1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/debugInfoRec.hpp" 33 #include "code/icBuffer.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSetAssembler.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interp_masm.hpp" 39 #include "logging/log.hpp" 40 #include "memory/resourceArea.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/compiledICHolder.hpp" 43 #include "oops/klass.inline.hpp" 44 #include "oops/method.inline.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/continuation.hpp" 47 #include "runtime/continuationEntry.inline.hpp" 48 #include "runtime/globals.hpp" 49 #include "runtime/jniHandles.hpp" 50 #include "runtime/safepointMechanism.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 #include "runtime/signature.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/align.hpp" 56 #include "utilities/formatBuffer.hpp" 57 #include "vmreg_aarch64.inline.hpp" 58 #ifdef COMPILER1 59 #include "c1/c1_Runtime1.hpp" 60 #endif 61 #ifdef COMPILER2 62 #include "adfiles/ad_aarch64.hpp" 63 #include "opto/runtime.hpp" 64 #endif 65 #if INCLUDE_JVMCI 66 #include "jvmci/jvmciJavaClasses.hpp" 67 #endif 68 69 #define __ masm-> 70 71 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 72 73 class SimpleRuntimeFrame { 74 75 public: 76 77 // Most of the runtime stubs have this simple frame layout. 78 // This class exists to make the layout shared in one place. 79 // Offsets are for compiler stack slots, which are jints. 80 enum layout { 81 // The frame sender code expects that rbp will be in the "natural" place and 82 // will override any oopMap setting for it. We must therefore force the layout 83 // so that it agrees with the frame sender code. 84 // we don't expect any arg reg save area so aarch64 asserts that 85 // frame::arg_reg_save_area_bytes == 0 86 rfp_off = 0, 87 rfp_off2, 88 return_off, return_off2, 89 framesize 90 }; 91 }; 92 93 // FIXME -- this is used by C1 94 class RegisterSaver { 95 const bool _save_vectors; 96 public: 97 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 98 99 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 100 void restore_live_registers(MacroAssembler* masm); 101 102 // Offsets into the register save area 103 // Used by deoptimization when it is managing result register 104 // values on its own 105 106 int reg_offset_in_bytes(Register r); 107 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 108 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 109 int v0_offset_in_bytes(); 110 111 // Total stack size in bytes for saving sve predicate registers. 112 int total_sve_predicate_in_bytes(); 113 114 // Capture info about frame layout 115 // Note this is only correct when not saving full vectors. 116 enum layout { 117 fpu_state_off = 0, 118 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 119 // The frame sender code expects that rfp will be in 120 // the "natural" place and will override any oopMap 121 // setting for it. We must therefore force the layout 122 // so that it agrees with the frame sender code. 123 r0_off = fpu_state_off + FPUStateSizeInWords, 124 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 125 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 126 reg_save_size = return_off + Register::max_slots_per_register}; 127 128 }; 129 130 int RegisterSaver::reg_offset_in_bytes(Register r) { 131 // The integer registers are located above the floating point 132 // registers in the stack frame pushed by save_live_registers() so the 133 // offset depends on whether we are saving full vectors, and whether 134 // those vectors are NEON or SVE. 135 136 int slots_per_vect = FloatRegister::save_slots_per_register; 137 138 #if COMPILER2_OR_JVMCI 139 if (_save_vectors) { 140 slots_per_vect = FloatRegister::slots_per_neon_register; 141 142 #ifdef COMPILER2 143 if (Matcher::supports_scalable_vector()) { 144 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 145 } 146 #endif 147 } 148 #endif 149 150 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 151 return r0_offset + r->encoding() * wordSize; 152 } 153 154 int RegisterSaver::v0_offset_in_bytes() { 155 // The floating point registers are located above the predicate registers if 156 // they are present in the stack frame pushed by save_live_registers(). So the 157 // offset depends on the saved total predicate vectors in the stack frame. 158 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 159 } 160 161 int RegisterSaver::total_sve_predicate_in_bytes() { 162 #ifdef COMPILER2 163 if (_save_vectors && Matcher::supports_scalable_vector()) { 164 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 165 PRegister::number_of_registers; 166 } 167 #endif 168 return 0; 169 } 170 171 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 172 bool use_sve = false; 173 int sve_vector_size_in_bytes = 0; 174 int sve_vector_size_in_slots = 0; 175 int sve_predicate_size_in_slots = 0; 176 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 177 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 178 179 #ifdef COMPILER2 180 use_sve = Matcher::supports_scalable_vector(); 181 if (use_sve) { 182 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 183 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 184 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 185 } 186 #endif 187 188 #if COMPILER2_OR_JVMCI 189 if (_save_vectors) { 190 int extra_save_slots_per_register = 0; 191 // Save upper half of vector registers 192 if (use_sve) { 193 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 194 } else { 195 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 196 } 197 int extra_vector_bytes = extra_save_slots_per_register * 198 VMRegImpl::stack_slot_size * 199 FloatRegister::number_of_registers; 200 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 201 } 202 #else 203 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 204 #endif 205 206 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 207 reg_save_size * BytesPerInt, 16); 208 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 209 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 210 // The caller will allocate additional_frame_words 211 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 212 // CodeBlob frame size is in words. 213 int frame_size_in_words = frame_size_in_bytes / wordSize; 214 *total_frame_words = frame_size_in_words; 215 216 // Save Integer and Float registers. 217 __ enter(); 218 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 219 220 // Set an oopmap for the call site. This oopmap will map all 221 // oop-registers and debug-info registers as callee-saved. This 222 // will allow deoptimization at this safepoint to find all possible 223 // debug-info recordings, as well as let GC find all oops. 224 225 OopMapSet *oop_maps = new OopMapSet(); 226 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 227 228 for (int i = 0; i < Register::number_of_registers; i++) { 229 Register r = as_Register(i); 230 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 231 // SP offsets are in 4-byte words. 232 // Register slots are 8 bytes wide, 32 floating-point registers. 233 int sp_offset = Register::max_slots_per_register * i + 234 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 235 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 236 } 237 } 238 239 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 240 FloatRegister r = as_FloatRegister(i); 241 int sp_offset = 0; 242 if (_save_vectors) { 243 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 244 (FloatRegister::slots_per_neon_register * i); 245 } else { 246 sp_offset = FloatRegister::save_slots_per_register * i; 247 } 248 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 249 } 250 251 return oop_map; 252 } 253 254 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 255 #ifdef COMPILER2 256 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 257 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 258 #else 259 #if !INCLUDE_JVMCI 260 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 261 #endif 262 __ pop_CPU_state(_save_vectors); 263 #endif 264 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 265 __ authenticate_return_address(); 266 } 267 268 // Is vector's size (in bytes) bigger than a size saved by default? 269 // 8 bytes vector registers are saved by default on AArch64. 270 // The SVE supported min vector size is 8 bytes and we need to save 271 // predicate registers when the vector size is 8 bytes as well. 272 bool SharedRuntime::is_wide_vector(int size) { 273 return size > 8 || (UseSVE > 0 && size >= 8); 274 } 275 276 // --------------------------------------------------------------------------- 277 // Read the array of BasicTypes from a signature, and compute where the 278 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 279 // quantities. Values less than VMRegImpl::stack0 are registers, those above 280 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 281 // as framesizes are fixed. 282 // VMRegImpl::stack0 refers to the first slot 0(sp). 283 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 284 // Register up to Register::number_of_registers are the 64-bit 285 // integer registers. 286 287 // Note: the INPUTS in sig_bt are in units of Java argument words, 288 // which are 64-bit. The OUTPUTS are in 32-bit units. 289 290 // The Java calling convention is a "shifted" version of the C ABI. 291 // By skipping the first C ABI register we can call non-static jni 292 // methods with small numbers of arguments without having to shuffle 293 // the arguments at all. Since we control the java ABI we ought to at 294 // least get some advantage out of it. 295 296 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 297 VMRegPair *regs, 298 int total_args_passed) { 299 300 // Create the mapping between argument positions and 301 // registers. 302 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 303 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 304 }; 305 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 306 j_farg0, j_farg1, j_farg2, j_farg3, 307 j_farg4, j_farg5, j_farg6, j_farg7 308 }; 309 310 311 uint int_args = 0; 312 uint fp_args = 0; 313 uint stk_args = 0; // inc by 2 each time 314 315 for (int i = 0; i < total_args_passed; i++) { 316 switch (sig_bt[i]) { 317 case T_BOOLEAN: 318 case T_CHAR: 319 case T_BYTE: 320 case T_SHORT: 321 case T_INT: 322 if (int_args < Argument::n_int_register_parameters_j) { 323 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 324 } else { 325 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 326 stk_args += 2; 327 } 328 break; 329 case T_VOID: 330 // halves of T_LONG or T_DOUBLE 331 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 332 regs[i].set_bad(); 333 break; 334 case T_LONG: 335 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 336 // fall through 337 case T_OBJECT: 338 case T_ARRAY: 339 case T_ADDRESS: 340 if (int_args < Argument::n_int_register_parameters_j) { 341 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 342 } else { 343 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 344 stk_args += 2; 345 } 346 break; 347 case T_FLOAT: 348 if (fp_args < Argument::n_float_register_parameters_j) { 349 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 350 } else { 351 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 352 stk_args += 2; 353 } 354 break; 355 case T_DOUBLE: 356 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 357 if (fp_args < Argument::n_float_register_parameters_j) { 358 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 359 } else { 360 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 361 stk_args += 2; 362 } 363 break; 364 default: 365 ShouldNotReachHere(); 366 break; 367 } 368 } 369 370 return align_up(stk_args, 2); 371 } 372 373 // Patch the callers callsite with entry to compiled code if it exists. 374 static void patch_callers_callsite(MacroAssembler *masm) { 375 Label L; 376 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 377 __ cbz(rscratch1, L); 378 379 __ enter(); 380 __ push_CPU_state(); 381 382 // VM needs caller's callsite 383 // VM needs target method 384 // This needs to be a long call since we will relocate this adapter to 385 // the codeBuffer and it may not reach 386 387 #ifndef PRODUCT 388 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 389 #endif 390 391 __ mov(c_rarg0, rmethod); 392 __ mov(c_rarg1, lr); 393 __ authenticate_return_address(c_rarg1, rscratch1); 394 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 395 __ blr(rscratch1); 396 397 // Explicit isb required because fixup_callers_callsite may change the code 398 // stream. 399 __ safepoint_isb(); 400 401 __ pop_CPU_state(); 402 // restore sp 403 __ leave(); 404 __ bind(L); 405 } 406 407 static void gen_c2i_adapter(MacroAssembler *masm, 408 int total_args_passed, 409 int comp_args_on_stack, 410 const BasicType *sig_bt, 411 const VMRegPair *regs, 412 Label& skip_fixup) { 413 // Before we get into the guts of the C2I adapter, see if we should be here 414 // at all. We've come from compiled code and are attempting to jump to the 415 // interpreter, which means the caller made a static call to get here 416 // (vcalls always get a compiled target if there is one). Check for a 417 // compiled target. If there is one, we need to patch the caller's call. 418 patch_callers_callsite(masm); 419 420 __ bind(skip_fixup); 421 422 int words_pushed = 0; 423 424 // Since all args are passed on the stack, total_args_passed * 425 // Interpreter::stackElementSize is the space we need. 426 427 int extraspace = total_args_passed * Interpreter::stackElementSize; 428 429 __ mov(r19_sender_sp, sp); 430 431 // stack is aligned, keep it that way 432 extraspace = align_up(extraspace, 2*wordSize); 433 434 if (extraspace) 435 __ sub(sp, sp, extraspace); 436 437 // Now write the args into the outgoing interpreter space 438 for (int i = 0; i < total_args_passed; i++) { 439 if (sig_bt[i] == T_VOID) { 440 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 441 continue; 442 } 443 444 // offset to start parameters 445 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 446 int next_off = st_off - Interpreter::stackElementSize; 447 448 // Say 4 args: 449 // i st_off 450 // 0 32 T_LONG 451 // 1 24 T_VOID 452 // 2 16 T_OBJECT 453 // 3 8 T_BOOL 454 // - 0 return address 455 // 456 // However to make thing extra confusing. Because we can fit a Java long/double in 457 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 458 // leaves one slot empty and only stores to a single slot. In this case the 459 // slot that is occupied is the T_VOID slot. See I said it was confusing. 460 461 VMReg r_1 = regs[i].first(); 462 VMReg r_2 = regs[i].second(); 463 if (!r_1->is_valid()) { 464 assert(!r_2->is_valid(), ""); 465 continue; 466 } 467 if (r_1->is_stack()) { 468 // memory to memory use rscratch1 469 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 470 + extraspace 471 + words_pushed * wordSize); 472 if (!r_2->is_valid()) { 473 // sign extend?? 474 __ ldrw(rscratch1, Address(sp, ld_off)); 475 __ str(rscratch1, Address(sp, st_off)); 476 477 } else { 478 479 __ ldr(rscratch1, Address(sp, ld_off)); 480 481 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 482 // T_DOUBLE and T_LONG use two slots in the interpreter 483 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 484 // ld_off == LSW, ld_off+wordSize == MSW 485 // st_off == MSW, next_off == LSW 486 __ str(rscratch1, Address(sp, next_off)); 487 #ifdef ASSERT 488 // Overwrite the unused slot with known junk 489 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull); 490 __ str(rscratch1, Address(sp, st_off)); 491 #endif /* ASSERT */ 492 } else { 493 __ str(rscratch1, Address(sp, st_off)); 494 } 495 } 496 } else if (r_1->is_Register()) { 497 Register r = r_1->as_Register(); 498 if (!r_2->is_valid()) { 499 // must be only an int (or less ) so move only 32bits to slot 500 // why not sign extend?? 501 __ str(r, Address(sp, st_off)); 502 } else { 503 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 504 // T_DOUBLE and T_LONG use two slots in the interpreter 505 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 506 // jlong/double in gpr 507 #ifdef ASSERT 508 // Overwrite the unused slot with known junk 509 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull); 510 __ str(rscratch1, Address(sp, st_off)); 511 #endif /* ASSERT */ 512 __ str(r, Address(sp, next_off)); 513 } else { 514 __ str(r, Address(sp, st_off)); 515 } 516 } 517 } else { 518 assert(r_1->is_FloatRegister(), ""); 519 if (!r_2->is_valid()) { 520 // only a float use just part of the slot 521 __ strs(r_1->as_FloatRegister(), Address(sp, st_off)); 522 } else { 523 #ifdef ASSERT 524 // Overwrite the unused slot with known junk 525 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull); 526 __ str(rscratch1, Address(sp, st_off)); 527 #endif /* ASSERT */ 528 __ strd(r_1->as_FloatRegister(), Address(sp, next_off)); 529 } 530 } 531 } 532 533 __ mov(esp, sp); // Interp expects args on caller's expression stack 534 535 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 536 __ br(rscratch1); 537 } 538 539 540 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 541 int total_args_passed, 542 int comp_args_on_stack, 543 const BasicType *sig_bt, 544 const VMRegPair *regs) { 545 546 // Note: r19_sender_sp contains the senderSP on entry. We must 547 // preserve it since we may do a i2c -> c2i transition if we lose a 548 // race where compiled code goes non-entrant while we get args 549 // ready. 550 551 // Adapters are frameless. 552 553 // An i2c adapter is frameless because the *caller* frame, which is 554 // interpreted, routinely repairs its own esp (from 555 // interpreter_frame_last_sp), even if a callee has modified the 556 // stack pointer. It also recalculates and aligns sp. 557 558 // A c2i adapter is frameless because the *callee* frame, which is 559 // interpreted, routinely repairs its caller's sp (from sender_sp, 560 // which is set up via the senderSP register). 561 562 // In other words, if *either* the caller or callee is interpreted, we can 563 // get the stack pointer repaired after a call. 564 565 // This is why c2i and i2c adapters cannot be indefinitely composed. 566 // In particular, if a c2i adapter were to somehow call an i2c adapter, 567 // both caller and callee would be compiled methods, and neither would 568 // clean up the stack pointer changes performed by the two adapters. 569 // If this happens, control eventually transfers back to the compiled 570 // caller, but with an uncorrected stack, causing delayed havoc. 571 572 if (VerifyAdapterCalls && 573 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { 574 #if 0 575 // So, let's test for cascading c2i/i2c adapters right now. 576 // assert(Interpreter::contains($return_addr) || 577 // StubRoutines::contains($return_addr), 578 // "i2c adapter must return to an interpreter frame"); 579 __ block_comment("verify_i2c { "); 580 Label L_ok; 581 if (Interpreter::code() != NULL) 582 range_check(masm, rax, r11, 583 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 584 L_ok); 585 if (StubRoutines::code1() != NULL) 586 range_check(masm, rax, r11, 587 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), 588 L_ok); 589 if (StubRoutines::code2() != NULL) 590 range_check(masm, rax, r11, 591 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), 592 L_ok); 593 const char* msg = "i2c adapter must return to an interpreter frame"; 594 __ block_comment(msg); 595 __ stop(msg); 596 __ bind(L_ok); 597 __ block_comment("} verify_i2ce "); 598 #endif 599 } 600 601 // Cut-out for having no stack args. 602 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 603 if (comp_args_on_stack) { 604 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 605 __ andr(sp, rscratch1, -16); 606 } 607 608 // Will jump to the compiled code just as if compiled code was doing it. 609 // Pre-load the register-jump target early, to schedule it better. 610 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset()))); 611 612 #if INCLUDE_JVMCI 613 if (EnableJVMCI) { 614 // check if this call should be routed towards a specific entry point 615 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 616 Label no_alternative_target; 617 __ cbz(rscratch2, no_alternative_target); 618 __ mov(rscratch1, rscratch2); 619 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 620 __ bind(no_alternative_target); 621 } 622 #endif // INCLUDE_JVMCI 623 624 // Now generate the shuffle code. 625 for (int i = 0; i < total_args_passed; i++) { 626 if (sig_bt[i] == T_VOID) { 627 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 628 continue; 629 } 630 631 // Pick up 0, 1 or 2 words from SP+offset. 632 633 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 634 "scrambled load targets?"); 635 // Load in argument order going down. 636 int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize; 637 // Point to interpreter value (vs. tag) 638 int next_off = ld_off - Interpreter::stackElementSize; 639 // 640 // 641 // 642 VMReg r_1 = regs[i].first(); 643 VMReg r_2 = regs[i].second(); 644 if (!r_1->is_valid()) { 645 assert(!r_2->is_valid(), ""); 646 continue; 647 } 648 if (r_1->is_stack()) { 649 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 650 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size; 651 if (!r_2->is_valid()) { 652 // sign extend??? 653 __ ldrsw(rscratch2, Address(esp, ld_off)); 654 __ str(rscratch2, Address(sp, st_off)); 655 } else { 656 // 657 // We are using two optoregs. This can be either T_OBJECT, 658 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 659 // two slots but only uses one for thr T_LONG or T_DOUBLE case 660 // So we must adjust where to pick up the data to match the 661 // interpreter. 662 // 663 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 664 // are accessed as negative so LSW is at LOW address 665 666 // ld_off is MSW so get LSW 667 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 668 next_off : ld_off; 669 __ ldr(rscratch2, Address(esp, offset)); 670 // st_off is LSW (i.e. reg.first()) 671 __ str(rscratch2, Address(sp, st_off)); 672 } 673 } else if (r_1->is_Register()) { // Register argument 674 Register r = r_1->as_Register(); 675 if (r_2->is_valid()) { 676 // 677 // We are using two VMRegs. This can be either T_OBJECT, 678 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 679 // two slots but only uses one for thr T_LONG or T_DOUBLE case 680 // So we must adjust where to pick up the data to match the 681 // interpreter. 682 683 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 684 next_off : ld_off; 685 686 // this can be a misaligned move 687 __ ldr(r, Address(esp, offset)); 688 } else { 689 // sign extend and use a full word? 690 __ ldrw(r, Address(esp, ld_off)); 691 } 692 } else { 693 if (!r_2->is_valid()) { 694 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 695 } else { 696 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 697 } 698 } 699 } 700 701 __ mov(rscratch2, rscratch1); 702 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 703 __ mov(rscratch1, rscratch2); 704 705 // 6243940 We might end up in handle_wrong_method if 706 // the callee is deoptimized as we race thru here. If that 707 // happens we don't want to take a safepoint because the 708 // caller frame will look interpreted and arguments are now 709 // "compiled" so it is much better to make this transition 710 // invisible to the stack walking code. Unfortunately if 711 // we try and find the callee by normal means a safepoint 712 // is possible. So we stash the desired callee in the thread 713 // and the vm will find there should this case occur. 714 715 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 716 717 __ br(rscratch1); 718 } 719 720 // --------------------------------------------------------------- 721 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 722 int total_args_passed, 723 int comp_args_on_stack, 724 const BasicType *sig_bt, 725 const VMRegPair *regs, 726 AdapterFingerPrint* fingerprint) { 727 address i2c_entry = __ pc(); 728 729 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 730 731 address c2i_unverified_entry = __ pc(); 732 Label skip_fixup; 733 734 Label ok; 735 736 Register holder = rscratch2; 737 Register receiver = j_rarg0; 738 Register tmp = r10; // A call-clobbered register not used for arg passing 739 740 // ------------------------------------------------------------------------- 741 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 742 // to the interpreter. The args start out packed in the compiled layout. They 743 // need to be unpacked into the interpreter layout. This will almost always 744 // require some stack space. We grow the current (compiled) stack, then repack 745 // the args. We finally end in a jump to the generic interpreter entry point. 746 // On exit from the interpreter, the interpreter will restore our SP (lest the 747 // compiled code, which relies solely on SP and not FP, get sick). 748 749 { 750 __ block_comment("c2i_unverified_entry {"); 751 __ load_klass(rscratch1, receiver); 752 __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset())); 753 __ cmp(rscratch1, tmp); 754 __ ldr(rmethod, Address(holder, CompiledICHolder::holder_metadata_offset())); 755 __ br(Assembler::EQ, ok); 756 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 757 758 __ bind(ok); 759 // Method might have been compiled since the call site was patched to 760 // interpreted; if that is the case treat it as a miss so we can get 761 // the call site corrected. 762 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 763 __ cbz(rscratch1, skip_fixup); 764 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 765 __ block_comment("} c2i_unverified_entry"); 766 } 767 768 address c2i_entry = __ pc(); 769 770 // Class initialization barrier for static methods 771 address c2i_no_clinit_check_entry = NULL; 772 if (VM_Version::supports_fast_class_init_checks()) { 773 Label L_skip_barrier; 774 775 { // Bypass the barrier for non-static methods 776 __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset())); 777 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 778 __ br(Assembler::EQ, L_skip_barrier); // non-static 779 } 780 781 __ load_method_holder(rscratch2, rmethod); 782 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 783 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 784 785 __ bind(L_skip_barrier); 786 c2i_no_clinit_check_entry = __ pc(); 787 } 788 789 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 790 bs->c2i_entry_barrier(masm); 791 792 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 793 794 __ flush(); 795 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 796 } 797 798 static int c_calling_convention_priv(const BasicType *sig_bt, 799 VMRegPair *regs, 800 VMRegPair *regs2, 801 int total_args_passed) { 802 assert(regs2 == NULL, "not needed on AArch64"); 803 804 // We return the amount of VMRegImpl stack slots we need to reserve for all 805 // the arguments NOT counting out_preserve_stack_slots. 806 807 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 808 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 809 }; 810 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 811 c_farg0, c_farg1, c_farg2, c_farg3, 812 c_farg4, c_farg5, c_farg6, c_farg7 813 }; 814 815 uint int_args = 0; 816 uint fp_args = 0; 817 uint stk_args = 0; // inc by 2 each time 818 819 for (int i = 0; i < total_args_passed; i++) { 820 switch (sig_bt[i]) { 821 case T_BOOLEAN: 822 case T_CHAR: 823 case T_BYTE: 824 case T_SHORT: 825 case T_INT: 826 if (int_args < Argument::n_int_register_parameters_c) { 827 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 828 } else { 829 #ifdef __APPLE__ 830 // Less-than word types are stored one after another. 831 // The code is unable to handle this so bailout. 832 return -1; 833 #endif 834 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 835 stk_args += 2; 836 } 837 break; 838 case T_LONG: 839 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 840 // fall through 841 case T_OBJECT: 842 case T_ARRAY: 843 case T_ADDRESS: 844 case T_METADATA: 845 if (int_args < Argument::n_int_register_parameters_c) { 846 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 847 } else { 848 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 849 stk_args += 2; 850 } 851 break; 852 case T_FLOAT: 853 if (fp_args < Argument::n_float_register_parameters_c) { 854 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 855 } else { 856 #ifdef __APPLE__ 857 // Less-than word types are stored one after another. 858 // The code is unable to handle this so bailout. 859 return -1; 860 #endif 861 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 862 stk_args += 2; 863 } 864 break; 865 case T_DOUBLE: 866 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 867 if (fp_args < Argument::n_float_register_parameters_c) { 868 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 869 } else { 870 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 871 stk_args += 2; 872 } 873 break; 874 case T_VOID: // Halves of longs and doubles 875 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 876 regs[i].set_bad(); 877 break; 878 default: 879 ShouldNotReachHere(); 880 break; 881 } 882 } 883 884 return stk_args; 885 } 886 887 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 888 uint num_bits, 889 uint total_args_passed) { 890 Unimplemented(); 891 return 0; 892 } 893 894 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 895 VMRegPair *regs, 896 VMRegPair *regs2, 897 int total_args_passed) 898 { 899 int result = c_calling_convention_priv(sig_bt, regs, regs2, total_args_passed); 900 guarantee(result >= 0, "Unsupported arguments configuration"); 901 return result; 902 } 903 904 905 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 906 // We always ignore the frame_slots arg and just use the space just below frame pointer 907 // which by this time is free to use 908 switch (ret_type) { 909 case T_FLOAT: 910 __ strs(v0, Address(rfp, -wordSize)); 911 break; 912 case T_DOUBLE: 913 __ strd(v0, Address(rfp, -wordSize)); 914 break; 915 case T_VOID: break; 916 default: { 917 __ str(r0, Address(rfp, -wordSize)); 918 } 919 } 920 } 921 922 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 923 // We always ignore the frame_slots arg and just use the space just below frame pointer 924 // which by this time is free to use 925 switch (ret_type) { 926 case T_FLOAT: 927 __ ldrs(v0, Address(rfp, -wordSize)); 928 break; 929 case T_DOUBLE: 930 __ ldrd(v0, Address(rfp, -wordSize)); 931 break; 932 case T_VOID: break; 933 default: { 934 __ ldr(r0, Address(rfp, -wordSize)); 935 } 936 } 937 } 938 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 939 RegSet x; 940 for ( int i = first_arg ; i < arg_count ; i++ ) { 941 if (args[i].first()->is_Register()) { 942 x = x + args[i].first()->as_Register(); 943 } else if (args[i].first()->is_FloatRegister()) { 944 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 945 } 946 } 947 __ push(x, sp); 948 } 949 950 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 951 RegSet x; 952 for ( int i = first_arg ; i < arg_count ; i++ ) { 953 if (args[i].first()->is_Register()) { 954 x = x + args[i].first()->as_Register(); 955 } else { 956 ; 957 } 958 } 959 __ pop(x, sp); 960 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 961 if (args[i].first()->is_Register()) { 962 ; 963 } else if (args[i].first()->is_FloatRegister()) { 964 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 965 } 966 } 967 } 968 969 static void verify_oop_args(MacroAssembler* masm, 970 const methodHandle& method, 971 const BasicType* sig_bt, 972 const VMRegPair* regs) { 973 Register temp_reg = r19; // not part of any compiled calling seq 974 if (VerifyOops) { 975 for (int i = 0; i < method->size_of_parameters(); i++) { 976 if (sig_bt[i] == T_OBJECT || 977 sig_bt[i] == T_ARRAY) { 978 VMReg r = regs[i].first(); 979 assert(r->is_valid(), "bad oop arg"); 980 if (r->is_stack()) { 981 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 982 __ verify_oop(temp_reg); 983 } else { 984 __ verify_oop(r->as_Register()); 985 } 986 } 987 } 988 } 989 } 990 991 // on exit, sp points to the ContinuationEntry 992 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 993 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 994 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 995 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 996 997 stack_slots += (int)ContinuationEntry::size()/wordSize; 998 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 999 1000 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 1001 1002 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1003 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 1004 __ mov(rscratch1, sp); // we can't use sp as the source in str 1005 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1006 1007 return map; 1008 } 1009 1010 // on entry c_rarg1 points to the continuation 1011 // sp points to ContinuationEntry 1012 // c_rarg3 -- isVirtualThread 1013 static void fill_continuation_entry(MacroAssembler* masm) { 1014 #ifdef ASSERT 1015 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1016 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1017 #endif 1018 1019 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1020 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1021 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1022 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1023 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1024 1025 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1026 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1027 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1028 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1029 1030 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1031 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1032 } 1033 1034 // on entry, sp points to the ContinuationEntry 1035 // on exit, rfp points to the spilled rfp in the entry frame 1036 static void continuation_enter_cleanup(MacroAssembler* masm) { 1037 #ifndef PRODUCT 1038 Label OK; 1039 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1040 __ cmp(sp, rscratch1); 1041 __ br(Assembler::EQ, OK); 1042 __ stop("incorrect sp1"); 1043 __ bind(OK); 1044 #endif 1045 1046 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1047 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1048 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1049 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1050 1051 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1052 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1053 __ add(rfp, sp, (int)ContinuationEntry::size()); 1054 } 1055 1056 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1057 // On entry: c_rarg1 -- the continuation object 1058 // c_rarg2 -- isContinue 1059 // c_rarg3 -- isVirtualThread 1060 static void gen_continuation_enter(MacroAssembler* masm, 1061 const methodHandle& method, 1062 const BasicType* sig_bt, 1063 const VMRegPair* regs, 1064 int& exception_offset, 1065 OopMapSet*oop_maps, 1066 int& frame_complete, 1067 int& stack_slots, 1068 int& interpreted_entry_offset, 1069 int& compiled_entry_offset) { 1070 //verify_oop_args(masm, method, sig_bt, regs); 1071 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1072 1073 address start = __ pc(); 1074 1075 Label call_thaw, exit; 1076 1077 // i2i entry used at interp_only_mode only 1078 interpreted_entry_offset = __ pc() - start; 1079 { 1080 1081 #ifdef ASSERT 1082 Label is_interp_only; 1083 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1084 __ cbnzw(rscratch1, is_interp_only); 1085 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1086 __ bind(is_interp_only); 1087 #endif 1088 1089 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1090 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1091 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1092 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1093 __ push_cont_fastpath(rthread); 1094 1095 __ enter(); 1096 stack_slots = 2; // will be adjusted in setup 1097 OopMap* map = continuation_enter_setup(masm, stack_slots); 1098 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1099 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1100 1101 fill_continuation_entry(masm); 1102 1103 __ cbnz(c_rarg2, call_thaw); 1104 1105 const address tr_call = __ trampoline_call(resolve); 1106 if (tr_call == nullptr) { 1107 fatal("CodeCache is full at gen_continuation_enter"); 1108 } 1109 1110 oop_maps->add_gc_map(__ pc() - start, map); 1111 __ post_call_nop(); 1112 1113 __ b(exit); 1114 1115 CodeBuffer* cbuf = masm->code_section()->outer(); 1116 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1117 if (stub == nullptr) { 1118 fatal("CodeCache is full at gen_continuation_enter"); 1119 } 1120 } 1121 1122 // compiled entry 1123 __ align(CodeEntryAlignment); 1124 compiled_entry_offset = __ pc() - start; 1125 1126 __ enter(); 1127 stack_slots = 2; // will be adjusted in setup 1128 OopMap* map = continuation_enter_setup(masm, stack_slots); 1129 frame_complete = __ pc() - start; 1130 1131 fill_continuation_entry(masm); 1132 1133 __ cbnz(c_rarg2, call_thaw); 1134 1135 const address tr_call = __ trampoline_call(resolve); 1136 if (tr_call == nullptr) { 1137 fatal("CodeCache is full at gen_continuation_enter"); 1138 } 1139 1140 oop_maps->add_gc_map(__ pc() - start, map); 1141 __ post_call_nop(); 1142 1143 __ b(exit); 1144 1145 __ bind(call_thaw); 1146 1147 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1148 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1149 ContinuationEntry::_return_pc_offset = __ pc() - start; 1150 __ post_call_nop(); 1151 1152 __ bind(exit); 1153 continuation_enter_cleanup(masm); 1154 __ leave(); 1155 __ ret(lr); 1156 1157 /// exception handling 1158 1159 exception_offset = __ pc() - start; 1160 { 1161 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1162 1163 continuation_enter_cleanup(masm); 1164 1165 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1166 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1167 1168 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1169 1170 __ mov(r1, r0); // the exception handler 1171 __ mov(r0, r19); // restore return value contaning the exception oop 1172 __ verify_oop(r0); 1173 1174 __ leave(); 1175 __ mov(r3, lr); 1176 __ br(r1); // the exception handler 1177 } 1178 1179 CodeBuffer* cbuf = masm->code_section()->outer(); 1180 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1181 if (stub == nullptr) { 1182 fatal("CodeCache is full at gen_continuation_enter"); 1183 } 1184 } 1185 1186 static void gen_continuation_yield(MacroAssembler* masm, 1187 const methodHandle& method, 1188 const BasicType* sig_bt, 1189 const VMRegPair* regs, 1190 OopMapSet* oop_maps, 1191 int& frame_complete, 1192 int& stack_slots, 1193 int& compiled_entry_offset) { 1194 enum layout { 1195 rfp_off1, 1196 rfp_off2, 1197 lr_off, 1198 lr_off2, 1199 framesize // inclusive of return address 1200 }; 1201 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1202 stack_slots = framesize / VMRegImpl::slots_per_word; 1203 assert(stack_slots == 2, "recheck layout"); 1204 1205 address start = __ pc(); 1206 1207 compiled_entry_offset = __ pc() - start; 1208 __ enter(); 1209 1210 __ mov(c_rarg1, sp); 1211 1212 frame_complete = __ pc() - start; 1213 address the_pc = __ pc(); 1214 1215 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1216 1217 __ mov(c_rarg0, rthread); 1218 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1219 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1220 __ reset_last_Java_frame(true); 1221 1222 Label pinned; 1223 1224 __ cbnz(r0, pinned); 1225 1226 // We've succeeded, set sp to the ContinuationEntry 1227 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1228 __ mov(sp, rscratch1); 1229 continuation_enter_cleanup(masm); 1230 1231 __ bind(pinned); // pinned -- return to caller 1232 1233 // handle pending exception thrown by freeze 1234 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1235 Label ok; 1236 __ cbz(rscratch1, ok); 1237 __ leave(); 1238 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1239 __ br(rscratch1); 1240 __ bind(ok); 1241 1242 __ leave(); 1243 __ ret(lr); 1244 1245 OopMap* map = new OopMap(framesize, 1); 1246 oop_maps->add_gc_map(the_pc - start, map); 1247 } 1248 1249 static void gen_special_dispatch(MacroAssembler* masm, 1250 const methodHandle& method, 1251 const BasicType* sig_bt, 1252 const VMRegPair* regs) { 1253 verify_oop_args(masm, method, sig_bt, regs); 1254 vmIntrinsics::ID iid = method->intrinsic_id(); 1255 1256 // Now write the args into the outgoing interpreter space 1257 bool has_receiver = false; 1258 Register receiver_reg = noreg; 1259 int member_arg_pos = -1; 1260 Register member_reg = noreg; 1261 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1262 if (ref_kind != 0) { 1263 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1264 member_reg = r19; // known to be free at this point 1265 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1266 } else if (iid == vmIntrinsics::_invokeBasic) { 1267 has_receiver = true; 1268 } else if (iid == vmIntrinsics::_linkToNative) { 1269 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1270 member_reg = r19; // known to be free at this point 1271 } else { 1272 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1273 } 1274 1275 if (member_reg != noreg) { 1276 // Load the member_arg into register, if necessary. 1277 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1278 VMReg r = regs[member_arg_pos].first(); 1279 if (r->is_stack()) { 1280 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1281 } else { 1282 // no data motion is needed 1283 member_reg = r->as_Register(); 1284 } 1285 } 1286 1287 if (has_receiver) { 1288 // Make sure the receiver is loaded into a register. 1289 assert(method->size_of_parameters() > 0, "oob"); 1290 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1291 VMReg r = regs[0].first(); 1292 assert(r->is_valid(), "bad receiver arg"); 1293 if (r->is_stack()) { 1294 // Porting note: This assumes that compiled calling conventions always 1295 // pass the receiver oop in a register. If this is not true on some 1296 // platform, pick a temp and load the receiver from stack. 1297 fatal("receiver always in a register"); 1298 receiver_reg = r2; // known to be free at this point 1299 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1300 } else { 1301 // no data motion is needed 1302 receiver_reg = r->as_Register(); 1303 } 1304 } 1305 1306 // Figure out which address we are really jumping to: 1307 MethodHandles::generate_method_handle_dispatch(masm, iid, 1308 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1309 } 1310 1311 // --------------------------------------------------------------------------- 1312 // Generate a native wrapper for a given method. The method takes arguments 1313 // in the Java compiled code convention, marshals them to the native 1314 // convention (handlizes oops, etc), transitions to native, makes the call, 1315 // returns to java state (possibly blocking), unhandlizes any result and 1316 // returns. 1317 // 1318 // Critical native functions are a shorthand for the use of 1319 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1320 // functions. The wrapper is expected to unpack the arguments before 1321 // passing them to the callee. Critical native functions leave the state _in_Java, 1322 // since they block out GC. 1323 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1324 // block and the check for pending exceptions it's impossible for them 1325 // to be thrown. 1326 // 1327 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1328 const methodHandle& method, 1329 int compile_id, 1330 BasicType* in_sig_bt, 1331 VMRegPair* in_regs, 1332 BasicType ret_type) { 1333 if (method->is_continuation_native_intrinsic()) { 1334 int exception_offset = -1; 1335 OopMapSet* oop_maps = new OopMapSet(); 1336 int frame_complete = -1; 1337 int stack_slots = -1; 1338 int interpreted_entry_offset = -1; 1339 int vep_offset = -1; 1340 if (method->is_continuation_enter_intrinsic()) { 1341 gen_continuation_enter(masm, 1342 method, 1343 in_sig_bt, 1344 in_regs, 1345 exception_offset, 1346 oop_maps, 1347 frame_complete, 1348 stack_slots, 1349 interpreted_entry_offset, 1350 vep_offset); 1351 } else if (method->is_continuation_yield_intrinsic()) { 1352 gen_continuation_yield(masm, 1353 method, 1354 in_sig_bt, 1355 in_regs, 1356 oop_maps, 1357 frame_complete, 1358 stack_slots, 1359 vep_offset); 1360 } else { 1361 guarantee(false, "Unknown Continuation native intrinsic"); 1362 } 1363 1364 #ifdef ASSERT 1365 if (method->is_continuation_enter_intrinsic()) { 1366 assert(interpreted_entry_offset != -1, "Must be set"); 1367 assert(exception_offset != -1, "Must be set"); 1368 } else { 1369 assert(interpreted_entry_offset == -1, "Must be unset"); 1370 assert(exception_offset == -1, "Must be unset"); 1371 } 1372 assert(frame_complete != -1, "Must be set"); 1373 assert(stack_slots != -1, "Must be set"); 1374 assert(vep_offset != -1, "Must be set"); 1375 #endif 1376 1377 __ flush(); 1378 nmethod* nm = nmethod::new_native_nmethod(method, 1379 compile_id, 1380 masm->code(), 1381 vep_offset, 1382 frame_complete, 1383 stack_slots, 1384 in_ByteSize(-1), 1385 in_ByteSize(-1), 1386 oop_maps, 1387 exception_offset); 1388 if (method->is_continuation_enter_intrinsic()) { 1389 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1390 } else if (method->is_continuation_yield_intrinsic()) { 1391 _cont_doYield_stub = nm; 1392 } else { 1393 guarantee(false, "Unknown Continuation native intrinsic"); 1394 } 1395 return nm; 1396 } 1397 1398 if (method->is_method_handle_intrinsic()) { 1399 vmIntrinsics::ID iid = method->intrinsic_id(); 1400 intptr_t start = (intptr_t)__ pc(); 1401 int vep_offset = ((intptr_t)__ pc()) - start; 1402 1403 // First instruction must be a nop as it may need to be patched on deoptimisation 1404 __ nop(); 1405 gen_special_dispatch(masm, 1406 method, 1407 in_sig_bt, 1408 in_regs); 1409 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1410 __ flush(); 1411 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1412 return nmethod::new_native_nmethod(method, 1413 compile_id, 1414 masm->code(), 1415 vep_offset, 1416 frame_complete, 1417 stack_slots / VMRegImpl::slots_per_word, 1418 in_ByteSize(-1), 1419 in_ByteSize(-1), 1420 (OopMapSet*)NULL); 1421 } 1422 address native_func = method->native_function(); 1423 assert(native_func != NULL, "must have function"); 1424 1425 // An OopMap for lock (and class if static) 1426 OopMapSet *oop_maps = new OopMapSet(); 1427 intptr_t start = (intptr_t)__ pc(); 1428 1429 // We have received a description of where all the java arg are located 1430 // on entry to the wrapper. We need to convert these args to where 1431 // the jni function will expect them. To figure out where they go 1432 // we convert the java signature to a C signature by inserting 1433 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1434 1435 const int total_in_args = method->size_of_parameters(); 1436 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1437 1438 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1439 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1440 BasicType* in_elem_bt = NULL; 1441 1442 int argc = 0; 1443 out_sig_bt[argc++] = T_ADDRESS; 1444 if (method->is_static()) { 1445 out_sig_bt[argc++] = T_OBJECT; 1446 } 1447 1448 for (int i = 0; i < total_in_args ; i++ ) { 1449 out_sig_bt[argc++] = in_sig_bt[i]; 1450 } 1451 1452 // Now figure out where the args must be stored and how much stack space 1453 // they require. 1454 int out_arg_slots; 1455 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, NULL, total_c_args); 1456 1457 if (out_arg_slots < 0) { 1458 return NULL; 1459 } 1460 1461 // Compute framesize for the wrapper. We need to handlize all oops in 1462 // incoming registers 1463 1464 // Calculate the total number of stack slots we will need. 1465 1466 // First count the abi requirement plus all of the outgoing args 1467 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1468 1469 // Now the space for the inbound oop handle area 1470 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1471 1472 int oop_handle_offset = stack_slots; 1473 stack_slots += total_save_slots; 1474 1475 // Now any space we need for handlizing a klass if static method 1476 1477 int klass_slot_offset = 0; 1478 int klass_offset = -1; 1479 int lock_slot_offset = 0; 1480 bool is_static = false; 1481 1482 if (method->is_static()) { 1483 klass_slot_offset = stack_slots; 1484 stack_slots += VMRegImpl::slots_per_word; 1485 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1486 is_static = true; 1487 } 1488 1489 // Plus a lock if needed 1490 1491 if (method->is_synchronized()) { 1492 lock_slot_offset = stack_slots; 1493 stack_slots += VMRegImpl::slots_per_word; 1494 } 1495 1496 // Now a place (+2) to save return values or temp during shuffling 1497 // + 4 for return address (which we own) and saved rfp 1498 stack_slots += 6; 1499 1500 // Ok The space we have allocated will look like: 1501 // 1502 // 1503 // FP-> | | 1504 // |---------------------| 1505 // | 2 slots for moves | 1506 // |---------------------| 1507 // | lock box (if sync) | 1508 // |---------------------| <- lock_slot_offset 1509 // | klass (if static) | 1510 // |---------------------| <- klass_slot_offset 1511 // | oopHandle area | 1512 // |---------------------| <- oop_handle_offset (8 java arg registers) 1513 // | outbound memory | 1514 // | based arguments | 1515 // | | 1516 // |---------------------| 1517 // | | 1518 // SP-> | out_preserved_slots | 1519 // 1520 // 1521 1522 1523 // Now compute actual number of stack words we need rounding to make 1524 // stack properly aligned. 1525 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1526 1527 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1528 1529 // First thing make an ic check to see if we should even be here 1530 1531 // We are free to use all registers as temps without saving them and 1532 // restoring them except rfp. rfp is the only callee save register 1533 // as far as the interpreter and the compiler(s) are concerned. 1534 1535 1536 const Register ic_reg = rscratch2; 1537 const Register receiver = j_rarg0; 1538 1539 Label hit; 1540 Label exception_pending; 1541 1542 assert_different_registers(ic_reg, receiver, rscratch1); 1543 __ verify_oop(receiver); 1544 __ cmp_klass(receiver, ic_reg, rscratch1); 1545 __ br(Assembler::EQ, hit); 1546 1547 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1548 1549 // Verified entry point must be aligned 1550 __ align(8); 1551 1552 __ bind(hit); 1553 1554 int vep_offset = ((intptr_t)__ pc()) - start; 1555 1556 // If we have to make this method not-entrant we'll overwrite its 1557 // first instruction with a jump. For this action to be legal we 1558 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1559 // SVC, HVC, or SMC. Make it a NOP. 1560 __ nop(); 1561 1562 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1563 Label L_skip_barrier; 1564 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1565 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1566 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1567 1568 __ bind(L_skip_barrier); 1569 } 1570 1571 // Generate stack overflow check 1572 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1573 1574 // Generate a new frame for the wrapper. 1575 __ enter(); 1576 // -2 because return address is already present and so is saved rfp 1577 __ sub(sp, sp, stack_size - 2*wordSize); 1578 1579 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1580 bs->nmethod_entry_barrier(masm, NULL /* slow_path */, NULL /* continuation */, NULL /* guard */); 1581 1582 // Frame is now completed as far as size and linkage. 1583 int frame_complete = ((intptr_t)__ pc()) - start; 1584 1585 // We use r20 as the oop handle for the receiver/klass 1586 // It is callee save so it survives the call to native 1587 1588 const Register oop_handle_reg = r20; 1589 1590 // 1591 // We immediately shuffle the arguments so that any vm call we have to 1592 // make from here on out (sync slow path, jvmti, etc.) we will have 1593 // captured the oops from our caller and have a valid oopMap for 1594 // them. 1595 1596 // ----------------- 1597 // The Grand Shuffle 1598 1599 // The Java calling convention is either equal (linux) or denser (win64) than the 1600 // c calling convention. However the because of the jni_env argument the c calling 1601 // convention always has at least one more (and two for static) arguments than Java. 1602 // Therefore if we move the args from java -> c backwards then we will never have 1603 // a register->register conflict and we don't have to build a dependency graph 1604 // and figure out how to break any cycles. 1605 // 1606 1607 // Record esp-based slot for receiver on stack for non-static methods 1608 int receiver_offset = -1; 1609 1610 // This is a trick. We double the stack slots so we can claim 1611 // the oops in the caller's frame. Since we are sure to have 1612 // more args than the caller doubling is enough to make 1613 // sure we can capture all the incoming oop args from the 1614 // caller. 1615 // 1616 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1617 1618 // Mark location of rfp (someday) 1619 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1620 1621 1622 int float_args = 0; 1623 int int_args = 0; 1624 1625 #ifdef ASSERT 1626 bool reg_destroyed[Register::number_of_registers]; 1627 bool freg_destroyed[FloatRegister::number_of_registers]; 1628 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1629 reg_destroyed[r] = false; 1630 } 1631 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1632 freg_destroyed[f] = false; 1633 } 1634 1635 #endif /* ASSERT */ 1636 1637 // For JNI natives the incoming and outgoing registers are offset upwards. 1638 GrowableArray<int> arg_order(2 * total_in_args); 1639 VMRegPair tmp_vmreg; 1640 tmp_vmreg.set2(r19->as_VMReg()); 1641 1642 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1643 arg_order.push(i); 1644 arg_order.push(c_arg); 1645 } 1646 1647 int temploc = -1; 1648 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1649 int i = arg_order.at(ai); 1650 int c_arg = arg_order.at(ai + 1); 1651 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1652 assert(c_arg != -1 && i != -1, "wrong order"); 1653 #ifdef ASSERT 1654 if (in_regs[i].first()->is_Register()) { 1655 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1656 } else if (in_regs[i].first()->is_FloatRegister()) { 1657 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1658 } 1659 if (out_regs[c_arg].first()->is_Register()) { 1660 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1661 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1662 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1663 } 1664 #endif /* ASSERT */ 1665 switch (in_sig_bt[i]) { 1666 case T_ARRAY: 1667 case T_OBJECT: 1668 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1669 ((i == 0) && (!is_static)), 1670 &receiver_offset); 1671 int_args++; 1672 break; 1673 case T_VOID: 1674 break; 1675 1676 case T_FLOAT: 1677 __ float_move(in_regs[i], out_regs[c_arg]); 1678 float_args++; 1679 break; 1680 1681 case T_DOUBLE: 1682 assert( i + 1 < total_in_args && 1683 in_sig_bt[i + 1] == T_VOID && 1684 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1685 __ double_move(in_regs[i], out_regs[c_arg]); 1686 float_args++; 1687 break; 1688 1689 case T_LONG : 1690 __ long_move(in_regs[i], out_regs[c_arg]); 1691 int_args++; 1692 break; 1693 1694 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1695 1696 default: 1697 __ move32_64(in_regs[i], out_regs[c_arg]); 1698 int_args++; 1699 } 1700 } 1701 1702 // point c_arg at the first arg that is already loaded in case we 1703 // need to spill before we call out 1704 int c_arg = total_c_args - total_in_args; 1705 1706 // Pre-load a static method's oop into c_rarg1. 1707 if (method->is_static()) { 1708 1709 // load oop into a register 1710 __ movoop(c_rarg1, 1711 JNIHandles::make_local(method->method_holder()->java_mirror())); 1712 1713 // Now handlize the static class mirror it's known not-null. 1714 __ str(c_rarg1, Address(sp, klass_offset)); 1715 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1716 1717 // Now get the handle 1718 __ lea(c_rarg1, Address(sp, klass_offset)); 1719 // and protect the arg if we must spill 1720 c_arg--; 1721 } 1722 1723 // Change state to native (we save the return address in the thread, since it might not 1724 // be pushed on the stack when we do a stack traversal). 1725 // We use the same pc/oopMap repeatedly when we call out 1726 1727 Label native_return; 1728 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 1729 1730 Label dtrace_method_entry, dtrace_method_entry_done; 1731 { 1732 uint64_t offset; 1733 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1734 __ ldrb(rscratch1, Address(rscratch1, offset)); 1735 __ cbnzw(rscratch1, dtrace_method_entry); 1736 __ bind(dtrace_method_entry_done); 1737 } 1738 1739 // RedefineClasses() tracing support for obsolete method entry 1740 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1741 // protect the args we've loaded 1742 save_args(masm, total_c_args, c_arg, out_regs); 1743 __ mov_metadata(c_rarg1, method()); 1744 __ call_VM_leaf( 1745 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1746 rthread, c_rarg1); 1747 restore_args(masm, total_c_args, c_arg, out_regs); 1748 } 1749 1750 // Lock a synchronized method 1751 1752 // Register definitions used by locking and unlocking 1753 1754 const Register swap_reg = r0; 1755 const Register obj_reg = r19; // Will contain the oop 1756 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 1757 const Register old_hdr = r13; // value of old header at unlock time 1758 const Register tmp = lr; 1759 1760 Label slow_path_lock; 1761 Label lock_done; 1762 1763 if (method->is_synchronized()) { 1764 Label count; 1765 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1766 1767 // Get the handle (the 2nd argument) 1768 __ mov(oop_handle_reg, c_rarg1); 1769 1770 // Get address of the box 1771 1772 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1773 1774 // Load the oop from the handle 1775 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1776 1777 if (!UseHeavyMonitors) { 1778 if (UseFastLocking) { 1779 __ ldr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1780 __ fast_lock(obj_reg, swap_reg, tmp, rscratch1, slow_path_lock); 1781 } else { 1782 // Load (object->mark() | 1) into swap_reg %r0 1783 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1784 __ orr(swap_reg, rscratch1, 1); 1785 1786 // Save (object->mark() | 1) into BasicLock's displaced header 1787 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1788 1789 // src -> dest iff dest == r0 else r0 <- dest 1790 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/NULL); 1791 1792 // Hmm should this move to the slow path code area??? 1793 1794 // Test if the oopMark is an obvious stack pointer, i.e., 1795 // 1) (mark & 3) == 0, and 1796 // 2) sp <= mark < mark + os::pagesize() 1797 // These 3 tests can be done by evaluating the following 1798 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1799 // assuming both stack pointer and pagesize have their 1800 // least significant 2 bits clear. 1801 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 1802 1803 __ sub(swap_reg, sp, swap_reg); 1804 __ neg(swap_reg, swap_reg); 1805 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 1806 1807 // Save the test result, for recursive case, the result is zero 1808 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1809 __ br(Assembler::NE, slow_path_lock); 1810 } 1811 } else { 1812 __ b(slow_path_lock); 1813 } 1814 __ bind(count); 1815 __ increment(Address(rthread, JavaThread::held_monitor_count_offset())); 1816 1817 // Slow path will re-enter here 1818 __ bind(lock_done); 1819 } 1820 1821 1822 // Finally just about ready to make the JNI call 1823 1824 // get JNIEnv* which is first argument to native 1825 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 1826 1827 // Now set thread in native 1828 __ mov(rscratch1, _thread_in_native); 1829 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1830 __ stlrw(rscratch1, rscratch2); 1831 1832 __ rt_call(native_func); 1833 1834 __ bind(native_return); 1835 1836 intptr_t return_pc = (intptr_t) __ pc(); 1837 oop_maps->add_gc_map(return_pc - start, map); 1838 1839 // Unpack native results. 1840 switch (ret_type) { 1841 case T_BOOLEAN: __ c2bool(r0); break; 1842 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 1843 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 1844 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 1845 case T_INT : __ sbfx(r0, r0, 0, 32); break; 1846 case T_DOUBLE : 1847 case T_FLOAT : 1848 // Result is in v0 we'll save as needed 1849 break; 1850 case T_ARRAY: // Really a handle 1851 case T_OBJECT: // Really a handle 1852 break; // can't de-handlize until after safepoint check 1853 case T_VOID: break; 1854 case T_LONG: break; 1855 default : ShouldNotReachHere(); 1856 } 1857 1858 Label safepoint_in_progress, safepoint_in_progress_done; 1859 Label after_transition; 1860 1861 // Switch thread to "native transition" state before reading the synchronization state. 1862 // This additional state is necessary because reading and testing the synchronization 1863 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1864 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1865 // VM thread changes sync state to synchronizing and suspends threads for GC. 1866 // Thread A is resumed to finish this native method, but doesn't block here since it 1867 // didn't see any synchronization is progress, and escapes. 1868 __ mov(rscratch1, _thread_in_native_trans); 1869 1870 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 1871 1872 // Force this write out before the read below 1873 if (!UseSystemMemoryBarrier) { 1874 __ dmb(Assembler::ISH); 1875 } 1876 1877 __ verify_sve_vector_length(); 1878 1879 // Check for safepoint operation in progress and/or pending suspend requests. 1880 { 1881 // We need an acquire here to ensure that any subsequent load of the 1882 // global SafepointSynchronize::_state flag is ordered after this load 1883 // of the thread-local polling word. We don't want this poll to 1884 // return false (i.e. not safepointing) and a later poll of the global 1885 // SafepointSynchronize::_state spuriously to return true. 1886 // 1887 // This is to avoid a race when we're in a native->Java transition 1888 // racing the code which wakes up from a safepoint. 1889 1890 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1891 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 1892 __ cbnzw(rscratch1, safepoint_in_progress); 1893 __ bind(safepoint_in_progress_done); 1894 } 1895 1896 // change thread state 1897 __ mov(rscratch1, _thread_in_Java); 1898 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1899 __ stlrw(rscratch1, rscratch2); 1900 __ bind(after_transition); 1901 1902 Label reguard; 1903 Label reguard_done; 1904 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 1905 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 1906 __ br(Assembler::EQ, reguard); 1907 __ bind(reguard_done); 1908 1909 // native result if any is live 1910 1911 // Unlock 1912 Label unlock_done; 1913 Label slow_path_unlock; 1914 if (method->is_synchronized()) { 1915 1916 // Get locked oop from the handle we passed to jni 1917 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1918 1919 Label done, not_recursive; 1920 1921 if (!UseHeavyMonitors && !UseFastLocking) { 1922 // Simple recursive lock? 1923 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1924 __ cbnz(rscratch1, not_recursive); 1925 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1926 __ b(done); 1927 } 1928 1929 __ bind(not_recursive); 1930 1931 // Must save r0 if if it is live now because cmpxchg must use it 1932 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1933 save_native_result(masm, ret_type, stack_slots); 1934 } 1935 1936 if (!UseHeavyMonitors) { 1937 if (UseFastLocking) { 1938 __ ldr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1939 __ fast_unlock(obj_reg, old_hdr, swap_reg, rscratch1, slow_path_unlock); 1940 } else { 1941 // get address of the stack lock 1942 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1943 // get old displaced header 1944 __ ldr(old_hdr, Address(r0, 0)); 1945 1946 // Atomic swap old header if oop still contains the stack lock 1947 Label count; 1948 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock); 1949 __ bind(count); 1950 } 1951 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1952 } else { 1953 __ b(slow_path_unlock); 1954 } 1955 1956 // slow path re-enters here 1957 __ bind(unlock_done); 1958 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1959 restore_native_result(masm, ret_type, stack_slots); 1960 } 1961 1962 __ bind(done); 1963 } 1964 1965 Label dtrace_method_exit, dtrace_method_exit_done; 1966 { 1967 uint64_t offset; 1968 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1969 __ ldrb(rscratch1, Address(rscratch1, offset)); 1970 __ cbnzw(rscratch1, dtrace_method_exit); 1971 __ bind(dtrace_method_exit_done); 1972 } 1973 1974 __ reset_last_Java_frame(false); 1975 1976 // Unbox oop result, e.g. JNIHandles::resolve result. 1977 if (is_reference_type(ret_type)) { 1978 __ resolve_jobject(r0, r1, r2); 1979 } 1980 1981 if (CheckJNICalls) { 1982 // clear_pending_jni_exception_check 1983 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1984 } 1985 1986 // reset handle block 1987 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 1988 __ str(zr, Address(r2, JNIHandleBlock::top_offset_in_bytes())); 1989 1990 __ leave(); 1991 1992 // Any exception pending? 1993 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1994 __ cbnz(rscratch1, exception_pending); 1995 1996 // We're done 1997 __ ret(lr); 1998 1999 // Unexpected paths are out of line and go here 2000 2001 // forward the exception 2002 __ bind(exception_pending); 2003 2004 // and forward the exception 2005 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2006 2007 // Slow path locking & unlocking 2008 if (method->is_synchronized()) { 2009 2010 __ block_comment("Slow path lock {"); 2011 __ bind(slow_path_lock); 2012 2013 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2014 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2015 2016 // protect the args we've loaded 2017 save_args(masm, total_c_args, c_arg, out_regs); 2018 2019 __ mov(c_rarg0, obj_reg); 2020 __ mov(c_rarg1, lock_reg); 2021 __ mov(c_rarg2, rthread); 2022 2023 // Not a leaf but we have last_Java_frame setup as we want 2024 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2025 restore_args(masm, total_c_args, c_arg, out_regs); 2026 2027 #ifdef ASSERT 2028 { Label L; 2029 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2030 __ cbz(rscratch1, L); 2031 __ stop("no pending exception allowed on exit from monitorenter"); 2032 __ bind(L); 2033 } 2034 #endif 2035 __ b(lock_done); 2036 2037 __ block_comment("} Slow path lock"); 2038 2039 __ block_comment("Slow path unlock {"); 2040 __ bind(slow_path_unlock); 2041 2042 // If we haven't already saved the native result we must save it now as xmm registers 2043 // are still exposed. 2044 2045 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2046 save_native_result(masm, ret_type, stack_slots); 2047 } 2048 2049 __ mov(c_rarg2, rthread); 2050 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2051 __ mov(c_rarg0, obj_reg); 2052 2053 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2054 // NOTE that obj_reg == r19 currently 2055 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2056 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2057 2058 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2059 2060 #ifdef ASSERT 2061 { 2062 Label L; 2063 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2064 __ cbz(rscratch1, L); 2065 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2066 __ bind(L); 2067 } 2068 #endif /* ASSERT */ 2069 2070 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2071 2072 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2073 restore_native_result(masm, ret_type, stack_slots); 2074 } 2075 __ b(unlock_done); 2076 2077 __ block_comment("} Slow path unlock"); 2078 2079 } // synchronized 2080 2081 // SLOW PATH Reguard the stack if needed 2082 2083 __ bind(reguard); 2084 save_native_result(masm, ret_type, stack_slots); 2085 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2086 restore_native_result(masm, ret_type, stack_slots); 2087 // and continue 2088 __ b(reguard_done); 2089 2090 // SLOW PATH safepoint 2091 { 2092 __ block_comment("safepoint {"); 2093 __ bind(safepoint_in_progress); 2094 2095 // Don't use call_VM as it will see a possible pending exception and forward it 2096 // and never return here preventing us from clearing _last_native_pc down below. 2097 // 2098 save_native_result(masm, ret_type, stack_slots); 2099 __ mov(c_rarg0, rthread); 2100 #ifndef PRODUCT 2101 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2102 #endif 2103 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2104 __ blr(rscratch1); 2105 2106 // Restore any method result value 2107 restore_native_result(masm, ret_type, stack_slots); 2108 2109 __ b(safepoint_in_progress_done); 2110 __ block_comment("} safepoint"); 2111 } 2112 2113 // SLOW PATH dtrace support 2114 { 2115 __ block_comment("dtrace entry {"); 2116 __ bind(dtrace_method_entry); 2117 2118 // We have all of the arguments setup at this point. We must not touch any register 2119 // argument registers at this point (what if we save/restore them there are no oop? 2120 2121 save_args(masm, total_c_args, c_arg, out_regs); 2122 __ mov_metadata(c_rarg1, method()); 2123 __ call_VM_leaf( 2124 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2125 rthread, c_rarg1); 2126 restore_args(masm, total_c_args, c_arg, out_regs); 2127 __ b(dtrace_method_entry_done); 2128 __ block_comment("} dtrace entry"); 2129 } 2130 2131 { 2132 __ block_comment("dtrace exit {"); 2133 __ bind(dtrace_method_exit); 2134 save_native_result(masm, ret_type, stack_slots); 2135 __ mov_metadata(c_rarg1, method()); 2136 __ call_VM_leaf( 2137 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2138 rthread, c_rarg1); 2139 restore_native_result(masm, ret_type, stack_slots); 2140 __ b(dtrace_method_exit_done); 2141 __ block_comment("} dtrace exit"); 2142 } 2143 2144 2145 __ flush(); 2146 2147 nmethod *nm = nmethod::new_native_nmethod(method, 2148 compile_id, 2149 masm->code(), 2150 vep_offset, 2151 frame_complete, 2152 stack_slots / VMRegImpl::slots_per_word, 2153 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2154 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2155 oop_maps); 2156 2157 return nm; 2158 } 2159 2160 // this function returns the adjust size (in number of words) to a c2i adapter 2161 // activation for use during deoptimization 2162 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2163 assert(callee_locals >= callee_parameters, 2164 "test and remove; got more parms than locals"); 2165 if (callee_locals < callee_parameters) 2166 return 0; // No adjustment for negative locals 2167 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2168 // diff is counted in stack words 2169 return align_up(diff, 2); 2170 } 2171 2172 2173 //------------------------------generate_deopt_blob---------------------------- 2174 void SharedRuntime::generate_deopt_blob() { 2175 // Allocate space for the code 2176 ResourceMark rm; 2177 // Setup code generation tools 2178 int pad = 0; 2179 #if INCLUDE_JVMCI 2180 if (EnableJVMCI) { 2181 pad += 512; // Increase the buffer size when compiling for JVMCI 2182 } 2183 #endif 2184 CodeBuffer buffer("deopt_blob", 2048+pad, 1024); 2185 MacroAssembler* masm = new MacroAssembler(&buffer); 2186 int frame_size_in_words; 2187 OopMap* map = NULL; 2188 OopMapSet *oop_maps = new OopMapSet(); 2189 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2190 2191 // ------------- 2192 // This code enters when returning to a de-optimized nmethod. A return 2193 // address has been pushed on the stack, and return values are in 2194 // registers. 2195 // If we are doing a normal deopt then we were called from the patched 2196 // nmethod from the point we returned to the nmethod. So the return 2197 // address on the stack is wrong by NativeCall::instruction_size 2198 // We will adjust the value so it looks like we have the original return 2199 // address on the stack (like when we eagerly deoptimized). 2200 // In the case of an exception pending when deoptimizing, we enter 2201 // with a return address on the stack that points after the call we patched 2202 // into the exception handler. We have the following register state from, 2203 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2204 // r0: exception oop 2205 // r19: exception handler 2206 // r3: throwing pc 2207 // So in this case we simply jam r3 into the useless return address and 2208 // the stack looks just like we want. 2209 // 2210 // At this point we need to de-opt. We save the argument return 2211 // registers. We call the first C routine, fetch_unroll_info(). This 2212 // routine captures the return values and returns a structure which 2213 // describes the current frame size and the sizes of all replacement frames. 2214 // The current frame is compiled code and may contain many inlined 2215 // functions, each with their own JVM state. We pop the current frame, then 2216 // push all the new frames. Then we call the C routine unpack_frames() to 2217 // populate these frames. Finally unpack_frames() returns us the new target 2218 // address. Notice that callee-save registers are BLOWN here; they have 2219 // already been captured in the vframeArray at the time the return PC was 2220 // patched. 2221 address start = __ pc(); 2222 Label cont; 2223 2224 // Prolog for non exception case! 2225 2226 // Save everything in sight. 2227 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2228 2229 // Normal deoptimization. Save exec mode for unpack_frames. 2230 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2231 __ b(cont); 2232 2233 int reexecute_offset = __ pc() - start; 2234 #if INCLUDE_JVMCI && !defined(COMPILER1) 2235 if (EnableJVMCI && UseJVMCICompiler) { 2236 // JVMCI does not use this kind of deoptimization 2237 __ should_not_reach_here(); 2238 } 2239 #endif 2240 2241 // Reexecute case 2242 // return address is the pc describes what bci to do re-execute at 2243 2244 // No need to update map as each call to save_live_registers will produce identical oopmap 2245 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2246 2247 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2248 __ b(cont); 2249 2250 #if INCLUDE_JVMCI 2251 Label after_fetch_unroll_info_call; 2252 int implicit_exception_uncommon_trap_offset = 0; 2253 int uncommon_trap_offset = 0; 2254 2255 if (EnableJVMCI) { 2256 implicit_exception_uncommon_trap_offset = __ pc() - start; 2257 2258 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2259 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2260 2261 uncommon_trap_offset = __ pc() - start; 2262 2263 // Save everything in sight. 2264 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2265 // fetch_unroll_info needs to call last_java_frame() 2266 Label retaddr; 2267 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2268 2269 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2270 __ movw(rscratch1, -1); 2271 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2272 2273 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2274 __ mov(c_rarg0, rthread); 2275 __ movw(c_rarg2, rcpool); // exec mode 2276 __ lea(rscratch1, 2277 RuntimeAddress(CAST_FROM_FN_PTR(address, 2278 Deoptimization::uncommon_trap))); 2279 __ blr(rscratch1); 2280 __ bind(retaddr); 2281 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2282 2283 __ reset_last_Java_frame(false); 2284 2285 __ b(after_fetch_unroll_info_call); 2286 } // EnableJVMCI 2287 #endif // INCLUDE_JVMCI 2288 2289 int exception_offset = __ pc() - start; 2290 2291 // Prolog for exception case 2292 2293 // all registers are dead at this entry point, except for r0, and 2294 // r3 which contain the exception oop and exception pc 2295 // respectively. Set them in TLS and fall thru to the 2296 // unpack_with_exception_in_tls entry point. 2297 2298 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2299 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2300 2301 int exception_in_tls_offset = __ pc() - start; 2302 2303 // new implementation because exception oop is now passed in JavaThread 2304 2305 // Prolog for exception case 2306 // All registers must be preserved because they might be used by LinearScan 2307 // Exceptiop oop and throwing PC are passed in JavaThread 2308 // tos: stack at point of call to method that threw the exception (i.e. only 2309 // args are on the stack, no return address) 2310 2311 // The return address pushed by save_live_registers will be patched 2312 // later with the throwing pc. The correct value is not available 2313 // now because loading it from memory would destroy registers. 2314 2315 // NB: The SP at this point must be the SP of the method that is 2316 // being deoptimized. Deoptimization assumes that the frame created 2317 // here by save_live_registers is immediately below the method's SP. 2318 // This is a somewhat fragile mechanism. 2319 2320 // Save everything in sight. 2321 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2322 2323 // Now it is safe to overwrite any register 2324 2325 // Deopt during an exception. Save exec mode for unpack_frames. 2326 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2327 2328 // load throwing pc from JavaThread and patch it as the return address 2329 // of the current frame. Then clear the field in JavaThread 2330 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2331 __ protect_return_address(r3, rscratch1); 2332 __ str(r3, Address(rfp, wordSize)); 2333 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2334 2335 #ifdef ASSERT 2336 // verify that there is really an exception oop in JavaThread 2337 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2338 __ verify_oop(r0); 2339 2340 // verify that there is no pending exception 2341 Label no_pending_exception; 2342 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2343 __ cbz(rscratch1, no_pending_exception); 2344 __ stop("must not have pending exception here"); 2345 __ bind(no_pending_exception); 2346 #endif 2347 2348 __ bind(cont); 2349 2350 // Call C code. Need thread and this frame, but NOT official VM entry 2351 // crud. We cannot block on this call, no GC can happen. 2352 // 2353 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2354 2355 // fetch_unroll_info needs to call last_java_frame(). 2356 2357 Label retaddr; 2358 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2359 #ifdef ASSERT 2360 { Label L; 2361 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2362 __ cbz(rscratch1, L); 2363 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2364 __ bind(L); 2365 } 2366 #endif // ASSERT 2367 __ mov(c_rarg0, rthread); 2368 __ mov(c_rarg1, rcpool); 2369 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2370 __ blr(rscratch1); 2371 __ bind(retaddr); 2372 2373 // Need to have an oopmap that tells fetch_unroll_info where to 2374 // find any register it might need. 2375 oop_maps->add_gc_map(__ pc() - start, map); 2376 2377 __ reset_last_Java_frame(false); 2378 2379 #if INCLUDE_JVMCI 2380 if (EnableJVMCI) { 2381 __ bind(after_fetch_unroll_info_call); 2382 } 2383 #endif 2384 2385 // Load UnrollBlock* into r5 2386 __ mov(r5, r0); 2387 2388 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); 2389 Label noException; 2390 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2391 __ br(Assembler::NE, noException); 2392 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2393 // QQQ this is useless it was NULL above 2394 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2395 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2396 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2397 2398 __ verify_oop(r0); 2399 2400 // Overwrite the result registers with the exception results. 2401 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2402 // I think this is useless 2403 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2404 2405 __ bind(noException); 2406 2407 // Only register save data is on the stack. 2408 // Now restore the result registers. Everything else is either dead 2409 // or captured in the vframeArray. 2410 2411 // Restore fp result register 2412 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2413 // Restore integer result register 2414 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2415 2416 // Pop all of the register save area off the stack 2417 __ add(sp, sp, frame_size_in_words * wordSize); 2418 2419 // All of the register save area has been popped of the stack. Only the 2420 // return address remains. 2421 2422 // Pop all the frames we must move/replace. 2423 // 2424 // Frame picture (youngest to oldest) 2425 // 1: self-frame (no frame link) 2426 // 2: deopting frame (no frame link) 2427 // 3: caller of deopting frame (could be compiled/interpreted). 2428 // 2429 // Note: by leaving the return address of self-frame on the stack 2430 // and using the size of frame 2 to adjust the stack 2431 // when we are done the return to frame 3 will still be on the stack. 2432 2433 // Pop deoptimized frame 2434 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 2435 __ sub(r2, r2, 2 * wordSize); 2436 __ add(sp, sp, r2); 2437 __ ldp(rfp, lr, __ post(sp, 2 * wordSize)); 2438 __ authenticate_return_address(); 2439 // LR should now be the return address to the caller (3) 2440 2441 #ifdef ASSERT 2442 // Compilers generate code that bang the stack by as much as the 2443 // interpreter would need. So this stack banging should never 2444 // trigger a fault. Verify that it does not on non product builds. 2445 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 2446 __ bang_stack_size(r19, r2); 2447 #endif 2448 // Load address of array of frame pcs into r2 2449 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2450 2451 // Trash the old pc 2452 // __ addptr(sp, wordSize); FIXME ???? 2453 2454 // Load address of array of frame sizes into r4 2455 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 2456 2457 // Load counter into r3 2458 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 2459 2460 // Now adjust the caller's stack to make up for the extra locals 2461 // but record the original sp so that we can save it in the skeletal interpreter 2462 // frame and the stack walking of interpreter_sender will get the unextended sp 2463 // value and not the "real" sp value. 2464 2465 const Register sender_sp = r6; 2466 2467 __ mov(sender_sp, sp); 2468 __ ldrw(r19, Address(r5, 2469 Deoptimization::UnrollBlock:: 2470 caller_adjustment_offset_in_bytes())); 2471 __ sub(sp, sp, r19); 2472 2473 // Push interpreter frames in a loop 2474 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2475 __ mov(rscratch2, rscratch1); 2476 Label loop; 2477 __ bind(loop); 2478 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2479 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2480 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2481 __ enter(); // Save old & set new fp 2482 __ sub(sp, sp, r19); // Prolog 2483 // This value is corrected by layout_activation_impl 2484 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2485 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2486 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2487 __ sub(r3, r3, 1); // Decrement counter 2488 __ cbnz(r3, loop); 2489 2490 // Re-push self-frame 2491 __ ldr(lr, Address(r2)); 2492 __ enter(); 2493 2494 // Allocate a full sized register save area. We subtract 2 because 2495 // enter() just pushed 2 words 2496 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2497 2498 // Restore frame locals after moving the frame 2499 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2500 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2501 2502 // Call C code. Need thread but NOT official VM entry 2503 // crud. We cannot block on this call, no GC can happen. Call should 2504 // restore return values to their stack-slots with the new SP. 2505 // 2506 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2507 2508 // Use rfp because the frames look interpreted now 2509 // Don't need the precise return PC here, just precise enough to point into this code blob. 2510 address the_pc = __ pc(); 2511 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2512 2513 __ mov(c_rarg0, rthread); 2514 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2515 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2516 __ blr(rscratch1); 2517 2518 // Set an oopmap for the call site 2519 // Use the same PC we used for the last java frame 2520 oop_maps->add_gc_map(the_pc - start, 2521 new OopMap( frame_size_in_words, 0 )); 2522 2523 // Clear fp AND pc 2524 __ reset_last_Java_frame(true); 2525 2526 // Collect return values 2527 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2528 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2529 // I think this is useless (throwing pc?) 2530 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2531 2532 // Pop self-frame. 2533 __ leave(); // Epilog 2534 2535 // Jump to interpreter 2536 __ ret(lr); 2537 2538 // Make sure all code is generated 2539 masm->flush(); 2540 2541 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2542 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2543 #if INCLUDE_JVMCI 2544 if (EnableJVMCI) { 2545 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2546 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2547 } 2548 #endif 2549 } 2550 2551 // Number of stack slots between incoming argument block and the start of 2552 // a new frame. The PROLOG must add this many slots to the stack. The 2553 // EPILOG must remove this many slots. aarch64 needs two slots for 2554 // return address and fp. 2555 // TODO think this is correct but check 2556 uint SharedRuntime::in_preserve_stack_slots() { 2557 return 4; 2558 } 2559 2560 uint SharedRuntime::out_preserve_stack_slots() { 2561 return 0; 2562 } 2563 2564 #ifdef COMPILER2 2565 //------------------------------generate_uncommon_trap_blob-------------------- 2566 void SharedRuntime::generate_uncommon_trap_blob() { 2567 // Allocate space for the code 2568 ResourceMark rm; 2569 // Setup code generation tools 2570 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 2571 MacroAssembler* masm = new MacroAssembler(&buffer); 2572 2573 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2574 2575 address start = __ pc(); 2576 2577 // Push self-frame. We get here with a return address in LR 2578 // and sp should be 16 byte aligned 2579 // push rfp and retaddr by hand 2580 __ protect_return_address(); 2581 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 2582 // we don't expect an arg reg save area 2583 #ifndef PRODUCT 2584 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2585 #endif 2586 // compiler left unloaded_class_index in j_rarg0 move to where the 2587 // runtime expects it. 2588 if (c_rarg1 != j_rarg0) { 2589 __ movw(c_rarg1, j_rarg0); 2590 } 2591 2592 // we need to set the past SP to the stack pointer of the stub frame 2593 // and the pc to the address where this runtime call will return 2594 // although actually any pc in this code blob will do). 2595 Label retaddr; 2596 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2597 2598 // Call C code. Need thread but NOT official VM entry 2599 // crud. We cannot block on this call, no GC can happen. Call should 2600 // capture callee-saved registers as well as return values. 2601 // Thread is in rdi already. 2602 // 2603 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); 2604 // 2605 // n.b. 2 gp args, 0 fp args, integral return type 2606 2607 __ mov(c_rarg0, rthread); 2608 __ movw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap); 2609 __ lea(rscratch1, 2610 RuntimeAddress(CAST_FROM_FN_PTR(address, 2611 Deoptimization::uncommon_trap))); 2612 __ blr(rscratch1); 2613 __ bind(retaddr); 2614 2615 // Set an oopmap for the call site 2616 OopMapSet* oop_maps = new OopMapSet(); 2617 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 2618 2619 // location of rfp is known implicitly by the frame sender code 2620 2621 oop_maps->add_gc_map(__ pc() - start, map); 2622 2623 __ reset_last_Java_frame(false); 2624 2625 // move UnrollBlock* into r4 2626 __ mov(r4, r0); 2627 2628 #ifdef ASSERT 2629 { Label L; 2630 __ ldrw(rscratch1, Address(r4, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); 2631 __ cmpw(rscratch1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2632 __ br(Assembler::EQ, L); 2633 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap"); 2634 __ bind(L); 2635 } 2636 #endif 2637 2638 // Pop all the frames we must move/replace. 2639 // 2640 // Frame picture (youngest to oldest) 2641 // 1: self-frame (no frame link) 2642 // 2: deopting frame (no frame link) 2643 // 3: caller of deopting frame (could be compiled/interpreted). 2644 2645 // Pop self-frame. We have no frame, and must rely only on r0 and sp. 2646 __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog! 2647 2648 // Pop deoptimized frame (int) 2649 __ ldrw(r2, Address(r4, 2650 Deoptimization::UnrollBlock:: 2651 size_of_deoptimized_frame_offset_in_bytes())); 2652 __ sub(r2, r2, 2 * wordSize); 2653 __ add(sp, sp, r2); 2654 __ ldp(rfp, lr, __ post(sp, 2 * wordSize)); 2655 __ authenticate_return_address(); 2656 // LR should now be the return address to the caller (3) frame 2657 2658 #ifdef ASSERT 2659 // Compilers generate code that bang the stack by as much as the 2660 // interpreter would need. So this stack banging should never 2661 // trigger a fault. Verify that it does not on non product builds. 2662 __ ldrw(r1, Address(r4, 2663 Deoptimization::UnrollBlock:: 2664 total_frame_sizes_offset_in_bytes())); 2665 __ bang_stack_size(r1, r2); 2666 #endif 2667 2668 // Load address of array of frame pcs into r2 (address*) 2669 __ ldr(r2, Address(r4, 2670 Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2671 2672 // Load address of array of frame sizes into r5 (intptr_t*) 2673 __ ldr(r5, Address(r4, 2674 Deoptimization::UnrollBlock:: 2675 frame_sizes_offset_in_bytes())); 2676 2677 // Counter 2678 __ ldrw(r3, Address(r4, 2679 Deoptimization::UnrollBlock:: 2680 number_of_frames_offset_in_bytes())); // (int) 2681 2682 // Now adjust the caller's stack to make up for the extra locals but 2683 // record the original sp so that we can save it in the skeletal 2684 // interpreter frame and the stack walking of interpreter_sender 2685 // will get the unextended sp value and not the "real" sp value. 2686 2687 const Register sender_sp = r8; 2688 2689 __ mov(sender_sp, sp); 2690 __ ldrw(r1, Address(r4, 2691 Deoptimization::UnrollBlock:: 2692 caller_adjustment_offset_in_bytes())); // (int) 2693 __ sub(sp, sp, r1); 2694 2695 // Push interpreter frames in a loop 2696 Label loop; 2697 __ bind(loop); 2698 __ ldr(r1, Address(r5, 0)); // Load frame size 2699 __ sub(r1, r1, 2 * wordSize); // We'll push pc and rfp by hand 2700 __ ldr(lr, Address(r2, 0)); // Save return address 2701 __ enter(); // and old rfp & set new rfp 2702 __ sub(sp, sp, r1); // Prolog 2703 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2704 // This value is corrected by layout_activation_impl 2705 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2706 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2707 __ add(r5, r5, wordSize); // Bump array pointer (sizes) 2708 __ add(r2, r2, wordSize); // Bump array pointer (pcs) 2709 __ subsw(r3, r3, 1); // Decrement counter 2710 __ br(Assembler::GT, loop); 2711 __ ldr(lr, Address(r2, 0)); // save final return address 2712 // Re-push self-frame 2713 __ enter(); // & old rfp & set new rfp 2714 2715 // Use rfp because the frames look interpreted now 2716 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 2717 // Don't need the precise return PC here, just precise enough to point into this code blob. 2718 address the_pc = __ pc(); 2719 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2720 2721 // Call C code. Need thread but NOT official VM entry 2722 // crud. We cannot block on this call, no GC can happen. Call should 2723 // restore return values to their stack-slots with the new SP. 2724 // Thread is in rdi already. 2725 // 2726 // BasicType unpack_frames(JavaThread* thread, int exec_mode); 2727 // 2728 // n.b. 2 gp args, 0 fp args, integral return type 2729 2730 // sp should already be aligned 2731 __ mov(c_rarg0, rthread); 2732 __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2733 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2734 __ blr(rscratch1); 2735 2736 // Set an oopmap for the call site 2737 // Use the same PC we used for the last java frame 2738 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2739 2740 // Clear fp AND pc 2741 __ reset_last_Java_frame(true); 2742 2743 // Pop self-frame. 2744 __ leave(); // Epilog 2745 2746 // Jump to interpreter 2747 __ ret(lr); 2748 2749 // Make sure all code is generated 2750 masm->flush(); 2751 2752 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 2753 SimpleRuntimeFrame::framesize >> 1); 2754 } 2755 #endif // COMPILER2 2756 2757 2758 //------------------------------generate_handler_blob------ 2759 // 2760 // Generate a special Compile2Runtime blob that saves all registers, 2761 // and setup oopmap. 2762 // 2763 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2764 ResourceMark rm; 2765 OopMapSet *oop_maps = new OopMapSet(); 2766 OopMap* map; 2767 2768 // Allocate space for the code. Setup code generation tools. 2769 CodeBuffer buffer("handler_blob", 2048, 1024); 2770 MacroAssembler* masm = new MacroAssembler(&buffer); 2771 2772 address start = __ pc(); 2773 address call_pc = NULL; 2774 int frame_size_in_words; 2775 bool cause_return = (poll_type == POLL_AT_RETURN); 2776 RegisterSaver reg_save(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */); 2777 2778 // When the signal occurred, the LR was either signed and stored on the stack (in which 2779 // case it will be restored from the stack before being used) or unsigned and not stored 2780 // on the stack. Stipping ensures we get the right value. 2781 __ strip_return_address(); 2782 2783 // Save Integer and Float registers. 2784 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2785 2786 // The following is basically a call_VM. However, we need the precise 2787 // address of the call in order to generate an oopmap. Hence, we do all the 2788 // work ourselves. 2789 2790 Label retaddr; 2791 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2792 2793 // The return address must always be correct so that frame constructor never 2794 // sees an invalid pc. 2795 2796 if (!cause_return) { 2797 // overwrite the return address pushed by save_live_registers 2798 // Additionally, r20 is a callee-saved register so we can look at 2799 // it later to determine if someone changed the return address for 2800 // us! 2801 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2802 __ protect_return_address(r20, rscratch1); 2803 __ str(r20, Address(rfp, wordSize)); 2804 } 2805 2806 // Do the call 2807 __ mov(c_rarg0, rthread); 2808 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2809 __ blr(rscratch1); 2810 __ bind(retaddr); 2811 2812 // Set an oopmap for the call site. This oopmap will map all 2813 // oop-registers and debug-info registers as callee-saved. This 2814 // will allow deoptimization at this safepoint to find all possible 2815 // debug-info recordings, as well as let GC find all oops. 2816 2817 oop_maps->add_gc_map( __ pc() - start, map); 2818 2819 Label noException; 2820 2821 __ reset_last_Java_frame(false); 2822 2823 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2824 2825 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2826 __ cbz(rscratch1, noException); 2827 2828 // Exception pending 2829 2830 reg_save.restore_live_registers(masm); 2831 2832 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2833 2834 // No exception case 2835 __ bind(noException); 2836 2837 Label no_adjust, bail; 2838 if (!cause_return) { 2839 // If our stashed return pc was modified by the runtime we avoid touching it 2840 __ ldr(rscratch1, Address(rfp, wordSize)); 2841 __ cmp(r20, rscratch1); 2842 __ br(Assembler::NE, no_adjust); 2843 __ authenticate_return_address(r20, rscratch1); 2844 2845 #ifdef ASSERT 2846 // Verify the correct encoding of the poll we're about to skip. 2847 // See NativeInstruction::is_ldrw_to_zr() 2848 __ ldrw(rscratch1, Address(r20)); 2849 __ ubfx(rscratch2, rscratch1, 22, 10); 2850 __ cmpw(rscratch2, 0b1011100101); 2851 __ br(Assembler::NE, bail); 2852 __ ubfx(rscratch2, rscratch1, 0, 5); 2853 __ cmpw(rscratch2, 0b11111); 2854 __ br(Assembler::NE, bail); 2855 #endif 2856 // Adjust return pc forward to step over the safepoint poll instruction 2857 __ add(r20, r20, NativeInstruction::instruction_size); 2858 __ protect_return_address(r20, rscratch1); 2859 __ str(r20, Address(rfp, wordSize)); 2860 } 2861 2862 __ bind(no_adjust); 2863 // Normal exit, restore registers and exit. 2864 reg_save.restore_live_registers(masm); 2865 2866 __ ret(lr); 2867 2868 #ifdef ASSERT 2869 __ bind(bail); 2870 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2871 #endif 2872 2873 // Make sure all code is generated 2874 masm->flush(); 2875 2876 // Fill-out other meta info 2877 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2878 } 2879 2880 // 2881 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2882 // 2883 // Generate a stub that calls into vm to find out the proper destination 2884 // of a java call. All the argument registers are live at this point 2885 // but since this is generic code we don't know what they are and the caller 2886 // must do any gc of the args. 2887 // 2888 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2889 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 2890 2891 // allocate space for the code 2892 ResourceMark rm; 2893 2894 CodeBuffer buffer(name, 1000, 512); 2895 MacroAssembler* masm = new MacroAssembler(&buffer); 2896 2897 int frame_size_in_words; 2898 RegisterSaver reg_save(false /* save_vectors */); 2899 2900 OopMapSet *oop_maps = new OopMapSet(); 2901 OopMap* map = NULL; 2902 2903 int start = __ offset(); 2904 2905 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2906 2907 int frame_complete = __ offset(); 2908 2909 { 2910 Label retaddr; 2911 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2912 2913 __ mov(c_rarg0, rthread); 2914 __ lea(rscratch1, RuntimeAddress(destination)); 2915 2916 __ blr(rscratch1); 2917 __ bind(retaddr); 2918 } 2919 2920 // Set an oopmap for the call site. 2921 // We need this not only for callee-saved registers, but also for volatile 2922 // registers that the compiler might be keeping live across a safepoint. 2923 2924 oop_maps->add_gc_map( __ offset() - start, map); 2925 2926 // r0 contains the address we are going to jump to assuming no exception got installed 2927 2928 // clear last_Java_sp 2929 __ reset_last_Java_frame(false); 2930 // check for pending exceptions 2931 Label pending; 2932 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2933 __ cbnz(rscratch1, pending); 2934 2935 // get the returned Method* 2936 __ get_vm_result_2(rmethod, rthread); 2937 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 2938 2939 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 2940 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 2941 reg_save.restore_live_registers(masm); 2942 2943 // We are back to the original state on entry and ready to go. 2944 2945 __ br(rscratch1); 2946 2947 // Pending exception after the safepoint 2948 2949 __ bind(pending); 2950 2951 reg_save.restore_live_registers(masm); 2952 2953 // exception pending => remove activation and forward to exception handler 2954 2955 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 2956 2957 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 2958 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2959 2960 // ------------- 2961 // make sure all code is generated 2962 masm->flush(); 2963 2964 // return the blob 2965 // frame_size_words or bytes?? 2966 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2967 } 2968 2969 #ifdef COMPILER2 2970 // This is here instead of runtime_aarch64_64.cpp because it uses SimpleRuntimeFrame 2971 // 2972 //------------------------------generate_exception_blob--------------------------- 2973 // creates exception blob at the end 2974 // Using exception blob, this code is jumped from a compiled method. 2975 // (see emit_exception_handler in x86_64.ad file) 2976 // 2977 // Given an exception pc at a call we call into the runtime for the 2978 // handler in this method. This handler might merely restore state 2979 // (i.e. callee save registers) unwind the frame and jump to the 2980 // exception handler for the nmethod if there is no Java level handler 2981 // for the nmethod. 2982 // 2983 // This code is entered with a jmp. 2984 // 2985 // Arguments: 2986 // r0: exception oop 2987 // r3: exception pc 2988 // 2989 // Results: 2990 // r0: exception oop 2991 // r3: exception pc in caller or ??? 2992 // destination: exception handler of caller 2993 // 2994 // Note: the exception pc MUST be at a call (precise debug information) 2995 // Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved. 2996 // 2997 2998 void OptoRuntime::generate_exception_blob() { 2999 assert(!OptoRuntime::is_callee_saved_register(R3_num), ""); 3000 assert(!OptoRuntime::is_callee_saved_register(R0_num), ""); 3001 assert(!OptoRuntime::is_callee_saved_register(R2_num), ""); 3002 3003 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 3004 3005 // Allocate space for the code 3006 ResourceMark rm; 3007 // Setup code generation tools 3008 CodeBuffer buffer("exception_blob", 2048, 1024); 3009 MacroAssembler* masm = new MacroAssembler(&buffer); 3010 3011 // TODO check various assumptions made here 3012 // 3013 // make sure we do so before running this 3014 3015 address start = __ pc(); 3016 3017 // push rfp and retaddr by hand 3018 // Exception pc is 'return address' for stack walker 3019 __ protect_return_address(); 3020 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 3021 // there are no callee save registers and we don't expect an 3022 // arg reg save area 3023 #ifndef PRODUCT 3024 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 3025 #endif 3026 // Store exception in Thread object. We cannot pass any arguments to the 3027 // handle_exception call, since we do not want to make any assumption 3028 // about the size of the frame where the exception happened in. 3029 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 3030 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 3031 3032 // This call does all the hard work. It checks if an exception handler 3033 // exists in the method. 3034 // If so, it returns the handler address. 3035 // If not, it prepares for stack-unwinding, restoring the callee-save 3036 // registers of the frame being removed. 3037 // 3038 // address OptoRuntime::handle_exception_C(JavaThread* thread) 3039 // 3040 // n.b. 1 gp arg, 0 fp args, integral return type 3041 3042 // the stack should always be aligned 3043 address the_pc = __ pc(); 3044 __ set_last_Java_frame(sp, noreg, the_pc, rscratch1); 3045 __ mov(c_rarg0, rthread); 3046 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); 3047 __ blr(rscratch1); 3048 // handle_exception_C is a special VM call which does not require an explicit 3049 // instruction sync afterwards. 3050 3051 // May jump to SVE compiled code 3052 __ reinitialize_ptrue(); 3053 3054 // Set an oopmap for the call site. This oopmap will only be used if we 3055 // are unwinding the stack. Hence, all locations will be dead. 3056 // Callee-saved registers will be the same as the frame above (i.e., 3057 // handle_exception_stub), since they were restored when we got the 3058 // exception. 3059 3060 OopMapSet* oop_maps = new OopMapSet(); 3061 3062 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 3063 3064 __ reset_last_Java_frame(false); 3065 3066 // Restore callee-saved registers 3067 3068 // rfp is an implicitly saved callee saved register (i.e. the calling 3069 // convention will save restore it in prolog/epilog) Other than that 3070 // there are no callee save registers now that adapter frames are gone. 3071 // and we dont' expect an arg reg save area 3072 __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize))); 3073 __ authenticate_return_address(r3); 3074 3075 // r0: exception handler 3076 3077 // We have a handler in r0 (could be deopt blob). 3078 __ mov(r8, r0); 3079 3080 // Get the exception oop 3081 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 3082 // Get the exception pc in case we are deoptimized 3083 __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset())); 3084 #ifdef ASSERT 3085 __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset())); 3086 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 3087 #endif 3088 // Clear the exception oop so GC no longer processes it as a root. 3089 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 3090 3091 // r0: exception oop 3092 // r8: exception handler 3093 // r4: exception pc 3094 // Jump to handler 3095 3096 __ br(r8); 3097 3098 // Make sure all code is generated 3099 masm->flush(); 3100 3101 // Set exception blob 3102 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 3103 } 3104 3105 #endif // COMPILER2