1 /* 2 * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compilerDefinitions.inline.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/method.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/synchronizer.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #define __ _masm-> 50 51 // Address computation: local variables 52 53 static inline Address iaddress(int n) { 54 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 55 } 56 57 static inline Address laddress(int n) { 58 return iaddress(n + 1); 59 } 60 61 static inline Address faddress(int n) { 62 return iaddress(n); 63 } 64 65 static inline Address daddress(int n) { 66 return laddress(n); 67 } 68 69 static inline Address aaddress(int n) { 70 return iaddress(n); 71 } 72 73 static inline Address iaddress(Register r) { 74 return Address(rlocals, r, Address::lsl(3)); 75 } 76 77 static inline Address laddress(Register r, Register scratch, 78 InterpreterMacroAssembler* _masm) { 79 __ lea(scratch, Address(rlocals, r, Address::lsl(3))); 80 return Address(scratch, Interpreter::local_offset_in_bytes(1)); 81 } 82 83 static inline Address faddress(Register r) { 84 return iaddress(r); 85 } 86 87 static inline Address daddress(Register r, Register scratch, 88 InterpreterMacroAssembler* _masm) { 89 return laddress(r, scratch, _masm); 90 } 91 92 static inline Address aaddress(Register r) { 93 return iaddress(r); 94 } 95 96 static inline Address at_rsp() { 97 return Address(esp, 0); 98 } 99 100 // At top of Java expression stack which may be different than esp(). It 101 // isn't for category 1 objects. 102 static inline Address at_tos () { 103 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 104 } 105 106 static inline Address at_tos_p1() { 107 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 108 } 109 110 static inline Address at_tos_p2() { 111 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 112 } 113 114 static inline Address at_tos_p3() { 115 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 116 } 117 118 static inline Address at_tos_p4() { 119 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 120 } 121 122 static inline Address at_tos_p5() { 123 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 124 } 125 126 // Condition conversion 127 static Assembler::Condition j_not(TemplateTable::Condition cc) { 128 switch (cc) { 129 case TemplateTable::equal : return Assembler::NE; 130 case TemplateTable::not_equal : return Assembler::EQ; 131 case TemplateTable::less : return Assembler::GE; 132 case TemplateTable::less_equal : return Assembler::GT; 133 case TemplateTable::greater : return Assembler::LE; 134 case TemplateTable::greater_equal: return Assembler::LT; 135 } 136 ShouldNotReachHere(); 137 return Assembler::EQ; 138 } 139 140 141 // Miscellaneous helper routines 142 // Store an oop (or NULL) at the Address described by obj. 143 // If val == noreg this means store a NULL 144 static void do_oop_store(InterpreterMacroAssembler* _masm, 145 Address dst, 146 Register val, 147 DecoratorSet decorators) { 148 assert(val == noreg || val == r0, "parameter is just for looks"); 149 __ store_heap_oop(dst, val, r10, r11, r3, decorators); 150 } 151 152 static void do_oop_load(InterpreterMacroAssembler* _masm, 153 Address src, 154 Register dst, 155 DecoratorSet decorators) { 156 __ load_heap_oop(dst, src, r10, r11, decorators); 157 } 158 159 Address TemplateTable::at_bcp(int offset) { 160 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 161 return Address(rbcp, offset); 162 } 163 164 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 165 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 166 int byte_no) 167 { 168 if (!RewriteBytecodes) return; 169 Label L_patch_done; 170 171 switch (bc) { 172 case Bytecodes::_fast_aputfield: 173 case Bytecodes::_fast_bputfield: 174 case Bytecodes::_fast_zputfield: 175 case Bytecodes::_fast_cputfield: 176 case Bytecodes::_fast_dputfield: 177 case Bytecodes::_fast_fputfield: 178 case Bytecodes::_fast_iputfield: 179 case Bytecodes::_fast_lputfield: 180 case Bytecodes::_fast_sputfield: 181 { 182 // We skip bytecode quickening for putfield instructions when 183 // the put_code written to the constant pool cache is zero. 184 // This is required so that every execution of this instruction 185 // calls out to InterpreterRuntime::resolve_get_put to do 186 // additional, required work. 187 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 188 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 189 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 190 __ movw(bc_reg, bc); 191 __ cbzw(temp_reg, L_patch_done); // don't patch 192 } 193 break; 194 default: 195 assert(byte_no == -1, "sanity"); 196 // the pair bytecodes have already done the load. 197 if (load_bc_into_bc_reg) { 198 __ movw(bc_reg, bc); 199 } 200 } 201 202 if (JvmtiExport::can_post_breakpoint()) { 203 Label L_fast_patch; 204 // if a breakpoint is present we can't rewrite the stream directly 205 __ load_unsigned_byte(temp_reg, at_bcp(0)); 206 __ cmpw(temp_reg, Bytecodes::_breakpoint); 207 __ br(Assembler::NE, L_fast_patch); 208 // Let breakpoint table handling rewrite to quicker bytecode 209 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); 210 __ b(L_patch_done); 211 __ bind(L_fast_patch); 212 } 213 214 #ifdef ASSERT 215 Label L_okay; 216 __ load_unsigned_byte(temp_reg, at_bcp(0)); 217 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); 218 __ br(Assembler::EQ, L_okay); 219 __ cmpw(temp_reg, bc_reg); 220 __ br(Assembler::EQ, L_okay); 221 __ stop("patching the wrong bytecode"); 222 __ bind(L_okay); 223 #endif 224 225 // patch bytecode 226 __ strb(bc_reg, at_bcp(0)); 227 __ bind(L_patch_done); 228 } 229 230 231 // Individual instructions 232 233 void TemplateTable::nop() { 234 transition(vtos, vtos); 235 // nothing to do 236 } 237 238 void TemplateTable::shouldnotreachhere() { 239 transition(vtos, vtos); 240 __ stop("shouldnotreachhere bytecode"); 241 } 242 243 void TemplateTable::aconst_null() 244 { 245 transition(vtos, atos); 246 __ mov(r0, 0); 247 } 248 249 void TemplateTable::iconst(int value) 250 { 251 transition(vtos, itos); 252 __ mov(r0, value); 253 } 254 255 void TemplateTable::lconst(int value) 256 { 257 __ mov(r0, value); 258 } 259 260 void TemplateTable::fconst(int value) 261 { 262 transition(vtos, ftos); 263 switch (value) { 264 case 0: 265 __ fmovs(v0, 0.0); 266 break; 267 case 1: 268 __ fmovs(v0, 1.0); 269 break; 270 case 2: 271 __ fmovs(v0, 2.0); 272 break; 273 default: 274 ShouldNotReachHere(); 275 break; 276 } 277 } 278 279 void TemplateTable::dconst(int value) 280 { 281 transition(vtos, dtos); 282 switch (value) { 283 case 0: 284 __ fmovd(v0, 0.0); 285 break; 286 case 1: 287 __ fmovd(v0, 1.0); 288 break; 289 case 2: 290 __ fmovd(v0, 2.0); 291 break; 292 default: 293 ShouldNotReachHere(); 294 break; 295 } 296 } 297 298 void TemplateTable::bipush() 299 { 300 transition(vtos, itos); 301 __ load_signed_byte32(r0, at_bcp(1)); 302 } 303 304 void TemplateTable::sipush() 305 { 306 transition(vtos, itos); 307 __ load_unsigned_short(r0, at_bcp(1)); 308 __ revw(r0, r0); 309 __ asrw(r0, r0, 16); 310 } 311 312 void TemplateTable::ldc(LdcType type) 313 { 314 transition(vtos, vtos); 315 Label call_ldc, notFloat, notClass, notInt, Done; 316 317 if (is_ldc_wide(type)) { 318 __ get_unsigned_2_byte_index_at_bcp(r1, 1); 319 } else { 320 __ load_unsigned_byte(r1, at_bcp(1)); 321 } 322 __ get_cpool_and_tags(r2, r0); 323 324 const int base_offset = ConstantPool::header_size() * wordSize; 325 const int tags_offset = Array<u1>::base_offset_in_bytes(); 326 327 // get type 328 __ add(r3, r1, tags_offset); 329 __ lea(r3, Address(r0, r3)); 330 __ ldarb(r3, r3); 331 332 // unresolved class - get the resolved class 333 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass); 334 __ br(Assembler::EQ, call_ldc); 335 336 // unresolved class in error state - call into runtime to throw the error 337 // from the first resolution attempt 338 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError); 339 __ br(Assembler::EQ, call_ldc); 340 341 // resolved class - need to call vm to get java mirror of the class 342 __ cmp(r3, (u1)JVM_CONSTANT_Class); 343 __ br(Assembler::NE, notClass); 344 345 __ bind(call_ldc); 346 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0); 347 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 348 __ push_ptr(r0); 349 __ verify_oop(r0); 350 __ b(Done); 351 352 __ bind(notClass); 353 __ cmp(r3, (u1)JVM_CONSTANT_Float); 354 __ br(Assembler::NE, notFloat); 355 // ftos 356 __ adds(r1, r2, r1, Assembler::LSL, 3); 357 __ ldrs(v0, Address(r1, base_offset)); 358 __ push_f(); 359 __ b(Done); 360 361 __ bind(notFloat); 362 363 __ cmp(r3, (u1)JVM_CONSTANT_Integer); 364 __ br(Assembler::NE, notInt); 365 366 // itos 367 __ adds(r1, r2, r1, Assembler::LSL, 3); 368 __ ldrw(r0, Address(r1, base_offset)); 369 __ push_i(r0); 370 __ b(Done); 371 372 __ bind(notInt); 373 condy_helper(Done); 374 375 __ bind(Done); 376 } 377 378 // Fast path for caching oop constants. 379 void TemplateTable::fast_aldc(LdcType type) 380 { 381 transition(vtos, atos); 382 383 Register result = r0; 384 Register tmp = r1; 385 Register rarg = r2; 386 387 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 388 389 Label resolved; 390 391 // We are resolved if the resolved reference cache entry contains a 392 // non-null object (String, MethodType, etc.) 393 assert_different_registers(result, tmp); 394 __ get_cache_index_at_bcp(tmp, 1, index_size); 395 __ load_resolved_reference_at_index(result, tmp); 396 __ cbnz(result, resolved); 397 398 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 399 400 // first time invocation - must resolve first 401 __ mov(rarg, (int)bytecode()); 402 __ call_VM(result, entry, rarg); 403 404 __ bind(resolved); 405 406 { // Check for the null sentinel. 407 // If we just called the VM, it already did the mapping for us, 408 // but it's harmless to retry. 409 Label notNull; 410 411 // Stash null_sentinel address to get its value later 412 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr()); 413 __ ldr(tmp, Address(rarg)); 414 __ resolve_oop_handle(tmp, r5, rscratch2); 415 __ cmpoop(result, tmp); 416 __ br(Assembler::NE, notNull); 417 __ mov(result, 0); // NULL object reference 418 __ bind(notNull); 419 } 420 421 if (VerifyOops) { 422 // Safe to call with 0 result 423 __ verify_oop(result); 424 } 425 } 426 427 void TemplateTable::ldc2_w() 428 { 429 transition(vtos, vtos); 430 Label notDouble, notLong, Done; 431 __ get_unsigned_2_byte_index_at_bcp(r0, 1); 432 433 __ get_cpool_and_tags(r1, r2); 434 const int base_offset = ConstantPool::header_size() * wordSize; 435 const int tags_offset = Array<u1>::base_offset_in_bytes(); 436 437 // get type 438 __ lea(r2, Address(r2, r0, Address::lsl(0))); 439 __ load_unsigned_byte(r2, Address(r2, tags_offset)); 440 __ cmpw(r2, (int)JVM_CONSTANT_Double); 441 __ br(Assembler::NE, notDouble); 442 443 // dtos 444 __ lea (r2, Address(r1, r0, Address::lsl(3))); 445 __ ldrd(v0, Address(r2, base_offset)); 446 __ push_d(); 447 __ b(Done); 448 449 __ bind(notDouble); 450 __ cmpw(r2, (int)JVM_CONSTANT_Long); 451 __ br(Assembler::NE, notLong); 452 453 // ltos 454 __ lea(r0, Address(r1, r0, Address::lsl(3))); 455 __ ldr(r0, Address(r0, base_offset)); 456 __ push_l(); 457 __ b(Done); 458 459 __ bind(notLong); 460 condy_helper(Done); 461 462 __ bind(Done); 463 } 464 465 void TemplateTable::condy_helper(Label& Done) 466 { 467 Register obj = r0; 468 Register rarg = r1; 469 Register flags = r2; 470 Register off = r3; 471 472 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 473 474 __ mov(rarg, (int) bytecode()); 475 __ call_VM(obj, entry, rarg); 476 477 __ get_vm_result_2(flags, rthread); 478 479 // VMr = obj = base address to find primitive value to push 480 // VMr2 = flags = (tos, off) using format of CPCE::_flags 481 __ mov(off, flags); 482 __ andw(off, off, ConstantPoolCacheEntry::field_index_mask); 483 484 const Address field(obj, off); 485 486 // What sort of thing are we loading? 487 // x86 uses a shift and mask or wings it with a shift plus assert 488 // the mask is not needed. aarch64 just uses bitfield extract 489 __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, 490 ConstantPoolCacheEntry::tos_state_bits); 491 492 switch (bytecode()) { 493 case Bytecodes::_ldc: 494 case Bytecodes::_ldc_w: 495 { 496 // tos in (itos, ftos, stos, btos, ctos, ztos) 497 Label notInt, notFloat, notShort, notByte, notChar, notBool; 498 __ cmpw(flags, itos); 499 __ br(Assembler::NE, notInt); 500 // itos 501 __ ldrw(r0, field); 502 __ push(itos); 503 __ b(Done); 504 505 __ bind(notInt); 506 __ cmpw(flags, ftos); 507 __ br(Assembler::NE, notFloat); 508 // ftos 509 __ load_float(field); 510 __ push(ftos); 511 __ b(Done); 512 513 __ bind(notFloat); 514 __ cmpw(flags, stos); 515 __ br(Assembler::NE, notShort); 516 // stos 517 __ load_signed_short(r0, field); 518 __ push(stos); 519 __ b(Done); 520 521 __ bind(notShort); 522 __ cmpw(flags, btos); 523 __ br(Assembler::NE, notByte); 524 // btos 525 __ load_signed_byte(r0, field); 526 __ push(btos); 527 __ b(Done); 528 529 __ bind(notByte); 530 __ cmpw(flags, ctos); 531 __ br(Assembler::NE, notChar); 532 // ctos 533 __ load_unsigned_short(r0, field); 534 __ push(ctos); 535 __ b(Done); 536 537 __ bind(notChar); 538 __ cmpw(flags, ztos); 539 __ br(Assembler::NE, notBool); 540 // ztos 541 __ load_signed_byte(r0, field); 542 __ push(ztos); 543 __ b(Done); 544 545 __ bind(notBool); 546 break; 547 } 548 549 case Bytecodes::_ldc2_w: 550 { 551 Label notLong, notDouble; 552 __ cmpw(flags, ltos); 553 __ br(Assembler::NE, notLong); 554 // ltos 555 __ ldr(r0, field); 556 __ push(ltos); 557 __ b(Done); 558 559 __ bind(notLong); 560 __ cmpw(flags, dtos); 561 __ br(Assembler::NE, notDouble); 562 // dtos 563 __ load_double(field); 564 __ push(dtos); 565 __ b(Done); 566 567 __ bind(notDouble); 568 break; 569 } 570 571 default: 572 ShouldNotReachHere(); 573 } 574 575 __ stop("bad ldc/condy"); 576 } 577 578 void TemplateTable::locals_index(Register reg, int offset) 579 { 580 __ ldrb(reg, at_bcp(offset)); 581 __ neg(reg, reg); 582 } 583 584 void TemplateTable::iload() { 585 iload_internal(); 586 } 587 588 void TemplateTable::nofast_iload() { 589 iload_internal(may_not_rewrite); 590 } 591 592 void TemplateTable::iload_internal(RewriteControl rc) { 593 transition(vtos, itos); 594 if (RewriteFrequentPairs && rc == may_rewrite) { 595 Label rewrite, done; 596 Register bc = r4; 597 598 // get next bytecode 599 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 600 601 // if _iload, wait to rewrite to iload2. We only want to rewrite the 602 // last two iloads in a pair. Comparing against fast_iload means that 603 // the next bytecode is neither an iload or a caload, and therefore 604 // an iload pair. 605 __ cmpw(r1, Bytecodes::_iload); 606 __ br(Assembler::EQ, done); 607 608 // if _fast_iload rewrite to _fast_iload2 609 __ cmpw(r1, Bytecodes::_fast_iload); 610 __ movw(bc, Bytecodes::_fast_iload2); 611 __ br(Assembler::EQ, rewrite); 612 613 // if _caload rewrite to _fast_icaload 614 __ cmpw(r1, Bytecodes::_caload); 615 __ movw(bc, Bytecodes::_fast_icaload); 616 __ br(Assembler::EQ, rewrite); 617 618 // else rewrite to _fast_iload 619 __ movw(bc, Bytecodes::_fast_iload); 620 621 // rewrite 622 // bc: new bytecode 623 __ bind(rewrite); 624 patch_bytecode(Bytecodes::_iload, bc, r1, false); 625 __ bind(done); 626 627 } 628 629 // do iload, get the local value into tos 630 locals_index(r1); 631 __ ldr(r0, iaddress(r1)); 632 633 } 634 635 void TemplateTable::fast_iload2() 636 { 637 transition(vtos, itos); 638 locals_index(r1); 639 __ ldr(r0, iaddress(r1)); 640 __ push(itos); 641 locals_index(r1, 3); 642 __ ldr(r0, iaddress(r1)); 643 } 644 645 void TemplateTable::fast_iload() 646 { 647 transition(vtos, itos); 648 locals_index(r1); 649 __ ldr(r0, iaddress(r1)); 650 } 651 652 void TemplateTable::lload() 653 { 654 transition(vtos, ltos); 655 __ ldrb(r1, at_bcp(1)); 656 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 657 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 658 } 659 660 void TemplateTable::fload() 661 { 662 transition(vtos, ftos); 663 locals_index(r1); 664 // n.b. we use ldrd here because this is a 64 bit slot 665 // this is comparable to the iload case 666 __ ldrd(v0, faddress(r1)); 667 } 668 669 void TemplateTable::dload() 670 { 671 transition(vtos, dtos); 672 __ ldrb(r1, at_bcp(1)); 673 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 674 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 675 } 676 677 void TemplateTable::aload() 678 { 679 transition(vtos, atos); 680 locals_index(r1); 681 __ ldr(r0, iaddress(r1)); 682 } 683 684 void TemplateTable::locals_index_wide(Register reg) { 685 __ ldrh(reg, at_bcp(2)); 686 __ rev16w(reg, reg); 687 __ neg(reg, reg); 688 } 689 690 void TemplateTable::wide_iload() { 691 transition(vtos, itos); 692 locals_index_wide(r1); 693 __ ldr(r0, iaddress(r1)); 694 } 695 696 void TemplateTable::wide_lload() 697 { 698 transition(vtos, ltos); 699 __ ldrh(r1, at_bcp(2)); 700 __ rev16w(r1, r1); 701 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 702 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 703 } 704 705 void TemplateTable::wide_fload() 706 { 707 transition(vtos, ftos); 708 locals_index_wide(r1); 709 // n.b. we use ldrd here because this is a 64 bit slot 710 // this is comparable to the iload case 711 __ ldrd(v0, faddress(r1)); 712 } 713 714 void TemplateTable::wide_dload() 715 { 716 transition(vtos, dtos); 717 __ ldrh(r1, at_bcp(2)); 718 __ rev16w(r1, r1); 719 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 720 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 721 } 722 723 void TemplateTable::wide_aload() 724 { 725 transition(vtos, atos); 726 locals_index_wide(r1); 727 __ ldr(r0, aaddress(r1)); 728 } 729 730 void TemplateTable::index_check(Register array, Register index) 731 { 732 // destroys r1, rscratch1 733 // check array 734 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 735 // sign extend index for use by indexed load 736 // __ movl2ptr(index, index); 737 // check index 738 Register length = rscratch1; 739 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 740 __ cmpw(index, length); 741 if (index != r1) { 742 // ??? convention: move aberrant index into r1 for exception message 743 assert(r1 != array, "different registers"); 744 __ mov(r1, index); 745 } 746 Label ok; 747 __ br(Assembler::LO, ok); 748 // ??? convention: move array into r3 for exception message 749 __ mov(r3, array); 750 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 751 __ br(rscratch1); 752 __ bind(ok); 753 } 754 755 void TemplateTable::iaload() 756 { 757 transition(itos, itos); 758 __ mov(r1, r0); 759 __ pop_ptr(r0); 760 // r0: array 761 // r1: index 762 index_check(r0, r1); // leaves index in r1, kills rscratch1 763 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 764 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 765 } 766 767 void TemplateTable::laload() 768 { 769 transition(itos, ltos); 770 __ mov(r1, r0); 771 __ pop_ptr(r0); 772 // r0: array 773 // r1: index 774 index_check(r0, r1); // leaves index in r1, kills rscratch1 775 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 776 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 777 } 778 779 void TemplateTable::faload() 780 { 781 transition(itos, ftos); 782 __ mov(r1, r0); 783 __ pop_ptr(r0); 784 // r0: array 785 // r1: index 786 index_check(r0, r1); // leaves index in r1, kills rscratch1 787 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 788 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 789 } 790 791 void TemplateTable::daload() 792 { 793 transition(itos, dtos); 794 __ mov(r1, r0); 795 __ pop_ptr(r0); 796 // r0: array 797 // r1: index 798 index_check(r0, r1); // leaves index in r1, kills rscratch1 799 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 800 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 801 } 802 803 void TemplateTable::aaload() 804 { 805 transition(itos, atos); 806 __ mov(r1, r0); 807 __ pop_ptr(r0); 808 // r0: array 809 // r1: index 810 index_check(r0, r1); // leaves index in r1, kills rscratch1 811 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 812 do_oop_load(_masm, 813 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), 814 r0, 815 IS_ARRAY); 816 } 817 818 void TemplateTable::baload() 819 { 820 transition(itos, itos); 821 __ mov(r1, r0); 822 __ pop_ptr(r0); 823 // r0: array 824 // r1: index 825 index_check(r0, r1); // leaves index in r1, kills rscratch1 826 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 827 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg); 828 } 829 830 void TemplateTable::caload() 831 { 832 transition(itos, itos); 833 __ mov(r1, r0); 834 __ pop_ptr(r0); 835 // r0: array 836 // r1: index 837 index_check(r0, r1); // leaves index in r1, kills rscratch1 838 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 839 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 840 } 841 842 // iload followed by caload frequent pair 843 void TemplateTable::fast_icaload() 844 { 845 transition(vtos, itos); 846 // load index out of locals 847 locals_index(r2); 848 __ ldr(r1, iaddress(r2)); 849 850 __ pop_ptr(r0); 851 852 // r0: array 853 // r1: index 854 index_check(r0, r1); // leaves index in r1, kills rscratch1 855 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 856 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 857 } 858 859 void TemplateTable::saload() 860 { 861 transition(itos, itos); 862 __ mov(r1, r0); 863 __ pop_ptr(r0); 864 // r0: array 865 // r1: index 866 index_check(r0, r1); // leaves index in r1, kills rscratch1 867 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 868 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 869 } 870 871 void TemplateTable::iload(int n) 872 { 873 transition(vtos, itos); 874 __ ldr(r0, iaddress(n)); 875 } 876 877 void TemplateTable::lload(int n) 878 { 879 transition(vtos, ltos); 880 __ ldr(r0, laddress(n)); 881 } 882 883 void TemplateTable::fload(int n) 884 { 885 transition(vtos, ftos); 886 __ ldrs(v0, faddress(n)); 887 } 888 889 void TemplateTable::dload(int n) 890 { 891 transition(vtos, dtos); 892 __ ldrd(v0, daddress(n)); 893 } 894 895 void TemplateTable::aload(int n) 896 { 897 transition(vtos, atos); 898 __ ldr(r0, iaddress(n)); 899 } 900 901 void TemplateTable::aload_0() { 902 aload_0_internal(); 903 } 904 905 void TemplateTable::nofast_aload_0() { 906 aload_0_internal(may_not_rewrite); 907 } 908 909 void TemplateTable::aload_0_internal(RewriteControl rc) { 910 // According to bytecode histograms, the pairs: 911 // 912 // _aload_0, _fast_igetfield 913 // _aload_0, _fast_agetfield 914 // _aload_0, _fast_fgetfield 915 // 916 // occur frequently. If RewriteFrequentPairs is set, the (slow) 917 // _aload_0 bytecode checks if the next bytecode is either 918 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 919 // rewrites the current bytecode into a pair bytecode; otherwise it 920 // rewrites the current bytecode into _fast_aload_0 that doesn't do 921 // the pair check anymore. 922 // 923 // Note: If the next bytecode is _getfield, the rewrite must be 924 // delayed, otherwise we may miss an opportunity for a pair. 925 // 926 // Also rewrite frequent pairs 927 // aload_0, aload_1 928 // aload_0, iload_1 929 // These bytecodes with a small amount of code are most profitable 930 // to rewrite 931 if (RewriteFrequentPairs && rc == may_rewrite) { 932 Label rewrite, done; 933 const Register bc = r4; 934 935 // get next bytecode 936 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 937 938 // if _getfield then wait with rewrite 939 __ cmpw(r1, Bytecodes::Bytecodes::_getfield); 940 __ br(Assembler::EQ, done); 941 942 // if _igetfield then rewrite to _fast_iaccess_0 943 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 944 __ cmpw(r1, Bytecodes::_fast_igetfield); 945 __ movw(bc, Bytecodes::_fast_iaccess_0); 946 __ br(Assembler::EQ, rewrite); 947 948 // if _agetfield then rewrite to _fast_aaccess_0 949 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 950 __ cmpw(r1, Bytecodes::_fast_agetfield); 951 __ movw(bc, Bytecodes::_fast_aaccess_0); 952 __ br(Assembler::EQ, rewrite); 953 954 // if _fgetfield then rewrite to _fast_faccess_0 955 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 956 __ cmpw(r1, Bytecodes::_fast_fgetfield); 957 __ movw(bc, Bytecodes::_fast_faccess_0); 958 __ br(Assembler::EQ, rewrite); 959 960 // else rewrite to _fast_aload0 961 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 962 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); 963 964 // rewrite 965 // bc: new bytecode 966 __ bind(rewrite); 967 patch_bytecode(Bytecodes::_aload_0, bc, r1, false); 968 969 __ bind(done); 970 } 971 972 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 973 aload(0); 974 } 975 976 void TemplateTable::istore() 977 { 978 transition(itos, vtos); 979 locals_index(r1); 980 // FIXME: We're being very pernickerty here storing a jint in a 981 // local with strw, which costs an extra instruction over what we'd 982 // be able to do with a simple str. We should just store the whole 983 // word. 984 __ lea(rscratch1, iaddress(r1)); 985 __ strw(r0, Address(rscratch1)); 986 } 987 988 void TemplateTable::lstore() 989 { 990 transition(ltos, vtos); 991 locals_index(r1); 992 __ str(r0, laddress(r1, rscratch1, _masm)); 993 } 994 995 void TemplateTable::fstore() { 996 transition(ftos, vtos); 997 locals_index(r1); 998 __ lea(rscratch1, iaddress(r1)); 999 __ strs(v0, Address(rscratch1)); 1000 } 1001 1002 void TemplateTable::dstore() { 1003 transition(dtos, vtos); 1004 locals_index(r1); 1005 __ strd(v0, daddress(r1, rscratch1, _masm)); 1006 } 1007 1008 void TemplateTable::astore() 1009 { 1010 transition(vtos, vtos); 1011 __ pop_ptr(r0); 1012 locals_index(r1); 1013 __ str(r0, aaddress(r1)); 1014 } 1015 1016 void TemplateTable::wide_istore() { 1017 transition(vtos, vtos); 1018 __ pop_i(); 1019 locals_index_wide(r1); 1020 __ lea(rscratch1, iaddress(r1)); 1021 __ strw(r0, Address(rscratch1)); 1022 } 1023 1024 void TemplateTable::wide_lstore() { 1025 transition(vtos, vtos); 1026 __ pop_l(); 1027 locals_index_wide(r1); 1028 __ str(r0, laddress(r1, rscratch1, _masm)); 1029 } 1030 1031 void TemplateTable::wide_fstore() { 1032 transition(vtos, vtos); 1033 __ pop_f(); 1034 locals_index_wide(r1); 1035 __ lea(rscratch1, faddress(r1)); 1036 __ strs(v0, rscratch1); 1037 } 1038 1039 void TemplateTable::wide_dstore() { 1040 transition(vtos, vtos); 1041 __ pop_d(); 1042 locals_index_wide(r1); 1043 __ strd(v0, daddress(r1, rscratch1, _masm)); 1044 } 1045 1046 void TemplateTable::wide_astore() { 1047 transition(vtos, vtos); 1048 __ pop_ptr(r0); 1049 locals_index_wide(r1); 1050 __ str(r0, aaddress(r1)); 1051 } 1052 1053 void TemplateTable::iastore() { 1054 transition(itos, vtos); 1055 __ pop_i(r1); 1056 __ pop_ptr(r3); 1057 // r0: value 1058 // r1: index 1059 // r3: array 1060 index_check(r3, r1); // prefer index in r1 1061 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1062 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg); 1063 } 1064 1065 void TemplateTable::lastore() { 1066 transition(ltos, vtos); 1067 __ pop_i(r1); 1068 __ pop_ptr(r3); 1069 // r0: value 1070 // r1: index 1071 // r3: array 1072 index_check(r3, r1); // prefer index in r1 1073 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1074 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg); 1075 } 1076 1077 void TemplateTable::fastore() { 1078 transition(ftos, vtos); 1079 __ pop_i(r1); 1080 __ pop_ptr(r3); 1081 // v0: value 1082 // r1: index 1083 // r3: array 1084 index_check(r3, r1); // prefer index in r1 1085 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1086 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg); 1087 } 1088 1089 void TemplateTable::dastore() { 1090 transition(dtos, vtos); 1091 __ pop_i(r1); 1092 __ pop_ptr(r3); 1093 // v0: value 1094 // r1: index 1095 // r3: array 1096 index_check(r3, r1); // prefer index in r1 1097 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1098 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg); 1099 } 1100 1101 void TemplateTable::aastore() { 1102 Label is_null, ok_is_subtype, done; 1103 transition(vtos, vtos); 1104 // stack: ..., array, index, value 1105 __ ldr(r0, at_tos()); // value 1106 __ ldr(r2, at_tos_p1()); // index 1107 __ ldr(r3, at_tos_p2()); // array 1108 1109 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop)); 1110 1111 index_check(r3, r2); // kills r1 1112 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1113 1114 // do array store check - check for NULL value first 1115 __ cbz(r0, is_null); 1116 1117 // Move subklass into r1 1118 __ load_klass(r1, r0); 1119 // Move superklass into r0 1120 __ load_klass(r0, r3); 1121 __ ldr(r0, Address(r0, 1122 ObjArrayKlass::element_klass_offset())); 1123 // Compress array + index*oopSize + 12 into a single register. Frees r2. 1124 1125 // Generate subtype check. Blows r2, r5 1126 // Superklass in r0. Subklass in r1. 1127 __ gen_subtype_check(r1, ok_is_subtype); 1128 1129 // Come here on failure 1130 // object is at TOS 1131 __ b(Interpreter::_throw_ArrayStoreException_entry); 1132 1133 // Come here on success 1134 __ bind(ok_is_subtype); 1135 1136 // Get the value we will store 1137 __ ldr(r0, at_tos()); 1138 // Now store using the appropriate barrier 1139 do_oop_store(_masm, element_address, r0, IS_ARRAY); 1140 __ b(done); 1141 1142 // Have a NULL in r0, r3=array, r2=index. Store NULL at ary[idx] 1143 __ bind(is_null); 1144 __ profile_null_seen(r2); 1145 1146 // Store a NULL 1147 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1148 1149 // Pop stack arguments 1150 __ bind(done); 1151 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1152 } 1153 1154 void TemplateTable::bastore() 1155 { 1156 transition(itos, vtos); 1157 __ pop_i(r1); 1158 __ pop_ptr(r3); 1159 // r0: value 1160 // r1: index 1161 // r3: array 1162 index_check(r3, r1); // prefer index in r1 1163 1164 // Need to check whether array is boolean or byte 1165 // since both types share the bastore bytecode. 1166 __ load_klass(r2, r3); 1167 __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); 1168 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit()); 1169 Label L_skip; 1170 __ tbz(r2, diffbit_index, L_skip); 1171 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1172 __ bind(L_skip); 1173 1174 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1175 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg); 1176 } 1177 1178 void TemplateTable::castore() 1179 { 1180 transition(itos, vtos); 1181 __ pop_i(r1); 1182 __ pop_ptr(r3); 1183 // r0: value 1184 // r1: index 1185 // r3: array 1186 index_check(r3, r1); // prefer index in r1 1187 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1188 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg); 1189 } 1190 1191 void TemplateTable::sastore() 1192 { 1193 castore(); 1194 } 1195 1196 void TemplateTable::istore(int n) 1197 { 1198 transition(itos, vtos); 1199 __ str(r0, iaddress(n)); 1200 } 1201 1202 void TemplateTable::lstore(int n) 1203 { 1204 transition(ltos, vtos); 1205 __ str(r0, laddress(n)); 1206 } 1207 1208 void TemplateTable::fstore(int n) 1209 { 1210 transition(ftos, vtos); 1211 __ strs(v0, faddress(n)); 1212 } 1213 1214 void TemplateTable::dstore(int n) 1215 { 1216 transition(dtos, vtos); 1217 __ strd(v0, daddress(n)); 1218 } 1219 1220 void TemplateTable::astore(int n) 1221 { 1222 transition(vtos, vtos); 1223 __ pop_ptr(r0); 1224 __ str(r0, iaddress(n)); 1225 } 1226 1227 void TemplateTable::pop() 1228 { 1229 transition(vtos, vtos); 1230 __ add(esp, esp, Interpreter::stackElementSize); 1231 } 1232 1233 void TemplateTable::pop2() 1234 { 1235 transition(vtos, vtos); 1236 __ add(esp, esp, 2 * Interpreter::stackElementSize); 1237 } 1238 1239 void TemplateTable::dup() 1240 { 1241 transition(vtos, vtos); 1242 __ ldr(r0, Address(esp, 0)); 1243 __ push(r0); 1244 // stack: ..., a, a 1245 } 1246 1247 void TemplateTable::dup_x1() 1248 { 1249 transition(vtos, vtos); 1250 // stack: ..., a, b 1251 __ ldr(r0, at_tos()); // load b 1252 __ ldr(r2, at_tos_p1()); // load a 1253 __ str(r0, at_tos_p1()); // store b 1254 __ str(r2, at_tos()); // store a 1255 __ push(r0); // push b 1256 // stack: ..., b, a, b 1257 } 1258 1259 void TemplateTable::dup_x2() 1260 { 1261 transition(vtos, vtos); 1262 // stack: ..., a, b, c 1263 __ ldr(r0, at_tos()); // load c 1264 __ ldr(r2, at_tos_p2()); // load a 1265 __ str(r0, at_tos_p2()); // store c in a 1266 __ push(r0); // push c 1267 // stack: ..., c, b, c, c 1268 __ ldr(r0, at_tos_p2()); // load b 1269 __ str(r2, at_tos_p2()); // store a in b 1270 // stack: ..., c, a, c, c 1271 __ str(r0, at_tos_p1()); // store b in c 1272 // stack: ..., c, a, b, c 1273 } 1274 1275 void TemplateTable::dup2() 1276 { 1277 transition(vtos, vtos); 1278 // stack: ..., a, b 1279 __ ldr(r0, at_tos_p1()); // load a 1280 __ push(r0); // push a 1281 __ ldr(r0, at_tos_p1()); // load b 1282 __ push(r0); // push b 1283 // stack: ..., a, b, a, b 1284 } 1285 1286 void TemplateTable::dup2_x1() 1287 { 1288 transition(vtos, vtos); 1289 // stack: ..., a, b, c 1290 __ ldr(r2, at_tos()); // load c 1291 __ ldr(r0, at_tos_p1()); // load b 1292 __ push(r0); // push b 1293 __ push(r2); // push c 1294 // stack: ..., a, b, c, b, c 1295 __ str(r2, at_tos_p3()); // store c in b 1296 // stack: ..., a, c, c, b, c 1297 __ ldr(r2, at_tos_p4()); // load a 1298 __ str(r2, at_tos_p2()); // store a in 2nd c 1299 // stack: ..., a, c, a, b, c 1300 __ str(r0, at_tos_p4()); // store b in a 1301 // stack: ..., b, c, a, b, c 1302 } 1303 1304 void TemplateTable::dup2_x2() 1305 { 1306 transition(vtos, vtos); 1307 // stack: ..., a, b, c, d 1308 __ ldr(r2, at_tos()); // load d 1309 __ ldr(r0, at_tos_p1()); // load c 1310 __ push(r0) ; // push c 1311 __ push(r2); // push d 1312 // stack: ..., a, b, c, d, c, d 1313 __ ldr(r0, at_tos_p4()); // load b 1314 __ str(r0, at_tos_p2()); // store b in d 1315 __ str(r2, at_tos_p4()); // store d in b 1316 // stack: ..., a, d, c, b, c, d 1317 __ ldr(r2, at_tos_p5()); // load a 1318 __ ldr(r0, at_tos_p3()); // load c 1319 __ str(r2, at_tos_p3()); // store a in c 1320 __ str(r0, at_tos_p5()); // store c in a 1321 // stack: ..., c, d, a, b, c, d 1322 } 1323 1324 void TemplateTable::swap() 1325 { 1326 transition(vtos, vtos); 1327 // stack: ..., a, b 1328 __ ldr(r2, at_tos_p1()); // load a 1329 __ ldr(r0, at_tos()); // load b 1330 __ str(r2, at_tos()); // store a in b 1331 __ str(r0, at_tos_p1()); // store b in a 1332 // stack: ..., b, a 1333 } 1334 1335 void TemplateTable::iop2(Operation op) 1336 { 1337 transition(itos, itos); 1338 // r0 <== r1 op r0 1339 __ pop_i(r1); 1340 switch (op) { 1341 case add : __ addw(r0, r1, r0); break; 1342 case sub : __ subw(r0, r1, r0); break; 1343 case mul : __ mulw(r0, r1, r0); break; 1344 case _and : __ andw(r0, r1, r0); break; 1345 case _or : __ orrw(r0, r1, r0); break; 1346 case _xor : __ eorw(r0, r1, r0); break; 1347 case shl : __ lslvw(r0, r1, r0); break; 1348 case shr : __ asrvw(r0, r1, r0); break; 1349 case ushr : __ lsrvw(r0, r1, r0);break; 1350 default : ShouldNotReachHere(); 1351 } 1352 } 1353 1354 void TemplateTable::lop2(Operation op) 1355 { 1356 transition(ltos, ltos); 1357 // r0 <== r1 op r0 1358 __ pop_l(r1); 1359 switch (op) { 1360 case add : __ add(r0, r1, r0); break; 1361 case sub : __ sub(r0, r1, r0); break; 1362 case mul : __ mul(r0, r1, r0); break; 1363 case _and : __ andr(r0, r1, r0); break; 1364 case _or : __ orr(r0, r1, r0); break; 1365 case _xor : __ eor(r0, r1, r0); break; 1366 default : ShouldNotReachHere(); 1367 } 1368 } 1369 1370 void TemplateTable::idiv() 1371 { 1372 transition(itos, itos); 1373 // explicitly check for div0 1374 Label no_div0; 1375 __ cbnzw(r0, no_div0); 1376 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1377 __ br(rscratch1); 1378 __ bind(no_div0); 1379 __ pop_i(r1); 1380 // r0 <== r1 idiv r0 1381 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); 1382 } 1383 1384 void TemplateTable::irem() 1385 { 1386 transition(itos, itos); 1387 // explicitly check for div0 1388 Label no_div0; 1389 __ cbnzw(r0, no_div0); 1390 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1391 __ br(rscratch1); 1392 __ bind(no_div0); 1393 __ pop_i(r1); 1394 // r0 <== r1 irem r0 1395 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); 1396 } 1397 1398 void TemplateTable::lmul() 1399 { 1400 transition(ltos, ltos); 1401 __ pop_l(r1); 1402 __ mul(r0, r0, r1); 1403 } 1404 1405 void TemplateTable::ldiv() 1406 { 1407 transition(ltos, ltos); 1408 // explicitly check for div0 1409 Label no_div0; 1410 __ cbnz(r0, no_div0); 1411 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1412 __ br(rscratch1); 1413 __ bind(no_div0); 1414 __ pop_l(r1); 1415 // r0 <== r1 ldiv r0 1416 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); 1417 } 1418 1419 void TemplateTable::lrem() 1420 { 1421 transition(ltos, ltos); 1422 // explicitly check for div0 1423 Label no_div0; 1424 __ cbnz(r0, no_div0); 1425 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1426 __ br(rscratch1); 1427 __ bind(no_div0); 1428 __ pop_l(r1); 1429 // r0 <== r1 lrem r0 1430 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); 1431 } 1432 1433 void TemplateTable::lshl() 1434 { 1435 transition(itos, ltos); 1436 // shift count is in r0 1437 __ pop_l(r1); 1438 __ lslv(r0, r1, r0); 1439 } 1440 1441 void TemplateTable::lshr() 1442 { 1443 transition(itos, ltos); 1444 // shift count is in r0 1445 __ pop_l(r1); 1446 __ asrv(r0, r1, r0); 1447 } 1448 1449 void TemplateTable::lushr() 1450 { 1451 transition(itos, ltos); 1452 // shift count is in r0 1453 __ pop_l(r1); 1454 __ lsrv(r0, r1, r0); 1455 } 1456 1457 void TemplateTable::fop2(Operation op) 1458 { 1459 transition(ftos, ftos); 1460 switch (op) { 1461 case add: 1462 // n.b. use ldrd because this is a 64 bit slot 1463 __ pop_f(v1); 1464 __ fadds(v0, v1, v0); 1465 break; 1466 case sub: 1467 __ pop_f(v1); 1468 __ fsubs(v0, v1, v0); 1469 break; 1470 case mul: 1471 __ pop_f(v1); 1472 __ fmuls(v0, v1, v0); 1473 break; 1474 case div: 1475 __ pop_f(v1); 1476 __ fdivs(v0, v1, v0); 1477 break; 1478 case rem: 1479 __ fmovs(v1, v0); 1480 __ pop_f(v0); 1481 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1482 break; 1483 default: 1484 ShouldNotReachHere(); 1485 break; 1486 } 1487 } 1488 1489 void TemplateTable::dop2(Operation op) 1490 { 1491 transition(dtos, dtos); 1492 switch (op) { 1493 case add: 1494 // n.b. use ldrd because this is a 64 bit slot 1495 __ pop_d(v1); 1496 __ faddd(v0, v1, v0); 1497 break; 1498 case sub: 1499 __ pop_d(v1); 1500 __ fsubd(v0, v1, v0); 1501 break; 1502 case mul: 1503 __ pop_d(v1); 1504 __ fmuld(v0, v1, v0); 1505 break; 1506 case div: 1507 __ pop_d(v1); 1508 __ fdivd(v0, v1, v0); 1509 break; 1510 case rem: 1511 __ fmovd(v1, v0); 1512 __ pop_d(v0); 1513 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1514 break; 1515 default: 1516 ShouldNotReachHere(); 1517 break; 1518 } 1519 } 1520 1521 void TemplateTable::ineg() 1522 { 1523 transition(itos, itos); 1524 __ negw(r0, r0); 1525 1526 } 1527 1528 void TemplateTable::lneg() 1529 { 1530 transition(ltos, ltos); 1531 __ neg(r0, r0); 1532 } 1533 1534 void TemplateTable::fneg() 1535 { 1536 transition(ftos, ftos); 1537 __ fnegs(v0, v0); 1538 } 1539 1540 void TemplateTable::dneg() 1541 { 1542 transition(dtos, dtos); 1543 __ fnegd(v0, v0); 1544 } 1545 1546 void TemplateTable::iinc() 1547 { 1548 transition(vtos, vtos); 1549 __ load_signed_byte(r1, at_bcp(2)); // get constant 1550 locals_index(r2); 1551 __ ldr(r0, iaddress(r2)); 1552 __ addw(r0, r0, r1); 1553 __ str(r0, iaddress(r2)); 1554 } 1555 1556 void TemplateTable::wide_iinc() 1557 { 1558 transition(vtos, vtos); 1559 // __ mov(r1, zr); 1560 __ ldrw(r1, at_bcp(2)); // get constant and index 1561 __ rev16(r1, r1); 1562 __ ubfx(r2, r1, 0, 16); 1563 __ neg(r2, r2); 1564 __ sbfx(r1, r1, 16, 16); 1565 __ ldr(r0, iaddress(r2)); 1566 __ addw(r0, r0, r1); 1567 __ str(r0, iaddress(r2)); 1568 } 1569 1570 void TemplateTable::convert() 1571 { 1572 // Checking 1573 #ifdef ASSERT 1574 { 1575 TosState tos_in = ilgl; 1576 TosState tos_out = ilgl; 1577 switch (bytecode()) { 1578 case Bytecodes::_i2l: // fall through 1579 case Bytecodes::_i2f: // fall through 1580 case Bytecodes::_i2d: // fall through 1581 case Bytecodes::_i2b: // fall through 1582 case Bytecodes::_i2c: // fall through 1583 case Bytecodes::_i2s: tos_in = itos; break; 1584 case Bytecodes::_l2i: // fall through 1585 case Bytecodes::_l2f: // fall through 1586 case Bytecodes::_l2d: tos_in = ltos; break; 1587 case Bytecodes::_f2i: // fall through 1588 case Bytecodes::_f2l: // fall through 1589 case Bytecodes::_f2d: tos_in = ftos; break; 1590 case Bytecodes::_d2i: // fall through 1591 case Bytecodes::_d2l: // fall through 1592 case Bytecodes::_d2f: tos_in = dtos; break; 1593 default : ShouldNotReachHere(); 1594 } 1595 switch (bytecode()) { 1596 case Bytecodes::_l2i: // fall through 1597 case Bytecodes::_f2i: // fall through 1598 case Bytecodes::_d2i: // fall through 1599 case Bytecodes::_i2b: // fall through 1600 case Bytecodes::_i2c: // fall through 1601 case Bytecodes::_i2s: tos_out = itos; break; 1602 case Bytecodes::_i2l: // fall through 1603 case Bytecodes::_f2l: // fall through 1604 case Bytecodes::_d2l: tos_out = ltos; break; 1605 case Bytecodes::_i2f: // fall through 1606 case Bytecodes::_l2f: // fall through 1607 case Bytecodes::_d2f: tos_out = ftos; break; 1608 case Bytecodes::_i2d: // fall through 1609 case Bytecodes::_l2d: // fall through 1610 case Bytecodes::_f2d: tos_out = dtos; break; 1611 default : ShouldNotReachHere(); 1612 } 1613 transition(tos_in, tos_out); 1614 } 1615 #endif // ASSERT 1616 // static const int64_t is_nan = 0x8000000000000000L; 1617 1618 // Conversion 1619 switch (bytecode()) { 1620 case Bytecodes::_i2l: 1621 __ sxtw(r0, r0); 1622 break; 1623 case Bytecodes::_i2f: 1624 __ scvtfws(v0, r0); 1625 break; 1626 case Bytecodes::_i2d: 1627 __ scvtfwd(v0, r0); 1628 break; 1629 case Bytecodes::_i2b: 1630 __ sxtbw(r0, r0); 1631 break; 1632 case Bytecodes::_i2c: 1633 __ uxthw(r0, r0); 1634 break; 1635 case Bytecodes::_i2s: 1636 __ sxthw(r0, r0); 1637 break; 1638 case Bytecodes::_l2i: 1639 __ uxtw(r0, r0); 1640 break; 1641 case Bytecodes::_l2f: 1642 __ scvtfs(v0, r0); 1643 break; 1644 case Bytecodes::_l2d: 1645 __ scvtfd(v0, r0); 1646 break; 1647 case Bytecodes::_f2i: 1648 { 1649 Label L_Okay; 1650 __ clear_fpsr(); 1651 __ fcvtzsw(r0, v0); 1652 __ get_fpsr(r1); 1653 __ cbzw(r1, L_Okay); 1654 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); 1655 __ bind(L_Okay); 1656 } 1657 break; 1658 case Bytecodes::_f2l: 1659 { 1660 Label L_Okay; 1661 __ clear_fpsr(); 1662 __ fcvtzs(r0, v0); 1663 __ get_fpsr(r1); 1664 __ cbzw(r1, L_Okay); 1665 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1666 __ bind(L_Okay); 1667 } 1668 break; 1669 case Bytecodes::_f2d: 1670 __ fcvts(v0, v0); 1671 break; 1672 case Bytecodes::_d2i: 1673 { 1674 Label L_Okay; 1675 __ clear_fpsr(); 1676 __ fcvtzdw(r0, v0); 1677 __ get_fpsr(r1); 1678 __ cbzw(r1, L_Okay); 1679 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); 1680 __ bind(L_Okay); 1681 } 1682 break; 1683 case Bytecodes::_d2l: 1684 { 1685 Label L_Okay; 1686 __ clear_fpsr(); 1687 __ fcvtzd(r0, v0); 1688 __ get_fpsr(r1); 1689 __ cbzw(r1, L_Okay); 1690 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1691 __ bind(L_Okay); 1692 } 1693 break; 1694 case Bytecodes::_d2f: 1695 __ fcvtd(v0, v0); 1696 break; 1697 default: 1698 ShouldNotReachHere(); 1699 } 1700 } 1701 1702 void TemplateTable::lcmp() 1703 { 1704 transition(ltos, itos); 1705 Label done; 1706 __ pop_l(r1); 1707 __ cmp(r1, r0); 1708 __ mov(r0, (uint64_t)-1L); 1709 __ br(Assembler::LT, done); 1710 // __ mov(r0, 1UL); 1711 // __ csel(r0, r0, zr, Assembler::NE); 1712 // and here is a faster way 1713 __ csinc(r0, zr, zr, Assembler::EQ); 1714 __ bind(done); 1715 } 1716 1717 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1718 { 1719 Label done; 1720 if (is_float) { 1721 // XXX get rid of pop here, use ... reg, mem32 1722 __ pop_f(v1); 1723 __ fcmps(v1, v0); 1724 } else { 1725 // XXX get rid of pop here, use ... reg, mem64 1726 __ pop_d(v1); 1727 __ fcmpd(v1, v0); 1728 } 1729 if (unordered_result < 0) { 1730 // we want -1 for unordered or less than, 0 for equal and 1 for 1731 // greater than. 1732 __ mov(r0, (uint64_t)-1L); 1733 // for FP LT tests less than or unordered 1734 __ br(Assembler::LT, done); 1735 // install 0 for EQ otherwise 1 1736 __ csinc(r0, zr, zr, Assembler::EQ); 1737 } else { 1738 // we want -1 for less than, 0 for equal and 1 for unordered or 1739 // greater than. 1740 __ mov(r0, 1L); 1741 // for FP HI tests greater than or unordered 1742 __ br(Assembler::HI, done); 1743 // install 0 for EQ otherwise ~0 1744 __ csinv(r0, zr, zr, Assembler::EQ); 1745 1746 } 1747 __ bind(done); 1748 } 1749 1750 void TemplateTable::branch(bool is_jsr, bool is_wide) 1751 { 1752 // We might be moving to a safepoint. The thread which calls 1753 // Interpreter::notice_safepoints() will effectively flush its cache 1754 // when it makes a system call, but we need to do something to 1755 // ensure that we see the changed dispatch table. 1756 __ membar(MacroAssembler::LoadLoad); 1757 1758 __ profile_taken_branch(r0, r1); 1759 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1760 InvocationCounter::counter_offset(); 1761 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1762 InvocationCounter::counter_offset(); 1763 1764 // load branch displacement 1765 if (!is_wide) { 1766 __ ldrh(r2, at_bcp(1)); 1767 __ rev16(r2, r2); 1768 // sign extend the 16 bit value in r2 1769 __ sbfm(r2, r2, 0, 15); 1770 } else { 1771 __ ldrw(r2, at_bcp(1)); 1772 __ revw(r2, r2); 1773 // sign extend the 32 bit value in r2 1774 __ sbfm(r2, r2, 0, 31); 1775 } 1776 1777 // Handle all the JSR stuff here, then exit. 1778 // It's much shorter and cleaner than intermingling with the non-JSR 1779 // normal-branch stuff occurring below. 1780 1781 if (is_jsr) { 1782 // Pre-load the next target bytecode into rscratch1 1783 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); 1784 // compute return address as bci 1785 __ ldr(rscratch2, Address(rmethod, Method::const_offset())); 1786 __ add(rscratch2, rscratch2, 1787 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1788 __ sub(r1, rbcp, rscratch2); 1789 __ push_i(r1); 1790 // Adjust the bcp by the 16-bit displacement in r2 1791 __ add(rbcp, rbcp, r2); 1792 __ dispatch_only(vtos, /*generate_poll*/true); 1793 return; 1794 } 1795 1796 // Normal (non-jsr) branch handling 1797 1798 // Adjust the bcp by the displacement in r2 1799 __ add(rbcp, rbcp, r2); 1800 1801 assert(UseLoopCounter || !UseOnStackReplacement, 1802 "on-stack-replacement requires loop counters"); 1803 Label backedge_counter_overflow; 1804 Label dispatch; 1805 if (UseLoopCounter) { 1806 // increment backedge counter for backward branches 1807 // r0: MDO 1808 // w1: MDO bumped taken-count 1809 // r2: target offset 1810 __ cmp(r2, zr); 1811 __ br(Assembler::GT, dispatch); // count only if backward branch 1812 1813 // ECN: FIXME: This code smells 1814 // check if MethodCounters exists 1815 Label has_counters; 1816 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1817 __ cbnz(rscratch1, has_counters); 1818 __ push(r0); 1819 __ push(r1); 1820 __ push(r2); 1821 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1822 InterpreterRuntime::build_method_counters), rmethod); 1823 __ pop(r2); 1824 __ pop(r1); 1825 __ pop(r0); 1826 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1827 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory 1828 __ bind(has_counters); 1829 1830 Label no_mdo; 1831 int increment = InvocationCounter::count_increment; 1832 if (ProfileInterpreter) { 1833 // Are we profiling? 1834 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1835 __ cbz(r1, no_mdo); 1836 // Increment the MDO backedge counter 1837 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + 1838 in_bytes(InvocationCounter::counter_offset())); 1839 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset())); 1840 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1841 r0, rscratch1, false, Assembler::EQ, 1842 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1843 __ b(dispatch); 1844 } 1845 __ bind(no_mdo); 1846 // Increment backedge counter in MethodCounters* 1847 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1848 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset())); 1849 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, 1850 r0, rscratch2, false, Assembler::EQ, 1851 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1852 __ bind(dispatch); 1853 } 1854 1855 // Pre-load the next target bytecode into rscratch1 1856 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); 1857 1858 // continue with the bytecode @ target 1859 // rscratch1: target bytecode 1860 // rbcp: target bcp 1861 __ dispatch_only(vtos, /*generate_poll*/true); 1862 1863 if (UseLoopCounter && UseOnStackReplacement) { 1864 // invocation counter overflow 1865 __ bind(backedge_counter_overflow); 1866 __ neg(r2, r2); 1867 __ add(r2, r2, rbcp); // branch bcp 1868 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1869 __ call_VM(noreg, 1870 CAST_FROM_FN_PTR(address, 1871 InterpreterRuntime::frequency_counter_overflow), 1872 r2); 1873 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1874 1875 // r0: osr nmethod (osr ok) or NULL (osr not possible) 1876 // w1: target bytecode 1877 // r2: scratch 1878 __ cbz(r0, dispatch); // test result -- no osr if null 1879 // nmethod may have been invalidated (VM may block upon call_VM return) 1880 __ ldrb(r2, Address(r0, nmethod::state_offset())); 1881 if (nmethod::in_use != 0) 1882 __ sub(r2, r2, nmethod::in_use); 1883 __ cbnz(r2, dispatch); 1884 1885 // We have the address of an on stack replacement routine in r0 1886 // We need to prepare to execute the OSR method. First we must 1887 // migrate the locals and monitors off of the stack. 1888 1889 __ mov(r19, r0); // save the nmethod 1890 1891 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1892 1893 // r0 is OSR buffer, move it to expected parameter location 1894 __ mov(j_rarg0, r0); 1895 1896 // remove activation 1897 // get sender esp 1898 __ ldr(esp, 1899 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1900 // remove frame anchor 1901 __ leave(); 1902 // Ensure compiled code always sees stack at proper alignment 1903 __ andr(sp, esp, -16); 1904 1905 // and begin the OSR nmethod 1906 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); 1907 __ br(rscratch1); 1908 } 1909 } 1910 1911 1912 void TemplateTable::if_0cmp(Condition cc) 1913 { 1914 transition(itos, vtos); 1915 // assume branch is more often taken than not (loops use backward branches) 1916 Label not_taken; 1917 if (cc == equal) 1918 __ cbnzw(r0, not_taken); 1919 else if (cc == not_equal) 1920 __ cbzw(r0, not_taken); 1921 else { 1922 __ andsw(zr, r0, r0); 1923 __ br(j_not(cc), not_taken); 1924 } 1925 1926 branch(false, false); 1927 __ bind(not_taken); 1928 __ profile_not_taken_branch(r0); 1929 } 1930 1931 void TemplateTable::if_icmp(Condition cc) 1932 { 1933 transition(itos, vtos); 1934 // assume branch is more often taken than not (loops use backward branches) 1935 Label not_taken; 1936 __ pop_i(r1); 1937 __ cmpw(r1, r0, Assembler::LSL); 1938 __ br(j_not(cc), not_taken); 1939 branch(false, false); 1940 __ bind(not_taken); 1941 __ profile_not_taken_branch(r0); 1942 } 1943 1944 void TemplateTable::if_nullcmp(Condition cc) 1945 { 1946 transition(atos, vtos); 1947 // assume branch is more often taken than not (loops use backward branches) 1948 Label not_taken; 1949 if (cc == equal) 1950 __ cbnz(r0, not_taken); 1951 else 1952 __ cbz(r0, not_taken); 1953 branch(false, false); 1954 __ bind(not_taken); 1955 __ profile_not_taken_branch(r0); 1956 } 1957 1958 void TemplateTable::if_acmp(Condition cc) 1959 { 1960 transition(atos, vtos); 1961 // assume branch is more often taken than not (loops use backward branches) 1962 Label not_taken; 1963 __ pop_ptr(r1); 1964 __ cmpoop(r1, r0); 1965 __ br(j_not(cc), not_taken); 1966 branch(false, false); 1967 __ bind(not_taken); 1968 __ profile_not_taken_branch(r0); 1969 } 1970 1971 void TemplateTable::ret() { 1972 transition(vtos, vtos); 1973 // We might be moving to a safepoint. The thread which calls 1974 // Interpreter::notice_safepoints() will effectively flush its cache 1975 // when it makes a system call, but we need to do something to 1976 // ensure that we see the changed dispatch table. 1977 __ membar(MacroAssembler::LoadLoad); 1978 1979 locals_index(r1); 1980 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1981 __ profile_ret(r1, r2); 1982 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1983 __ lea(rbcp, Address(rbcp, r1)); 1984 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1985 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1986 } 1987 1988 void TemplateTable::wide_ret() { 1989 transition(vtos, vtos); 1990 locals_index_wide(r1); 1991 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1992 __ profile_ret(r1, r2); 1993 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1994 __ lea(rbcp, Address(rbcp, r1)); 1995 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1996 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1997 } 1998 1999 2000 void TemplateTable::tableswitch() { 2001 Label default_case, continue_execution; 2002 transition(itos, vtos); 2003 // align rbcp 2004 __ lea(r1, at_bcp(BytesPerInt)); 2005 __ andr(r1, r1, -BytesPerInt); 2006 // load lo & hi 2007 __ ldrw(r2, Address(r1, BytesPerInt)); 2008 __ ldrw(r3, Address(r1, 2 * BytesPerInt)); 2009 __ rev32(r2, r2); 2010 __ rev32(r3, r3); 2011 // check against lo & hi 2012 __ cmpw(r0, r2); 2013 __ br(Assembler::LT, default_case); 2014 __ cmpw(r0, r3); 2015 __ br(Assembler::GT, default_case); 2016 // lookup dispatch offset 2017 __ subw(r0, r0, r2); 2018 __ lea(r3, Address(r1, r0, Address::uxtw(2))); 2019 __ ldrw(r3, Address(r3, 3 * BytesPerInt)); 2020 __ profile_switch_case(r0, r1, r2); 2021 // continue execution 2022 __ bind(continue_execution); 2023 __ rev32(r3, r3); 2024 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); 2025 __ add(rbcp, rbcp, r3, ext::sxtw); 2026 __ dispatch_only(vtos, /*generate_poll*/true); 2027 // handle default 2028 __ bind(default_case); 2029 __ profile_switch_default(r0); 2030 __ ldrw(r3, Address(r1, 0)); 2031 __ b(continue_execution); 2032 } 2033 2034 void TemplateTable::lookupswitch() { 2035 transition(itos, itos); 2036 __ stop("lookupswitch bytecode should have been rewritten"); 2037 } 2038 2039 void TemplateTable::fast_linearswitch() { 2040 transition(itos, vtos); 2041 Label loop_entry, loop, found, continue_execution; 2042 // bswap r0 so we can avoid bswapping the table entries 2043 __ rev32(r0, r0); 2044 // align rbcp 2045 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2046 // this instruction (change offsets 2047 // below) 2048 __ andr(r19, r19, -BytesPerInt); 2049 // set counter 2050 __ ldrw(r1, Address(r19, BytesPerInt)); 2051 __ rev32(r1, r1); 2052 __ b(loop_entry); 2053 // table search 2054 __ bind(loop); 2055 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2056 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); 2057 __ cmpw(r0, rscratch1); 2058 __ br(Assembler::EQ, found); 2059 __ bind(loop_entry); 2060 __ subs(r1, r1, 1); 2061 __ br(Assembler::PL, loop); 2062 // default case 2063 __ profile_switch_default(r0); 2064 __ ldrw(r3, Address(r19, 0)); 2065 __ b(continue_execution); 2066 // entry found -> get offset 2067 __ bind(found); 2068 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2069 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); 2070 __ profile_switch_case(r1, r0, r19); 2071 // continue execution 2072 __ bind(continue_execution); 2073 __ rev32(r3, r3); 2074 __ add(rbcp, rbcp, r3, ext::sxtw); 2075 __ ldrb(rscratch1, Address(rbcp, 0)); 2076 __ dispatch_only(vtos, /*generate_poll*/true); 2077 } 2078 2079 void TemplateTable::fast_binaryswitch() { 2080 transition(itos, vtos); 2081 // Implementation using the following core algorithm: 2082 // 2083 // int binary_search(int key, LookupswitchPair* array, int n) { 2084 // // Binary search according to "Methodik des Programmierens" by 2085 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2086 // int i = 0; 2087 // int j = n; 2088 // while (i+1 < j) { 2089 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2090 // // with Q: for all i: 0 <= i < n: key < a[i] 2091 // // where a stands for the array and assuming that the (inexisting) 2092 // // element a[n] is infinitely big. 2093 // int h = (i + j) >> 1; 2094 // // i < h < j 2095 // if (key < array[h].fast_match()) { 2096 // j = h; 2097 // } else { 2098 // i = h; 2099 // } 2100 // } 2101 // // R: a[i] <= key < a[i+1] or Q 2102 // // (i.e., if key is within array, i is the correct index) 2103 // return i; 2104 // } 2105 2106 // Register allocation 2107 const Register key = r0; // already set (tosca) 2108 const Register array = r1; 2109 const Register i = r2; 2110 const Register j = r3; 2111 const Register h = rscratch1; 2112 const Register temp = rscratch2; 2113 2114 // Find array start 2115 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2116 // get rid of this 2117 // instruction (change 2118 // offsets below) 2119 __ andr(array, array, -BytesPerInt); 2120 2121 // Initialize i & j 2122 __ mov(i, 0); // i = 0; 2123 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); 2124 2125 // Convert j into native byteordering 2126 __ rev32(j, j); 2127 2128 // And start 2129 Label entry; 2130 __ b(entry); 2131 2132 // binary search loop 2133 { 2134 Label loop; 2135 __ bind(loop); 2136 // int h = (i + j) >> 1; 2137 __ addw(h, i, j); // h = i + j; 2138 __ lsrw(h, h, 1); // h = (i + j) >> 1; 2139 // if (key < array[h].fast_match()) { 2140 // j = h; 2141 // } else { 2142 // i = h; 2143 // } 2144 // Convert array[h].match to native byte-ordering before compare 2145 __ ldr(temp, Address(array, h, Address::lsl(3))); 2146 __ rev32(temp, temp); 2147 __ cmpw(key, temp); 2148 // j = h if (key < array[h].fast_match()) 2149 __ csel(j, h, j, Assembler::LT); 2150 // i = h if (key >= array[h].fast_match()) 2151 __ csel(i, h, i, Assembler::GE); 2152 // while (i+1 < j) 2153 __ bind(entry); 2154 __ addw(h, i, 1); // i+1 2155 __ cmpw(h, j); // i+1 < j 2156 __ br(Assembler::LT, loop); 2157 } 2158 2159 // end of binary search, result index is i (must check again!) 2160 Label default_case; 2161 // Convert array[i].match to native byte-ordering before compare 2162 __ ldr(temp, Address(array, i, Address::lsl(3))); 2163 __ rev32(temp, temp); 2164 __ cmpw(key, temp); 2165 __ br(Assembler::NE, default_case); 2166 2167 // entry found -> j = offset 2168 __ add(j, array, i, ext::uxtx, 3); 2169 __ ldrw(j, Address(j, BytesPerInt)); 2170 __ profile_switch_case(i, key, array); 2171 __ rev32(j, j); 2172 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2173 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2174 __ dispatch_only(vtos, /*generate_poll*/true); 2175 2176 // default case -> j = default offset 2177 __ bind(default_case); 2178 __ profile_switch_default(i); 2179 __ ldrw(j, Address(array, -2 * BytesPerInt)); 2180 __ rev32(j, j); 2181 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2182 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2183 __ dispatch_only(vtos, /*generate_poll*/true); 2184 } 2185 2186 2187 void TemplateTable::_return(TosState state) 2188 { 2189 transition(state, state); 2190 assert(_desc->calls_vm(), 2191 "inconsistent calls_vm information"); // call in remove_activation 2192 2193 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2194 assert(state == vtos, "only valid state"); 2195 2196 __ ldr(c_rarg1, aaddress(0)); 2197 __ load_klass(r3, c_rarg1); 2198 __ ldrw(r3, Address(r3, Klass::access_flags_offset())); 2199 Label skip_register_finalizer; 2200 __ tbz(r3, exact_log2(JVM_ACC_HAS_FINALIZER), skip_register_finalizer); 2201 2202 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2203 2204 __ bind(skip_register_finalizer); 2205 } 2206 2207 // Issue a StoreStore barrier after all stores but before return 2208 // from any constructor for any class with a final field. We don't 2209 // know if this is a finalizer, so we always do so. 2210 if (_desc->bytecode() == Bytecodes::_return) 2211 __ membar(MacroAssembler::StoreStore); 2212 2213 // Narrow result if state is itos but result type is smaller. 2214 // Need to narrow in the return bytecode rather than in generate_return_entry 2215 // since compiled code callers expect the result to already be narrowed. 2216 if (state == itos) { 2217 __ narrow(r0); 2218 } 2219 2220 __ remove_activation(state); 2221 __ ret(lr); 2222 } 2223 2224 // ---------------------------------------------------------------------------- 2225 // Volatile variables demand their effects be made known to all CPU's 2226 // in order. Store buffers on most chips allow reads & writes to 2227 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2228 // without some kind of memory barrier (i.e., it's not sufficient that 2229 // the interpreter does not reorder volatile references, the hardware 2230 // also must not reorder them). 2231 // 2232 // According to the new Java Memory Model (JMM): 2233 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2234 // writes act as acquire & release, so: 2235 // (2) A read cannot let unrelated NON-volatile memory refs that 2236 // happen after the read float up to before the read. It's OK for 2237 // non-volatile memory refs that happen before the volatile read to 2238 // float down below it. 2239 // (3) Similar a volatile write cannot let unrelated NON-volatile 2240 // memory refs that happen BEFORE the write float down to after the 2241 // write. It's OK for non-volatile memory refs that happen after the 2242 // volatile write to float up before it. 2243 // 2244 // We only put in barriers around volatile refs (they are expensive), 2245 // not _between_ memory refs (that would require us to track the 2246 // flavor of the previous memory refs). Requirements (2) and (3) 2247 // require some barriers before volatile stores and after volatile 2248 // loads. These nearly cover requirement (1) but miss the 2249 // volatile-store-volatile-load case. This final case is placed after 2250 // volatile-stores although it could just as well go before 2251 // volatile-loads. 2252 2253 void TemplateTable::resolve_cache_and_index(int byte_no, 2254 Register Rcache, 2255 Register index, 2256 size_t index_size) { 2257 const Register temp = r19; 2258 assert_different_registers(Rcache, index, temp); 2259 2260 Label resolved, clinit_barrier_slow; 2261 2262 Bytecodes::Code code = bytecode(); 2263 switch (code) { 2264 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2265 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2266 default: break; 2267 } 2268 2269 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2270 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2271 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2272 __ br(Assembler::EQ, resolved); 2273 2274 // resolve first time through 2275 // Class initialization barrier slow path lands here as well. 2276 __ bind(clinit_barrier_slow); 2277 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2278 __ mov(temp, (int) code); 2279 __ call_VM(noreg, entry, temp); 2280 2281 // Update registers with resolved info 2282 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2283 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2284 // so all clients ofthis method must be modified accordingly 2285 __ bind(resolved); 2286 2287 // Class initialization barrier for static methods 2288 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2289 __ load_resolved_method_at_index(byte_no, temp, Rcache); 2290 __ load_method_holder(temp, temp); 2291 __ clinit_barrier(temp, rscratch1, NULL, &clinit_barrier_slow); 2292 } 2293 } 2294 2295 // The Rcache and index registers must be set before call 2296 // n.b unlike x86 cache already includes the index offset 2297 void TemplateTable::load_field_cp_cache_entry(Register obj, 2298 Register cache, 2299 Register index, 2300 Register off, 2301 Register flags, 2302 bool is_static = false) { 2303 assert_different_registers(cache, index, flags, off); 2304 2305 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2306 // Field offset 2307 __ ldr(off, Address(cache, in_bytes(cp_base_offset + 2308 ConstantPoolCacheEntry::f2_offset()))); 2309 // Flags 2310 __ ldrw(flags, Address(cache, in_bytes(cp_base_offset + 2311 ConstantPoolCacheEntry::flags_offset()))); 2312 2313 // klass overwrite register 2314 if (is_static) { 2315 __ ldr(obj, Address(cache, in_bytes(cp_base_offset + 2316 ConstantPoolCacheEntry::f1_offset()))); 2317 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2318 __ ldr(obj, Address(obj, mirror_offset)); 2319 __ resolve_oop_handle(obj, r5, rscratch2); 2320 } 2321 } 2322 2323 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2324 Register method, 2325 Register itable_index, 2326 Register flags, 2327 bool is_invokevirtual, 2328 bool is_invokevfinal, /*unused*/ 2329 bool is_invokedynamic) { 2330 // setup registers 2331 const Register cache = rscratch2; 2332 const Register index = r4; 2333 assert_different_registers(method, flags); 2334 assert_different_registers(method, cache, index); 2335 assert_different_registers(itable_index, flags); 2336 assert_different_registers(itable_index, cache, index); 2337 // determine constant pool cache field offsets 2338 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2339 const int method_offset = in_bytes( 2340 ConstantPoolCache::base_offset() + 2341 (is_invokevirtual 2342 ? ConstantPoolCacheEntry::f2_offset() 2343 : ConstantPoolCacheEntry::f1_offset())); 2344 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2345 ConstantPoolCacheEntry::flags_offset()); 2346 // access constant pool cache fields 2347 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2348 ConstantPoolCacheEntry::f2_offset()); 2349 2350 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2351 resolve_cache_and_index(byte_no, cache, index, index_size); 2352 __ ldr(method, Address(cache, method_offset)); 2353 2354 if (itable_index != noreg) { 2355 __ ldr(itable_index, Address(cache, index_offset)); 2356 } 2357 __ ldrw(flags, Address(cache, flags_offset)); 2358 } 2359 2360 2361 // The registers cache and index expected to be set before call. 2362 // Correct values of the cache and index registers are preserved. 2363 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2364 bool is_static, bool has_tos) { 2365 // do the JVMTI work here to avoid disturbing the register state below 2366 // We use c_rarg registers here because we want to use the register used in 2367 // the call to the VM 2368 if (JvmtiExport::can_post_field_access()) { 2369 // Check to see if a field access watch has been set before we 2370 // take the time to call into the VM. 2371 Label L1; 2372 assert_different_registers(cache, index, r0); 2373 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2374 __ ldrw(r0, Address(rscratch1)); 2375 __ cbzw(r0, L1); 2376 2377 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); 2378 __ lea(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset()))); 2379 2380 if (is_static) { 2381 __ mov(c_rarg1, zr); // NULL object reference 2382 } else { 2383 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it 2384 __ verify_oop(c_rarg1); 2385 } 2386 // c_rarg1: object pointer or NULL 2387 // c_rarg2: cache entry pointer 2388 // c_rarg3: jvalue object on the stack 2389 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2390 InterpreterRuntime::post_field_access), 2391 c_rarg1, c_rarg2, c_rarg3); 2392 __ get_cache_and_index_at_bcp(cache, index, 1); 2393 __ bind(L1); 2394 } 2395 } 2396 2397 void TemplateTable::pop_and_check_object(Register r) 2398 { 2399 __ pop_ptr(r); 2400 __ null_check(r); // for field access must check obj. 2401 __ verify_oop(r); 2402 } 2403 2404 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) 2405 { 2406 const Register cache = r2; 2407 const Register index = r3; 2408 const Register obj = r4; 2409 const Register off = r19; 2410 const Register flags = r0; 2411 const Register raw_flags = r6; 2412 const Register bc = r4; // uses same reg as obj, so don't mix them 2413 2414 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2415 jvmti_post_field_access(cache, index, is_static, false); 2416 load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static); 2417 2418 if (!is_static) { 2419 // obj is on the stack 2420 pop_and_check_object(obj); 2421 } 2422 2423 // 8179954: We need to make sure that the code generated for 2424 // volatile accesses forms a sequentially-consistent set of 2425 // operations when combined with STLR and LDAR. Without a leading 2426 // membar it's possible for a simple Dekker test to fail if loads 2427 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 2428 // the stores in one method and we interpret the loads in another. 2429 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){ 2430 Label notVolatile; 2431 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2432 __ membar(MacroAssembler::AnyAny); 2433 __ bind(notVolatile); 2434 } 2435 2436 const Address field(obj, off); 2437 2438 Label Done, notByte, notBool, notInt, notShort, notChar, 2439 notLong, notFloat, notObj, notDouble; 2440 2441 // x86 uses a shift and mask or wings it with a shift plus assert 2442 // the mask is not needed. aarch64 just uses bitfield extract 2443 __ ubfxw(flags, raw_flags, ConstantPoolCacheEntry::tos_state_shift, 2444 ConstantPoolCacheEntry::tos_state_bits); 2445 2446 assert(btos == 0, "change code, btos != 0"); 2447 __ cbnz(flags, notByte); 2448 2449 // Don't rewrite getstatic, only getfield 2450 if (is_static) rc = may_not_rewrite; 2451 2452 // btos 2453 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 2454 __ push(btos); 2455 // Rewrite bytecode to be faster 2456 if (rc == may_rewrite) { 2457 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2458 } 2459 __ b(Done); 2460 2461 __ bind(notByte); 2462 __ cmp(flags, (u1)ztos); 2463 __ br(Assembler::NE, notBool); 2464 2465 // ztos (same code as btos) 2466 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg); 2467 __ push(ztos); 2468 // Rewrite bytecode to be faster 2469 if (rc == may_rewrite) { 2470 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2471 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2472 } 2473 __ b(Done); 2474 2475 __ bind(notBool); 2476 __ cmp(flags, (u1)atos); 2477 __ br(Assembler::NE, notObj); 2478 // atos 2479 do_oop_load(_masm, field, r0, IN_HEAP); 2480 __ push(atos); 2481 if (rc == may_rewrite) { 2482 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2483 } 2484 __ b(Done); 2485 2486 __ bind(notObj); 2487 __ cmp(flags, (u1)itos); 2488 __ br(Assembler::NE, notInt); 2489 // itos 2490 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 2491 __ push(itos); 2492 // Rewrite bytecode to be faster 2493 if (rc == may_rewrite) { 2494 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); 2495 } 2496 __ b(Done); 2497 2498 __ bind(notInt); 2499 __ cmp(flags, (u1)ctos); 2500 __ br(Assembler::NE, notChar); 2501 // ctos 2502 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 2503 __ push(ctos); 2504 // Rewrite bytecode to be faster 2505 if (rc == may_rewrite) { 2506 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); 2507 } 2508 __ b(Done); 2509 2510 __ bind(notChar); 2511 __ cmp(flags, (u1)stos); 2512 __ br(Assembler::NE, notShort); 2513 // stos 2514 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 2515 __ push(stos); 2516 // Rewrite bytecode to be faster 2517 if (rc == may_rewrite) { 2518 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); 2519 } 2520 __ b(Done); 2521 2522 __ bind(notShort); 2523 __ cmp(flags, (u1)ltos); 2524 __ br(Assembler::NE, notLong); 2525 // ltos 2526 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 2527 __ push(ltos); 2528 // Rewrite bytecode to be faster 2529 if (rc == may_rewrite) { 2530 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); 2531 } 2532 __ b(Done); 2533 2534 __ bind(notLong); 2535 __ cmp(flags, (u1)ftos); 2536 __ br(Assembler::NE, notFloat); 2537 // ftos 2538 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2539 __ push(ftos); 2540 // Rewrite bytecode to be faster 2541 if (rc == may_rewrite) { 2542 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); 2543 } 2544 __ b(Done); 2545 2546 __ bind(notFloat); 2547 #ifdef ASSERT 2548 __ cmp(flags, (u1)dtos); 2549 __ br(Assembler::NE, notDouble); 2550 #endif 2551 // dtos 2552 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2553 __ push(dtos); 2554 // Rewrite bytecode to be faster 2555 if (rc == may_rewrite) { 2556 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); 2557 } 2558 #ifdef ASSERT 2559 __ b(Done); 2560 2561 __ bind(notDouble); 2562 __ stop("Bad state"); 2563 #endif 2564 2565 __ bind(Done); 2566 2567 Label notVolatile; 2568 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2569 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2570 __ bind(notVolatile); 2571 } 2572 2573 2574 void TemplateTable::getfield(int byte_no) 2575 { 2576 getfield_or_static(byte_no, false); 2577 } 2578 2579 void TemplateTable::nofast_getfield(int byte_no) { 2580 getfield_or_static(byte_no, false, may_not_rewrite); 2581 } 2582 2583 void TemplateTable::getstatic(int byte_no) 2584 { 2585 getfield_or_static(byte_no, true); 2586 } 2587 2588 // The registers cache and index expected to be set before call. 2589 // The function may destroy various registers, just not the cache and index registers. 2590 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2591 transition(vtos, vtos); 2592 2593 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2594 2595 if (JvmtiExport::can_post_field_modification()) { 2596 // Check to see if a field modification watch has been set before 2597 // we take the time to call into the VM. 2598 Label L1; 2599 assert_different_registers(cache, index, r0); 2600 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2601 __ ldrw(r0, Address(rscratch1)); 2602 __ cbz(r0, L1); 2603 2604 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); 2605 2606 if (is_static) { 2607 // Life is simple. Null out the object pointer. 2608 __ mov(c_rarg1, zr); 2609 } else { 2610 // Life is harder. The stack holds the value on top, followed by 2611 // the object. We don't know the size of the value, though; it 2612 // could be one or two words depending on its type. As a result, 2613 // we must find the type to determine where the object is. 2614 __ ldrw(c_rarg3, Address(c_rarg2, 2615 in_bytes(cp_base_offset + 2616 ConstantPoolCacheEntry::flags_offset()))); 2617 __ lsr(c_rarg3, c_rarg3, 2618 ConstantPoolCacheEntry::tos_state_shift); 2619 ConstantPoolCacheEntry::verify_tos_state_shift(); 2620 Label nope2, done, ok; 2621 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2622 __ cmpw(c_rarg3, ltos); 2623 __ br(Assembler::EQ, ok); 2624 __ cmpw(c_rarg3, dtos); 2625 __ br(Assembler::NE, nope2); 2626 __ bind(ok); 2627 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2628 __ bind(nope2); 2629 } 2630 // cache entry pointer 2631 __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset)); 2632 // object (tos) 2633 __ mov(c_rarg3, esp); 2634 // c_rarg1: object pointer set up above (NULL if static) 2635 // c_rarg2: cache entry pointer 2636 // c_rarg3: jvalue object on the stack 2637 __ call_VM(noreg, 2638 CAST_FROM_FN_PTR(address, 2639 InterpreterRuntime::post_field_modification), 2640 c_rarg1, c_rarg2, c_rarg3); 2641 __ get_cache_and_index_at_bcp(cache, index, 1); 2642 __ bind(L1); 2643 } 2644 } 2645 2646 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2647 transition(vtos, vtos); 2648 2649 const Register cache = r2; 2650 const Register index = r3; 2651 const Register obj = r2; 2652 const Register off = r19; 2653 const Register flags = r0; 2654 const Register bc = r4; 2655 2656 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2657 jvmti_post_field_mod(cache, index, is_static); 2658 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2659 2660 Label Done; 2661 __ mov(r5, flags); 2662 2663 { 2664 Label notVolatile; 2665 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2666 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2667 __ bind(notVolatile); 2668 } 2669 2670 // field address 2671 const Address field(obj, off); 2672 2673 Label notByte, notBool, notInt, notShort, notChar, 2674 notLong, notFloat, notObj, notDouble; 2675 2676 // x86 uses a shift and mask or wings it with a shift plus assert 2677 // the mask is not needed. aarch64 just uses bitfield extract 2678 __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); 2679 2680 assert(btos == 0, "change code, btos != 0"); 2681 __ cbnz(flags, notByte); 2682 2683 // Don't rewrite putstatic, only putfield 2684 if (is_static) rc = may_not_rewrite; 2685 2686 // btos 2687 { 2688 __ pop(btos); 2689 if (!is_static) pop_and_check_object(obj); 2690 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 2691 if (rc == may_rewrite) { 2692 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); 2693 } 2694 __ b(Done); 2695 } 2696 2697 __ bind(notByte); 2698 __ cmp(flags, (u1)ztos); 2699 __ br(Assembler::NE, notBool); 2700 2701 // ztos 2702 { 2703 __ pop(ztos); 2704 if (!is_static) pop_and_check_object(obj); 2705 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 2706 if (rc == may_rewrite) { 2707 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); 2708 } 2709 __ b(Done); 2710 } 2711 2712 __ bind(notBool); 2713 __ cmp(flags, (u1)atos); 2714 __ br(Assembler::NE, notObj); 2715 2716 // atos 2717 { 2718 __ pop(atos); 2719 if (!is_static) pop_and_check_object(obj); 2720 // Store into the field 2721 do_oop_store(_masm, field, r0, IN_HEAP); 2722 if (rc == may_rewrite) { 2723 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); 2724 } 2725 __ b(Done); 2726 } 2727 2728 __ bind(notObj); 2729 __ cmp(flags, (u1)itos); 2730 __ br(Assembler::NE, notInt); 2731 2732 // itos 2733 { 2734 __ pop(itos); 2735 if (!is_static) pop_and_check_object(obj); 2736 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 2737 if (rc == may_rewrite) { 2738 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); 2739 } 2740 __ b(Done); 2741 } 2742 2743 __ bind(notInt); 2744 __ cmp(flags, (u1)ctos); 2745 __ br(Assembler::NE, notChar); 2746 2747 // ctos 2748 { 2749 __ pop(ctos); 2750 if (!is_static) pop_and_check_object(obj); 2751 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 2752 if (rc == may_rewrite) { 2753 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); 2754 } 2755 __ b(Done); 2756 } 2757 2758 __ bind(notChar); 2759 __ cmp(flags, (u1)stos); 2760 __ br(Assembler::NE, notShort); 2761 2762 // stos 2763 { 2764 __ pop(stos); 2765 if (!is_static) pop_and_check_object(obj); 2766 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 2767 if (rc == may_rewrite) { 2768 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); 2769 } 2770 __ b(Done); 2771 } 2772 2773 __ bind(notShort); 2774 __ cmp(flags, (u1)ltos); 2775 __ br(Assembler::NE, notLong); 2776 2777 // ltos 2778 { 2779 __ pop(ltos); 2780 if (!is_static) pop_and_check_object(obj); 2781 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 2782 if (rc == may_rewrite) { 2783 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); 2784 } 2785 __ b(Done); 2786 } 2787 2788 __ bind(notLong); 2789 __ cmp(flags, (u1)ftos); 2790 __ br(Assembler::NE, notFloat); 2791 2792 // ftos 2793 { 2794 __ pop(ftos); 2795 if (!is_static) pop_and_check_object(obj); 2796 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2797 if (rc == may_rewrite) { 2798 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); 2799 } 2800 __ b(Done); 2801 } 2802 2803 __ bind(notFloat); 2804 #ifdef ASSERT 2805 __ cmp(flags, (u1)dtos); 2806 __ br(Assembler::NE, notDouble); 2807 #endif 2808 2809 // dtos 2810 { 2811 __ pop(dtos); 2812 if (!is_static) pop_and_check_object(obj); 2813 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2814 if (rc == may_rewrite) { 2815 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); 2816 } 2817 } 2818 2819 #ifdef ASSERT 2820 __ b(Done); 2821 2822 __ bind(notDouble); 2823 __ stop("Bad state"); 2824 #endif 2825 2826 __ bind(Done); 2827 2828 { 2829 Label notVolatile; 2830 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2831 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2832 __ bind(notVolatile); 2833 } 2834 } 2835 2836 void TemplateTable::putfield(int byte_no) 2837 { 2838 putfield_or_static(byte_no, false); 2839 } 2840 2841 void TemplateTable::nofast_putfield(int byte_no) { 2842 putfield_or_static(byte_no, false, may_not_rewrite); 2843 } 2844 2845 void TemplateTable::putstatic(int byte_no) { 2846 putfield_or_static(byte_no, true); 2847 } 2848 2849 void TemplateTable::jvmti_post_fast_field_mod() 2850 { 2851 if (JvmtiExport::can_post_field_modification()) { 2852 // Check to see if a field modification watch has been set before 2853 // we take the time to call into the VM. 2854 Label L2; 2855 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2856 __ ldrw(c_rarg3, Address(rscratch1)); 2857 __ cbzw(c_rarg3, L2); 2858 __ pop_ptr(r19); // copy the object pointer from tos 2859 __ verify_oop(r19); 2860 __ push_ptr(r19); // put the object pointer back on tos 2861 // Save tos values before call_VM() clobbers them. Since we have 2862 // to do it for every data type, we use the saved values as the 2863 // jvalue object. 2864 switch (bytecode()) { // load values into the jvalue object 2865 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; 2866 case Bytecodes::_fast_bputfield: // fall through 2867 case Bytecodes::_fast_zputfield: // fall through 2868 case Bytecodes::_fast_sputfield: // fall through 2869 case Bytecodes::_fast_cputfield: // fall through 2870 case Bytecodes::_fast_iputfield: __ push_i(r0); break; 2871 case Bytecodes::_fast_dputfield: __ push_d(); break; 2872 case Bytecodes::_fast_fputfield: __ push_f(); break; 2873 case Bytecodes::_fast_lputfield: __ push_l(r0); break; 2874 2875 default: 2876 ShouldNotReachHere(); 2877 } 2878 __ mov(c_rarg3, esp); // points to jvalue on the stack 2879 // access constant pool cache entry 2880 __ get_cache_entry_pointer_at_bcp(c_rarg2, r0, 1); 2881 __ verify_oop(r19); 2882 // r19: object pointer copied above 2883 // c_rarg2: cache entry pointer 2884 // c_rarg3: jvalue object on the stack 2885 __ call_VM(noreg, 2886 CAST_FROM_FN_PTR(address, 2887 InterpreterRuntime::post_field_modification), 2888 r19, c_rarg2, c_rarg3); 2889 2890 switch (bytecode()) { // restore tos values 2891 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; 2892 case Bytecodes::_fast_bputfield: // fall through 2893 case Bytecodes::_fast_zputfield: // fall through 2894 case Bytecodes::_fast_sputfield: // fall through 2895 case Bytecodes::_fast_cputfield: // fall through 2896 case Bytecodes::_fast_iputfield: __ pop_i(r0); break; 2897 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2898 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2899 case Bytecodes::_fast_lputfield: __ pop_l(r0); break; 2900 default: break; 2901 } 2902 __ bind(L2); 2903 } 2904 } 2905 2906 void TemplateTable::fast_storefield(TosState state) 2907 { 2908 transition(state, vtos); 2909 2910 ByteSize base = ConstantPoolCache::base_offset(); 2911 2912 jvmti_post_fast_field_mod(); 2913 2914 // access constant pool cache 2915 __ get_cache_and_index_at_bcp(r2, r1, 1); 2916 2917 // Must prevent reordering of the following cp cache loads with bytecode load 2918 __ membar(MacroAssembler::LoadLoad); 2919 2920 // test for volatile with r3 2921 __ ldrw(r3, Address(r2, in_bytes(base + 2922 ConstantPoolCacheEntry::flags_offset()))); 2923 2924 // replace index with field offset from cache entry 2925 __ ldr(r1, Address(r2, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2926 2927 { 2928 Label notVolatile; 2929 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2930 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2931 __ bind(notVolatile); 2932 } 2933 2934 Label notVolatile; 2935 2936 // Get object from stack 2937 pop_and_check_object(r2); 2938 2939 // field address 2940 const Address field(r2, r1); 2941 2942 // access field 2943 switch (bytecode()) { 2944 case Bytecodes::_fast_aputfield: 2945 do_oop_store(_masm, field, r0, IN_HEAP); 2946 break; 2947 case Bytecodes::_fast_lputfield: 2948 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 2949 break; 2950 case Bytecodes::_fast_iputfield: 2951 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 2952 break; 2953 case Bytecodes::_fast_zputfield: 2954 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 2955 break; 2956 case Bytecodes::_fast_bputfield: 2957 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 2958 break; 2959 case Bytecodes::_fast_sputfield: 2960 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 2961 break; 2962 case Bytecodes::_fast_cputfield: 2963 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 2964 break; 2965 case Bytecodes::_fast_fputfield: 2966 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2967 break; 2968 case Bytecodes::_fast_dputfield: 2969 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2970 break; 2971 default: 2972 ShouldNotReachHere(); 2973 } 2974 2975 { 2976 Label notVolatile; 2977 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2978 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2979 __ bind(notVolatile); 2980 } 2981 } 2982 2983 2984 void TemplateTable::fast_accessfield(TosState state) 2985 { 2986 transition(atos, state); 2987 // Do the JVMTI work here to avoid disturbing the register state below 2988 if (JvmtiExport::can_post_field_access()) { 2989 // Check to see if a field access watch has been set before we 2990 // take the time to call into the VM. 2991 Label L1; 2992 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2993 __ ldrw(r2, Address(rscratch1)); 2994 __ cbzw(r2, L1); 2995 // access constant pool cache entry 2996 __ get_cache_entry_pointer_at_bcp(c_rarg2, rscratch2, 1); 2997 __ verify_oop(r0); 2998 __ push_ptr(r0); // save object pointer before call_VM() clobbers it 2999 __ mov(c_rarg1, r0); 3000 // c_rarg1: object pointer copied above 3001 // c_rarg2: cache entry pointer 3002 __ call_VM(noreg, 3003 CAST_FROM_FN_PTR(address, 3004 InterpreterRuntime::post_field_access), 3005 c_rarg1, c_rarg2); 3006 __ pop_ptr(r0); // restore object pointer 3007 __ bind(L1); 3008 } 3009 3010 // access constant pool cache 3011 __ get_cache_and_index_at_bcp(r2, r1, 1); 3012 3013 // Must prevent reordering of the following cp cache loads with bytecode load 3014 __ membar(MacroAssembler::LoadLoad); 3015 3016 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3017 ConstantPoolCacheEntry::f2_offset()))); 3018 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3019 ConstantPoolCacheEntry::flags_offset()))); 3020 3021 // r0: object 3022 __ verify_oop(r0); 3023 __ null_check(r0); 3024 const Address field(r0, r1); 3025 3026 // 8179954: We need to make sure that the code generated for 3027 // volatile accesses forms a sequentially-consistent set of 3028 // operations when combined with STLR and LDAR. Without a leading 3029 // membar it's possible for a simple Dekker test to fail if loads 3030 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3031 // the stores in one method and we interpret the loads in another. 3032 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3033 Label notVolatile; 3034 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3035 __ membar(MacroAssembler::AnyAny); 3036 __ bind(notVolatile); 3037 } 3038 3039 // access field 3040 switch (bytecode()) { 3041 case Bytecodes::_fast_agetfield: 3042 do_oop_load(_masm, field, r0, IN_HEAP); 3043 __ verify_oop(r0); 3044 break; 3045 case Bytecodes::_fast_lgetfield: 3046 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 3047 break; 3048 case Bytecodes::_fast_igetfield: 3049 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 3050 break; 3051 case Bytecodes::_fast_bgetfield: 3052 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 3053 break; 3054 case Bytecodes::_fast_sgetfield: 3055 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 3056 break; 3057 case Bytecodes::_fast_cgetfield: 3058 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 3059 break; 3060 case Bytecodes::_fast_fgetfield: 3061 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3062 break; 3063 case Bytecodes::_fast_dgetfield: 3064 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3065 break; 3066 default: 3067 ShouldNotReachHere(); 3068 } 3069 { 3070 Label notVolatile; 3071 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3072 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3073 __ bind(notVolatile); 3074 } 3075 } 3076 3077 void TemplateTable::fast_xaccess(TosState state) 3078 { 3079 transition(vtos, state); 3080 3081 // get receiver 3082 __ ldr(r0, aaddress(0)); 3083 // access constant pool cache 3084 __ get_cache_and_index_at_bcp(r2, r3, 2); 3085 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3086 ConstantPoolCacheEntry::f2_offset()))); 3087 3088 // 8179954: We need to make sure that the code generated for 3089 // volatile accesses forms a sequentially-consistent set of 3090 // operations when combined with STLR and LDAR. Without a leading 3091 // membar it's possible for a simple Dekker test to fail if loads 3092 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3093 // the stores in one method and we interpret the loads in another. 3094 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3095 Label notVolatile; 3096 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3097 ConstantPoolCacheEntry::flags_offset()))); 3098 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3099 __ membar(MacroAssembler::AnyAny); 3100 __ bind(notVolatile); 3101 } 3102 3103 // make sure exception is reported in correct bcp range (getfield is 3104 // next instruction) 3105 __ increment(rbcp); 3106 __ null_check(r0); 3107 switch (state) { 3108 case itos: 3109 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3110 break; 3111 case atos: 3112 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP); 3113 __ verify_oop(r0); 3114 break; 3115 case ftos: 3116 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3117 break; 3118 default: 3119 ShouldNotReachHere(); 3120 } 3121 3122 { 3123 Label notVolatile; 3124 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3125 ConstantPoolCacheEntry::flags_offset()))); 3126 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3127 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3128 __ bind(notVolatile); 3129 } 3130 3131 __ decrement(rbcp); 3132 } 3133 3134 3135 3136 //----------------------------------------------------------------------------- 3137 // Calls 3138 3139 void TemplateTable::prepare_invoke(int byte_no, 3140 Register method, // linked method (or i-klass) 3141 Register index, // itable index, MethodType, etc. 3142 Register recv, // if caller wants to see it 3143 Register flags // if caller wants to test it 3144 ) { 3145 // determine flags 3146 Bytecodes::Code code = bytecode(); 3147 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3148 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3149 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3150 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3151 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3152 const bool load_receiver = (recv != noreg); 3153 const bool save_flags = (flags != noreg); 3154 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3155 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3156 assert(flags == noreg || flags == r3, ""); 3157 assert(recv == noreg || recv == r2, ""); 3158 3159 // setup registers & access constant pool cache 3160 if (recv == noreg) recv = r2; 3161 if (flags == noreg) flags = r3; 3162 assert_different_registers(method, index, recv, flags); 3163 3164 // save 'interpreter return address' 3165 __ save_bcp(); 3166 3167 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3168 3169 // maybe push appendix to arguments (just before return address) 3170 if (is_invokedynamic || is_invokehandle) { 3171 Label L_no_push; 3172 __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push); 3173 // Push the appendix as a trailing parameter. 3174 // This must be done before we get the receiver, 3175 // since the parameter_size includes it. 3176 __ push(r19); 3177 __ mov(r19, index); 3178 __ load_resolved_reference_at_index(index, r19); 3179 __ pop(r19); 3180 __ push(index); // push appendix (MethodType, CallSite, etc.) 3181 __ bind(L_no_push); 3182 } 3183 3184 // load receiver if needed (note: no return address pushed yet) 3185 if (load_receiver) { 3186 __ andw(recv, flags, ConstantPoolCacheEntry::parameter_size_mask); 3187 // FIXME -- is this actually correct? looks like it should be 2 3188 // const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3189 // const int receiver_is_at_end = -1; // back off one slot to get receiver 3190 // Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3191 // __ movptr(recv, recv_addr); 3192 __ add(rscratch1, esp, recv, ext::uxtx, 3); // FIXME: uxtb here? 3193 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); 3194 __ verify_oop(recv); 3195 } 3196 3197 // compute return type 3198 // x86 uses a shift and mask or wings it with a shift plus assert 3199 // the mask is not needed. aarch64 just uses bitfield extract 3200 __ ubfxw(rscratch2, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); 3201 // load return address 3202 { 3203 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3204 __ mov(rscratch1, table_addr); 3205 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); 3206 } 3207 } 3208 3209 3210 void TemplateTable::invokevirtual_helper(Register index, 3211 Register recv, 3212 Register flags) 3213 { 3214 // Uses temporary registers r0, r3 3215 assert_different_registers(index, recv, r0, r3); 3216 // Test for an invoke of a final method 3217 Label notFinal; 3218 __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal); 3219 3220 const Register method = index; // method must be rmethod 3221 assert(method == rmethod, 3222 "Method must be rmethod for interpreter calling convention"); 3223 3224 // do the call - the index is actually the method to call 3225 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3226 3227 // It's final, need a null check here! 3228 __ null_check(recv); 3229 3230 // profile this call 3231 __ profile_final_call(r0); 3232 __ profile_arguments_type(r0, method, r4, true); 3233 3234 __ jump_from_interpreted(method, r0); 3235 3236 __ bind(notFinal); 3237 3238 // get receiver klass 3239 __ load_klass_check_null(r0, recv); 3240 3241 // profile this call 3242 __ profile_virtual_call(r0, rlocals, r3); 3243 3244 // get target Method & entry point 3245 __ lookup_virtual_method(r0, index, method); 3246 __ profile_arguments_type(r3, method, r4, true); 3247 // FIXME -- this looks completely redundant. is it? 3248 // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); 3249 __ jump_from_interpreted(method, r3); 3250 } 3251 3252 void TemplateTable::invokevirtual(int byte_no) 3253 { 3254 transition(vtos, vtos); 3255 assert(byte_no == f2_byte, "use this argument"); 3256 3257 prepare_invoke(byte_no, rmethod, noreg, r2, r3); 3258 3259 // rmethod: index (actually a Method*) 3260 // r2: receiver 3261 // r3: flags 3262 3263 invokevirtual_helper(rmethod, r2, r3); 3264 } 3265 3266 void TemplateTable::invokespecial(int byte_no) 3267 { 3268 transition(vtos, vtos); 3269 assert(byte_no == f1_byte, "use this argument"); 3270 3271 prepare_invoke(byte_no, rmethod, noreg, // get f1 Method* 3272 r2); // get receiver also for null check 3273 __ verify_oop(r2); 3274 __ null_check(r2); 3275 // do the call 3276 __ profile_call(r0); 3277 __ profile_arguments_type(r0, rmethod, rbcp, false); 3278 __ jump_from_interpreted(rmethod, r0); 3279 } 3280 3281 void TemplateTable::invokestatic(int byte_no) 3282 { 3283 transition(vtos, vtos); 3284 assert(byte_no == f1_byte, "use this argument"); 3285 3286 prepare_invoke(byte_no, rmethod); // get f1 Method* 3287 // do the call 3288 __ profile_call(r0); 3289 __ profile_arguments_type(r0, rmethod, r4, false); 3290 __ jump_from_interpreted(rmethod, r0); 3291 } 3292 3293 void TemplateTable::fast_invokevfinal(int byte_no) 3294 { 3295 __ call_Unimplemented(); 3296 } 3297 3298 void TemplateTable::invokeinterface(int byte_no) { 3299 transition(vtos, vtos); 3300 assert(byte_no == f1_byte, "use this argument"); 3301 3302 prepare_invoke(byte_no, r0, rmethod, // get f1 Klass*, f2 Method* 3303 r2, r3); // recv, flags 3304 3305 // r0: interface klass (from f1) 3306 // rmethod: method (from f2) 3307 // r2: receiver 3308 // r3: flags 3309 3310 // First check for Object case, then private interface method, 3311 // then regular interface method. 3312 3313 // Special case of invokeinterface called for virtual method of 3314 // java.lang.Object. See cpCache.cpp for details. 3315 Label notObjectMethod; 3316 __ tbz(r3, ConstantPoolCacheEntry::is_forced_virtual_shift, notObjectMethod); 3317 3318 invokevirtual_helper(rmethod, r2, r3); 3319 __ bind(notObjectMethod); 3320 3321 Label no_such_interface; 3322 3323 // Check for private method invocation - indicated by vfinal 3324 Label notVFinal; 3325 __ tbz(r3, ConstantPoolCacheEntry::is_vfinal_shift, notVFinal); 3326 3327 // Get receiver klass into r3 - also a null check 3328 __ load_klass_check_null(r3, r2); 3329 3330 Label subtype; 3331 __ check_klass_subtype(r3, r0, r4, subtype); 3332 // If we get here the typecheck failed 3333 __ b(no_such_interface); 3334 __ bind(subtype); 3335 3336 __ profile_final_call(r0); 3337 __ profile_arguments_type(r0, rmethod, r4, true); 3338 __ jump_from_interpreted(rmethod, r0); 3339 3340 __ bind(notVFinal); 3341 3342 // Get receiver klass into r3 - also a null check 3343 __ restore_locals(); 3344 __ load_klass_check_null(r3, r2); 3345 3346 Label no_such_method; 3347 3348 // Preserve method for throw_AbstractMethodErrorVerbose. 3349 __ mov(r16, rmethod); 3350 // Receiver subtype check against REFC. 3351 // Superklass in r0. Subklass in r3. Blows rscratch2, r13 3352 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3353 r3, r0, noreg, 3354 // outputs: scan temp. reg, scan temp. reg 3355 rscratch2, r13, 3356 no_such_interface, 3357 /*return_method=*/false); 3358 3359 // profile this call 3360 __ profile_virtual_call(r3, r13, r19); 3361 3362 // Get declaring interface class from method, and itable index 3363 3364 __ load_method_holder(r0, rmethod); 3365 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); 3366 __ subw(rmethod, rmethod, Method::itable_index_max); 3367 __ negw(rmethod, rmethod); 3368 3369 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3370 __ mov(rlocals, r3); 3371 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3372 rlocals, r0, rmethod, 3373 // outputs: method, scan temp. reg 3374 rmethod, r13, 3375 no_such_interface); 3376 3377 // rmethod,: Method to call 3378 // r2: receiver 3379 // Check for abstract method error 3380 // Note: This should be done more efficiently via a throw_abstract_method_error 3381 // interpreter entry point and a conditional jump to it in case of a null 3382 // method. 3383 __ cbz(rmethod, no_such_method); 3384 3385 __ profile_arguments_type(r3, rmethod, r13, true); 3386 3387 // do the call 3388 // r2: receiver 3389 // rmethod,: Method 3390 __ jump_from_interpreted(rmethod, r3); 3391 __ should_not_reach_here(); 3392 3393 // exception handling code follows... 3394 // note: must restore interpreter registers to canonical 3395 // state for exception handling to work correctly! 3396 3397 __ bind(no_such_method); 3398 // throw exception 3399 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3400 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3401 // Pass arguments for generating a verbose error message. 3402 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16); 3403 // the call_VM checks for exception, so we should never return here. 3404 __ should_not_reach_here(); 3405 3406 __ bind(no_such_interface); 3407 // throw exception 3408 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3409 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3410 // Pass arguments for generating a verbose error message. 3411 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3412 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0); 3413 // the call_VM checks for exception, so we should never return here. 3414 __ should_not_reach_here(); 3415 return; 3416 } 3417 3418 void TemplateTable::invokehandle(int byte_no) { 3419 transition(vtos, vtos); 3420 assert(byte_no == f1_byte, "use this argument"); 3421 3422 prepare_invoke(byte_no, rmethod, r0, r2); 3423 __ verify_method_ptr(r2); 3424 __ verify_oop(r2); 3425 __ null_check(r2); 3426 3427 // FIXME: profile the LambdaForm also 3428 3429 // r13 is safe to use here as a scratch reg because it is about to 3430 // be clobbered by jump_from_interpreted(). 3431 __ profile_final_call(r13); 3432 __ profile_arguments_type(r13, rmethod, r4, true); 3433 3434 __ jump_from_interpreted(rmethod, r0); 3435 } 3436 3437 void TemplateTable::invokedynamic(int byte_no) { 3438 transition(vtos, vtos); 3439 assert(byte_no == f1_byte, "use this argument"); 3440 3441 prepare_invoke(byte_no, rmethod, r0); 3442 3443 // r0: CallSite object (from cpool->resolved_references[]) 3444 // rmethod: MH.linkToCallSite method (from f2) 3445 3446 // Note: r0_callsite is already pushed by prepare_invoke 3447 3448 // %%% should make a type profile for any invokedynamic that takes a ref argument 3449 // profile this call 3450 __ profile_call(rbcp); 3451 __ profile_arguments_type(r3, rmethod, r13, false); 3452 3453 __ verify_oop(r0); 3454 3455 __ jump_from_interpreted(rmethod, r0); 3456 } 3457 3458 3459 //----------------------------------------------------------------------------- 3460 // Allocation 3461 3462 void TemplateTable::_new() { 3463 transition(vtos, atos); 3464 3465 __ get_unsigned_2_byte_index_at_bcp(r3, 1); 3466 Label slow_case; 3467 Label done; 3468 Label initialize_header; 3469 3470 __ get_cpool_and_tags(r4, r0); 3471 // Make sure the class we're about to instantiate has been resolved. 3472 // This is done before loading InstanceKlass to be consistent with the order 3473 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3474 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3475 __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); 3476 __ lea(rscratch1, Address(rscratch1, tags_offset)); 3477 __ ldarb(rscratch1, rscratch1); 3478 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class); 3479 __ br(Assembler::NE, slow_case); 3480 3481 // get InstanceKlass 3482 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1); 3483 3484 // make sure klass is initialized & doesn't have finalizer 3485 // make sure klass is fully initialized 3486 __ ldrb(rscratch1, Address(r4, InstanceKlass::init_state_offset())); 3487 __ cmp(rscratch1, (u1)InstanceKlass::fully_initialized); 3488 __ br(Assembler::NE, slow_case); 3489 3490 // get instance_size in InstanceKlass (scaled to a count of bytes) 3491 __ ldrw(r3, 3492 Address(r4, 3493 Klass::layout_helper_offset())); 3494 // test to see if it has a finalizer or is malformed in some way 3495 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); 3496 3497 // Allocate the instance: 3498 // If TLAB is enabled: 3499 // Try to allocate in the TLAB. 3500 // If fails, go to the slow path. 3501 // Initialize the allocation. 3502 // Exit. 3503 // 3504 // Go to slow path. 3505 3506 if (UseTLAB) { 3507 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case); 3508 3509 if (ZeroTLAB) { 3510 // the fields have been already cleared 3511 __ b(initialize_header); 3512 } 3513 3514 // The object is initialized before the header. If the object size is 3515 // zero, go directly to the header initialization. 3516 __ sub(r3, r3, oopDesc::base_offset_in_bytes()); 3517 __ cbz(r3, initialize_header); 3518 3519 // Initialize object fields 3520 { 3521 __ add(r2, r0, oopDesc::base_offset_in_bytes()); 3522 if (!is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong)) { 3523 __ strw(zr, Address(__ post(r2, BytesPerInt))); 3524 __ sub(r3, r3, BytesPerInt); 3525 __ cbz(r3, initialize_header); 3526 } 3527 Label loop; 3528 __ bind(loop); 3529 __ str(zr, Address(__ post(r2, BytesPerLong))); 3530 __ sub(r3, r3, BytesPerLong); 3531 __ cbnz(r3, loop); 3532 } 3533 3534 // initialize object header only. 3535 __ bind(initialize_header); 3536 if (UseCompactObjectHeaders) { 3537 __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset())); 3538 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3539 } else { 3540 __ mov(rscratch1, (intptr_t)markWord::prototype().value()); 3541 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3542 __ store_klass(r0, r4); // store klass last 3543 } 3544 { 3545 SkipIfEqual skip(_masm, &DTraceAllocProbes, false); 3546 // Trigger dtrace event for fastpath 3547 __ push(atos); // save the return value 3548 __ call_VM_leaf( 3549 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0); 3550 __ pop(atos); // restore the return value 3551 3552 } 3553 __ b(done); 3554 } 3555 3556 // slow case 3557 __ bind(slow_case); 3558 __ get_constant_pool(c_rarg1); 3559 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3560 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3561 __ verify_oop(r0); 3562 3563 // continue 3564 __ bind(done); 3565 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3566 __ membar(Assembler::StoreStore); 3567 } 3568 3569 void TemplateTable::newarray() { 3570 transition(itos, atos); 3571 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3572 __ mov(c_rarg2, r0); 3573 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3574 c_rarg1, c_rarg2); 3575 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3576 __ membar(Assembler::StoreStore); 3577 } 3578 3579 void TemplateTable::anewarray() { 3580 transition(itos, atos); 3581 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3582 __ get_constant_pool(c_rarg1); 3583 __ mov(c_rarg3, r0); 3584 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3585 c_rarg1, c_rarg2, c_rarg3); 3586 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3587 __ membar(Assembler::StoreStore); 3588 } 3589 3590 void TemplateTable::arraylength() { 3591 transition(atos, itos); 3592 __ null_check(r0, arrayOopDesc::length_offset_in_bytes()); 3593 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); 3594 } 3595 3596 void TemplateTable::checkcast() 3597 { 3598 transition(atos, atos); 3599 Label done, is_null, ok_is_subtype, quicked, resolved; 3600 __ cbz(r0, is_null); 3601 3602 // Get cpool & tags index 3603 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3604 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3605 // See if bytecode has already been quicked 3606 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3607 __ lea(r1, Address(rscratch1, r19)); 3608 __ ldarb(r1, r1); 3609 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3610 __ br(Assembler::EQ, quicked); 3611 3612 __ push(atos); // save receiver for result, and for GC 3613 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3614 // vm_result_2 has metadata result 3615 __ get_vm_result_2(r0, rthread); 3616 __ pop(r3); // restore receiver 3617 __ b(resolved); 3618 3619 // Get superklass in r0 and subklass in r3 3620 __ bind(quicked); 3621 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check 3622 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass 3623 3624 __ bind(resolved); 3625 __ load_klass(r19, r3); 3626 3627 // Generate subtype check. Blows r2, r5. Object in r3. 3628 // Superklass in r0. Subklass in r19. 3629 __ gen_subtype_check(r19, ok_is_subtype); 3630 3631 // Come here on failure 3632 __ push(r3); 3633 // object is at TOS 3634 __ b(Interpreter::_throw_ClassCastException_entry); 3635 3636 // Come here on success 3637 __ bind(ok_is_subtype); 3638 __ mov(r0, r3); // Restore object in r3 3639 3640 // Collect counts on whether this test sees NULLs a lot or not. 3641 if (ProfileInterpreter) { 3642 __ b(done); 3643 __ bind(is_null); 3644 __ profile_null_seen(r2); 3645 } else { 3646 __ bind(is_null); // same as 'done' 3647 } 3648 __ bind(done); 3649 } 3650 3651 void TemplateTable::instanceof() { 3652 transition(atos, itos); 3653 Label done, is_null, ok_is_subtype, quicked, resolved; 3654 __ cbz(r0, is_null); 3655 3656 // Get cpool & tags index 3657 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3658 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3659 // See if bytecode has already been quicked 3660 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3661 __ lea(r1, Address(rscratch1, r19)); 3662 __ ldarb(r1, r1); 3663 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3664 __ br(Assembler::EQ, quicked); 3665 3666 __ push(atos); // save receiver for result, and for GC 3667 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3668 // vm_result_2 has metadata result 3669 __ get_vm_result_2(r0, rthread); 3670 __ pop(r3); // restore receiver 3671 __ verify_oop(r3); 3672 __ load_klass(r3, r3); 3673 __ b(resolved); 3674 3675 // Get superklass in r0 and subklass in r3 3676 __ bind(quicked); 3677 __ load_klass(r3, r0); 3678 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); 3679 3680 __ bind(resolved); 3681 3682 // Generate subtype check. Blows r2, r5 3683 // Superklass in r0. Subklass in r3. 3684 __ gen_subtype_check(r3, ok_is_subtype); 3685 3686 // Come here on failure 3687 __ mov(r0, 0); 3688 __ b(done); 3689 // Come here on success 3690 __ bind(ok_is_subtype); 3691 __ mov(r0, 1); 3692 3693 // Collect counts on whether this test sees NULLs a lot or not. 3694 if (ProfileInterpreter) { 3695 __ b(done); 3696 __ bind(is_null); 3697 __ profile_null_seen(r2); 3698 } else { 3699 __ bind(is_null); // same as 'done' 3700 } 3701 __ bind(done); 3702 // r0 = 0: obj == NULL or obj is not an instanceof the specified klass 3703 // r0 = 1: obj != NULL and obj is an instanceof the specified klass 3704 } 3705 3706 //----------------------------------------------------------------------------- 3707 // Breakpoints 3708 void TemplateTable::_breakpoint() { 3709 // Note: We get here even if we are single stepping.. 3710 // jbug inists on setting breakpoints at every bytecode 3711 // even if we are in single step mode. 3712 3713 transition(vtos, vtos); 3714 3715 // get the unpatched byte code 3716 __ get_method(c_rarg1); 3717 __ call_VM(noreg, 3718 CAST_FROM_FN_PTR(address, 3719 InterpreterRuntime::get_original_bytecode_at), 3720 c_rarg1, rbcp); 3721 __ mov(r19, r0); 3722 3723 // post the breakpoint event 3724 __ call_VM(noreg, 3725 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3726 rmethod, rbcp); 3727 3728 // complete the execution of original bytecode 3729 __ mov(rscratch1, r19); 3730 __ dispatch_only_normal(vtos); 3731 } 3732 3733 //----------------------------------------------------------------------------- 3734 // Exceptions 3735 3736 void TemplateTable::athrow() { 3737 transition(atos, vtos); 3738 __ null_check(r0); 3739 __ b(Interpreter::throw_exception_entry()); 3740 } 3741 3742 //----------------------------------------------------------------------------- 3743 // Synchronization 3744 // 3745 // Note: monitorenter & exit are symmetric routines; which is reflected 3746 // in the assembly code structure as well 3747 // 3748 // Stack layout: 3749 // 3750 // [expressions ] <--- esp = expression stack top 3751 // .. 3752 // [expressions ] 3753 // [monitor entry] <--- monitor block top = expression stack bot 3754 // .. 3755 // [monitor entry] 3756 // [frame data ] <--- monitor block bot 3757 // ... 3758 // [saved rfp ] <--- rfp 3759 void TemplateTable::monitorenter() 3760 { 3761 transition(atos, vtos); 3762 3763 // check for NULL object 3764 __ null_check(r0); 3765 3766 const Address monitor_block_top( 3767 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3768 const Address monitor_block_bot( 3769 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3770 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3771 3772 Label allocated; 3773 3774 // initialize entry pointer 3775 __ mov(c_rarg1, zr); // points to free slot or NULL 3776 3777 // find a free slot in the monitor block (result in c_rarg1) 3778 { 3779 Label entry, loop, exit; 3780 __ ldr(c_rarg3, monitor_block_top); // points to current entry, 3781 // starting with top-most entry 3782 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3783 3784 __ b(entry); 3785 3786 __ bind(loop); 3787 // check if current entry is used 3788 // if not used then remember entry in c_rarg1 3789 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes())); 3790 __ cmp(zr, rscratch1); 3791 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); 3792 // check if current entry is for same object 3793 __ cmp(r0, rscratch1); 3794 // if same object then stop searching 3795 __ br(Assembler::EQ, exit); 3796 // otherwise advance to next entry 3797 __ add(c_rarg3, c_rarg3, entry_size); 3798 __ bind(entry); 3799 // check if bottom reached 3800 __ cmp(c_rarg3, c_rarg2); 3801 // if not at bottom then check this entry 3802 __ br(Assembler::NE, loop); 3803 __ bind(exit); 3804 } 3805 3806 __ cbnz(c_rarg1, allocated); // check if a slot has been found and 3807 // if found, continue with that on 3808 3809 // allocate one if there's no free slot 3810 { 3811 Label entry, loop; 3812 // 1. compute new pointers // rsp: old expression stack top 3813 3814 __ check_extended_sp(); 3815 __ sub(sp, sp, entry_size); // make room for the monitor 3816 __ mov(rscratch1, sp); 3817 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 3818 3819 __ ldr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom 3820 __ sub(esp, esp, entry_size); // move expression stack top 3821 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3822 __ mov(c_rarg3, esp); // set start value for copy loop 3823 __ str(c_rarg1, monitor_block_bot); // set new monitor block bottom 3824 3825 __ b(entry); 3826 // 2. move expression stack contents 3827 __ bind(loop); 3828 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3829 // word from old location 3830 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3831 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3832 __ bind(entry); 3833 __ cmp(c_rarg3, c_rarg1); // check if bottom reached 3834 __ br(Assembler::NE, loop); // if not at bottom then 3835 // copy next word 3836 } 3837 3838 // call run-time routine 3839 // c_rarg1: points to monitor entry 3840 __ bind(allocated); 3841 3842 // Increment bcp to point to the next bytecode, so exception 3843 // handling for async. exceptions work correctly. 3844 // The object has already been popped from the stack, so the 3845 // expression stack looks correct. 3846 __ increment(rbcp); 3847 3848 // store object 3849 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3850 __ lock_object(c_rarg1); 3851 3852 // check to make sure this monitor doesn't cause stack overflow after locking 3853 __ save_bcp(); // in case of exception 3854 __ generate_stack_overflow_check(0); 3855 3856 // The bcp has already been incremented. Just need to dispatch to 3857 // next instruction. 3858 __ dispatch_next(vtos); 3859 } 3860 3861 3862 void TemplateTable::monitorexit() 3863 { 3864 transition(atos, vtos); 3865 3866 // check for NULL object 3867 __ null_check(r0); 3868 3869 const Address monitor_block_top( 3870 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3871 const Address monitor_block_bot( 3872 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3873 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3874 3875 Label found; 3876 3877 // find matching slot 3878 { 3879 Label entry, loop; 3880 __ ldr(c_rarg1, monitor_block_top); // points to current entry, 3881 // starting with top-most entry 3882 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3883 // of monitor block 3884 __ b(entry); 3885 3886 __ bind(loop); 3887 // check if current entry is for same object 3888 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3889 __ cmp(r0, rscratch1); 3890 // if same object then stop searching 3891 __ br(Assembler::EQ, found); 3892 // otherwise advance to next entry 3893 __ add(c_rarg1, c_rarg1, entry_size); 3894 __ bind(entry); 3895 // check if bottom reached 3896 __ cmp(c_rarg1, c_rarg2); 3897 // if not at bottom then check this entry 3898 __ br(Assembler::NE, loop); 3899 } 3900 3901 // error handling. Unlocking was not block-structured 3902 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3903 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3904 __ should_not_reach_here(); 3905 3906 // call run-time routine 3907 __ bind(found); 3908 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) 3909 __ unlock_object(c_rarg1); 3910 __ pop_ptr(r0); // discard object 3911 } 3912 3913 3914 // Wide instructions 3915 void TemplateTable::wide() 3916 { 3917 __ load_unsigned_byte(r19, at_bcp(1)); 3918 __ mov(rscratch1, (address)Interpreter::_wentry_point); 3919 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); 3920 __ br(rscratch1); 3921 } 3922 3923 3924 // Multi arrays 3925 void TemplateTable::multianewarray() { 3926 transition(vtos, atos); 3927 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions 3928 // last dim is on top of stack; we want address of first one: 3929 // first_addr = last_addr + (ndims - 1) * wordSize 3930 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); 3931 __ sub(c_rarg1, c_rarg1, wordSize); 3932 call_VM(r0, 3933 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3934 c_rarg1); 3935 __ load_unsigned_byte(r1, at_bcp(3)); 3936 __ lea(esp, Address(esp, r1, Address::uxtw(3))); 3937 }