t2); 6398 br(Assembler::NE, slow); 6399 6400 // After successful unlock, pop object from lock-stack 6401 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6402 subw(t1, t1, oopSize); 6403 #ifdef ASSERT 6404 str(zr, Address(rthread, t1)); 6405 #endif 6406 strw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6407 }