1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "metaprogramming/enableIf.hpp" 32 #include "oops/compressedOops.hpp" 33 #include "runtime/vm_version.hpp" 34 #include "utilities/powerOfTwo.hpp" 35 36 class OopMap; 37 38 // MacroAssembler extends Assembler by frequently used macros. 39 // 40 // Instructions for which a 'better' code sequence exists depending 41 // on arguments should also go in here. 42 43 class MacroAssembler: public Assembler { 44 friend class LIR_Assembler; 45 46 public: 47 using Assembler::mov; 48 using Assembler::movi; 49 50 protected: 51 52 // Support for VM calls 53 // 54 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 55 // may customize this version by overriding it for its purposes (e.g., to save/restore 56 // additional registers when doing a VM call). 57 virtual void call_VM_leaf_base( 58 address entry_point, // the entry point 59 int number_of_arguments, // the number of arguments to pop after the call 60 Label *retaddr = NULL 61 ); 62 63 virtual void call_VM_leaf_base( 64 address entry_point, // the entry point 65 int number_of_arguments, // the number of arguments to pop after the call 66 Label &retaddr) { 67 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 68 } 69 70 // This is the base routine called by the different versions of call_VM. The interpreter 71 // may customize this version by overriding it for its purposes (e.g., to save/restore 72 // additional registers when doing a VM call). 73 // 74 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 75 // returns the register which contains the thread upon return. If a thread register has been 76 // specified, the return value will correspond to that register. If no last_java_sp is specified 77 // (noreg) than rsp will be used instead. 78 virtual void call_VM_base( // returns the register containing the thread upon return 79 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 80 Register java_thread, // the thread if computed before ; use noreg otherwise 81 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 82 address entry_point, // the entry point 83 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 84 bool check_exceptions // whether to check for pending exceptions after return 85 ); 86 87 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 88 89 enum KlassDecodeMode { 90 KlassDecodeNone, 91 KlassDecodeZero, 92 KlassDecodeXor, 93 KlassDecodeMovk 94 }; 95 96 KlassDecodeMode klass_decode_mode(); 97 98 private: 99 static KlassDecodeMode _klass_decode_mode; 100 101 public: 102 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 103 104 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 105 // The implementation is only non-empty for the InterpreterMacroAssembler, 106 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 107 virtual void check_and_handle_popframe(Register java_thread); 108 virtual void check_and_handle_earlyret(Register java_thread); 109 110 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 111 void rt_call(address dest, Register tmp = rscratch1); 112 113 // Load Effective Address 114 void lea(Register r, const Address &a) { 115 InstructionMark im(this); 116 a.lea(this, r); 117 } 118 119 /* Sometimes we get misaligned loads and stores, usually from Unsafe 120 accesses, and these can exceed the offset range. */ 121 Address legitimize_address(const Address &a, int size, Register scratch) { 122 if (a.getMode() == Address::base_plus_offset) { 123 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 124 block_comment("legitimize_address {"); 125 lea(scratch, a); 126 block_comment("} legitimize_address"); 127 return Address(scratch); 128 } 129 } 130 return a; 131 } 132 133 void addmw(Address a, Register incr, Register scratch) { 134 ldrw(scratch, a); 135 addw(scratch, scratch, incr); 136 strw(scratch, a); 137 } 138 139 // Add constant to memory word 140 void addmw(Address a, int imm, Register scratch) { 141 ldrw(scratch, a); 142 if (imm > 0) 143 addw(scratch, scratch, (unsigned)imm); 144 else 145 subw(scratch, scratch, (unsigned)-imm); 146 strw(scratch, a); 147 } 148 149 void bind(Label& L) { 150 Assembler::bind(L); 151 code()->clear_last_insn(); 152 } 153 154 void membar(Membar_mask_bits order_constraint); 155 156 using Assembler::ldr; 157 using Assembler::str; 158 using Assembler::ldrw; 159 using Assembler::strw; 160 161 void ldr(Register Rx, const Address &adr); 162 void ldrw(Register Rw, const Address &adr); 163 void str(Register Rx, const Address &adr); 164 void strw(Register Rx, const Address &adr); 165 166 // Frame creation and destruction shared between JITs. 167 void build_frame(int framesize); 168 void remove_frame(int framesize); 169 170 virtual void _call_Unimplemented(address call_site) { 171 mov(rscratch2, call_site); 172 } 173 174 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 175 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 176 // https://reviews.llvm.org/D3311 177 178 #ifdef _WIN64 179 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 180 #else 181 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 182 #endif 183 184 // aliases defined in AARCH64 spec 185 186 template<class T> 187 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 188 189 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 190 inline void cmp(Register Rd, unsigned imm) = delete; 191 192 template<class T> 193 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 194 195 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 196 inline void cmn(Register Rd, unsigned imm) = delete; 197 198 void cset(Register Rd, Assembler::Condition cond) { 199 csinc(Rd, zr, zr, ~cond); 200 } 201 void csetw(Register Rd, Assembler::Condition cond) { 202 csincw(Rd, zr, zr, ~cond); 203 } 204 205 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 206 csneg(Rd, Rn, Rn, ~cond); 207 } 208 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 209 csnegw(Rd, Rn, Rn, ~cond); 210 } 211 212 inline void movw(Register Rd, Register Rn) { 213 if (Rd == sp || Rn == sp) { 214 Assembler::addw(Rd, Rn, 0U); 215 } else { 216 orrw(Rd, zr, Rn); 217 } 218 } 219 inline void mov(Register Rd, Register Rn) { 220 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 221 if (Rd == Rn) { 222 } else if (Rd == sp || Rn == sp) { 223 Assembler::add(Rd, Rn, 0U); 224 } else { 225 orr(Rd, zr, Rn); 226 } 227 } 228 229 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 230 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 231 232 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 233 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 234 235 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 236 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 237 238 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 239 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 240 } 241 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 242 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 243 } 244 245 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 246 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 247 } 248 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 249 bfm(Rd, Rn, lsb , (lsb + width - 1)); 250 } 251 252 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 253 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 254 } 255 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 256 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 257 } 258 259 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 260 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 261 } 262 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 263 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 264 } 265 266 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 267 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 268 } 269 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 270 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 271 } 272 273 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 274 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 275 } 276 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 277 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 278 } 279 280 inline void asrw(Register Rd, Register Rn, unsigned imm) { 281 sbfmw(Rd, Rn, imm, 31); 282 } 283 284 inline void asr(Register Rd, Register Rn, unsigned imm) { 285 sbfm(Rd, Rn, imm, 63); 286 } 287 288 inline void lslw(Register Rd, Register Rn, unsigned imm) { 289 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 290 } 291 292 inline void lsl(Register Rd, Register Rn, unsigned imm) { 293 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 294 } 295 296 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 297 ubfmw(Rd, Rn, imm, 31); 298 } 299 300 inline void lsr(Register Rd, Register Rn, unsigned imm) { 301 ubfm(Rd, Rn, imm, 63); 302 } 303 304 inline void rorw(Register Rd, Register Rn, unsigned imm) { 305 extrw(Rd, Rn, Rn, imm); 306 } 307 308 inline void ror(Register Rd, Register Rn, unsigned imm) { 309 extr(Rd, Rn, Rn, imm); 310 } 311 312 inline void sxtbw(Register Rd, Register Rn) { 313 sbfmw(Rd, Rn, 0, 7); 314 } 315 inline void sxthw(Register Rd, Register Rn) { 316 sbfmw(Rd, Rn, 0, 15); 317 } 318 inline void sxtb(Register Rd, Register Rn) { 319 sbfm(Rd, Rn, 0, 7); 320 } 321 inline void sxth(Register Rd, Register Rn) { 322 sbfm(Rd, Rn, 0, 15); 323 } 324 inline void sxtw(Register Rd, Register Rn) { 325 sbfm(Rd, Rn, 0, 31); 326 } 327 328 inline void uxtbw(Register Rd, Register Rn) { 329 ubfmw(Rd, Rn, 0, 7); 330 } 331 inline void uxthw(Register Rd, Register Rn) { 332 ubfmw(Rd, Rn, 0, 15); 333 } 334 inline void uxtb(Register Rd, Register Rn) { 335 ubfm(Rd, Rn, 0, 7); 336 } 337 inline void uxth(Register Rd, Register Rn) { 338 ubfm(Rd, Rn, 0, 15); 339 } 340 inline void uxtw(Register Rd, Register Rn) { 341 ubfm(Rd, Rn, 0, 31); 342 } 343 344 inline void cmnw(Register Rn, Register Rm) { 345 addsw(zr, Rn, Rm); 346 } 347 inline void cmn(Register Rn, Register Rm) { 348 adds(zr, Rn, Rm); 349 } 350 351 inline void cmpw(Register Rn, Register Rm) { 352 subsw(zr, Rn, Rm); 353 } 354 inline void cmp(Register Rn, Register Rm) { 355 subs(zr, Rn, Rm); 356 } 357 358 inline void negw(Register Rd, Register Rn) { 359 subw(Rd, zr, Rn); 360 } 361 362 inline void neg(Register Rd, Register Rn) { 363 sub(Rd, zr, Rn); 364 } 365 366 inline void negsw(Register Rd, Register Rn) { 367 subsw(Rd, zr, Rn); 368 } 369 370 inline void negs(Register Rd, Register Rn) { 371 subs(Rd, zr, Rn); 372 } 373 374 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 375 addsw(zr, Rn, Rm, kind, shift); 376 } 377 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 378 adds(zr, Rn, Rm, kind, shift); 379 } 380 381 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 382 subsw(zr, Rn, Rm, kind, shift); 383 } 384 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 385 subs(zr, Rn, Rm, kind, shift); 386 } 387 388 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 389 subw(Rd, zr, Rn, kind, shift); 390 } 391 392 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 393 sub(Rd, zr, Rn, kind, shift); 394 } 395 396 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 397 subsw(Rd, zr, Rn, kind, shift); 398 } 399 400 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 401 subs(Rd, zr, Rn, kind, shift); 402 } 403 404 inline void mnegw(Register Rd, Register Rn, Register Rm) { 405 msubw(Rd, Rn, Rm, zr); 406 } 407 inline void mneg(Register Rd, Register Rn, Register Rm) { 408 msub(Rd, Rn, Rm, zr); 409 } 410 411 inline void mulw(Register Rd, Register Rn, Register Rm) { 412 maddw(Rd, Rn, Rm, zr); 413 } 414 inline void mul(Register Rd, Register Rn, Register Rm) { 415 madd(Rd, Rn, Rm, zr); 416 } 417 418 inline void smnegl(Register Rd, Register Rn, Register Rm) { 419 smsubl(Rd, Rn, Rm, zr); 420 } 421 inline void smull(Register Rd, Register Rn, Register Rm) { 422 smaddl(Rd, Rn, Rm, zr); 423 } 424 425 inline void umnegl(Register Rd, Register Rn, Register Rm) { 426 umsubl(Rd, Rn, Rm, zr); 427 } 428 inline void umull(Register Rd, Register Rn, Register Rm) { 429 umaddl(Rd, Rn, Rm, zr); 430 } 431 432 #define WRAP(INSN) \ 433 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 434 if (VM_Version::supports_a53mac() && Ra != zr) \ 435 nop(); \ 436 Assembler::INSN(Rd, Rn, Rm, Ra); \ 437 } 438 439 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 440 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 441 #undef WRAP 442 443 444 // macro assembly operations needed for aarch64 445 446 // first two private routines for loading 32 bit or 64 bit constants 447 private: 448 449 void mov_immediate64(Register dst, uint64_t imm64); 450 void mov_immediate32(Register dst, uint32_t imm32); 451 452 int push(unsigned int bitset, Register stack); 453 int pop(unsigned int bitset, Register stack); 454 455 int push_fp(unsigned int bitset, Register stack); 456 int pop_fp(unsigned int bitset, Register stack); 457 458 int push_p(unsigned int bitset, Register stack); 459 int pop_p(unsigned int bitset, Register stack); 460 461 void mov(Register dst, Address a); 462 463 public: 464 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 465 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 466 467 void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); } 468 void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); } 469 470 static RegSet call_clobbered_gp_registers(); 471 472 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 473 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 474 475 // Push and pop everything that might be clobbered by a native 476 // runtime call except rscratch1 and rscratch2. (They are always 477 // scratch, so we don't have to protect them.) Only save the lower 478 // 64 bits of each vector register. Additional registers can be excluded 479 // in a passed RegSet. 480 void push_call_clobbered_registers_except(RegSet exclude); 481 void pop_call_clobbered_registers_except(RegSet exclude); 482 483 void push_call_clobbered_registers() { 484 push_call_clobbered_registers_except(RegSet()); 485 } 486 void pop_call_clobbered_registers() { 487 pop_call_clobbered_registers_except(RegSet()); 488 } 489 490 491 // now mov instructions for loading absolute addresses and 32 or 492 // 64 bit integers 493 494 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 495 496 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 497 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 498 499 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 500 501 void mov(Register dst, RegisterOrConstant src) { 502 if (src.is_register()) 503 mov(dst, src.as_register()); 504 else 505 mov(dst, src.as_constant()); 506 } 507 508 void movptr(Register r, uintptr_t imm64); 509 510 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 511 512 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 513 orr(Vd, T, Vn, Vn); 514 } 515 516 517 public: 518 519 // Generalized Test Bit And Branch, including a "far" variety which 520 // spans more than 32KiB. 521 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 522 assert(cond == EQ || cond == NE, "must be"); 523 524 if (isfar) 525 cond = ~cond; 526 527 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 528 if (cond == Assembler::EQ) 529 branch = &Assembler::tbz; 530 else 531 branch = &Assembler::tbnz; 532 533 if (isfar) { 534 Label L; 535 (this->*branch)(Rt, bitpos, L); 536 b(dest); 537 bind(L); 538 } else { 539 (this->*branch)(Rt, bitpos, dest); 540 } 541 } 542 543 // macro instructions for accessing and updating floating point 544 // status register 545 // 546 // FPSR : op1 == 011 547 // CRn == 0100 548 // CRm == 0100 549 // op2 == 001 550 551 inline void get_fpsr(Register reg) 552 { 553 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 554 } 555 556 inline void set_fpsr(Register reg) 557 { 558 msr(0b011, 0b0100, 0b0100, 0b001, reg); 559 } 560 561 inline void clear_fpsr() 562 { 563 msr(0b011, 0b0100, 0b0100, 0b001, zr); 564 } 565 566 // DCZID_EL0: op1 == 011 567 // CRn == 0000 568 // CRm == 0000 569 // op2 == 111 570 inline void get_dczid_el0(Register reg) 571 { 572 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 573 } 574 575 // CTR_EL0: op1 == 011 576 // CRn == 0000 577 // CRm == 0000 578 // op2 == 001 579 inline void get_ctr_el0(Register reg) 580 { 581 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 582 } 583 584 inline void get_nzcv(Register reg) { 585 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 586 } 587 588 inline void set_nzcv(Register reg) { 589 msr(0b011, 0b0100, 0b0010, 0b000, reg); 590 } 591 592 // idiv variant which deals with MINLONG as dividend and -1 as divisor 593 int corrected_idivl(Register result, Register ra, Register rb, 594 bool want_remainder, Register tmp = rscratch1); 595 int corrected_idivq(Register result, Register ra, Register rb, 596 bool want_remainder, Register tmp = rscratch1); 597 598 // Support for NULL-checks 599 // 600 // Generates code that causes a NULL OS exception if the content of reg is NULL. 601 // If the accessed location is M[reg + offset] and the offset is known, provide the 602 // offset. No explicit code generation is needed if the offset is within a certain 603 // range (0 <= offset <= page_size). 604 605 virtual void null_check(Register reg, int offset = -1); 606 static bool needs_explicit_null_check(intptr_t offset); 607 static bool uses_implicit_null_check(void* address); 608 609 static address target_addr_for_insn(address insn_addr, unsigned insn); 610 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 611 static address target_addr_for_insn(address insn_addr) { 612 unsigned insn = *(unsigned*)insn_addr; 613 return target_addr_for_insn(insn_addr, insn); 614 } 615 static address target_addr_for_insn_or_null(address insn_addr) { 616 unsigned insn = *(unsigned*)insn_addr; 617 return target_addr_for_insn_or_null(insn_addr, insn); 618 } 619 620 // Required platform-specific helpers for Label::patch_instructions. 621 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 622 static int pd_patch_instruction_size(address branch, address target); 623 static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) { 624 pd_patch_instruction_size(branch, target); 625 } 626 static address pd_call_destination(address branch) { 627 return target_addr_for_insn(branch); 628 } 629 #ifndef PRODUCT 630 static void pd_print_patched_instruction(address branch); 631 #endif 632 633 static int patch_oop(address insn_addr, address o); 634 static int patch_narrow_klass(address insn_addr, narrowKlass n); 635 636 // Return whether code is emitted to a scratch blob. 637 virtual bool in_scratch_emit_size() { 638 return false; 639 } 640 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 641 static int max_trampoline_stub_size(); 642 void emit_static_call_stub(); 643 static int static_call_stub_size(); 644 645 // The following 4 methods return the offset of the appropriate move instruction 646 647 // Support for fast byte/short loading with zero extension (depending on particular CPU) 648 int load_unsigned_byte(Register dst, Address src); 649 int load_unsigned_short(Register dst, Address src); 650 651 // Support for fast byte/short loading with sign extension (depending on particular CPU) 652 int load_signed_byte(Register dst, Address src); 653 int load_signed_short(Register dst, Address src); 654 655 int load_signed_byte32(Register dst, Address src); 656 int load_signed_short32(Register dst, Address src); 657 658 // Support for sign-extension (hi:lo = extend_sign(lo)) 659 void extend_sign(Register hi, Register lo); 660 661 // Load and store values by size and signed-ness 662 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 663 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 664 665 // Support for inc/dec with optimal instruction selection depending on value 666 667 // x86_64 aliases an unqualified register/address increment and 668 // decrement to call incrementq and decrementq but also supports 669 // explicitly sized calls to incrementq/decrementq or 670 // incrementl/decrementl 671 672 // for aarch64 the proper convention would be to use 673 // increment/decrement for 64 bit operations and 674 // incrementw/decrementw for 32 bit operations. so when porting 675 // x86_64 code we can leave calls to increment/decrement as is, 676 // replace incrementq/decrementq with increment/decrement and 677 // replace incrementl/decrementl with incrementw/decrementw. 678 679 // n.b. increment/decrement calls with an Address destination will 680 // need to use a scratch register to load the value to be 681 // incremented. increment/decrement calls which add or subtract a 682 // constant value greater than 2^12 will need to use a 2nd scratch 683 // register to hold the constant. so, a register increment/decrement 684 // may trash rscratch2 and an address increment/decrement trash 685 // rscratch and rscratch2 686 687 void decrementw(Address dst, int value = 1); 688 void decrementw(Register reg, int value = 1); 689 690 void decrement(Register reg, int value = 1); 691 void decrement(Address dst, int value = 1); 692 693 void incrementw(Address dst, int value = 1); 694 void incrementw(Register reg, int value = 1); 695 696 void increment(Register reg, int value = 1); 697 void increment(Address dst, int value = 1); 698 699 700 // Alignment 701 void align(int modulus); 702 703 // nop 704 void post_call_nop(); 705 706 // Stack frame creation/removal 707 void enter(bool strip_ret_addr = false); 708 void leave(); 709 710 // ROP Protection 711 void protect_return_address(); 712 void protect_return_address(Register return_reg, Register temp_reg); 713 void authenticate_return_address(Register return_reg = lr); 714 void authenticate_return_address(Register return_reg, Register temp_reg); 715 void strip_return_address(); 716 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 717 718 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 719 // The pointer will be loaded into the thread register. 720 void get_thread(Register thread); 721 722 // support for argument shuffling 723 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 724 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 725 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 726 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 727 void object_move( 728 OopMap* map, 729 int oop_handle_offset, 730 int framesize_in_slots, 731 VMRegPair src, 732 VMRegPair dst, 733 bool is_receiver, 734 int* receiver_offset); 735 736 737 // Support for VM calls 738 // 739 // It is imperative that all calls into the VM are handled via the call_VM macros. 740 // They make sure that the stack linkage is setup correctly. call_VM's correspond 741 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 742 743 744 void call_VM(Register oop_result, 745 address entry_point, 746 bool check_exceptions = true); 747 void call_VM(Register oop_result, 748 address entry_point, 749 Register arg_1, 750 bool check_exceptions = true); 751 void call_VM(Register oop_result, 752 address entry_point, 753 Register arg_1, Register arg_2, 754 bool check_exceptions = true); 755 void call_VM(Register oop_result, 756 address entry_point, 757 Register arg_1, Register arg_2, Register arg_3, 758 bool check_exceptions = true); 759 760 // Overloadings with last_Java_sp 761 void call_VM(Register oop_result, 762 Register last_java_sp, 763 address entry_point, 764 int number_of_arguments = 0, 765 bool check_exceptions = true); 766 void call_VM(Register oop_result, 767 Register last_java_sp, 768 address entry_point, 769 Register arg_1, bool 770 check_exceptions = true); 771 void call_VM(Register oop_result, 772 Register last_java_sp, 773 address entry_point, 774 Register arg_1, Register arg_2, 775 bool check_exceptions = true); 776 void call_VM(Register oop_result, 777 Register last_java_sp, 778 address entry_point, 779 Register arg_1, Register arg_2, Register arg_3, 780 bool check_exceptions = true); 781 782 void get_vm_result (Register oop_result, Register thread); 783 void get_vm_result_2(Register metadata_result, Register thread); 784 785 // These always tightly bind to MacroAssembler::call_VM_base 786 // bypassing the virtual implementation 787 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 788 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 789 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 790 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 791 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 792 793 void call_VM_leaf(address entry_point, 794 int number_of_arguments = 0); 795 void call_VM_leaf(address entry_point, 796 Register arg_1); 797 void call_VM_leaf(address entry_point, 798 Register arg_1, Register arg_2); 799 void call_VM_leaf(address entry_point, 800 Register arg_1, Register arg_2, Register arg_3); 801 802 // These always tightly bind to MacroAssembler::call_VM_leaf_base 803 // bypassing the virtual implementation 804 void super_call_VM_leaf(address entry_point); 805 void super_call_VM_leaf(address entry_point, Register arg_1); 806 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 807 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 808 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 809 810 // last Java Frame (fills frame anchor) 811 void set_last_Java_frame(Register last_java_sp, 812 Register last_java_fp, 813 address last_java_pc, 814 Register scratch); 815 816 void set_last_Java_frame(Register last_java_sp, 817 Register last_java_fp, 818 Label &last_java_pc, 819 Register scratch); 820 821 void set_last_Java_frame(Register last_java_sp, 822 Register last_java_fp, 823 Register last_java_pc, 824 Register scratch); 825 826 void reset_last_Java_frame(Register thread); 827 828 // thread in the default location (rthread) 829 void reset_last_Java_frame(bool clear_fp); 830 831 // Stores 832 void store_check(Register obj); // store check for obj - register is destroyed afterwards 833 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 834 835 void resolve_jobject(Register value, Register tmp1, Register tmp2); 836 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 837 838 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 839 void c2bool(Register x); 840 841 void load_method_holder_cld(Register rresult, Register rmethod); 842 void load_method_holder(Register holder, Register method); 843 844 // oop manipulations 845 void load_klass(Register dst, Register src); 846 void load_klass_check_null(Register dst, Register src); 847 void store_klass(Register dst, Register src); 848 void cmp_klass(Register oop, Register trial_klass, Register tmp); 849 850 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 851 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 852 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 853 854 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 855 Register tmp1, Register tmp2); 856 857 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 858 Register tmp1, Register tmp2, Register tmp3); 859 860 void load_heap_oop(Register dst, Address src, Register tmp1, 861 Register tmp2, DecoratorSet decorators = 0); 862 863 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 864 Register tmp2, DecoratorSet decorators = 0); 865 void store_heap_oop(Address dst, Register val, Register tmp1, 866 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 867 868 // currently unimplemented 869 // Used for storing NULL. All other oop constants should be 870 // stored using routines that take a jobject. 871 void store_heap_oop_null(Address dst); 872 873 void store_klass_gap(Register dst, Register src); 874 875 // This dummy is to prevent a call to store_heap_oop from 876 // converting a zero (like NULL) into a Register by giving 877 // the compiler two choices it can't resolve 878 879 void store_heap_oop(Address dst, void* dummy); 880 881 void encode_heap_oop(Register d, Register s); 882 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 883 void decode_heap_oop(Register d, Register s); 884 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 885 void encode_heap_oop_not_null(Register r); 886 void decode_heap_oop_not_null(Register r); 887 void encode_heap_oop_not_null(Register dst, Register src); 888 void decode_heap_oop_not_null(Register dst, Register src); 889 890 void set_narrow_oop(Register dst, jobject obj); 891 892 void encode_klass_not_null(Register r); 893 void decode_klass_not_null(Register r); 894 void encode_klass_not_null(Register dst, Register src); 895 void decode_klass_not_null(Register dst, Register src); 896 897 void set_narrow_klass(Register dst, Klass* k); 898 899 // if heap base register is used - reinit it with the correct value 900 void reinit_heapbase(); 901 902 DEBUG_ONLY(void verify_heapbase(const char* msg);) 903 904 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 905 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 906 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 907 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 908 909 void push_cont_fastpath(Register java_thread); 910 void pop_cont_fastpath(Register java_thread); 911 912 // Round up to a power of two 913 void round_to(Register reg, int modulus); 914 915 // java.lang.Math::round intrinsics 916 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 917 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 918 919 // allocation 920 void tlab_allocate( 921 Register obj, // result: pointer to object after successful allocation 922 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 923 int con_size_in_bytes, // object size in bytes if known at compile time 924 Register t1, // temp register 925 Register t2, // temp register 926 Label& slow_case // continuation point if fast allocation fails 927 ); 928 void verify_tlab(); 929 930 // interface method calling 931 void lookup_interface_method(Register recv_klass, 932 Register intf_klass, 933 RegisterOrConstant itable_index, 934 Register method_result, 935 Register scan_temp, 936 Label& no_such_interface, 937 bool return_method = true); 938 939 // virtual method calling 940 // n.b. x86 allows RegisterOrConstant for vtable_index 941 void lookup_virtual_method(Register recv_klass, 942 RegisterOrConstant vtable_index, 943 Register method_result); 944 945 // Test sub_klass against super_klass, with fast and slow paths. 946 947 // The fast path produces a tri-state answer: yes / no / maybe-slow. 948 // One of the three labels can be NULL, meaning take the fall-through. 949 // If super_check_offset is -1, the value is loaded up from super_klass. 950 // No registers are killed, except temp_reg. 951 void check_klass_subtype_fast_path(Register sub_klass, 952 Register super_klass, 953 Register temp_reg, 954 Label* L_success, 955 Label* L_failure, 956 Label* L_slow_path, 957 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 958 959 // The rest of the type check; must be wired to a corresponding fast path. 960 // It does not repeat the fast path logic, so don't use it standalone. 961 // The temp_reg and temp2_reg can be noreg, if no temps are available. 962 // Updates the sub's secondary super cache as necessary. 963 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 964 void check_klass_subtype_slow_path(Register sub_klass, 965 Register super_klass, 966 Register temp_reg, 967 Register temp2_reg, 968 Label* L_success, 969 Label* L_failure, 970 bool set_cond_codes = false); 971 972 // Simplified, combined version, good for typical uses. 973 // Falls through on failure. 974 void check_klass_subtype(Register sub_klass, 975 Register super_klass, 976 Register temp_reg, 977 Label& L_success); 978 979 void clinit_barrier(Register klass, 980 Register thread, 981 Label* L_fast_path = NULL, 982 Label* L_slow_path = NULL); 983 984 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 985 986 void verify_sve_vector_length(Register tmp = rscratch1); 987 void reinitialize_ptrue() { 988 if (UseSVE > 0) { 989 sve_ptrue(ptrue, B); 990 } 991 } 992 void verify_ptrue(); 993 994 // Debugging 995 996 // only if +VerifyOops 997 void _verify_oop(Register reg, const char* s, const char* file, int line); 998 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 999 1000 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1001 if (VerifyOops) { 1002 _verify_oop(reg, s, file, line); 1003 } 1004 } 1005 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1006 if (VerifyOops) { 1007 _verify_oop_addr(reg, s, file, line); 1008 } 1009 } 1010 1011 // TODO: verify method and klass metadata (compare against vptr?) 1012 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1013 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1014 1015 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1016 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1017 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1018 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1019 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1020 1021 // only if +VerifyFPU 1022 void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); 1023 1024 // prints msg, dumps registers and stops execution 1025 void stop(const char* msg); 1026 1027 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1028 1029 void untested() { stop("untested"); } 1030 1031 void unimplemented(const char* what = ""); 1032 1033 void should_not_reach_here() { stop("should not reach here"); } 1034 1035 void _assert_asm(Condition cc, const char* msg); 1036 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1037 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1038 1039 // Stack overflow checking 1040 void bang_stack_with_offset(int offset) { 1041 // stack grows down, caller passes positive offset 1042 assert(offset > 0, "must bang with negative offset"); 1043 sub(rscratch2, sp, offset); 1044 str(zr, Address(rscratch2)); 1045 } 1046 1047 // Writes to stack successive pages until offset reached to check for 1048 // stack overflow + shadow pages. Also, clobbers tmp 1049 void bang_stack_size(Register size, Register tmp); 1050 1051 // Check for reserved stack access in method being exited (for JIT) 1052 void reserved_stack_check(); 1053 1054 // Arithmetics 1055 1056 void addptr(const Address &dst, int32_t src); 1057 void cmpptr(Register src1, Address src2); 1058 1059 void cmpoop(Register obj1, Register obj2); 1060 1061 // Various forms of CAS 1062 1063 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1064 Label &succeed, Label *fail); 1065 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1066 Label &succeed, Label *fail); 1067 1068 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1069 Label &succeed, Label *fail); 1070 1071 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1072 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1073 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1074 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1075 1076 void atomic_xchg(Register prev, Register newv, Register addr); 1077 void atomic_xchgw(Register prev, Register newv, Register addr); 1078 void atomic_xchgl(Register prev, Register newv, Register addr); 1079 void atomic_xchglw(Register prev, Register newv, Register addr); 1080 void atomic_xchgal(Register prev, Register newv, Register addr); 1081 void atomic_xchgalw(Register prev, Register newv, Register addr); 1082 1083 void orptr(Address adr, RegisterOrConstant src) { 1084 ldr(rscratch1, adr); 1085 if (src.is_register()) 1086 orr(rscratch1, rscratch1, src.as_register()); 1087 else 1088 orr(rscratch1, rscratch1, src.as_constant()); 1089 str(rscratch1, adr); 1090 } 1091 1092 // A generic CAS; success or failure is in the EQ flag. 1093 // Clobbers rscratch1 1094 void cmpxchg(Register addr, Register expected, Register new_val, 1095 enum operand_size size, 1096 bool acquire, bool release, bool weak, 1097 Register result); 1098 1099 #ifdef ASSERT 1100 // Template short-hand support to clean-up after a failed call to trampoline 1101 // call generation (see trampoline_call() below), when a set of Labels must 1102 // be reset (before returning). 1103 template<typename Label, typename... More> 1104 void reset_labels(Label &lbl, More&... more) { 1105 lbl.reset(); reset_labels(more...); 1106 } 1107 template<typename Label> 1108 void reset_labels(Label &lbl) { 1109 lbl.reset(); 1110 } 1111 #endif 1112 1113 private: 1114 void compare_eq(Register rn, Register rm, enum operand_size size); 1115 1116 public: 1117 // AArch64 OpenJDK uses four different types of calls: 1118 // - direct call: bl pc_relative_offset 1119 // This is the shortest and the fastest, but the offset has the range: 1120 // +/-128MB for the release build, +/-2MB for the debug build. 1121 // 1122 // - far call: adrp reg, pc_relative_offset; add; bl reg 1123 // This is longer than a direct call. The offset has 1124 // the range +/-4GB. As the code cache size is limited to 4GB, 1125 // far calls can reach anywhere in the code cache. If a jump is 1126 // needed rather than a call, a far jump 'b reg' can be used instead. 1127 // All instructions are embedded at a call site. 1128 // 1129 // - trampoline call: 1130 // This is only available in C1/C2-generated code (nmethod). It is a combination 1131 // of a direct call, which is used if the destination of a call is in range, 1132 // and a register-indirect call. It has the advantages of reaching anywhere in 1133 // the AArch64 address space and being patchable at runtime when the generated 1134 // code is being executed by other threads. 1135 // 1136 // [Main code section] 1137 // bl trampoline 1138 // [Stub code section] 1139 // trampoline: 1140 // ldr reg, pc + 8 1141 // br reg 1142 // <64-bit destination address> 1143 // 1144 // If the destination is in range when the generated code is moved to the code 1145 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1146 // is not used. 1147 // The optimization does not remove the trampoline from the stub section. 1148 // This is necessary because the trampoline may well be redirected later when 1149 // code is patched, and the new destination may not be reachable by a simple BR 1150 // instruction. 1151 // 1152 // - indirect call: move reg, address; blr reg 1153 // This too can reach anywhere in the address space, but it cannot be 1154 // patched while code is running, so it must only be modified at a safepoint. 1155 // This form of call is most suitable for targets at fixed addresses, which 1156 // will never be patched. 1157 // 1158 // The patching we do conforms to the "Concurrent modification and 1159 // execution of instructions" section of the Arm Architectural 1160 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1161 // or SVC instructions to be modified while another thread is 1162 // executing them. 1163 // 1164 // To patch a trampoline call when the BL can't reach, we first modify 1165 // the 64-bit destination address in the trampoline, then modify the 1166 // BL to point to the trampoline, then flush the instruction cache to 1167 // broadcast the change to all executing threads. See 1168 // NativeCall::set_destination_mt_safe for the details. 1169 // 1170 // There is a benign race in that the other thread might observe the 1171 // modified BL before it observes the modified 64-bit destination 1172 // address. That does not matter because the destination method has been 1173 // invalidated, so there will be a trap at its start. 1174 // For this to work, the destination address in the trampoline is 1175 // always updated, even if we're not using the trampoline. 1176 1177 // Emit a direct call if the entry address will always be in range, 1178 // otherwise a trampoline call. 1179 // Supported entry.rspec(): 1180 // - relocInfo::runtime_call_type 1181 // - relocInfo::opt_virtual_call_type 1182 // - relocInfo::static_call_type 1183 // - relocInfo::virtual_call_type 1184 // 1185 // Return: the call PC or NULL if CodeCache is full. 1186 address trampoline_call(Address entry); 1187 1188 static bool far_branches() { 1189 return ReservedCodeCacheSize > branch_range; 1190 } 1191 1192 // Check if branches to the non nmethod section require a far jump 1193 static bool codestub_branch_needs_far_jump() { 1194 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1195 } 1196 1197 // Emit a direct call/jump if the entry address will always be in range, 1198 // otherwise a far call/jump. 1199 // The address must be inside the code cache. 1200 // Supported entry.rspec(): 1201 // - relocInfo::external_word_type 1202 // - relocInfo::runtime_call_type 1203 // - relocInfo::none 1204 // In the case of a far call/jump, the entry address is put in the tmp register. 1205 // The tmp register is invalidated. 1206 // 1207 // Far_jump returns the amount of the emitted code. 1208 void far_call(Address entry, Register tmp = rscratch1); 1209 int far_jump(Address entry, Register tmp = rscratch1); 1210 1211 static int far_codestub_branch_size() { 1212 if (codestub_branch_needs_far_jump()) { 1213 return 3 * 4; // adrp, add, br 1214 } else { 1215 return 4; 1216 } 1217 } 1218 1219 // Emit the CompiledIC call idiom 1220 address ic_call(address entry, jint method_index = 0); 1221 1222 public: 1223 1224 // Data 1225 1226 void mov_metadata(Register dst, Metadata* obj); 1227 Address allocate_metadata_address(Metadata* obj); 1228 Address constant_oop_address(jobject obj); 1229 1230 void movoop(Register dst, jobject obj); 1231 1232 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1233 void kernel_crc32(Register crc, Register buf, Register len, 1234 Register table0, Register table1, Register table2, Register table3, 1235 Register tmp, Register tmp2, Register tmp3); 1236 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1237 void kernel_crc32c(Register crc, Register buf, Register len, 1238 Register table0, Register table1, Register table2, Register table3, 1239 Register tmp, Register tmp2, Register tmp3); 1240 1241 // Stack push and pop individual 64 bit registers 1242 void push(Register src); 1243 void pop(Register dst); 1244 1245 void repne_scan(Register addr, Register value, Register count, 1246 Register scratch); 1247 void repne_scanw(Register addr, Register value, Register count, 1248 Register scratch); 1249 1250 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1251 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1252 1253 // If a constant does not fit in an immediate field, generate some 1254 // number of MOV instructions and then perform the operation 1255 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1256 add_sub_imm_insn insn1, 1257 add_sub_reg_insn insn2, bool is32); 1258 // Separate vsn which sets the flags 1259 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1260 add_sub_imm_insn insn1, 1261 add_sub_reg_insn insn2, bool is32); 1262 1263 #define WRAP(INSN, is32) \ 1264 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1265 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1266 } \ 1267 \ 1268 void INSN(Register Rd, Register Rn, Register Rm, \ 1269 enum shift_kind kind, unsigned shift = 0) { \ 1270 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1271 } \ 1272 \ 1273 void INSN(Register Rd, Register Rn, Register Rm) { \ 1274 Assembler::INSN(Rd, Rn, Rm); \ 1275 } \ 1276 \ 1277 void INSN(Register Rd, Register Rn, Register Rm, \ 1278 ext::operation option, int amount = 0) { \ 1279 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1280 } 1281 1282 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1283 1284 #undef WRAP 1285 #define WRAP(INSN, is32) \ 1286 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1287 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1288 } \ 1289 \ 1290 void INSN(Register Rd, Register Rn, Register Rm, \ 1291 enum shift_kind kind, unsigned shift = 0) { \ 1292 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1293 } \ 1294 \ 1295 void INSN(Register Rd, Register Rn, Register Rm) { \ 1296 Assembler::INSN(Rd, Rn, Rm); \ 1297 } \ 1298 \ 1299 void INSN(Register Rd, Register Rn, Register Rm, \ 1300 ext::operation option, int amount = 0) { \ 1301 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1302 } 1303 1304 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1305 1306 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1307 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1308 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1309 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1310 1311 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1312 1313 void tableswitch(Register index, jint lowbound, jint highbound, 1314 Label &jumptable, Label &jumptable_end, int stride = 1) { 1315 adr(rscratch1, jumptable); 1316 subsw(rscratch2, index, lowbound); 1317 subsw(zr, rscratch2, highbound - lowbound); 1318 br(Assembler::HS, jumptable_end); 1319 add(rscratch1, rscratch1, rscratch2, 1320 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1321 br(rscratch1); 1322 } 1323 1324 // Form an address from base + offset in Rd. Rd may or may not 1325 // actually be used: you must use the Address that is returned. It 1326 // is up to you to ensure that the shift provided matches the size 1327 // of your data. 1328 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1329 1330 // Return true iff an address is within the 48-bit AArch64 address 1331 // space. 1332 bool is_valid_AArch64_address(address a) { 1333 return ((uint64_t)a >> 48) == 0; 1334 } 1335 1336 // Load the base of the cardtable byte map into reg. 1337 void load_byte_map_base(Register reg); 1338 1339 // Prolog generator routines to support switch between x86 code and 1340 // generated ARM code 1341 1342 // routine to generate an x86 prolog for a stub function which 1343 // bootstraps into the generated ARM code which directly follows the 1344 // stub 1345 // 1346 1347 public: 1348 1349 void ldr_constant(Register dest, const Address &const_addr) { 1350 if (NearCpool) { 1351 ldr(dest, const_addr); 1352 } else { 1353 uint64_t offset; 1354 adrp(dest, InternalAddress(const_addr.target()), offset); 1355 ldr(dest, Address(dest, offset)); 1356 } 1357 } 1358 1359 address read_polling_page(Register r, relocInfo::relocType rtype); 1360 void get_polling_page(Register dest, relocInfo::relocType rtype); 1361 1362 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1363 void update_byte_crc32(Register crc, Register val, Register table); 1364 void update_word_crc32(Register crc, Register v, Register tmp, 1365 Register table0, Register table1, Register table2, Register table3, 1366 bool upper = false); 1367 1368 address count_positives(Register ary1, Register len, Register result); 1369 1370 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1371 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1372 1373 void string_equals(Register a1, Register a2, Register result, Register cnt1, 1374 int elem_size); 1375 1376 void fill_words(Register base, Register cnt, Register value); 1377 address zero_words(Register base, uint64_t cnt); 1378 address zero_words(Register ptr, Register cnt); 1379 void zero_dcache_blocks(Register base, Register cnt); 1380 1381 static const int zero_words_block_size; 1382 1383 address byte_array_inflate(Register src, Register dst, Register len, 1384 FloatRegister vtmp1, FloatRegister vtmp2, 1385 FloatRegister vtmp3, Register tmp4); 1386 1387 void char_array_compress(Register src, Register dst, Register len, 1388 Register res, 1389 FloatRegister vtmp0, FloatRegister vtmp1, 1390 FloatRegister vtmp2, FloatRegister vtmp3); 1391 1392 void encode_iso_array(Register src, Register dst, 1393 Register len, Register res, bool ascii, 1394 FloatRegister vtmp0, FloatRegister vtmp1, 1395 FloatRegister vtmp2, FloatRegister vtmp3); 1396 1397 void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2, 1398 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5, 1399 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3, 1400 FloatRegister tmpC4, Register tmp1, Register tmp2, 1401 Register tmp3, Register tmp4, Register tmp5); 1402 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1403 address pio2, address dsin_coef, address dcos_coef); 1404 private: 1405 // begin trigonometric functions support block 1406 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1407 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1408 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1409 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1410 // end trigonometric functions support block 1411 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1412 Register src1, Register src2); 1413 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1414 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1415 } 1416 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1417 Register y, Register y_idx, Register z, 1418 Register carry, Register product, 1419 Register idx, Register kdx); 1420 void multiply_128_x_128_loop(Register y, Register z, 1421 Register carry, Register carry2, 1422 Register idx, Register jdx, 1423 Register yz_idx1, Register yz_idx2, 1424 Register tmp, Register tmp3, Register tmp4, 1425 Register tmp7, Register product_hi); 1426 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1427 Register len, Register tmp0, Register tmp1, Register tmp2, 1428 Register tmp3); 1429 void kernel_crc32_using_crc32(Register crc, Register buf, 1430 Register len, Register tmp0, Register tmp1, Register tmp2, 1431 Register tmp3); 1432 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1433 Register len, Register tmp0, Register tmp1, Register tmp2, 1434 Register tmp3); 1435 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1436 Register len, Register tmp0, Register tmp1, Register tmp2, 1437 size_t table_offset); 1438 1439 void ghash_modmul (FloatRegister result, 1440 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1441 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1442 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1443 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1444 public: 1445 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1446 Register zlen, Register tmp1, Register tmp2, Register tmp3, 1447 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1448 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1449 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1450 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1451 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1452 void ghash_multiply_wide(int index, 1453 FloatRegister result_lo, FloatRegister result_hi, 1454 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1455 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1456 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1457 FloatRegister p, FloatRegister z, FloatRegister t1); 1458 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1459 FloatRegister p, FloatRegister z, FloatRegister t1); 1460 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1461 Register data, Register blocks, int unrolls); 1462 1463 1464 void aesenc_loadkeys(Register key, Register keylen); 1465 void aesecb_encrypt(Register from, Register to, Register keylen, 1466 FloatRegister data = v0, int unrolls = 1); 1467 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1468 void aes_round(FloatRegister input, FloatRegister subkey); 1469 1470 // ChaCha20 functions support block 1471 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1472 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1473 FloatRegister tbl); 1474 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1475 FloatRegister dVec, bool colToDiag); 1476 1477 // Place an ISB after code may have been modified due to a safepoint. 1478 void safepoint_isb(); 1479 1480 private: 1481 // Return the effective address r + (r1 << ext) + offset. 1482 // Uses rscratch2. 1483 Address offsetted_address(Register r, Register r1, Address::extend ext, 1484 int offset, int size); 1485 1486 private: 1487 // Returns an address on the stack which is reachable with a ldr/str of size 1488 // Uses rscratch2 if the address is not directly reachable 1489 Address spill_address(int size, int offset, Register tmp=rscratch2); 1490 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1491 1492 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1493 1494 // Check whether two loads/stores can be merged into ldp/stp. 1495 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1496 1497 // Merge current load/store with previous load/store into ldp/stp. 1498 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1499 1500 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1501 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1502 1503 public: 1504 void spill(Register Rx, bool is64, int offset) { 1505 if (is64) { 1506 str(Rx, spill_address(8, offset)); 1507 } else { 1508 strw(Rx, spill_address(4, offset)); 1509 } 1510 } 1511 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1512 str(Vx, T, spill_address(1 << (int)T, offset)); 1513 } 1514 1515 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1516 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1517 } 1518 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1519 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1520 } 1521 1522 void unspill(Register Rx, bool is64, int offset) { 1523 if (is64) { 1524 ldr(Rx, spill_address(8, offset)); 1525 } else { 1526 ldrw(Rx, spill_address(4, offset)); 1527 } 1528 } 1529 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1530 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1531 } 1532 1533 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1534 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1535 } 1536 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1537 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1538 } 1539 1540 void spill_copy128(int src_offset, int dst_offset, 1541 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1542 if (src_offset < 512 && (src_offset & 7) == 0 && 1543 dst_offset < 512 && (dst_offset & 7) == 0) { 1544 ldp(tmp1, tmp2, Address(sp, src_offset)); 1545 stp(tmp1, tmp2, Address(sp, dst_offset)); 1546 } else { 1547 unspill(tmp1, true, src_offset); 1548 spill(tmp1, true, dst_offset); 1549 unspill(tmp1, true, src_offset+8); 1550 spill(tmp1, true, dst_offset+8); 1551 } 1552 } 1553 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1554 int sve_vec_reg_size_in_bytes) { 1555 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1556 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1557 spill_copy128(src_offset, dst_offset); 1558 src_offset += 16; 1559 dst_offset += 16; 1560 } 1561 } 1562 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1563 int sve_predicate_reg_size_in_bytes) { 1564 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1565 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1566 reinitialize_ptrue(); 1567 } 1568 void cache_wb(Address line); 1569 void cache_wbsync(bool is_pre); 1570 1571 // Code for java.lang.Thread::onSpinWait() intrinsic. 1572 void spin_wait(); 1573 1574 private: 1575 // Check the current thread doesn't need a cross modify fence. 1576 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1577 1578 }; 1579 1580 #ifdef ASSERT 1581 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1582 #endif 1583 1584 /** 1585 * class SkipIfEqual: 1586 * 1587 * Instantiating this class will result in assembly code being output that will 1588 * jump around any code emitted between the creation of the instance and it's 1589 * automatic destruction at the end of a scope block, depending on the value of 1590 * the flag passed to the constructor, which will be checked at run-time. 1591 */ 1592 class SkipIfEqual { 1593 private: 1594 MacroAssembler* _masm; 1595 Label _label; 1596 1597 public: 1598 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); 1599 ~SkipIfEqual(); 1600 }; 1601 1602 struct tableswitch { 1603 Register _reg; 1604 int _insn_index; jint _first_key; jint _last_key; 1605 Label _after; 1606 Label _branches; 1607 }; 1608 1609 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP