1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "metaprogramming/enableIf.hpp" 32 #include "oops/compressedOops.hpp" 33 #include "oops/compressedKlass.hpp" 34 #include "runtime/vm_version.hpp" 35 #include "utilities/powerOfTwo.hpp" 36 37 class OopMap; 38 39 // MacroAssembler extends Assembler by frequently used macros. 40 // 41 // Instructions for which a 'better' code sequence exists depending 42 // on arguments should also go in here. 43 44 class MacroAssembler: public Assembler { 45 friend class LIR_Assembler; 46 47 public: 48 using Assembler::mov; 49 using Assembler::movi; 50 51 protected: 52 53 // Support for VM calls 54 // 55 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 56 // may customize this version by overriding it for its purposes (e.g., to save/restore 57 // additional registers when doing a VM call). 58 virtual void call_VM_leaf_base( 59 address entry_point, // the entry point 60 int number_of_arguments, // the number of arguments to pop after the call 61 Label *retaddr = nullptr 62 ); 63 64 virtual void call_VM_leaf_base( 65 address entry_point, // the entry point 66 int number_of_arguments, // the number of arguments to pop after the call 67 Label &retaddr) { 68 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 69 } 70 71 // This is the base routine called by the different versions of call_VM. The interpreter 72 // may customize this version by overriding it for its purposes (e.g., to save/restore 73 // additional registers when doing a VM call). 74 // 75 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 76 // returns the register which contains the thread upon return. If a thread register has been 77 // specified, the return value will correspond to that register. If no last_java_sp is specified 78 // (noreg) than rsp will be used instead. 79 virtual void call_VM_base( // returns the register containing the thread upon return 80 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 81 Register java_thread, // the thread if computed before ; use noreg otherwise 82 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 83 address entry_point, // the entry point 84 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 85 bool check_exceptions // whether to check for pending exceptions after return 86 ); 87 88 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 89 90 enum KlassDecodeMode { 91 KlassDecodeNone, 92 KlassDecodeZero, 93 KlassDecodeXor, 94 KlassDecodeMovk 95 }; 96 97 KlassDecodeMode klass_decode_mode(); 98 99 private: 100 static KlassDecodeMode _klass_decode_mode; 101 102 public: 103 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 104 105 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 106 // The implementation is only non-empty for the InterpreterMacroAssembler, 107 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 108 virtual void check_and_handle_popframe(Register java_thread); 109 virtual void check_and_handle_earlyret(Register java_thread); 110 111 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 112 void rt_call(address dest, Register tmp = rscratch1); 113 114 // Load Effective Address 115 void lea(Register r, const Address &a) { 116 InstructionMark im(this); 117 a.lea(this, r); 118 } 119 120 /* Sometimes we get misaligned loads and stores, usually from Unsafe 121 accesses, and these can exceed the offset range. */ 122 Address legitimize_address(const Address &a, int size, Register scratch) { 123 if (a.getMode() == Address::base_plus_offset) { 124 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 125 block_comment("legitimize_address {"); 126 lea(scratch, a); 127 block_comment("} legitimize_address"); 128 return Address(scratch); 129 } 130 } 131 return a; 132 } 133 134 void addmw(Address a, Register incr, Register scratch) { 135 ldrw(scratch, a); 136 addw(scratch, scratch, incr); 137 strw(scratch, a); 138 } 139 140 // Add constant to memory word 141 void addmw(Address a, int imm, Register scratch) { 142 ldrw(scratch, a); 143 if (imm > 0) 144 addw(scratch, scratch, (unsigned)imm); 145 else 146 subw(scratch, scratch, (unsigned)-imm); 147 strw(scratch, a); 148 } 149 150 void bind(Label& L) { 151 Assembler::bind(L); 152 code()->clear_last_insn(); 153 } 154 155 void membar(Membar_mask_bits order_constraint); 156 157 using Assembler::ldr; 158 using Assembler::str; 159 using Assembler::ldrw; 160 using Assembler::strw; 161 162 void ldr(Register Rx, const Address &adr); 163 void ldrw(Register Rw, const Address &adr); 164 void str(Register Rx, const Address &adr); 165 void strw(Register Rx, const Address &adr); 166 167 // Frame creation and destruction shared between JITs. 168 void build_frame(int framesize); 169 void remove_frame(int framesize); 170 171 virtual void _call_Unimplemented(address call_site) { 172 mov(rscratch2, call_site); 173 } 174 175 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 176 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 177 // https://reviews.llvm.org/D3311 178 179 #ifdef _WIN64 180 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 181 #else 182 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 183 #endif 184 185 // aliases defined in AARCH64 spec 186 187 template<class T> 188 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 189 190 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 191 inline void cmp(Register Rd, unsigned imm) = delete; 192 193 template<class T> 194 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 195 196 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 197 inline void cmn(Register Rd, unsigned imm) = delete; 198 199 void cset(Register Rd, Assembler::Condition cond) { 200 csinc(Rd, zr, zr, ~cond); 201 } 202 void csetw(Register Rd, Assembler::Condition cond) { 203 csincw(Rd, zr, zr, ~cond); 204 } 205 206 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 207 csneg(Rd, Rn, Rn, ~cond); 208 } 209 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 210 csnegw(Rd, Rn, Rn, ~cond); 211 } 212 213 inline void movw(Register Rd, Register Rn) { 214 if (Rd == sp || Rn == sp) { 215 Assembler::addw(Rd, Rn, 0U); 216 } else { 217 orrw(Rd, zr, Rn); 218 } 219 } 220 inline void mov(Register Rd, Register Rn) { 221 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 222 if (Rd == Rn) { 223 } else if (Rd == sp || Rn == sp) { 224 Assembler::add(Rd, Rn, 0U); 225 } else { 226 orr(Rd, zr, Rn); 227 } 228 } 229 230 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 231 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 232 233 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 234 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 235 236 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 237 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 238 239 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 240 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 241 } 242 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 243 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 244 } 245 246 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 247 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 248 } 249 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 250 bfm(Rd, Rn, lsb , (lsb + width - 1)); 251 } 252 253 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 254 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 255 } 256 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 257 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 258 } 259 260 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 261 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 262 } 263 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 264 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 265 } 266 267 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 268 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 269 } 270 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 271 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 272 } 273 274 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 275 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 276 } 277 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 278 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 279 } 280 281 inline void asrw(Register Rd, Register Rn, unsigned imm) { 282 sbfmw(Rd, Rn, imm, 31); 283 } 284 285 inline void asr(Register Rd, Register Rn, unsigned imm) { 286 sbfm(Rd, Rn, imm, 63); 287 } 288 289 inline void lslw(Register Rd, Register Rn, unsigned imm) { 290 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 291 } 292 293 inline void lsl(Register Rd, Register Rn, unsigned imm) { 294 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 295 } 296 297 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 298 ubfmw(Rd, Rn, imm, 31); 299 } 300 301 inline void lsr(Register Rd, Register Rn, unsigned imm) { 302 ubfm(Rd, Rn, imm, 63); 303 } 304 305 inline void rorw(Register Rd, Register Rn, unsigned imm) { 306 extrw(Rd, Rn, Rn, imm); 307 } 308 309 inline void ror(Register Rd, Register Rn, unsigned imm) { 310 extr(Rd, Rn, Rn, imm); 311 } 312 313 inline void sxtbw(Register Rd, Register Rn) { 314 sbfmw(Rd, Rn, 0, 7); 315 } 316 inline void sxthw(Register Rd, Register Rn) { 317 sbfmw(Rd, Rn, 0, 15); 318 } 319 inline void sxtb(Register Rd, Register Rn) { 320 sbfm(Rd, Rn, 0, 7); 321 } 322 inline void sxth(Register Rd, Register Rn) { 323 sbfm(Rd, Rn, 0, 15); 324 } 325 inline void sxtw(Register Rd, Register Rn) { 326 sbfm(Rd, Rn, 0, 31); 327 } 328 329 inline void uxtbw(Register Rd, Register Rn) { 330 ubfmw(Rd, Rn, 0, 7); 331 } 332 inline void uxthw(Register Rd, Register Rn) { 333 ubfmw(Rd, Rn, 0, 15); 334 } 335 inline void uxtb(Register Rd, Register Rn) { 336 ubfm(Rd, Rn, 0, 7); 337 } 338 inline void uxth(Register Rd, Register Rn) { 339 ubfm(Rd, Rn, 0, 15); 340 } 341 inline void uxtw(Register Rd, Register Rn) { 342 ubfm(Rd, Rn, 0, 31); 343 } 344 345 inline void cmnw(Register Rn, Register Rm) { 346 addsw(zr, Rn, Rm); 347 } 348 inline void cmn(Register Rn, Register Rm) { 349 adds(zr, Rn, Rm); 350 } 351 352 inline void cmpw(Register Rn, Register Rm) { 353 subsw(zr, Rn, Rm); 354 } 355 inline void cmp(Register Rn, Register Rm) { 356 subs(zr, Rn, Rm); 357 } 358 359 inline void negw(Register Rd, Register Rn) { 360 subw(Rd, zr, Rn); 361 } 362 363 inline void neg(Register Rd, Register Rn) { 364 sub(Rd, zr, Rn); 365 } 366 367 inline void negsw(Register Rd, Register Rn) { 368 subsw(Rd, zr, Rn); 369 } 370 371 inline void negs(Register Rd, Register Rn) { 372 subs(Rd, zr, Rn); 373 } 374 375 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 376 addsw(zr, Rn, Rm, kind, shift); 377 } 378 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 379 adds(zr, Rn, Rm, kind, shift); 380 } 381 382 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 383 subsw(zr, Rn, Rm, kind, shift); 384 } 385 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 386 subs(zr, Rn, Rm, kind, shift); 387 } 388 389 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 390 subw(Rd, zr, Rn, kind, shift); 391 } 392 393 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 394 sub(Rd, zr, Rn, kind, shift); 395 } 396 397 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 398 subsw(Rd, zr, Rn, kind, shift); 399 } 400 401 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 402 subs(Rd, zr, Rn, kind, shift); 403 } 404 405 inline void mnegw(Register Rd, Register Rn, Register Rm) { 406 msubw(Rd, Rn, Rm, zr); 407 } 408 inline void mneg(Register Rd, Register Rn, Register Rm) { 409 msub(Rd, Rn, Rm, zr); 410 } 411 412 inline void mulw(Register Rd, Register Rn, Register Rm) { 413 maddw(Rd, Rn, Rm, zr); 414 } 415 inline void mul(Register Rd, Register Rn, Register Rm) { 416 madd(Rd, Rn, Rm, zr); 417 } 418 419 inline void smnegl(Register Rd, Register Rn, Register Rm) { 420 smsubl(Rd, Rn, Rm, zr); 421 } 422 inline void smull(Register Rd, Register Rn, Register Rm) { 423 smaddl(Rd, Rn, Rm, zr); 424 } 425 426 inline void umnegl(Register Rd, Register Rn, Register Rm) { 427 umsubl(Rd, Rn, Rm, zr); 428 } 429 inline void umull(Register Rd, Register Rn, Register Rm) { 430 umaddl(Rd, Rn, Rm, zr); 431 } 432 433 #define WRAP(INSN) \ 434 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 435 if (VM_Version::supports_a53mac() && Ra != zr) \ 436 nop(); \ 437 Assembler::INSN(Rd, Rn, Rm, Ra); \ 438 } 439 440 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 441 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 442 #undef WRAP 443 444 445 // macro assembly operations needed for aarch64 446 447 // first two private routines for loading 32 bit or 64 bit constants 448 private: 449 450 void mov_immediate64(Register dst, uint64_t imm64); 451 void mov_immediate32(Register dst, uint32_t imm32); 452 453 int push(unsigned int bitset, Register stack); 454 int pop(unsigned int bitset, Register stack); 455 456 int push_fp(unsigned int bitset, Register stack); 457 int pop_fp(unsigned int bitset, Register stack); 458 459 int push_p(unsigned int bitset, Register stack); 460 int pop_p(unsigned int bitset, Register stack); 461 462 void mov(Register dst, Address a); 463 464 public: 465 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 466 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 467 468 void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); } 469 void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); } 470 471 static RegSet call_clobbered_gp_registers(); 472 473 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 474 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 475 476 // Push and pop everything that might be clobbered by a native 477 // runtime call except rscratch1 and rscratch2. (They are always 478 // scratch, so we don't have to protect them.) Only save the lower 479 // 64 bits of each vector register. Additional registers can be excluded 480 // in a passed RegSet. 481 void push_call_clobbered_registers_except(RegSet exclude); 482 void pop_call_clobbered_registers_except(RegSet exclude); 483 484 void push_call_clobbered_registers() { 485 push_call_clobbered_registers_except(RegSet()); 486 } 487 void pop_call_clobbered_registers() { 488 pop_call_clobbered_registers_except(RegSet()); 489 } 490 491 492 // now mov instructions for loading absolute addresses and 32 or 493 // 64 bit integers 494 495 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 496 497 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 498 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 499 500 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 501 502 void mov(Register dst, RegisterOrConstant src) { 503 if (src.is_register()) 504 mov(dst, src.as_register()); 505 else 506 mov(dst, src.as_constant()); 507 } 508 509 void movptr(Register r, uintptr_t imm64); 510 511 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 512 513 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 514 orr(Vd, T, Vn, Vn); 515 } 516 517 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 518 fcvtsh(tmp, src); 519 smov(dst, tmp, H, 0); 520 } 521 522 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 523 mov(tmp, H, 0, src); 524 fcvths(dst, tmp); 525 } 526 527 // Generalized Test Bit And Branch, including a "far" variety which 528 // spans more than 32KiB. 529 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 530 assert(cond == EQ || cond == NE, "must be"); 531 532 if (isfar) 533 cond = ~cond; 534 535 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 536 if (cond == Assembler::EQ) 537 branch = &Assembler::tbz; 538 else 539 branch = &Assembler::tbnz; 540 541 if (isfar) { 542 Label L; 543 (this->*branch)(Rt, bitpos, L); 544 b(dest); 545 bind(L); 546 } else { 547 (this->*branch)(Rt, bitpos, dest); 548 } 549 } 550 551 // macro instructions for accessing and updating floating point 552 // status register 553 // 554 // FPSR : op1 == 011 555 // CRn == 0100 556 // CRm == 0100 557 // op2 == 001 558 559 inline void get_fpsr(Register reg) 560 { 561 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 562 } 563 564 inline void set_fpsr(Register reg) 565 { 566 msr(0b011, 0b0100, 0b0100, 0b001, reg); 567 } 568 569 inline void clear_fpsr() 570 { 571 msr(0b011, 0b0100, 0b0100, 0b001, zr); 572 } 573 574 // DCZID_EL0: op1 == 011 575 // CRn == 0000 576 // CRm == 0000 577 // op2 == 111 578 inline void get_dczid_el0(Register reg) 579 { 580 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 581 } 582 583 // CTR_EL0: op1 == 011 584 // CRn == 0000 585 // CRm == 0000 586 // op2 == 001 587 inline void get_ctr_el0(Register reg) 588 { 589 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 590 } 591 592 inline void get_nzcv(Register reg) { 593 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 594 } 595 596 inline void set_nzcv(Register reg) { 597 msr(0b011, 0b0100, 0b0010, 0b000, reg); 598 } 599 600 // idiv variant which deals with MINLONG as dividend and -1 as divisor 601 int corrected_idivl(Register result, Register ra, Register rb, 602 bool want_remainder, Register tmp = rscratch1); 603 int corrected_idivq(Register result, Register ra, Register rb, 604 bool want_remainder, Register tmp = rscratch1); 605 606 // Support for null-checks 607 // 608 // Generates code that causes a null OS exception if the content of reg is null. 609 // If the accessed location is M[reg + offset] and the offset is known, provide the 610 // offset. No explicit code generation is needed if the offset is within a certain 611 // range (0 <= offset <= page_size). 612 613 virtual void null_check(Register reg, int offset = -1); 614 static bool needs_explicit_null_check(intptr_t offset); 615 static bool uses_implicit_null_check(void* address); 616 617 static address target_addr_for_insn(address insn_addr, unsigned insn); 618 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 619 static address target_addr_for_insn(address insn_addr) { 620 unsigned insn = *(unsigned*)insn_addr; 621 return target_addr_for_insn(insn_addr, insn); 622 } 623 static address target_addr_for_insn_or_null(address insn_addr) { 624 unsigned insn = *(unsigned*)insn_addr; 625 return target_addr_for_insn_or_null(insn_addr, insn); 626 } 627 628 // Required platform-specific helpers for Label::patch_instructions. 629 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 630 static int pd_patch_instruction_size(address branch, address target); 631 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 632 pd_patch_instruction_size(branch, target); 633 } 634 static address pd_call_destination(address branch) { 635 return target_addr_for_insn(branch); 636 } 637 #ifndef PRODUCT 638 static void pd_print_patched_instruction(address branch); 639 #endif 640 641 static int patch_oop(address insn_addr, address o); 642 static int patch_narrow_klass(address insn_addr, narrowKlass n); 643 644 // Return whether code is emitted to a scratch blob. 645 virtual bool in_scratch_emit_size() { 646 return false; 647 } 648 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 649 static int max_trampoline_stub_size(); 650 void emit_static_call_stub(); 651 static int static_call_stub_size(); 652 653 // The following 4 methods return the offset of the appropriate move instruction 654 655 // Support for fast byte/short loading with zero extension (depending on particular CPU) 656 int load_unsigned_byte(Register dst, Address src); 657 int load_unsigned_short(Register dst, Address src); 658 659 // Support for fast byte/short loading with sign extension (depending on particular CPU) 660 int load_signed_byte(Register dst, Address src); 661 int load_signed_short(Register dst, Address src); 662 663 int load_signed_byte32(Register dst, Address src); 664 int load_signed_short32(Register dst, Address src); 665 666 // Support for sign-extension (hi:lo = extend_sign(lo)) 667 void extend_sign(Register hi, Register lo); 668 669 // Load and store values by size and signed-ness 670 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 671 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 672 673 // Support for inc/dec with optimal instruction selection depending on value 674 675 // x86_64 aliases an unqualified register/address increment and 676 // decrement to call incrementq and decrementq but also supports 677 // explicitly sized calls to incrementq/decrementq or 678 // incrementl/decrementl 679 680 // for aarch64 the proper convention would be to use 681 // increment/decrement for 64 bit operations and 682 // incrementw/decrementw for 32 bit operations. so when porting 683 // x86_64 code we can leave calls to increment/decrement as is, 684 // replace incrementq/decrementq with increment/decrement and 685 // replace incrementl/decrementl with incrementw/decrementw. 686 687 // n.b. increment/decrement calls with an Address destination will 688 // need to use a scratch register to load the value to be 689 // incremented. increment/decrement calls which add or subtract a 690 // constant value greater than 2^12 will need to use a 2nd scratch 691 // register to hold the constant. so, a register increment/decrement 692 // may trash rscratch2 and an address increment/decrement trash 693 // rscratch and rscratch2 694 695 void decrementw(Address dst, int value = 1); 696 void decrementw(Register reg, int value = 1); 697 698 void decrement(Register reg, int value = 1); 699 void decrement(Address dst, int value = 1); 700 701 void incrementw(Address dst, int value = 1); 702 void incrementw(Register reg, int value = 1); 703 704 void increment(Register reg, int value = 1); 705 void increment(Address dst, int value = 1); 706 707 708 // Alignment 709 void align(int modulus); 710 711 // nop 712 void post_call_nop(); 713 714 // Stack frame creation/removal 715 void enter(bool strip_ret_addr = false); 716 void leave(); 717 718 // ROP Protection 719 void protect_return_address(); 720 void protect_return_address(Register return_reg, Register temp_reg); 721 void authenticate_return_address(Register return_reg = lr); 722 void authenticate_return_address(Register return_reg, Register temp_reg); 723 void strip_return_address(); 724 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 725 726 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 727 // The pointer will be loaded into the thread register. 728 void get_thread(Register thread); 729 730 // support for argument shuffling 731 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 732 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 733 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 734 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 735 void object_move( 736 OopMap* map, 737 int oop_handle_offset, 738 int framesize_in_slots, 739 VMRegPair src, 740 VMRegPair dst, 741 bool is_receiver, 742 int* receiver_offset); 743 744 745 // Support for VM calls 746 // 747 // It is imperative that all calls into the VM are handled via the call_VM macros. 748 // They make sure that the stack linkage is setup correctly. call_VM's correspond 749 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 750 751 752 void call_VM(Register oop_result, 753 address entry_point, 754 bool check_exceptions = true); 755 void call_VM(Register oop_result, 756 address entry_point, 757 Register arg_1, 758 bool check_exceptions = true); 759 void call_VM(Register oop_result, 760 address entry_point, 761 Register arg_1, Register arg_2, 762 bool check_exceptions = true); 763 void call_VM(Register oop_result, 764 address entry_point, 765 Register arg_1, Register arg_2, Register arg_3, 766 bool check_exceptions = true); 767 768 // Overloadings with last_Java_sp 769 void call_VM(Register oop_result, 770 Register last_java_sp, 771 address entry_point, 772 int number_of_arguments = 0, 773 bool check_exceptions = true); 774 void call_VM(Register oop_result, 775 Register last_java_sp, 776 address entry_point, 777 Register arg_1, bool 778 check_exceptions = true); 779 void call_VM(Register oop_result, 780 Register last_java_sp, 781 address entry_point, 782 Register arg_1, Register arg_2, 783 bool check_exceptions = true); 784 void call_VM(Register oop_result, 785 Register last_java_sp, 786 address entry_point, 787 Register arg_1, Register arg_2, Register arg_3, 788 bool check_exceptions = true); 789 790 void get_vm_result (Register oop_result, Register thread); 791 void get_vm_result_2(Register metadata_result, Register thread); 792 793 // These always tightly bind to MacroAssembler::call_VM_base 794 // bypassing the virtual implementation 795 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 796 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 797 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 798 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 799 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 800 801 void call_VM_leaf(address entry_point, 802 int number_of_arguments = 0); 803 void call_VM_leaf(address entry_point, 804 Register arg_1); 805 void call_VM_leaf(address entry_point, 806 Register arg_1, Register arg_2); 807 void call_VM_leaf(address entry_point, 808 Register arg_1, Register arg_2, Register arg_3); 809 810 // These always tightly bind to MacroAssembler::call_VM_leaf_base 811 // bypassing the virtual implementation 812 void super_call_VM_leaf(address entry_point); 813 void super_call_VM_leaf(address entry_point, Register arg_1); 814 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 815 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 816 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 817 818 // last Java Frame (fills frame anchor) 819 void set_last_Java_frame(Register last_java_sp, 820 Register last_java_fp, 821 address last_java_pc, 822 Register scratch); 823 824 void set_last_Java_frame(Register last_java_sp, 825 Register last_java_fp, 826 Label &last_java_pc, 827 Register scratch); 828 829 void set_last_Java_frame(Register last_java_sp, 830 Register last_java_fp, 831 Register last_java_pc, 832 Register scratch); 833 834 void reset_last_Java_frame(Register thread); 835 836 // thread in the default location (rthread) 837 void reset_last_Java_frame(bool clear_fp); 838 839 // Stores 840 void store_check(Register obj); // store check for obj - register is destroyed afterwards 841 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 842 843 void resolve_jobject(Register value, Register tmp1, Register tmp2); 844 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 845 846 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 847 void c2bool(Register x); 848 849 void load_method_holder_cld(Register rresult, Register rmethod); 850 void load_method_holder(Register holder, Register method); 851 852 // oop manipulations 853 void load_klass(Register dst, Register src); 854 void store_klass(Register dst, Register src); 855 void cmp_klass(Register oop, Register trial_klass, Register tmp); 856 857 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 858 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 859 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 860 861 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 862 Register tmp1, Register tmp2); 863 864 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 865 Register tmp1, Register tmp2, Register tmp3); 866 867 void load_heap_oop(Register dst, Address src, Register tmp1, 868 Register tmp2, DecoratorSet decorators = 0); 869 870 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 871 Register tmp2, DecoratorSet decorators = 0); 872 void store_heap_oop(Address dst, Register val, Register tmp1, 873 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 874 875 // currently unimplemented 876 // Used for storing null. All other oop constants should be 877 // stored using routines that take a jobject. 878 void store_heap_oop_null(Address dst); 879 880 void store_klass_gap(Register dst, Register src); 881 882 // This dummy is to prevent a call to store_heap_oop from 883 // converting a zero (like null) into a Register by giving 884 // the compiler two choices it can't resolve 885 886 void store_heap_oop(Address dst, void* dummy); 887 888 void encode_heap_oop(Register d, Register s); 889 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 890 void decode_heap_oop(Register d, Register s); 891 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 892 void encode_heap_oop_not_null(Register r); 893 void decode_heap_oop_not_null(Register r); 894 void encode_heap_oop_not_null(Register dst, Register src); 895 void decode_heap_oop_not_null(Register dst, Register src); 896 897 void set_narrow_oop(Register dst, jobject obj); 898 899 void encode_klass_not_null(Register r); 900 void decode_klass_not_null(Register r); 901 void encode_klass_not_null(Register dst, Register src); 902 void decode_klass_not_null(Register dst, Register src); 903 904 void set_narrow_klass(Register dst, Klass* k); 905 906 // if heap base register is used - reinit it with the correct value 907 void reinit_heapbase(); 908 909 DEBUG_ONLY(void verify_heapbase(const char* msg);) 910 911 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 912 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 913 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 914 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 915 916 void push_cont_fastpath(Register java_thread); 917 void pop_cont_fastpath(Register java_thread); 918 919 // Round up to a power of two 920 void round_to(Register reg, int modulus); 921 922 // java.lang.Math::round intrinsics 923 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 924 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 925 926 // allocation 927 void tlab_allocate( 928 Register obj, // result: pointer to object after successful allocation 929 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 930 int con_size_in_bytes, // object size in bytes if known at compile time 931 Register t1, // temp register 932 Register t2, // temp register 933 Label& slow_case // continuation point if fast allocation fails 934 ); 935 void verify_tlab(); 936 937 // interface method calling 938 void lookup_interface_method(Register recv_klass, 939 Register intf_klass, 940 RegisterOrConstant itable_index, 941 Register method_result, 942 Register scan_temp, 943 Label& no_such_interface, 944 bool return_method = true); 945 946 // virtual method calling 947 // n.b. x86 allows RegisterOrConstant for vtable_index 948 void lookup_virtual_method(Register recv_klass, 949 RegisterOrConstant vtable_index, 950 Register method_result); 951 952 // Test sub_klass against super_klass, with fast and slow paths. 953 954 // The fast path produces a tri-state answer: yes / no / maybe-slow. 955 // One of the three labels can be null, meaning take the fall-through. 956 // If super_check_offset is -1, the value is loaded up from super_klass. 957 // No registers are killed, except temp_reg. 958 void check_klass_subtype_fast_path(Register sub_klass, 959 Register super_klass, 960 Register temp_reg, 961 Label* L_success, 962 Label* L_failure, 963 Label* L_slow_path, 964 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 965 966 // The rest of the type check; must be wired to a corresponding fast path. 967 // It does not repeat the fast path logic, so don't use it standalone. 968 // The temp_reg and temp2_reg can be noreg, if no temps are available. 969 // Updates the sub's secondary super cache as necessary. 970 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 971 void check_klass_subtype_slow_path(Register sub_klass, 972 Register super_klass, 973 Register temp_reg, 974 Register temp2_reg, 975 Label* L_success, 976 Label* L_failure, 977 bool set_cond_codes = false); 978 979 // Simplified, combined version, good for typical uses. 980 // Falls through on failure. 981 void check_klass_subtype(Register sub_klass, 982 Register super_klass, 983 Register temp_reg, 984 Label& L_success); 985 986 void clinit_barrier(Register klass, 987 Register thread, 988 Label* L_fast_path = nullptr, 989 Label* L_slow_path = nullptr); 990 991 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 992 993 void verify_sve_vector_length(Register tmp = rscratch1); 994 void reinitialize_ptrue() { 995 if (UseSVE > 0) { 996 sve_ptrue(ptrue, B); 997 } 998 } 999 void verify_ptrue(); 1000 1001 // Debugging 1002 1003 // only if +VerifyOops 1004 void _verify_oop(Register reg, const char* s, const char* file, int line); 1005 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1006 1007 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1008 if (VerifyOops) { 1009 _verify_oop(reg, s, file, line); 1010 } 1011 } 1012 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1013 if (VerifyOops) { 1014 _verify_oop_addr(reg, s, file, line); 1015 } 1016 } 1017 1018 // TODO: verify method and klass metadata (compare against vptr?) 1019 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1020 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1021 1022 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1023 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1024 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1025 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1026 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1027 1028 // only if +VerifyFPU 1029 void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); 1030 1031 // prints msg, dumps registers and stops execution 1032 void stop(const char* msg); 1033 1034 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1035 1036 void untested() { stop("untested"); } 1037 1038 void unimplemented(const char* what = ""); 1039 1040 void should_not_reach_here() { stop("should not reach here"); } 1041 1042 void _assert_asm(Condition cc, const char* msg); 1043 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1044 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1045 1046 // Stack overflow checking 1047 void bang_stack_with_offset(int offset) { 1048 // stack grows down, caller passes positive offset 1049 assert(offset > 0, "must bang with negative offset"); 1050 sub(rscratch2, sp, offset); 1051 str(zr, Address(rscratch2)); 1052 } 1053 1054 // Writes to stack successive pages until offset reached to check for 1055 // stack overflow + shadow pages. Also, clobbers tmp 1056 void bang_stack_size(Register size, Register tmp); 1057 1058 // Check for reserved stack access in method being exited (for JIT) 1059 void reserved_stack_check(); 1060 1061 // Arithmetics 1062 1063 void addptr(const Address &dst, int32_t src); 1064 void cmpptr(Register src1, Address src2); 1065 1066 void cmpoop(Register obj1, Register obj2); 1067 1068 // Various forms of CAS 1069 1070 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1071 Label &succeed, Label *fail); 1072 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1073 Label &succeed, Label *fail); 1074 1075 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1076 Label &succeed, Label *fail); 1077 1078 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1079 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1080 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1081 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1082 1083 void atomic_xchg(Register prev, Register newv, Register addr); 1084 void atomic_xchgw(Register prev, Register newv, Register addr); 1085 void atomic_xchgl(Register prev, Register newv, Register addr); 1086 void atomic_xchglw(Register prev, Register newv, Register addr); 1087 void atomic_xchgal(Register prev, Register newv, Register addr); 1088 void atomic_xchgalw(Register prev, Register newv, Register addr); 1089 1090 void orptr(Address adr, RegisterOrConstant src) { 1091 ldr(rscratch1, adr); 1092 if (src.is_register()) 1093 orr(rscratch1, rscratch1, src.as_register()); 1094 else 1095 orr(rscratch1, rscratch1, src.as_constant()); 1096 str(rscratch1, adr); 1097 } 1098 1099 // A generic CAS; success or failure is in the EQ flag. 1100 // Clobbers rscratch1 1101 void cmpxchg(Register addr, Register expected, Register new_val, 1102 enum operand_size size, 1103 bool acquire, bool release, bool weak, 1104 Register result); 1105 1106 #ifdef ASSERT 1107 // Template short-hand support to clean-up after a failed call to trampoline 1108 // call generation (see trampoline_call() below), when a set of Labels must 1109 // be reset (before returning). 1110 template<typename Label, typename... More> 1111 void reset_labels(Label &lbl, More&... more) { 1112 lbl.reset(); reset_labels(more...); 1113 } 1114 template<typename Label> 1115 void reset_labels(Label &lbl) { 1116 lbl.reset(); 1117 } 1118 #endif 1119 1120 private: 1121 void compare_eq(Register rn, Register rm, enum operand_size size); 1122 1123 public: 1124 // AArch64 OpenJDK uses four different types of calls: 1125 // - direct call: bl pc_relative_offset 1126 // This is the shortest and the fastest, but the offset has the range: 1127 // +/-128MB for the release build, +/-2MB for the debug build. 1128 // 1129 // - far call: adrp reg, pc_relative_offset; add; bl reg 1130 // This is longer than a direct call. The offset has 1131 // the range +/-4GB. As the code cache size is limited to 4GB, 1132 // far calls can reach anywhere in the code cache. If a jump is 1133 // needed rather than a call, a far jump 'b reg' can be used instead. 1134 // All instructions are embedded at a call site. 1135 // 1136 // - trampoline call: 1137 // This is only available in C1/C2-generated code (nmethod). It is a combination 1138 // of a direct call, which is used if the destination of a call is in range, 1139 // and a register-indirect call. It has the advantages of reaching anywhere in 1140 // the AArch64 address space and being patchable at runtime when the generated 1141 // code is being executed by other threads. 1142 // 1143 // [Main code section] 1144 // bl trampoline 1145 // [Stub code section] 1146 // trampoline: 1147 // ldr reg, pc + 8 1148 // br reg 1149 // <64-bit destination address> 1150 // 1151 // If the destination is in range when the generated code is moved to the code 1152 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1153 // is not used. 1154 // The optimization does not remove the trampoline from the stub section. 1155 // This is necessary because the trampoline may well be redirected later when 1156 // code is patched, and the new destination may not be reachable by a simple BR 1157 // instruction. 1158 // 1159 // - indirect call: move reg, address; blr reg 1160 // This too can reach anywhere in the address space, but it cannot be 1161 // patched while code is running, so it must only be modified at a safepoint. 1162 // This form of call is most suitable for targets at fixed addresses, which 1163 // will never be patched. 1164 // 1165 // The patching we do conforms to the "Concurrent modification and 1166 // execution of instructions" section of the Arm Architectural 1167 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1168 // or SVC instructions to be modified while another thread is 1169 // executing them. 1170 // 1171 // To patch a trampoline call when the BL can't reach, we first modify 1172 // the 64-bit destination address in the trampoline, then modify the 1173 // BL to point to the trampoline, then flush the instruction cache to 1174 // broadcast the change to all executing threads. See 1175 // NativeCall::set_destination_mt_safe for the details. 1176 // 1177 // There is a benign race in that the other thread might observe the 1178 // modified BL before it observes the modified 64-bit destination 1179 // address. That does not matter because the destination method has been 1180 // invalidated, so there will be a trap at its start. 1181 // For this to work, the destination address in the trampoline is 1182 // always updated, even if we're not using the trampoline. 1183 1184 // Emit a direct call if the entry address will always be in range, 1185 // otherwise a trampoline call. 1186 // Supported entry.rspec(): 1187 // - relocInfo::runtime_call_type 1188 // - relocInfo::opt_virtual_call_type 1189 // - relocInfo::static_call_type 1190 // - relocInfo::virtual_call_type 1191 // 1192 // Return: the call PC or null if CodeCache is full. 1193 address trampoline_call(Address entry); 1194 1195 static bool far_branches() { 1196 return ReservedCodeCacheSize > branch_range; 1197 } 1198 1199 // Check if branches to the non nmethod section require a far jump 1200 static bool codestub_branch_needs_far_jump() { 1201 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1202 } 1203 1204 // Emit a direct call/jump if the entry address will always be in range, 1205 // otherwise a far call/jump. 1206 // The address must be inside the code cache. 1207 // Supported entry.rspec(): 1208 // - relocInfo::external_word_type 1209 // - relocInfo::runtime_call_type 1210 // - relocInfo::none 1211 // In the case of a far call/jump, the entry address is put in the tmp register. 1212 // The tmp register is invalidated. 1213 // 1214 // Far_jump returns the amount of the emitted code. 1215 void far_call(Address entry, Register tmp = rscratch1); 1216 int far_jump(Address entry, Register tmp = rscratch1); 1217 1218 static int far_codestub_branch_size() { 1219 if (codestub_branch_needs_far_jump()) { 1220 return 3 * 4; // adrp, add, br 1221 } else { 1222 return 4; 1223 } 1224 } 1225 1226 // Emit the CompiledIC call idiom 1227 address ic_call(address entry, jint method_index = 0); 1228 1229 public: 1230 1231 // Data 1232 1233 void mov_metadata(Register dst, Metadata* obj); 1234 Address allocate_metadata_address(Metadata* obj); 1235 Address constant_oop_address(jobject obj); 1236 1237 void movoop(Register dst, jobject obj); 1238 1239 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1240 void kernel_crc32(Register crc, Register buf, Register len, 1241 Register table0, Register table1, Register table2, Register table3, 1242 Register tmp, Register tmp2, Register tmp3); 1243 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1244 void kernel_crc32c(Register crc, Register buf, Register len, 1245 Register table0, Register table1, Register table2, Register table3, 1246 Register tmp, Register tmp2, Register tmp3); 1247 1248 // Stack push and pop individual 64 bit registers 1249 void push(Register src); 1250 void pop(Register dst); 1251 1252 void repne_scan(Register addr, Register value, Register count, 1253 Register scratch); 1254 void repne_scanw(Register addr, Register value, Register count, 1255 Register scratch); 1256 1257 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1258 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1259 1260 // If a constant does not fit in an immediate field, generate some 1261 // number of MOV instructions and then perform the operation 1262 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1263 add_sub_imm_insn insn1, 1264 add_sub_reg_insn insn2, bool is32); 1265 // Separate vsn which sets the flags 1266 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1267 add_sub_imm_insn insn1, 1268 add_sub_reg_insn insn2, bool is32); 1269 1270 #define WRAP(INSN, is32) \ 1271 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1272 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1273 } \ 1274 \ 1275 void INSN(Register Rd, Register Rn, Register Rm, \ 1276 enum shift_kind kind, unsigned shift = 0) { \ 1277 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1278 } \ 1279 \ 1280 void INSN(Register Rd, Register Rn, Register Rm) { \ 1281 Assembler::INSN(Rd, Rn, Rm); \ 1282 } \ 1283 \ 1284 void INSN(Register Rd, Register Rn, Register Rm, \ 1285 ext::operation option, int amount = 0) { \ 1286 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1287 } 1288 1289 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1290 1291 #undef WRAP 1292 #define WRAP(INSN, is32) \ 1293 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1294 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1295 } \ 1296 \ 1297 void INSN(Register Rd, Register Rn, Register Rm, \ 1298 enum shift_kind kind, unsigned shift = 0) { \ 1299 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1300 } \ 1301 \ 1302 void INSN(Register Rd, Register Rn, Register Rm) { \ 1303 Assembler::INSN(Rd, Rn, Rm); \ 1304 } \ 1305 \ 1306 void INSN(Register Rd, Register Rn, Register Rm, \ 1307 ext::operation option, int amount = 0) { \ 1308 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1309 } 1310 1311 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1312 1313 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1314 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1315 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1316 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1317 1318 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1319 1320 void tableswitch(Register index, jint lowbound, jint highbound, 1321 Label &jumptable, Label &jumptable_end, int stride = 1) { 1322 adr(rscratch1, jumptable); 1323 subsw(rscratch2, index, lowbound); 1324 subsw(zr, rscratch2, highbound - lowbound); 1325 br(Assembler::HS, jumptable_end); 1326 add(rscratch1, rscratch1, rscratch2, 1327 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1328 br(rscratch1); 1329 } 1330 1331 // Form an address from base + offset in Rd. Rd may or may not 1332 // actually be used: you must use the Address that is returned. It 1333 // is up to you to ensure that the shift provided matches the size 1334 // of your data. 1335 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1336 1337 // Return true iff an address is within the 48-bit AArch64 address 1338 // space. 1339 bool is_valid_AArch64_address(address a) { 1340 return ((uint64_t)a >> 48) == 0; 1341 } 1342 1343 // Load the base of the cardtable byte map into reg. 1344 void load_byte_map_base(Register reg); 1345 1346 // Prolog generator routines to support switch between x86 code and 1347 // generated ARM code 1348 1349 // routine to generate an x86 prolog for a stub function which 1350 // bootstraps into the generated ARM code which directly follows the 1351 // stub 1352 // 1353 1354 public: 1355 1356 void ldr_constant(Register dest, const Address &const_addr) { 1357 if (NearCpool) { 1358 ldr(dest, const_addr); 1359 } else { 1360 uint64_t offset; 1361 adrp(dest, InternalAddress(const_addr.target()), offset); 1362 ldr(dest, Address(dest, offset)); 1363 } 1364 } 1365 1366 address read_polling_page(Register r, relocInfo::relocType rtype); 1367 void get_polling_page(Register dest, relocInfo::relocType rtype); 1368 1369 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1370 void update_byte_crc32(Register crc, Register val, Register table); 1371 void update_word_crc32(Register crc, Register v, Register tmp, 1372 Register table0, Register table1, Register table2, Register table3, 1373 bool upper = false); 1374 1375 address count_positives(Register ary1, Register len, Register result); 1376 1377 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1378 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1379 1380 void string_equals(Register a1, Register a2, Register result, Register cnt1, 1381 int elem_size); 1382 1383 void fill_words(Register base, Register cnt, Register value); 1384 address zero_words(Register base, uint64_t cnt); 1385 address zero_words(Register ptr, Register cnt); 1386 void zero_dcache_blocks(Register base, Register cnt); 1387 1388 static const int zero_words_block_size; 1389 1390 address byte_array_inflate(Register src, Register dst, Register len, 1391 FloatRegister vtmp1, FloatRegister vtmp2, 1392 FloatRegister vtmp3, Register tmp4); 1393 1394 void char_array_compress(Register src, Register dst, Register len, 1395 Register res, 1396 FloatRegister vtmp0, FloatRegister vtmp1, 1397 FloatRegister vtmp2, FloatRegister vtmp3, 1398 FloatRegister vtmp4, FloatRegister vtmp5); 1399 1400 void encode_iso_array(Register src, Register dst, 1401 Register len, Register res, bool ascii, 1402 FloatRegister vtmp0, FloatRegister vtmp1, 1403 FloatRegister vtmp2, FloatRegister vtmp3, 1404 FloatRegister vtmp4, FloatRegister vtmp5); 1405 1406 void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2, 1407 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5, 1408 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3, 1409 FloatRegister tmpC4, Register tmp1, Register tmp2, 1410 Register tmp3, Register tmp4, Register tmp5); 1411 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1412 address pio2, address dsin_coef, address dcos_coef); 1413 private: 1414 // begin trigonometric functions support block 1415 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1416 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1417 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1418 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1419 // end trigonometric functions support block 1420 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1421 Register src1, Register src2); 1422 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1423 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1424 } 1425 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1426 Register y, Register y_idx, Register z, 1427 Register carry, Register product, 1428 Register idx, Register kdx); 1429 void multiply_128_x_128_loop(Register y, Register z, 1430 Register carry, Register carry2, 1431 Register idx, Register jdx, 1432 Register yz_idx1, Register yz_idx2, 1433 Register tmp, Register tmp3, Register tmp4, 1434 Register tmp7, Register product_hi); 1435 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1436 Register len, Register tmp0, Register tmp1, Register tmp2, 1437 Register tmp3); 1438 void kernel_crc32_using_crc32(Register crc, Register buf, 1439 Register len, Register tmp0, Register tmp1, Register tmp2, 1440 Register tmp3); 1441 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1442 Register len, Register tmp0, Register tmp1, Register tmp2, 1443 Register tmp3); 1444 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1445 Register len, Register tmp0, Register tmp1, Register tmp2, 1446 Register tmp3); 1447 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1448 Register len, Register tmp0, Register tmp1, Register tmp2, 1449 size_t table_offset); 1450 1451 void ghash_modmul (FloatRegister result, 1452 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1453 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1454 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1455 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1456 public: 1457 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1458 Register zlen, Register tmp1, Register tmp2, Register tmp3, 1459 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1460 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1461 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1462 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1463 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1464 void ghash_multiply_wide(int index, 1465 FloatRegister result_lo, FloatRegister result_hi, 1466 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1467 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1468 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1469 FloatRegister p, FloatRegister z, FloatRegister t1); 1470 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1471 FloatRegister p, FloatRegister z, FloatRegister t1); 1472 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1473 Register data, Register blocks, int unrolls); 1474 1475 1476 void aesenc_loadkeys(Register key, Register keylen); 1477 void aesecb_encrypt(Register from, Register to, Register keylen, 1478 FloatRegister data = v0, int unrolls = 1); 1479 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1480 void aes_round(FloatRegister input, FloatRegister subkey); 1481 1482 // ChaCha20 functions support block 1483 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1484 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1485 FloatRegister tbl); 1486 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1487 FloatRegister dVec, bool colToDiag); 1488 1489 // Place an ISB after code may have been modified due to a safepoint. 1490 void safepoint_isb(); 1491 1492 private: 1493 // Return the effective address r + (r1 << ext) + offset. 1494 // Uses rscratch2. 1495 Address offsetted_address(Register r, Register r1, Address::extend ext, 1496 int offset, int size); 1497 1498 private: 1499 // Returns an address on the stack which is reachable with a ldr/str of size 1500 // Uses rscratch2 if the address is not directly reachable 1501 Address spill_address(int size, int offset, Register tmp=rscratch2); 1502 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1503 1504 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1505 1506 // Check whether two loads/stores can be merged into ldp/stp. 1507 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1508 1509 // Merge current load/store with previous load/store into ldp/stp. 1510 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1511 1512 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1513 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1514 1515 public: 1516 void spill(Register Rx, bool is64, int offset) { 1517 if (is64) { 1518 str(Rx, spill_address(8, offset)); 1519 } else { 1520 strw(Rx, spill_address(4, offset)); 1521 } 1522 } 1523 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1524 str(Vx, T, spill_address(1 << (int)T, offset)); 1525 } 1526 1527 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1528 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1529 } 1530 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1531 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1532 } 1533 1534 void unspill(Register Rx, bool is64, int offset) { 1535 if (is64) { 1536 ldr(Rx, spill_address(8, offset)); 1537 } else { 1538 ldrw(Rx, spill_address(4, offset)); 1539 } 1540 } 1541 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1542 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1543 } 1544 1545 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1546 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1547 } 1548 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1549 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1550 } 1551 1552 void spill_copy128(int src_offset, int dst_offset, 1553 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1554 if (src_offset < 512 && (src_offset & 7) == 0 && 1555 dst_offset < 512 && (dst_offset & 7) == 0) { 1556 ldp(tmp1, tmp2, Address(sp, src_offset)); 1557 stp(tmp1, tmp2, Address(sp, dst_offset)); 1558 } else { 1559 unspill(tmp1, true, src_offset); 1560 spill(tmp1, true, dst_offset); 1561 unspill(tmp1, true, src_offset+8); 1562 spill(tmp1, true, dst_offset+8); 1563 } 1564 } 1565 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1566 int sve_vec_reg_size_in_bytes) { 1567 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1568 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1569 spill_copy128(src_offset, dst_offset); 1570 src_offset += 16; 1571 dst_offset += 16; 1572 } 1573 } 1574 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1575 int sve_predicate_reg_size_in_bytes) { 1576 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1577 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1578 reinitialize_ptrue(); 1579 } 1580 void cache_wb(Address line); 1581 void cache_wbsync(bool is_pre); 1582 1583 // Code for java.lang.Thread::onSpinWait() intrinsic. 1584 void spin_wait(); 1585 1586 void fast_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow); 1587 void fast_unlock(Register obj, Register hdr, Register t1, Register t2, Label& slow); 1588 1589 private: 1590 // Check the current thread doesn't need a cross modify fence. 1591 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1592 1593 }; 1594 1595 #ifdef ASSERT 1596 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1597 #endif 1598 1599 /** 1600 * class SkipIfEqual: 1601 * 1602 * Instantiating this class will result in assembly code being output that will 1603 * jump around any code emitted between the creation of the instance and it's 1604 * automatic destruction at the end of a scope block, depending on the value of 1605 * the flag passed to the constructor, which will be checked at run-time. 1606 */ 1607 class SkipIfEqual { 1608 private: 1609 MacroAssembler* _masm; 1610 Label _label; 1611 1612 public: 1613 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); 1614 ~SkipIfEqual(); 1615 }; 1616 1617 struct tableswitch { 1618 Register _reg; 1619 int _insn_index; jint _first_key; jint _last_key; 1620 Label _after; 1621 Label _branches; 1622 }; 1623 1624 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP