1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/debugInfoRec.hpp" 33 #include "code/icBuffer.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSetAssembler.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interp_masm.hpp" 39 #include "logging/log.hpp" 40 #include "memory/resourceArea.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/compiledICHolder.hpp" 43 #include "oops/klass.inline.hpp" 44 #include "oops/method.inline.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/continuation.hpp" 47 #include "runtime/continuationEntry.inline.hpp" 48 #include "runtime/globals.hpp" 49 #include "runtime/jniHandles.hpp" 50 #include "runtime/safepointMechanism.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 #include "runtime/signature.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/align.hpp" 56 #include "utilities/formatBuffer.hpp" 57 #include "vmreg_aarch64.inline.hpp" 58 #ifdef COMPILER1 59 #include "c1/c1_Runtime1.hpp" 60 #endif 61 #ifdef COMPILER2 62 #include "adfiles/ad_aarch64.hpp" 63 #include "opto/runtime.hpp" 64 #endif 65 #if INCLUDE_JVMCI 66 #include "jvmci/jvmciJavaClasses.hpp" 67 #endif 68 69 #define __ masm-> 70 71 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 72 73 class SimpleRuntimeFrame { 74 75 public: 76 77 // Most of the runtime stubs have this simple frame layout. 78 // This class exists to make the layout shared in one place. 79 // Offsets are for compiler stack slots, which are jints. 80 enum layout { 81 // The frame sender code expects that rbp will be in the "natural" place and 82 // will override any oopMap setting for it. We must therefore force the layout 83 // so that it agrees with the frame sender code. 84 // we don't expect any arg reg save area so aarch64 asserts that 85 // frame::arg_reg_save_area_bytes == 0 86 rfp_off = 0, 87 rfp_off2, 88 return_off, return_off2, 89 framesize 90 }; 91 }; 92 93 // FIXME -- this is used by C1 94 class RegisterSaver { 95 const bool _save_vectors; 96 public: 97 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 98 99 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 100 void restore_live_registers(MacroAssembler* masm); 101 102 // Offsets into the register save area 103 // Used by deoptimization when it is managing result register 104 // values on its own 105 106 int reg_offset_in_bytes(Register r); 107 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 108 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 109 int v0_offset_in_bytes(); 110 111 // Total stack size in bytes for saving sve predicate registers. 112 int total_sve_predicate_in_bytes(); 113 114 // Capture info about frame layout 115 // Note this is only correct when not saving full vectors. 116 enum layout { 117 fpu_state_off = 0, 118 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 119 // The frame sender code expects that rfp will be in 120 // the "natural" place and will override any oopMap 121 // setting for it. We must therefore force the layout 122 // so that it agrees with the frame sender code. 123 r0_off = fpu_state_off + FPUStateSizeInWords, 124 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 125 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 126 reg_save_size = return_off + Register::max_slots_per_register}; 127 128 }; 129 130 int RegisterSaver::reg_offset_in_bytes(Register r) { 131 // The integer registers are located above the floating point 132 // registers in the stack frame pushed by save_live_registers() so the 133 // offset depends on whether we are saving full vectors, and whether 134 // those vectors are NEON or SVE. 135 136 int slots_per_vect = FloatRegister::save_slots_per_register; 137 138 #if COMPILER2_OR_JVMCI 139 if (_save_vectors) { 140 slots_per_vect = FloatRegister::slots_per_neon_register; 141 142 #ifdef COMPILER2 143 if (Matcher::supports_scalable_vector()) { 144 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 145 } 146 #endif 147 } 148 #endif 149 150 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 151 return r0_offset + r->encoding() * wordSize; 152 } 153 154 int RegisterSaver::v0_offset_in_bytes() { 155 // The floating point registers are located above the predicate registers if 156 // they are present in the stack frame pushed by save_live_registers(). So the 157 // offset depends on the saved total predicate vectors in the stack frame. 158 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 159 } 160 161 int RegisterSaver::total_sve_predicate_in_bytes() { 162 #ifdef COMPILER2 163 if (_save_vectors && Matcher::supports_scalable_vector()) { 164 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 165 PRegister::number_of_registers; 166 } 167 #endif 168 return 0; 169 } 170 171 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 172 bool use_sve = false; 173 int sve_vector_size_in_bytes = 0; 174 int sve_vector_size_in_slots = 0; 175 int sve_predicate_size_in_slots = 0; 176 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 177 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 178 179 #ifdef COMPILER2 180 use_sve = Matcher::supports_scalable_vector(); 181 if (use_sve) { 182 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 183 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 184 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 185 } 186 #endif 187 188 #if COMPILER2_OR_JVMCI 189 if (_save_vectors) { 190 int extra_save_slots_per_register = 0; 191 // Save upper half of vector registers 192 if (use_sve) { 193 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 194 } else { 195 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 196 } 197 int extra_vector_bytes = extra_save_slots_per_register * 198 VMRegImpl::stack_slot_size * 199 FloatRegister::number_of_registers; 200 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 201 } 202 #else 203 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 204 #endif 205 206 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 207 reg_save_size * BytesPerInt, 16); 208 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 209 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 210 // The caller will allocate additional_frame_words 211 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 212 // CodeBlob frame size is in words. 213 int frame_size_in_words = frame_size_in_bytes / wordSize; 214 *total_frame_words = frame_size_in_words; 215 216 // Save Integer and Float registers. 217 __ enter(); 218 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 219 220 // Set an oopmap for the call site. This oopmap will map all 221 // oop-registers and debug-info registers as callee-saved. This 222 // will allow deoptimization at this safepoint to find all possible 223 // debug-info recordings, as well as let GC find all oops. 224 225 OopMapSet *oop_maps = new OopMapSet(); 226 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 227 228 for (int i = 0; i < Register::number_of_registers; i++) { 229 Register r = as_Register(i); 230 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 231 // SP offsets are in 4-byte words. 232 // Register slots are 8 bytes wide, 32 floating-point registers. 233 int sp_offset = Register::max_slots_per_register * i + 234 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 235 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 236 } 237 } 238 239 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 240 FloatRegister r = as_FloatRegister(i); 241 int sp_offset = 0; 242 if (_save_vectors) { 243 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 244 (FloatRegister::slots_per_neon_register * i); 245 } else { 246 sp_offset = FloatRegister::save_slots_per_register * i; 247 } 248 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 249 } 250 251 return oop_map; 252 } 253 254 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 255 #ifdef COMPILER2 256 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 257 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 258 #else 259 #if !INCLUDE_JVMCI 260 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 261 #endif 262 __ pop_CPU_state(_save_vectors); 263 #endif 264 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 265 __ authenticate_return_address(); 266 } 267 268 // Is vector's size (in bytes) bigger than a size saved by default? 269 // 8 bytes vector registers are saved by default on AArch64. 270 // The SVE supported min vector size is 8 bytes and we need to save 271 // predicate registers when the vector size is 8 bytes as well. 272 bool SharedRuntime::is_wide_vector(int size) { 273 return size > 8 || (UseSVE > 0 && size >= 8); 274 } 275 276 // --------------------------------------------------------------------------- 277 // Read the array of BasicTypes from a signature, and compute where the 278 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 279 // quantities. Values less than VMRegImpl::stack0 are registers, those above 280 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 281 // as framesizes are fixed. 282 // VMRegImpl::stack0 refers to the first slot 0(sp). 283 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 284 // Register up to Register::number_of_registers are the 64-bit 285 // integer registers. 286 287 // Note: the INPUTS in sig_bt are in units of Java argument words, 288 // which are 64-bit. The OUTPUTS are in 32-bit units. 289 290 // The Java calling convention is a "shifted" version of the C ABI. 291 // By skipping the first C ABI register we can call non-static jni 292 // methods with small numbers of arguments without having to shuffle 293 // the arguments at all. Since we control the java ABI we ought to at 294 // least get some advantage out of it. 295 296 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 297 VMRegPair *regs, 298 int total_args_passed) { 299 300 // Create the mapping between argument positions and 301 // registers. 302 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 303 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 304 }; 305 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 306 j_farg0, j_farg1, j_farg2, j_farg3, 307 j_farg4, j_farg5, j_farg6, j_farg7 308 }; 309 310 311 uint int_args = 0; 312 uint fp_args = 0; 313 uint stk_args = 0; // inc by 2 each time 314 315 for (int i = 0; i < total_args_passed; i++) { 316 switch (sig_bt[i]) { 317 case T_BOOLEAN: 318 case T_CHAR: 319 case T_BYTE: 320 case T_SHORT: 321 case T_INT: 322 if (int_args < Argument::n_int_register_parameters_j) { 323 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 324 } else { 325 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 326 stk_args += 2; 327 } 328 break; 329 case T_VOID: 330 // halves of T_LONG or T_DOUBLE 331 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 332 regs[i].set_bad(); 333 break; 334 case T_LONG: 335 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 336 // fall through 337 case T_OBJECT: 338 case T_ARRAY: 339 case T_ADDRESS: 340 if (int_args < Argument::n_int_register_parameters_j) { 341 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 342 } else { 343 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 344 stk_args += 2; 345 } 346 break; 347 case T_FLOAT: 348 if (fp_args < Argument::n_float_register_parameters_j) { 349 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 350 } else { 351 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 352 stk_args += 2; 353 } 354 break; 355 case T_DOUBLE: 356 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 357 if (fp_args < Argument::n_float_register_parameters_j) { 358 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 359 } else { 360 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 361 stk_args += 2; 362 } 363 break; 364 default: 365 ShouldNotReachHere(); 366 break; 367 } 368 } 369 370 return align_up(stk_args, 2); 371 } 372 373 // Patch the callers callsite with entry to compiled code if it exists. 374 static void patch_callers_callsite(MacroAssembler *masm) { 375 Label L; 376 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 377 __ cbz(rscratch1, L); 378 379 __ enter(); 380 __ push_CPU_state(); 381 382 // VM needs caller's callsite 383 // VM needs target method 384 // This needs to be a long call since we will relocate this adapter to 385 // the codeBuffer and it may not reach 386 387 #ifndef PRODUCT 388 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 389 #endif 390 391 __ mov(c_rarg0, rmethod); 392 __ mov(c_rarg1, lr); 393 __ authenticate_return_address(c_rarg1, rscratch1); 394 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 395 __ blr(rscratch1); 396 397 // Explicit isb required because fixup_callers_callsite may change the code 398 // stream. 399 __ safepoint_isb(); 400 401 __ pop_CPU_state(); 402 // restore sp 403 __ leave(); 404 __ bind(L); 405 } 406 407 static void gen_c2i_adapter(MacroAssembler *masm, 408 int total_args_passed, 409 int comp_args_on_stack, 410 const BasicType *sig_bt, 411 const VMRegPair *regs, 412 Label& skip_fixup) { 413 // Before we get into the guts of the C2I adapter, see if we should be here 414 // at all. We've come from compiled code and are attempting to jump to the 415 // interpreter, which means the caller made a static call to get here 416 // (vcalls always get a compiled target if there is one). Check for a 417 // compiled target. If there is one, we need to patch the caller's call. 418 patch_callers_callsite(masm); 419 420 __ bind(skip_fixup); 421 422 int words_pushed = 0; 423 424 // Since all args are passed on the stack, total_args_passed * 425 // Interpreter::stackElementSize is the space we need. 426 427 int extraspace = total_args_passed * Interpreter::stackElementSize; 428 429 __ mov(r19_sender_sp, sp); 430 431 // stack is aligned, keep it that way 432 extraspace = align_up(extraspace, 2*wordSize); 433 434 if (extraspace) 435 __ sub(sp, sp, extraspace); 436 437 // Now write the args into the outgoing interpreter space 438 for (int i = 0; i < total_args_passed; i++) { 439 if (sig_bt[i] == T_VOID) { 440 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 441 continue; 442 } 443 444 // offset to start parameters 445 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 446 int next_off = st_off - Interpreter::stackElementSize; 447 448 // Say 4 args: 449 // i st_off 450 // 0 32 T_LONG 451 // 1 24 T_VOID 452 // 2 16 T_OBJECT 453 // 3 8 T_BOOL 454 // - 0 return address 455 // 456 // However to make thing extra confusing. Because we can fit a Java long/double in 457 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 458 // leaves one slot empty and only stores to a single slot. In this case the 459 // slot that is occupied is the T_VOID slot. See I said it was confusing. 460 461 VMReg r_1 = regs[i].first(); 462 VMReg r_2 = regs[i].second(); 463 if (!r_1->is_valid()) { 464 assert(!r_2->is_valid(), ""); 465 continue; 466 } 467 if (r_1->is_stack()) { 468 // memory to memory use rscratch1 469 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 470 + extraspace 471 + words_pushed * wordSize); 472 if (!r_2->is_valid()) { 473 // sign extend?? 474 __ ldrw(rscratch1, Address(sp, ld_off)); 475 __ str(rscratch1, Address(sp, st_off)); 476 477 } else { 478 479 __ ldr(rscratch1, Address(sp, ld_off)); 480 481 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 482 // T_DOUBLE and T_LONG use two slots in the interpreter 483 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 484 // ld_off == LSW, ld_off+wordSize == MSW 485 // st_off == MSW, next_off == LSW 486 __ str(rscratch1, Address(sp, next_off)); 487 #ifdef ASSERT 488 // Overwrite the unused slot with known junk 489 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull); 490 __ str(rscratch1, Address(sp, st_off)); 491 #endif /* ASSERT */ 492 } else { 493 __ str(rscratch1, Address(sp, st_off)); 494 } 495 } 496 } else if (r_1->is_Register()) { 497 Register r = r_1->as_Register(); 498 if (!r_2->is_valid()) { 499 // must be only an int (or less ) so move only 32bits to slot 500 // why not sign extend?? 501 __ str(r, Address(sp, st_off)); 502 } else { 503 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 504 // T_DOUBLE and T_LONG use two slots in the interpreter 505 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 506 // jlong/double in gpr 507 #ifdef ASSERT 508 // Overwrite the unused slot with known junk 509 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull); 510 __ str(rscratch1, Address(sp, st_off)); 511 #endif /* ASSERT */ 512 __ str(r, Address(sp, next_off)); 513 } else { 514 __ str(r, Address(sp, st_off)); 515 } 516 } 517 } else { 518 assert(r_1->is_FloatRegister(), ""); 519 if (!r_2->is_valid()) { 520 // only a float use just part of the slot 521 __ strs(r_1->as_FloatRegister(), Address(sp, st_off)); 522 } else { 523 #ifdef ASSERT 524 // Overwrite the unused slot with known junk 525 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull); 526 __ str(rscratch1, Address(sp, st_off)); 527 #endif /* ASSERT */ 528 __ strd(r_1->as_FloatRegister(), Address(sp, next_off)); 529 } 530 } 531 } 532 533 __ mov(esp, sp); // Interp expects args on caller's expression stack 534 535 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 536 __ br(rscratch1); 537 } 538 539 540 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 541 int total_args_passed, 542 int comp_args_on_stack, 543 const BasicType *sig_bt, 544 const VMRegPair *regs) { 545 546 // Note: r19_sender_sp contains the senderSP on entry. We must 547 // preserve it since we may do a i2c -> c2i transition if we lose a 548 // race where compiled code goes non-entrant while we get args 549 // ready. 550 551 // Adapters are frameless. 552 553 // An i2c adapter is frameless because the *caller* frame, which is 554 // interpreted, routinely repairs its own esp (from 555 // interpreter_frame_last_sp), even if a callee has modified the 556 // stack pointer. It also recalculates and aligns sp. 557 558 // A c2i adapter is frameless because the *callee* frame, which is 559 // interpreted, routinely repairs its caller's sp (from sender_sp, 560 // which is set up via the senderSP register). 561 562 // In other words, if *either* the caller or callee is interpreted, we can 563 // get the stack pointer repaired after a call. 564 565 // This is why c2i and i2c adapters cannot be indefinitely composed. 566 // In particular, if a c2i adapter were to somehow call an i2c adapter, 567 // both caller and callee would be compiled methods, and neither would 568 // clean up the stack pointer changes performed by the two adapters. 569 // If this happens, control eventually transfers back to the compiled 570 // caller, but with an uncorrected stack, causing delayed havoc. 571 572 if (VerifyAdapterCalls && 573 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { 574 #if 0 575 // So, let's test for cascading c2i/i2c adapters right now. 576 // assert(Interpreter::contains($return_addr) || 577 // StubRoutines::contains($return_addr), 578 // "i2c adapter must return to an interpreter frame"); 579 __ block_comment("verify_i2c { "); 580 Label L_ok; 581 if (Interpreter::code() != NULL) 582 range_check(masm, rax, r11, 583 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 584 L_ok); 585 if (StubRoutines::code1() != NULL) 586 range_check(masm, rax, r11, 587 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), 588 L_ok); 589 if (StubRoutines::code2() != NULL) 590 range_check(masm, rax, r11, 591 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), 592 L_ok); 593 const char* msg = "i2c adapter must return to an interpreter frame"; 594 __ block_comment(msg); 595 __ stop(msg); 596 __ bind(L_ok); 597 __ block_comment("} verify_i2ce "); 598 #endif 599 } 600 601 // Cut-out for having no stack args. 602 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 603 if (comp_args_on_stack) { 604 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 605 __ andr(sp, rscratch1, -16); 606 } 607 608 // Will jump to the compiled code just as if compiled code was doing it. 609 // Pre-load the register-jump target early, to schedule it better. 610 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset()))); 611 612 #if INCLUDE_JVMCI 613 if (EnableJVMCI) { 614 // check if this call should be routed towards a specific entry point 615 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 616 Label no_alternative_target; 617 __ cbz(rscratch2, no_alternative_target); 618 __ mov(rscratch1, rscratch2); 619 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 620 __ bind(no_alternative_target); 621 } 622 #endif // INCLUDE_JVMCI 623 624 // Now generate the shuffle code. 625 for (int i = 0; i < total_args_passed; i++) { 626 if (sig_bt[i] == T_VOID) { 627 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 628 continue; 629 } 630 631 // Pick up 0, 1 or 2 words from SP+offset. 632 633 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 634 "scrambled load targets?"); 635 // Load in argument order going down. 636 int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize; 637 // Point to interpreter value (vs. tag) 638 int next_off = ld_off - Interpreter::stackElementSize; 639 // 640 // 641 // 642 VMReg r_1 = regs[i].first(); 643 VMReg r_2 = regs[i].second(); 644 if (!r_1->is_valid()) { 645 assert(!r_2->is_valid(), ""); 646 continue; 647 } 648 if (r_1->is_stack()) { 649 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 650 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size; 651 if (!r_2->is_valid()) { 652 // sign extend??? 653 __ ldrsw(rscratch2, Address(esp, ld_off)); 654 __ str(rscratch2, Address(sp, st_off)); 655 } else { 656 // 657 // We are using two optoregs. This can be either T_OBJECT, 658 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 659 // two slots but only uses one for thr T_LONG or T_DOUBLE case 660 // So we must adjust where to pick up the data to match the 661 // interpreter. 662 // 663 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 664 // are accessed as negative so LSW is at LOW address 665 666 // ld_off is MSW so get LSW 667 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 668 next_off : ld_off; 669 __ ldr(rscratch2, Address(esp, offset)); 670 // st_off is LSW (i.e. reg.first()) 671 __ str(rscratch2, Address(sp, st_off)); 672 } 673 } else if (r_1->is_Register()) { // Register argument 674 Register r = r_1->as_Register(); 675 if (r_2->is_valid()) { 676 // 677 // We are using two VMRegs. This can be either T_OBJECT, 678 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 679 // two slots but only uses one for thr T_LONG or T_DOUBLE case 680 // So we must adjust where to pick up the data to match the 681 // interpreter. 682 683 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 684 next_off : ld_off; 685 686 // this can be a misaligned move 687 __ ldr(r, Address(esp, offset)); 688 } else { 689 // sign extend and use a full word? 690 __ ldrw(r, Address(esp, ld_off)); 691 } 692 } else { 693 if (!r_2->is_valid()) { 694 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 695 } else { 696 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 697 } 698 } 699 } 700 701 __ mov(rscratch2, rscratch1); 702 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 703 __ mov(rscratch1, rscratch2); 704 705 // 6243940 We might end up in handle_wrong_method if 706 // the callee is deoptimized as we race thru here. If that 707 // happens we don't want to take a safepoint because the 708 // caller frame will look interpreted and arguments are now 709 // "compiled" so it is much better to make this transition 710 // invisible to the stack walking code. Unfortunately if 711 // we try and find the callee by normal means a safepoint 712 // is possible. So we stash the desired callee in the thread 713 // and the vm will find there should this case occur. 714 715 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 716 717 __ br(rscratch1); 718 } 719 720 // --------------------------------------------------------------- 721 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 722 int total_args_passed, 723 int comp_args_on_stack, 724 const BasicType *sig_bt, 725 const VMRegPair *regs, 726 AdapterFingerPrint* fingerprint) { 727 address i2c_entry = __ pc(); 728 729 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 730 731 address c2i_unverified_entry = __ pc(); 732 Label skip_fixup; 733 734 Label ok; 735 736 Register holder = rscratch2; 737 Register receiver = j_rarg0; 738 Register tmp = r10; // A call-clobbered register not used for arg passing 739 740 // ------------------------------------------------------------------------- 741 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 742 // to the interpreter. The args start out packed in the compiled layout. They 743 // need to be unpacked into the interpreter layout. This will almost always 744 // require some stack space. We grow the current (compiled) stack, then repack 745 // the args. We finally end in a jump to the generic interpreter entry point. 746 // On exit from the interpreter, the interpreter will restore our SP (lest the 747 // compiled code, which relies solely on SP and not FP, get sick). 748 749 { 750 __ block_comment("c2i_unverified_entry {"); 751 __ load_klass(rscratch1, receiver); 752 __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset())); 753 __ cmp(rscratch1, tmp); 754 __ ldr(rmethod, Address(holder, CompiledICHolder::holder_metadata_offset())); 755 __ br(Assembler::EQ, ok); 756 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 757 758 __ bind(ok); 759 // Method might have been compiled since the call site was patched to 760 // interpreted; if that is the case treat it as a miss so we can get 761 // the call site corrected. 762 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 763 __ cbz(rscratch1, skip_fixup); 764 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 765 __ block_comment("} c2i_unverified_entry"); 766 } 767 768 address c2i_entry = __ pc(); 769 770 // Class initialization barrier for static methods 771 address c2i_no_clinit_check_entry = NULL; 772 if (VM_Version::supports_fast_class_init_checks()) { 773 Label L_skip_barrier; 774 775 { // Bypass the barrier for non-static methods 776 __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset())); 777 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 778 __ br(Assembler::EQ, L_skip_barrier); // non-static 779 } 780 781 __ load_method_holder(rscratch2, rmethod); 782 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 783 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 784 785 __ bind(L_skip_barrier); 786 c2i_no_clinit_check_entry = __ pc(); 787 } 788 789 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 790 bs->c2i_entry_barrier(masm); 791 792 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 793 794 __ flush(); 795 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 796 } 797 798 static int c_calling_convention_priv(const BasicType *sig_bt, 799 VMRegPair *regs, 800 VMRegPair *regs2, 801 int total_args_passed) { 802 assert(regs2 == NULL, "not needed on AArch64"); 803 804 // We return the amount of VMRegImpl stack slots we need to reserve for all 805 // the arguments NOT counting out_preserve_stack_slots. 806 807 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 808 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 809 }; 810 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 811 c_farg0, c_farg1, c_farg2, c_farg3, 812 c_farg4, c_farg5, c_farg6, c_farg7 813 }; 814 815 uint int_args = 0; 816 uint fp_args = 0; 817 uint stk_args = 0; // inc by 2 each time 818 819 for (int i = 0; i < total_args_passed; i++) { 820 switch (sig_bt[i]) { 821 case T_BOOLEAN: 822 case T_CHAR: 823 case T_BYTE: 824 case T_SHORT: 825 case T_INT: 826 if (int_args < Argument::n_int_register_parameters_c) { 827 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 828 } else { 829 #ifdef __APPLE__ 830 // Less-than word types are stored one after another. 831 // The code is unable to handle this so bailout. 832 return -1; 833 #endif 834 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 835 stk_args += 2; 836 } 837 break; 838 case T_LONG: 839 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 840 // fall through 841 case T_OBJECT: 842 case T_ARRAY: 843 case T_ADDRESS: 844 case T_METADATA: 845 if (int_args < Argument::n_int_register_parameters_c) { 846 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 847 } else { 848 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 849 stk_args += 2; 850 } 851 break; 852 case T_FLOAT: 853 if (fp_args < Argument::n_float_register_parameters_c) { 854 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 855 } else { 856 #ifdef __APPLE__ 857 // Less-than word types are stored one after another. 858 // The code is unable to handle this so bailout. 859 return -1; 860 #endif 861 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 862 stk_args += 2; 863 } 864 break; 865 case T_DOUBLE: 866 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 867 if (fp_args < Argument::n_float_register_parameters_c) { 868 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 869 } else { 870 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 871 stk_args += 2; 872 } 873 break; 874 case T_VOID: // Halves of longs and doubles 875 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 876 regs[i].set_bad(); 877 break; 878 default: 879 ShouldNotReachHere(); 880 break; 881 } 882 } 883 884 return stk_args; 885 } 886 887 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 888 uint num_bits, 889 uint total_args_passed) { 890 Unimplemented(); 891 return 0; 892 } 893 894 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 895 VMRegPair *regs, 896 VMRegPair *regs2, 897 int total_args_passed) 898 { 899 int result = c_calling_convention_priv(sig_bt, regs, regs2, total_args_passed); 900 guarantee(result >= 0, "Unsupported arguments configuration"); 901 return result; 902 } 903 904 905 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 906 // We always ignore the frame_slots arg and just use the space just below frame pointer 907 // which by this time is free to use 908 switch (ret_type) { 909 case T_FLOAT: 910 __ strs(v0, Address(rfp, -wordSize)); 911 break; 912 case T_DOUBLE: 913 __ strd(v0, Address(rfp, -wordSize)); 914 break; 915 case T_VOID: break; 916 default: { 917 __ str(r0, Address(rfp, -wordSize)); 918 } 919 } 920 } 921 922 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 923 // We always ignore the frame_slots arg and just use the space just below frame pointer 924 // which by this time is free to use 925 switch (ret_type) { 926 case T_FLOAT: 927 __ ldrs(v0, Address(rfp, -wordSize)); 928 break; 929 case T_DOUBLE: 930 __ ldrd(v0, Address(rfp, -wordSize)); 931 break; 932 case T_VOID: break; 933 default: { 934 __ ldr(r0, Address(rfp, -wordSize)); 935 } 936 } 937 } 938 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 939 RegSet x; 940 for ( int i = first_arg ; i < arg_count ; i++ ) { 941 if (args[i].first()->is_Register()) { 942 x = x + args[i].first()->as_Register(); 943 } else if (args[i].first()->is_FloatRegister()) { 944 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 945 } 946 } 947 __ push(x, sp); 948 } 949 950 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 951 RegSet x; 952 for ( int i = first_arg ; i < arg_count ; i++ ) { 953 if (args[i].first()->is_Register()) { 954 x = x + args[i].first()->as_Register(); 955 } else { 956 ; 957 } 958 } 959 __ pop(x, sp); 960 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 961 if (args[i].first()->is_Register()) { 962 ; 963 } else if (args[i].first()->is_FloatRegister()) { 964 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 965 } 966 } 967 } 968 969 static void verify_oop_args(MacroAssembler* masm, 970 const methodHandle& method, 971 const BasicType* sig_bt, 972 const VMRegPair* regs) { 973 Register temp_reg = r19; // not part of any compiled calling seq 974 if (VerifyOops) { 975 for (int i = 0; i < method->size_of_parameters(); i++) { 976 if (sig_bt[i] == T_OBJECT || 977 sig_bt[i] == T_ARRAY) { 978 VMReg r = regs[i].first(); 979 assert(r->is_valid(), "bad oop arg"); 980 if (r->is_stack()) { 981 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 982 __ verify_oop(temp_reg); 983 } else { 984 __ verify_oop(r->as_Register()); 985 } 986 } 987 } 988 } 989 } 990 991 // on exit, sp points to the ContinuationEntry 992 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 993 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 994 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 995 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 996 997 stack_slots += (int)ContinuationEntry::size()/wordSize; 998 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 999 1000 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 1001 1002 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1003 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 1004 __ mov(rscratch1, sp); // we can't use sp as the source in str 1005 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1006 1007 return map; 1008 } 1009 1010 // on entry c_rarg1 points to the continuation 1011 // sp points to ContinuationEntry 1012 // c_rarg3 -- isVirtualThread 1013 static void fill_continuation_entry(MacroAssembler* masm) { 1014 #ifdef ASSERT 1015 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1016 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1017 #endif 1018 1019 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1020 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1021 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1022 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1023 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1024 1025 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1026 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1027 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1028 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1029 1030 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1031 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1032 } 1033 1034 // on entry, sp points to the ContinuationEntry 1035 // on exit, rfp points to the spilled rfp in the entry frame 1036 static void continuation_enter_cleanup(MacroAssembler* masm) { 1037 #ifndef PRODUCT 1038 Label OK; 1039 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1040 __ cmp(sp, rscratch1); 1041 __ br(Assembler::EQ, OK); 1042 __ stop("incorrect sp1"); 1043 __ bind(OK); 1044 #endif 1045 1046 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1047 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1048 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1049 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1050 1051 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1052 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1053 __ add(rfp, sp, (int)ContinuationEntry::size()); 1054 } 1055 1056 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1057 // On entry: c_rarg1 -- the continuation object 1058 // c_rarg2 -- isContinue 1059 // c_rarg3 -- isVirtualThread 1060 static void gen_continuation_enter(MacroAssembler* masm, 1061 const methodHandle& method, 1062 const BasicType* sig_bt, 1063 const VMRegPair* regs, 1064 int& exception_offset, 1065 OopMapSet*oop_maps, 1066 int& frame_complete, 1067 int& stack_slots, 1068 int& interpreted_entry_offset, 1069 int& compiled_entry_offset) { 1070 //verify_oop_args(masm, method, sig_bt, regs); 1071 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1072 1073 address start = __ pc(); 1074 1075 Label call_thaw, exit; 1076 1077 // i2i entry used at interp_only_mode only 1078 interpreted_entry_offset = __ pc() - start; 1079 { 1080 1081 #ifdef ASSERT 1082 Label is_interp_only; 1083 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1084 __ cbnzw(rscratch1, is_interp_only); 1085 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1086 __ bind(is_interp_only); 1087 #endif 1088 1089 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1090 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1091 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1092 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1093 __ push_cont_fastpath(rthread); 1094 1095 __ enter(); 1096 stack_slots = 2; // will be adjusted in setup 1097 OopMap* map = continuation_enter_setup(masm, stack_slots); 1098 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1099 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1100 1101 fill_continuation_entry(masm); 1102 1103 __ cbnz(c_rarg2, call_thaw); 1104 1105 const address tr_call = __ trampoline_call(resolve); 1106 if (tr_call == nullptr) { 1107 fatal("CodeCache is full at gen_continuation_enter"); 1108 } 1109 1110 oop_maps->add_gc_map(__ pc() - start, map); 1111 __ post_call_nop(); 1112 1113 __ b(exit); 1114 1115 CodeBuffer* cbuf = masm->code_section()->outer(); 1116 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1117 if (stub == nullptr) { 1118 fatal("CodeCache is full at gen_continuation_enter"); 1119 } 1120 } 1121 1122 // compiled entry 1123 __ align(CodeEntryAlignment); 1124 compiled_entry_offset = __ pc() - start; 1125 1126 __ enter(); 1127 stack_slots = 2; // will be adjusted in setup 1128 OopMap* map = continuation_enter_setup(masm, stack_slots); 1129 frame_complete = __ pc() - start; 1130 1131 fill_continuation_entry(masm); 1132 1133 __ cbnz(c_rarg2, call_thaw); 1134 1135 const address tr_call = __ trampoline_call(resolve); 1136 if (tr_call == nullptr) { 1137 fatal("CodeCache is full at gen_continuation_enter"); 1138 } 1139 1140 oop_maps->add_gc_map(__ pc() - start, map); 1141 __ post_call_nop(); 1142 1143 __ b(exit); 1144 1145 __ bind(call_thaw); 1146 1147 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1148 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1149 ContinuationEntry::_return_pc_offset = __ pc() - start; 1150 __ post_call_nop(); 1151 1152 __ bind(exit); 1153 continuation_enter_cleanup(masm); 1154 __ leave(); 1155 __ ret(lr); 1156 1157 /// exception handling 1158 1159 exception_offset = __ pc() - start; 1160 { 1161 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1162 1163 continuation_enter_cleanup(masm); 1164 1165 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1166 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1167 1168 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1169 1170 __ mov(r1, r0); // the exception handler 1171 __ mov(r0, r19); // restore return value contaning the exception oop 1172 __ verify_oop(r0); 1173 1174 __ leave(); 1175 __ mov(r3, lr); 1176 __ br(r1); // the exception handler 1177 } 1178 1179 CodeBuffer* cbuf = masm->code_section()->outer(); 1180 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1181 if (stub == nullptr) { 1182 fatal("CodeCache is full at gen_continuation_enter"); 1183 } 1184 } 1185 1186 static void gen_continuation_yield(MacroAssembler* masm, 1187 const methodHandle& method, 1188 const BasicType* sig_bt, 1189 const VMRegPair* regs, 1190 OopMapSet* oop_maps, 1191 int& frame_complete, 1192 int& stack_slots, 1193 int& compiled_entry_offset) { 1194 enum layout { 1195 rfp_off1, 1196 rfp_off2, 1197 lr_off, 1198 lr_off2, 1199 framesize // inclusive of return address 1200 }; 1201 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1202 stack_slots = framesize / VMRegImpl::slots_per_word; 1203 assert(stack_slots == 2, "recheck layout"); 1204 1205 address start = __ pc(); 1206 1207 compiled_entry_offset = __ pc() - start; 1208 __ enter(); 1209 1210 __ mov(c_rarg1, sp); 1211 1212 frame_complete = __ pc() - start; 1213 address the_pc = __ pc(); 1214 1215 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1216 1217 __ mov(c_rarg0, rthread); 1218 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1219 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1220 __ reset_last_Java_frame(true); 1221 1222 Label pinned; 1223 1224 __ cbnz(r0, pinned); 1225 1226 // We've succeeded, set sp to the ContinuationEntry 1227 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1228 __ mov(sp, rscratch1); 1229 continuation_enter_cleanup(masm); 1230 1231 __ bind(pinned); // pinned -- return to caller 1232 1233 // handle pending exception thrown by freeze 1234 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1235 Label ok; 1236 __ cbz(rscratch1, ok); 1237 __ leave(); 1238 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1239 __ br(rscratch1); 1240 __ bind(ok); 1241 1242 __ leave(); 1243 __ ret(lr); 1244 1245 OopMap* map = new OopMap(framesize, 1); 1246 oop_maps->add_gc_map(the_pc - start, map); 1247 } 1248 1249 static void gen_special_dispatch(MacroAssembler* masm, 1250 const methodHandle& method, 1251 const BasicType* sig_bt, 1252 const VMRegPair* regs) { 1253 verify_oop_args(masm, method, sig_bt, regs); 1254 vmIntrinsics::ID iid = method->intrinsic_id(); 1255 1256 // Now write the args into the outgoing interpreter space 1257 bool has_receiver = false; 1258 Register receiver_reg = noreg; 1259 int member_arg_pos = -1; 1260 Register member_reg = noreg; 1261 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1262 if (ref_kind != 0) { 1263 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1264 member_reg = r19; // known to be free at this point 1265 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1266 } else if (iid == vmIntrinsics::_invokeBasic) { 1267 has_receiver = true; 1268 } else if (iid == vmIntrinsics::_linkToNative) { 1269 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1270 member_reg = r19; // known to be free at this point 1271 } else { 1272 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1273 } 1274 1275 if (member_reg != noreg) { 1276 // Load the member_arg into register, if necessary. 1277 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1278 VMReg r = regs[member_arg_pos].first(); 1279 if (r->is_stack()) { 1280 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1281 } else { 1282 // no data motion is needed 1283 member_reg = r->as_Register(); 1284 } 1285 } 1286 1287 if (has_receiver) { 1288 // Make sure the receiver is loaded into a register. 1289 assert(method->size_of_parameters() > 0, "oob"); 1290 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1291 VMReg r = regs[0].first(); 1292 assert(r->is_valid(), "bad receiver arg"); 1293 if (r->is_stack()) { 1294 // Porting note: This assumes that compiled calling conventions always 1295 // pass the receiver oop in a register. If this is not true on some 1296 // platform, pick a temp and load the receiver from stack. 1297 fatal("receiver always in a register"); 1298 receiver_reg = r2; // known to be free at this point 1299 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1300 } else { 1301 // no data motion is needed 1302 receiver_reg = r->as_Register(); 1303 } 1304 } 1305 1306 // Figure out which address we are really jumping to: 1307 MethodHandles::generate_method_handle_dispatch(masm, iid, 1308 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1309 } 1310 1311 // --------------------------------------------------------------------------- 1312 // Generate a native wrapper for a given method. The method takes arguments 1313 // in the Java compiled code convention, marshals them to the native 1314 // convention (handlizes oops, etc), transitions to native, makes the call, 1315 // returns to java state (possibly blocking), unhandlizes any result and 1316 // returns. 1317 // 1318 // Critical native functions are a shorthand for the use of 1319 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1320 // functions. The wrapper is expected to unpack the arguments before 1321 // passing them to the callee. Critical native functions leave the state _in_Java, 1322 // since they block out GC. 1323 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1324 // block and the check for pending exceptions it's impossible for them 1325 // to be thrown. 1326 // 1327 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1328 const methodHandle& method, 1329 int compile_id, 1330 BasicType* in_sig_bt, 1331 VMRegPair* in_regs, 1332 BasicType ret_type) { 1333 if (method->is_continuation_native_intrinsic()) { 1334 int exception_offset = -1; 1335 OopMapSet* oop_maps = new OopMapSet(); 1336 int frame_complete = -1; 1337 int stack_slots = -1; 1338 int interpreted_entry_offset = -1; 1339 int vep_offset = -1; 1340 if (method->is_continuation_enter_intrinsic()) { 1341 gen_continuation_enter(masm, 1342 method, 1343 in_sig_bt, 1344 in_regs, 1345 exception_offset, 1346 oop_maps, 1347 frame_complete, 1348 stack_slots, 1349 interpreted_entry_offset, 1350 vep_offset); 1351 } else if (method->is_continuation_yield_intrinsic()) { 1352 gen_continuation_yield(masm, 1353 method, 1354 in_sig_bt, 1355 in_regs, 1356 oop_maps, 1357 frame_complete, 1358 stack_slots, 1359 vep_offset); 1360 } else { 1361 guarantee(false, "Unknown Continuation native intrinsic"); 1362 } 1363 1364 #ifdef ASSERT 1365 if (method->is_continuation_enter_intrinsic()) { 1366 assert(interpreted_entry_offset != -1, "Must be set"); 1367 assert(exception_offset != -1, "Must be set"); 1368 } else { 1369 assert(interpreted_entry_offset == -1, "Must be unset"); 1370 assert(exception_offset == -1, "Must be unset"); 1371 } 1372 assert(frame_complete != -1, "Must be set"); 1373 assert(stack_slots != -1, "Must be set"); 1374 assert(vep_offset != -1, "Must be set"); 1375 #endif 1376 1377 __ flush(); 1378 nmethod* nm = nmethod::new_native_nmethod(method, 1379 compile_id, 1380 masm->code(), 1381 vep_offset, 1382 frame_complete, 1383 stack_slots, 1384 in_ByteSize(-1), 1385 in_ByteSize(-1), 1386 oop_maps, 1387 exception_offset); 1388 if (method->is_continuation_enter_intrinsic()) { 1389 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1390 } else if (method->is_continuation_yield_intrinsic()) { 1391 _cont_doYield_stub = nm; 1392 } else { 1393 guarantee(false, "Unknown Continuation native intrinsic"); 1394 } 1395 return nm; 1396 } 1397 1398 if (method->is_method_handle_intrinsic()) { 1399 vmIntrinsics::ID iid = method->intrinsic_id(); 1400 intptr_t start = (intptr_t)__ pc(); 1401 int vep_offset = ((intptr_t)__ pc()) - start; 1402 1403 // First instruction must be a nop as it may need to be patched on deoptimisation 1404 __ nop(); 1405 gen_special_dispatch(masm, 1406 method, 1407 in_sig_bt, 1408 in_regs); 1409 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1410 __ flush(); 1411 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1412 return nmethod::new_native_nmethod(method, 1413 compile_id, 1414 masm->code(), 1415 vep_offset, 1416 frame_complete, 1417 stack_slots / VMRegImpl::slots_per_word, 1418 in_ByteSize(-1), 1419 in_ByteSize(-1), 1420 (OopMapSet*)NULL); 1421 } 1422 address native_func = method->native_function(); 1423 assert(native_func != NULL, "must have function"); 1424 1425 // An OopMap for lock (and class if static) 1426 OopMapSet *oop_maps = new OopMapSet(); 1427 intptr_t start = (intptr_t)__ pc(); 1428 1429 // We have received a description of where all the java arg are located 1430 // on entry to the wrapper. We need to convert these args to where 1431 // the jni function will expect them. To figure out where they go 1432 // we convert the java signature to a C signature by inserting 1433 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1434 1435 const int total_in_args = method->size_of_parameters(); 1436 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1437 1438 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1439 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1440 BasicType* in_elem_bt = NULL; 1441 1442 int argc = 0; 1443 out_sig_bt[argc++] = T_ADDRESS; 1444 if (method->is_static()) { 1445 out_sig_bt[argc++] = T_OBJECT; 1446 } 1447 1448 for (int i = 0; i < total_in_args ; i++ ) { 1449 out_sig_bt[argc++] = in_sig_bt[i]; 1450 } 1451 1452 // Now figure out where the args must be stored and how much stack space 1453 // they require. 1454 int out_arg_slots; 1455 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, NULL, total_c_args); 1456 1457 if (out_arg_slots < 0) { 1458 return NULL; 1459 } 1460 1461 // Compute framesize for the wrapper. We need to handlize all oops in 1462 // incoming registers 1463 1464 // Calculate the total number of stack slots we will need. 1465 1466 // First count the abi requirement plus all of the outgoing args 1467 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1468 1469 // Now the space for the inbound oop handle area 1470 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1471 1472 int oop_handle_offset = stack_slots; 1473 stack_slots += total_save_slots; 1474 1475 // Now any space we need for handlizing a klass if static method 1476 1477 int klass_slot_offset = 0; 1478 int klass_offset = -1; 1479 int lock_slot_offset = 0; 1480 bool is_static = false; 1481 1482 if (method->is_static()) { 1483 klass_slot_offset = stack_slots; 1484 stack_slots += VMRegImpl::slots_per_word; 1485 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1486 is_static = true; 1487 } 1488 1489 // Plus a lock if needed 1490 1491 if (method->is_synchronized()) { 1492 lock_slot_offset = stack_slots; 1493 stack_slots += VMRegImpl::slots_per_word; 1494 } 1495 1496 // Now a place (+2) to save return values or temp during shuffling 1497 // + 4 for return address (which we own) and saved rfp 1498 stack_slots += 6; 1499 1500 // Ok The space we have allocated will look like: 1501 // 1502 // 1503 // FP-> | | 1504 // |---------------------| 1505 // | 2 slots for moves | 1506 // |---------------------| 1507 // | lock box (if sync) | 1508 // |---------------------| <- lock_slot_offset 1509 // | klass (if static) | 1510 // |---------------------| <- klass_slot_offset 1511 // | oopHandle area | 1512 // |---------------------| <- oop_handle_offset (8 java arg registers) 1513 // | outbound memory | 1514 // | based arguments | 1515 // | | 1516 // |---------------------| 1517 // | | 1518 // SP-> | out_preserved_slots | 1519 // 1520 // 1521 1522 1523 // Now compute actual number of stack words we need rounding to make 1524 // stack properly aligned. 1525 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1526 1527 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1528 1529 // First thing make an ic check to see if we should even be here 1530 1531 // We are free to use all registers as temps without saving them and 1532 // restoring them except rfp. rfp is the only callee save register 1533 // as far as the interpreter and the compiler(s) are concerned. 1534 1535 1536 const Register ic_reg = rscratch2; 1537 const Register receiver = j_rarg0; 1538 1539 Label hit; 1540 Label exception_pending; 1541 1542 assert_different_registers(ic_reg, receiver, rscratch1); 1543 __ verify_oop(receiver); 1544 __ cmp_klass(receiver, ic_reg, rscratch1); 1545 __ br(Assembler::EQ, hit); 1546 1547 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1548 1549 // Verified entry point must be aligned 1550 __ align(8); 1551 1552 __ bind(hit); 1553 1554 int vep_offset = ((intptr_t)__ pc()) - start; 1555 1556 // If we have to make this method not-entrant we'll overwrite its 1557 // first instruction with a jump. For this action to be legal we 1558 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1559 // SVC, HVC, or SMC. Make it a NOP. 1560 __ nop(); 1561 1562 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1563 Label L_skip_barrier; 1564 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1565 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1566 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1567 1568 __ bind(L_skip_barrier); 1569 } 1570 1571 // Generate stack overflow check 1572 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1573 1574 // Generate a new frame for the wrapper. 1575 __ enter(); 1576 // -2 because return address is already present and so is saved rfp 1577 __ sub(sp, sp, stack_size - 2*wordSize); 1578 1579 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1580 bs->nmethod_entry_barrier(masm, NULL /* slow_path */, NULL /* continuation */, NULL /* guard */); 1581 1582 // Frame is now completed as far as size and linkage. 1583 int frame_complete = ((intptr_t)__ pc()) - start; 1584 1585 // We use r20 as the oop handle for the receiver/klass 1586 // It is callee save so it survives the call to native 1587 1588 const Register oop_handle_reg = r20; 1589 1590 // 1591 // We immediately shuffle the arguments so that any vm call we have to 1592 // make from here on out (sync slow path, jvmti, etc.) we will have 1593 // captured the oops from our caller and have a valid oopMap for 1594 // them. 1595 1596 // ----------------- 1597 // The Grand Shuffle 1598 1599 // The Java calling convention is either equal (linux) or denser (win64) than the 1600 // c calling convention. However the because of the jni_env argument the c calling 1601 // convention always has at least one more (and two for static) arguments than Java. 1602 // Therefore if we move the args from java -> c backwards then we will never have 1603 // a register->register conflict and we don't have to build a dependency graph 1604 // and figure out how to break any cycles. 1605 // 1606 1607 // Record esp-based slot for receiver on stack for non-static methods 1608 int receiver_offset = -1; 1609 1610 // This is a trick. We double the stack slots so we can claim 1611 // the oops in the caller's frame. Since we are sure to have 1612 // more args than the caller doubling is enough to make 1613 // sure we can capture all the incoming oop args from the 1614 // caller. 1615 // 1616 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1617 1618 // Mark location of rfp (someday) 1619 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1620 1621 1622 int float_args = 0; 1623 int int_args = 0; 1624 1625 #ifdef ASSERT 1626 bool reg_destroyed[Register::number_of_registers]; 1627 bool freg_destroyed[FloatRegister::number_of_registers]; 1628 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1629 reg_destroyed[r] = false; 1630 } 1631 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1632 freg_destroyed[f] = false; 1633 } 1634 1635 #endif /* ASSERT */ 1636 1637 // For JNI natives the incoming and outgoing registers are offset upwards. 1638 GrowableArray<int> arg_order(2 * total_in_args); 1639 VMRegPair tmp_vmreg; 1640 tmp_vmreg.set2(r19->as_VMReg()); 1641 1642 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1643 arg_order.push(i); 1644 arg_order.push(c_arg); 1645 } 1646 1647 int temploc = -1; 1648 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1649 int i = arg_order.at(ai); 1650 int c_arg = arg_order.at(ai + 1); 1651 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1652 assert(c_arg != -1 && i != -1, "wrong order"); 1653 #ifdef ASSERT 1654 if (in_regs[i].first()->is_Register()) { 1655 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1656 } else if (in_regs[i].first()->is_FloatRegister()) { 1657 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1658 } 1659 if (out_regs[c_arg].first()->is_Register()) { 1660 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1661 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1662 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1663 } 1664 #endif /* ASSERT */ 1665 switch (in_sig_bt[i]) { 1666 case T_ARRAY: 1667 case T_OBJECT: 1668 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1669 ((i == 0) && (!is_static)), 1670 &receiver_offset); 1671 int_args++; 1672 break; 1673 case T_VOID: 1674 break; 1675 1676 case T_FLOAT: 1677 __ float_move(in_regs[i], out_regs[c_arg]); 1678 float_args++; 1679 break; 1680 1681 case T_DOUBLE: 1682 assert( i + 1 < total_in_args && 1683 in_sig_bt[i + 1] == T_VOID && 1684 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1685 __ double_move(in_regs[i], out_regs[c_arg]); 1686 float_args++; 1687 break; 1688 1689 case T_LONG : 1690 __ long_move(in_regs[i], out_regs[c_arg]); 1691 int_args++; 1692 break; 1693 1694 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1695 1696 default: 1697 __ move32_64(in_regs[i], out_regs[c_arg]); 1698 int_args++; 1699 } 1700 } 1701 1702 // point c_arg at the first arg that is already loaded in case we 1703 // need to spill before we call out 1704 int c_arg = total_c_args - total_in_args; 1705 1706 // Pre-load a static method's oop into c_rarg1. 1707 if (method->is_static()) { 1708 1709 // load oop into a register 1710 __ movoop(c_rarg1, 1711 JNIHandles::make_local(method->method_holder()->java_mirror())); 1712 1713 // Now handlize the static class mirror it's known not-null. 1714 __ str(c_rarg1, Address(sp, klass_offset)); 1715 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1716 1717 // Now get the handle 1718 __ lea(c_rarg1, Address(sp, klass_offset)); 1719 // and protect the arg if we must spill 1720 c_arg--; 1721 } 1722 1723 // Change state to native (we save the return address in the thread, since it might not 1724 // be pushed on the stack when we do a stack traversal). 1725 // We use the same pc/oopMap repeatedly when we call out 1726 1727 Label native_return; 1728 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 1729 1730 Label dtrace_method_entry, dtrace_method_entry_done; 1731 { 1732 uint64_t offset; 1733 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1734 __ ldrb(rscratch1, Address(rscratch1, offset)); 1735 __ cbnzw(rscratch1, dtrace_method_entry); 1736 __ bind(dtrace_method_entry_done); 1737 } 1738 1739 // RedefineClasses() tracing support for obsolete method entry 1740 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1741 // protect the args we've loaded 1742 save_args(masm, total_c_args, c_arg, out_regs); 1743 __ mov_metadata(c_rarg1, method()); 1744 __ call_VM_leaf( 1745 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1746 rthread, c_rarg1); 1747 restore_args(masm, total_c_args, c_arg, out_regs); 1748 } 1749 1750 // Lock a synchronized method 1751 1752 // Register definitions used by locking and unlocking 1753 1754 const Register swap_reg = r0; 1755 const Register obj_reg = r19; // Will contain the oop 1756 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 1757 const Register old_hdr = r13; // value of old header at unlock time 1758 const Register tmp = lr; 1759 1760 Label slow_path_lock; 1761 Label lock_done; 1762 1763 if (method->is_synchronized()) { 1764 Label count; 1765 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1766 1767 // Get the handle (the 2nd argument) 1768 __ mov(oop_handle_reg, c_rarg1); 1769 1770 // Get address of the box 1771 1772 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1773 1774 // Load the oop from the handle 1775 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1776 1777 if (!UseHeavyMonitors) { 1778 // Load (object->mark() | 1) into swap_reg %r0 1779 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1780 __ orr(swap_reg, rscratch1, 1); 1781 1782 // Save (object->mark() | 1) into BasicLock's displaced header 1783 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1784 1785 // src -> dest iff dest == r0 else r0 <- dest 1786 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/NULL); 1787 1788 // Hmm should this move to the slow path code area??? 1789 1790 // Test if the oopMark is an obvious stack pointer, i.e., 1791 // 1) (mark & 3) == 0, and 1792 // 2) sp <= mark < mark + os::pagesize() 1793 // These 3 tests can be done by evaluating the following 1794 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1795 // assuming both stack pointer and pagesize have their 1796 // least significant 2 bits clear. 1797 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 1798 1799 __ sub(swap_reg, sp, swap_reg); 1800 __ neg(swap_reg, swap_reg); 1801 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 1802 1803 // Save the test result, for recursive case, the result is zero 1804 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1805 __ br(Assembler::NE, slow_path_lock); 1806 } else { 1807 __ b(slow_path_lock); 1808 } 1809 __ bind(count); 1810 __ increment(Address(rthread, JavaThread::held_monitor_count_offset())); 1811 1812 // Slow path will re-enter here 1813 __ bind(lock_done); 1814 } 1815 1816 1817 // Finally just about ready to make the JNI call 1818 1819 // get JNIEnv* which is first argument to native 1820 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 1821 1822 // Now set thread in native 1823 __ mov(rscratch1, _thread_in_native); 1824 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1825 __ stlrw(rscratch1, rscratch2); 1826 1827 __ rt_call(native_func); 1828 1829 __ bind(native_return); 1830 1831 intptr_t return_pc = (intptr_t) __ pc(); 1832 oop_maps->add_gc_map(return_pc - start, map); 1833 1834 // Unpack native results. 1835 switch (ret_type) { 1836 case T_BOOLEAN: __ c2bool(r0); break; 1837 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 1838 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 1839 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 1840 case T_INT : __ sbfx(r0, r0, 0, 32); break; 1841 case T_DOUBLE : 1842 case T_FLOAT : 1843 // Result is in v0 we'll save as needed 1844 break; 1845 case T_ARRAY: // Really a handle 1846 case T_OBJECT: // Really a handle 1847 break; // can't de-handlize until after safepoint check 1848 case T_VOID: break; 1849 case T_LONG: break; 1850 default : ShouldNotReachHere(); 1851 } 1852 1853 Label safepoint_in_progress, safepoint_in_progress_done; 1854 Label after_transition; 1855 1856 // Switch thread to "native transition" state before reading the synchronization state. 1857 // This additional state is necessary because reading and testing the synchronization 1858 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1859 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1860 // VM thread changes sync state to synchronizing and suspends threads for GC. 1861 // Thread A is resumed to finish this native method, but doesn't block here since it 1862 // didn't see any synchronization is progress, and escapes. 1863 __ mov(rscratch1, _thread_in_native_trans); 1864 1865 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 1866 1867 // Force this write out before the read below 1868 if (!UseSystemMemoryBarrier) { 1869 __ dmb(Assembler::ISH); 1870 } 1871 1872 __ verify_sve_vector_length(); 1873 1874 // Check for safepoint operation in progress and/or pending suspend requests. 1875 { 1876 // We need an acquire here to ensure that any subsequent load of the 1877 // global SafepointSynchronize::_state flag is ordered after this load 1878 // of the thread-local polling word. We don't want this poll to 1879 // return false (i.e. not safepointing) and a later poll of the global 1880 // SafepointSynchronize::_state spuriously to return true. 1881 // 1882 // This is to avoid a race when we're in a native->Java transition 1883 // racing the code which wakes up from a safepoint. 1884 1885 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1886 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 1887 __ cbnzw(rscratch1, safepoint_in_progress); 1888 __ bind(safepoint_in_progress_done); 1889 } 1890 1891 // change thread state 1892 __ mov(rscratch1, _thread_in_Java); 1893 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1894 __ stlrw(rscratch1, rscratch2); 1895 __ bind(after_transition); 1896 1897 Label reguard; 1898 Label reguard_done; 1899 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 1900 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 1901 __ br(Assembler::EQ, reguard); 1902 __ bind(reguard_done); 1903 1904 // native result if any is live 1905 1906 // Unlock 1907 Label unlock_done; 1908 Label slow_path_unlock; 1909 if (method->is_synchronized()) { 1910 1911 // Get locked oop from the handle we passed to jni 1912 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1913 1914 Label done, not_recursive; 1915 1916 if (!UseHeavyMonitors) { 1917 // Simple recursive lock? 1918 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1919 __ cbnz(rscratch1, not_recursive); 1920 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1921 __ b(done); 1922 } 1923 1924 __ bind(not_recursive); 1925 1926 // Must save r0 if if it is live now because cmpxchg must use it 1927 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1928 save_native_result(masm, ret_type, stack_slots); 1929 } 1930 1931 if (!UseHeavyMonitors) { 1932 // get address of the stack lock 1933 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1934 // get old displaced header 1935 __ ldr(old_hdr, Address(r0, 0)); 1936 1937 // Atomic swap old header if oop still contains the stack lock 1938 Label count; 1939 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock); 1940 __ bind(count); 1941 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1942 } else { 1943 __ b(slow_path_unlock); 1944 } 1945 1946 // slow path re-enters here 1947 __ bind(unlock_done); 1948 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1949 restore_native_result(masm, ret_type, stack_slots); 1950 } 1951 1952 __ bind(done); 1953 } 1954 1955 Label dtrace_method_exit, dtrace_method_exit_done; 1956 { 1957 uint64_t offset; 1958 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1959 __ ldrb(rscratch1, Address(rscratch1, offset)); 1960 __ cbnzw(rscratch1, dtrace_method_exit); 1961 __ bind(dtrace_method_exit_done); 1962 } 1963 1964 __ reset_last_Java_frame(false); 1965 1966 // Unbox oop result, e.g. JNIHandles::resolve result. 1967 if (is_reference_type(ret_type)) { 1968 __ resolve_jobject(r0, r1, r2); 1969 } 1970 1971 if (CheckJNICalls) { 1972 // clear_pending_jni_exception_check 1973 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1974 } 1975 1976 // reset handle block 1977 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 1978 __ str(zr, Address(r2, JNIHandleBlock::top_offset_in_bytes())); 1979 1980 __ leave(); 1981 1982 // Any exception pending? 1983 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1984 __ cbnz(rscratch1, exception_pending); 1985 1986 // We're done 1987 __ ret(lr); 1988 1989 // Unexpected paths are out of line and go here 1990 1991 // forward the exception 1992 __ bind(exception_pending); 1993 1994 // and forward the exception 1995 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1996 1997 // Slow path locking & unlocking 1998 if (method->is_synchronized()) { 1999 2000 __ block_comment("Slow path lock {"); 2001 __ bind(slow_path_lock); 2002 2003 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2004 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2005 2006 // protect the args we've loaded 2007 save_args(masm, total_c_args, c_arg, out_regs); 2008 2009 __ mov(c_rarg0, obj_reg); 2010 __ mov(c_rarg1, lock_reg); 2011 __ mov(c_rarg2, rthread); 2012 2013 // Not a leaf but we have last_Java_frame setup as we want 2014 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2015 restore_args(masm, total_c_args, c_arg, out_regs); 2016 2017 #ifdef ASSERT 2018 { Label L; 2019 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2020 __ cbz(rscratch1, L); 2021 __ stop("no pending exception allowed on exit from monitorenter"); 2022 __ bind(L); 2023 } 2024 #endif 2025 __ b(lock_done); 2026 2027 __ block_comment("} Slow path lock"); 2028 2029 __ block_comment("Slow path unlock {"); 2030 __ bind(slow_path_unlock); 2031 2032 // If we haven't already saved the native result we must save it now as xmm registers 2033 // are still exposed. 2034 2035 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2036 save_native_result(masm, ret_type, stack_slots); 2037 } 2038 2039 __ mov(c_rarg2, rthread); 2040 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2041 __ mov(c_rarg0, obj_reg); 2042 2043 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2044 // NOTE that obj_reg == r19 currently 2045 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2046 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2047 2048 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2049 2050 #ifdef ASSERT 2051 { 2052 Label L; 2053 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2054 __ cbz(rscratch1, L); 2055 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2056 __ bind(L); 2057 } 2058 #endif /* ASSERT */ 2059 2060 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2061 2062 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2063 restore_native_result(masm, ret_type, stack_slots); 2064 } 2065 __ b(unlock_done); 2066 2067 __ block_comment("} Slow path unlock"); 2068 2069 } // synchronized 2070 2071 // SLOW PATH Reguard the stack if needed 2072 2073 __ bind(reguard); 2074 save_native_result(masm, ret_type, stack_slots); 2075 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2076 restore_native_result(masm, ret_type, stack_slots); 2077 // and continue 2078 __ b(reguard_done); 2079 2080 // SLOW PATH safepoint 2081 { 2082 __ block_comment("safepoint {"); 2083 __ bind(safepoint_in_progress); 2084 2085 // Don't use call_VM as it will see a possible pending exception and forward it 2086 // and never return here preventing us from clearing _last_native_pc down below. 2087 // 2088 save_native_result(masm, ret_type, stack_slots); 2089 __ mov(c_rarg0, rthread); 2090 #ifndef PRODUCT 2091 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2092 #endif 2093 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2094 __ blr(rscratch1); 2095 2096 // Restore any method result value 2097 restore_native_result(masm, ret_type, stack_slots); 2098 2099 __ b(safepoint_in_progress_done); 2100 __ block_comment("} safepoint"); 2101 } 2102 2103 // SLOW PATH dtrace support 2104 { 2105 __ block_comment("dtrace entry {"); 2106 __ bind(dtrace_method_entry); 2107 2108 // We have all of the arguments setup at this point. We must not touch any register 2109 // argument registers at this point (what if we save/restore them there are no oop? 2110 2111 save_args(masm, total_c_args, c_arg, out_regs); 2112 __ mov_metadata(c_rarg1, method()); 2113 __ call_VM_leaf( 2114 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2115 rthread, c_rarg1); 2116 restore_args(masm, total_c_args, c_arg, out_regs); 2117 __ b(dtrace_method_entry_done); 2118 __ block_comment("} dtrace entry"); 2119 } 2120 2121 { 2122 __ block_comment("dtrace exit {"); 2123 __ bind(dtrace_method_exit); 2124 save_native_result(masm, ret_type, stack_slots); 2125 __ mov_metadata(c_rarg1, method()); 2126 __ call_VM_leaf( 2127 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2128 rthread, c_rarg1); 2129 restore_native_result(masm, ret_type, stack_slots); 2130 __ b(dtrace_method_exit_done); 2131 __ block_comment("} dtrace exit"); 2132 } 2133 2134 2135 __ flush(); 2136 2137 nmethod *nm = nmethod::new_native_nmethod(method, 2138 compile_id, 2139 masm->code(), 2140 vep_offset, 2141 frame_complete, 2142 stack_slots / VMRegImpl::slots_per_word, 2143 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2144 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2145 oop_maps); 2146 2147 return nm; 2148 } 2149 2150 // this function returns the adjust size (in number of words) to a c2i adapter 2151 // activation for use during deoptimization 2152 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2153 assert(callee_locals >= callee_parameters, 2154 "test and remove; got more parms than locals"); 2155 if (callee_locals < callee_parameters) 2156 return 0; // No adjustment for negative locals 2157 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2158 // diff is counted in stack words 2159 return align_up(diff, 2); 2160 } 2161 2162 2163 //------------------------------generate_deopt_blob---------------------------- 2164 void SharedRuntime::generate_deopt_blob() { 2165 // Allocate space for the code 2166 ResourceMark rm; 2167 // Setup code generation tools 2168 int pad = 0; 2169 #if INCLUDE_JVMCI 2170 if (EnableJVMCI) { 2171 pad += 512; // Increase the buffer size when compiling for JVMCI 2172 } 2173 #endif 2174 CodeBuffer buffer("deopt_blob", 2048+pad, 1024); 2175 MacroAssembler* masm = new MacroAssembler(&buffer); 2176 int frame_size_in_words; 2177 OopMap* map = NULL; 2178 OopMapSet *oop_maps = new OopMapSet(); 2179 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2180 2181 // ------------- 2182 // This code enters when returning to a de-optimized nmethod. A return 2183 // address has been pushed on the stack, and return values are in 2184 // registers. 2185 // If we are doing a normal deopt then we were called from the patched 2186 // nmethod from the point we returned to the nmethod. So the return 2187 // address on the stack is wrong by NativeCall::instruction_size 2188 // We will adjust the value so it looks like we have the original return 2189 // address on the stack (like when we eagerly deoptimized). 2190 // In the case of an exception pending when deoptimizing, we enter 2191 // with a return address on the stack that points after the call we patched 2192 // into the exception handler. We have the following register state from, 2193 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2194 // r0: exception oop 2195 // r19: exception handler 2196 // r3: throwing pc 2197 // So in this case we simply jam r3 into the useless return address and 2198 // the stack looks just like we want. 2199 // 2200 // At this point we need to de-opt. We save the argument return 2201 // registers. We call the first C routine, fetch_unroll_info(). This 2202 // routine captures the return values and returns a structure which 2203 // describes the current frame size and the sizes of all replacement frames. 2204 // The current frame is compiled code and may contain many inlined 2205 // functions, each with their own JVM state. We pop the current frame, then 2206 // push all the new frames. Then we call the C routine unpack_frames() to 2207 // populate these frames. Finally unpack_frames() returns us the new target 2208 // address. Notice that callee-save registers are BLOWN here; they have 2209 // already been captured in the vframeArray at the time the return PC was 2210 // patched. 2211 address start = __ pc(); 2212 Label cont; 2213 2214 // Prolog for non exception case! 2215 2216 // Save everything in sight. 2217 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2218 2219 // Normal deoptimization. Save exec mode for unpack_frames. 2220 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2221 __ b(cont); 2222 2223 int reexecute_offset = __ pc() - start; 2224 #if INCLUDE_JVMCI && !defined(COMPILER1) 2225 if (EnableJVMCI && UseJVMCICompiler) { 2226 // JVMCI does not use this kind of deoptimization 2227 __ should_not_reach_here(); 2228 } 2229 #endif 2230 2231 // Reexecute case 2232 // return address is the pc describes what bci to do re-execute at 2233 2234 // No need to update map as each call to save_live_registers will produce identical oopmap 2235 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2236 2237 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2238 __ b(cont); 2239 2240 #if INCLUDE_JVMCI 2241 Label after_fetch_unroll_info_call; 2242 int implicit_exception_uncommon_trap_offset = 0; 2243 int uncommon_trap_offset = 0; 2244 2245 if (EnableJVMCI) { 2246 implicit_exception_uncommon_trap_offset = __ pc() - start; 2247 2248 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2249 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2250 2251 uncommon_trap_offset = __ pc() - start; 2252 2253 // Save everything in sight. 2254 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2255 // fetch_unroll_info needs to call last_java_frame() 2256 Label retaddr; 2257 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2258 2259 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2260 __ movw(rscratch1, -1); 2261 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2262 2263 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2264 __ mov(c_rarg0, rthread); 2265 __ movw(c_rarg2, rcpool); // exec mode 2266 __ lea(rscratch1, 2267 RuntimeAddress(CAST_FROM_FN_PTR(address, 2268 Deoptimization::uncommon_trap))); 2269 __ blr(rscratch1); 2270 __ bind(retaddr); 2271 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2272 2273 __ reset_last_Java_frame(false); 2274 2275 __ b(after_fetch_unroll_info_call); 2276 } // EnableJVMCI 2277 #endif // INCLUDE_JVMCI 2278 2279 int exception_offset = __ pc() - start; 2280 2281 // Prolog for exception case 2282 2283 // all registers are dead at this entry point, except for r0, and 2284 // r3 which contain the exception oop and exception pc 2285 // respectively. Set them in TLS and fall thru to the 2286 // unpack_with_exception_in_tls entry point. 2287 2288 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2289 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2290 2291 int exception_in_tls_offset = __ pc() - start; 2292 2293 // new implementation because exception oop is now passed in JavaThread 2294 2295 // Prolog for exception case 2296 // All registers must be preserved because they might be used by LinearScan 2297 // Exceptiop oop and throwing PC are passed in JavaThread 2298 // tos: stack at point of call to method that threw the exception (i.e. only 2299 // args are on the stack, no return address) 2300 2301 // The return address pushed by save_live_registers will be patched 2302 // later with the throwing pc. The correct value is not available 2303 // now because loading it from memory would destroy registers. 2304 2305 // NB: The SP at this point must be the SP of the method that is 2306 // being deoptimized. Deoptimization assumes that the frame created 2307 // here by save_live_registers is immediately below the method's SP. 2308 // This is a somewhat fragile mechanism. 2309 2310 // Save everything in sight. 2311 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2312 2313 // Now it is safe to overwrite any register 2314 2315 // Deopt during an exception. Save exec mode for unpack_frames. 2316 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2317 2318 // load throwing pc from JavaThread and patch it as the return address 2319 // of the current frame. Then clear the field in JavaThread 2320 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2321 __ protect_return_address(r3, rscratch1); 2322 __ str(r3, Address(rfp, wordSize)); 2323 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2324 2325 #ifdef ASSERT 2326 // verify that there is really an exception oop in JavaThread 2327 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2328 __ verify_oop(r0); 2329 2330 // verify that there is no pending exception 2331 Label no_pending_exception; 2332 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2333 __ cbz(rscratch1, no_pending_exception); 2334 __ stop("must not have pending exception here"); 2335 __ bind(no_pending_exception); 2336 #endif 2337 2338 __ bind(cont); 2339 2340 // Call C code. Need thread and this frame, but NOT official VM entry 2341 // crud. We cannot block on this call, no GC can happen. 2342 // 2343 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2344 2345 // fetch_unroll_info needs to call last_java_frame(). 2346 2347 Label retaddr; 2348 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2349 #ifdef ASSERT 2350 { Label L; 2351 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2352 __ cbz(rscratch1, L); 2353 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2354 __ bind(L); 2355 } 2356 #endif // ASSERT 2357 __ mov(c_rarg0, rthread); 2358 __ mov(c_rarg1, rcpool); 2359 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2360 __ blr(rscratch1); 2361 __ bind(retaddr); 2362 2363 // Need to have an oopmap that tells fetch_unroll_info where to 2364 // find any register it might need. 2365 oop_maps->add_gc_map(__ pc() - start, map); 2366 2367 __ reset_last_Java_frame(false); 2368 2369 #if INCLUDE_JVMCI 2370 if (EnableJVMCI) { 2371 __ bind(after_fetch_unroll_info_call); 2372 } 2373 #endif 2374 2375 // Load UnrollBlock* into r5 2376 __ mov(r5, r0); 2377 2378 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); 2379 Label noException; 2380 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2381 __ br(Assembler::NE, noException); 2382 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2383 // QQQ this is useless it was NULL above 2384 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2385 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2386 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2387 2388 __ verify_oop(r0); 2389 2390 // Overwrite the result registers with the exception results. 2391 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2392 // I think this is useless 2393 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2394 2395 __ bind(noException); 2396 2397 // Only register save data is on the stack. 2398 // Now restore the result registers. Everything else is either dead 2399 // or captured in the vframeArray. 2400 2401 // Restore fp result register 2402 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2403 // Restore integer result register 2404 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2405 2406 // Pop all of the register save area off the stack 2407 __ add(sp, sp, frame_size_in_words * wordSize); 2408 2409 // All of the register save area has been popped of the stack. Only the 2410 // return address remains. 2411 2412 // Pop all the frames we must move/replace. 2413 // 2414 // Frame picture (youngest to oldest) 2415 // 1: self-frame (no frame link) 2416 // 2: deopting frame (no frame link) 2417 // 3: caller of deopting frame (could be compiled/interpreted). 2418 // 2419 // Note: by leaving the return address of self-frame on the stack 2420 // and using the size of frame 2 to adjust the stack 2421 // when we are done the return to frame 3 will still be on the stack. 2422 2423 // Pop deoptimized frame 2424 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 2425 __ sub(r2, r2, 2 * wordSize); 2426 __ add(sp, sp, r2); 2427 __ ldp(rfp, lr, __ post(sp, 2 * wordSize)); 2428 __ authenticate_return_address(); 2429 // LR should now be the return address to the caller (3) 2430 2431 #ifdef ASSERT 2432 // Compilers generate code that bang the stack by as much as the 2433 // interpreter would need. So this stack banging should never 2434 // trigger a fault. Verify that it does not on non product builds. 2435 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 2436 __ bang_stack_size(r19, r2); 2437 #endif 2438 // Load address of array of frame pcs into r2 2439 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2440 2441 // Trash the old pc 2442 // __ addptr(sp, wordSize); FIXME ???? 2443 2444 // Load address of array of frame sizes into r4 2445 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 2446 2447 // Load counter into r3 2448 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 2449 2450 // Now adjust the caller's stack to make up for the extra locals 2451 // but record the original sp so that we can save it in the skeletal interpreter 2452 // frame and the stack walking of interpreter_sender will get the unextended sp 2453 // value and not the "real" sp value. 2454 2455 const Register sender_sp = r6; 2456 2457 __ mov(sender_sp, sp); 2458 __ ldrw(r19, Address(r5, 2459 Deoptimization::UnrollBlock:: 2460 caller_adjustment_offset_in_bytes())); 2461 __ sub(sp, sp, r19); 2462 2463 // Push interpreter frames in a loop 2464 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2465 __ mov(rscratch2, rscratch1); 2466 Label loop; 2467 __ bind(loop); 2468 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2469 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2470 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2471 __ enter(); // Save old & set new fp 2472 __ sub(sp, sp, r19); // Prolog 2473 // This value is corrected by layout_activation_impl 2474 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2475 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2476 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2477 __ sub(r3, r3, 1); // Decrement counter 2478 __ cbnz(r3, loop); 2479 2480 // Re-push self-frame 2481 __ ldr(lr, Address(r2)); 2482 __ enter(); 2483 2484 // Allocate a full sized register save area. We subtract 2 because 2485 // enter() just pushed 2 words 2486 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2487 2488 // Restore frame locals after moving the frame 2489 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2490 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2491 2492 // Call C code. Need thread but NOT official VM entry 2493 // crud. We cannot block on this call, no GC can happen. Call should 2494 // restore return values to their stack-slots with the new SP. 2495 // 2496 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2497 2498 // Use rfp because the frames look interpreted now 2499 // Don't need the precise return PC here, just precise enough to point into this code blob. 2500 address the_pc = __ pc(); 2501 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2502 2503 __ mov(c_rarg0, rthread); 2504 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2505 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2506 __ blr(rscratch1); 2507 2508 // Set an oopmap for the call site 2509 // Use the same PC we used for the last java frame 2510 oop_maps->add_gc_map(the_pc - start, 2511 new OopMap( frame_size_in_words, 0 )); 2512 2513 // Clear fp AND pc 2514 __ reset_last_Java_frame(true); 2515 2516 // Collect return values 2517 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2518 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2519 // I think this is useless (throwing pc?) 2520 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2521 2522 // Pop self-frame. 2523 __ leave(); // Epilog 2524 2525 // Jump to interpreter 2526 __ ret(lr); 2527 2528 // Make sure all code is generated 2529 masm->flush(); 2530 2531 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2532 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2533 #if INCLUDE_JVMCI 2534 if (EnableJVMCI) { 2535 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2536 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2537 } 2538 #endif 2539 } 2540 2541 // Number of stack slots between incoming argument block and the start of 2542 // a new frame. The PROLOG must add this many slots to the stack. The 2543 // EPILOG must remove this many slots. aarch64 needs two slots for 2544 // return address and fp. 2545 // TODO think this is correct but check 2546 uint SharedRuntime::in_preserve_stack_slots() { 2547 return 4; 2548 } 2549 2550 uint SharedRuntime::out_preserve_stack_slots() { 2551 return 0; 2552 } 2553 2554 #ifdef COMPILER2 2555 //------------------------------generate_uncommon_trap_blob-------------------- 2556 void SharedRuntime::generate_uncommon_trap_blob() { 2557 // Allocate space for the code 2558 ResourceMark rm; 2559 // Setup code generation tools 2560 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 2561 MacroAssembler* masm = new MacroAssembler(&buffer); 2562 2563 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2564 2565 address start = __ pc(); 2566 2567 // Push self-frame. We get here with a return address in LR 2568 // and sp should be 16 byte aligned 2569 // push rfp and retaddr by hand 2570 __ protect_return_address(); 2571 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 2572 // we don't expect an arg reg save area 2573 #ifndef PRODUCT 2574 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2575 #endif 2576 // compiler left unloaded_class_index in j_rarg0 move to where the 2577 // runtime expects it. 2578 if (c_rarg1 != j_rarg0) { 2579 __ movw(c_rarg1, j_rarg0); 2580 } 2581 2582 // we need to set the past SP to the stack pointer of the stub frame 2583 // and the pc to the address where this runtime call will return 2584 // although actually any pc in this code blob will do). 2585 Label retaddr; 2586 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2587 2588 // Call C code. Need thread but NOT official VM entry 2589 // crud. We cannot block on this call, no GC can happen. Call should 2590 // capture callee-saved registers as well as return values. 2591 // Thread is in rdi already. 2592 // 2593 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); 2594 // 2595 // n.b. 2 gp args, 0 fp args, integral return type 2596 2597 __ mov(c_rarg0, rthread); 2598 __ movw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap); 2599 __ lea(rscratch1, 2600 RuntimeAddress(CAST_FROM_FN_PTR(address, 2601 Deoptimization::uncommon_trap))); 2602 __ blr(rscratch1); 2603 __ bind(retaddr); 2604 2605 // Set an oopmap for the call site 2606 OopMapSet* oop_maps = new OopMapSet(); 2607 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 2608 2609 // location of rfp is known implicitly by the frame sender code 2610 2611 oop_maps->add_gc_map(__ pc() - start, map); 2612 2613 __ reset_last_Java_frame(false); 2614 2615 // move UnrollBlock* into r4 2616 __ mov(r4, r0); 2617 2618 #ifdef ASSERT 2619 { Label L; 2620 __ ldrw(rscratch1, Address(r4, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); 2621 __ cmpw(rscratch1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2622 __ br(Assembler::EQ, L); 2623 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap"); 2624 __ bind(L); 2625 } 2626 #endif 2627 2628 // Pop all the frames we must move/replace. 2629 // 2630 // Frame picture (youngest to oldest) 2631 // 1: self-frame (no frame link) 2632 // 2: deopting frame (no frame link) 2633 // 3: caller of deopting frame (could be compiled/interpreted). 2634 2635 // Pop self-frame. We have no frame, and must rely only on r0 and sp. 2636 __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog! 2637 2638 // Pop deoptimized frame (int) 2639 __ ldrw(r2, Address(r4, 2640 Deoptimization::UnrollBlock:: 2641 size_of_deoptimized_frame_offset_in_bytes())); 2642 __ sub(r2, r2, 2 * wordSize); 2643 __ add(sp, sp, r2); 2644 __ ldp(rfp, lr, __ post(sp, 2 * wordSize)); 2645 __ authenticate_return_address(); 2646 // LR should now be the return address to the caller (3) frame 2647 2648 #ifdef ASSERT 2649 // Compilers generate code that bang the stack by as much as the 2650 // interpreter would need. So this stack banging should never 2651 // trigger a fault. Verify that it does not on non product builds. 2652 __ ldrw(r1, Address(r4, 2653 Deoptimization::UnrollBlock:: 2654 total_frame_sizes_offset_in_bytes())); 2655 __ bang_stack_size(r1, r2); 2656 #endif 2657 2658 // Load address of array of frame pcs into r2 (address*) 2659 __ ldr(r2, Address(r4, 2660 Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2661 2662 // Load address of array of frame sizes into r5 (intptr_t*) 2663 __ ldr(r5, Address(r4, 2664 Deoptimization::UnrollBlock:: 2665 frame_sizes_offset_in_bytes())); 2666 2667 // Counter 2668 __ ldrw(r3, Address(r4, 2669 Deoptimization::UnrollBlock:: 2670 number_of_frames_offset_in_bytes())); // (int) 2671 2672 // Now adjust the caller's stack to make up for the extra locals but 2673 // record the original sp so that we can save it in the skeletal 2674 // interpreter frame and the stack walking of interpreter_sender 2675 // will get the unextended sp value and not the "real" sp value. 2676 2677 const Register sender_sp = r8; 2678 2679 __ mov(sender_sp, sp); 2680 __ ldrw(r1, Address(r4, 2681 Deoptimization::UnrollBlock:: 2682 caller_adjustment_offset_in_bytes())); // (int) 2683 __ sub(sp, sp, r1); 2684 2685 // Push interpreter frames in a loop 2686 Label loop; 2687 __ bind(loop); 2688 __ ldr(r1, Address(r5, 0)); // Load frame size 2689 __ sub(r1, r1, 2 * wordSize); // We'll push pc and rfp by hand 2690 __ ldr(lr, Address(r2, 0)); // Save return address 2691 __ enter(); // and old rfp & set new rfp 2692 __ sub(sp, sp, r1); // Prolog 2693 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2694 // This value is corrected by layout_activation_impl 2695 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2696 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2697 __ add(r5, r5, wordSize); // Bump array pointer (sizes) 2698 __ add(r2, r2, wordSize); // Bump array pointer (pcs) 2699 __ subsw(r3, r3, 1); // Decrement counter 2700 __ br(Assembler::GT, loop); 2701 __ ldr(lr, Address(r2, 0)); // save final return address 2702 // Re-push self-frame 2703 __ enter(); // & old rfp & set new rfp 2704 2705 // Use rfp because the frames look interpreted now 2706 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 2707 // Don't need the precise return PC here, just precise enough to point into this code blob. 2708 address the_pc = __ pc(); 2709 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2710 2711 // Call C code. Need thread but NOT official VM entry 2712 // crud. We cannot block on this call, no GC can happen. Call should 2713 // restore return values to their stack-slots with the new SP. 2714 // Thread is in rdi already. 2715 // 2716 // BasicType unpack_frames(JavaThread* thread, int exec_mode); 2717 // 2718 // n.b. 2 gp args, 0 fp args, integral return type 2719 2720 // sp should already be aligned 2721 __ mov(c_rarg0, rthread); 2722 __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2723 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2724 __ blr(rscratch1); 2725 2726 // Set an oopmap for the call site 2727 // Use the same PC we used for the last java frame 2728 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2729 2730 // Clear fp AND pc 2731 __ reset_last_Java_frame(true); 2732 2733 // Pop self-frame. 2734 __ leave(); // Epilog 2735 2736 // Jump to interpreter 2737 __ ret(lr); 2738 2739 // Make sure all code is generated 2740 masm->flush(); 2741 2742 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 2743 SimpleRuntimeFrame::framesize >> 1); 2744 } 2745 #endif // COMPILER2 2746 2747 2748 //------------------------------generate_handler_blob------ 2749 // 2750 // Generate a special Compile2Runtime blob that saves all registers, 2751 // and setup oopmap. 2752 // 2753 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2754 ResourceMark rm; 2755 OopMapSet *oop_maps = new OopMapSet(); 2756 OopMap* map; 2757 2758 // Allocate space for the code. Setup code generation tools. 2759 CodeBuffer buffer("handler_blob", 2048, 1024); 2760 MacroAssembler* masm = new MacroAssembler(&buffer); 2761 2762 address start = __ pc(); 2763 address call_pc = NULL; 2764 int frame_size_in_words; 2765 bool cause_return = (poll_type == POLL_AT_RETURN); 2766 RegisterSaver reg_save(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */); 2767 2768 // When the signal occurred, the LR was either signed and stored on the stack (in which 2769 // case it will be restored from the stack before being used) or unsigned and not stored 2770 // on the stack. Stipping ensures we get the right value. 2771 __ strip_return_address(); 2772 2773 // Save Integer and Float registers. 2774 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2775 2776 // The following is basically a call_VM. However, we need the precise 2777 // address of the call in order to generate an oopmap. Hence, we do all the 2778 // work ourselves. 2779 2780 Label retaddr; 2781 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2782 2783 // The return address must always be correct so that frame constructor never 2784 // sees an invalid pc. 2785 2786 if (!cause_return) { 2787 // overwrite the return address pushed by save_live_registers 2788 // Additionally, r20 is a callee-saved register so we can look at 2789 // it later to determine if someone changed the return address for 2790 // us! 2791 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2792 __ protect_return_address(r20, rscratch1); 2793 __ str(r20, Address(rfp, wordSize)); 2794 } 2795 2796 // Do the call 2797 __ mov(c_rarg0, rthread); 2798 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2799 __ blr(rscratch1); 2800 __ bind(retaddr); 2801 2802 // Set an oopmap for the call site. This oopmap will map all 2803 // oop-registers and debug-info registers as callee-saved. This 2804 // will allow deoptimization at this safepoint to find all possible 2805 // debug-info recordings, as well as let GC find all oops. 2806 2807 oop_maps->add_gc_map( __ pc() - start, map); 2808 2809 Label noException; 2810 2811 __ reset_last_Java_frame(false); 2812 2813 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2814 2815 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2816 __ cbz(rscratch1, noException); 2817 2818 // Exception pending 2819 2820 reg_save.restore_live_registers(masm); 2821 2822 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2823 2824 // No exception case 2825 __ bind(noException); 2826 2827 Label no_adjust, bail; 2828 if (!cause_return) { 2829 // If our stashed return pc was modified by the runtime we avoid touching it 2830 __ ldr(rscratch1, Address(rfp, wordSize)); 2831 __ cmp(r20, rscratch1); 2832 __ br(Assembler::NE, no_adjust); 2833 __ authenticate_return_address(r20, rscratch1); 2834 2835 #ifdef ASSERT 2836 // Verify the correct encoding of the poll we're about to skip. 2837 // See NativeInstruction::is_ldrw_to_zr() 2838 __ ldrw(rscratch1, Address(r20)); 2839 __ ubfx(rscratch2, rscratch1, 22, 10); 2840 __ cmpw(rscratch2, 0b1011100101); 2841 __ br(Assembler::NE, bail); 2842 __ ubfx(rscratch2, rscratch1, 0, 5); 2843 __ cmpw(rscratch2, 0b11111); 2844 __ br(Assembler::NE, bail); 2845 #endif 2846 // Adjust return pc forward to step over the safepoint poll instruction 2847 __ add(r20, r20, NativeInstruction::instruction_size); 2848 __ protect_return_address(r20, rscratch1); 2849 __ str(r20, Address(rfp, wordSize)); 2850 } 2851 2852 __ bind(no_adjust); 2853 // Normal exit, restore registers and exit. 2854 reg_save.restore_live_registers(masm); 2855 2856 __ ret(lr); 2857 2858 #ifdef ASSERT 2859 __ bind(bail); 2860 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2861 #endif 2862 2863 // Make sure all code is generated 2864 masm->flush(); 2865 2866 // Fill-out other meta info 2867 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2868 } 2869 2870 // 2871 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2872 // 2873 // Generate a stub that calls into vm to find out the proper destination 2874 // of a java call. All the argument registers are live at this point 2875 // but since this is generic code we don't know what they are and the caller 2876 // must do any gc of the args. 2877 // 2878 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2879 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 2880 2881 // allocate space for the code 2882 ResourceMark rm; 2883 2884 CodeBuffer buffer(name, 1000, 512); 2885 MacroAssembler* masm = new MacroAssembler(&buffer); 2886 2887 int frame_size_in_words; 2888 RegisterSaver reg_save(false /* save_vectors */); 2889 2890 OopMapSet *oop_maps = new OopMapSet(); 2891 OopMap* map = NULL; 2892 2893 int start = __ offset(); 2894 2895 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2896 2897 int frame_complete = __ offset(); 2898 2899 { 2900 Label retaddr; 2901 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2902 2903 __ mov(c_rarg0, rthread); 2904 __ lea(rscratch1, RuntimeAddress(destination)); 2905 2906 __ blr(rscratch1); 2907 __ bind(retaddr); 2908 } 2909 2910 // Set an oopmap for the call site. 2911 // We need this not only for callee-saved registers, but also for volatile 2912 // registers that the compiler might be keeping live across a safepoint. 2913 2914 oop_maps->add_gc_map( __ offset() - start, map); 2915 2916 // r0 contains the address we are going to jump to assuming no exception got installed 2917 2918 // clear last_Java_sp 2919 __ reset_last_Java_frame(false); 2920 // check for pending exceptions 2921 Label pending; 2922 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2923 __ cbnz(rscratch1, pending); 2924 2925 // get the returned Method* 2926 __ get_vm_result_2(rmethod, rthread); 2927 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 2928 2929 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 2930 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 2931 reg_save.restore_live_registers(masm); 2932 2933 // We are back to the original state on entry and ready to go. 2934 2935 __ br(rscratch1); 2936 2937 // Pending exception after the safepoint 2938 2939 __ bind(pending); 2940 2941 reg_save.restore_live_registers(masm); 2942 2943 // exception pending => remove activation and forward to exception handler 2944 2945 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 2946 2947 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 2948 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2949 2950 // ------------- 2951 // make sure all code is generated 2952 masm->flush(); 2953 2954 // return the blob 2955 // frame_size_words or bytes?? 2956 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2957 } 2958 2959 #ifdef COMPILER2 2960 // This is here instead of runtime_aarch64_64.cpp because it uses SimpleRuntimeFrame 2961 // 2962 //------------------------------generate_exception_blob--------------------------- 2963 // creates exception blob at the end 2964 // Using exception blob, this code is jumped from a compiled method. 2965 // (see emit_exception_handler in x86_64.ad file) 2966 // 2967 // Given an exception pc at a call we call into the runtime for the 2968 // handler in this method. This handler might merely restore state 2969 // (i.e. callee save registers) unwind the frame and jump to the 2970 // exception handler for the nmethod if there is no Java level handler 2971 // for the nmethod. 2972 // 2973 // This code is entered with a jmp. 2974 // 2975 // Arguments: 2976 // r0: exception oop 2977 // r3: exception pc 2978 // 2979 // Results: 2980 // r0: exception oop 2981 // r3: exception pc in caller or ??? 2982 // destination: exception handler of caller 2983 // 2984 // Note: the exception pc MUST be at a call (precise debug information) 2985 // Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved. 2986 // 2987 2988 void OptoRuntime::generate_exception_blob() { 2989 assert(!OptoRuntime::is_callee_saved_register(R3_num), ""); 2990 assert(!OptoRuntime::is_callee_saved_register(R0_num), ""); 2991 assert(!OptoRuntime::is_callee_saved_register(R2_num), ""); 2992 2993 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2994 2995 // Allocate space for the code 2996 ResourceMark rm; 2997 // Setup code generation tools 2998 CodeBuffer buffer("exception_blob", 2048, 1024); 2999 MacroAssembler* masm = new MacroAssembler(&buffer); 3000 3001 // TODO check various assumptions made here 3002 // 3003 // make sure we do so before running this 3004 3005 address start = __ pc(); 3006 3007 // push rfp and retaddr by hand 3008 // Exception pc is 'return address' for stack walker 3009 __ protect_return_address(); 3010 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 3011 // there are no callee save registers and we don't expect an 3012 // arg reg save area 3013 #ifndef PRODUCT 3014 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 3015 #endif 3016 // Store exception in Thread object. We cannot pass any arguments to the 3017 // handle_exception call, since we do not want to make any assumption 3018 // about the size of the frame where the exception happened in. 3019 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 3020 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 3021 3022 // This call does all the hard work. It checks if an exception handler 3023 // exists in the method. 3024 // If so, it returns the handler address. 3025 // If not, it prepares for stack-unwinding, restoring the callee-save 3026 // registers of the frame being removed. 3027 // 3028 // address OptoRuntime::handle_exception_C(JavaThread* thread) 3029 // 3030 // n.b. 1 gp arg, 0 fp args, integral return type 3031 3032 // the stack should always be aligned 3033 address the_pc = __ pc(); 3034 __ set_last_Java_frame(sp, noreg, the_pc, rscratch1); 3035 __ mov(c_rarg0, rthread); 3036 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); 3037 __ blr(rscratch1); 3038 // handle_exception_C is a special VM call which does not require an explicit 3039 // instruction sync afterwards. 3040 3041 // May jump to SVE compiled code 3042 __ reinitialize_ptrue(); 3043 3044 // Set an oopmap for the call site. This oopmap will only be used if we 3045 // are unwinding the stack. Hence, all locations will be dead. 3046 // Callee-saved registers will be the same as the frame above (i.e., 3047 // handle_exception_stub), since they were restored when we got the 3048 // exception. 3049 3050 OopMapSet* oop_maps = new OopMapSet(); 3051 3052 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 3053 3054 __ reset_last_Java_frame(false); 3055 3056 // Restore callee-saved registers 3057 3058 // rfp is an implicitly saved callee saved register (i.e. the calling 3059 // convention will save restore it in prolog/epilog) Other than that 3060 // there are no callee save registers now that adapter frames are gone. 3061 // and we dont' expect an arg reg save area 3062 __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize))); 3063 __ authenticate_return_address(r3); 3064 3065 // r0: exception handler 3066 3067 // We have a handler in r0 (could be deopt blob). 3068 __ mov(r8, r0); 3069 3070 // Get the exception oop 3071 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 3072 // Get the exception pc in case we are deoptimized 3073 __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset())); 3074 #ifdef ASSERT 3075 __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset())); 3076 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 3077 #endif 3078 // Clear the exception oop so GC no longer processes it as a root. 3079 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 3080 3081 // r0: exception oop 3082 // r8: exception handler 3083 // r4: exception pc 3084 // Jump to handler 3085 3086 __ br(r8); 3087 3088 // Make sure all code is generated 3089 masm->flush(); 3090 3091 // Set exception blob 3092 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 3093 } 3094 3095 #endif // COMPILER2