1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "metaprogramming/enableIf.hpp" 32 #include "oops/compressedOops.hpp" 33 #include "runtime/vm_version.hpp" 34 #include "utilities/powerOfTwo.hpp" 35 36 class OopMap; 37 38 // MacroAssembler extends Assembler by frequently used macros. 39 // 40 // Instructions for which a 'better' code sequence exists depending 41 // on arguments should also go in here. 42 43 class MacroAssembler: public Assembler { 44 friend class LIR_Assembler; 45 46 public: 47 using Assembler::mov; 48 using Assembler::movi; 49 50 protected: 51 52 // Support for VM calls 53 // 54 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 55 // may customize this version by overriding it for its purposes (e.g., to save/restore 56 // additional registers when doing a VM call). 57 virtual void call_VM_leaf_base( 58 address entry_point, // the entry point 59 int number_of_arguments, // the number of arguments to pop after the call 60 Label *retaddr = NULL 61 ); 62 63 virtual void call_VM_leaf_base( 64 address entry_point, // the entry point 65 int number_of_arguments, // the number of arguments to pop after the call 66 Label &retaddr) { 67 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 68 } 69 70 // This is the base routine called by the different versions of call_VM. The interpreter 71 // may customize this version by overriding it for its purposes (e.g., to save/restore 72 // additional registers when doing a VM call). 73 // 74 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 75 // returns the register which contains the thread upon return. If a thread register has been 76 // specified, the return value will correspond to that register. If no last_java_sp is specified 77 // (noreg) than rsp will be used instead. 78 virtual void call_VM_base( // returns the register containing the thread upon return 79 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 80 Register java_thread, // the thread if computed before ; use noreg otherwise 81 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 82 address entry_point, // the entry point 83 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 84 bool check_exceptions // whether to check for pending exceptions after return 85 ); 86 87 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 88 89 public: 90 91 enum KlassDecodeMode { 92 KlassDecodeNone, 93 KlassDecodeZero, 94 KlassDecodeXor, 95 KlassDecodeMovk 96 }; 97 98 // Return the current narrow Klass pointer decode mode. Initialized on first call. 99 static KlassDecodeMode klass_decode_mode(); 100 101 // Given an arbitrary base address, return the KlassDecodeMode that would be used. Return KlassDecodeNone 102 // if base address is not valid for encoding. 103 static KlassDecodeMode klass_decode_mode_for_base(address base); 104 105 // Returns a static string 106 static const char* describe_klass_decode_mode(KlassDecodeMode mode); 107 108 private: 109 static KlassDecodeMode _klass_decode_mode; 110 111 public: 112 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 113 114 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 115 // The implementation is only non-empty for the InterpreterMacroAssembler, 116 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 117 virtual void check_and_handle_popframe(Register java_thread); 118 virtual void check_and_handle_earlyret(Register java_thread); 119 120 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 121 void rt_call(address dest, Register tmp = rscratch1); 122 123 // Load Effective Address 124 void lea(Register r, const Address &a) { 125 InstructionMark im(this); 126 a.lea(this, r); 127 } 128 129 /* Sometimes we get misaligned loads and stores, usually from Unsafe 130 accesses, and these can exceed the offset range. */ 131 Address legitimize_address(const Address &a, int size, Register scratch) { 132 if (a.getMode() == Address::base_plus_offset) { 133 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 134 block_comment("legitimize_address {"); 135 lea(scratch, a); 136 block_comment("} legitimize_address"); 137 return Address(scratch); 138 } 139 } 140 return a; 141 } 142 143 void addmw(Address a, Register incr, Register scratch) { 144 ldrw(scratch, a); 145 addw(scratch, scratch, incr); 146 strw(scratch, a); 147 } 148 149 // Add constant to memory word 150 void addmw(Address a, int imm, Register scratch) { 151 ldrw(scratch, a); 152 if (imm > 0) 153 addw(scratch, scratch, (unsigned)imm); 154 else 155 subw(scratch, scratch, (unsigned)-imm); 156 strw(scratch, a); 157 } 158 159 void bind(Label& L) { 160 Assembler::bind(L); 161 code()->clear_last_insn(); 162 } 163 164 void membar(Membar_mask_bits order_constraint); 165 166 using Assembler::ldr; 167 using Assembler::str; 168 using Assembler::ldrw; 169 using Assembler::strw; 170 171 void ldr(Register Rx, const Address &adr); 172 void ldrw(Register Rw, const Address &adr); 173 void str(Register Rx, const Address &adr); 174 void strw(Register Rx, const Address &adr); 175 176 // Frame creation and destruction shared between JITs. 177 void build_frame(int framesize); 178 void remove_frame(int framesize); 179 180 virtual void _call_Unimplemented(address call_site) { 181 mov(rscratch2, call_site); 182 } 183 184 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 185 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 186 // https://reviews.llvm.org/D3311 187 188 #ifdef _WIN64 189 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 190 #else 191 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 192 #endif 193 194 // aliases defined in AARCH64 spec 195 196 template<class T> 197 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 198 199 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 200 inline void cmp(Register Rd, unsigned imm) = delete; 201 202 template<class T> 203 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 204 205 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 206 inline void cmn(Register Rd, unsigned imm) = delete; 207 208 void cset(Register Rd, Assembler::Condition cond) { 209 csinc(Rd, zr, zr, ~cond); 210 } 211 void csetw(Register Rd, Assembler::Condition cond) { 212 csincw(Rd, zr, zr, ~cond); 213 } 214 215 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 216 csneg(Rd, Rn, Rn, ~cond); 217 } 218 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 219 csnegw(Rd, Rn, Rn, ~cond); 220 } 221 222 inline void movw(Register Rd, Register Rn) { 223 if (Rd == sp || Rn == sp) { 224 Assembler::addw(Rd, Rn, 0U); 225 } else { 226 orrw(Rd, zr, Rn); 227 } 228 } 229 inline void mov(Register Rd, Register Rn) { 230 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 231 if (Rd == Rn) { 232 } else if (Rd == sp || Rn == sp) { 233 Assembler::add(Rd, Rn, 0U); 234 } else { 235 orr(Rd, zr, Rn); 236 } 237 } 238 239 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 240 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 241 242 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 243 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 244 245 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 246 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 247 248 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 249 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 250 } 251 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 252 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 253 } 254 255 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 256 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 257 } 258 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 259 bfm(Rd, Rn, lsb , (lsb + width - 1)); 260 } 261 262 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 263 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 264 } 265 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 266 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 267 } 268 269 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 270 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 271 } 272 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 273 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 274 } 275 276 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 277 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 278 } 279 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 280 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 281 } 282 283 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 284 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 285 } 286 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 287 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 288 } 289 290 inline void asrw(Register Rd, Register Rn, unsigned imm) { 291 sbfmw(Rd, Rn, imm, 31); 292 } 293 294 inline void asr(Register Rd, Register Rn, unsigned imm) { 295 sbfm(Rd, Rn, imm, 63); 296 } 297 298 inline void lslw(Register Rd, Register Rn, unsigned imm) { 299 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 300 } 301 302 inline void lsl(Register Rd, Register Rn, unsigned imm) { 303 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 304 } 305 306 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 307 ubfmw(Rd, Rn, imm, 31); 308 } 309 310 inline void lsr(Register Rd, Register Rn, unsigned imm) { 311 ubfm(Rd, Rn, imm, 63); 312 } 313 314 inline void rorw(Register Rd, Register Rn, unsigned imm) { 315 extrw(Rd, Rn, Rn, imm); 316 } 317 318 inline void ror(Register Rd, Register Rn, unsigned imm) { 319 extr(Rd, Rn, Rn, imm); 320 } 321 322 inline void sxtbw(Register Rd, Register Rn) { 323 sbfmw(Rd, Rn, 0, 7); 324 } 325 inline void sxthw(Register Rd, Register Rn) { 326 sbfmw(Rd, Rn, 0, 15); 327 } 328 inline void sxtb(Register Rd, Register Rn) { 329 sbfm(Rd, Rn, 0, 7); 330 } 331 inline void sxth(Register Rd, Register Rn) { 332 sbfm(Rd, Rn, 0, 15); 333 } 334 inline void sxtw(Register Rd, Register Rn) { 335 sbfm(Rd, Rn, 0, 31); 336 } 337 338 inline void uxtbw(Register Rd, Register Rn) { 339 ubfmw(Rd, Rn, 0, 7); 340 } 341 inline void uxthw(Register Rd, Register Rn) { 342 ubfmw(Rd, Rn, 0, 15); 343 } 344 inline void uxtb(Register Rd, Register Rn) { 345 ubfm(Rd, Rn, 0, 7); 346 } 347 inline void uxth(Register Rd, Register Rn) { 348 ubfm(Rd, Rn, 0, 15); 349 } 350 inline void uxtw(Register Rd, Register Rn) { 351 ubfm(Rd, Rn, 0, 31); 352 } 353 354 inline void cmnw(Register Rn, Register Rm) { 355 addsw(zr, Rn, Rm); 356 } 357 inline void cmn(Register Rn, Register Rm) { 358 adds(zr, Rn, Rm); 359 } 360 361 inline void cmpw(Register Rn, Register Rm) { 362 subsw(zr, Rn, Rm); 363 } 364 inline void cmp(Register Rn, Register Rm) { 365 subs(zr, Rn, Rm); 366 } 367 368 inline void negw(Register Rd, Register Rn) { 369 subw(Rd, zr, Rn); 370 } 371 372 inline void neg(Register Rd, Register Rn) { 373 sub(Rd, zr, Rn); 374 } 375 376 inline void negsw(Register Rd, Register Rn) { 377 subsw(Rd, zr, Rn); 378 } 379 380 inline void negs(Register Rd, Register Rn) { 381 subs(Rd, zr, Rn); 382 } 383 384 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 385 addsw(zr, Rn, Rm, kind, shift); 386 } 387 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 388 adds(zr, Rn, Rm, kind, shift); 389 } 390 391 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 392 subsw(zr, Rn, Rm, kind, shift); 393 } 394 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 395 subs(zr, Rn, Rm, kind, shift); 396 } 397 398 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 399 subw(Rd, zr, Rn, kind, shift); 400 } 401 402 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 403 sub(Rd, zr, Rn, kind, shift); 404 } 405 406 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 407 subsw(Rd, zr, Rn, kind, shift); 408 } 409 410 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 411 subs(Rd, zr, Rn, kind, shift); 412 } 413 414 inline void mnegw(Register Rd, Register Rn, Register Rm) { 415 msubw(Rd, Rn, Rm, zr); 416 } 417 inline void mneg(Register Rd, Register Rn, Register Rm) { 418 msub(Rd, Rn, Rm, zr); 419 } 420 421 inline void mulw(Register Rd, Register Rn, Register Rm) { 422 maddw(Rd, Rn, Rm, zr); 423 } 424 inline void mul(Register Rd, Register Rn, Register Rm) { 425 madd(Rd, Rn, Rm, zr); 426 } 427 428 inline void smnegl(Register Rd, Register Rn, Register Rm) { 429 smsubl(Rd, Rn, Rm, zr); 430 } 431 inline void smull(Register Rd, Register Rn, Register Rm) { 432 smaddl(Rd, Rn, Rm, zr); 433 } 434 435 inline void umnegl(Register Rd, Register Rn, Register Rm) { 436 umsubl(Rd, Rn, Rm, zr); 437 } 438 inline void umull(Register Rd, Register Rn, Register Rm) { 439 umaddl(Rd, Rn, Rm, zr); 440 } 441 442 #define WRAP(INSN) \ 443 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 444 if (VM_Version::supports_a53mac() && Ra != zr) \ 445 nop(); \ 446 Assembler::INSN(Rd, Rn, Rm, Ra); \ 447 } 448 449 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 450 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 451 #undef WRAP 452 453 454 // macro assembly operations needed for aarch64 455 456 // first two private routines for loading 32 bit or 64 bit constants 457 private: 458 459 void mov_immediate64(Register dst, uint64_t imm64); 460 void mov_immediate32(Register dst, uint32_t imm32); 461 462 int push(unsigned int bitset, Register stack); 463 int pop(unsigned int bitset, Register stack); 464 465 int push_fp(unsigned int bitset, Register stack); 466 int pop_fp(unsigned int bitset, Register stack); 467 468 int push_p(unsigned int bitset, Register stack); 469 int pop_p(unsigned int bitset, Register stack); 470 471 void mov(Register dst, Address a); 472 473 public: 474 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 475 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 476 477 void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); } 478 void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); } 479 480 static RegSet call_clobbered_gp_registers(); 481 482 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 483 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 484 485 // Push and pop everything that might be clobbered by a native 486 // runtime call except rscratch1 and rscratch2. (They are always 487 // scratch, so we don't have to protect them.) Only save the lower 488 // 64 bits of each vector register. Additional registers can be excluded 489 // in a passed RegSet. 490 void push_call_clobbered_registers_except(RegSet exclude); 491 void pop_call_clobbered_registers_except(RegSet exclude); 492 493 void push_call_clobbered_registers() { 494 push_call_clobbered_registers_except(RegSet()); 495 } 496 void pop_call_clobbered_registers() { 497 pop_call_clobbered_registers_except(RegSet()); 498 } 499 500 501 // now mov instructions for loading absolute addresses and 32 or 502 // 64 bit integers 503 504 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 505 506 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 507 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 508 509 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 510 511 void mov(Register dst, RegisterOrConstant src) { 512 if (src.is_register()) 513 mov(dst, src.as_register()); 514 else 515 mov(dst, src.as_constant()); 516 } 517 518 void movptr(Register r, uintptr_t imm64); 519 520 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 521 522 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 523 orr(Vd, T, Vn, Vn); 524 } 525 526 527 public: 528 529 // Generalized Test Bit And Branch, including a "far" variety which 530 // spans more than 32KiB. 531 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 532 assert(cond == EQ || cond == NE, "must be"); 533 534 if (isfar) 535 cond = ~cond; 536 537 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 538 if (cond == Assembler::EQ) 539 branch = &Assembler::tbz; 540 else 541 branch = &Assembler::tbnz; 542 543 if (isfar) { 544 Label L; 545 (this->*branch)(Rt, bitpos, L); 546 b(dest); 547 bind(L); 548 } else { 549 (this->*branch)(Rt, bitpos, dest); 550 } 551 } 552 553 // macro instructions for accessing and updating floating point 554 // status register 555 // 556 // FPSR : op1 == 011 557 // CRn == 0100 558 // CRm == 0100 559 // op2 == 001 560 561 inline void get_fpsr(Register reg) 562 { 563 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 564 } 565 566 inline void set_fpsr(Register reg) 567 { 568 msr(0b011, 0b0100, 0b0100, 0b001, reg); 569 } 570 571 inline void clear_fpsr() 572 { 573 msr(0b011, 0b0100, 0b0100, 0b001, zr); 574 } 575 576 // DCZID_EL0: op1 == 011 577 // CRn == 0000 578 // CRm == 0000 579 // op2 == 111 580 inline void get_dczid_el0(Register reg) 581 { 582 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 583 } 584 585 // CTR_EL0: op1 == 011 586 // CRn == 0000 587 // CRm == 0000 588 // op2 == 001 589 inline void get_ctr_el0(Register reg) 590 { 591 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 592 } 593 594 inline void get_nzcv(Register reg) { 595 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 596 } 597 598 inline void set_nzcv(Register reg) { 599 msr(0b011, 0b0100, 0b0010, 0b000, reg); 600 } 601 602 // idiv variant which deals with MINLONG as dividend and -1 as divisor 603 int corrected_idivl(Register result, Register ra, Register rb, 604 bool want_remainder, Register tmp = rscratch1); 605 int corrected_idivq(Register result, Register ra, Register rb, 606 bool want_remainder, Register tmp = rscratch1); 607 608 // Support for NULL-checks 609 // 610 // Generates code that causes a NULL OS exception if the content of reg is NULL. 611 // If the accessed location is M[reg + offset] and the offset is known, provide the 612 // offset. No explicit code generation is needed if the offset is within a certain 613 // range (0 <= offset <= page_size). 614 615 virtual void null_check(Register reg, int offset = -1); 616 static bool needs_explicit_null_check(intptr_t offset); 617 static bool uses_implicit_null_check(void* address); 618 619 static address target_addr_for_insn(address insn_addr, unsigned insn); 620 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 621 static address target_addr_for_insn(address insn_addr) { 622 unsigned insn = *(unsigned*)insn_addr; 623 return target_addr_for_insn(insn_addr, insn); 624 } 625 static address target_addr_for_insn_or_null(address insn_addr) { 626 unsigned insn = *(unsigned*)insn_addr; 627 return target_addr_for_insn_or_null(insn_addr, insn); 628 } 629 630 // Required platform-specific helpers for Label::patch_instructions. 631 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 632 static int pd_patch_instruction_size(address branch, address target); 633 static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) { 634 pd_patch_instruction_size(branch, target); 635 } 636 static address pd_call_destination(address branch) { 637 return target_addr_for_insn(branch); 638 } 639 #ifndef PRODUCT 640 static void pd_print_patched_instruction(address branch); 641 #endif 642 643 static int patch_oop(address insn_addr, address o); 644 static int patch_narrow_klass(address insn_addr, narrowKlass n); 645 646 // Return whether code is emitted to a scratch blob. 647 virtual bool in_scratch_emit_size() { 648 return false; 649 } 650 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 651 static int max_trampoline_stub_size(); 652 void emit_static_call_stub(); 653 static int static_call_stub_size(); 654 655 // The following 4 methods return the offset of the appropriate move instruction 656 657 // Support for fast byte/short loading with zero extension (depending on particular CPU) 658 int load_unsigned_byte(Register dst, Address src); 659 int load_unsigned_short(Register dst, Address src); 660 661 // Support for fast byte/short loading with sign extension (depending on particular CPU) 662 int load_signed_byte(Register dst, Address src); 663 int load_signed_short(Register dst, Address src); 664 665 int load_signed_byte32(Register dst, Address src); 666 int load_signed_short32(Register dst, Address src); 667 668 // Support for sign-extension (hi:lo = extend_sign(lo)) 669 void extend_sign(Register hi, Register lo); 670 671 // Load and store values by size and signed-ness 672 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 673 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 674 675 // Support for inc/dec with optimal instruction selection depending on value 676 677 // x86_64 aliases an unqualified register/address increment and 678 // decrement to call incrementq and decrementq but also supports 679 // explicitly sized calls to incrementq/decrementq or 680 // incrementl/decrementl 681 682 // for aarch64 the proper convention would be to use 683 // increment/decrement for 64 bit operations and 684 // incrementw/decrementw for 32 bit operations. so when porting 685 // x86_64 code we can leave calls to increment/decrement as is, 686 // replace incrementq/decrementq with increment/decrement and 687 // replace incrementl/decrementl with incrementw/decrementw. 688 689 // n.b. increment/decrement calls with an Address destination will 690 // need to use a scratch register to load the value to be 691 // incremented. increment/decrement calls which add or subtract a 692 // constant value greater than 2^12 will need to use a 2nd scratch 693 // register to hold the constant. so, a register increment/decrement 694 // may trash rscratch2 and an address increment/decrement trash 695 // rscratch and rscratch2 696 697 void decrementw(Address dst, int value = 1); 698 void decrementw(Register reg, int value = 1); 699 700 void decrement(Register reg, int value = 1); 701 void decrement(Address dst, int value = 1); 702 703 void incrementw(Address dst, int value = 1); 704 void incrementw(Register reg, int value = 1); 705 706 void increment(Register reg, int value = 1); 707 void increment(Address dst, int value = 1); 708 709 710 // Alignment 711 void align(int modulus); 712 713 // nop 714 void post_call_nop(); 715 716 // Stack frame creation/removal 717 void enter(bool strip_ret_addr = false); 718 void leave(); 719 720 // ROP Protection 721 void protect_return_address(); 722 void protect_return_address(Register return_reg, Register temp_reg); 723 void authenticate_return_address(Register return_reg = lr); 724 void authenticate_return_address(Register return_reg, Register temp_reg); 725 void strip_return_address(); 726 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 727 728 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 729 // The pointer will be loaded into the thread register. 730 void get_thread(Register thread); 731 732 // support for argument shuffling 733 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 734 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 735 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 736 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 737 void object_move( 738 OopMap* map, 739 int oop_handle_offset, 740 int framesize_in_slots, 741 VMRegPair src, 742 VMRegPair dst, 743 bool is_receiver, 744 int* receiver_offset); 745 746 747 // Support for VM calls 748 // 749 // It is imperative that all calls into the VM are handled via the call_VM macros. 750 // They make sure that the stack linkage is setup correctly. call_VM's correspond 751 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 752 753 754 void call_VM(Register oop_result, 755 address entry_point, 756 bool check_exceptions = true); 757 void call_VM(Register oop_result, 758 address entry_point, 759 Register arg_1, 760 bool check_exceptions = true); 761 void call_VM(Register oop_result, 762 address entry_point, 763 Register arg_1, Register arg_2, 764 bool check_exceptions = true); 765 void call_VM(Register oop_result, 766 address entry_point, 767 Register arg_1, Register arg_2, Register arg_3, 768 bool check_exceptions = true); 769 770 // Overloadings with last_Java_sp 771 void call_VM(Register oop_result, 772 Register last_java_sp, 773 address entry_point, 774 int number_of_arguments = 0, 775 bool check_exceptions = true); 776 void call_VM(Register oop_result, 777 Register last_java_sp, 778 address entry_point, 779 Register arg_1, bool 780 check_exceptions = true); 781 void call_VM(Register oop_result, 782 Register last_java_sp, 783 address entry_point, 784 Register arg_1, Register arg_2, 785 bool check_exceptions = true); 786 void call_VM(Register oop_result, 787 Register last_java_sp, 788 address entry_point, 789 Register arg_1, Register arg_2, Register arg_3, 790 bool check_exceptions = true); 791 792 void get_vm_result (Register oop_result, Register thread); 793 void get_vm_result_2(Register metadata_result, Register thread); 794 795 // These always tightly bind to MacroAssembler::call_VM_base 796 // bypassing the virtual implementation 797 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 798 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 799 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 800 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 801 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 802 803 void call_VM_leaf(address entry_point, 804 int number_of_arguments = 0); 805 void call_VM_leaf(address entry_point, 806 Register arg_1); 807 void call_VM_leaf(address entry_point, 808 Register arg_1, Register arg_2); 809 void call_VM_leaf(address entry_point, 810 Register arg_1, Register arg_2, Register arg_3); 811 812 // These always tightly bind to MacroAssembler::call_VM_leaf_base 813 // bypassing the virtual implementation 814 void super_call_VM_leaf(address entry_point); 815 void super_call_VM_leaf(address entry_point, Register arg_1); 816 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 817 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 818 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 819 820 // last Java Frame (fills frame anchor) 821 void set_last_Java_frame(Register last_java_sp, 822 Register last_java_fp, 823 address last_java_pc, 824 Register scratch); 825 826 void set_last_Java_frame(Register last_java_sp, 827 Register last_java_fp, 828 Label &last_java_pc, 829 Register scratch); 830 831 void set_last_Java_frame(Register last_java_sp, 832 Register last_java_fp, 833 Register last_java_pc, 834 Register scratch); 835 836 void reset_last_Java_frame(Register thread); 837 838 // thread in the default location (rthread) 839 void reset_last_Java_frame(bool clear_fp); 840 841 // Stores 842 void store_check(Register obj); // store check for obj - register is destroyed afterwards 843 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 844 845 void resolve_jobject(Register value, Register tmp1, Register tmp2); 846 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 847 848 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 849 void c2bool(Register x); 850 851 void load_method_holder_cld(Register rresult, Register rmethod); 852 void load_method_holder(Register holder, Register method); 853 854 // oop manipulations 855 void load_nklass(Register dst, Register src); 856 void load_klass(Register dst, Register src); 857 void load_klass_check_null(Register dst, Register src); 858 void store_klass(Register dst, Register src); 859 void cmp_klass(Register oop, Register trial_klass, Register tmp); 860 861 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 862 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 863 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 864 865 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 866 Register tmp1, Register tmp2); 867 868 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 869 Register tmp1, Register tmp2, Register tmp3); 870 871 void load_heap_oop(Register dst, Address src, Register tmp1, 872 Register tmp2, DecoratorSet decorators = 0); 873 874 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 875 Register tmp2, DecoratorSet decorators = 0); 876 void store_heap_oop(Address dst, Register val, Register tmp1, 877 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 878 879 // currently unimplemented 880 // Used for storing NULL. All other oop constants should be 881 // stored using routines that take a jobject. 882 void store_heap_oop_null(Address dst); 883 884 void store_klass_gap(Register dst, Register src); 885 886 // This dummy is to prevent a call to store_heap_oop from 887 // converting a zero (like NULL) into a Register by giving 888 // the compiler two choices it can't resolve 889 890 void store_heap_oop(Address dst, void* dummy); 891 892 void encode_heap_oop(Register d, Register s); 893 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 894 void decode_heap_oop(Register d, Register s); 895 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 896 void encode_heap_oop_not_null(Register r); 897 void decode_heap_oop_not_null(Register r); 898 void encode_heap_oop_not_null(Register dst, Register src); 899 void decode_heap_oop_not_null(Register dst, Register src); 900 901 void set_narrow_oop(Register dst, jobject obj); 902 903 void encode_klass_not_null(Register r); 904 void decode_klass_not_null(Register r); 905 void encode_klass_not_null(Register dst, Register src); 906 void decode_klass_not_null(Register dst, Register src); 907 908 void set_narrow_klass(Register dst, Klass* k); 909 910 // if heap base register is used - reinit it with the correct value 911 void reinit_heapbase(); 912 913 DEBUG_ONLY(void verify_heapbase(const char* msg);) 914 915 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 916 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 917 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 918 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 919 920 void push_cont_fastpath(Register java_thread); 921 void pop_cont_fastpath(Register java_thread); 922 923 // Round up to a power of two 924 void round_to(Register reg, int modulus); 925 926 // java.lang.Math::round intrinsics 927 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 928 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 929 930 // allocation 931 void tlab_allocate( 932 Register obj, // result: pointer to object after successful allocation 933 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 934 int con_size_in_bytes, // object size in bytes if known at compile time 935 Register t1, // temp register 936 Register t2, // temp register 937 Label& slow_case // continuation point if fast allocation fails 938 ); 939 void verify_tlab(); 940 941 // interface method calling 942 void lookup_interface_method(Register recv_klass, 943 Register intf_klass, 944 RegisterOrConstant itable_index, 945 Register method_result, 946 Register scan_temp, 947 Label& no_such_interface, 948 bool return_method = true); 949 950 // virtual method calling 951 // n.b. x86 allows RegisterOrConstant for vtable_index 952 void lookup_virtual_method(Register recv_klass, 953 RegisterOrConstant vtable_index, 954 Register method_result); 955 956 // Test sub_klass against super_klass, with fast and slow paths. 957 958 // The fast path produces a tri-state answer: yes / no / maybe-slow. 959 // One of the three labels can be NULL, meaning take the fall-through. 960 // If super_check_offset is -1, the value is loaded up from super_klass. 961 // No registers are killed, except temp_reg. 962 void check_klass_subtype_fast_path(Register sub_klass, 963 Register super_klass, 964 Register temp_reg, 965 Label* L_success, 966 Label* L_failure, 967 Label* L_slow_path, 968 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 969 970 // The rest of the type check; must be wired to a corresponding fast path. 971 // It does not repeat the fast path logic, so don't use it standalone. 972 // The temp_reg and temp2_reg can be noreg, if no temps are available. 973 // Updates the sub's secondary super cache as necessary. 974 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 975 void check_klass_subtype_slow_path(Register sub_klass, 976 Register super_klass, 977 Register temp_reg, 978 Register temp2_reg, 979 Label* L_success, 980 Label* L_failure, 981 bool set_cond_codes = false); 982 983 // Simplified, combined version, good for typical uses. 984 // Falls through on failure. 985 void check_klass_subtype(Register sub_klass, 986 Register super_klass, 987 Register temp_reg, 988 Label& L_success); 989 990 void clinit_barrier(Register klass, 991 Register thread, 992 Label* L_fast_path = NULL, 993 Label* L_slow_path = NULL); 994 995 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 996 997 void verify_sve_vector_length(Register tmp = rscratch1); 998 void reinitialize_ptrue() { 999 if (UseSVE > 0) { 1000 sve_ptrue(ptrue, B); 1001 } 1002 } 1003 void verify_ptrue(); 1004 1005 // Debugging 1006 1007 // only if +VerifyOops 1008 void _verify_oop(Register reg, const char* s, const char* file, int line); 1009 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1010 1011 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1012 if (VerifyOops) { 1013 _verify_oop(reg, s, file, line); 1014 } 1015 } 1016 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1017 if (VerifyOops) { 1018 _verify_oop_addr(reg, s, file, line); 1019 } 1020 } 1021 1022 // TODO: verify method and klass metadata (compare against vptr?) 1023 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1024 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1025 1026 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1027 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1028 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1029 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1030 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1031 1032 // only if +VerifyFPU 1033 void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); 1034 1035 // prints msg, dumps registers and stops execution 1036 void stop(const char* msg); 1037 1038 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1039 1040 void untested() { stop("untested"); } 1041 1042 void unimplemented(const char* what = ""); 1043 1044 void should_not_reach_here() { stop("should not reach here"); } 1045 1046 void _assert_asm(Condition cc, const char* msg); 1047 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1048 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1049 1050 // Stack overflow checking 1051 void bang_stack_with_offset(int offset) { 1052 // stack grows down, caller passes positive offset 1053 assert(offset > 0, "must bang with negative offset"); 1054 sub(rscratch2, sp, offset); 1055 str(zr, Address(rscratch2)); 1056 } 1057 1058 // Writes to stack successive pages until offset reached to check for 1059 // stack overflow + shadow pages. Also, clobbers tmp 1060 void bang_stack_size(Register size, Register tmp); 1061 1062 // Check for reserved stack access in method being exited (for JIT) 1063 void reserved_stack_check(); 1064 1065 // Arithmetics 1066 1067 void addptr(const Address &dst, int32_t src); 1068 void cmpptr(Register src1, Address src2); 1069 1070 void cmpoop(Register obj1, Register obj2); 1071 1072 // Various forms of CAS 1073 1074 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1075 Label &succeed, Label *fail); 1076 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1077 Label &succeed, Label *fail); 1078 1079 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1080 Label &succeed, Label *fail); 1081 1082 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1083 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1084 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1085 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1086 1087 void atomic_xchg(Register prev, Register newv, Register addr); 1088 void atomic_xchgw(Register prev, Register newv, Register addr); 1089 void atomic_xchgl(Register prev, Register newv, Register addr); 1090 void atomic_xchglw(Register prev, Register newv, Register addr); 1091 void atomic_xchgal(Register prev, Register newv, Register addr); 1092 void atomic_xchgalw(Register prev, Register newv, Register addr); 1093 1094 void orptr(Address adr, RegisterOrConstant src) { 1095 ldr(rscratch1, adr); 1096 if (src.is_register()) 1097 orr(rscratch1, rscratch1, src.as_register()); 1098 else 1099 orr(rscratch1, rscratch1, src.as_constant()); 1100 str(rscratch1, adr); 1101 } 1102 1103 // A generic CAS; success or failure is in the EQ flag. 1104 // Clobbers rscratch1 1105 void cmpxchg(Register addr, Register expected, Register new_val, 1106 enum operand_size size, 1107 bool acquire, bool release, bool weak, 1108 Register result); 1109 1110 #ifdef ASSERT 1111 // Template short-hand support to clean-up after a failed call to trampoline 1112 // call generation (see trampoline_call() below), when a set of Labels must 1113 // be reset (before returning). 1114 template<typename Label, typename... More> 1115 void reset_labels(Label &lbl, More&... more) { 1116 lbl.reset(); reset_labels(more...); 1117 } 1118 template<typename Label> 1119 void reset_labels(Label &lbl) { 1120 lbl.reset(); 1121 } 1122 #endif 1123 1124 private: 1125 void compare_eq(Register rn, Register rm, enum operand_size size); 1126 1127 public: 1128 // AArch64 OpenJDK uses four different types of calls: 1129 // - direct call: bl pc_relative_offset 1130 // This is the shortest and the fastest, but the offset has the range: 1131 // +/-128MB for the release build, +/-2MB for the debug build. 1132 // 1133 // - far call: adrp reg, pc_relative_offset; add; bl reg 1134 // This is longer than a direct call. The offset has 1135 // the range +/-4GB. As the code cache size is limited to 4GB, 1136 // far calls can reach anywhere in the code cache. If a jump is 1137 // needed rather than a call, a far jump 'b reg' can be used instead. 1138 // All instructions are embedded at a call site. 1139 // 1140 // - trampoline call: 1141 // This is only available in C1/C2-generated code (nmethod). It is a combination 1142 // of a direct call, which is used if the destination of a call is in range, 1143 // and a register-indirect call. It has the advantages of reaching anywhere in 1144 // the AArch64 address space and being patchable at runtime when the generated 1145 // code is being executed by other threads. 1146 // 1147 // [Main code section] 1148 // bl trampoline 1149 // [Stub code section] 1150 // trampoline: 1151 // ldr reg, pc + 8 1152 // br reg 1153 // <64-bit destination address> 1154 // 1155 // If the destination is in range when the generated code is moved to the code 1156 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1157 // is not used. 1158 // The optimization does not remove the trampoline from the stub section. 1159 // This is necessary because the trampoline may well be redirected later when 1160 // code is patched, and the new destination may not be reachable by a simple BR 1161 // instruction. 1162 // 1163 // - indirect call: move reg, address; blr reg 1164 // This too can reach anywhere in the address space, but it cannot be 1165 // patched while code is running, so it must only be modified at a safepoint. 1166 // This form of call is most suitable for targets at fixed addresses, which 1167 // will never be patched. 1168 // 1169 // The patching we do conforms to the "Concurrent modification and 1170 // execution of instructions" section of the Arm Architectural 1171 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1172 // or SVC instructions to be modified while another thread is 1173 // executing them. 1174 // 1175 // To patch a trampoline call when the BL can't reach, we first modify 1176 // the 64-bit destination address in the trampoline, then modify the 1177 // BL to point to the trampoline, then flush the instruction cache to 1178 // broadcast the change to all executing threads. See 1179 // NativeCall::set_destination_mt_safe for the details. 1180 // 1181 // There is a benign race in that the other thread might observe the 1182 // modified BL before it observes the modified 64-bit destination 1183 // address. That does not matter because the destination method has been 1184 // invalidated, so there will be a trap at its start. 1185 // For this to work, the destination address in the trampoline is 1186 // always updated, even if we're not using the trampoline. 1187 1188 // Emit a direct call if the entry address will always be in range, 1189 // otherwise a trampoline call. 1190 // Supported entry.rspec(): 1191 // - relocInfo::runtime_call_type 1192 // - relocInfo::opt_virtual_call_type 1193 // - relocInfo::static_call_type 1194 // - relocInfo::virtual_call_type 1195 // 1196 // Return: the call PC or NULL if CodeCache is full. 1197 address trampoline_call(Address entry); 1198 1199 static bool far_branches() { 1200 return ReservedCodeCacheSize > branch_range; 1201 } 1202 1203 // Check if branches to the non nmethod section require a far jump 1204 static bool codestub_branch_needs_far_jump() { 1205 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1206 } 1207 1208 // Emit a direct call/jump if the entry address will always be in range, 1209 // otherwise a far call/jump. 1210 // The address must be inside the code cache. 1211 // Supported entry.rspec(): 1212 // - relocInfo::external_word_type 1213 // - relocInfo::runtime_call_type 1214 // - relocInfo::none 1215 // In the case of a far call/jump, the entry address is put in the tmp register. 1216 // The tmp register is invalidated. 1217 // 1218 // Far_jump returns the amount of the emitted code. 1219 void far_call(Address entry, Register tmp = rscratch1); 1220 int far_jump(Address entry, Register tmp = rscratch1); 1221 1222 static int far_codestub_branch_size() { 1223 if (codestub_branch_needs_far_jump()) { 1224 return 3 * 4; // adrp, add, br 1225 } else { 1226 return 4; 1227 } 1228 } 1229 1230 // Emit the CompiledIC call idiom 1231 address ic_call(address entry, jint method_index = 0); 1232 1233 public: 1234 1235 // Data 1236 1237 void mov_metadata(Register dst, Metadata* obj); 1238 Address allocate_metadata_address(Metadata* obj); 1239 Address constant_oop_address(jobject obj); 1240 1241 void movoop(Register dst, jobject obj); 1242 1243 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1244 void kernel_crc32(Register crc, Register buf, Register len, 1245 Register table0, Register table1, Register table2, Register table3, 1246 Register tmp, Register tmp2, Register tmp3); 1247 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1248 void kernel_crc32c(Register crc, Register buf, Register len, 1249 Register table0, Register table1, Register table2, Register table3, 1250 Register tmp, Register tmp2, Register tmp3); 1251 1252 // Stack push and pop individual 64 bit registers 1253 void push(Register src); 1254 void pop(Register dst); 1255 1256 void repne_scan(Register addr, Register value, Register count, 1257 Register scratch); 1258 void repne_scanw(Register addr, Register value, Register count, 1259 Register scratch); 1260 1261 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1262 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1263 1264 // If a constant does not fit in an immediate field, generate some 1265 // number of MOV instructions and then perform the operation 1266 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1267 add_sub_imm_insn insn1, 1268 add_sub_reg_insn insn2, bool is32); 1269 // Separate vsn which sets the flags 1270 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1271 add_sub_imm_insn insn1, 1272 add_sub_reg_insn insn2, bool is32); 1273 1274 #define WRAP(INSN, is32) \ 1275 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1276 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1277 } \ 1278 \ 1279 void INSN(Register Rd, Register Rn, Register Rm, \ 1280 enum shift_kind kind, unsigned shift = 0) { \ 1281 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1282 } \ 1283 \ 1284 void INSN(Register Rd, Register Rn, Register Rm) { \ 1285 Assembler::INSN(Rd, Rn, Rm); \ 1286 } \ 1287 \ 1288 void INSN(Register Rd, Register Rn, Register Rm, \ 1289 ext::operation option, int amount = 0) { \ 1290 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1291 } 1292 1293 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1294 1295 #undef WRAP 1296 #define WRAP(INSN, is32) \ 1297 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1298 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1299 } \ 1300 \ 1301 void INSN(Register Rd, Register Rn, Register Rm, \ 1302 enum shift_kind kind, unsigned shift = 0) { \ 1303 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1304 } \ 1305 \ 1306 void INSN(Register Rd, Register Rn, Register Rm) { \ 1307 Assembler::INSN(Rd, Rn, Rm); \ 1308 } \ 1309 \ 1310 void INSN(Register Rd, Register Rn, Register Rm, \ 1311 ext::operation option, int amount = 0) { \ 1312 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1313 } 1314 1315 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1316 1317 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1318 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1319 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1320 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1321 1322 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1323 1324 void tableswitch(Register index, jint lowbound, jint highbound, 1325 Label &jumptable, Label &jumptable_end, int stride = 1) { 1326 adr(rscratch1, jumptable); 1327 subsw(rscratch2, index, lowbound); 1328 subsw(zr, rscratch2, highbound - lowbound); 1329 br(Assembler::HS, jumptable_end); 1330 add(rscratch1, rscratch1, rscratch2, 1331 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1332 br(rscratch1); 1333 } 1334 1335 // Form an address from base + offset in Rd. Rd may or may not 1336 // actually be used: you must use the Address that is returned. It 1337 // is up to you to ensure that the shift provided matches the size 1338 // of your data. 1339 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1340 1341 // Return true iff an address is within the 48-bit AArch64 address 1342 // space. 1343 bool is_valid_AArch64_address(address a) { 1344 return ((uint64_t)a >> 48) == 0; 1345 } 1346 1347 // Load the base of the cardtable byte map into reg. 1348 void load_byte_map_base(Register reg); 1349 1350 // Prolog generator routines to support switch between x86 code and 1351 // generated ARM code 1352 1353 // routine to generate an x86 prolog for a stub function which 1354 // bootstraps into the generated ARM code which directly follows the 1355 // stub 1356 // 1357 1358 public: 1359 1360 void ldr_constant(Register dest, const Address &const_addr) { 1361 if (NearCpool) { 1362 ldr(dest, const_addr); 1363 } else { 1364 uint64_t offset; 1365 adrp(dest, InternalAddress(const_addr.target()), offset); 1366 ldr(dest, Address(dest, offset)); 1367 } 1368 } 1369 1370 address read_polling_page(Register r, relocInfo::relocType rtype); 1371 void get_polling_page(Register dest, relocInfo::relocType rtype); 1372 1373 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1374 void update_byte_crc32(Register crc, Register val, Register table); 1375 void update_word_crc32(Register crc, Register v, Register tmp, 1376 Register table0, Register table1, Register table2, Register table3, 1377 bool upper = false); 1378 1379 address count_positives(Register ary1, Register len, Register result); 1380 1381 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1382 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1383 1384 void string_equals(Register a1, Register a2, Register result, Register cnt1, 1385 int elem_size); 1386 1387 void fill_words(Register base, Register cnt, Register value); 1388 address zero_words(Register base, uint64_t cnt); 1389 address zero_words(Register ptr, Register cnt); 1390 void zero_dcache_blocks(Register base, Register cnt); 1391 1392 static const int zero_words_block_size; 1393 1394 address byte_array_inflate(Register src, Register dst, Register len, 1395 FloatRegister vtmp1, FloatRegister vtmp2, 1396 FloatRegister vtmp3, Register tmp4); 1397 1398 void char_array_compress(Register src, Register dst, Register len, 1399 Register res, 1400 FloatRegister vtmp0, FloatRegister vtmp1, 1401 FloatRegister vtmp2, FloatRegister vtmp3); 1402 1403 void encode_iso_array(Register src, Register dst, 1404 Register len, Register res, bool ascii, 1405 FloatRegister vtmp0, FloatRegister vtmp1, 1406 FloatRegister vtmp2, FloatRegister vtmp3); 1407 1408 void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2, 1409 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5, 1410 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3, 1411 FloatRegister tmpC4, Register tmp1, Register tmp2, 1412 Register tmp3, Register tmp4, Register tmp5); 1413 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1414 address pio2, address dsin_coef, address dcos_coef); 1415 private: 1416 // begin trigonometric functions support block 1417 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1418 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1419 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1420 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1421 // end trigonometric functions support block 1422 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1423 Register src1, Register src2); 1424 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1425 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1426 } 1427 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1428 Register y, Register y_idx, Register z, 1429 Register carry, Register product, 1430 Register idx, Register kdx); 1431 void multiply_128_x_128_loop(Register y, Register z, 1432 Register carry, Register carry2, 1433 Register idx, Register jdx, 1434 Register yz_idx1, Register yz_idx2, 1435 Register tmp, Register tmp3, Register tmp4, 1436 Register tmp7, Register product_hi); 1437 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1438 Register len, Register tmp0, Register tmp1, Register tmp2, 1439 Register tmp3); 1440 void kernel_crc32_using_crc32(Register crc, Register buf, 1441 Register len, Register tmp0, Register tmp1, Register tmp2, 1442 Register tmp3); 1443 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1444 Register len, Register tmp0, Register tmp1, Register tmp2, 1445 Register tmp3); 1446 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1447 Register len, Register tmp0, Register tmp1, Register tmp2, 1448 size_t table_offset); 1449 1450 void ghash_modmul (FloatRegister result, 1451 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1452 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1453 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1454 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1455 public: 1456 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1457 Register zlen, Register tmp1, Register tmp2, Register tmp3, 1458 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1459 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1460 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1461 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1462 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1463 void ghash_multiply_wide(int index, 1464 FloatRegister result_lo, FloatRegister result_hi, 1465 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1466 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1467 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1468 FloatRegister p, FloatRegister z, FloatRegister t1); 1469 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1470 FloatRegister p, FloatRegister z, FloatRegister t1); 1471 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1472 Register data, Register blocks, int unrolls); 1473 1474 1475 void aesenc_loadkeys(Register key, Register keylen); 1476 void aesecb_encrypt(Register from, Register to, Register keylen, 1477 FloatRegister data = v0, int unrolls = 1); 1478 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1479 void aes_round(FloatRegister input, FloatRegister subkey); 1480 1481 // ChaCha20 functions support block 1482 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1483 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1484 FloatRegister tbl); 1485 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1486 FloatRegister dVec, bool colToDiag); 1487 1488 // Place an ISB after code may have been modified due to a safepoint. 1489 void safepoint_isb(); 1490 1491 private: 1492 // Return the effective address r + (r1 << ext) + offset. 1493 // Uses rscratch2. 1494 Address offsetted_address(Register r, Register r1, Address::extend ext, 1495 int offset, int size); 1496 1497 private: 1498 // Returns an address on the stack which is reachable with a ldr/str of size 1499 // Uses rscratch2 if the address is not directly reachable 1500 Address spill_address(int size, int offset, Register tmp=rscratch2); 1501 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1502 1503 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1504 1505 // Check whether two loads/stores can be merged into ldp/stp. 1506 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1507 1508 // Merge current load/store with previous load/store into ldp/stp. 1509 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1510 1511 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1512 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1513 1514 public: 1515 void spill(Register Rx, bool is64, int offset) { 1516 if (is64) { 1517 str(Rx, spill_address(8, offset)); 1518 } else { 1519 strw(Rx, spill_address(4, offset)); 1520 } 1521 } 1522 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1523 str(Vx, T, spill_address(1 << (int)T, offset)); 1524 } 1525 1526 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1527 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1528 } 1529 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1530 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1531 } 1532 1533 void unspill(Register Rx, bool is64, int offset) { 1534 if (is64) { 1535 ldr(Rx, spill_address(8, offset)); 1536 } else { 1537 ldrw(Rx, spill_address(4, offset)); 1538 } 1539 } 1540 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1541 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1542 } 1543 1544 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1545 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1546 } 1547 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1548 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1549 } 1550 1551 void spill_copy128(int src_offset, int dst_offset, 1552 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1553 if (src_offset < 512 && (src_offset & 7) == 0 && 1554 dst_offset < 512 && (dst_offset & 7) == 0) { 1555 ldp(tmp1, tmp2, Address(sp, src_offset)); 1556 stp(tmp1, tmp2, Address(sp, dst_offset)); 1557 } else { 1558 unspill(tmp1, true, src_offset); 1559 spill(tmp1, true, dst_offset); 1560 unspill(tmp1, true, src_offset+8); 1561 spill(tmp1, true, dst_offset+8); 1562 } 1563 } 1564 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1565 int sve_vec_reg_size_in_bytes) { 1566 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1567 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1568 spill_copy128(src_offset, dst_offset); 1569 src_offset += 16; 1570 dst_offset += 16; 1571 } 1572 } 1573 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1574 int sve_predicate_reg_size_in_bytes) { 1575 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1576 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1577 reinitialize_ptrue(); 1578 } 1579 void cache_wb(Address line); 1580 void cache_wbsync(bool is_pre); 1581 1582 // Code for java.lang.Thread::onSpinWait() intrinsic. 1583 void spin_wait(); 1584 1585 void fast_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow, bool rt_check_stack = true); 1586 void fast_unlock(Register obj, Register hdr, Register t1, Register t2, Label& slow); 1587 1588 private: 1589 // Check the current thread doesn't need a cross modify fence. 1590 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1591 1592 }; 1593 1594 #ifdef ASSERT 1595 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1596 #endif 1597 1598 /** 1599 * class SkipIfEqual: 1600 * 1601 * Instantiating this class will result in assembly code being output that will 1602 * jump around any code emitted between the creation of the instance and it's 1603 * automatic destruction at the end of a scope block, depending on the value of 1604 * the flag passed to the constructor, which will be checked at run-time. 1605 */ 1606 class SkipIfEqual { 1607 private: 1608 MacroAssembler* _masm; 1609 Label _label; 1610 1611 public: 1612 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); 1613 ~SkipIfEqual(); 1614 }; 1615 1616 struct tableswitch { 1617 Register _reg; 1618 int _insn_index; jint _first_key; jint _last_key; 1619 Label _after; 1620 Label _branches; 1621 }; 1622 1623 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP