1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/assembler.hpp" 28 #include "asm/assembler.inline.hpp" 29 #include "ci/ciEnv.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "jvm.h" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "nativeInst_aarch64.hpp" 46 #include "oops/accessDecorators.hpp" 47 #include "oops/compressedKlass.inline.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "runtime/continuation.hpp" 51 #include "runtime/icache.hpp" 52 #include "runtime/interfaceSupport.inline.hpp" 53 #include "runtime/javaThread.hpp" 54 #include "runtime/jniHandles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #ifdef COMPILER1 60 #include "c1/c1_LIRAssembler.hpp" 61 #endif 62 #ifdef COMPILER2 63 #include "oops/oop.hpp" 64 #include "opto/compile.hpp" 65 #include "opto/node.hpp" 66 #include "opto/output.hpp" 67 #endif 68 69 #include <sys/types.h> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) block_comment(str) 75 #endif 76 #define STOP(str) stop(str); 77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 78 79 #ifdef ASSERT 80 extern "C" void disnm(intptr_t p); 81 #endif 82 // Target-dependent relocation processing 83 // 84 // Instruction sequences whose target may need to be retrieved or 85 // patched are distinguished by their leading instruction, sorting 86 // them into three main instruction groups and related subgroups. 87 // 88 // 1) Branch, Exception and System (insn count = 1) 89 // 1a) Unconditional branch (immediate): 90 // b/bl imm19 91 // 1b) Compare & branch (immediate): 92 // cbz/cbnz Rt imm19 93 // 1c) Test & branch (immediate): 94 // tbz/tbnz Rt imm14 95 // 1d) Conditional branch (immediate): 96 // b.cond imm19 97 // 98 // 2) Loads and Stores (insn count = 1) 99 // 2a) Load register literal: 100 // ldr Rt imm19 101 // 102 // 3) Data Processing Immediate (insn count = 2 or 3) 103 // 3a) PC-rel. addressing 104 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 105 // adr/adrp Rx imm21; add Ry Rx #imm12 106 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 107 // adr/adrp Rx imm21 108 // adr/adrp Rx imm21; movk Rx #imm16<<32 109 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 110 // The latter form can only happen when the target is an 111 // ExternalAddress, and (by definition) ExternalAddresses don't 112 // move. Because of that property, there is never any need to 113 // patch the last of the three instructions. However, 114 // MacroAssembler::target_addr_for_insn takes all three 115 // instructions into account and returns the correct address. 116 // 3b) Move wide (immediate) 117 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 118 // 119 // A switch on a subset of the instruction's bits provides an 120 // efficient dispatch to these subcases. 121 // 122 // insn[28:26] -> main group ('x' == don't care) 123 // 00x -> UNALLOCATED 124 // 100 -> Data Processing Immediate 125 // 101 -> Branch, Exception and System 126 // x1x -> Loads and Stores 127 // 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 129 // n.b. in some cases extra bits need to be checked to verify the 130 // instruction is as expected 131 // 132 // 1) ... xx101x Branch, Exception and System 133 // 1a) 00___x Unconditional branch (immediate) 134 // 1b) 01___0 Compare & branch (immediate) 135 // 1c) 01___1 Test & branch (immediate) 136 // 1d) 10___0 Conditional branch (immediate) 137 // other Should not happen 138 // 139 // 2) ... xxx1x0 Loads and Stores 140 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 141 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 142 // strictly should be 64 bit non-FP/SIMD i.e. 143 // 0101_000 (i.e. requires insn[31:24] == 01011000) 144 // 145 // 3) ... xx100x Data Processing Immediate 146 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 147 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 148 // strictly should be 64 bit movz #imm16<<0 149 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 150 // 151 class RelocActions { 152 protected: 153 typedef int (*reloc_insn)(address insn_addr, address &target); 154 155 virtual reloc_insn adrpMem() = 0; 156 virtual reloc_insn adrpAdd() = 0; 157 virtual reloc_insn adrpMovk() = 0; 158 159 const address _insn_addr; 160 const uint32_t _insn; 161 162 static uint32_t insn_at(address insn_addr, int n) { 163 return ((uint32_t*)insn_addr)[n]; 164 } 165 uint32_t insn_at(int n) const { 166 return insn_at(_insn_addr, n); 167 } 168 169 public: 170 171 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 172 RelocActions(address insn_addr, uint32_t insn) 173 : _insn_addr(insn_addr), _insn(insn) {} 174 175 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 176 virtual int conditionalBranch(address insn_addr, address &target) = 0; 177 virtual int testAndBranch(address insn_addr, address &target) = 0; 178 virtual int loadStore(address insn_addr, address &target) = 0; 179 virtual int adr(address insn_addr, address &target) = 0; 180 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 181 virtual int immediate(address insn_addr, address &target) = 0; 182 virtual void verify(address insn_addr, address &target) = 0; 183 184 int ALWAYSINLINE run(address insn_addr, address &target) { 185 int instructions = 1; 186 187 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 188 switch(dispatch) { 189 case 0b001010: 190 case 0b001011: { 191 instructions = unconditionalBranch(insn_addr, target); 192 break; 193 } 194 case 0b101010: // Conditional branch (immediate) 195 case 0b011010: { // Compare & branch (immediate) 196 instructions = conditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b011011: { 200 instructions = testAndBranch(insn_addr, target); 201 break; 202 } 203 case 0b001100: 204 case 0b001110: 205 case 0b011100: 206 case 0b011110: 207 case 0b101100: 208 case 0b101110: 209 case 0b111100: 210 case 0b111110: { 211 // load/store 212 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 213 // Load register (literal) 214 instructions = loadStore(insn_addr, target); 215 break; 216 } else { 217 // nothing to do 218 assert(target == 0, "did not expect to relocate target for polling page load"); 219 } 220 break; 221 } 222 case 0b001000: 223 case 0b011000: 224 case 0b101000: 225 case 0b111000: { 226 // adr/adrp 227 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 228 int shift = Instruction_aarch64::extract(_insn, 31, 31); 229 if (shift) { 230 uint32_t insn2 = insn_at(1); 231 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 232 Instruction_aarch64::extract(_insn, 4, 0) == 233 Instruction_aarch64::extract(insn2, 9, 5)) { 234 instructions = adrp(insn_addr, target, adrpMem()); 235 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 236 Instruction_aarch64::extract(_insn, 4, 0) == 237 Instruction_aarch64::extract(insn2, 4, 0)) { 238 instructions = adrp(insn_addr, target, adrpAdd()); 239 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 240 Instruction_aarch64::extract(_insn, 4, 0) == 241 Instruction_aarch64::extract(insn2, 4, 0)) { 242 instructions = adrp(insn_addr, target, adrpMovk()); 243 } else { 244 ShouldNotReachHere(); 245 } 246 } else { 247 instructions = adr(insn_addr, target); 248 } 249 break; 250 } 251 case 0b001001: 252 case 0b011001: 253 case 0b101001: 254 case 0b111001: { 255 instructions = immediate(insn_addr, target); 256 break; 257 } 258 default: { 259 ShouldNotReachHere(); 260 } 261 } 262 263 verify(insn_addr, target); 264 return instructions * NativeInstruction::instruction_size; 265 } 266 }; 267 268 class Patcher : public RelocActions { 269 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 270 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 271 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 272 273 public: 274 Patcher(address insn_addr) : RelocActions(insn_addr) {} 275 276 virtual int unconditionalBranch(address insn_addr, address &target) { 277 intptr_t offset = (target - insn_addr) >> 2; 278 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 279 return 1; 280 } 281 virtual int conditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 284 return 1; 285 } 286 virtual int testAndBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 289 return 1; 290 } 291 virtual int loadStore(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 294 return 1; 295 } 296 virtual int adr(address insn_addr, address &target) { 297 #ifdef ASSERT 298 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 299 #endif 300 // PC-rel. addressing 301 ptrdiff_t offset = target - insn_addr; 302 int offset_lo = offset & 3; 303 offset >>= 2; 304 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 305 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 306 return 1; 307 } 308 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 309 int instructions = 1; 310 #ifdef ASSERT 311 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 312 #endif 313 ptrdiff_t offset = target - insn_addr; 314 instructions = 2; 315 precond(inner != nullptr); 316 // Give the inner reloc a chance to modify the target. 317 address adjusted_target = target; 318 instructions = (*inner)(insn_addr, adjusted_target); 319 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 320 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 321 offset = adr_page - pc_page; 322 int offset_lo = offset & 3; 323 offset >>= 2; 324 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 325 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 326 return instructions; 327 } 328 static int adrpMem_impl(address insn_addr, address &target) { 329 uintptr_t dest = (uintptr_t)target; 330 int offset_lo = dest & 0xfff; 331 uint32_t insn2 = insn_at(insn_addr, 1); 332 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 333 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 334 guarantee(((dest >> size) << size) == dest, "misaligned target"); 335 return 2; 336 } 337 static int adrpAdd_impl(address insn_addr, address &target) { 338 uintptr_t dest = (uintptr_t)target; 339 int offset_lo = dest & 0xfff; 340 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 341 return 2; 342 } 343 static int adrpMovk_impl(address insn_addr, address &target) { 344 uintptr_t dest = uintptr_t(target); 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 346 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 347 target = address(dest); 348 return 2; 349 } 350 virtual int immediate(address insn_addr, address &target) { 351 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 352 uint64_t dest = (uint64_t)target; 353 // Move wide constant 354 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 355 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 356 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 357 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 358 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 359 return 3; 360 } 361 virtual void verify(address insn_addr, address &target) { 362 #ifdef ASSERT 363 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 364 if (!(address_is == target)) { 365 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 366 disnm((intptr_t)insn_addr); 367 assert(address_is == target, "should be"); 368 } 369 #endif 370 } 371 }; 372 373 // If insn1 and insn2 use the same register to form an address, either 374 // by an offsetted LDR or a simple ADD, return the offset. If the 375 // second instruction is an LDR, the offset may be scaled. 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 377 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 378 Instruction_aarch64::extract(insn1, 4, 0) == 379 Instruction_aarch64::extract(insn2, 9, 5)) { 380 // Load/store register (unsigned immediate) 381 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 382 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 383 byte_offset <<= size; 384 return true; 385 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 386 Instruction_aarch64::extract(insn1, 4, 0) == 387 Instruction_aarch64::extract(insn2, 4, 0)) { 388 // add (immediate) 389 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 390 return true; 391 } 392 return false; 393 } 394 395 class AArch64Decoder : public RelocActions { 396 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 397 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 398 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 399 400 public: 401 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 402 403 virtual int loadStore(address insn_addr, address &target) { 404 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 405 target = insn_addr + (offset << 2); 406 return 1; 407 } 408 virtual int unconditionalBranch(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int conditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 415 target = address(((uint64_t)insn_addr + (offset << 2))); 416 return 1; 417 } 418 virtual int testAndBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int adr(address insn_addr, address &target) { 424 // PC-rel. addressing 425 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 426 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 427 target = address((uint64_t)insn_addr + offset); 428 return 1; 429 } 430 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 431 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 432 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 433 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 434 int shift = 12; 435 offset <<= shift; 436 uint64_t target_page = ((uint64_t)insn_addr) + offset; 437 target_page &= ((uint64_t)-1) << shift; 438 uint32_t insn2 = insn_at(1); 439 target = address(target_page); 440 precond(inner != nullptr); 441 (*inner)(insn_addr, target); 442 return 2; 443 } 444 static int adrpMem_impl(address insn_addr, address &target) { 445 uint32_t insn2 = insn_at(insn_addr, 1); 446 // Load/store register (unsigned immediate) 447 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 448 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 449 byte_offset <<= size; 450 target += byte_offset; 451 return 2; 452 } 453 static int adrpAdd_impl(address insn_addr, address &target) { 454 uint32_t insn2 = insn_at(insn_addr, 1); 455 // add (immediate) 456 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 457 target += byte_offset; 458 return 2; 459 } 460 static int adrpMovk_impl(address insn_addr, address &target) { 461 uint32_t insn2 = insn_at(insn_addr, 1); 462 uint64_t dest = uint64_t(target); 463 dest = (dest & 0xffff0000ffffffff) | 464 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 465 target = address(dest); 466 467 // We know the destination 4k page. Maybe we have a third 468 // instruction. 469 uint32_t insn = insn_at(insn_addr, 0); 470 uint32_t insn3 = insn_at(insn_addr, 2); 471 ptrdiff_t byte_offset; 472 if (offset_for(insn, insn3, byte_offset)) { 473 target += byte_offset; 474 return 3; 475 } else { 476 return 2; 477 } 478 } 479 virtual int immediate(address insn_addr, address &target) { 480 uint32_t *insns = (uint32_t *)insn_addr; 481 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 482 // Move wide constant: movz, movk, movk. See movptr(). 483 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 484 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 485 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 486 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 487 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 488 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 490 return 3; 491 } 492 virtual void verify(address insn_addr, address &target) { 493 } 494 }; 495 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 497 AArch64Decoder decoder(insn_addr, insn); 498 address target; 499 decoder.run(insn_addr, target); 500 return target; 501 } 502 503 // Patch any kind of instruction; there may be several instructions. 504 // Return the total length (in bytes) of the instructions. 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 506 Patcher patcher(insn_addr); 507 return patcher.run(insn_addr, target); 508 } 509 510 int MacroAssembler::patch_oop(address insn_addr, address o) { 511 int instructions; 512 unsigned insn = *(unsigned*)insn_addr; 513 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 514 515 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 516 // narrow OOPs by setting the upper 16 bits in the first 517 // instruction. 518 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 519 // Move narrow OOP 520 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 521 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 522 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 523 instructions = 2; 524 } else { 525 // Move wide OOP 526 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 527 uintptr_t dest = (uintptr_t)o; 528 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 529 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 530 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 531 instructions = 3; 532 } 533 return instructions * NativeInstruction::instruction_size; 534 } 535 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 537 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 538 // We encode narrow ones by setting the upper 16 bits in the first 539 // instruction. 540 NativeInstruction *insn = nativeInstruction_at(insn_addr); 541 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 542 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 543 544 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 545 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 546 return 2 * NativeInstruction::instruction_size; 547 } 548 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 550 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 551 return nullptr; 552 } 553 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 554 } 555 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 557 if (acquire) { 558 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 559 ldar(tmp, tmp); 560 } else { 561 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 562 } 563 if (at_return) { 564 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 565 // we may safely use the sp instead to perform the stack watermark check. 566 cmp(in_nmethod ? sp : rfp, tmp); 567 br(Assembler::HI, slow_path); 568 } else { 569 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 570 } 571 } 572 573 void MacroAssembler::rt_call(address dest, Register tmp) { 574 CodeBlob *cb = CodeCache::find_blob(dest); 575 if (cb) { 576 far_call(RuntimeAddress(dest)); 577 } else { 578 lea(tmp, RuntimeAddress(dest)); 579 blr(tmp); 580 } 581 } 582 583 void MacroAssembler::push_cont_fastpath(Register java_thread) { 584 if (!Continuations::enabled()) return; 585 Label done; 586 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 587 cmp(sp, rscratch1); 588 br(Assembler::LS, done); 589 mov(rscratch1, sp); // we can't use sp as the source in str 590 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 591 bind(done); 592 } 593 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 595 if (!Continuations::enabled()) return; 596 Label done; 597 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 598 cmp(sp, rscratch1); 599 br(Assembler::LO, done); 600 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 601 bind(done); 602 } 603 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 605 // we must set sp to zero to clear frame 606 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 607 608 // must clear fp, so that compiled frames are not confused; it is 609 // possible that we need it only for debugging 610 if (clear_fp) { 611 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 612 } 613 614 // Always clear the pc because it could have been set by make_walkable() 615 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 616 } 617 618 // Calls to C land 619 // 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 622 // has to be reset to 0. This is required to allow proper stack traversal. 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 624 Register last_java_fp, 625 Register last_java_pc, 626 Register scratch) { 627 628 if (last_java_pc->is_valid()) { 629 str(last_java_pc, Address(rthread, 630 JavaThread::frame_anchor_offset() 631 + JavaFrameAnchor::last_Java_pc_offset())); 632 } 633 634 // determine last_java_sp register 635 if (last_java_sp == sp) { 636 mov(scratch, sp); 637 last_java_sp = scratch; 638 } else if (!last_java_sp->is_valid()) { 639 last_java_sp = esp; 640 } 641 642 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 643 644 // last_java_fp is optional 645 if (last_java_fp->is_valid()) { 646 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 647 } 648 } 649 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 651 Register last_java_fp, 652 address last_java_pc, 653 Register scratch) { 654 assert(last_java_pc != nullptr, "must provide a valid PC"); 655 656 adr(scratch, last_java_pc); 657 str(scratch, Address(rthread, 658 JavaThread::frame_anchor_offset() 659 + JavaFrameAnchor::last_Java_pc_offset())); 660 661 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 662 } 663 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 665 Register last_java_fp, 666 Label &L, 667 Register scratch) { 668 if (L.is_bound()) { 669 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 670 } else { 671 InstructionMark im(this); 672 L.add_patch_at(code(), locator()); 673 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 674 } 675 } 676 677 static inline bool target_needs_far_branch(address addr) { 678 // codecache size <= 128M 679 if (!MacroAssembler::far_branches()) { 680 return false; 681 } 682 // codecache size > 240M 683 if (MacroAssembler::codestub_branch_needs_far_jump()) { 684 return true; 685 } 686 // codecache size: 128M..240M 687 return !CodeCache::is_non_nmethod(addr); 688 } 689 690 void MacroAssembler::far_call(Address entry, Register tmp) { 691 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 692 assert(CodeCache::find_blob(entry.target()) != nullptr, 693 "destination of far call not found in code cache"); 694 assert(entry.rspec().type() == relocInfo::external_word_type 695 || entry.rspec().type() == relocInfo::runtime_call_type 696 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 697 if (target_needs_far_branch(entry.target())) { 698 uint64_t offset; 699 // We can use ADRP here because we know that the total size of 700 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 701 adrp(tmp, entry, offset); 702 add(tmp, tmp, offset); 703 blr(tmp); 704 } else { 705 bl(entry); 706 } 707 } 708 709 int MacroAssembler::far_jump(Address entry, Register tmp) { 710 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 711 assert(CodeCache::find_blob(entry.target()) != nullptr, 712 "destination of far call not found in code cache"); 713 assert(entry.rspec().type() == relocInfo::external_word_type 714 || entry.rspec().type() == relocInfo::runtime_call_type 715 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 716 address start = pc(); 717 if (target_needs_far_branch(entry.target())) { 718 uint64_t offset; 719 // We can use ADRP here because we know that the total size of 720 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 721 adrp(tmp, entry, offset); 722 add(tmp, tmp, offset); 723 br(tmp); 724 } else { 725 b(entry); 726 } 727 return pc() - start; 728 } 729 730 void MacroAssembler::reserved_stack_check() { 731 // testing if reserved zone needs to be enabled 732 Label no_reserved_zone_enabling; 733 734 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 735 cmp(sp, rscratch1); 736 br(Assembler::LO, no_reserved_zone_enabling); 737 738 enter(); // LR and FP are live. 739 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 740 mov(c_rarg0, rthread); 741 blr(rscratch1); 742 leave(); 743 744 // We have already removed our own frame. 745 // throw_delayed_StackOverflowError will think that it's been 746 // called by our caller. 747 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 748 br(rscratch1); 749 should_not_reach_here(); 750 751 bind(no_reserved_zone_enabling); 752 } 753 754 static void pass_arg0(MacroAssembler* masm, Register arg) { 755 if (c_rarg0 != arg ) { 756 masm->mov(c_rarg0, arg); 757 } 758 } 759 760 static void pass_arg1(MacroAssembler* masm, Register arg) { 761 if (c_rarg1 != arg ) { 762 masm->mov(c_rarg1, arg); 763 } 764 } 765 766 static void pass_arg2(MacroAssembler* masm, Register arg) { 767 if (c_rarg2 != arg ) { 768 masm->mov(c_rarg2, arg); 769 } 770 } 771 772 static void pass_arg3(MacroAssembler* masm, Register arg) { 773 if (c_rarg3 != arg ) { 774 masm->mov(c_rarg3, arg); 775 } 776 } 777 778 void MacroAssembler::call_VM_base(Register oop_result, 779 Register java_thread, 780 Register last_java_sp, 781 address entry_point, 782 int number_of_arguments, 783 bool check_exceptions) { 784 // determine java_thread register 785 if (!java_thread->is_valid()) { 786 java_thread = rthread; 787 } 788 789 // determine last_java_sp register 790 if (!last_java_sp->is_valid()) { 791 last_java_sp = esp; 792 } 793 794 // debugging support 795 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 796 assert(java_thread == rthread, "unexpected register"); 797 #ifdef ASSERT 798 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 799 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 800 #endif // ASSERT 801 802 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 803 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 804 805 // push java thread (becomes first argument of C function) 806 807 mov(c_rarg0, java_thread); 808 809 // set last Java frame before call 810 assert(last_java_sp != rfp, "can't use rfp"); 811 812 Label l; 813 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 814 815 // do the call, remove parameters 816 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 817 818 // lr could be poisoned with PAC signature during throw_pending_exception 819 // if it was tail-call optimized by compiler, since lr is not callee-saved 820 // reload it with proper value 821 adr(lr, l); 822 823 // reset last Java frame 824 // Only interpreter should have to clear fp 825 reset_last_Java_frame(true); 826 827 // C++ interp handles this in the interpreter 828 check_and_handle_popframe(java_thread); 829 check_and_handle_earlyret(java_thread); 830 831 if (check_exceptions) { 832 // check for pending exceptions (java_thread is set upon return) 833 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 834 Label ok; 835 cbz(rscratch1, ok); 836 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 837 br(rscratch1); 838 bind(ok); 839 } 840 841 // get oop result if there is one and reset the value in the thread 842 if (oop_result->is_valid()) { 843 get_vm_result(oop_result, java_thread); 844 } 845 } 846 847 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 848 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 849 } 850 851 // Check the entry target is always reachable from any branch. 852 static bool is_always_within_branch_range(Address entry) { 853 const address target = entry.target(); 854 855 if (!CodeCache::contains(target)) { 856 // We always use trampolines for callees outside CodeCache. 857 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 858 return false; 859 } 860 861 if (!MacroAssembler::far_branches()) { 862 return true; 863 } 864 865 if (entry.rspec().type() == relocInfo::runtime_call_type) { 866 // Runtime calls are calls of a non-compiled method (stubs, adapters). 867 // Non-compiled methods stay forever in CodeCache. 868 // We check whether the longest possible branch is within the branch range. 869 assert(CodeCache::find_blob(target) != nullptr && 870 !CodeCache::find_blob(target)->is_nmethod(), 871 "runtime call of compiled method"); 872 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 873 const address left_longest_branch_start = CodeCache::low_bound(); 874 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 875 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 876 return is_reachable; 877 } 878 879 return false; 880 } 881 882 // Maybe emit a call via a trampoline. If the code cache is small 883 // trampolines won't be emitted. 884 address MacroAssembler::trampoline_call(Address entry) { 885 assert(entry.rspec().type() == relocInfo::runtime_call_type 886 || entry.rspec().type() == relocInfo::opt_virtual_call_type 887 || entry.rspec().type() == relocInfo::static_call_type 888 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 889 890 address target = entry.target(); 891 892 if (!is_always_within_branch_range(entry)) { 893 if (!in_scratch_emit_size()) { 894 // We don't want to emit a trampoline if C2 is generating dummy 895 // code during its branch shortening phase. 896 if (entry.rspec().type() == relocInfo::runtime_call_type) { 897 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 898 code()->share_trampoline_for(entry.target(), offset()); 899 } else { 900 address stub = emit_trampoline_stub(offset(), target); 901 if (stub == nullptr) { 902 postcond(pc() == badAddress); 903 return nullptr; // CodeCache is full 904 } 905 } 906 } 907 target = pc(); 908 } 909 910 address call_pc = pc(); 911 relocate(entry.rspec()); 912 bl(target); 913 914 postcond(pc() != badAddress); 915 return call_pc; 916 } 917 918 // Emit a trampoline stub for a call to a target which is too far away. 919 // 920 // code sequences: 921 // 922 // call-site: 923 // branch-and-link to <destination> or <trampoline stub> 924 // 925 // Related trampoline stub for this call site in the stub section: 926 // load the call target from the constant pool 927 // branch (LR still points to the call site above) 928 929 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 930 address dest) { 931 // Max stub size: alignment nop, TrampolineStub. 932 address stub = start_a_stub(max_trampoline_stub_size()); 933 if (stub == nullptr) { 934 return nullptr; // CodeBuffer::expand failed 935 } 936 937 // Create a trampoline stub relocation which relates this trampoline stub 938 // with the call instruction at insts_call_instruction_offset in the 939 // instructions code-section. 940 align(wordSize); 941 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 942 + insts_call_instruction_offset)); 943 const int stub_start_offset = offset(); 944 945 // Now, create the trampoline stub's code: 946 // - load the call 947 // - call 948 Label target; 949 ldr(rscratch1, target); 950 br(rscratch1); 951 bind(target); 952 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 953 "should be"); 954 emit_int64((int64_t)dest); 955 956 const address stub_start_addr = addr_at(stub_start_offset); 957 958 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 959 960 end_a_stub(); 961 return stub_start_addr; 962 } 963 964 int MacroAssembler::max_trampoline_stub_size() { 965 // Max stub size: alignment nop, TrampolineStub. 966 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 967 } 968 969 void MacroAssembler::emit_static_call_stub() { 970 // CompiledDirectCall::set_to_interpreted knows the 971 // exact layout of this stub. 972 973 isb(); 974 mov_metadata(rmethod, nullptr); 975 976 // Jump to the entry point of the c2i stub. 977 movptr(rscratch1, 0); 978 br(rscratch1); 979 } 980 981 int MacroAssembler::static_call_stub_size() { 982 // isb; movk; movz; movz; movk; movz; movz; br 983 return 8 * NativeInstruction::instruction_size; 984 } 985 986 void MacroAssembler::c2bool(Register x) { 987 // implements x == 0 ? 0 : 1 988 // note: must only look at least-significant byte of x 989 // since C-style booleans are stored in one byte 990 // only! (was bug) 991 tst(x, 0xff); 992 cset(x, Assembler::NE); 993 } 994 995 address MacroAssembler::ic_call(address entry, jint method_index) { 996 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 997 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 998 // uintptr_t offset; 999 // ldr_constant(rscratch2, const_ptr); 1000 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1001 return trampoline_call(Address(entry, rh)); 1002 } 1003 1004 int MacroAssembler::ic_check_size() { 1005 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1006 return NativeInstruction::instruction_size * 7; 1007 } else { 1008 return NativeInstruction::instruction_size * 5; 1009 } 1010 } 1011 1012 int MacroAssembler::ic_check(int end_alignment) { 1013 Register receiver = j_rarg0; 1014 Register data = rscratch2; 1015 Register tmp1 = rscratch1; 1016 Register tmp2 = r10; 1017 1018 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1019 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1020 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1021 // before the inline cache check here, and not after 1022 align(end_alignment, offset() + ic_check_size()); 1023 1024 int uep_offset = offset(); 1025 1026 if (UseCompressedClassPointers) { 1027 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1028 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1029 cmpw(tmp1, tmp2); 1030 } else { 1031 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1032 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1033 cmp(tmp1, tmp2); 1034 } 1035 1036 Label dont; 1037 br(Assembler::EQ, dont); 1038 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1039 bind(dont); 1040 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1041 1042 return uep_offset; 1043 } 1044 1045 // Implementation of call_VM versions 1046 1047 void MacroAssembler::call_VM(Register oop_result, 1048 address entry_point, 1049 bool check_exceptions) { 1050 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1051 } 1052 1053 void MacroAssembler::call_VM(Register oop_result, 1054 address entry_point, 1055 Register arg_1, 1056 bool check_exceptions) { 1057 pass_arg1(this, arg_1); 1058 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1059 } 1060 1061 void MacroAssembler::call_VM(Register oop_result, 1062 address entry_point, 1063 Register arg_1, 1064 Register arg_2, 1065 bool check_exceptions) { 1066 assert_different_registers(arg_1, c_rarg2); 1067 pass_arg2(this, arg_2); 1068 pass_arg1(this, arg_1); 1069 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1070 } 1071 1072 void MacroAssembler::call_VM(Register oop_result, 1073 address entry_point, 1074 Register arg_1, 1075 Register arg_2, 1076 Register arg_3, 1077 bool check_exceptions) { 1078 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1079 assert_different_registers(arg_2, c_rarg3); 1080 pass_arg3(this, arg_3); 1081 1082 pass_arg2(this, arg_2); 1083 1084 pass_arg1(this, arg_1); 1085 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1086 } 1087 1088 void MacroAssembler::call_VM(Register oop_result, 1089 Register last_java_sp, 1090 address entry_point, 1091 int number_of_arguments, 1092 bool check_exceptions) { 1093 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1094 } 1095 1096 void MacroAssembler::call_VM(Register oop_result, 1097 Register last_java_sp, 1098 address entry_point, 1099 Register arg_1, 1100 bool check_exceptions) { 1101 pass_arg1(this, arg_1); 1102 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1103 } 1104 1105 void MacroAssembler::call_VM(Register oop_result, 1106 Register last_java_sp, 1107 address entry_point, 1108 Register arg_1, 1109 Register arg_2, 1110 bool check_exceptions) { 1111 1112 assert_different_registers(arg_1, c_rarg2); 1113 pass_arg2(this, arg_2); 1114 pass_arg1(this, arg_1); 1115 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1116 } 1117 1118 void MacroAssembler::call_VM(Register oop_result, 1119 Register last_java_sp, 1120 address entry_point, 1121 Register arg_1, 1122 Register arg_2, 1123 Register arg_3, 1124 bool check_exceptions) { 1125 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1126 assert_different_registers(arg_2, c_rarg3); 1127 pass_arg3(this, arg_3); 1128 pass_arg2(this, arg_2); 1129 pass_arg1(this, arg_1); 1130 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1131 } 1132 1133 1134 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1135 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1136 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1137 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1138 } 1139 1140 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1141 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1142 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1143 } 1144 1145 void MacroAssembler::align(int modulus) { 1146 align(modulus, offset()); 1147 } 1148 1149 // Ensure that the code at target bytes offset from the current offset() is aligned 1150 // according to modulus. 1151 void MacroAssembler::align(int modulus, int target) { 1152 int delta = target - offset(); 1153 while ((offset() + delta) % modulus != 0) nop(); 1154 } 1155 1156 void MacroAssembler::post_call_nop() { 1157 if (!Continuations::enabled()) { 1158 return; 1159 } 1160 InstructionMark im(this); 1161 relocate(post_call_nop_Relocation::spec()); 1162 InlineSkippedInstructionsCounter skipCounter(this); 1163 nop(); 1164 movk(zr, 0); 1165 movk(zr, 0); 1166 } 1167 1168 // these are no-ops overridden by InterpreterMacroAssembler 1169 1170 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1171 1172 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1173 1174 // Look up the method for a megamorphic invokeinterface call. 1175 // The target method is determined by <intf_klass, itable_index>. 1176 // The receiver klass is in recv_klass. 1177 // On success, the result will be in method_result, and execution falls through. 1178 // On failure, execution transfers to the given label. 1179 void MacroAssembler::lookup_interface_method(Register recv_klass, 1180 Register intf_klass, 1181 RegisterOrConstant itable_index, 1182 Register method_result, 1183 Register scan_temp, 1184 Label& L_no_such_interface, 1185 bool return_method) { 1186 assert_different_registers(recv_klass, intf_klass, scan_temp); 1187 assert_different_registers(method_result, intf_klass, scan_temp); 1188 assert(recv_klass != method_result || !return_method, 1189 "recv_klass can be destroyed when method isn't needed"); 1190 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1191 "caller must use same register for non-constant itable index as for method"); 1192 1193 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1194 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1195 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1196 int scan_step = itableOffsetEntry::size() * wordSize; 1197 int vte_size = vtableEntry::size_in_bytes(); 1198 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1199 1200 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1201 1202 // Could store the aligned, prescaled offset in the klass. 1203 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1204 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1205 add(scan_temp, scan_temp, vtable_base); 1206 1207 if (return_method) { 1208 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1209 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1210 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1211 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1212 if (itentry_off) 1213 add(recv_klass, recv_klass, itentry_off); 1214 } 1215 1216 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1217 // if (scan->interface() == intf) { 1218 // result = (klass + scan->offset() + itable_index); 1219 // } 1220 // } 1221 Label search, found_method; 1222 1223 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1224 cmp(intf_klass, method_result); 1225 br(Assembler::EQ, found_method); 1226 bind(search); 1227 // Check that the previous entry is non-null. A null entry means that 1228 // the receiver class doesn't implement the interface, and wasn't the 1229 // same as when the caller was compiled. 1230 cbz(method_result, L_no_such_interface); 1231 if (itableOffsetEntry::interface_offset() != 0) { 1232 add(scan_temp, scan_temp, scan_step); 1233 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1234 } else { 1235 ldr(method_result, Address(pre(scan_temp, scan_step))); 1236 } 1237 cmp(intf_klass, method_result); 1238 br(Assembler::NE, search); 1239 1240 bind(found_method); 1241 1242 // Got a hit. 1243 if (return_method) { 1244 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1245 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1246 } 1247 } 1248 1249 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1250 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1251 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1252 // The target method is determined by <holder_klass, itable_index>. 1253 // The receiver klass is in recv_klass. 1254 // On success, the result will be in method_result, and execution falls through. 1255 // On failure, execution transfers to the given label. 1256 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1257 Register holder_klass, 1258 Register resolved_klass, 1259 Register method_result, 1260 Register temp_itbl_klass, 1261 Register scan_temp, 1262 int itable_index, 1263 Label& L_no_such_interface) { 1264 // 'method_result' is only used as output register at the very end of this method. 1265 // Until then we can reuse it as 'holder_offset'. 1266 Register holder_offset = method_result; 1267 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1268 1269 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1270 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1271 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1272 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1273 1274 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1275 1276 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1277 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1278 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1279 // temp_itbl_klass = itable[0]._interface; 1280 int vtblEntrySize = vtableEntry::size_in_bytes(); 1281 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1282 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1283 mov(holder_offset, zr); 1284 // scan_temp = &(itable[0]._interface) 1285 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1286 1287 // Initial checks: 1288 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1289 // - if (itable[0] == holder_klass), shortcut to "holder found" 1290 // - if (itable[0] == 0), no such interface 1291 cmp(resolved_klass, holder_klass); 1292 br(Assembler::NE, L_loop_search_resolved_entry); 1293 cmp(holder_klass, temp_itbl_klass); 1294 br(Assembler::EQ, L_holder_found); 1295 cbz(temp_itbl_klass, L_no_such_interface); 1296 1297 // Loop: Look for holder_klass record in itable 1298 // do { 1299 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1300 // if (temp_itbl_klass == holder_klass) { 1301 // goto L_holder_found; // Found! 1302 // } 1303 // } while (temp_itbl_klass != 0); 1304 // goto L_no_such_interface // Not found. 1305 Label L_search_holder; 1306 bind(L_search_holder); 1307 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1308 cmp(holder_klass, temp_itbl_klass); 1309 br(Assembler::EQ, L_holder_found); 1310 cbnz(temp_itbl_klass, L_search_holder); 1311 1312 b(L_no_such_interface); 1313 1314 // Loop: Look for resolved_class record in itable 1315 // while (true) { 1316 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1317 // if (temp_itbl_klass == 0) { 1318 // goto L_no_such_interface; 1319 // } 1320 // if (temp_itbl_klass == resolved_klass) { 1321 // goto L_resolved_found; // Found! 1322 // } 1323 // if (temp_itbl_klass == holder_klass) { 1324 // holder_offset = scan_temp; 1325 // } 1326 // } 1327 // 1328 Label L_loop_search_resolved; 1329 bind(L_loop_search_resolved); 1330 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1331 bind(L_loop_search_resolved_entry); 1332 cbz(temp_itbl_klass, L_no_such_interface); 1333 cmp(resolved_klass, temp_itbl_klass); 1334 br(Assembler::EQ, L_resolved_found); 1335 cmp(holder_klass, temp_itbl_klass); 1336 br(Assembler::NE, L_loop_search_resolved); 1337 mov(holder_offset, scan_temp); 1338 b(L_loop_search_resolved); 1339 1340 // See if we already have a holder klass. If not, go and scan for it. 1341 bind(L_resolved_found); 1342 cbz(holder_offset, L_search_holder); 1343 mov(scan_temp, holder_offset); 1344 1345 // Finally, scan_temp contains holder_klass vtable offset 1346 bind(L_holder_found); 1347 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1348 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1349 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1350 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1351 } 1352 1353 // virtual method calling 1354 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1355 RegisterOrConstant vtable_index, 1356 Register method_result) { 1357 assert(vtableEntry::size() * wordSize == 8, 1358 "adjust the scaling in the code below"); 1359 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1360 1361 if (vtable_index.is_register()) { 1362 lea(method_result, Address(recv_klass, 1363 vtable_index.as_register(), 1364 Address::lsl(LogBytesPerWord))); 1365 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1366 } else { 1367 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1368 ldr(method_result, 1369 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1370 } 1371 } 1372 1373 void MacroAssembler::check_klass_subtype(Register sub_klass, 1374 Register super_klass, 1375 Register temp_reg, 1376 Label& L_success) { 1377 Label L_failure; 1378 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1379 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1380 bind(L_failure); 1381 } 1382 1383 1384 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1385 Register super_klass, 1386 Register temp_reg, 1387 Label* L_success, 1388 Label* L_failure, 1389 Label* L_slow_path, 1390 RegisterOrConstant super_check_offset) { 1391 assert_different_registers(sub_klass, super_klass, temp_reg); 1392 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1393 if (super_check_offset.is_register()) { 1394 assert_different_registers(sub_klass, super_klass, 1395 super_check_offset.as_register()); 1396 } else if (must_load_sco) { 1397 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1398 } 1399 1400 Label L_fallthrough; 1401 int label_nulls = 0; 1402 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1403 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1404 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1405 assert(label_nulls <= 1, "at most one null in the batch"); 1406 1407 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1408 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1409 Address super_check_offset_addr(super_klass, sco_offset); 1410 1411 // Hacked jmp, which may only be used just before L_fallthrough. 1412 #define final_jmp(label) \ 1413 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1414 else b(label) /*omit semi*/ 1415 1416 // If the pointers are equal, we are done (e.g., String[] elements). 1417 // This self-check enables sharing of secondary supertype arrays among 1418 // non-primary types such as array-of-interface. Otherwise, each such 1419 // type would need its own customized SSA. 1420 // We move this check to the front of the fast path because many 1421 // type checks are in fact trivially successful in this manner, 1422 // so we get a nicely predicted branch right at the start of the check. 1423 cmp(sub_klass, super_klass); 1424 br(Assembler::EQ, *L_success); 1425 1426 // Check the supertype display: 1427 if (must_load_sco) { 1428 ldrw(temp_reg, super_check_offset_addr); 1429 super_check_offset = RegisterOrConstant(temp_reg); 1430 } 1431 Address super_check_addr(sub_klass, super_check_offset); 1432 ldr(rscratch1, super_check_addr); 1433 cmp(super_klass, rscratch1); // load displayed supertype 1434 1435 // This check has worked decisively for primary supers. 1436 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1437 // (Secondary supers are interfaces and very deeply nested subtypes.) 1438 // This works in the same check above because of a tricky aliasing 1439 // between the super_cache and the primary super display elements. 1440 // (The 'super_check_addr' can address either, as the case requires.) 1441 // Note that the cache is updated below if it does not help us find 1442 // what we need immediately. 1443 // So if it was a primary super, we can just fail immediately. 1444 // Otherwise, it's the slow path for us (no success at this point). 1445 1446 if (super_check_offset.is_register()) { 1447 br(Assembler::EQ, *L_success); 1448 subs(zr, super_check_offset.as_register(), sc_offset); 1449 if (L_failure == &L_fallthrough) { 1450 br(Assembler::EQ, *L_slow_path); 1451 } else { 1452 br(Assembler::NE, *L_failure); 1453 final_jmp(*L_slow_path); 1454 } 1455 } else if (super_check_offset.as_constant() == sc_offset) { 1456 // Need a slow path; fast failure is impossible. 1457 if (L_slow_path == &L_fallthrough) { 1458 br(Assembler::EQ, *L_success); 1459 } else { 1460 br(Assembler::NE, *L_slow_path); 1461 final_jmp(*L_success); 1462 } 1463 } else { 1464 // No slow path; it's a fast decision. 1465 if (L_failure == &L_fallthrough) { 1466 br(Assembler::EQ, *L_success); 1467 } else { 1468 br(Assembler::NE, *L_failure); 1469 final_jmp(*L_success); 1470 } 1471 } 1472 1473 bind(L_fallthrough); 1474 1475 #undef final_jmp 1476 } 1477 1478 // These two are taken from x86, but they look generally useful 1479 1480 // scans count pointer sized words at [addr] for occurrence of value, 1481 // generic 1482 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1483 Register scratch) { 1484 Label Lloop, Lexit; 1485 cbz(count, Lexit); 1486 bind(Lloop); 1487 ldr(scratch, post(addr, wordSize)); 1488 cmp(value, scratch); 1489 br(EQ, Lexit); 1490 sub(count, count, 1); 1491 cbnz(count, Lloop); 1492 bind(Lexit); 1493 } 1494 1495 // scans count 4 byte words at [addr] for occurrence of value, 1496 // generic 1497 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1498 Register scratch) { 1499 Label Lloop, Lexit; 1500 cbz(count, Lexit); 1501 bind(Lloop); 1502 ldrw(scratch, post(addr, wordSize)); 1503 cmpw(value, scratch); 1504 br(EQ, Lexit); 1505 sub(count, count, 1); 1506 cbnz(count, Lloop); 1507 bind(Lexit); 1508 } 1509 1510 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1511 Register super_klass, 1512 Register temp_reg, 1513 Register temp2_reg, 1514 Label* L_success, 1515 Label* L_failure, 1516 bool set_cond_codes) { 1517 // NB! Callers may assume that, when temp2_reg is a valid register, 1518 // this code sets it to a nonzero value. 1519 1520 assert_different_registers(sub_klass, super_klass, temp_reg); 1521 if (temp2_reg != noreg) 1522 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1523 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1524 1525 Label L_fallthrough; 1526 int label_nulls = 0; 1527 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1528 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1529 assert(label_nulls <= 1, "at most one null in the batch"); 1530 1531 // a couple of useful fields in sub_klass: 1532 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1533 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1534 Address secondary_supers_addr(sub_klass, ss_offset); 1535 Address super_cache_addr( sub_klass, sc_offset); 1536 1537 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1538 1539 // Do a linear scan of the secondary super-klass chain. 1540 // This code is rarely used, so simplicity is a virtue here. 1541 // The repne_scan instruction uses fixed registers, which we must spill. 1542 // Don't worry too much about pre-existing connections with the input regs. 1543 1544 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1545 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1546 1547 RegSet pushed_registers; 1548 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1549 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1550 1551 if (super_klass != r0) { 1552 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1553 } 1554 1555 push(pushed_registers, sp); 1556 1557 // Get super_klass value into r0 (even if it was in r5 or r2). 1558 if (super_klass != r0) { 1559 mov(r0, super_klass); 1560 } 1561 1562 #ifndef PRODUCT 1563 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1564 #endif //PRODUCT 1565 1566 // We will consult the secondary-super array. 1567 ldr(r5, secondary_supers_addr); 1568 // Load the array length. 1569 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1570 // Skip to start of data. 1571 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1572 1573 cmp(sp, zr); // Clear Z flag; SP is never zero 1574 // Scan R2 words at [R5] for an occurrence of R0. 1575 // Set NZ/Z based on last compare. 1576 repne_scan(r5, r0, r2, rscratch1); 1577 1578 // Unspill the temp. registers: 1579 pop(pushed_registers, sp); 1580 1581 br(Assembler::NE, *L_failure); 1582 1583 // Success. Cache the super we found and proceed in triumph. 1584 str(super_klass, super_cache_addr); 1585 1586 if (L_success != &L_fallthrough) { 1587 b(*L_success); 1588 } 1589 1590 #undef IS_A_TEMP 1591 1592 bind(L_fallthrough); 1593 } 1594 1595 // Ensure that the inline code and the stub are using the same registers. 1596 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1597 do { \ 1598 assert(r_super_klass == r0 && \ 1599 r_array_base == r1 && \ 1600 r_array_length == r2 && \ 1601 (r_array_index == r3 || r_array_index == noreg) && \ 1602 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1603 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1604 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1605 } while(0) 1606 1607 // Return true: we succeeded in generating this code 1608 bool MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass, 1609 Register r_super_klass, 1610 Register temp1, 1611 Register temp2, 1612 Register temp3, 1613 FloatRegister vtemp, 1614 Register result, 1615 u1 super_klass_slot, 1616 bool stub_is_near) { 1617 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1618 1619 Label L_fallthrough; 1620 1621 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1622 1623 const Register 1624 r_array_base = temp1, // r1 1625 r_array_length = temp2, // r2 1626 r_array_index = temp3, // r3 1627 r_bitmap = rscratch2; 1628 1629 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1630 1631 u1 bit = super_klass_slot; 1632 1633 // Make sure that result is nonzero if the TBZ below misses. 1634 mov(result, 1); 1635 1636 // We're going to need the bitmap in a vector reg and in a core reg, 1637 // so load both now. 1638 ldr(r_bitmap, Address(r_sub_klass, Klass::bitmap_offset())); 1639 if (bit != 0) { 1640 ldrd(vtemp, Address(r_sub_klass, Klass::bitmap_offset())); 1641 } 1642 // First check the bitmap to see if super_klass might be present. If 1643 // the bit is zero, we are certain that super_klass is not one of 1644 // the secondary supers. 1645 tbz(r_bitmap, bit, L_fallthrough); 1646 1647 // Get the first array index that can contain super_klass into r_array_index. 1648 if (bit != 0) { 1649 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1650 cnt(vtemp, T8B, vtemp); 1651 addv(vtemp, T8B, vtemp); 1652 fmovd(r_array_index, vtemp); 1653 } else { 1654 mov(r_array_index, (u1)1); 1655 } 1656 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1657 1658 // We will consult the secondary-super array. 1659 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1660 1661 // The value i in r_array_index is >= 1, so even though r_array_base 1662 // points to the length, we don't need to adjust it to point to the 1663 // data. 1664 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1665 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1666 1667 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1668 eor(result, result, r_super_klass); 1669 cbz(result, L_fallthrough); // Found a match 1670 1671 // Is there another entry to check? Consult the bitmap. 1672 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1673 1674 // Linear probe. 1675 if (bit != 0) { 1676 ror(r_bitmap, r_bitmap, bit); 1677 } 1678 1679 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1680 // The next slot to be inspected, by the stub we're about to call, 1681 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1682 // have been checked. 1683 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1684 if (stub_is_near) { 1685 bl(stub); 1686 } else { 1687 address call = trampoline_call(stub); 1688 if (call == nullptr) { 1689 return false; // trampoline allocation failed 1690 } 1691 } 1692 1693 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1694 1695 bind(L_fallthrough); 1696 1697 if (VerifySecondarySupers) { 1698 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1699 temp1, temp2, result); // r1, r2, r5 1700 } 1701 return true; 1702 } 1703 1704 // Called by code generated by check_klass_subtype_slow_path 1705 // above. This is called when there is a collision in the hashed 1706 // lookup in the secondary supers array. 1707 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1708 Register r_array_base, 1709 Register r_array_index, 1710 Register r_bitmap, 1711 Register temp1, 1712 Register result) { 1713 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1714 1715 const Register 1716 r_array_length = temp1, 1717 r_sub_klass = noreg; // unused 1718 1719 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1720 1721 Label L_fallthrough, L_huge; 1722 1723 // Load the array length. 1724 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1725 // And adjust the array base to point to the data. 1726 // NB! Effectively increments current slot index by 1. 1727 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1728 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1729 1730 // The bitmap is full to bursting. 1731 // Implicit invariant: BITMAP_FULL implies (length > 0) 1732 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1733 cmn(r_bitmap, (u1)1); 1734 br(EQ, L_huge); 1735 1736 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1737 // current slot (at secondary_supers[r_array_index]) has not yet 1738 // been inspected, and r_array_index may be out of bounds if we 1739 // wrapped around the end of the array. 1740 1741 { // This is conventional linear probing, but instead of terminating 1742 // when a null entry is found in the table, we maintain a bitmap 1743 // in which a 0 indicates missing entries. 1744 // The check above guarantees there are 0s in the bitmap, so the loop 1745 // eventually terminates. 1746 Label L_loop; 1747 bind(L_loop); 1748 1749 // Check for wraparound. 1750 cmp(r_array_index, r_array_length); 1751 csel(r_array_index, zr, r_array_index, GE); 1752 1753 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1754 eor(result, rscratch1, r_super_klass); 1755 cbz(result, L_fallthrough); 1756 1757 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1758 1759 ror(r_bitmap, r_bitmap, 1); 1760 add(r_array_index, r_array_index, 1); 1761 b(L_loop); 1762 } 1763 1764 { // Degenerate case: more than 64 secondary supers. 1765 // FIXME: We could do something smarter here, maybe a vectorized 1766 // comparison or a binary search, but is that worth any added 1767 // complexity? 1768 bind(L_huge); 1769 cmp(sp, zr); // Clear Z flag; SP is never zero 1770 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1771 cset(result, NE); // result == 0 iff we got a match. 1772 } 1773 1774 bind(L_fallthrough); 1775 } 1776 1777 // Make sure that the hashed lookup and a linear scan agree. 1778 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1779 Register r_super_klass, 1780 Register temp1, 1781 Register temp2, 1782 Register result) { 1783 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1784 1785 const Register 1786 r_array_base = temp1, 1787 r_array_length = temp2, 1788 r_array_index = noreg, // unused 1789 r_bitmap = noreg; // unused 1790 1791 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1792 1793 BLOCK_COMMENT("verify_secondary_supers_table {"); 1794 1795 // We will consult the secondary-super array. 1796 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1797 1798 // Load the array length. 1799 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1800 // And adjust the array base to point to the data. 1801 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1802 1803 cmp(sp, zr); // Clear Z flag; SP is never zero 1804 // Scan R2 words at [R5] for an occurrence of R0. 1805 // Set NZ/Z based on last compare. 1806 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 1807 // rscratch1 == 0 iff we got a match. 1808 cset(rscratch1, NE); 1809 1810 Label passed; 1811 cmp(result, zr); 1812 cset(result, NE); // normalize result to 0/1 for comparison 1813 1814 cmp(rscratch1, result); 1815 br(EQ, passed); 1816 { 1817 mov(r0, r_super_klass); // r0 <- r0 1818 mov(r1, r_sub_klass); // r1 <- r4 1819 mov(r2, /*expected*/rscratch1); // r2 <- r8 1820 mov(r3, result); // r3 <- r5 1821 mov(r4, (address)("mismatch")); // r4 <- const 1822 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 1823 should_not_reach_here(); 1824 } 1825 bind(passed); 1826 1827 BLOCK_COMMENT("} verify_secondary_supers_table"); 1828 } 1829 1830 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1831 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 1832 assert_different_registers(klass, rthread, scratch); 1833 1834 Label L_fallthrough, L_tmp; 1835 if (L_fast_path == nullptr) { 1836 L_fast_path = &L_fallthrough; 1837 } else if (L_slow_path == nullptr) { 1838 L_slow_path = &L_fallthrough; 1839 } 1840 // Fast path check: class is fully initialized 1841 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1842 subs(zr, scratch, InstanceKlass::fully_initialized); 1843 br(Assembler::EQ, *L_fast_path); 1844 1845 // Fast path check: current thread is initializer thread 1846 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1847 cmp(rthread, scratch); 1848 1849 if (L_slow_path == &L_fallthrough) { 1850 br(Assembler::EQ, *L_fast_path); 1851 bind(*L_slow_path); 1852 } else if (L_fast_path == &L_fallthrough) { 1853 br(Assembler::NE, *L_slow_path); 1854 bind(*L_fast_path); 1855 } else { 1856 Unimplemented(); 1857 } 1858 } 1859 1860 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 1861 if (!VerifyOops) return; 1862 1863 // Pass register number to verify_oop_subroutine 1864 const char* b = nullptr; 1865 { 1866 ResourceMark rm; 1867 stringStream ss; 1868 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 1869 b = code_string(ss.as_string()); 1870 } 1871 BLOCK_COMMENT("verify_oop {"); 1872 1873 strip_return_address(); // This might happen within a stack frame. 1874 protect_return_address(); 1875 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1876 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1877 1878 mov(r0, reg); 1879 movptr(rscratch1, (uintptr_t)(address)b); 1880 1881 // call indirectly to solve generation ordering problem 1882 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1883 ldr(rscratch2, Address(rscratch2)); 1884 blr(rscratch2); 1885 1886 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1887 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1888 authenticate_return_address(); 1889 1890 BLOCK_COMMENT("} verify_oop"); 1891 } 1892 1893 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 1894 if (!VerifyOops) return; 1895 1896 const char* b = nullptr; 1897 { 1898 ResourceMark rm; 1899 stringStream ss; 1900 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 1901 b = code_string(ss.as_string()); 1902 } 1903 BLOCK_COMMENT("verify_oop_addr {"); 1904 1905 strip_return_address(); // This might happen within a stack frame. 1906 protect_return_address(); 1907 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1908 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1909 1910 // addr may contain sp so we will have to adjust it based on the 1911 // pushes that we just did. 1912 if (addr.uses(sp)) { 1913 lea(r0, addr); 1914 ldr(r0, Address(r0, 4 * wordSize)); 1915 } else { 1916 ldr(r0, addr); 1917 } 1918 movptr(rscratch1, (uintptr_t)(address)b); 1919 1920 // call indirectly to solve generation ordering problem 1921 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1922 ldr(rscratch2, Address(rscratch2)); 1923 blr(rscratch2); 1924 1925 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1926 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1927 authenticate_return_address(); 1928 1929 BLOCK_COMMENT("} verify_oop_addr"); 1930 } 1931 1932 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1933 int extra_slot_offset) { 1934 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1935 int stackElementSize = Interpreter::stackElementSize; 1936 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1937 #ifdef ASSERT 1938 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1939 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1940 #endif 1941 if (arg_slot.is_constant()) { 1942 return Address(esp, arg_slot.as_constant() * stackElementSize 1943 + offset); 1944 } else { 1945 add(rscratch1, esp, arg_slot.as_register(), 1946 ext::uxtx, exact_log2(stackElementSize)); 1947 return Address(rscratch1, offset); 1948 } 1949 } 1950 1951 void MacroAssembler::call_VM_leaf_base(address entry_point, 1952 int number_of_arguments, 1953 Label *retaddr) { 1954 Label E, L; 1955 1956 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1957 1958 mov(rscratch1, entry_point); 1959 blr(rscratch1); 1960 if (retaddr) 1961 bind(*retaddr); 1962 1963 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1964 } 1965 1966 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1967 call_VM_leaf_base(entry_point, number_of_arguments); 1968 } 1969 1970 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1971 pass_arg0(this, arg_0); 1972 call_VM_leaf_base(entry_point, 1); 1973 } 1974 1975 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1976 assert_different_registers(arg_1, c_rarg0); 1977 pass_arg0(this, arg_0); 1978 pass_arg1(this, arg_1); 1979 call_VM_leaf_base(entry_point, 2); 1980 } 1981 1982 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1983 Register arg_1, Register arg_2) { 1984 assert_different_registers(arg_1, c_rarg0); 1985 assert_different_registers(arg_2, c_rarg0, c_rarg1); 1986 pass_arg0(this, arg_0); 1987 pass_arg1(this, arg_1); 1988 pass_arg2(this, arg_2); 1989 call_VM_leaf_base(entry_point, 3); 1990 } 1991 1992 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1993 pass_arg0(this, arg_0); 1994 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1995 } 1996 1997 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1998 1999 assert_different_registers(arg_0, c_rarg1); 2000 pass_arg1(this, arg_1); 2001 pass_arg0(this, arg_0); 2002 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2003 } 2004 2005 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2006 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2007 assert_different_registers(arg_1, c_rarg2); 2008 pass_arg2(this, arg_2); 2009 pass_arg1(this, arg_1); 2010 pass_arg0(this, arg_0); 2011 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2012 } 2013 2014 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2015 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2016 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2017 assert_different_registers(arg_2, c_rarg3); 2018 pass_arg3(this, arg_3); 2019 pass_arg2(this, arg_2); 2020 pass_arg1(this, arg_1); 2021 pass_arg0(this, arg_0); 2022 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2023 } 2024 2025 void MacroAssembler::null_check(Register reg, int offset) { 2026 if (needs_explicit_null_check(offset)) { 2027 // provoke OS null exception if reg is null by 2028 // accessing M[reg] w/o changing any registers 2029 // NOTE: this is plenty to provoke a segv 2030 ldr(zr, Address(reg)); 2031 } else { 2032 // nothing to do, (later) access of M[reg + offset] 2033 // will provoke OS null exception if reg is null 2034 } 2035 } 2036 2037 // MacroAssembler protected routines needed to implement 2038 // public methods 2039 2040 void MacroAssembler::mov(Register r, Address dest) { 2041 code_section()->relocate(pc(), dest.rspec()); 2042 uint64_t imm64 = (uint64_t)dest.target(); 2043 movptr(r, imm64); 2044 } 2045 2046 // Move a constant pointer into r. In AArch64 mode the virtual 2047 // address space is 48 bits in size, so we only need three 2048 // instructions to create a patchable instruction sequence that can 2049 // reach anywhere. 2050 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2051 #ifndef PRODUCT 2052 { 2053 char buffer[64]; 2054 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2055 block_comment(buffer); 2056 } 2057 #endif 2058 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2059 movz(r, imm64 & 0xffff); 2060 imm64 >>= 16; 2061 movk(r, imm64 & 0xffff, 16); 2062 imm64 >>= 16; 2063 movk(r, imm64 & 0xffff, 32); 2064 } 2065 2066 // Macro to mov replicated immediate to vector register. 2067 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2068 // the upper 56/48/32 bits must be zeros for B/H/S type. 2069 // Vd will get the following values for different arrangements in T 2070 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2071 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2072 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2073 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2074 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2075 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2076 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2077 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2078 // Clobbers rscratch1 2079 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2080 assert(T != T1Q, "unsupported"); 2081 if (T == T1D || T == T2D) { 2082 int imm = operand_valid_for_movi_immediate(imm64, T); 2083 if (-1 != imm) { 2084 movi(Vd, T, imm); 2085 } else { 2086 mov(rscratch1, imm64); 2087 dup(Vd, T, rscratch1); 2088 } 2089 return; 2090 } 2091 2092 #ifdef ASSERT 2093 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2094 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2095 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2096 #endif 2097 int shift = operand_valid_for_movi_immediate(imm64, T); 2098 uint32_t imm32 = imm64 & 0xffffffffULL; 2099 if (shift >= 0) { 2100 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2101 } else { 2102 movw(rscratch1, imm32); 2103 dup(Vd, T, rscratch1); 2104 } 2105 } 2106 2107 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2108 { 2109 #ifndef PRODUCT 2110 { 2111 char buffer[64]; 2112 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2113 block_comment(buffer); 2114 } 2115 #endif 2116 if (operand_valid_for_logical_immediate(false, imm64)) { 2117 orr(dst, zr, imm64); 2118 } else { 2119 // we can use a combination of MOVZ or MOVN with 2120 // MOVK to build up the constant 2121 uint64_t imm_h[4]; 2122 int zero_count = 0; 2123 int neg_count = 0; 2124 int i; 2125 for (i = 0; i < 4; i++) { 2126 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2127 if (imm_h[i] == 0) { 2128 zero_count++; 2129 } else if (imm_h[i] == 0xffffL) { 2130 neg_count++; 2131 } 2132 } 2133 if (zero_count == 4) { 2134 // one MOVZ will do 2135 movz(dst, 0); 2136 } else if (neg_count == 4) { 2137 // one MOVN will do 2138 movn(dst, 0); 2139 } else if (zero_count == 3) { 2140 for (i = 0; i < 4; i++) { 2141 if (imm_h[i] != 0L) { 2142 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2143 break; 2144 } 2145 } 2146 } else if (neg_count == 3) { 2147 // one MOVN will do 2148 for (int i = 0; i < 4; i++) { 2149 if (imm_h[i] != 0xffffL) { 2150 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2151 break; 2152 } 2153 } 2154 } else if (zero_count == 2) { 2155 // one MOVZ and one MOVK will do 2156 for (i = 0; i < 3; i++) { 2157 if (imm_h[i] != 0L) { 2158 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2159 i++; 2160 break; 2161 } 2162 } 2163 for (;i < 4; i++) { 2164 if (imm_h[i] != 0L) { 2165 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2166 } 2167 } 2168 } else if (neg_count == 2) { 2169 // one MOVN and one MOVK will do 2170 for (i = 0; i < 4; i++) { 2171 if (imm_h[i] != 0xffffL) { 2172 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2173 i++; 2174 break; 2175 } 2176 } 2177 for (;i < 4; i++) { 2178 if (imm_h[i] != 0xffffL) { 2179 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2180 } 2181 } 2182 } else if (zero_count == 1) { 2183 // one MOVZ and two MOVKs will do 2184 for (i = 0; i < 4; i++) { 2185 if (imm_h[i] != 0L) { 2186 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2187 i++; 2188 break; 2189 } 2190 } 2191 for (;i < 4; i++) { 2192 if (imm_h[i] != 0x0L) { 2193 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2194 } 2195 } 2196 } else if (neg_count == 1) { 2197 // one MOVN and two MOVKs will do 2198 for (i = 0; i < 4; i++) { 2199 if (imm_h[i] != 0xffffL) { 2200 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2201 i++; 2202 break; 2203 } 2204 } 2205 for (;i < 4; i++) { 2206 if (imm_h[i] != 0xffffL) { 2207 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2208 } 2209 } 2210 } else { 2211 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2212 movz(dst, (uint32_t)imm_h[0], 0); 2213 for (i = 1; i < 4; i++) { 2214 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2215 } 2216 } 2217 } 2218 } 2219 2220 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2221 { 2222 #ifndef PRODUCT 2223 { 2224 char buffer[64]; 2225 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2226 block_comment(buffer); 2227 } 2228 #endif 2229 if (operand_valid_for_logical_immediate(true, imm32)) { 2230 orrw(dst, zr, imm32); 2231 } else { 2232 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2233 // constant 2234 uint32_t imm_h[2]; 2235 imm_h[0] = imm32 & 0xffff; 2236 imm_h[1] = ((imm32 >> 16) & 0xffff); 2237 if (imm_h[0] == 0) { 2238 movzw(dst, imm_h[1], 16); 2239 } else if (imm_h[0] == 0xffff) { 2240 movnw(dst, imm_h[1] ^ 0xffff, 16); 2241 } else if (imm_h[1] == 0) { 2242 movzw(dst, imm_h[0], 0); 2243 } else if (imm_h[1] == 0xffff) { 2244 movnw(dst, imm_h[0] ^ 0xffff, 0); 2245 } else { 2246 // use a MOVZ and MOVK (makes it easier to debug) 2247 movzw(dst, imm_h[0], 0); 2248 movkw(dst, imm_h[1], 16); 2249 } 2250 } 2251 } 2252 2253 // Form an address from base + offset in Rd. Rd may or may 2254 // not actually be used: you must use the Address that is returned. 2255 // It is up to you to ensure that the shift provided matches the size 2256 // of your data. 2257 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2258 if (Address::offset_ok_for_immed(byte_offset, shift)) 2259 // It fits; no need for any heroics 2260 return Address(base, byte_offset); 2261 2262 // Don't do anything clever with negative or misaligned offsets 2263 unsigned mask = (1 << shift) - 1; 2264 if (byte_offset < 0 || byte_offset & mask) { 2265 mov(Rd, byte_offset); 2266 add(Rd, base, Rd); 2267 return Address(Rd); 2268 } 2269 2270 // See if we can do this with two 12-bit offsets 2271 { 2272 uint64_t word_offset = byte_offset >> shift; 2273 uint64_t masked_offset = word_offset & 0xfff000; 2274 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2275 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2276 add(Rd, base, masked_offset << shift); 2277 word_offset -= masked_offset; 2278 return Address(Rd, word_offset << shift); 2279 } 2280 } 2281 2282 // Do it the hard way 2283 mov(Rd, byte_offset); 2284 add(Rd, base, Rd); 2285 return Address(Rd); 2286 } 2287 2288 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2289 bool want_remainder, Register scratch) 2290 { 2291 // Full implementation of Java idiv and irem. The function 2292 // returns the (pc) offset of the div instruction - may be needed 2293 // for implicit exceptions. 2294 // 2295 // constraint : ra/rb =/= scratch 2296 // normal case 2297 // 2298 // input : ra: dividend 2299 // rb: divisor 2300 // 2301 // result: either 2302 // quotient (= ra idiv rb) 2303 // remainder (= ra irem rb) 2304 2305 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2306 2307 int idivl_offset = offset(); 2308 if (! want_remainder) { 2309 sdivw(result, ra, rb); 2310 } else { 2311 sdivw(scratch, ra, rb); 2312 Assembler::msubw(result, scratch, rb, ra); 2313 } 2314 2315 return idivl_offset; 2316 } 2317 2318 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2319 bool want_remainder, Register scratch) 2320 { 2321 // Full implementation of Java ldiv and lrem. The function 2322 // returns the (pc) offset of the div instruction - may be needed 2323 // for implicit exceptions. 2324 // 2325 // constraint : ra/rb =/= scratch 2326 // normal case 2327 // 2328 // input : ra: dividend 2329 // rb: divisor 2330 // 2331 // result: either 2332 // quotient (= ra idiv rb) 2333 // remainder (= ra irem rb) 2334 2335 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2336 2337 int idivq_offset = offset(); 2338 if (! want_remainder) { 2339 sdiv(result, ra, rb); 2340 } else { 2341 sdiv(scratch, ra, rb); 2342 Assembler::msub(result, scratch, rb, ra); 2343 } 2344 2345 return idivq_offset; 2346 } 2347 2348 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2349 address prev = pc() - NativeMembar::instruction_size; 2350 address last = code()->last_insn(); 2351 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2352 NativeMembar *bar = NativeMembar_at(prev); 2353 if (AlwaysMergeDMB) { 2354 bar->set_kind(bar->get_kind() | order_constraint); 2355 BLOCK_COMMENT("merged membar(always)"); 2356 return; 2357 } 2358 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2359 // doing so would introduce a StoreLoad which the caller did not 2360 // intend 2361 if (bar->get_kind() == order_constraint 2362 || bar->get_kind() == AnyAny 2363 || order_constraint == AnyAny) { 2364 // We are merging two memory barrier instructions. On AArch64 we 2365 // can do this simply by ORing them together. 2366 bar->set_kind(bar->get_kind() | order_constraint); 2367 BLOCK_COMMENT("merged membar"); 2368 return; 2369 } else { 2370 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2371 // We need check the last 2 instructions 2372 address prev2 = prev - NativeMembar::instruction_size; 2373 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2374 NativeMembar *bar2 = NativeMembar_at(prev2); 2375 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2376 BLOCK_COMMENT("merged membar(elided)"); 2377 return; 2378 } 2379 } 2380 } 2381 code()->set_last_insn(pc()); 2382 dmb(Assembler::barrier(order_constraint)); 2383 } 2384 2385 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2386 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2387 merge_ldst(rt, adr, size_in_bytes, is_store); 2388 code()->clear_last_insn(); 2389 return true; 2390 } else { 2391 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2392 const uint64_t mask = size_in_bytes - 1; 2393 if (adr.getMode() == Address::base_plus_offset && 2394 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2395 code()->set_last_insn(pc()); 2396 } 2397 return false; 2398 } 2399 } 2400 2401 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2402 // We always try to merge two adjacent loads into one ldp. 2403 if (!try_merge_ldst(Rx, adr, 8, false)) { 2404 Assembler::ldr(Rx, adr); 2405 } 2406 } 2407 2408 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2409 // We always try to merge two adjacent loads into one ldp. 2410 if (!try_merge_ldst(Rw, adr, 4, false)) { 2411 Assembler::ldrw(Rw, adr); 2412 } 2413 } 2414 2415 void MacroAssembler::str(Register Rx, const Address &adr) { 2416 // We always try to merge two adjacent stores into one stp. 2417 if (!try_merge_ldst(Rx, adr, 8, true)) { 2418 Assembler::str(Rx, adr); 2419 } 2420 } 2421 2422 void MacroAssembler::strw(Register Rw, const Address &adr) { 2423 // We always try to merge two adjacent stores into one stp. 2424 if (!try_merge_ldst(Rw, adr, 4, true)) { 2425 Assembler::strw(Rw, adr); 2426 } 2427 } 2428 2429 // MacroAssembler routines found actually to be needed 2430 2431 void MacroAssembler::push(Register src) 2432 { 2433 str(src, Address(pre(esp, -1 * wordSize))); 2434 } 2435 2436 void MacroAssembler::pop(Register dst) 2437 { 2438 ldr(dst, Address(post(esp, 1 * wordSize))); 2439 } 2440 2441 // Note: load_unsigned_short used to be called load_unsigned_word. 2442 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2443 int off = offset(); 2444 ldrh(dst, src); 2445 return off; 2446 } 2447 2448 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2449 int off = offset(); 2450 ldrb(dst, src); 2451 return off; 2452 } 2453 2454 int MacroAssembler::load_signed_short(Register dst, Address src) { 2455 int off = offset(); 2456 ldrsh(dst, src); 2457 return off; 2458 } 2459 2460 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2461 int off = offset(); 2462 ldrsb(dst, src); 2463 return off; 2464 } 2465 2466 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2467 int off = offset(); 2468 ldrshw(dst, src); 2469 return off; 2470 } 2471 2472 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2473 int off = offset(); 2474 ldrsbw(dst, src); 2475 return off; 2476 } 2477 2478 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2479 switch (size_in_bytes) { 2480 case 8: ldr(dst, src); break; 2481 case 4: ldrw(dst, src); break; 2482 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2483 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2484 default: ShouldNotReachHere(); 2485 } 2486 } 2487 2488 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2489 switch (size_in_bytes) { 2490 case 8: str(src, dst); break; 2491 case 4: strw(src, dst); break; 2492 case 2: strh(src, dst); break; 2493 case 1: strb(src, dst); break; 2494 default: ShouldNotReachHere(); 2495 } 2496 } 2497 2498 void MacroAssembler::decrementw(Register reg, int value) 2499 { 2500 if (value < 0) { incrementw(reg, -value); return; } 2501 if (value == 0) { return; } 2502 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2503 /* else */ { 2504 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2505 movw(rscratch2, (unsigned)value); 2506 subw(reg, reg, rscratch2); 2507 } 2508 } 2509 2510 void MacroAssembler::decrement(Register reg, int value) 2511 { 2512 if (value < 0) { increment(reg, -value); return; } 2513 if (value == 0) { return; } 2514 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2515 /* else */ { 2516 assert(reg != rscratch2, "invalid dst for register decrement"); 2517 mov(rscratch2, (uint64_t)value); 2518 sub(reg, reg, rscratch2); 2519 } 2520 } 2521 2522 void MacroAssembler::decrementw(Address dst, int value) 2523 { 2524 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2525 if (dst.getMode() == Address::literal) { 2526 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2527 lea(rscratch2, dst); 2528 dst = Address(rscratch2); 2529 } 2530 ldrw(rscratch1, dst); 2531 decrementw(rscratch1, value); 2532 strw(rscratch1, dst); 2533 } 2534 2535 void MacroAssembler::decrement(Address dst, int value) 2536 { 2537 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2538 if (dst.getMode() == Address::literal) { 2539 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2540 lea(rscratch2, dst); 2541 dst = Address(rscratch2); 2542 } 2543 ldr(rscratch1, dst); 2544 decrement(rscratch1, value); 2545 str(rscratch1, dst); 2546 } 2547 2548 void MacroAssembler::incrementw(Register reg, int value) 2549 { 2550 if (value < 0) { decrementw(reg, -value); return; } 2551 if (value == 0) { return; } 2552 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2553 /* else */ { 2554 assert(reg != rscratch2, "invalid dst for register increment"); 2555 movw(rscratch2, (unsigned)value); 2556 addw(reg, reg, rscratch2); 2557 } 2558 } 2559 2560 void MacroAssembler::increment(Register reg, int value) 2561 { 2562 if (value < 0) { decrement(reg, -value); return; } 2563 if (value == 0) { return; } 2564 if (value < (1 << 12)) { add(reg, reg, value); return; } 2565 /* else */ { 2566 assert(reg != rscratch2, "invalid dst for register increment"); 2567 movw(rscratch2, (unsigned)value); 2568 add(reg, reg, rscratch2); 2569 } 2570 } 2571 2572 void MacroAssembler::incrementw(Address dst, int value) 2573 { 2574 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2575 if (dst.getMode() == Address::literal) { 2576 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2577 lea(rscratch2, dst); 2578 dst = Address(rscratch2); 2579 } 2580 ldrw(rscratch1, dst); 2581 incrementw(rscratch1, value); 2582 strw(rscratch1, dst); 2583 } 2584 2585 void MacroAssembler::increment(Address dst, int value) 2586 { 2587 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2588 if (dst.getMode() == Address::literal) { 2589 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2590 lea(rscratch2, dst); 2591 dst = Address(rscratch2); 2592 } 2593 ldr(rscratch1, dst); 2594 increment(rscratch1, value); 2595 str(rscratch1, dst); 2596 } 2597 2598 // Push lots of registers in the bit set supplied. Don't push sp. 2599 // Return the number of words pushed 2600 int MacroAssembler::push(unsigned int bitset, Register stack) { 2601 int words_pushed = 0; 2602 2603 // Scan bitset to accumulate register pairs 2604 unsigned char regs[32]; 2605 int count = 0; 2606 for (int reg = 0; reg <= 30; reg++) { 2607 if (1 & bitset) 2608 regs[count++] = reg; 2609 bitset >>= 1; 2610 } 2611 regs[count++] = zr->raw_encoding(); 2612 count &= ~1; // Only push an even number of regs 2613 2614 if (count) { 2615 stp(as_Register(regs[0]), as_Register(regs[1]), 2616 Address(pre(stack, -count * wordSize))); 2617 words_pushed += 2; 2618 } 2619 for (int i = 2; i < count; i += 2) { 2620 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2621 Address(stack, i * wordSize)); 2622 words_pushed += 2; 2623 } 2624 2625 assert(words_pushed == count, "oops, pushed != count"); 2626 2627 return count; 2628 } 2629 2630 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2631 int words_pushed = 0; 2632 2633 // Scan bitset to accumulate register pairs 2634 unsigned char regs[32]; 2635 int count = 0; 2636 for (int reg = 0; reg <= 30; reg++) { 2637 if (1 & bitset) 2638 regs[count++] = reg; 2639 bitset >>= 1; 2640 } 2641 regs[count++] = zr->raw_encoding(); 2642 count &= ~1; 2643 2644 for (int i = 2; i < count; i += 2) { 2645 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2646 Address(stack, i * wordSize)); 2647 words_pushed += 2; 2648 } 2649 if (count) { 2650 ldp(as_Register(regs[0]), as_Register(regs[1]), 2651 Address(post(stack, count * wordSize))); 2652 words_pushed += 2; 2653 } 2654 2655 assert(words_pushed == count, "oops, pushed != count"); 2656 2657 return count; 2658 } 2659 2660 // Push lots of registers in the bit set supplied. Don't push sp. 2661 // Return the number of dwords pushed 2662 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2663 int words_pushed = 0; 2664 bool use_sve = false; 2665 int sve_vector_size_in_bytes = 0; 2666 2667 #ifdef COMPILER2 2668 use_sve = Matcher::supports_scalable_vector(); 2669 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2670 #endif 2671 2672 // Scan bitset to accumulate register pairs 2673 unsigned char regs[32]; 2674 int count = 0; 2675 for (int reg = 0; reg <= 31; reg++) { 2676 if (1 & bitset) 2677 regs[count++] = reg; 2678 bitset >>= 1; 2679 } 2680 2681 if (count == 0) { 2682 return 0; 2683 } 2684 2685 if (mode == PushPopFull) { 2686 if (use_sve && sve_vector_size_in_bytes > 16) { 2687 mode = PushPopSVE; 2688 } else { 2689 mode = PushPopNeon; 2690 } 2691 } 2692 2693 #ifndef PRODUCT 2694 { 2695 char buffer[48]; 2696 if (mode == PushPopSVE) { 2697 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2698 } else if (mode == PushPopNeon) { 2699 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2700 } else { 2701 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2702 } 2703 block_comment(buffer); 2704 } 2705 #endif 2706 2707 if (mode == PushPopSVE) { 2708 sub(stack, stack, sve_vector_size_in_bytes * count); 2709 for (int i = 0; i < count; i++) { 2710 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2711 } 2712 return count * sve_vector_size_in_bytes / 8; 2713 } 2714 2715 if (mode == PushPopNeon) { 2716 if (count == 1) { 2717 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2718 return 2; 2719 } 2720 2721 bool odd = (count & 1) == 1; 2722 int push_slots = count + (odd ? 1 : 0); 2723 2724 // Always pushing full 128 bit registers. 2725 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2726 words_pushed += 2; 2727 2728 for (int i = 2; i + 1 < count; i += 2) { 2729 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2730 words_pushed += 2; 2731 } 2732 2733 if (odd) { 2734 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2735 words_pushed++; 2736 } 2737 2738 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2739 return count * 2; 2740 } 2741 2742 if (mode == PushPopFp) { 2743 bool odd = (count & 1) == 1; 2744 int push_slots = count + (odd ? 1 : 0); 2745 2746 if (count == 1) { 2747 // Stack pointer must be 16 bytes aligned 2748 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2749 return 1; 2750 } 2751 2752 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2753 words_pushed += 2; 2754 2755 for (int i = 2; i + 1 < count; i += 2) { 2756 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2757 words_pushed += 2; 2758 } 2759 2760 if (odd) { 2761 // Stack pointer must be 16 bytes aligned 2762 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2763 words_pushed++; 2764 } 2765 2766 assert(words_pushed == count, "oops, pushed != count"); 2767 2768 return count; 2769 } 2770 2771 return 0; 2772 } 2773 2774 // Return the number of dwords popped 2775 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2776 int words_pushed = 0; 2777 bool use_sve = false; 2778 int sve_vector_size_in_bytes = 0; 2779 2780 #ifdef COMPILER2 2781 use_sve = Matcher::supports_scalable_vector(); 2782 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2783 #endif 2784 // Scan bitset to accumulate register pairs 2785 unsigned char regs[32]; 2786 int count = 0; 2787 for (int reg = 0; reg <= 31; reg++) { 2788 if (1 & bitset) 2789 regs[count++] = reg; 2790 bitset >>= 1; 2791 } 2792 2793 if (count == 0) { 2794 return 0; 2795 } 2796 2797 if (mode == PushPopFull) { 2798 if (use_sve && sve_vector_size_in_bytes > 16) { 2799 mode = PushPopSVE; 2800 } else { 2801 mode = PushPopNeon; 2802 } 2803 } 2804 2805 #ifndef PRODUCT 2806 { 2807 char buffer[48]; 2808 if (mode == PushPopSVE) { 2809 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 2810 } else if (mode == PushPopNeon) { 2811 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 2812 } else { 2813 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 2814 } 2815 block_comment(buffer); 2816 } 2817 #endif 2818 2819 if (mode == PushPopSVE) { 2820 for (int i = count - 1; i >= 0; i--) { 2821 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 2822 } 2823 add(stack, stack, sve_vector_size_in_bytes * count); 2824 return count * sve_vector_size_in_bytes / 8; 2825 } 2826 2827 if (mode == PushPopNeon) { 2828 if (count == 1) { 2829 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 2830 return 2; 2831 } 2832 2833 bool odd = (count & 1) == 1; 2834 int push_slots = count + (odd ? 1 : 0); 2835 2836 if (odd) { 2837 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2838 words_pushed++; 2839 } 2840 2841 for (int i = 2; i + 1 < count; i += 2) { 2842 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2843 words_pushed += 2; 2844 } 2845 2846 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 2847 words_pushed += 2; 2848 2849 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2850 2851 return count * 2; 2852 } 2853 2854 if (mode == PushPopFp) { 2855 bool odd = (count & 1) == 1; 2856 int push_slots = count + (odd ? 1 : 0); 2857 2858 if (count == 1) { 2859 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 2860 return 1; 2861 } 2862 2863 if (odd) { 2864 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2865 words_pushed++; 2866 } 2867 2868 for (int i = 2; i + 1 < count; i += 2) { 2869 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2870 words_pushed += 2; 2871 } 2872 2873 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 2874 words_pushed += 2; 2875 2876 assert(words_pushed == count, "oops, pushed != count"); 2877 2878 return count; 2879 } 2880 2881 return 0; 2882 } 2883 2884 // Return the number of dwords pushed 2885 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 2886 bool use_sve = false; 2887 int sve_predicate_size_in_slots = 0; 2888 2889 #ifdef COMPILER2 2890 use_sve = Matcher::supports_scalable_vector(); 2891 if (use_sve) { 2892 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2893 } 2894 #endif 2895 2896 if (!use_sve) { 2897 return 0; 2898 } 2899 2900 unsigned char regs[PRegister::number_of_registers]; 2901 int count = 0; 2902 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2903 if (1 & bitset) 2904 regs[count++] = reg; 2905 bitset >>= 1; 2906 } 2907 2908 if (count == 0) { 2909 return 0; 2910 } 2911 2912 int total_push_bytes = align_up(sve_predicate_size_in_slots * 2913 VMRegImpl::stack_slot_size * count, 16); 2914 sub(stack, stack, total_push_bytes); 2915 for (int i = 0; i < count; i++) { 2916 sve_str(as_PRegister(regs[i]), Address(stack, i)); 2917 } 2918 return total_push_bytes / 8; 2919 } 2920 2921 // Return the number of dwords popped 2922 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 2923 bool use_sve = false; 2924 int sve_predicate_size_in_slots = 0; 2925 2926 #ifdef COMPILER2 2927 use_sve = Matcher::supports_scalable_vector(); 2928 if (use_sve) { 2929 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2930 } 2931 #endif 2932 2933 if (!use_sve) { 2934 return 0; 2935 } 2936 2937 unsigned char regs[PRegister::number_of_registers]; 2938 int count = 0; 2939 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2940 if (1 & bitset) 2941 regs[count++] = reg; 2942 bitset >>= 1; 2943 } 2944 2945 if (count == 0) { 2946 return 0; 2947 } 2948 2949 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 2950 VMRegImpl::stack_slot_size * count, 16); 2951 for (int i = count - 1; i >= 0; i--) { 2952 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 2953 } 2954 add(stack, stack, total_pop_bytes); 2955 return total_pop_bytes / 8; 2956 } 2957 2958 #ifdef ASSERT 2959 void MacroAssembler::verify_heapbase(const char* msg) { 2960 #if 0 2961 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2962 assert (Universe::heap() != nullptr, "java heap should be initialized"); 2963 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 2964 // rheapbase is allocated as general register 2965 return; 2966 } 2967 if (CheckCompressedOops) { 2968 Label ok; 2969 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2970 cmpptr(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 2971 br(Assembler::EQ, ok); 2972 stop(msg); 2973 bind(ok); 2974 pop(1 << rscratch1->encoding(), sp); 2975 } 2976 #endif 2977 } 2978 #endif 2979 2980 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 2981 assert_different_registers(value, tmp1, tmp2); 2982 Label done, tagged, weak_tagged; 2983 2984 cbz(value, done); // Use null as-is. 2985 tst(value, JNIHandles::tag_mask); // Test for tag. 2986 br(Assembler::NE, tagged); 2987 2988 // Resolve local handle 2989 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 2990 verify_oop(value); 2991 b(done); 2992 2993 bind(tagged); 2994 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 2995 tbnz(value, 0, weak_tagged); // Test for weak tag. 2996 2997 // Resolve global handle 2998 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 2999 verify_oop(value); 3000 b(done); 3001 3002 bind(weak_tagged); 3003 // Resolve jweak. 3004 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3005 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3006 verify_oop(value); 3007 3008 bind(done); 3009 } 3010 3011 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3012 assert_different_registers(value, tmp1, tmp2); 3013 Label done; 3014 3015 cbz(value, done); // Use null as-is. 3016 3017 #ifdef ASSERT 3018 { 3019 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3020 Label valid_global_tag; 3021 tbnz(value, 1, valid_global_tag); // Test for global tag 3022 stop("non global jobject using resolve_global_jobject"); 3023 bind(valid_global_tag); 3024 } 3025 #endif 3026 3027 // Resolve global handle 3028 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3029 verify_oop(value); 3030 3031 bind(done); 3032 } 3033 3034 void MacroAssembler::stop(const char* msg) { 3035 BLOCK_COMMENT(msg); 3036 dcps1(0xdeae); 3037 emit_int64((uintptr_t)msg); 3038 } 3039 3040 void MacroAssembler::unimplemented(const char* what) { 3041 const char* buf = nullptr; 3042 { 3043 ResourceMark rm; 3044 stringStream ss; 3045 ss.print("unimplemented: %s", what); 3046 buf = code_string(ss.as_string()); 3047 } 3048 stop(buf); 3049 } 3050 3051 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3052 #ifdef ASSERT 3053 Label OK; 3054 br(cc, OK); 3055 stop(msg); 3056 bind(OK); 3057 #endif 3058 } 3059 3060 // If a constant does not fit in an immediate field, generate some 3061 // number of MOV instructions and then perform the operation. 3062 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3063 add_sub_imm_insn insn1, 3064 add_sub_reg_insn insn2, 3065 bool is32) { 3066 assert(Rd != zr, "Rd = zr and not setting flags?"); 3067 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3068 if (fits) { 3069 (this->*insn1)(Rd, Rn, imm); 3070 } else { 3071 if (uabs(imm) < (1 << 24)) { 3072 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3073 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3074 } else { 3075 assert_different_registers(Rd, Rn); 3076 mov(Rd, imm); 3077 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3078 } 3079 } 3080 } 3081 3082 // Separate vsn which sets the flags. Optimisations are more restricted 3083 // because we must set the flags correctly. 3084 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3085 add_sub_imm_insn insn1, 3086 add_sub_reg_insn insn2, 3087 bool is32) { 3088 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3089 if (fits) { 3090 (this->*insn1)(Rd, Rn, imm); 3091 } else { 3092 assert_different_registers(Rd, Rn); 3093 assert(Rd != zr, "overflow in immediate operand"); 3094 mov(Rd, imm); 3095 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3096 } 3097 } 3098 3099 3100 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3101 if (increment.is_register()) { 3102 add(Rd, Rn, increment.as_register()); 3103 } else { 3104 add(Rd, Rn, increment.as_constant()); 3105 } 3106 } 3107 3108 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3109 if (increment.is_register()) { 3110 addw(Rd, Rn, increment.as_register()); 3111 } else { 3112 addw(Rd, Rn, increment.as_constant()); 3113 } 3114 } 3115 3116 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3117 if (decrement.is_register()) { 3118 sub(Rd, Rn, decrement.as_register()); 3119 } else { 3120 sub(Rd, Rn, decrement.as_constant()); 3121 } 3122 } 3123 3124 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3125 if (decrement.is_register()) { 3126 subw(Rd, Rn, decrement.as_register()); 3127 } else { 3128 subw(Rd, Rn, decrement.as_constant()); 3129 } 3130 } 3131 3132 void MacroAssembler::reinit_heapbase() 3133 { 3134 if (UseCompressedOops) { 3135 if (Universe::is_fully_initialized()) { 3136 mov(rheapbase, CompressedOops::ptrs_base()); 3137 } else { 3138 lea(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 3139 ldr(rheapbase, Address(rheapbase)); 3140 } 3141 } 3142 } 3143 3144 // this simulates the behaviour of the x86 cmpxchg instruction using a 3145 // load linked/store conditional pair. we use the acquire/release 3146 // versions of these instructions so that we flush pending writes as 3147 // per Java semantics. 3148 3149 // n.b the x86 version assumes the old value to be compared against is 3150 // in rax and updates rax with the value located in memory if the 3151 // cmpxchg fails. we supply a register for the old value explicitly 3152 3153 // the aarch64 load linked/store conditional instructions do not 3154 // accept an offset. so, unlike x86, we must provide a plain register 3155 // to identify the memory word to be compared/exchanged rather than a 3156 // register+offset Address. 3157 3158 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3159 Label &succeed, Label *fail) { 3160 // oldv holds comparison value 3161 // newv holds value to write in exchange 3162 // addr identifies memory word to compare against/update 3163 if (UseLSE) { 3164 mov(tmp, oldv); 3165 casal(Assembler::xword, oldv, newv, addr); 3166 cmp(tmp, oldv); 3167 br(Assembler::EQ, succeed); 3168 membar(AnyAny); 3169 } else { 3170 Label retry_load, nope; 3171 prfm(Address(addr), PSTL1STRM); 3172 bind(retry_load); 3173 // flush and load exclusive from the memory location 3174 // and fail if it is not what we expect 3175 ldaxr(tmp, addr); 3176 cmp(tmp, oldv); 3177 br(Assembler::NE, nope); 3178 // if we store+flush with no intervening write tmp will be zero 3179 stlxr(tmp, newv, addr); 3180 cbzw(tmp, succeed); 3181 // retry so we only ever return after a load fails to compare 3182 // ensures we don't return a stale value after a failed write. 3183 b(retry_load); 3184 // if the memory word differs we return it in oldv and signal a fail 3185 bind(nope); 3186 membar(AnyAny); 3187 mov(oldv, tmp); 3188 } 3189 if (fail) 3190 b(*fail); 3191 } 3192 3193 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3194 Label &succeed, Label *fail) { 3195 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3196 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3197 } 3198 3199 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3200 Label &succeed, Label *fail) { 3201 // oldv holds comparison value 3202 // newv holds value to write in exchange 3203 // addr identifies memory word to compare against/update 3204 // tmp returns 0/1 for success/failure 3205 if (UseLSE) { 3206 mov(tmp, oldv); 3207 casal(Assembler::word, oldv, newv, addr); 3208 cmp(tmp, oldv); 3209 br(Assembler::EQ, succeed); 3210 membar(AnyAny); 3211 } else { 3212 Label retry_load, nope; 3213 prfm(Address(addr), PSTL1STRM); 3214 bind(retry_load); 3215 // flush and load exclusive from the memory location 3216 // and fail if it is not what we expect 3217 ldaxrw(tmp, addr); 3218 cmp(tmp, oldv); 3219 br(Assembler::NE, nope); 3220 // if we store+flush with no intervening write tmp will be zero 3221 stlxrw(tmp, newv, addr); 3222 cbzw(tmp, succeed); 3223 // retry so we only ever return after a load fails to compare 3224 // ensures we don't return a stale value after a failed write. 3225 b(retry_load); 3226 // if the memory word differs we return it in oldv and signal a fail 3227 bind(nope); 3228 membar(AnyAny); 3229 mov(oldv, tmp); 3230 } 3231 if (fail) 3232 b(*fail); 3233 } 3234 3235 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3236 // doesn't retry and may fail spuriously. If the oldval is wanted, 3237 // Pass a register for the result, otherwise pass noreg. 3238 3239 // Clobbers rscratch1 3240 void MacroAssembler::cmpxchg(Register addr, Register expected, 3241 Register new_val, 3242 enum operand_size size, 3243 bool acquire, bool release, 3244 bool weak, 3245 Register result) { 3246 if (result == noreg) result = rscratch1; 3247 BLOCK_COMMENT("cmpxchg {"); 3248 if (UseLSE) { 3249 mov(result, expected); 3250 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3251 compare_eq(result, expected, size); 3252 #ifdef ASSERT 3253 // Poison rscratch1 which is written on !UseLSE branch 3254 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3255 #endif 3256 } else { 3257 Label retry_load, done; 3258 prfm(Address(addr), PSTL1STRM); 3259 bind(retry_load); 3260 load_exclusive(result, addr, size, acquire); 3261 compare_eq(result, expected, size); 3262 br(Assembler::NE, done); 3263 store_exclusive(rscratch1, new_val, addr, size, release); 3264 if (weak) { 3265 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3266 } else { 3267 cbnzw(rscratch1, retry_load); 3268 } 3269 bind(done); 3270 } 3271 BLOCK_COMMENT("} cmpxchg"); 3272 } 3273 3274 // A generic comparison. Only compares for equality, clobbers rscratch1. 3275 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3276 if (size == xword) { 3277 cmp(rm, rn); 3278 } else if (size == word) { 3279 cmpw(rm, rn); 3280 } else if (size == halfword) { 3281 eorw(rscratch1, rm, rn); 3282 ands(zr, rscratch1, 0xffff); 3283 } else if (size == byte) { 3284 eorw(rscratch1, rm, rn); 3285 ands(zr, rscratch1, 0xff); 3286 } else { 3287 ShouldNotReachHere(); 3288 } 3289 } 3290 3291 3292 static bool different(Register a, RegisterOrConstant b, Register c) { 3293 if (b.is_constant()) 3294 return a != c; 3295 else 3296 return a != b.as_register() && a != c && b.as_register() != c; 3297 } 3298 3299 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3300 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3301 if (UseLSE) { \ 3302 prev = prev->is_valid() ? prev : zr; \ 3303 if (incr.is_register()) { \ 3304 AOP(sz, incr.as_register(), prev, addr); \ 3305 } else { \ 3306 mov(rscratch2, incr.as_constant()); \ 3307 AOP(sz, rscratch2, prev, addr); \ 3308 } \ 3309 return; \ 3310 } \ 3311 Register result = rscratch2; \ 3312 if (prev->is_valid()) \ 3313 result = different(prev, incr, addr) ? prev : rscratch2; \ 3314 \ 3315 Label retry_load; \ 3316 prfm(Address(addr), PSTL1STRM); \ 3317 bind(retry_load); \ 3318 LDXR(result, addr); \ 3319 OP(rscratch1, result, incr); \ 3320 STXR(rscratch2, rscratch1, addr); \ 3321 cbnzw(rscratch2, retry_load); \ 3322 if (prev->is_valid() && prev != result) { \ 3323 IOP(prev, rscratch1, incr); \ 3324 } \ 3325 } 3326 3327 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3328 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3329 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3330 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3331 3332 #undef ATOMIC_OP 3333 3334 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3335 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3336 if (UseLSE) { \ 3337 prev = prev->is_valid() ? prev : zr; \ 3338 AOP(sz, newv, prev, addr); \ 3339 return; \ 3340 } \ 3341 Register result = rscratch2; \ 3342 if (prev->is_valid()) \ 3343 result = different(prev, newv, addr) ? prev : rscratch2; \ 3344 \ 3345 Label retry_load; \ 3346 prfm(Address(addr), PSTL1STRM); \ 3347 bind(retry_load); \ 3348 LDXR(result, addr); \ 3349 STXR(rscratch1, newv, addr); \ 3350 cbnzw(rscratch1, retry_load); \ 3351 if (prev->is_valid() && prev != result) \ 3352 mov(prev, result); \ 3353 } 3354 3355 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3356 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3357 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3358 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3359 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3360 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3361 3362 #undef ATOMIC_XCHG 3363 3364 #ifndef PRODUCT 3365 extern "C" void findpc(intptr_t x); 3366 #endif 3367 3368 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3369 { 3370 // In order to get locks to work, we need to fake a in_VM state 3371 if (ShowMessageBoxOnError ) { 3372 JavaThread* thread = JavaThread::current(); 3373 JavaThreadState saved_state = thread->thread_state(); 3374 thread->set_thread_state(_thread_in_vm); 3375 #ifndef PRODUCT 3376 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3377 ttyLocker ttyl; 3378 BytecodeCounter::print(); 3379 } 3380 #endif 3381 if (os::message_box(msg, "Execution stopped, print registers?")) { 3382 ttyLocker ttyl; 3383 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3384 #ifndef PRODUCT 3385 tty->cr(); 3386 findpc(pc); 3387 tty->cr(); 3388 #endif 3389 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3390 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3391 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3392 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3393 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3394 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3395 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3396 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3397 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3398 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3399 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3400 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3401 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3402 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3403 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3404 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3405 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3406 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3407 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3408 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3409 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3410 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3411 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3412 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3413 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3414 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3415 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3416 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3417 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3418 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3419 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3420 BREAKPOINT; 3421 } 3422 } 3423 fatal("DEBUG MESSAGE: %s", msg); 3424 } 3425 3426 RegSet MacroAssembler::call_clobbered_gp_registers() { 3427 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3428 #ifndef R18_RESERVED 3429 regs += r18_tls; 3430 #endif 3431 return regs; 3432 } 3433 3434 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3435 int step = 4 * wordSize; 3436 push(call_clobbered_gp_registers() - exclude, sp); 3437 sub(sp, sp, step); 3438 mov(rscratch1, -step); 3439 // Push v0-v7, v16-v31. 3440 for (int i = 31; i>= 4; i -= 4) { 3441 if (i <= v7->encoding() || i >= v16->encoding()) 3442 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3443 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3444 } 3445 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3446 as_FloatRegister(3), T1D, Address(sp)); 3447 } 3448 3449 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3450 for (int i = 0; i < 32; i += 4) { 3451 if (i <= v7->encoding() || i >= v16->encoding()) 3452 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3453 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3454 } 3455 3456 reinitialize_ptrue(); 3457 3458 pop(call_clobbered_gp_registers() - exclude, sp); 3459 } 3460 3461 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3462 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3463 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3464 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3465 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3466 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3467 sve_str(as_FloatRegister(i), Address(sp, i)); 3468 } 3469 } else { 3470 int step = (save_vectors ? 8 : 4) * wordSize; 3471 mov(rscratch1, -step); 3472 sub(sp, sp, step); 3473 for (int i = 28; i >= 4; i -= 4) { 3474 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3475 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3476 } 3477 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3478 } 3479 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3480 sub(sp, sp, total_predicate_in_bytes); 3481 for (int i = 0; i < PRegister::number_of_registers; i++) { 3482 sve_str(as_PRegister(i), Address(sp, i)); 3483 } 3484 } 3485 } 3486 3487 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3488 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3489 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3490 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3491 sve_ldr(as_PRegister(i), Address(sp, i)); 3492 } 3493 add(sp, sp, total_predicate_in_bytes); 3494 } 3495 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3496 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3497 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3498 } 3499 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3500 } else { 3501 int step = (restore_vectors ? 8 : 4) * wordSize; 3502 for (int i = 0; i <= 28; i += 4) 3503 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3504 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3505 } 3506 3507 // We may use predicate registers and rely on ptrue with SVE, 3508 // regardless of wide vector (> 8 bytes) used or not. 3509 if (use_sve) { 3510 reinitialize_ptrue(); 3511 } 3512 3513 // integer registers except lr & sp 3514 pop(RegSet::range(r0, r17), sp); 3515 #ifdef R18_RESERVED 3516 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3517 pop(RegSet::range(r20, r29), sp); 3518 #else 3519 pop(RegSet::range(r18_tls, r29), sp); 3520 #endif 3521 } 3522 3523 /** 3524 * Helpers for multiply_to_len(). 3525 */ 3526 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3527 Register src1, Register src2) { 3528 adds(dest_lo, dest_lo, src1); 3529 adc(dest_hi, dest_hi, zr); 3530 adds(dest_lo, dest_lo, src2); 3531 adc(final_dest_hi, dest_hi, zr); 3532 } 3533 3534 // Generate an address from (r + r1 extend offset). "size" is the 3535 // size of the operand. The result may be in rscratch2. 3536 Address MacroAssembler::offsetted_address(Register r, Register r1, 3537 Address::extend ext, int offset, int size) { 3538 if (offset || (ext.shift() % size != 0)) { 3539 lea(rscratch2, Address(r, r1, ext)); 3540 return Address(rscratch2, offset); 3541 } else { 3542 return Address(r, r1, ext); 3543 } 3544 } 3545 3546 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3547 { 3548 assert(offset >= 0, "spill to negative address?"); 3549 // Offset reachable ? 3550 // Not aligned - 9 bits signed offset 3551 // Aligned - 12 bits unsigned offset shifted 3552 Register base = sp; 3553 if ((offset & (size-1)) && offset >= (1<<8)) { 3554 add(tmp, base, offset & ((1<<12)-1)); 3555 base = tmp; 3556 offset &= -1u<<12; 3557 } 3558 3559 if (offset >= (1<<12) * size) { 3560 add(tmp, base, offset & (((1<<12)-1)<<12)); 3561 base = tmp; 3562 offset &= ~(((1<<12)-1)<<12); 3563 } 3564 3565 return Address(base, offset); 3566 } 3567 3568 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3569 assert(offset >= 0, "spill to negative address?"); 3570 3571 Register base = sp; 3572 3573 // An immediate offset in the range 0 to 255 which is multiplied 3574 // by the current vector or predicate register size in bytes. 3575 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3576 return Address(base, offset / sve_reg_size_in_bytes); 3577 } 3578 3579 add(tmp, base, offset); 3580 return Address(tmp); 3581 } 3582 3583 // Checks whether offset is aligned. 3584 // Returns true if it is, else false. 3585 bool MacroAssembler::merge_alignment_check(Register base, 3586 size_t size, 3587 int64_t cur_offset, 3588 int64_t prev_offset) const { 3589 if (AvoidUnalignedAccesses) { 3590 if (base == sp) { 3591 // Checks whether low offset if aligned to pair of registers. 3592 int64_t pair_mask = size * 2 - 1; 3593 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3594 return (offset & pair_mask) == 0; 3595 } else { // If base is not sp, we can't guarantee the access is aligned. 3596 return false; 3597 } 3598 } else { 3599 int64_t mask = size - 1; 3600 // Load/store pair instruction only supports element size aligned offset. 3601 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3602 } 3603 } 3604 3605 // Checks whether current and previous loads/stores can be merged. 3606 // Returns true if it can be merged, else false. 3607 bool MacroAssembler::ldst_can_merge(Register rt, 3608 const Address &adr, 3609 size_t cur_size_in_bytes, 3610 bool is_store) const { 3611 address prev = pc() - NativeInstruction::instruction_size; 3612 address last = code()->last_insn(); 3613 3614 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3615 return false; 3616 } 3617 3618 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3619 return false; 3620 } 3621 3622 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3623 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3624 3625 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3626 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3627 3628 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3629 return false; 3630 } 3631 3632 int64_t max_offset = 63 * prev_size_in_bytes; 3633 int64_t min_offset = -64 * prev_size_in_bytes; 3634 3635 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3636 3637 // Only same base can be merged. 3638 if (adr.base() != prev_ldst->base()) { 3639 return false; 3640 } 3641 3642 int64_t cur_offset = adr.offset(); 3643 int64_t prev_offset = prev_ldst->offset(); 3644 size_t diff = abs(cur_offset - prev_offset); 3645 if (diff != prev_size_in_bytes) { 3646 return false; 3647 } 3648 3649 // Following cases can not be merged: 3650 // ldr x2, [x2, #8] 3651 // ldr x3, [x2, #16] 3652 // or: 3653 // ldr x2, [x3, #8] 3654 // ldr x2, [x3, #16] 3655 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3656 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3657 return false; 3658 } 3659 3660 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3661 // Offset range must be in ldp/stp instruction's range. 3662 if (low_offset > max_offset || low_offset < min_offset) { 3663 return false; 3664 } 3665 3666 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3667 return true; 3668 } 3669 3670 return false; 3671 } 3672 3673 // Merge current load/store with previous load/store into ldp/stp. 3674 void MacroAssembler::merge_ldst(Register rt, 3675 const Address &adr, 3676 size_t cur_size_in_bytes, 3677 bool is_store) { 3678 3679 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3680 3681 Register rt_low, rt_high; 3682 address prev = pc() - NativeInstruction::instruction_size; 3683 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3684 3685 int64_t offset; 3686 3687 if (adr.offset() < prev_ldst->offset()) { 3688 offset = adr.offset(); 3689 rt_low = rt; 3690 rt_high = prev_ldst->target(); 3691 } else { 3692 offset = prev_ldst->offset(); 3693 rt_low = prev_ldst->target(); 3694 rt_high = rt; 3695 } 3696 3697 Address adr_p = Address(prev_ldst->base(), offset); 3698 // Overwrite previous generated binary. 3699 code_section()->set_end(prev); 3700 3701 const size_t sz = prev_ldst->size_in_bytes(); 3702 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3703 if (!is_store) { 3704 BLOCK_COMMENT("merged ldr pair"); 3705 if (sz == 8) { 3706 ldp(rt_low, rt_high, adr_p); 3707 } else { 3708 ldpw(rt_low, rt_high, adr_p); 3709 } 3710 } else { 3711 BLOCK_COMMENT("merged str pair"); 3712 if (sz == 8) { 3713 stp(rt_low, rt_high, adr_p); 3714 } else { 3715 stpw(rt_low, rt_high, adr_p); 3716 } 3717 } 3718 } 3719 3720 /** 3721 * Multiply 64 bit by 64 bit first loop. 3722 */ 3723 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3724 Register y, Register y_idx, Register z, 3725 Register carry, Register product, 3726 Register idx, Register kdx) { 3727 // 3728 // jlong carry, x[], y[], z[]; 3729 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3730 // huge_128 product = y[idx] * x[xstart] + carry; 3731 // z[kdx] = (jlong)product; 3732 // carry = (jlong)(product >>> 64); 3733 // } 3734 // z[xstart] = carry; 3735 // 3736 3737 Label L_first_loop, L_first_loop_exit; 3738 Label L_one_x, L_one_y, L_multiply; 3739 3740 subsw(xstart, xstart, 1); 3741 br(Assembler::MI, L_one_x); 3742 3743 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3744 ldr(x_xstart, Address(rscratch1)); 3745 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3746 3747 bind(L_first_loop); 3748 subsw(idx, idx, 1); 3749 br(Assembler::MI, L_first_loop_exit); 3750 subsw(idx, idx, 1); 3751 br(Assembler::MI, L_one_y); 3752 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3753 ldr(y_idx, Address(rscratch1)); 3754 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3755 bind(L_multiply); 3756 3757 // AArch64 has a multiply-accumulate instruction that we can't use 3758 // here because it has no way to process carries, so we have to use 3759 // separate add and adc instructions. Bah. 3760 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3761 mul(product, x_xstart, y_idx); 3762 adds(product, product, carry); 3763 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3764 3765 subw(kdx, kdx, 2); 3766 ror(product, product, 32); // back to big-endian 3767 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3768 3769 b(L_first_loop); 3770 3771 bind(L_one_y); 3772 ldrw(y_idx, Address(y, 0)); 3773 b(L_multiply); 3774 3775 bind(L_one_x); 3776 ldrw(x_xstart, Address(x, 0)); 3777 b(L_first_loop); 3778 3779 bind(L_first_loop_exit); 3780 } 3781 3782 /** 3783 * Multiply 128 bit by 128. Unrolled inner loop. 3784 * 3785 */ 3786 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3787 Register carry, Register carry2, 3788 Register idx, Register jdx, 3789 Register yz_idx1, Register yz_idx2, 3790 Register tmp, Register tmp3, Register tmp4, 3791 Register tmp6, Register product_hi) { 3792 3793 // jlong carry, x[], y[], z[]; 3794 // int kdx = ystart+1; 3795 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3796 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3797 // jlong carry2 = (jlong)(tmp3 >>> 64); 3798 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3799 // carry = (jlong)(tmp4 >>> 64); 3800 // z[kdx+idx+1] = (jlong)tmp3; 3801 // z[kdx+idx] = (jlong)tmp4; 3802 // } 3803 // idx += 2; 3804 // if (idx > 0) { 3805 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3806 // z[kdx+idx] = (jlong)yz_idx1; 3807 // carry = (jlong)(yz_idx1 >>> 64); 3808 // } 3809 // 3810 3811 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 3812 3813 lsrw(jdx, idx, 2); 3814 3815 bind(L_third_loop); 3816 3817 subsw(jdx, jdx, 1); 3818 br(Assembler::MI, L_third_loop_exit); 3819 subw(idx, idx, 4); 3820 3821 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3822 3823 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 3824 3825 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3826 3827 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 3828 ror(yz_idx2, yz_idx2, 32); 3829 3830 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 3831 3832 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3833 umulh(tmp4, product_hi, yz_idx1); 3834 3835 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 3836 ror(rscratch2, rscratch2, 32); 3837 3838 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 3839 umulh(carry2, product_hi, yz_idx2); 3840 3841 // propagate sum of both multiplications into carry:tmp4:tmp3 3842 adds(tmp3, tmp3, carry); 3843 adc(tmp4, tmp4, zr); 3844 adds(tmp3, tmp3, rscratch1); 3845 adcs(tmp4, tmp4, tmp); 3846 adc(carry, carry2, zr); 3847 adds(tmp4, tmp4, rscratch2); 3848 adc(carry, carry, zr); 3849 3850 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 3851 ror(tmp4, tmp4, 32); 3852 stp(tmp4, tmp3, Address(tmp6, 0)); 3853 3854 b(L_third_loop); 3855 bind (L_third_loop_exit); 3856 3857 andw (idx, idx, 0x3); 3858 cbz(idx, L_post_third_loop_done); 3859 3860 Label L_check_1; 3861 subsw(idx, idx, 2); 3862 br(Assembler::MI, L_check_1); 3863 3864 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3865 ldr(yz_idx1, Address(rscratch1, 0)); 3866 ror(yz_idx1, yz_idx1, 32); 3867 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3868 umulh(tmp4, product_hi, yz_idx1); 3869 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3870 ldr(yz_idx2, Address(rscratch1, 0)); 3871 ror(yz_idx2, yz_idx2, 32); 3872 3873 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 3874 3875 ror(tmp3, tmp3, 32); 3876 str(tmp3, Address(rscratch1, 0)); 3877 3878 bind (L_check_1); 3879 3880 andw (idx, idx, 0x1); 3881 subsw(idx, idx, 1); 3882 br(Assembler::MI, L_post_third_loop_done); 3883 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3884 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3885 umulh(carry2, tmp4, product_hi); 3886 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3887 3888 add2_with_carry(carry2, tmp3, tmp4, carry); 3889 3890 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3891 extr(carry, carry2, tmp3, 32); 3892 3893 bind(L_post_third_loop_done); 3894 } 3895 3896 /** 3897 * Code for BigInteger::multiplyToLen() intrinsic. 3898 * 3899 * r0: x 3900 * r1: xlen 3901 * r2: y 3902 * r3: ylen 3903 * r4: z 3904 * r5: tmp0 3905 * r10: tmp1 3906 * r11: tmp2 3907 * r12: tmp3 3908 * r13: tmp4 3909 * r14: tmp5 3910 * r15: tmp6 3911 * r16: tmp7 3912 * 3913 */ 3914 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3915 Register z, Register tmp0, 3916 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3917 Register tmp5, Register tmp6, Register product_hi) { 3918 3919 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 3920 3921 const Register idx = tmp1; 3922 const Register kdx = tmp2; 3923 const Register xstart = tmp3; 3924 3925 const Register y_idx = tmp4; 3926 const Register carry = tmp5; 3927 const Register product = xlen; 3928 const Register x_xstart = tmp0; 3929 3930 // First Loop. 3931 // 3932 // final static long LONG_MASK = 0xffffffffL; 3933 // int xstart = xlen - 1; 3934 // int ystart = ylen - 1; 3935 // long carry = 0; 3936 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3937 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3938 // z[kdx] = (int)product; 3939 // carry = product >>> 32; 3940 // } 3941 // z[xstart] = (int)carry; 3942 // 3943 3944 movw(idx, ylen); // idx = ylen; 3945 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 3946 mov(carry, zr); // carry = 0; 3947 3948 Label L_done; 3949 3950 movw(xstart, xlen); 3951 subsw(xstart, xstart, 1); 3952 br(Assembler::MI, L_done); 3953 3954 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3955 3956 Label L_second_loop; 3957 cbzw(kdx, L_second_loop); 3958 3959 Label L_carry; 3960 subw(kdx, kdx, 1); 3961 cbzw(kdx, L_carry); 3962 3963 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3964 lsr(carry, carry, 32); 3965 subw(kdx, kdx, 1); 3966 3967 bind(L_carry); 3968 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3969 3970 // Second and third (nested) loops. 3971 // 3972 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3973 // carry = 0; 3974 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3975 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3976 // (z[k] & LONG_MASK) + carry; 3977 // z[k] = (int)product; 3978 // carry = product >>> 32; 3979 // } 3980 // z[i] = (int)carry; 3981 // } 3982 // 3983 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3984 3985 const Register jdx = tmp1; 3986 3987 bind(L_second_loop); 3988 mov(carry, zr); // carry = 0; 3989 movw(jdx, ylen); // j = ystart+1 3990 3991 subsw(xstart, xstart, 1); // i = xstart-1; 3992 br(Assembler::MI, L_done); 3993 3994 str(z, Address(pre(sp, -4 * wordSize))); 3995 3996 Label L_last_x; 3997 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3998 subsw(xstart, xstart, 1); // i = xstart-1; 3999 br(Assembler::MI, L_last_x); 4000 4001 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4002 ldr(product_hi, Address(rscratch1)); 4003 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4004 4005 Label L_third_loop_prologue; 4006 bind(L_third_loop_prologue); 4007 4008 str(ylen, Address(sp, wordSize)); 4009 stp(x, xstart, Address(sp, 2 * wordSize)); 4010 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4011 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4012 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4013 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4014 4015 addw(tmp3, xlen, 1); 4016 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4017 subsw(tmp3, tmp3, 1); 4018 br(Assembler::MI, L_done); 4019 4020 lsr(carry, carry, 32); 4021 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4022 b(L_second_loop); 4023 4024 // Next infrequent code is moved outside loops. 4025 bind(L_last_x); 4026 ldrw(product_hi, Address(x, 0)); 4027 b(L_third_loop_prologue); 4028 4029 bind(L_done); 4030 } 4031 4032 // Code for BigInteger::mulAdd intrinsic 4033 // out = r0 4034 // in = r1 4035 // offset = r2 (already out.length-offset) 4036 // len = r3 4037 // k = r4 4038 // 4039 // pseudo code from java implementation: 4040 // carry = 0; 4041 // offset = out.length-offset - 1; 4042 // for (int j=len-1; j >= 0; j--) { 4043 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4044 // out[offset--] = (int)product; 4045 // carry = product >>> 32; 4046 // } 4047 // return (int)carry; 4048 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4049 Register len, Register k) { 4050 Label LOOP, END; 4051 // pre-loop 4052 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4053 csel(out, zr, out, Assembler::EQ); 4054 br(Assembler::EQ, END); 4055 add(in, in, len, LSL, 2); // in[j+1] address 4056 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4057 mov(out, zr); // used to keep carry now 4058 BIND(LOOP); 4059 ldrw(rscratch1, Address(pre(in, -4))); 4060 madd(rscratch1, rscratch1, k, out); 4061 ldrw(rscratch2, Address(pre(offset, -4))); 4062 add(rscratch1, rscratch1, rscratch2); 4063 strw(rscratch1, Address(offset)); 4064 lsr(out, rscratch1, 32); 4065 subs(len, len, 1); 4066 br(Assembler::NE, LOOP); 4067 BIND(END); 4068 } 4069 4070 /** 4071 * Emits code to update CRC-32 with a byte value according to constants in table 4072 * 4073 * @param [in,out]crc Register containing the crc. 4074 * @param [in]val Register containing the byte to fold into the CRC. 4075 * @param [in]table Register containing the table of crc constants. 4076 * 4077 * uint32_t crc; 4078 * val = crc_table[(val ^ crc) & 0xFF]; 4079 * crc = val ^ (crc >> 8); 4080 * 4081 */ 4082 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4083 eor(val, val, crc); 4084 andr(val, val, 0xff); 4085 ldrw(val, Address(table, val, Address::lsl(2))); 4086 eor(crc, val, crc, Assembler::LSR, 8); 4087 } 4088 4089 /** 4090 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4091 * 4092 * @param [in,out]crc Register containing the crc. 4093 * @param [in]v Register containing the 32-bit to fold into the CRC. 4094 * @param [in]table0 Register containing table 0 of crc constants. 4095 * @param [in]table1 Register containing table 1 of crc constants. 4096 * @param [in]table2 Register containing table 2 of crc constants. 4097 * @param [in]table3 Register containing table 3 of crc constants. 4098 * 4099 * uint32_t crc; 4100 * v = crc ^ v 4101 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4102 * 4103 */ 4104 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4105 Register table0, Register table1, Register table2, Register table3, 4106 bool upper) { 4107 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4108 uxtb(tmp, v); 4109 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4110 ubfx(tmp, v, 8, 8); 4111 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4112 eor(crc, crc, tmp); 4113 ubfx(tmp, v, 16, 8); 4114 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4115 eor(crc, crc, tmp); 4116 ubfx(tmp, v, 24, 8); 4117 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4118 eor(crc, crc, tmp); 4119 } 4120 4121 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4122 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4123 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4124 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4125 4126 subs(tmp0, len, 384); 4127 mvnw(crc, crc); 4128 br(Assembler::GE, CRC_by128_pre); 4129 BIND(CRC_less128); 4130 subs(len, len, 32); 4131 br(Assembler::GE, CRC_by32_loop); 4132 BIND(CRC_less32); 4133 adds(len, len, 32 - 4); 4134 br(Assembler::GE, CRC_by4_loop); 4135 adds(len, len, 4); 4136 br(Assembler::GT, CRC_by1_loop); 4137 b(L_exit); 4138 4139 BIND(CRC_by32_loop); 4140 ldp(tmp0, tmp1, Address(buf)); 4141 crc32x(crc, crc, tmp0); 4142 ldp(tmp2, tmp3, Address(buf, 16)); 4143 crc32x(crc, crc, tmp1); 4144 add(buf, buf, 32); 4145 crc32x(crc, crc, tmp2); 4146 subs(len, len, 32); 4147 crc32x(crc, crc, tmp3); 4148 br(Assembler::GE, CRC_by32_loop); 4149 cmn(len, (u1)32); 4150 br(Assembler::NE, CRC_less32); 4151 b(L_exit); 4152 4153 BIND(CRC_by4_loop); 4154 ldrw(tmp0, Address(post(buf, 4))); 4155 subs(len, len, 4); 4156 crc32w(crc, crc, tmp0); 4157 br(Assembler::GE, CRC_by4_loop); 4158 adds(len, len, 4); 4159 br(Assembler::LE, L_exit); 4160 BIND(CRC_by1_loop); 4161 ldrb(tmp0, Address(post(buf, 1))); 4162 subs(len, len, 1); 4163 crc32b(crc, crc, tmp0); 4164 br(Assembler::GT, CRC_by1_loop); 4165 b(L_exit); 4166 4167 BIND(CRC_by128_pre); 4168 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4169 4*256*sizeof(juint) + 8*sizeof(juint)); 4170 mov(crc, 0); 4171 crc32x(crc, crc, tmp0); 4172 crc32x(crc, crc, tmp1); 4173 4174 cbnz(len, CRC_less128); 4175 4176 BIND(L_exit); 4177 mvnw(crc, crc); 4178 } 4179 4180 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4181 Register len, Register tmp0, Register tmp1, Register tmp2, 4182 Register tmp3) { 4183 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4184 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4185 4186 mvnw(crc, crc); 4187 4188 subs(len, len, 128); 4189 br(Assembler::GE, CRC_by64_pre); 4190 BIND(CRC_less64); 4191 adds(len, len, 128-32); 4192 br(Assembler::GE, CRC_by32_loop); 4193 BIND(CRC_less32); 4194 adds(len, len, 32-4); 4195 br(Assembler::GE, CRC_by4_loop); 4196 adds(len, len, 4); 4197 br(Assembler::GT, CRC_by1_loop); 4198 b(L_exit); 4199 4200 BIND(CRC_by32_loop); 4201 ldp(tmp0, tmp1, Address(post(buf, 16))); 4202 subs(len, len, 32); 4203 crc32x(crc, crc, tmp0); 4204 ldr(tmp2, Address(post(buf, 8))); 4205 crc32x(crc, crc, tmp1); 4206 ldr(tmp3, Address(post(buf, 8))); 4207 crc32x(crc, crc, tmp2); 4208 crc32x(crc, crc, tmp3); 4209 br(Assembler::GE, CRC_by32_loop); 4210 cmn(len, (u1)32); 4211 br(Assembler::NE, CRC_less32); 4212 b(L_exit); 4213 4214 BIND(CRC_by4_loop); 4215 ldrw(tmp0, Address(post(buf, 4))); 4216 subs(len, len, 4); 4217 crc32w(crc, crc, tmp0); 4218 br(Assembler::GE, CRC_by4_loop); 4219 adds(len, len, 4); 4220 br(Assembler::LE, L_exit); 4221 BIND(CRC_by1_loop); 4222 ldrb(tmp0, Address(post(buf, 1))); 4223 subs(len, len, 1); 4224 crc32b(crc, crc, tmp0); 4225 br(Assembler::GT, CRC_by1_loop); 4226 b(L_exit); 4227 4228 BIND(CRC_by64_pre); 4229 sub(buf, buf, 8); 4230 ldp(tmp0, tmp1, Address(buf, 8)); 4231 crc32x(crc, crc, tmp0); 4232 ldr(tmp2, Address(buf, 24)); 4233 crc32x(crc, crc, tmp1); 4234 ldr(tmp3, Address(buf, 32)); 4235 crc32x(crc, crc, tmp2); 4236 ldr(tmp0, Address(buf, 40)); 4237 crc32x(crc, crc, tmp3); 4238 ldr(tmp1, Address(buf, 48)); 4239 crc32x(crc, crc, tmp0); 4240 ldr(tmp2, Address(buf, 56)); 4241 crc32x(crc, crc, tmp1); 4242 ldr(tmp3, Address(pre(buf, 64))); 4243 4244 b(CRC_by64_loop); 4245 4246 align(CodeEntryAlignment); 4247 BIND(CRC_by64_loop); 4248 subs(len, len, 64); 4249 crc32x(crc, crc, tmp2); 4250 ldr(tmp0, Address(buf, 8)); 4251 crc32x(crc, crc, tmp3); 4252 ldr(tmp1, Address(buf, 16)); 4253 crc32x(crc, crc, tmp0); 4254 ldr(tmp2, Address(buf, 24)); 4255 crc32x(crc, crc, tmp1); 4256 ldr(tmp3, Address(buf, 32)); 4257 crc32x(crc, crc, tmp2); 4258 ldr(tmp0, Address(buf, 40)); 4259 crc32x(crc, crc, tmp3); 4260 ldr(tmp1, Address(buf, 48)); 4261 crc32x(crc, crc, tmp0); 4262 ldr(tmp2, Address(buf, 56)); 4263 crc32x(crc, crc, tmp1); 4264 ldr(tmp3, Address(pre(buf, 64))); 4265 br(Assembler::GE, CRC_by64_loop); 4266 4267 // post-loop 4268 crc32x(crc, crc, tmp2); 4269 crc32x(crc, crc, tmp3); 4270 4271 sub(len, len, 64); 4272 add(buf, buf, 8); 4273 cmn(len, (u1)128); 4274 br(Assembler::NE, CRC_less64); 4275 BIND(L_exit); 4276 mvnw(crc, crc); 4277 } 4278 4279 /** 4280 * @param crc register containing existing CRC (32-bit) 4281 * @param buf register pointing to input byte buffer (byte*) 4282 * @param len register containing number of bytes 4283 * @param table register that will contain address of CRC table 4284 * @param tmp scratch register 4285 */ 4286 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4287 Register table0, Register table1, Register table2, Register table3, 4288 Register tmp, Register tmp2, Register tmp3) { 4289 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4290 4291 if (UseCryptoPmullForCRC32) { 4292 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4293 return; 4294 } 4295 4296 if (UseCRC32) { 4297 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4298 return; 4299 } 4300 4301 mvnw(crc, crc); 4302 4303 { 4304 uint64_t offset; 4305 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4306 add(table0, table0, offset); 4307 } 4308 add(table1, table0, 1*256*sizeof(juint)); 4309 add(table2, table0, 2*256*sizeof(juint)); 4310 add(table3, table0, 3*256*sizeof(juint)); 4311 4312 { // Neon code start 4313 cmp(len, (u1)64); 4314 br(Assembler::LT, L_by16); 4315 eor(v16, T16B, v16, v16); 4316 4317 Label L_fold; 4318 4319 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4320 4321 ld1(v0, v1, T2D, post(buf, 32)); 4322 ld1r(v4, T2D, post(tmp, 8)); 4323 ld1r(v5, T2D, post(tmp, 8)); 4324 ld1r(v6, T2D, post(tmp, 8)); 4325 ld1r(v7, T2D, post(tmp, 8)); 4326 mov(v16, S, 0, crc); 4327 4328 eor(v0, T16B, v0, v16); 4329 sub(len, len, 64); 4330 4331 BIND(L_fold); 4332 pmull(v22, T8H, v0, v5, T8B); 4333 pmull(v20, T8H, v0, v7, T8B); 4334 pmull(v23, T8H, v0, v4, T8B); 4335 pmull(v21, T8H, v0, v6, T8B); 4336 4337 pmull2(v18, T8H, v0, v5, T16B); 4338 pmull2(v16, T8H, v0, v7, T16B); 4339 pmull2(v19, T8H, v0, v4, T16B); 4340 pmull2(v17, T8H, v0, v6, T16B); 4341 4342 uzp1(v24, T8H, v20, v22); 4343 uzp2(v25, T8H, v20, v22); 4344 eor(v20, T16B, v24, v25); 4345 4346 uzp1(v26, T8H, v16, v18); 4347 uzp2(v27, T8H, v16, v18); 4348 eor(v16, T16B, v26, v27); 4349 4350 ushll2(v22, T4S, v20, T8H, 8); 4351 ushll(v20, T4S, v20, T4H, 8); 4352 4353 ushll2(v18, T4S, v16, T8H, 8); 4354 ushll(v16, T4S, v16, T4H, 8); 4355 4356 eor(v22, T16B, v23, v22); 4357 eor(v18, T16B, v19, v18); 4358 eor(v20, T16B, v21, v20); 4359 eor(v16, T16B, v17, v16); 4360 4361 uzp1(v17, T2D, v16, v20); 4362 uzp2(v21, T2D, v16, v20); 4363 eor(v17, T16B, v17, v21); 4364 4365 ushll2(v20, T2D, v17, T4S, 16); 4366 ushll(v16, T2D, v17, T2S, 16); 4367 4368 eor(v20, T16B, v20, v22); 4369 eor(v16, T16B, v16, v18); 4370 4371 uzp1(v17, T2D, v20, v16); 4372 uzp2(v21, T2D, v20, v16); 4373 eor(v28, T16B, v17, v21); 4374 4375 pmull(v22, T8H, v1, v5, T8B); 4376 pmull(v20, T8H, v1, v7, T8B); 4377 pmull(v23, T8H, v1, v4, T8B); 4378 pmull(v21, T8H, v1, v6, T8B); 4379 4380 pmull2(v18, T8H, v1, v5, T16B); 4381 pmull2(v16, T8H, v1, v7, T16B); 4382 pmull2(v19, T8H, v1, v4, T16B); 4383 pmull2(v17, T8H, v1, v6, T16B); 4384 4385 ld1(v0, v1, T2D, post(buf, 32)); 4386 4387 uzp1(v24, T8H, v20, v22); 4388 uzp2(v25, T8H, v20, v22); 4389 eor(v20, T16B, v24, v25); 4390 4391 uzp1(v26, T8H, v16, v18); 4392 uzp2(v27, T8H, v16, v18); 4393 eor(v16, T16B, v26, v27); 4394 4395 ushll2(v22, T4S, v20, T8H, 8); 4396 ushll(v20, T4S, v20, T4H, 8); 4397 4398 ushll2(v18, T4S, v16, T8H, 8); 4399 ushll(v16, T4S, v16, T4H, 8); 4400 4401 eor(v22, T16B, v23, v22); 4402 eor(v18, T16B, v19, v18); 4403 eor(v20, T16B, v21, v20); 4404 eor(v16, T16B, v17, v16); 4405 4406 uzp1(v17, T2D, v16, v20); 4407 uzp2(v21, T2D, v16, v20); 4408 eor(v16, T16B, v17, v21); 4409 4410 ushll2(v20, T2D, v16, T4S, 16); 4411 ushll(v16, T2D, v16, T2S, 16); 4412 4413 eor(v20, T16B, v22, v20); 4414 eor(v16, T16B, v16, v18); 4415 4416 uzp1(v17, T2D, v20, v16); 4417 uzp2(v21, T2D, v20, v16); 4418 eor(v20, T16B, v17, v21); 4419 4420 shl(v16, T2D, v28, 1); 4421 shl(v17, T2D, v20, 1); 4422 4423 eor(v0, T16B, v0, v16); 4424 eor(v1, T16B, v1, v17); 4425 4426 subs(len, len, 32); 4427 br(Assembler::GE, L_fold); 4428 4429 mov(crc, 0); 4430 mov(tmp, v0, D, 0); 4431 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4432 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4433 mov(tmp, v0, D, 1); 4434 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4435 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4436 mov(tmp, v1, D, 0); 4437 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4438 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4439 mov(tmp, v1, D, 1); 4440 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4441 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4442 4443 add(len, len, 32); 4444 } // Neon code end 4445 4446 BIND(L_by16); 4447 subs(len, len, 16); 4448 br(Assembler::GE, L_by16_loop); 4449 adds(len, len, 16-4); 4450 br(Assembler::GE, L_by4_loop); 4451 adds(len, len, 4); 4452 br(Assembler::GT, L_by1_loop); 4453 b(L_exit); 4454 4455 BIND(L_by4_loop); 4456 ldrw(tmp, Address(post(buf, 4))); 4457 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4458 subs(len, len, 4); 4459 br(Assembler::GE, L_by4_loop); 4460 adds(len, len, 4); 4461 br(Assembler::LE, L_exit); 4462 BIND(L_by1_loop); 4463 subs(len, len, 1); 4464 ldrb(tmp, Address(post(buf, 1))); 4465 update_byte_crc32(crc, tmp, table0); 4466 br(Assembler::GT, L_by1_loop); 4467 b(L_exit); 4468 4469 align(CodeEntryAlignment); 4470 BIND(L_by16_loop); 4471 subs(len, len, 16); 4472 ldp(tmp, tmp3, Address(post(buf, 16))); 4473 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4474 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4475 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4476 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4477 br(Assembler::GE, L_by16_loop); 4478 adds(len, len, 16-4); 4479 br(Assembler::GE, L_by4_loop); 4480 adds(len, len, 4); 4481 br(Assembler::GT, L_by1_loop); 4482 BIND(L_exit); 4483 mvnw(crc, crc); 4484 } 4485 4486 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4487 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4488 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4489 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4490 4491 subs(tmp0, len, 384); 4492 br(Assembler::GE, CRC_by128_pre); 4493 BIND(CRC_less128); 4494 subs(len, len, 32); 4495 br(Assembler::GE, CRC_by32_loop); 4496 BIND(CRC_less32); 4497 adds(len, len, 32 - 4); 4498 br(Assembler::GE, CRC_by4_loop); 4499 adds(len, len, 4); 4500 br(Assembler::GT, CRC_by1_loop); 4501 b(L_exit); 4502 4503 BIND(CRC_by32_loop); 4504 ldp(tmp0, tmp1, Address(buf)); 4505 crc32cx(crc, crc, tmp0); 4506 ldr(tmp2, Address(buf, 16)); 4507 crc32cx(crc, crc, tmp1); 4508 ldr(tmp3, Address(buf, 24)); 4509 crc32cx(crc, crc, tmp2); 4510 add(buf, buf, 32); 4511 subs(len, len, 32); 4512 crc32cx(crc, crc, tmp3); 4513 br(Assembler::GE, CRC_by32_loop); 4514 cmn(len, (u1)32); 4515 br(Assembler::NE, CRC_less32); 4516 b(L_exit); 4517 4518 BIND(CRC_by4_loop); 4519 ldrw(tmp0, Address(post(buf, 4))); 4520 subs(len, len, 4); 4521 crc32cw(crc, crc, tmp0); 4522 br(Assembler::GE, CRC_by4_loop); 4523 adds(len, len, 4); 4524 br(Assembler::LE, L_exit); 4525 BIND(CRC_by1_loop); 4526 ldrb(tmp0, Address(post(buf, 1))); 4527 subs(len, len, 1); 4528 crc32cb(crc, crc, tmp0); 4529 br(Assembler::GT, CRC_by1_loop); 4530 b(L_exit); 4531 4532 BIND(CRC_by128_pre); 4533 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4534 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4535 mov(crc, 0); 4536 crc32cx(crc, crc, tmp0); 4537 crc32cx(crc, crc, tmp1); 4538 4539 cbnz(len, CRC_less128); 4540 4541 BIND(L_exit); 4542 } 4543 4544 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4545 Register len, Register tmp0, Register tmp1, Register tmp2, 4546 Register tmp3) { 4547 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4548 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4549 4550 subs(len, len, 128); 4551 br(Assembler::GE, CRC_by64_pre); 4552 BIND(CRC_less64); 4553 adds(len, len, 128-32); 4554 br(Assembler::GE, CRC_by32_loop); 4555 BIND(CRC_less32); 4556 adds(len, len, 32-4); 4557 br(Assembler::GE, CRC_by4_loop); 4558 adds(len, len, 4); 4559 br(Assembler::GT, CRC_by1_loop); 4560 b(L_exit); 4561 4562 BIND(CRC_by32_loop); 4563 ldp(tmp0, tmp1, Address(post(buf, 16))); 4564 subs(len, len, 32); 4565 crc32cx(crc, crc, tmp0); 4566 ldr(tmp2, Address(post(buf, 8))); 4567 crc32cx(crc, crc, tmp1); 4568 ldr(tmp3, Address(post(buf, 8))); 4569 crc32cx(crc, crc, tmp2); 4570 crc32cx(crc, crc, tmp3); 4571 br(Assembler::GE, CRC_by32_loop); 4572 cmn(len, (u1)32); 4573 br(Assembler::NE, CRC_less32); 4574 b(L_exit); 4575 4576 BIND(CRC_by4_loop); 4577 ldrw(tmp0, Address(post(buf, 4))); 4578 subs(len, len, 4); 4579 crc32cw(crc, crc, tmp0); 4580 br(Assembler::GE, CRC_by4_loop); 4581 adds(len, len, 4); 4582 br(Assembler::LE, L_exit); 4583 BIND(CRC_by1_loop); 4584 ldrb(tmp0, Address(post(buf, 1))); 4585 subs(len, len, 1); 4586 crc32cb(crc, crc, tmp0); 4587 br(Assembler::GT, CRC_by1_loop); 4588 b(L_exit); 4589 4590 BIND(CRC_by64_pre); 4591 sub(buf, buf, 8); 4592 ldp(tmp0, tmp1, Address(buf, 8)); 4593 crc32cx(crc, crc, tmp0); 4594 ldr(tmp2, Address(buf, 24)); 4595 crc32cx(crc, crc, tmp1); 4596 ldr(tmp3, Address(buf, 32)); 4597 crc32cx(crc, crc, tmp2); 4598 ldr(tmp0, Address(buf, 40)); 4599 crc32cx(crc, crc, tmp3); 4600 ldr(tmp1, Address(buf, 48)); 4601 crc32cx(crc, crc, tmp0); 4602 ldr(tmp2, Address(buf, 56)); 4603 crc32cx(crc, crc, tmp1); 4604 ldr(tmp3, Address(pre(buf, 64))); 4605 4606 b(CRC_by64_loop); 4607 4608 align(CodeEntryAlignment); 4609 BIND(CRC_by64_loop); 4610 subs(len, len, 64); 4611 crc32cx(crc, crc, tmp2); 4612 ldr(tmp0, Address(buf, 8)); 4613 crc32cx(crc, crc, tmp3); 4614 ldr(tmp1, Address(buf, 16)); 4615 crc32cx(crc, crc, tmp0); 4616 ldr(tmp2, Address(buf, 24)); 4617 crc32cx(crc, crc, tmp1); 4618 ldr(tmp3, Address(buf, 32)); 4619 crc32cx(crc, crc, tmp2); 4620 ldr(tmp0, Address(buf, 40)); 4621 crc32cx(crc, crc, tmp3); 4622 ldr(tmp1, Address(buf, 48)); 4623 crc32cx(crc, crc, tmp0); 4624 ldr(tmp2, Address(buf, 56)); 4625 crc32cx(crc, crc, tmp1); 4626 ldr(tmp3, Address(pre(buf, 64))); 4627 br(Assembler::GE, CRC_by64_loop); 4628 4629 // post-loop 4630 crc32cx(crc, crc, tmp2); 4631 crc32cx(crc, crc, tmp3); 4632 4633 sub(len, len, 64); 4634 add(buf, buf, 8); 4635 cmn(len, (u1)128); 4636 br(Assembler::NE, CRC_less64); 4637 BIND(L_exit); 4638 } 4639 4640 /** 4641 * @param crc register containing existing CRC (32-bit) 4642 * @param buf register pointing to input byte buffer (byte*) 4643 * @param len register containing number of bytes 4644 * @param table register that will contain address of CRC table 4645 * @param tmp scratch register 4646 */ 4647 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4648 Register table0, Register table1, Register table2, Register table3, 4649 Register tmp, Register tmp2, Register tmp3) { 4650 if (UseCryptoPmullForCRC32) { 4651 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4652 } else { 4653 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4654 } 4655 } 4656 4657 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4658 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4659 Label CRC_by128_loop; 4660 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4661 4662 sub(len, len, 256); 4663 Register table = tmp0; 4664 { 4665 uint64_t offset; 4666 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4667 add(table, table, offset); 4668 } 4669 add(table, table, table_offset); 4670 4671 // Registers v0..v7 are used as data registers. 4672 // Registers v16..v31 are used as tmp registers. 4673 sub(buf, buf, 0x10); 4674 ldrq(v0, Address(buf, 0x10)); 4675 ldrq(v1, Address(buf, 0x20)); 4676 ldrq(v2, Address(buf, 0x30)); 4677 ldrq(v3, Address(buf, 0x40)); 4678 ldrq(v4, Address(buf, 0x50)); 4679 ldrq(v5, Address(buf, 0x60)); 4680 ldrq(v6, Address(buf, 0x70)); 4681 ldrq(v7, Address(pre(buf, 0x80))); 4682 4683 movi(v31, T4S, 0); 4684 mov(v31, S, 0, crc); 4685 eor(v0, T16B, v0, v31); 4686 4687 // Register v16 contains constants from the crc table. 4688 ldrq(v16, Address(table)); 4689 b(CRC_by128_loop); 4690 4691 align(OptoLoopAlignment); 4692 BIND(CRC_by128_loop); 4693 pmull (v17, T1Q, v0, v16, T1D); 4694 pmull2(v18, T1Q, v0, v16, T2D); 4695 ldrq(v0, Address(buf, 0x10)); 4696 eor3(v0, T16B, v17, v18, v0); 4697 4698 pmull (v19, T1Q, v1, v16, T1D); 4699 pmull2(v20, T1Q, v1, v16, T2D); 4700 ldrq(v1, Address(buf, 0x20)); 4701 eor3(v1, T16B, v19, v20, v1); 4702 4703 pmull (v21, T1Q, v2, v16, T1D); 4704 pmull2(v22, T1Q, v2, v16, T2D); 4705 ldrq(v2, Address(buf, 0x30)); 4706 eor3(v2, T16B, v21, v22, v2); 4707 4708 pmull (v23, T1Q, v3, v16, T1D); 4709 pmull2(v24, T1Q, v3, v16, T2D); 4710 ldrq(v3, Address(buf, 0x40)); 4711 eor3(v3, T16B, v23, v24, v3); 4712 4713 pmull (v25, T1Q, v4, v16, T1D); 4714 pmull2(v26, T1Q, v4, v16, T2D); 4715 ldrq(v4, Address(buf, 0x50)); 4716 eor3(v4, T16B, v25, v26, v4); 4717 4718 pmull (v27, T1Q, v5, v16, T1D); 4719 pmull2(v28, T1Q, v5, v16, T2D); 4720 ldrq(v5, Address(buf, 0x60)); 4721 eor3(v5, T16B, v27, v28, v5); 4722 4723 pmull (v29, T1Q, v6, v16, T1D); 4724 pmull2(v30, T1Q, v6, v16, T2D); 4725 ldrq(v6, Address(buf, 0x70)); 4726 eor3(v6, T16B, v29, v30, v6); 4727 4728 // Reuse registers v23, v24. 4729 // Using them won't block the first instruction of the next iteration. 4730 pmull (v23, T1Q, v7, v16, T1D); 4731 pmull2(v24, T1Q, v7, v16, T2D); 4732 ldrq(v7, Address(pre(buf, 0x80))); 4733 eor3(v7, T16B, v23, v24, v7); 4734 4735 subs(len, len, 0x80); 4736 br(Assembler::GE, CRC_by128_loop); 4737 4738 // fold into 512 bits 4739 // Use v31 for constants because v16 can be still in use. 4740 ldrq(v31, Address(table, 0x10)); 4741 4742 pmull (v17, T1Q, v0, v31, T1D); 4743 pmull2(v18, T1Q, v0, v31, T2D); 4744 eor3(v0, T16B, v17, v18, v4); 4745 4746 pmull (v19, T1Q, v1, v31, T1D); 4747 pmull2(v20, T1Q, v1, v31, T2D); 4748 eor3(v1, T16B, v19, v20, v5); 4749 4750 pmull (v21, T1Q, v2, v31, T1D); 4751 pmull2(v22, T1Q, v2, v31, T2D); 4752 eor3(v2, T16B, v21, v22, v6); 4753 4754 pmull (v23, T1Q, v3, v31, T1D); 4755 pmull2(v24, T1Q, v3, v31, T2D); 4756 eor3(v3, T16B, v23, v24, v7); 4757 4758 // fold into 128 bits 4759 // Use v17 for constants because v31 can be still in use. 4760 ldrq(v17, Address(table, 0x20)); 4761 pmull (v25, T1Q, v0, v17, T1D); 4762 pmull2(v26, T1Q, v0, v17, T2D); 4763 eor3(v3, T16B, v3, v25, v26); 4764 4765 // Use v18 for constants because v17 can be still in use. 4766 ldrq(v18, Address(table, 0x30)); 4767 pmull (v27, T1Q, v1, v18, T1D); 4768 pmull2(v28, T1Q, v1, v18, T2D); 4769 eor3(v3, T16B, v3, v27, v28); 4770 4771 // Use v19 for constants because v18 can be still in use. 4772 ldrq(v19, Address(table, 0x40)); 4773 pmull (v29, T1Q, v2, v19, T1D); 4774 pmull2(v30, T1Q, v2, v19, T2D); 4775 eor3(v0, T16B, v3, v29, v30); 4776 4777 add(len, len, 0x80); 4778 add(buf, buf, 0x10); 4779 4780 mov(tmp0, v0, D, 0); 4781 mov(tmp1, v0, D, 1); 4782 } 4783 4784 SkipIfEqual::SkipIfEqual( 4785 MacroAssembler* masm, const bool* flag_addr, bool value) { 4786 _masm = masm; 4787 uint64_t offset; 4788 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 4789 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 4790 if (value) { 4791 _masm->cbnzw(rscratch1, _label); 4792 } else { 4793 _masm->cbzw(rscratch1, _label); 4794 } 4795 } 4796 4797 SkipIfEqual::~SkipIfEqual() { 4798 _masm->bind(_label); 4799 } 4800 4801 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4802 Address adr; 4803 switch(dst.getMode()) { 4804 case Address::base_plus_offset: 4805 // This is the expected mode, although we allow all the other 4806 // forms below. 4807 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4808 break; 4809 default: 4810 lea(rscratch2, dst); 4811 adr = Address(rscratch2); 4812 break; 4813 } 4814 ldr(rscratch1, adr); 4815 add(rscratch1, rscratch1, src); 4816 str(rscratch1, adr); 4817 } 4818 4819 void MacroAssembler::cmpptr(Register src1, Address src2) { 4820 uint64_t offset; 4821 adrp(rscratch1, src2, offset); 4822 ldr(rscratch1, Address(rscratch1, offset)); 4823 cmp(src1, rscratch1); 4824 } 4825 4826 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 4827 cmp(obj1, obj2); 4828 } 4829 4830 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 4831 load_method_holder(rresult, rmethod); 4832 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 4833 } 4834 4835 void MacroAssembler::load_method_holder(Register holder, Register method) { 4836 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 4837 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 4838 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 4839 } 4840 4841 void MacroAssembler::load_klass(Register dst, Register src) { 4842 if (UseCompressedClassPointers) { 4843 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4844 decode_klass_not_null(dst); 4845 } else { 4846 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4847 } 4848 } 4849 4850 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 4851 if (RestoreMXCSROnJNICalls) { 4852 Label OK; 4853 get_fpcr(tmp1); 4854 mov(tmp2, tmp1); 4855 // Set FPCR to the state we need. We do want Round to Nearest. We 4856 // don't want non-IEEE rounding modes or floating-point traps. 4857 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 4858 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 4859 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 4860 eor(tmp2, tmp1, tmp2); 4861 cbz(tmp2, OK); // Only reset FPCR if it's wrong 4862 set_fpcr(tmp1); 4863 bind(OK); 4864 } 4865 } 4866 4867 // ((OopHandle)result).resolve(); 4868 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 4869 // OopHandle::resolve is an indirection. 4870 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 4871 } 4872 4873 // ((WeakHandle)result).resolve(); 4874 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 4875 assert_different_registers(result, tmp1, tmp2); 4876 Label resolved; 4877 4878 // A null weak handle resolves to null. 4879 cbz(result, resolved); 4880 4881 // Only 64 bit platforms support GCs that require a tmp register 4882 // WeakHandle::resolve is an indirection like jweak. 4883 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4884 result, Address(result), tmp1, tmp2); 4885 bind(resolved); 4886 } 4887 4888 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 4889 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 4890 ldr(dst, Address(rmethod, Method::const_offset())); 4891 ldr(dst, Address(dst, ConstMethod::constants_offset())); 4892 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 4893 ldr(dst, Address(dst, mirror_offset)); 4894 resolve_oop_handle(dst, tmp1, tmp2); 4895 } 4896 4897 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 4898 if (UseCompressedClassPointers) { 4899 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4900 if (CompressedKlassPointers::base() == nullptr) { 4901 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 4902 return; 4903 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 4904 && CompressedKlassPointers::shift() == 0) { 4905 // Only the bottom 32 bits matter 4906 cmpw(trial_klass, tmp); 4907 return; 4908 } 4909 decode_klass_not_null(tmp); 4910 } else { 4911 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4912 } 4913 cmp(trial_klass, tmp); 4914 } 4915 4916 void MacroAssembler::store_klass(Register dst, Register src) { 4917 // FIXME: Should this be a store release? concurrent gcs assumes 4918 // klass length is valid if klass field is not null. 4919 if (UseCompressedClassPointers) { 4920 encode_klass_not_null(src); 4921 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4922 } else { 4923 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4924 } 4925 } 4926 4927 void MacroAssembler::store_klass_gap(Register dst, Register src) { 4928 if (UseCompressedClassPointers) { 4929 // Store to klass gap in destination 4930 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 4931 } 4932 } 4933 4934 // Algorithm must match CompressedOops::encode. 4935 void MacroAssembler::encode_heap_oop(Register d, Register s) { 4936 #ifdef ASSERT 4937 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 4938 #endif 4939 verify_oop_msg(s, "broken oop in encode_heap_oop"); 4940 if (CompressedOops::base() == nullptr) { 4941 if (CompressedOops::shift() != 0) { 4942 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4943 lsr(d, s, LogMinObjAlignmentInBytes); 4944 } else { 4945 mov(d, s); 4946 } 4947 } else { 4948 subs(d, s, rheapbase); 4949 csel(d, d, zr, Assembler::HS); 4950 lsr(d, d, LogMinObjAlignmentInBytes); 4951 4952 /* Old algorithm: is this any worse? 4953 Label nonnull; 4954 cbnz(r, nonnull); 4955 sub(r, r, rheapbase); 4956 bind(nonnull); 4957 lsr(r, r, LogMinObjAlignmentInBytes); 4958 */ 4959 } 4960 } 4961 4962 void MacroAssembler::encode_heap_oop_not_null(Register r) { 4963 #ifdef ASSERT 4964 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 4965 if (CheckCompressedOops) { 4966 Label ok; 4967 cbnz(r, ok); 4968 stop("null oop passed to encode_heap_oop_not_null"); 4969 bind(ok); 4970 } 4971 #endif 4972 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 4973 if (CompressedOops::base() != nullptr) { 4974 sub(r, r, rheapbase); 4975 } 4976 if (CompressedOops::shift() != 0) { 4977 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4978 lsr(r, r, LogMinObjAlignmentInBytes); 4979 } 4980 } 4981 4982 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 4983 #ifdef ASSERT 4984 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 4985 if (CheckCompressedOops) { 4986 Label ok; 4987 cbnz(src, ok); 4988 stop("null oop passed to encode_heap_oop_not_null2"); 4989 bind(ok); 4990 } 4991 #endif 4992 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 4993 4994 Register data = src; 4995 if (CompressedOops::base() != nullptr) { 4996 sub(dst, src, rheapbase); 4997 data = dst; 4998 } 4999 if (CompressedOops::shift() != 0) { 5000 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5001 lsr(dst, data, LogMinObjAlignmentInBytes); 5002 data = dst; 5003 } 5004 if (data == src) 5005 mov(dst, src); 5006 } 5007 5008 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5009 #ifdef ASSERT 5010 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5011 #endif 5012 if (CompressedOops::base() == nullptr) { 5013 if (CompressedOops::shift() != 0 || d != s) { 5014 lsl(d, s, CompressedOops::shift()); 5015 } 5016 } else { 5017 Label done; 5018 if (d != s) 5019 mov(d, s); 5020 cbz(s, done); 5021 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5022 bind(done); 5023 } 5024 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5025 } 5026 5027 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5028 assert (UseCompressedOops, "should only be used for compressed headers"); 5029 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5030 // Cannot assert, unverified entry point counts instructions (see .ad file) 5031 // vtableStubs also counts instructions in pd_code_size_limit. 5032 // Also do not verify_oop as this is called by verify_oop. 5033 if (CompressedOops::shift() != 0) { 5034 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5035 if (CompressedOops::base() != nullptr) { 5036 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5037 } else { 5038 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5039 } 5040 } else { 5041 assert (CompressedOops::base() == nullptr, "sanity"); 5042 } 5043 } 5044 5045 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5046 assert (UseCompressedOops, "should only be used for compressed headers"); 5047 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5048 // Cannot assert, unverified entry point counts instructions (see .ad file) 5049 // vtableStubs also counts instructions in pd_code_size_limit. 5050 // Also do not verify_oop as this is called by verify_oop. 5051 if (CompressedOops::shift() != 0) { 5052 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5053 if (CompressedOops::base() != nullptr) { 5054 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5055 } else { 5056 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5057 } 5058 } else { 5059 assert (CompressedOops::base() == nullptr, "sanity"); 5060 if (dst != src) { 5061 mov(dst, src); 5062 } 5063 } 5064 } 5065 5066 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5067 5068 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5069 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5070 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5071 5072 if (_klass_decode_mode != KlassDecodeNone) { 5073 return _klass_decode_mode; 5074 } 5075 5076 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 5077 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 5078 5079 if (CompressedKlassPointers::base() == nullptr) { 5080 return (_klass_decode_mode = KlassDecodeZero); 5081 } 5082 5083 if (operand_valid_for_logical_immediate( 5084 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 5085 const uint64_t range_mask = 5086 (1ULL << log2i(CompressedKlassPointers::range())) - 1; 5087 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 5088 return (_klass_decode_mode = KlassDecodeXor); 5089 } 5090 } 5091 5092 const uint64_t shifted_base = 5093 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5094 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 5095 "compressed class base bad alignment"); 5096 5097 return (_klass_decode_mode = KlassDecodeMovk); 5098 } 5099 5100 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5101 switch (klass_decode_mode()) { 5102 case KlassDecodeZero: 5103 if (CompressedKlassPointers::shift() != 0) { 5104 lsr(dst, src, LogKlassAlignmentInBytes); 5105 } else { 5106 if (dst != src) mov(dst, src); 5107 } 5108 break; 5109 5110 case KlassDecodeXor: 5111 if (CompressedKlassPointers::shift() != 0) { 5112 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5113 lsr(dst, dst, LogKlassAlignmentInBytes); 5114 } else { 5115 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5116 } 5117 break; 5118 5119 case KlassDecodeMovk: 5120 if (CompressedKlassPointers::shift() != 0) { 5121 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 5122 } else { 5123 movw(dst, src); 5124 } 5125 break; 5126 5127 case KlassDecodeNone: 5128 ShouldNotReachHere(); 5129 break; 5130 } 5131 } 5132 5133 void MacroAssembler::encode_klass_not_null(Register r) { 5134 encode_klass_not_null(r, r); 5135 } 5136 5137 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5138 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5139 5140 switch (klass_decode_mode()) { 5141 case KlassDecodeZero: 5142 if (CompressedKlassPointers::shift() != 0) { 5143 lsl(dst, src, LogKlassAlignmentInBytes); 5144 } else { 5145 if (dst != src) mov(dst, src); 5146 } 5147 break; 5148 5149 case KlassDecodeXor: 5150 if (CompressedKlassPointers::shift() != 0) { 5151 lsl(dst, src, LogKlassAlignmentInBytes); 5152 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5153 } else { 5154 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5155 } 5156 break; 5157 5158 case KlassDecodeMovk: { 5159 const uint64_t shifted_base = 5160 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5161 5162 if (dst != src) movw(dst, src); 5163 movk(dst, shifted_base >> 32, 32); 5164 5165 if (CompressedKlassPointers::shift() != 0) { 5166 lsl(dst, dst, LogKlassAlignmentInBytes); 5167 } 5168 5169 break; 5170 } 5171 5172 case KlassDecodeNone: 5173 ShouldNotReachHere(); 5174 break; 5175 } 5176 } 5177 5178 void MacroAssembler::decode_klass_not_null(Register r) { 5179 decode_klass_not_null(r, r); 5180 } 5181 5182 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5183 #ifdef ASSERT 5184 { 5185 ThreadInVMfromUnknown tiv; 5186 assert (UseCompressedOops, "should only be used for compressed oops"); 5187 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5188 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5189 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5190 } 5191 #endif 5192 int oop_index = oop_recorder()->find_index(obj); 5193 InstructionMark im(this); 5194 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5195 code_section()->relocate(inst_mark(), rspec); 5196 movz(dst, 0xDEAD, 16); 5197 movk(dst, 0xBEEF); 5198 } 5199 5200 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5201 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5202 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5203 int index = oop_recorder()->find_index(k); 5204 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5205 5206 InstructionMark im(this); 5207 RelocationHolder rspec = metadata_Relocation::spec(index); 5208 code_section()->relocate(inst_mark(), rspec); 5209 narrowKlass nk = CompressedKlassPointers::encode(k); 5210 movz(dst, (nk >> 16), 16); 5211 movk(dst, nk & 0xffff); 5212 } 5213 5214 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5215 Register dst, Address src, 5216 Register tmp1, Register tmp2) { 5217 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5218 decorators = AccessInternal::decorator_fixup(decorators, type); 5219 bool as_raw = (decorators & AS_RAW) != 0; 5220 if (as_raw) { 5221 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5222 } else { 5223 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5224 } 5225 } 5226 5227 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5228 Address dst, Register val, 5229 Register tmp1, Register tmp2, Register tmp3) { 5230 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5231 decorators = AccessInternal::decorator_fixup(decorators, type); 5232 bool as_raw = (decorators & AS_RAW) != 0; 5233 if (as_raw) { 5234 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5235 } else { 5236 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5237 } 5238 } 5239 5240 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5241 Register tmp2, DecoratorSet decorators) { 5242 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5243 } 5244 5245 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5246 Register tmp2, DecoratorSet decorators) { 5247 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5248 } 5249 5250 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5251 Register tmp2, Register tmp3, DecoratorSet decorators) { 5252 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5253 } 5254 5255 // Used for storing nulls. 5256 void MacroAssembler::store_heap_oop_null(Address dst) { 5257 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5258 } 5259 5260 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5261 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5262 int index = oop_recorder()->allocate_metadata_index(obj); 5263 RelocationHolder rspec = metadata_Relocation::spec(index); 5264 return Address((address)obj, rspec); 5265 } 5266 5267 // Move an oop into a register. 5268 void MacroAssembler::movoop(Register dst, jobject obj) { 5269 int oop_index; 5270 if (obj == nullptr) { 5271 oop_index = oop_recorder()->allocate_oop_index(obj); 5272 } else { 5273 #ifdef ASSERT 5274 { 5275 ThreadInVMfromUnknown tiv; 5276 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5277 } 5278 #endif 5279 oop_index = oop_recorder()->find_index(obj); 5280 } 5281 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5282 5283 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5284 mov(dst, Address((address)obj, rspec)); 5285 } else { 5286 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5287 ldr_constant(dst, Address(dummy, rspec)); 5288 } 5289 5290 } 5291 5292 // Move a metadata address into a register. 5293 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5294 int oop_index; 5295 if (obj == nullptr) { 5296 oop_index = oop_recorder()->allocate_metadata_index(obj); 5297 } else { 5298 oop_index = oop_recorder()->find_index(obj); 5299 } 5300 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5301 mov(dst, Address((address)obj, rspec)); 5302 } 5303 5304 Address MacroAssembler::constant_oop_address(jobject obj) { 5305 #ifdef ASSERT 5306 { 5307 ThreadInVMfromUnknown tiv; 5308 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5309 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5310 } 5311 #endif 5312 int oop_index = oop_recorder()->find_index(obj); 5313 return Address((address)obj, oop_Relocation::spec(oop_index)); 5314 } 5315 5316 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5317 void MacroAssembler::tlab_allocate(Register obj, 5318 Register var_size_in_bytes, 5319 int con_size_in_bytes, 5320 Register t1, 5321 Register t2, 5322 Label& slow_case) { 5323 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5324 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5325 } 5326 5327 void MacroAssembler::verify_tlab() { 5328 #ifdef ASSERT 5329 if (UseTLAB && VerifyOops) { 5330 Label next, ok; 5331 5332 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5333 5334 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5335 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5336 cmp(rscratch2, rscratch1); 5337 br(Assembler::HS, next); 5338 STOP("assert(top >= start)"); 5339 should_not_reach_here(); 5340 5341 bind(next); 5342 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5343 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5344 cmp(rscratch2, rscratch1); 5345 br(Assembler::HS, ok); 5346 STOP("assert(top <= end)"); 5347 should_not_reach_here(); 5348 5349 bind(ok); 5350 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5351 } 5352 #endif 5353 } 5354 5355 // Writes to stack successive pages until offset reached to check for 5356 // stack overflow + shadow pages. This clobbers tmp. 5357 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5358 assert_different_registers(tmp, size, rscratch1); 5359 mov(tmp, sp); 5360 // Bang stack for total size given plus shadow page size. 5361 // Bang one page at a time because large size can bang beyond yellow and 5362 // red zones. 5363 Label loop; 5364 mov(rscratch1, (int)os::vm_page_size()); 5365 bind(loop); 5366 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5367 subsw(size, size, rscratch1); 5368 str(size, Address(tmp)); 5369 br(Assembler::GT, loop); 5370 5371 // Bang down shadow pages too. 5372 // At this point, (tmp-0) is the last address touched, so don't 5373 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5374 // was post-decremented.) Skip this address by starting at i=1, and 5375 // touch a few more pages below. N.B. It is important to touch all 5376 // the way down to and including i=StackShadowPages. 5377 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5378 // this could be any sized move but this is can be a debugging crumb 5379 // so the bigger the better. 5380 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5381 str(size, Address(tmp)); 5382 } 5383 } 5384 5385 // Move the address of the polling page into dest. 5386 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5387 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5388 } 5389 5390 // Read the polling page. The address of the polling page must 5391 // already be in r. 5392 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5393 address mark; 5394 { 5395 InstructionMark im(this); 5396 code_section()->relocate(inst_mark(), rtype); 5397 ldrw(zr, Address(r, 0)); 5398 mark = inst_mark(); 5399 } 5400 verify_cross_modify_fence_not_required(); 5401 return mark; 5402 } 5403 5404 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5405 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5406 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5407 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5408 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5409 int64_t offset_low = dest_page - low_page; 5410 int64_t offset_high = dest_page - high_page; 5411 5412 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5413 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5414 5415 InstructionMark im(this); 5416 code_section()->relocate(inst_mark(), dest.rspec()); 5417 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5418 // the code cache so that if it is relocated we know it will still reach 5419 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5420 _adrp(reg1, dest.target()); 5421 } else { 5422 uint64_t target = (uint64_t)dest.target(); 5423 uint64_t adrp_target 5424 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5425 5426 _adrp(reg1, (address)adrp_target); 5427 movk(reg1, target >> 32, 32); 5428 } 5429 byte_offset = (uint64_t)dest.target() & 0xfff; 5430 } 5431 5432 void MacroAssembler::load_byte_map_base(Register reg) { 5433 CardTable::CardValue* byte_map_base = 5434 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5435 5436 // Strictly speaking the byte_map_base isn't an address at all, and it might 5437 // even be negative. It is thus materialised as a constant. 5438 mov(reg, (uint64_t)byte_map_base); 5439 } 5440 5441 void MacroAssembler::build_frame(int framesize) { 5442 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5443 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5444 protect_return_address(); 5445 if (framesize < ((1 << 9) + 2 * wordSize)) { 5446 sub(sp, sp, framesize); 5447 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5448 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5449 } else { 5450 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5451 if (PreserveFramePointer) mov(rfp, sp); 5452 if (framesize < ((1 << 12) + 2 * wordSize)) 5453 sub(sp, sp, framesize - 2 * wordSize); 5454 else { 5455 mov(rscratch1, framesize - 2 * wordSize); 5456 sub(sp, sp, rscratch1); 5457 } 5458 } 5459 verify_cross_modify_fence_not_required(); 5460 } 5461 5462 void MacroAssembler::remove_frame(int framesize) { 5463 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5464 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5465 if (framesize < ((1 << 9) + 2 * wordSize)) { 5466 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5467 add(sp, sp, framesize); 5468 } else { 5469 if (framesize < ((1 << 12) + 2 * wordSize)) 5470 add(sp, sp, framesize - 2 * wordSize); 5471 else { 5472 mov(rscratch1, framesize - 2 * wordSize); 5473 add(sp, sp, rscratch1); 5474 } 5475 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5476 } 5477 authenticate_return_address(); 5478 } 5479 5480 5481 // This method counts leading positive bytes (highest bit not set) in provided byte array 5482 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5483 // Simple and most common case of aligned small array which is not at the 5484 // end of memory page is placed here. All other cases are in stub. 5485 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5486 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5487 assert_different_registers(ary1, len, result); 5488 5489 mov(result, len); 5490 cmpw(len, 0); 5491 br(LE, DONE); 5492 cmpw(len, 4 * wordSize); 5493 br(GE, STUB_LONG); // size > 32 then go to stub 5494 5495 int shift = 64 - exact_log2(os::vm_page_size()); 5496 lsl(rscratch1, ary1, shift); 5497 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5498 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5499 br(CS, STUB); // at the end of page then go to stub 5500 subs(len, len, wordSize); 5501 br(LT, END); 5502 5503 BIND(LOOP); 5504 ldr(rscratch1, Address(post(ary1, wordSize))); 5505 tst(rscratch1, UPPER_BIT_MASK); 5506 br(NE, SET_RESULT); 5507 subs(len, len, wordSize); 5508 br(GE, LOOP); 5509 cmpw(len, -wordSize); 5510 br(EQ, DONE); 5511 5512 BIND(END); 5513 ldr(rscratch1, Address(ary1)); 5514 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5515 lslv(rscratch1, rscratch1, rscratch2); 5516 tst(rscratch1, UPPER_BIT_MASK); 5517 br(NE, SET_RESULT); 5518 b(DONE); 5519 5520 BIND(STUB); 5521 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5522 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5523 address tpc1 = trampoline_call(count_pos); 5524 if (tpc1 == nullptr) { 5525 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5526 postcond(pc() == badAddress); 5527 return nullptr; 5528 } 5529 b(DONE); 5530 5531 BIND(STUB_LONG); 5532 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5533 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5534 address tpc2 = trampoline_call(count_pos_long); 5535 if (tpc2 == nullptr) { 5536 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5537 postcond(pc() == badAddress); 5538 return nullptr; 5539 } 5540 b(DONE); 5541 5542 BIND(SET_RESULT); 5543 5544 add(len, len, wordSize); 5545 sub(result, result, len); 5546 5547 BIND(DONE); 5548 postcond(pc() != badAddress); 5549 return pc(); 5550 } 5551 5552 // Clobbers: rscratch1, rscratch2, rflags 5553 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5554 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5555 Register tmp4, Register tmp5, Register result, 5556 Register cnt1, int elem_size) { 5557 Label DONE, SAME; 5558 Register tmp1 = rscratch1; 5559 Register tmp2 = rscratch2; 5560 int elem_per_word = wordSize/elem_size; 5561 int log_elem_size = exact_log2(elem_size); 5562 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5563 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5564 int base_offset 5565 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5566 // When the length offset is not aligned to 8 bytes, 5567 // then we align it down. This is valid because the new 5568 // offset will always be the klass which is the same 5569 // for type arrays. 5570 int start_offset = align_down(length_offset, BytesPerWord); 5571 int extra_length = base_offset - start_offset; 5572 assert(start_offset == length_offset || start_offset == klass_offset, 5573 "start offset must be 8-byte-aligned or be the klass offset"); 5574 assert(base_offset != start_offset, "must include the length field"); 5575 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5576 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5577 5578 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5579 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5580 5581 #ifndef PRODUCT 5582 { 5583 const char kind = (elem_size == 2) ? 'U' : 'L'; 5584 char comment[64]; 5585 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5586 BLOCK_COMMENT(comment); 5587 } 5588 #endif 5589 5590 // if (a1 == a2) 5591 // return true; 5592 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5593 br(EQ, SAME); 5594 5595 if (UseSimpleArrayEquals) { 5596 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5597 // if (a1 == nullptr || a2 == nullptr) 5598 // return false; 5599 // a1 & a2 == 0 means (some-pointer is null) or 5600 // (very-rare-or-even-probably-impossible-pointer-values) 5601 // so, we can save one branch in most cases 5602 tst(a1, a2); 5603 mov(result, false); 5604 br(EQ, A_MIGHT_BE_NULL); 5605 // if (a1.length != a2.length) 5606 // return false; 5607 bind(A_IS_NOT_NULL); 5608 ldrw(cnt1, Address(a1, length_offset)); 5609 // Increase loop counter by diff between base- and actual start-offset. 5610 addw(cnt1, cnt1, extra_length); 5611 lea(a1, Address(a1, start_offset)); 5612 lea(a2, Address(a2, start_offset)); 5613 // Check for short strings, i.e. smaller than wordSize. 5614 subs(cnt1, cnt1, elem_per_word); 5615 br(Assembler::LT, SHORT); 5616 // Main 8 byte comparison loop. 5617 bind(NEXT_WORD); { 5618 ldr(tmp1, Address(post(a1, wordSize))); 5619 ldr(tmp2, Address(post(a2, wordSize))); 5620 subs(cnt1, cnt1, elem_per_word); 5621 eor(tmp5, tmp1, tmp2); 5622 cbnz(tmp5, DONE); 5623 } br(GT, NEXT_WORD); 5624 // Last longword. In the case where length == 4 we compare the 5625 // same longword twice, but that's still faster than another 5626 // conditional branch. 5627 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5628 // length == 4. 5629 if (log_elem_size > 0) 5630 lsl(cnt1, cnt1, log_elem_size); 5631 ldr(tmp3, Address(a1, cnt1)); 5632 ldr(tmp4, Address(a2, cnt1)); 5633 eor(tmp5, tmp3, tmp4); 5634 cbnz(tmp5, DONE); 5635 b(SAME); 5636 bind(A_MIGHT_BE_NULL); 5637 // in case both a1 and a2 are not-null, proceed with loads 5638 cbz(a1, DONE); 5639 cbz(a2, DONE); 5640 b(A_IS_NOT_NULL); 5641 bind(SHORT); 5642 5643 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5644 { 5645 ldrw(tmp1, Address(post(a1, 4))); 5646 ldrw(tmp2, Address(post(a2, 4))); 5647 eorw(tmp5, tmp1, tmp2); 5648 cbnzw(tmp5, DONE); 5649 } 5650 bind(TAIL03); 5651 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5652 { 5653 ldrh(tmp3, Address(post(a1, 2))); 5654 ldrh(tmp4, Address(post(a2, 2))); 5655 eorw(tmp5, tmp3, tmp4); 5656 cbnzw(tmp5, DONE); 5657 } 5658 bind(TAIL01); 5659 if (elem_size == 1) { // Only needed when comparing byte arrays. 5660 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5661 { 5662 ldrb(tmp1, a1); 5663 ldrb(tmp2, a2); 5664 eorw(tmp5, tmp1, tmp2); 5665 cbnzw(tmp5, DONE); 5666 } 5667 } 5668 } else { 5669 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5670 CSET_EQ, LAST_CHECK; 5671 mov(result, false); 5672 cbz(a1, DONE); 5673 ldrw(cnt1, Address(a1, length_offset)); 5674 cbz(a2, DONE); 5675 // Increase loop counter by diff between base- and actual start-offset. 5676 addw(cnt1, cnt1, extra_length); 5677 5678 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5679 // faster to perform another branch before comparing a1 and a2 5680 cmp(cnt1, (u1)elem_per_word); 5681 br(LE, SHORT); // short or same 5682 ldr(tmp3, Address(pre(a1, start_offset))); 5683 subs(zr, cnt1, stubBytesThreshold); 5684 br(GE, STUB); 5685 ldr(tmp4, Address(pre(a2, start_offset))); 5686 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5687 5688 // Main 16 byte comparison loop with 2 exits 5689 bind(NEXT_DWORD); { 5690 ldr(tmp1, Address(pre(a1, wordSize))); 5691 ldr(tmp2, Address(pre(a2, wordSize))); 5692 subs(cnt1, cnt1, 2 * elem_per_word); 5693 br(LE, TAIL); 5694 eor(tmp4, tmp3, tmp4); 5695 cbnz(tmp4, DONE); 5696 ldr(tmp3, Address(pre(a1, wordSize))); 5697 ldr(tmp4, Address(pre(a2, wordSize))); 5698 cmp(cnt1, (u1)elem_per_word); 5699 br(LE, TAIL2); 5700 cmp(tmp1, tmp2); 5701 } br(EQ, NEXT_DWORD); 5702 b(DONE); 5703 5704 bind(TAIL); 5705 eor(tmp4, tmp3, tmp4); 5706 eor(tmp2, tmp1, tmp2); 5707 lslv(tmp2, tmp2, tmp5); 5708 orr(tmp5, tmp4, tmp2); 5709 cmp(tmp5, zr); 5710 b(CSET_EQ); 5711 5712 bind(TAIL2); 5713 eor(tmp2, tmp1, tmp2); 5714 cbnz(tmp2, DONE); 5715 b(LAST_CHECK); 5716 5717 bind(STUB); 5718 ldr(tmp4, Address(pre(a2, start_offset))); 5719 if (elem_size == 2) { // convert to byte counter 5720 lsl(cnt1, cnt1, 1); 5721 } 5722 eor(tmp5, tmp3, tmp4); 5723 cbnz(tmp5, DONE); 5724 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5725 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 5726 address tpc = trampoline_call(stub); 5727 if (tpc == nullptr) { 5728 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 5729 postcond(pc() == badAddress); 5730 return nullptr; 5731 } 5732 b(DONE); 5733 5734 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 5735 // so, if a2 == null => return false(0), else return true, so we can return a2 5736 mov(result, a2); 5737 b(DONE); 5738 bind(SHORT); 5739 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5740 ldr(tmp3, Address(a1, start_offset)); 5741 ldr(tmp4, Address(a2, start_offset)); 5742 bind(LAST_CHECK); 5743 eor(tmp4, tmp3, tmp4); 5744 lslv(tmp5, tmp4, tmp5); 5745 cmp(tmp5, zr); 5746 bind(CSET_EQ); 5747 cset(result, EQ); 5748 b(DONE); 5749 } 5750 5751 bind(SAME); 5752 mov(result, true); 5753 // That's it. 5754 bind(DONE); 5755 5756 BLOCK_COMMENT("} array_equals"); 5757 postcond(pc() != badAddress); 5758 return pc(); 5759 } 5760 5761 // Compare Strings 5762 5763 // For Strings we're passed the address of the first characters in a1 5764 // and a2 and the length in cnt1. 5765 // There are two implementations. For arrays >= 8 bytes, all 5766 // comparisons (including the final one, which may overlap) are 5767 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 5768 // halfword, then a short, and then a byte. 5769 5770 void MacroAssembler::string_equals(Register a1, Register a2, 5771 Register result, Register cnt1) 5772 { 5773 Label SAME, DONE, SHORT, NEXT_WORD; 5774 Register tmp1 = rscratch1; 5775 Register tmp2 = rscratch2; 5776 Register cnt2 = tmp2; // cnt2 only used in array length compare 5777 5778 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5779 5780 #ifndef PRODUCT 5781 { 5782 char comment[64]; 5783 snprintf(comment, sizeof comment, "{string_equalsL"); 5784 BLOCK_COMMENT(comment); 5785 } 5786 #endif 5787 5788 mov(result, false); 5789 5790 // Check for short strings, i.e. smaller than wordSize. 5791 subs(cnt1, cnt1, wordSize); 5792 br(Assembler::LT, SHORT); 5793 // Main 8 byte comparison loop. 5794 bind(NEXT_WORD); { 5795 ldr(tmp1, Address(post(a1, wordSize))); 5796 ldr(tmp2, Address(post(a2, wordSize))); 5797 subs(cnt1, cnt1, wordSize); 5798 eor(tmp1, tmp1, tmp2); 5799 cbnz(tmp1, DONE); 5800 } br(GT, NEXT_WORD); 5801 // Last longword. In the case where length == 4 we compare the 5802 // same longword twice, but that's still faster than another 5803 // conditional branch. 5804 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5805 // length == 4. 5806 ldr(tmp1, Address(a1, cnt1)); 5807 ldr(tmp2, Address(a2, cnt1)); 5808 eor(tmp2, tmp1, tmp2); 5809 cbnz(tmp2, DONE); 5810 b(SAME); 5811 5812 bind(SHORT); 5813 Label TAIL03, TAIL01; 5814 5815 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 5816 { 5817 ldrw(tmp1, Address(post(a1, 4))); 5818 ldrw(tmp2, Address(post(a2, 4))); 5819 eorw(tmp1, tmp1, tmp2); 5820 cbnzw(tmp1, DONE); 5821 } 5822 bind(TAIL03); 5823 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 5824 { 5825 ldrh(tmp1, Address(post(a1, 2))); 5826 ldrh(tmp2, Address(post(a2, 2))); 5827 eorw(tmp1, tmp1, tmp2); 5828 cbnzw(tmp1, DONE); 5829 } 5830 bind(TAIL01); 5831 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5832 { 5833 ldrb(tmp1, a1); 5834 ldrb(tmp2, a2); 5835 eorw(tmp1, tmp1, tmp2); 5836 cbnzw(tmp1, DONE); 5837 } 5838 // Arrays are equal. 5839 bind(SAME); 5840 mov(result, true); 5841 5842 // That's it. 5843 bind(DONE); 5844 BLOCK_COMMENT("} string_equals"); 5845 } 5846 5847 5848 // The size of the blocks erased by the zero_blocks stub. We must 5849 // handle anything smaller than this ourselves in zero_words(). 5850 const int MacroAssembler::zero_words_block_size = 8; 5851 5852 // zero_words() is used by C2 ClearArray patterns and by 5853 // C1_MacroAssembler. It is as small as possible, handling small word 5854 // counts locally and delegating anything larger to the zero_blocks 5855 // stub. It is expanded many times in compiled code, so it is 5856 // important to keep it short. 5857 5858 // ptr: Address of a buffer to be zeroed. 5859 // cnt: Count in HeapWords. 5860 // 5861 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 5862 address MacroAssembler::zero_words(Register ptr, Register cnt) 5863 { 5864 assert(is_power_of_2(zero_words_block_size), "adjust this"); 5865 5866 BLOCK_COMMENT("zero_words {"); 5867 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 5868 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5869 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 5870 5871 subs(rscratch1, cnt, zero_words_block_size); 5872 Label around; 5873 br(LO, around); 5874 { 5875 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5876 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 5877 // Make sure this is a C2 compilation. C1 allocates space only for 5878 // trampoline stubs generated by Call LIR ops, and in any case it 5879 // makes sense for a C1 compilation task to proceed as quickly as 5880 // possible. 5881 CompileTask* task; 5882 if (StubRoutines::aarch64::complete() 5883 && Thread::current()->is_Compiler_thread() 5884 && (task = ciEnv::current()->task()) 5885 && is_c2_compile(task->comp_level())) { 5886 address tpc = trampoline_call(zero_blocks); 5887 if (tpc == nullptr) { 5888 DEBUG_ONLY(reset_labels(around)); 5889 return nullptr; 5890 } 5891 } else { 5892 far_call(zero_blocks); 5893 } 5894 } 5895 bind(around); 5896 5897 // We have a few words left to do. zero_blocks has adjusted r10 and r11 5898 // for us. 5899 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 5900 Label l; 5901 tbz(cnt, exact_log2(i), l); 5902 for (int j = 0; j < i; j += 2) { 5903 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 5904 } 5905 bind(l); 5906 } 5907 { 5908 Label l; 5909 tbz(cnt, 0, l); 5910 str(zr, Address(ptr)); 5911 bind(l); 5912 } 5913 5914 BLOCK_COMMENT("} zero_words"); 5915 return pc(); 5916 } 5917 5918 // base: Address of a buffer to be zeroed, 8 bytes aligned. 5919 // cnt: Immediate count in HeapWords. 5920 // 5921 // r10, r11, rscratch1, and rscratch2 are clobbered. 5922 address MacroAssembler::zero_words(Register base, uint64_t cnt) 5923 { 5924 assert(wordSize <= BlockZeroingLowLimit, 5925 "increase BlockZeroingLowLimit"); 5926 address result = nullptr; 5927 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 5928 #ifndef PRODUCT 5929 { 5930 char buf[64]; 5931 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 5932 BLOCK_COMMENT(buf); 5933 } 5934 #endif 5935 if (cnt >= 16) { 5936 uint64_t loops = cnt/16; 5937 if (loops > 1) { 5938 mov(rscratch2, loops - 1); 5939 } 5940 { 5941 Label loop; 5942 bind(loop); 5943 for (int i = 0; i < 16; i += 2) { 5944 stp(zr, zr, Address(base, i * BytesPerWord)); 5945 } 5946 add(base, base, 16 * BytesPerWord); 5947 if (loops > 1) { 5948 subs(rscratch2, rscratch2, 1); 5949 br(GE, loop); 5950 } 5951 } 5952 } 5953 cnt %= 16; 5954 int i = cnt & 1; // store any odd word to start 5955 if (i) str(zr, Address(base)); 5956 for (; i < (int)cnt; i += 2) { 5957 stp(zr, zr, Address(base, i * wordSize)); 5958 } 5959 BLOCK_COMMENT("} zero_words"); 5960 result = pc(); 5961 } else { 5962 mov(r10, base); mov(r11, cnt); 5963 result = zero_words(r10, r11); 5964 } 5965 return result; 5966 } 5967 5968 // Zero blocks of memory by using DC ZVA. 5969 // 5970 // Aligns the base address first sufficiently for DC ZVA, then uses 5971 // DC ZVA repeatedly for every full block. cnt is the size to be 5972 // zeroed in HeapWords. Returns the count of words left to be zeroed 5973 // in cnt. 5974 // 5975 // NOTE: This is intended to be used in the zero_blocks() stub. If 5976 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 5977 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 5978 Register tmp = rscratch1; 5979 Register tmp2 = rscratch2; 5980 int zva_length = VM_Version::zva_length(); 5981 Label initial_table_end, loop_zva; 5982 Label fini; 5983 5984 // Base must be 16 byte aligned. If not just return and let caller handle it 5985 tst(base, 0x0f); 5986 br(Assembler::NE, fini); 5987 // Align base with ZVA length. 5988 neg(tmp, base); 5989 andr(tmp, tmp, zva_length - 1); 5990 5991 // tmp: the number of bytes to be filled to align the base with ZVA length. 5992 add(base, base, tmp); 5993 sub(cnt, cnt, tmp, Assembler::ASR, 3); 5994 adr(tmp2, initial_table_end); 5995 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 5996 br(tmp2); 5997 5998 for (int i = -zva_length + 16; i < 0; i += 16) 5999 stp(zr, zr, Address(base, i)); 6000 bind(initial_table_end); 6001 6002 sub(cnt, cnt, zva_length >> 3); 6003 bind(loop_zva); 6004 dc(Assembler::ZVA, base); 6005 subs(cnt, cnt, zva_length >> 3); 6006 add(base, base, zva_length); 6007 br(Assembler::GE, loop_zva); 6008 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6009 bind(fini); 6010 } 6011 6012 // base: Address of a buffer to be filled, 8 bytes aligned. 6013 // cnt: Count in 8-byte unit. 6014 // value: Value to be filled with. 6015 // base will point to the end of the buffer after filling. 6016 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6017 { 6018 // Algorithm: 6019 // 6020 // if (cnt == 0) { 6021 // return; 6022 // } 6023 // if ((p & 8) != 0) { 6024 // *p++ = v; 6025 // } 6026 // 6027 // scratch1 = cnt & 14; 6028 // cnt -= scratch1; 6029 // p += scratch1; 6030 // switch (scratch1 / 2) { 6031 // do { 6032 // cnt -= 16; 6033 // p[-16] = v; 6034 // p[-15] = v; 6035 // case 7: 6036 // p[-14] = v; 6037 // p[-13] = v; 6038 // case 6: 6039 // p[-12] = v; 6040 // p[-11] = v; 6041 // // ... 6042 // case 1: 6043 // p[-2] = v; 6044 // p[-1] = v; 6045 // case 0: 6046 // p += 16; 6047 // } while (cnt); 6048 // } 6049 // if ((cnt & 1) == 1) { 6050 // *p++ = v; 6051 // } 6052 6053 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6054 6055 Label fini, skip, entry, loop; 6056 const int unroll = 8; // Number of stp instructions we'll unroll 6057 6058 cbz(cnt, fini); 6059 tbz(base, 3, skip); 6060 str(value, Address(post(base, 8))); 6061 sub(cnt, cnt, 1); 6062 bind(skip); 6063 6064 andr(rscratch1, cnt, (unroll-1) * 2); 6065 sub(cnt, cnt, rscratch1); 6066 add(base, base, rscratch1, Assembler::LSL, 3); 6067 adr(rscratch2, entry); 6068 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6069 br(rscratch2); 6070 6071 bind(loop); 6072 add(base, base, unroll * 16); 6073 for (int i = -unroll; i < 0; i++) 6074 stp(value, value, Address(base, i * 16)); 6075 bind(entry); 6076 subs(cnt, cnt, unroll * 2); 6077 br(Assembler::GE, loop); 6078 6079 tbz(cnt, 0, fini); 6080 str(value, Address(post(base, 8))); 6081 bind(fini); 6082 } 6083 6084 // Intrinsic for 6085 // 6086 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6087 // return the number of characters copied. 6088 // - java/lang/StringUTF16.compress 6089 // return index of non-latin1 character if copy fails, otherwise 'len'. 6090 // 6091 // This version always returns the number of characters copied, and does not 6092 // clobber the 'len' register. A successful copy will complete with the post- 6093 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6094 // post-condition: 0 <= 'res' < 'len'. 6095 // 6096 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6097 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6098 // beyond the acceptable, even though the footprint would be smaller. 6099 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6100 // avoid additional bloat. 6101 // 6102 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6103 void MacroAssembler::encode_iso_array(Register src, Register dst, 6104 Register len, Register res, bool ascii, 6105 FloatRegister vtmp0, FloatRegister vtmp1, 6106 FloatRegister vtmp2, FloatRegister vtmp3, 6107 FloatRegister vtmp4, FloatRegister vtmp5) 6108 { 6109 Register cnt = res; 6110 Register max = rscratch1; 6111 Register chk = rscratch2; 6112 6113 prfm(Address(src), PLDL1STRM); 6114 movw(cnt, len); 6115 6116 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6117 6118 Label LOOP_32, DONE_32, FAIL_32; 6119 6120 BIND(LOOP_32); 6121 { 6122 cmpw(cnt, 32); 6123 br(LT, DONE_32); 6124 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6125 // Extract lower bytes. 6126 FloatRegister vlo0 = vtmp4; 6127 FloatRegister vlo1 = vtmp5; 6128 uzp1(vlo0, T16B, vtmp0, vtmp1); 6129 uzp1(vlo1, T16B, vtmp2, vtmp3); 6130 // Merge bits... 6131 orr(vtmp0, T16B, vtmp0, vtmp1); 6132 orr(vtmp2, T16B, vtmp2, vtmp3); 6133 // Extract merged upper bytes. 6134 FloatRegister vhix = vtmp0; 6135 uzp2(vhix, T16B, vtmp0, vtmp2); 6136 // ISO-check on hi-parts (all zero). 6137 // ASCII-check on lo-parts (no sign). 6138 FloatRegister vlox = vtmp1; // Merge lower bytes. 6139 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6140 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6141 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6142 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6143 ASCII(orr(chk, chk, max)); 6144 cbnz(chk, FAIL_32); 6145 subw(cnt, cnt, 32); 6146 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6147 b(LOOP_32); 6148 } 6149 BIND(FAIL_32); 6150 sub(src, src, 64); 6151 BIND(DONE_32); 6152 6153 Label LOOP_8, SKIP_8; 6154 6155 BIND(LOOP_8); 6156 { 6157 cmpw(cnt, 8); 6158 br(LT, SKIP_8); 6159 FloatRegister vhi = vtmp0; 6160 FloatRegister vlo = vtmp1; 6161 ld1(vtmp3, T8H, src); 6162 uzp1(vlo, T16B, vtmp3, vtmp3); 6163 uzp2(vhi, T16B, vtmp3, vtmp3); 6164 // ISO-check on hi-parts (all zero). 6165 // ASCII-check on lo-parts (no sign). 6166 ASCII(cm(LT, vtmp2, T16B, vlo)); 6167 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6168 ASCII(umov(max, vtmp2, B, 0)); 6169 ASCII(orr(chk, chk, max)); 6170 cbnz(chk, SKIP_8); 6171 6172 strd(vlo, Address(post(dst, 8))); 6173 subw(cnt, cnt, 8); 6174 add(src, src, 16); 6175 b(LOOP_8); 6176 } 6177 BIND(SKIP_8); 6178 6179 #undef ASCII 6180 6181 Label LOOP, DONE; 6182 6183 cbz(cnt, DONE); 6184 BIND(LOOP); 6185 { 6186 Register chr = rscratch1; 6187 ldrh(chr, Address(post(src, 2))); 6188 tst(chr, ascii ? 0xff80 : 0xff00); 6189 br(NE, DONE); 6190 strb(chr, Address(post(dst, 1))); 6191 subs(cnt, cnt, 1); 6192 br(GT, LOOP); 6193 } 6194 BIND(DONE); 6195 // Return index where we stopped. 6196 subw(res, len, cnt); 6197 } 6198 6199 // Inflate byte[] array to char[]. 6200 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6201 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6202 FloatRegister vtmp1, FloatRegister vtmp2, 6203 FloatRegister vtmp3, Register tmp4) { 6204 Label big, done, after_init, to_stub; 6205 6206 assert_different_registers(src, dst, len, tmp4, rscratch1); 6207 6208 fmovd(vtmp1, 0.0); 6209 lsrw(tmp4, len, 3); 6210 bind(after_init); 6211 cbnzw(tmp4, big); 6212 // Short string: less than 8 bytes. 6213 { 6214 Label loop, tiny; 6215 6216 cmpw(len, 4); 6217 br(LT, tiny); 6218 // Use SIMD to do 4 bytes. 6219 ldrs(vtmp2, post(src, 4)); 6220 zip1(vtmp3, T8B, vtmp2, vtmp1); 6221 subw(len, len, 4); 6222 strd(vtmp3, post(dst, 8)); 6223 6224 cbzw(len, done); 6225 6226 // Do the remaining bytes by steam. 6227 bind(loop); 6228 ldrb(tmp4, post(src, 1)); 6229 strh(tmp4, post(dst, 2)); 6230 subw(len, len, 1); 6231 6232 bind(tiny); 6233 cbnz(len, loop); 6234 6235 b(done); 6236 } 6237 6238 if (SoftwarePrefetchHintDistance >= 0) { 6239 bind(to_stub); 6240 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6241 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6242 address tpc = trampoline_call(stub); 6243 if (tpc == nullptr) { 6244 DEBUG_ONLY(reset_labels(big, done)); 6245 postcond(pc() == badAddress); 6246 return nullptr; 6247 } 6248 b(after_init); 6249 } 6250 6251 // Unpack the bytes 8 at a time. 6252 bind(big); 6253 { 6254 Label loop, around, loop_last, loop_start; 6255 6256 if (SoftwarePrefetchHintDistance >= 0) { 6257 const int large_loop_threshold = (64 + 16)/8; 6258 ldrd(vtmp2, post(src, 8)); 6259 andw(len, len, 7); 6260 cmp(tmp4, (u1)large_loop_threshold); 6261 br(GE, to_stub); 6262 b(loop_start); 6263 6264 bind(loop); 6265 ldrd(vtmp2, post(src, 8)); 6266 bind(loop_start); 6267 subs(tmp4, tmp4, 1); 6268 br(EQ, loop_last); 6269 zip1(vtmp2, T16B, vtmp2, vtmp1); 6270 ldrd(vtmp3, post(src, 8)); 6271 st1(vtmp2, T8H, post(dst, 16)); 6272 subs(tmp4, tmp4, 1); 6273 zip1(vtmp3, T16B, vtmp3, vtmp1); 6274 st1(vtmp3, T8H, post(dst, 16)); 6275 br(NE, loop); 6276 b(around); 6277 bind(loop_last); 6278 zip1(vtmp2, T16B, vtmp2, vtmp1); 6279 st1(vtmp2, T8H, post(dst, 16)); 6280 bind(around); 6281 cbz(len, done); 6282 } else { 6283 andw(len, len, 7); 6284 bind(loop); 6285 ldrd(vtmp2, post(src, 8)); 6286 sub(tmp4, tmp4, 1); 6287 zip1(vtmp3, T16B, vtmp2, vtmp1); 6288 st1(vtmp3, T8H, post(dst, 16)); 6289 cbnz(tmp4, loop); 6290 } 6291 } 6292 6293 // Do the tail of up to 8 bytes. 6294 add(src, src, len); 6295 ldrd(vtmp3, Address(src, -8)); 6296 add(dst, dst, len, ext::uxtw, 1); 6297 zip1(vtmp3, T16B, vtmp3, vtmp1); 6298 strq(vtmp3, Address(dst, -16)); 6299 6300 bind(done); 6301 postcond(pc() != badAddress); 6302 return pc(); 6303 } 6304 6305 // Compress char[] array to byte[]. 6306 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6307 // Return the array length if every element in array can be encoded, 6308 // otherwise, the index of first non-latin1 (> 0xff) character. 6309 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6310 Register res, 6311 FloatRegister tmp0, FloatRegister tmp1, 6312 FloatRegister tmp2, FloatRegister tmp3, 6313 FloatRegister tmp4, FloatRegister tmp5) { 6314 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6315 } 6316 6317 // java.math.round(double a) 6318 // Returns the closest long to the argument, with ties rounding to 6319 // positive infinity. This requires some fiddling for corner 6320 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6321 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6322 FloatRegister ftmp) { 6323 Label DONE; 6324 BLOCK_COMMENT("java_round_double: { "); 6325 fmovd(rscratch1, src); 6326 // Use RoundToNearestTiesAway unless src small and -ve. 6327 fcvtasd(dst, src); 6328 // Test if src >= 0 || abs(src) >= 0x1.0p52 6329 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6330 mov(rscratch2, julong_cast(0x1.0p52)); 6331 cmp(rscratch1, rscratch2); 6332 br(HS, DONE); { 6333 // src < 0 && abs(src) < 0x1.0p52 6334 // src may have a fractional part, so add 0.5 6335 fmovd(ftmp, 0.5); 6336 faddd(ftmp, src, ftmp); 6337 // Convert double to jlong, use RoundTowardsNegative 6338 fcvtmsd(dst, ftmp); 6339 } 6340 bind(DONE); 6341 BLOCK_COMMENT("} java_round_double"); 6342 } 6343 6344 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6345 FloatRegister ftmp) { 6346 Label DONE; 6347 BLOCK_COMMENT("java_round_float: { "); 6348 fmovs(rscratch1, src); 6349 // Use RoundToNearestTiesAway unless src small and -ve. 6350 fcvtassw(dst, src); 6351 // Test if src >= 0 || abs(src) >= 0x1.0p23 6352 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6353 mov(rscratch2, jint_cast(0x1.0p23f)); 6354 cmp(rscratch1, rscratch2); 6355 br(HS, DONE); { 6356 // src < 0 && |src| < 0x1.0p23 6357 // src may have a fractional part, so add 0.5 6358 fmovs(ftmp, 0.5f); 6359 fadds(ftmp, src, ftmp); 6360 // Convert float to jint, use RoundTowardsNegative 6361 fcvtmssw(dst, ftmp); 6362 } 6363 bind(DONE); 6364 BLOCK_COMMENT("} java_round_float"); 6365 } 6366 6367 // get_thread() can be called anywhere inside generated code so we 6368 // need to save whatever non-callee save context might get clobbered 6369 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6370 // the call setup code. 6371 // 6372 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6373 // On other systems, the helper is a usual C function. 6374 // 6375 void MacroAssembler::get_thread(Register dst) { 6376 RegSet saved_regs = 6377 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6378 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6379 6380 protect_return_address(); 6381 push(saved_regs, sp); 6382 6383 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6384 blr(lr); 6385 if (dst != c_rarg0) { 6386 mov(dst, c_rarg0); 6387 } 6388 6389 pop(saved_regs, sp); 6390 authenticate_return_address(); 6391 } 6392 6393 void MacroAssembler::cache_wb(Address line) { 6394 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6395 assert(line.index() == noreg, "index should be noreg"); 6396 assert(line.offset() == 0, "offset should be 0"); 6397 // would like to assert this 6398 // assert(line._ext.shift == 0, "shift should be zero"); 6399 if (VM_Version::supports_dcpop()) { 6400 // writeback using clear virtual address to point of persistence 6401 dc(Assembler::CVAP, line.base()); 6402 } else { 6403 // no need to generate anything as Unsafe.writebackMemory should 6404 // never invoke this stub 6405 } 6406 } 6407 6408 void MacroAssembler::cache_wbsync(bool is_pre) { 6409 // we only need a barrier post sync 6410 if (!is_pre) { 6411 membar(Assembler::AnyAny); 6412 } 6413 } 6414 6415 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6416 // Make sure that native code does not change SVE vector length. 6417 if (!UseSVE) return; 6418 Label verify_ok; 6419 movw(tmp, zr); 6420 sve_inc(tmp, B); 6421 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6422 br(EQ, verify_ok); 6423 stop("Error: SVE vector length has changed since jvm startup"); 6424 bind(verify_ok); 6425 } 6426 6427 void MacroAssembler::verify_ptrue() { 6428 Label verify_ok; 6429 if (!UseSVE) { 6430 return; 6431 } 6432 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6433 sve_dec(rscratch1, B); 6434 cbz(rscratch1, verify_ok); 6435 stop("Error: the preserved predicate register (p7) elements are not all true"); 6436 bind(verify_ok); 6437 } 6438 6439 void MacroAssembler::safepoint_isb() { 6440 isb(); 6441 #ifndef PRODUCT 6442 if (VerifyCrossModifyFence) { 6443 // Clear the thread state. 6444 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6445 } 6446 #endif 6447 } 6448 6449 #ifndef PRODUCT 6450 void MacroAssembler::verify_cross_modify_fence_not_required() { 6451 if (VerifyCrossModifyFence) { 6452 // Check if thread needs a cross modify fence. 6453 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6454 Label fence_not_required; 6455 cbz(rscratch1, fence_not_required); 6456 // If it does then fail. 6457 lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)); 6458 mov(c_rarg0, rthread); 6459 blr(rscratch1); 6460 bind(fence_not_required); 6461 } 6462 } 6463 #endif 6464 6465 void MacroAssembler::spin_wait() { 6466 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6467 switch (VM_Version::spin_wait_desc().inst()) { 6468 case SpinWait::NOP: 6469 nop(); 6470 break; 6471 case SpinWait::ISB: 6472 isb(); 6473 break; 6474 case SpinWait::YIELD: 6475 yield(); 6476 break; 6477 default: 6478 ShouldNotReachHere(); 6479 } 6480 } 6481 } 6482 6483 // Stack frame creation/removal 6484 6485 void MacroAssembler::enter(bool strip_ret_addr) { 6486 if (strip_ret_addr) { 6487 // Addresses can only be signed once. If there are multiple nested frames being created 6488 // in the same function, then the return address needs stripping first. 6489 strip_return_address(); 6490 } 6491 protect_return_address(); 6492 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6493 mov(rfp, sp); 6494 } 6495 6496 void MacroAssembler::leave() { 6497 mov(sp, rfp); 6498 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6499 authenticate_return_address(); 6500 } 6501 6502 // ROP Protection 6503 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6504 // destroying stack frames or whenever directly loading/storing the LR to memory. 6505 // If ROP protection is not set then these functions are no-ops. 6506 // For more details on PAC see pauth_aarch64.hpp. 6507 6508 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6509 // Uses value zero as the modifier. 6510 // 6511 void MacroAssembler::protect_return_address() { 6512 if (VM_Version::use_rop_protection()) { 6513 check_return_address(); 6514 paciaz(); 6515 } 6516 } 6517 6518 // Sign the return value in the given register. Use before updating the LR in the existing stack 6519 // frame for the current function. 6520 // Uses value zero as the modifier. 6521 // 6522 void MacroAssembler::protect_return_address(Register return_reg) { 6523 if (VM_Version::use_rop_protection()) { 6524 check_return_address(return_reg); 6525 paciza(return_reg); 6526 } 6527 } 6528 6529 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6530 // Uses value zero as the modifier. 6531 // 6532 void MacroAssembler::authenticate_return_address() { 6533 if (VM_Version::use_rop_protection()) { 6534 autiaz(); 6535 check_return_address(); 6536 } 6537 } 6538 6539 // Authenticate the return value in the given register. Use before updating the LR in the existing 6540 // stack frame for the current function. 6541 // Uses value zero as the modifier. 6542 // 6543 void MacroAssembler::authenticate_return_address(Register return_reg) { 6544 if (VM_Version::use_rop_protection()) { 6545 autiza(return_reg); 6546 check_return_address(return_reg); 6547 } 6548 } 6549 6550 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6551 // there is no guaranteed way of authenticating the LR. 6552 // 6553 void MacroAssembler::strip_return_address() { 6554 if (VM_Version::use_rop_protection()) { 6555 xpaclri(); 6556 } 6557 } 6558 6559 #ifndef PRODUCT 6560 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6561 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6562 // it is difficult to debug back to the callee function. 6563 // This function simply loads from the address in the given register. 6564 // Use directly after authentication to catch authentication failures. 6565 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6566 // 6567 void MacroAssembler::check_return_address(Register return_reg) { 6568 if (VM_Version::use_rop_protection()) { 6569 ldr(zr, Address(return_reg)); 6570 } 6571 } 6572 #endif 6573 6574 // The java_calling_convention describes stack locations as ideal slots on 6575 // a frame with no abi restrictions. Since we must observe abi restrictions 6576 // (like the placement of the register window) the slots must be biased by 6577 // the following value. 6578 static int reg2offset_in(VMReg r) { 6579 // Account for saved rfp and lr 6580 // This should really be in_preserve_stack_slots 6581 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6582 } 6583 6584 static int reg2offset_out(VMReg r) { 6585 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6586 } 6587 6588 // On 64bit we will store integer like items to the stack as 6589 // 64bits items (AArch64 ABI) even though java would only store 6590 // 32bits for a parameter. On 32bit it will simply be 32bits 6591 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6592 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6593 if (src.first()->is_stack()) { 6594 if (dst.first()->is_stack()) { 6595 // stack to stack 6596 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6597 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6598 } else { 6599 // stack to reg 6600 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6601 } 6602 } else if (dst.first()->is_stack()) { 6603 // reg to stack 6604 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6605 } else { 6606 if (dst.first() != src.first()) { 6607 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6608 } 6609 } 6610 } 6611 6612 // An oop arg. Must pass a handle not the oop itself 6613 void MacroAssembler::object_move( 6614 OopMap* map, 6615 int oop_handle_offset, 6616 int framesize_in_slots, 6617 VMRegPair src, 6618 VMRegPair dst, 6619 bool is_receiver, 6620 int* receiver_offset) { 6621 6622 // must pass a handle. First figure out the location we use as a handle 6623 6624 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6625 6626 // See if oop is null if it is we need no handle 6627 6628 if (src.first()->is_stack()) { 6629 6630 // Oop is already on the stack as an argument 6631 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6632 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6633 if (is_receiver) { 6634 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6635 } 6636 6637 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6638 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6639 // conditionally move a null 6640 cmp(rscratch1, zr); 6641 csel(rHandle, zr, rHandle, Assembler::EQ); 6642 } else { 6643 6644 // Oop is in an a register we must store it to the space we reserve 6645 // on the stack for oop_handles and pass a handle if oop is non-null 6646 6647 const Register rOop = src.first()->as_Register(); 6648 int oop_slot; 6649 if (rOop == j_rarg0) 6650 oop_slot = 0; 6651 else if (rOop == j_rarg1) 6652 oop_slot = 1; 6653 else if (rOop == j_rarg2) 6654 oop_slot = 2; 6655 else if (rOop == j_rarg3) 6656 oop_slot = 3; 6657 else if (rOop == j_rarg4) 6658 oop_slot = 4; 6659 else if (rOop == j_rarg5) 6660 oop_slot = 5; 6661 else if (rOop == j_rarg6) 6662 oop_slot = 6; 6663 else { 6664 assert(rOop == j_rarg7, "wrong register"); 6665 oop_slot = 7; 6666 } 6667 6668 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6669 int offset = oop_slot*VMRegImpl::stack_slot_size; 6670 6671 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6672 // Store oop in handle area, may be null 6673 str(rOop, Address(sp, offset)); 6674 if (is_receiver) { 6675 *receiver_offset = offset; 6676 } 6677 6678 cmp(rOop, zr); 6679 lea(rHandle, Address(sp, offset)); 6680 // conditionally move a null 6681 csel(rHandle, zr, rHandle, Assembler::EQ); 6682 } 6683 6684 // If arg is on the stack then place it otherwise it is already in correct reg. 6685 if (dst.first()->is_stack()) { 6686 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6687 } 6688 } 6689 6690 // A float arg may have to do float reg int reg conversion 6691 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6692 if (src.first()->is_stack()) { 6693 if (dst.first()->is_stack()) { 6694 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6695 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6696 } else { 6697 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6698 } 6699 } else if (src.first() != dst.first()) { 6700 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6701 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6702 else 6703 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6704 } 6705 } 6706 6707 // A long move 6708 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6709 if (src.first()->is_stack()) { 6710 if (dst.first()->is_stack()) { 6711 // stack to stack 6712 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6713 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6714 } else { 6715 // stack to reg 6716 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6717 } 6718 } else if (dst.first()->is_stack()) { 6719 // reg to stack 6720 // Do we really have to sign extend??? 6721 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 6722 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6723 } else { 6724 if (dst.first() != src.first()) { 6725 mov(dst.first()->as_Register(), src.first()->as_Register()); 6726 } 6727 } 6728 } 6729 6730 6731 // A double move 6732 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 6733 if (src.first()->is_stack()) { 6734 if (dst.first()->is_stack()) { 6735 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6736 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6737 } else { 6738 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6739 } 6740 } else if (src.first() != dst.first()) { 6741 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6742 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6743 else 6744 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6745 } 6746 } 6747 6748 // Implements lightweight-locking. 6749 // 6750 // - obj: the object to be locked 6751 // - t1, t2, t3: temporary registers, will be destroyed 6752 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 6753 void MacroAssembler::lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 6754 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6755 assert_different_registers(obj, t1, t2, t3, rscratch1); 6756 6757 Label push; 6758 const Register top = t1; 6759 const Register mark = t2; 6760 const Register t = t3; 6761 6762 // Preload the markWord. It is important that this is the first 6763 // instruction emitted as it is part of C1's null check semantics. 6764 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 6765 6766 // Check if the lock-stack is full. 6767 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6768 cmpw(top, (unsigned)LockStack::end_offset()); 6769 br(Assembler::GE, slow); 6770 6771 // Check for recursion. 6772 subw(t, top, oopSize); 6773 ldr(t, Address(rthread, t)); 6774 cmp(obj, t); 6775 br(Assembler::EQ, push); 6776 6777 // Check header for monitor (0b10). 6778 tst(mark, markWord::monitor_value); 6779 br(Assembler::NE, slow); 6780 6781 // Try to lock. Transition lock bits 0b01 => 0b00 6782 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 6783 orr(mark, mark, markWord::unlocked_value); 6784 eor(t, mark, markWord::unlocked_value); 6785 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 6786 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 6787 br(Assembler::NE, slow); 6788 6789 bind(push); 6790 // After successful lock, push object on lock-stack. 6791 str(obj, Address(rthread, top)); 6792 addw(top, top, oopSize); 6793 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6794 } 6795 6796 // Implements lightweight-unlocking. 6797 // 6798 // - obj: the object to be unlocked 6799 // - t1, t2, t3: temporary registers 6800 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 6801 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 6802 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6803 // cmpxchg clobbers rscratch1. 6804 assert_different_registers(obj, t1, t2, t3, rscratch1); 6805 6806 #ifdef ASSERT 6807 { 6808 // Check for lock-stack underflow. 6809 Label stack_ok; 6810 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6811 cmpw(t1, (unsigned)LockStack::start_offset()); 6812 br(Assembler::GE, stack_ok); 6813 STOP("Lock-stack underflow"); 6814 bind(stack_ok); 6815 } 6816 #endif 6817 6818 Label unlocked, push_and_slow; 6819 const Register top = t1; 6820 const Register mark = t2; 6821 const Register t = t3; 6822 6823 // Check if obj is top of lock-stack. 6824 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6825 subw(top, top, oopSize); 6826 ldr(t, Address(rthread, top)); 6827 cmp(obj, t); 6828 br(Assembler::NE, slow); 6829 6830 // Pop lock-stack. 6831 DEBUG_ONLY(str(zr, Address(rthread, top));) 6832 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6833 6834 // Check if recursive. 6835 subw(t, top, oopSize); 6836 ldr(t, Address(rthread, t)); 6837 cmp(obj, t); 6838 br(Assembler::EQ, unlocked); 6839 6840 // Not recursive. Check header for monitor (0b10). 6841 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 6842 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 6843 6844 #ifdef ASSERT 6845 // Check header not unlocked (0b01). 6846 Label not_unlocked; 6847 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 6848 stop("lightweight_unlock already unlocked"); 6849 bind(not_unlocked); 6850 #endif 6851 6852 // Try to unlock. Transition lock bits 0b00 => 0b01 6853 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 6854 orr(t, mark, markWord::unlocked_value); 6855 cmpxchg(obj, mark, t, Assembler::xword, 6856 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 6857 br(Assembler::EQ, unlocked); 6858 6859 bind(push_and_slow); 6860 // Restore lock-stack and handle the unlock in runtime. 6861 DEBUG_ONLY(str(obj, Address(rthread, top));) 6862 addw(top, top, oopSize); 6863 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6864 b(slow); 6865 6866 bind(unlocked); 6867 }