1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compilerDefinitions.inline.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/method.inline.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #define __ _masm-> 53 54 // Address computation: local variables 55 56 static inline Address iaddress(int n) { 57 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 58 } 59 60 static inline Address laddress(int n) { 61 return iaddress(n + 1); 62 } 63 64 static inline Address faddress(int n) { 65 return iaddress(n); 66 } 67 68 static inline Address daddress(int n) { 69 return laddress(n); 70 } 71 72 static inline Address aaddress(int n) { 73 return iaddress(n); 74 } 75 76 static inline Address iaddress(Register r) { 77 return Address(rlocals, r, Address::lsl(3)); 78 } 79 80 static inline Address laddress(Register r, Register scratch, 81 InterpreterMacroAssembler* _masm) { 82 __ lea(scratch, Address(rlocals, r, Address::lsl(3))); 83 return Address(scratch, Interpreter::local_offset_in_bytes(1)); 84 } 85 86 static inline Address faddress(Register r) { 87 return iaddress(r); 88 } 89 90 static inline Address daddress(Register r, Register scratch, 91 InterpreterMacroAssembler* _masm) { 92 return laddress(r, scratch, _masm); 93 } 94 95 static inline Address aaddress(Register r) { 96 return iaddress(r); 97 } 98 99 static inline Address at_rsp() { 100 return Address(esp, 0); 101 } 102 103 // At top of Java expression stack which may be different than esp(). It 104 // isn't for category 1 objects. 105 static inline Address at_tos () { 106 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 107 } 108 109 static inline Address at_tos_p1() { 110 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 111 } 112 113 static inline Address at_tos_p2() { 114 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 115 } 116 117 static inline Address at_tos_p3() { 118 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 119 } 120 121 static inline Address at_tos_p4() { 122 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 123 } 124 125 static inline Address at_tos_p5() { 126 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 127 } 128 129 // Condition conversion 130 static Assembler::Condition j_not(TemplateTable::Condition cc) { 131 switch (cc) { 132 case TemplateTable::equal : return Assembler::NE; 133 case TemplateTable::not_equal : return Assembler::EQ; 134 case TemplateTable::less : return Assembler::GE; 135 case TemplateTable::less_equal : return Assembler::GT; 136 case TemplateTable::greater : return Assembler::LE; 137 case TemplateTable::greater_equal: return Assembler::LT; 138 } 139 ShouldNotReachHere(); 140 return Assembler::EQ; 141 } 142 143 144 // Miscellaneous helper routines 145 // Store an oop (or null) at the Address described by obj. 146 // If val == noreg this means store a null 147 static void do_oop_store(InterpreterMacroAssembler* _masm, 148 Address dst, 149 Register val, 150 DecoratorSet decorators) { 151 assert(val == noreg || val == r0, "parameter is just for looks"); 152 __ store_heap_oop(dst, val, r10, r11, r3, decorators); 153 } 154 155 static void do_oop_load(InterpreterMacroAssembler* _masm, 156 Address src, 157 Register dst, 158 DecoratorSet decorators) { 159 __ load_heap_oop(dst, src, r10, r11, decorators); 160 } 161 162 Address TemplateTable::at_bcp(int offset) { 163 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 164 return Address(rbcp, offset); 165 } 166 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 168 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 169 int byte_no) 170 { 171 if (!RewriteBytecodes) return; 172 Label L_patch_done; 173 174 switch (bc) { 175 case Bytecodes::_fast_aputfield: 176 case Bytecodes::_fast_bputfield: 177 case Bytecodes::_fast_zputfield: 178 case Bytecodes::_fast_cputfield: 179 case Bytecodes::_fast_dputfield: 180 case Bytecodes::_fast_fputfield: 181 case Bytecodes::_fast_iputfield: 182 case Bytecodes::_fast_lputfield: 183 case Bytecodes::_fast_sputfield: 184 { 185 // We skip bytecode quickening for putfield instructions when 186 // the put_code written to the constant pool cache is zero. 187 // This is required so that every execution of this instruction 188 // calls out to InterpreterRuntime::resolve_get_put to do 189 // additional, required work. 190 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 191 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 192 __ load_field_entry(temp_reg, bc_reg); 193 if (byte_no == f1_byte) { 194 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 195 } else { 196 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 197 } 198 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 199 __ ldarb(temp_reg, temp_reg); 200 __ movw(bc_reg, bc); 201 __ cbzw(temp_reg, L_patch_done); // don't patch 202 } 203 break; 204 default: 205 assert(byte_no == -1, "sanity"); 206 // the pair bytecodes have already done the load. 207 if (load_bc_into_bc_reg) { 208 __ movw(bc_reg, bc); 209 } 210 } 211 212 if (JvmtiExport::can_post_breakpoint()) { 213 Label L_fast_patch; 214 // if a breakpoint is present we can't rewrite the stream directly 215 __ load_unsigned_byte(temp_reg, at_bcp(0)); 216 __ cmpw(temp_reg, Bytecodes::_breakpoint); 217 __ br(Assembler::NE, L_fast_patch); 218 // Let breakpoint table handling rewrite to quicker bytecode 219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); 220 __ b(L_patch_done); 221 __ bind(L_fast_patch); 222 } 223 224 #ifdef ASSERT 225 Label L_okay; 226 __ load_unsigned_byte(temp_reg, at_bcp(0)); 227 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); 228 __ br(Assembler::EQ, L_okay); 229 __ cmpw(temp_reg, bc_reg); 230 __ br(Assembler::EQ, L_okay); 231 __ stop("patching the wrong bytecode"); 232 __ bind(L_okay); 233 #endif 234 235 // patch bytecode 236 __ strb(bc_reg, at_bcp(0)); 237 __ bind(L_patch_done); 238 } 239 240 241 // Individual instructions 242 243 void TemplateTable::nop() { 244 transition(vtos, vtos); 245 // nothing to do 246 } 247 248 void TemplateTable::shouldnotreachhere() { 249 transition(vtos, vtos); 250 __ stop("shouldnotreachhere bytecode"); 251 } 252 253 void TemplateTable::aconst_null() 254 { 255 transition(vtos, atos); 256 __ mov(r0, 0); 257 } 258 259 void TemplateTable::iconst(int value) 260 { 261 transition(vtos, itos); 262 __ mov(r0, value); 263 } 264 265 void TemplateTable::lconst(int value) 266 { 267 __ mov(r0, value); 268 } 269 270 void TemplateTable::fconst(int value) 271 { 272 transition(vtos, ftos); 273 switch (value) { 274 case 0: 275 __ fmovs(v0, 0.0); 276 break; 277 case 1: 278 __ fmovs(v0, 1.0); 279 break; 280 case 2: 281 __ fmovs(v0, 2.0); 282 break; 283 default: 284 ShouldNotReachHere(); 285 break; 286 } 287 } 288 289 void TemplateTable::dconst(int value) 290 { 291 transition(vtos, dtos); 292 switch (value) { 293 case 0: 294 __ fmovd(v0, 0.0); 295 break; 296 case 1: 297 __ fmovd(v0, 1.0); 298 break; 299 case 2: 300 __ fmovd(v0, 2.0); 301 break; 302 default: 303 ShouldNotReachHere(); 304 break; 305 } 306 } 307 308 void TemplateTable::bipush() 309 { 310 transition(vtos, itos); 311 __ load_signed_byte32(r0, at_bcp(1)); 312 } 313 314 void TemplateTable::sipush() 315 { 316 transition(vtos, itos); 317 __ load_unsigned_short(r0, at_bcp(1)); 318 __ revw(r0, r0); 319 __ asrw(r0, r0, 16); 320 } 321 322 void TemplateTable::ldc(LdcType type) 323 { 324 transition(vtos, vtos); 325 Label call_ldc, notFloat, notClass, notInt, Done; 326 327 if (is_ldc_wide(type)) { 328 __ get_unsigned_2_byte_index_at_bcp(r1, 1); 329 } else { 330 __ load_unsigned_byte(r1, at_bcp(1)); 331 } 332 __ get_cpool_and_tags(r2, r0); 333 334 const int base_offset = ConstantPool::header_size() * wordSize; 335 const int tags_offset = Array<u1>::base_offset_in_bytes(); 336 337 // get type 338 __ add(r3, r1, tags_offset); 339 __ lea(r3, Address(r0, r3)); 340 __ ldarb(r3, r3); 341 342 // unresolved class - get the resolved class 343 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass); 344 __ br(Assembler::EQ, call_ldc); 345 346 // unresolved class in error state - call into runtime to throw the error 347 // from the first resolution attempt 348 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError); 349 __ br(Assembler::EQ, call_ldc); 350 351 // resolved class - need to call vm to get java mirror of the class 352 __ cmp(r3, (u1)JVM_CONSTANT_Class); 353 __ br(Assembler::NE, notClass); 354 355 __ bind(call_ldc); 356 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0); 357 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 358 __ push_ptr(r0); 359 __ verify_oop(r0); 360 __ b(Done); 361 362 __ bind(notClass); 363 __ cmp(r3, (u1)JVM_CONSTANT_Float); 364 __ br(Assembler::NE, notFloat); 365 // ftos 366 __ adds(r1, r2, r1, Assembler::LSL, 3); 367 __ ldrs(v0, Address(r1, base_offset)); 368 __ push_f(); 369 __ b(Done); 370 371 __ bind(notFloat); 372 373 __ cmp(r3, (u1)JVM_CONSTANT_Integer); 374 __ br(Assembler::NE, notInt); 375 376 // itos 377 __ adds(r1, r2, r1, Assembler::LSL, 3); 378 __ ldrw(r0, Address(r1, base_offset)); 379 __ push_i(r0); 380 __ b(Done); 381 382 __ bind(notInt); 383 condy_helper(Done); 384 385 __ bind(Done); 386 } 387 388 // Fast path for caching oop constants. 389 void TemplateTable::fast_aldc(LdcType type) 390 { 391 transition(vtos, atos); 392 393 Register result = r0; 394 Register tmp = r1; 395 Register rarg = r2; 396 397 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 398 399 Label resolved; 400 401 // We are resolved if the resolved reference cache entry contains a 402 // non-null object (String, MethodType, etc.) 403 assert_different_registers(result, tmp); 404 __ get_cache_index_at_bcp(tmp, 1, index_size); 405 __ load_resolved_reference_at_index(result, tmp); 406 __ cbnz(result, resolved); 407 408 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 409 410 // first time invocation - must resolve first 411 __ mov(rarg, (int)bytecode()); 412 __ call_VM(result, entry, rarg); 413 414 __ bind(resolved); 415 416 { // Check for the null sentinel. 417 // If we just called the VM, it already did the mapping for us, 418 // but it's harmless to retry. 419 Label notNull; 420 421 // Stash null_sentinel address to get its value later 422 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr()); 423 __ ldr(tmp, Address(rarg)); 424 __ resolve_oop_handle(tmp, r5, rscratch2); 425 __ cmpoop(result, tmp); 426 __ br(Assembler::NE, notNull); 427 __ mov(result, 0); // null object reference 428 __ bind(notNull); 429 } 430 431 if (VerifyOops) { 432 // Safe to call with 0 result 433 __ verify_oop(result); 434 } 435 } 436 437 void TemplateTable::ldc2_w() 438 { 439 transition(vtos, vtos); 440 Label notDouble, notLong, Done; 441 __ get_unsigned_2_byte_index_at_bcp(r0, 1); 442 443 __ get_cpool_and_tags(r1, r2); 444 const int base_offset = ConstantPool::header_size() * wordSize; 445 const int tags_offset = Array<u1>::base_offset_in_bytes(); 446 447 // get type 448 __ lea(r2, Address(r2, r0, Address::lsl(0))); 449 __ load_unsigned_byte(r2, Address(r2, tags_offset)); 450 __ cmpw(r2, (int)JVM_CONSTANT_Double); 451 __ br(Assembler::NE, notDouble); 452 453 // dtos 454 __ lea (r2, Address(r1, r0, Address::lsl(3))); 455 __ ldrd(v0, Address(r2, base_offset)); 456 __ push_d(); 457 __ b(Done); 458 459 __ bind(notDouble); 460 __ cmpw(r2, (int)JVM_CONSTANT_Long); 461 __ br(Assembler::NE, notLong); 462 463 // ltos 464 __ lea(r0, Address(r1, r0, Address::lsl(3))); 465 __ ldr(r0, Address(r0, base_offset)); 466 __ push_l(); 467 __ b(Done); 468 469 __ bind(notLong); 470 condy_helper(Done); 471 472 __ bind(Done); 473 } 474 475 void TemplateTable::condy_helper(Label& Done) 476 { 477 Register obj = r0; 478 Register rarg = r1; 479 Register flags = r2; 480 Register off = r3; 481 482 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 483 484 __ mov(rarg, (int) bytecode()); 485 __ call_VM(obj, entry, rarg); 486 487 __ get_vm_result_2(flags, rthread); 488 489 // VMr = obj = base address to find primitive value to push 490 // VMr2 = flags = (tos, off) using format of CPCE::_flags 491 __ mov(off, flags); 492 __ andw(off, off, ConstantPoolCache::field_index_mask); 493 494 const Address field(obj, off); 495 496 // What sort of thing are we loading? 497 // x86 uses a shift and mask or wings it with a shift plus assert 498 // the mask is not needed. aarch64 just uses bitfield extract 499 __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift, 500 ConstantPoolCache::tos_state_bits); 501 502 switch (bytecode()) { 503 case Bytecodes::_ldc: 504 case Bytecodes::_ldc_w: 505 { 506 // tos in (itos, ftos, stos, btos, ctos, ztos) 507 Label notInt, notFloat, notShort, notByte, notChar, notBool; 508 __ cmpw(flags, itos); 509 __ br(Assembler::NE, notInt); 510 // itos 511 __ ldrw(r0, field); 512 __ push(itos); 513 __ b(Done); 514 515 __ bind(notInt); 516 __ cmpw(flags, ftos); 517 __ br(Assembler::NE, notFloat); 518 // ftos 519 __ load_float(field); 520 __ push(ftos); 521 __ b(Done); 522 523 __ bind(notFloat); 524 __ cmpw(flags, stos); 525 __ br(Assembler::NE, notShort); 526 // stos 527 __ load_signed_short(r0, field); 528 __ push(stos); 529 __ b(Done); 530 531 __ bind(notShort); 532 __ cmpw(flags, btos); 533 __ br(Assembler::NE, notByte); 534 // btos 535 __ load_signed_byte(r0, field); 536 __ push(btos); 537 __ b(Done); 538 539 __ bind(notByte); 540 __ cmpw(flags, ctos); 541 __ br(Assembler::NE, notChar); 542 // ctos 543 __ load_unsigned_short(r0, field); 544 __ push(ctos); 545 __ b(Done); 546 547 __ bind(notChar); 548 __ cmpw(flags, ztos); 549 __ br(Assembler::NE, notBool); 550 // ztos 551 __ load_signed_byte(r0, field); 552 __ push(ztos); 553 __ b(Done); 554 555 __ bind(notBool); 556 break; 557 } 558 559 case Bytecodes::_ldc2_w: 560 { 561 Label notLong, notDouble; 562 __ cmpw(flags, ltos); 563 __ br(Assembler::NE, notLong); 564 // ltos 565 __ ldr(r0, field); 566 __ push(ltos); 567 __ b(Done); 568 569 __ bind(notLong); 570 __ cmpw(flags, dtos); 571 __ br(Assembler::NE, notDouble); 572 // dtos 573 __ load_double(field); 574 __ push(dtos); 575 __ b(Done); 576 577 __ bind(notDouble); 578 break; 579 } 580 581 default: 582 ShouldNotReachHere(); 583 } 584 585 __ stop("bad ldc/condy"); 586 } 587 588 void TemplateTable::locals_index(Register reg, int offset) 589 { 590 __ ldrb(reg, at_bcp(offset)); 591 __ neg(reg, reg); 592 } 593 594 void TemplateTable::iload() { 595 iload_internal(); 596 } 597 598 void TemplateTable::nofast_iload() { 599 iload_internal(may_not_rewrite); 600 } 601 602 void TemplateTable::iload_internal(RewriteControl rc) { 603 transition(vtos, itos); 604 if (RewriteFrequentPairs && rc == may_rewrite) { 605 Label rewrite, done; 606 Register bc = r4; 607 608 // get next bytecode 609 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 610 611 // if _iload, wait to rewrite to iload2. We only want to rewrite the 612 // last two iloads in a pair. Comparing against fast_iload means that 613 // the next bytecode is neither an iload or a caload, and therefore 614 // an iload pair. 615 __ cmpw(r1, Bytecodes::_iload); 616 __ br(Assembler::EQ, done); 617 618 // if _fast_iload rewrite to _fast_iload2 619 __ cmpw(r1, Bytecodes::_fast_iload); 620 __ movw(bc, Bytecodes::_fast_iload2); 621 __ br(Assembler::EQ, rewrite); 622 623 // if _caload rewrite to _fast_icaload 624 __ cmpw(r1, Bytecodes::_caload); 625 __ movw(bc, Bytecodes::_fast_icaload); 626 __ br(Assembler::EQ, rewrite); 627 628 // else rewrite to _fast_iload 629 __ movw(bc, Bytecodes::_fast_iload); 630 631 // rewrite 632 // bc: new bytecode 633 __ bind(rewrite); 634 patch_bytecode(Bytecodes::_iload, bc, r1, false); 635 __ bind(done); 636 637 } 638 639 // do iload, get the local value into tos 640 locals_index(r1); 641 __ ldr(r0, iaddress(r1)); 642 643 } 644 645 void TemplateTable::fast_iload2() 646 { 647 transition(vtos, itos); 648 locals_index(r1); 649 __ ldr(r0, iaddress(r1)); 650 __ push(itos); 651 locals_index(r1, 3); 652 __ ldr(r0, iaddress(r1)); 653 } 654 655 void TemplateTable::fast_iload() 656 { 657 transition(vtos, itos); 658 locals_index(r1); 659 __ ldr(r0, iaddress(r1)); 660 } 661 662 void TemplateTable::lload() 663 { 664 transition(vtos, ltos); 665 __ ldrb(r1, at_bcp(1)); 666 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 667 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 668 } 669 670 void TemplateTable::fload() 671 { 672 transition(vtos, ftos); 673 locals_index(r1); 674 // n.b. we use ldrd here because this is a 64 bit slot 675 // this is comparable to the iload case 676 __ ldrd(v0, faddress(r1)); 677 } 678 679 void TemplateTable::dload() 680 { 681 transition(vtos, dtos); 682 __ ldrb(r1, at_bcp(1)); 683 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 684 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 685 } 686 687 void TemplateTable::aload() 688 { 689 transition(vtos, atos); 690 locals_index(r1); 691 __ ldr(r0, iaddress(r1)); 692 } 693 694 void TemplateTable::locals_index_wide(Register reg) { 695 __ ldrh(reg, at_bcp(2)); 696 __ rev16w(reg, reg); 697 __ neg(reg, reg); 698 } 699 700 void TemplateTable::wide_iload() { 701 transition(vtos, itos); 702 locals_index_wide(r1); 703 __ ldr(r0, iaddress(r1)); 704 } 705 706 void TemplateTable::wide_lload() 707 { 708 transition(vtos, ltos); 709 __ ldrh(r1, at_bcp(2)); 710 __ rev16w(r1, r1); 711 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 712 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 713 } 714 715 void TemplateTable::wide_fload() 716 { 717 transition(vtos, ftos); 718 locals_index_wide(r1); 719 // n.b. we use ldrd here because this is a 64 bit slot 720 // this is comparable to the iload case 721 __ ldrd(v0, faddress(r1)); 722 } 723 724 void TemplateTable::wide_dload() 725 { 726 transition(vtos, dtos); 727 __ ldrh(r1, at_bcp(2)); 728 __ rev16w(r1, r1); 729 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 730 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 731 } 732 733 void TemplateTable::wide_aload() 734 { 735 transition(vtos, atos); 736 locals_index_wide(r1); 737 __ ldr(r0, aaddress(r1)); 738 } 739 740 void TemplateTable::index_check(Register array, Register index) 741 { 742 // destroys r1, rscratch1 743 // sign extend index for use by indexed load 744 // __ movl2ptr(index, index); 745 // check index 746 Register length = rscratch1; 747 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 748 __ cmpw(index, length); 749 if (index != r1) { 750 // ??? convention: move aberrant index into r1 for exception message 751 assert(r1 != array, "different registers"); 752 __ mov(r1, index); 753 } 754 Label ok; 755 __ br(Assembler::LO, ok); 756 // ??? convention: move array into r3 for exception message 757 __ mov(r3, array); 758 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 759 __ br(rscratch1); 760 __ bind(ok); 761 } 762 763 void TemplateTable::iaload() 764 { 765 transition(itos, itos); 766 __ mov(r1, r0); 767 __ pop_ptr(r0); 768 // r0: array 769 // r1: index 770 index_check(r0, r1); // leaves index in r1, kills rscratch1 771 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 772 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 773 } 774 775 void TemplateTable::laload() 776 { 777 transition(itos, ltos); 778 __ mov(r1, r0); 779 __ pop_ptr(r0); 780 // r0: array 781 // r1: index 782 index_check(r0, r1); // leaves index in r1, kills rscratch1 783 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 784 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 785 } 786 787 void TemplateTable::faload() 788 { 789 transition(itos, ftos); 790 __ mov(r1, r0); 791 __ pop_ptr(r0); 792 // r0: array 793 // r1: index 794 index_check(r0, r1); // leaves index in r1, kills rscratch1 795 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 796 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 797 } 798 799 void TemplateTable::daload() 800 { 801 transition(itos, dtos); 802 __ mov(r1, r0); 803 __ pop_ptr(r0); 804 // r0: array 805 // r1: index 806 index_check(r0, r1); // leaves index in r1, kills rscratch1 807 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 808 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 809 } 810 811 void TemplateTable::aaload() 812 { 813 transition(itos, atos); 814 __ mov(r1, r0); 815 __ pop_ptr(r0); 816 // r0: array 817 // r1: index 818 index_check(r0, r1); // leaves index in r1, kills rscratch1 819 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 820 do_oop_load(_masm, 821 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), 822 r0, 823 IS_ARRAY); 824 } 825 826 void TemplateTable::baload() 827 { 828 transition(itos, itos); 829 __ mov(r1, r0); 830 __ pop_ptr(r0); 831 // r0: array 832 // r1: index 833 index_check(r0, r1); // leaves index in r1, kills rscratch1 834 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 835 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg); 836 } 837 838 void TemplateTable::caload() 839 { 840 transition(itos, itos); 841 __ mov(r1, r0); 842 __ pop_ptr(r0); 843 // r0: array 844 // r1: index 845 index_check(r0, r1); // leaves index in r1, kills rscratch1 846 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 847 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 848 } 849 850 // iload followed by caload frequent pair 851 void TemplateTable::fast_icaload() 852 { 853 transition(vtos, itos); 854 // load index out of locals 855 locals_index(r2); 856 __ ldr(r1, iaddress(r2)); 857 858 __ pop_ptr(r0); 859 860 // r0: array 861 // r1: index 862 index_check(r0, r1); // leaves index in r1, kills rscratch1 863 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 864 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 865 } 866 867 void TemplateTable::saload() 868 { 869 transition(itos, itos); 870 __ mov(r1, r0); 871 __ pop_ptr(r0); 872 // r0: array 873 // r1: index 874 index_check(r0, r1); // leaves index in r1, kills rscratch1 875 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 876 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 877 } 878 879 void TemplateTable::iload(int n) 880 { 881 transition(vtos, itos); 882 __ ldr(r0, iaddress(n)); 883 } 884 885 void TemplateTable::lload(int n) 886 { 887 transition(vtos, ltos); 888 __ ldr(r0, laddress(n)); 889 } 890 891 void TemplateTable::fload(int n) 892 { 893 transition(vtos, ftos); 894 __ ldrs(v0, faddress(n)); 895 } 896 897 void TemplateTable::dload(int n) 898 { 899 transition(vtos, dtos); 900 __ ldrd(v0, daddress(n)); 901 } 902 903 void TemplateTable::aload(int n) 904 { 905 transition(vtos, atos); 906 __ ldr(r0, iaddress(n)); 907 } 908 909 void TemplateTable::aload_0() { 910 aload_0_internal(); 911 } 912 913 void TemplateTable::nofast_aload_0() { 914 aload_0_internal(may_not_rewrite); 915 } 916 917 void TemplateTable::aload_0_internal(RewriteControl rc) { 918 // According to bytecode histograms, the pairs: 919 // 920 // _aload_0, _fast_igetfield 921 // _aload_0, _fast_agetfield 922 // _aload_0, _fast_fgetfield 923 // 924 // occur frequently. If RewriteFrequentPairs is set, the (slow) 925 // _aload_0 bytecode checks if the next bytecode is either 926 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 927 // rewrites the current bytecode into a pair bytecode; otherwise it 928 // rewrites the current bytecode into _fast_aload_0 that doesn't do 929 // the pair check anymore. 930 // 931 // Note: If the next bytecode is _getfield, the rewrite must be 932 // delayed, otherwise we may miss an opportunity for a pair. 933 // 934 // Also rewrite frequent pairs 935 // aload_0, aload_1 936 // aload_0, iload_1 937 // These bytecodes with a small amount of code are most profitable 938 // to rewrite 939 if (RewriteFrequentPairs && rc == may_rewrite) { 940 Label rewrite, done; 941 const Register bc = r4; 942 943 // get next bytecode 944 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 945 946 // if _getfield then wait with rewrite 947 __ cmpw(r1, Bytecodes::Bytecodes::_getfield); 948 __ br(Assembler::EQ, done); 949 950 // if _igetfield then rewrite to _fast_iaccess_0 951 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 952 __ cmpw(r1, Bytecodes::_fast_igetfield); 953 __ movw(bc, Bytecodes::_fast_iaccess_0); 954 __ br(Assembler::EQ, rewrite); 955 956 // if _agetfield then rewrite to _fast_aaccess_0 957 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 958 __ cmpw(r1, Bytecodes::_fast_agetfield); 959 __ movw(bc, Bytecodes::_fast_aaccess_0); 960 __ br(Assembler::EQ, rewrite); 961 962 // if _fgetfield then rewrite to _fast_faccess_0 963 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 964 __ cmpw(r1, Bytecodes::_fast_fgetfield); 965 __ movw(bc, Bytecodes::_fast_faccess_0); 966 __ br(Assembler::EQ, rewrite); 967 968 // else rewrite to _fast_aload0 969 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 970 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); 971 972 // rewrite 973 // bc: new bytecode 974 __ bind(rewrite); 975 patch_bytecode(Bytecodes::_aload_0, bc, r1, false); 976 977 __ bind(done); 978 } 979 980 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 981 aload(0); 982 } 983 984 void TemplateTable::istore() 985 { 986 transition(itos, vtos); 987 locals_index(r1); 988 // FIXME: We're being very pernickerty here storing a jint in a 989 // local with strw, which costs an extra instruction over what we'd 990 // be able to do with a simple str. We should just store the whole 991 // word. 992 __ lea(rscratch1, iaddress(r1)); 993 __ strw(r0, Address(rscratch1)); 994 } 995 996 void TemplateTable::lstore() 997 { 998 transition(ltos, vtos); 999 locals_index(r1); 1000 __ str(r0, laddress(r1, rscratch1, _masm)); 1001 } 1002 1003 void TemplateTable::fstore() { 1004 transition(ftos, vtos); 1005 locals_index(r1); 1006 __ lea(rscratch1, iaddress(r1)); 1007 __ strs(v0, Address(rscratch1)); 1008 } 1009 1010 void TemplateTable::dstore() { 1011 transition(dtos, vtos); 1012 locals_index(r1); 1013 __ strd(v0, daddress(r1, rscratch1, _masm)); 1014 } 1015 1016 void TemplateTable::astore() 1017 { 1018 transition(vtos, vtos); 1019 __ pop_ptr(r0); 1020 locals_index(r1); 1021 __ str(r0, aaddress(r1)); 1022 } 1023 1024 void TemplateTable::wide_istore() { 1025 transition(vtos, vtos); 1026 __ pop_i(); 1027 locals_index_wide(r1); 1028 __ lea(rscratch1, iaddress(r1)); 1029 __ strw(r0, Address(rscratch1)); 1030 } 1031 1032 void TemplateTable::wide_lstore() { 1033 transition(vtos, vtos); 1034 __ pop_l(); 1035 locals_index_wide(r1); 1036 __ str(r0, laddress(r1, rscratch1, _masm)); 1037 } 1038 1039 void TemplateTable::wide_fstore() { 1040 transition(vtos, vtos); 1041 __ pop_f(); 1042 locals_index_wide(r1); 1043 __ lea(rscratch1, faddress(r1)); 1044 __ strs(v0, rscratch1); 1045 } 1046 1047 void TemplateTable::wide_dstore() { 1048 transition(vtos, vtos); 1049 __ pop_d(); 1050 locals_index_wide(r1); 1051 __ strd(v0, daddress(r1, rscratch1, _masm)); 1052 } 1053 1054 void TemplateTable::wide_astore() { 1055 transition(vtos, vtos); 1056 __ pop_ptr(r0); 1057 locals_index_wide(r1); 1058 __ str(r0, aaddress(r1)); 1059 } 1060 1061 void TemplateTable::iastore() { 1062 transition(itos, vtos); 1063 __ pop_i(r1); 1064 __ pop_ptr(r3); 1065 // r0: value 1066 // r1: index 1067 // r3: array 1068 index_check(r3, r1); // prefer index in r1 1069 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1070 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg); 1071 } 1072 1073 void TemplateTable::lastore() { 1074 transition(ltos, vtos); 1075 __ pop_i(r1); 1076 __ pop_ptr(r3); 1077 // r0: value 1078 // r1: index 1079 // r3: array 1080 index_check(r3, r1); // prefer index in r1 1081 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1082 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg); 1083 } 1084 1085 void TemplateTable::fastore() { 1086 transition(ftos, vtos); 1087 __ pop_i(r1); 1088 __ pop_ptr(r3); 1089 // v0: value 1090 // r1: index 1091 // r3: array 1092 index_check(r3, r1); // prefer index in r1 1093 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1094 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg); 1095 } 1096 1097 void TemplateTable::dastore() { 1098 transition(dtos, vtos); 1099 __ pop_i(r1); 1100 __ pop_ptr(r3); 1101 // v0: value 1102 // r1: index 1103 // r3: array 1104 index_check(r3, r1); // prefer index in r1 1105 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1106 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg); 1107 } 1108 1109 void TemplateTable::aastore() { 1110 Label is_null, ok_is_subtype, done; 1111 transition(vtos, vtos); 1112 // stack: ..., array, index, value 1113 __ ldr(r0, at_tos()); // value 1114 __ ldr(r2, at_tos_p1()); // index 1115 __ ldr(r3, at_tos_p2()); // array 1116 1117 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop)); 1118 1119 index_check(r3, r2); // kills r1 1120 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1121 1122 // do array store check - check for null value first 1123 __ cbz(r0, is_null); 1124 1125 // Move subklass into r1 1126 __ load_klass(r1, r0); 1127 // Move superklass into r0 1128 __ load_klass(r0, r3); 1129 __ ldr(r0, Address(r0, 1130 ObjArrayKlass::element_klass_offset())); 1131 // Compress array + index*oopSize + 12 into a single register. Frees r2. 1132 1133 // Generate subtype check. Blows r2, r5 1134 // Superklass in r0. Subklass in r1. 1135 __ gen_subtype_check(r1, ok_is_subtype); 1136 1137 // Come here on failure 1138 // object is at TOS 1139 __ b(Interpreter::_throw_ArrayStoreException_entry); 1140 1141 // Come here on success 1142 __ bind(ok_is_subtype); 1143 1144 // Get the value we will store 1145 __ ldr(r0, at_tos()); 1146 // Now store using the appropriate barrier 1147 do_oop_store(_masm, element_address, r0, IS_ARRAY); 1148 __ b(done); 1149 1150 // Have a null in r0, r3=array, r2=index. Store null at ary[idx] 1151 __ bind(is_null); 1152 __ profile_null_seen(r2); 1153 1154 // Store a null 1155 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1156 1157 // Pop stack arguments 1158 __ bind(done); 1159 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1160 } 1161 1162 void TemplateTable::bastore() 1163 { 1164 transition(itos, vtos); 1165 __ pop_i(r1); 1166 __ pop_ptr(r3); 1167 // r0: value 1168 // r1: index 1169 // r3: array 1170 index_check(r3, r1); // prefer index in r1 1171 1172 // Need to check whether array is boolean or byte 1173 // since both types share the bastore bytecode. 1174 __ load_klass(r2, r3); 1175 __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); 1176 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit()); 1177 Label L_skip; 1178 __ tbz(r2, diffbit_index, L_skip); 1179 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1180 __ bind(L_skip); 1181 1182 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1183 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg); 1184 } 1185 1186 void TemplateTable::castore() 1187 { 1188 transition(itos, vtos); 1189 __ pop_i(r1); 1190 __ pop_ptr(r3); 1191 // r0: value 1192 // r1: index 1193 // r3: array 1194 index_check(r3, r1); // prefer index in r1 1195 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1196 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg); 1197 } 1198 1199 void TemplateTable::sastore() 1200 { 1201 castore(); 1202 } 1203 1204 void TemplateTable::istore(int n) 1205 { 1206 transition(itos, vtos); 1207 __ str(r0, iaddress(n)); 1208 } 1209 1210 void TemplateTable::lstore(int n) 1211 { 1212 transition(ltos, vtos); 1213 __ str(r0, laddress(n)); 1214 } 1215 1216 void TemplateTable::fstore(int n) 1217 { 1218 transition(ftos, vtos); 1219 __ strs(v0, faddress(n)); 1220 } 1221 1222 void TemplateTable::dstore(int n) 1223 { 1224 transition(dtos, vtos); 1225 __ strd(v0, daddress(n)); 1226 } 1227 1228 void TemplateTable::astore(int n) 1229 { 1230 transition(vtos, vtos); 1231 __ pop_ptr(r0); 1232 __ str(r0, iaddress(n)); 1233 } 1234 1235 void TemplateTable::pop() 1236 { 1237 transition(vtos, vtos); 1238 __ add(esp, esp, Interpreter::stackElementSize); 1239 } 1240 1241 void TemplateTable::pop2() 1242 { 1243 transition(vtos, vtos); 1244 __ add(esp, esp, 2 * Interpreter::stackElementSize); 1245 } 1246 1247 void TemplateTable::dup() 1248 { 1249 transition(vtos, vtos); 1250 __ ldr(r0, Address(esp, 0)); 1251 __ push(r0); 1252 // stack: ..., a, a 1253 } 1254 1255 void TemplateTable::dup_x1() 1256 { 1257 transition(vtos, vtos); 1258 // stack: ..., a, b 1259 __ ldr(r0, at_tos()); // load b 1260 __ ldr(r2, at_tos_p1()); // load a 1261 __ str(r0, at_tos_p1()); // store b 1262 __ str(r2, at_tos()); // store a 1263 __ push(r0); // push b 1264 // stack: ..., b, a, b 1265 } 1266 1267 void TemplateTable::dup_x2() 1268 { 1269 transition(vtos, vtos); 1270 // stack: ..., a, b, c 1271 __ ldr(r0, at_tos()); // load c 1272 __ ldr(r2, at_tos_p2()); // load a 1273 __ str(r0, at_tos_p2()); // store c in a 1274 __ push(r0); // push c 1275 // stack: ..., c, b, c, c 1276 __ ldr(r0, at_tos_p2()); // load b 1277 __ str(r2, at_tos_p2()); // store a in b 1278 // stack: ..., c, a, c, c 1279 __ str(r0, at_tos_p1()); // store b in c 1280 // stack: ..., c, a, b, c 1281 } 1282 1283 void TemplateTable::dup2() 1284 { 1285 transition(vtos, vtos); 1286 // stack: ..., a, b 1287 __ ldr(r0, at_tos_p1()); // load a 1288 __ push(r0); // push a 1289 __ ldr(r0, at_tos_p1()); // load b 1290 __ push(r0); // push b 1291 // stack: ..., a, b, a, b 1292 } 1293 1294 void TemplateTable::dup2_x1() 1295 { 1296 transition(vtos, vtos); 1297 // stack: ..., a, b, c 1298 __ ldr(r2, at_tos()); // load c 1299 __ ldr(r0, at_tos_p1()); // load b 1300 __ push(r0); // push b 1301 __ push(r2); // push c 1302 // stack: ..., a, b, c, b, c 1303 __ str(r2, at_tos_p3()); // store c in b 1304 // stack: ..., a, c, c, b, c 1305 __ ldr(r2, at_tos_p4()); // load a 1306 __ str(r2, at_tos_p2()); // store a in 2nd c 1307 // stack: ..., a, c, a, b, c 1308 __ str(r0, at_tos_p4()); // store b in a 1309 // stack: ..., b, c, a, b, c 1310 } 1311 1312 void TemplateTable::dup2_x2() 1313 { 1314 transition(vtos, vtos); 1315 // stack: ..., a, b, c, d 1316 __ ldr(r2, at_tos()); // load d 1317 __ ldr(r0, at_tos_p1()); // load c 1318 __ push(r0) ; // push c 1319 __ push(r2); // push d 1320 // stack: ..., a, b, c, d, c, d 1321 __ ldr(r0, at_tos_p4()); // load b 1322 __ str(r0, at_tos_p2()); // store b in d 1323 __ str(r2, at_tos_p4()); // store d in b 1324 // stack: ..., a, d, c, b, c, d 1325 __ ldr(r2, at_tos_p5()); // load a 1326 __ ldr(r0, at_tos_p3()); // load c 1327 __ str(r2, at_tos_p3()); // store a in c 1328 __ str(r0, at_tos_p5()); // store c in a 1329 // stack: ..., c, d, a, b, c, d 1330 } 1331 1332 void TemplateTable::swap() 1333 { 1334 transition(vtos, vtos); 1335 // stack: ..., a, b 1336 __ ldr(r2, at_tos_p1()); // load a 1337 __ ldr(r0, at_tos()); // load b 1338 __ str(r2, at_tos()); // store a in b 1339 __ str(r0, at_tos_p1()); // store b in a 1340 // stack: ..., b, a 1341 } 1342 1343 void TemplateTable::iop2(Operation op) 1344 { 1345 transition(itos, itos); 1346 // r0 <== r1 op r0 1347 __ pop_i(r1); 1348 switch (op) { 1349 case add : __ addw(r0, r1, r0); break; 1350 case sub : __ subw(r0, r1, r0); break; 1351 case mul : __ mulw(r0, r1, r0); break; 1352 case _and : __ andw(r0, r1, r0); break; 1353 case _or : __ orrw(r0, r1, r0); break; 1354 case _xor : __ eorw(r0, r1, r0); break; 1355 case shl : __ lslvw(r0, r1, r0); break; 1356 case shr : __ asrvw(r0, r1, r0); break; 1357 case ushr : __ lsrvw(r0, r1, r0);break; 1358 default : ShouldNotReachHere(); 1359 } 1360 } 1361 1362 void TemplateTable::lop2(Operation op) 1363 { 1364 transition(ltos, ltos); 1365 // r0 <== r1 op r0 1366 __ pop_l(r1); 1367 switch (op) { 1368 case add : __ add(r0, r1, r0); break; 1369 case sub : __ sub(r0, r1, r0); break; 1370 case mul : __ mul(r0, r1, r0); break; 1371 case _and : __ andr(r0, r1, r0); break; 1372 case _or : __ orr(r0, r1, r0); break; 1373 case _xor : __ eor(r0, r1, r0); break; 1374 default : ShouldNotReachHere(); 1375 } 1376 } 1377 1378 void TemplateTable::idiv() 1379 { 1380 transition(itos, itos); 1381 // explicitly check for div0 1382 Label no_div0; 1383 __ cbnzw(r0, no_div0); 1384 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1385 __ br(rscratch1); 1386 __ bind(no_div0); 1387 __ pop_i(r1); 1388 // r0 <== r1 idiv r0 1389 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); 1390 } 1391 1392 void TemplateTable::irem() 1393 { 1394 transition(itos, itos); 1395 // explicitly check for div0 1396 Label no_div0; 1397 __ cbnzw(r0, no_div0); 1398 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1399 __ br(rscratch1); 1400 __ bind(no_div0); 1401 __ pop_i(r1); 1402 // r0 <== r1 irem r0 1403 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); 1404 } 1405 1406 void TemplateTable::lmul() 1407 { 1408 transition(ltos, ltos); 1409 __ pop_l(r1); 1410 __ mul(r0, r0, r1); 1411 } 1412 1413 void TemplateTable::ldiv() 1414 { 1415 transition(ltos, ltos); 1416 // explicitly check for div0 1417 Label no_div0; 1418 __ cbnz(r0, no_div0); 1419 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1420 __ br(rscratch1); 1421 __ bind(no_div0); 1422 __ pop_l(r1); 1423 // r0 <== r1 ldiv r0 1424 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); 1425 } 1426 1427 void TemplateTable::lrem() 1428 { 1429 transition(ltos, ltos); 1430 // explicitly check for div0 1431 Label no_div0; 1432 __ cbnz(r0, no_div0); 1433 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1434 __ br(rscratch1); 1435 __ bind(no_div0); 1436 __ pop_l(r1); 1437 // r0 <== r1 lrem r0 1438 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); 1439 } 1440 1441 void TemplateTable::lshl() 1442 { 1443 transition(itos, ltos); 1444 // shift count is in r0 1445 __ pop_l(r1); 1446 __ lslv(r0, r1, r0); 1447 } 1448 1449 void TemplateTable::lshr() 1450 { 1451 transition(itos, ltos); 1452 // shift count is in r0 1453 __ pop_l(r1); 1454 __ asrv(r0, r1, r0); 1455 } 1456 1457 void TemplateTable::lushr() 1458 { 1459 transition(itos, ltos); 1460 // shift count is in r0 1461 __ pop_l(r1); 1462 __ lsrv(r0, r1, r0); 1463 } 1464 1465 void TemplateTable::fop2(Operation op) 1466 { 1467 transition(ftos, ftos); 1468 switch (op) { 1469 case add: 1470 // n.b. use ldrd because this is a 64 bit slot 1471 __ pop_f(v1); 1472 __ fadds(v0, v1, v0); 1473 break; 1474 case sub: 1475 __ pop_f(v1); 1476 __ fsubs(v0, v1, v0); 1477 break; 1478 case mul: 1479 __ pop_f(v1); 1480 __ fmuls(v0, v1, v0); 1481 break; 1482 case div: 1483 __ pop_f(v1); 1484 __ fdivs(v0, v1, v0); 1485 break; 1486 case rem: 1487 __ fmovs(v1, v0); 1488 __ pop_f(v0); 1489 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1490 break; 1491 default: 1492 ShouldNotReachHere(); 1493 break; 1494 } 1495 } 1496 1497 void TemplateTable::dop2(Operation op) 1498 { 1499 transition(dtos, dtos); 1500 switch (op) { 1501 case add: 1502 // n.b. use ldrd because this is a 64 bit slot 1503 __ pop_d(v1); 1504 __ faddd(v0, v1, v0); 1505 break; 1506 case sub: 1507 __ pop_d(v1); 1508 __ fsubd(v0, v1, v0); 1509 break; 1510 case mul: 1511 __ pop_d(v1); 1512 __ fmuld(v0, v1, v0); 1513 break; 1514 case div: 1515 __ pop_d(v1); 1516 __ fdivd(v0, v1, v0); 1517 break; 1518 case rem: 1519 __ fmovd(v1, v0); 1520 __ pop_d(v0); 1521 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1522 break; 1523 default: 1524 ShouldNotReachHere(); 1525 break; 1526 } 1527 } 1528 1529 void TemplateTable::ineg() 1530 { 1531 transition(itos, itos); 1532 __ negw(r0, r0); 1533 1534 } 1535 1536 void TemplateTable::lneg() 1537 { 1538 transition(ltos, ltos); 1539 __ neg(r0, r0); 1540 } 1541 1542 void TemplateTable::fneg() 1543 { 1544 transition(ftos, ftos); 1545 __ fnegs(v0, v0); 1546 } 1547 1548 void TemplateTable::dneg() 1549 { 1550 transition(dtos, dtos); 1551 __ fnegd(v0, v0); 1552 } 1553 1554 void TemplateTable::iinc() 1555 { 1556 transition(vtos, vtos); 1557 __ load_signed_byte(r1, at_bcp(2)); // get constant 1558 locals_index(r2); 1559 __ ldr(r0, iaddress(r2)); 1560 __ addw(r0, r0, r1); 1561 __ str(r0, iaddress(r2)); 1562 } 1563 1564 void TemplateTable::wide_iinc() 1565 { 1566 transition(vtos, vtos); 1567 // __ mov(r1, zr); 1568 __ ldrw(r1, at_bcp(2)); // get constant and index 1569 __ rev16(r1, r1); 1570 __ ubfx(r2, r1, 0, 16); 1571 __ neg(r2, r2); 1572 __ sbfx(r1, r1, 16, 16); 1573 __ ldr(r0, iaddress(r2)); 1574 __ addw(r0, r0, r1); 1575 __ str(r0, iaddress(r2)); 1576 } 1577 1578 void TemplateTable::convert() 1579 { 1580 // Checking 1581 #ifdef ASSERT 1582 { 1583 TosState tos_in = ilgl; 1584 TosState tos_out = ilgl; 1585 switch (bytecode()) { 1586 case Bytecodes::_i2l: // fall through 1587 case Bytecodes::_i2f: // fall through 1588 case Bytecodes::_i2d: // fall through 1589 case Bytecodes::_i2b: // fall through 1590 case Bytecodes::_i2c: // fall through 1591 case Bytecodes::_i2s: tos_in = itos; break; 1592 case Bytecodes::_l2i: // fall through 1593 case Bytecodes::_l2f: // fall through 1594 case Bytecodes::_l2d: tos_in = ltos; break; 1595 case Bytecodes::_f2i: // fall through 1596 case Bytecodes::_f2l: // fall through 1597 case Bytecodes::_f2d: tos_in = ftos; break; 1598 case Bytecodes::_d2i: // fall through 1599 case Bytecodes::_d2l: // fall through 1600 case Bytecodes::_d2f: tos_in = dtos; break; 1601 default : ShouldNotReachHere(); 1602 } 1603 switch (bytecode()) { 1604 case Bytecodes::_l2i: // fall through 1605 case Bytecodes::_f2i: // fall through 1606 case Bytecodes::_d2i: // fall through 1607 case Bytecodes::_i2b: // fall through 1608 case Bytecodes::_i2c: // fall through 1609 case Bytecodes::_i2s: tos_out = itos; break; 1610 case Bytecodes::_i2l: // fall through 1611 case Bytecodes::_f2l: // fall through 1612 case Bytecodes::_d2l: tos_out = ltos; break; 1613 case Bytecodes::_i2f: // fall through 1614 case Bytecodes::_l2f: // fall through 1615 case Bytecodes::_d2f: tos_out = ftos; break; 1616 case Bytecodes::_i2d: // fall through 1617 case Bytecodes::_l2d: // fall through 1618 case Bytecodes::_f2d: tos_out = dtos; break; 1619 default : ShouldNotReachHere(); 1620 } 1621 transition(tos_in, tos_out); 1622 } 1623 #endif // ASSERT 1624 // static const int64_t is_nan = 0x8000000000000000L; 1625 1626 // Conversion 1627 switch (bytecode()) { 1628 case Bytecodes::_i2l: 1629 __ sxtw(r0, r0); 1630 break; 1631 case Bytecodes::_i2f: 1632 __ scvtfws(v0, r0); 1633 break; 1634 case Bytecodes::_i2d: 1635 __ scvtfwd(v0, r0); 1636 break; 1637 case Bytecodes::_i2b: 1638 __ sxtbw(r0, r0); 1639 break; 1640 case Bytecodes::_i2c: 1641 __ uxthw(r0, r0); 1642 break; 1643 case Bytecodes::_i2s: 1644 __ sxthw(r0, r0); 1645 break; 1646 case Bytecodes::_l2i: 1647 __ uxtw(r0, r0); 1648 break; 1649 case Bytecodes::_l2f: 1650 __ scvtfs(v0, r0); 1651 break; 1652 case Bytecodes::_l2d: 1653 __ scvtfd(v0, r0); 1654 break; 1655 case Bytecodes::_f2i: 1656 { 1657 Label L_Okay; 1658 __ clear_fpsr(); 1659 __ fcvtzsw(r0, v0); 1660 __ get_fpsr(r1); 1661 __ cbzw(r1, L_Okay); 1662 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); 1663 __ bind(L_Okay); 1664 } 1665 break; 1666 case Bytecodes::_f2l: 1667 { 1668 Label L_Okay; 1669 __ clear_fpsr(); 1670 __ fcvtzs(r0, v0); 1671 __ get_fpsr(r1); 1672 __ cbzw(r1, L_Okay); 1673 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1674 __ bind(L_Okay); 1675 } 1676 break; 1677 case Bytecodes::_f2d: 1678 __ fcvts(v0, v0); 1679 break; 1680 case Bytecodes::_d2i: 1681 { 1682 Label L_Okay; 1683 __ clear_fpsr(); 1684 __ fcvtzdw(r0, v0); 1685 __ get_fpsr(r1); 1686 __ cbzw(r1, L_Okay); 1687 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); 1688 __ bind(L_Okay); 1689 } 1690 break; 1691 case Bytecodes::_d2l: 1692 { 1693 Label L_Okay; 1694 __ clear_fpsr(); 1695 __ fcvtzd(r0, v0); 1696 __ get_fpsr(r1); 1697 __ cbzw(r1, L_Okay); 1698 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1699 __ bind(L_Okay); 1700 } 1701 break; 1702 case Bytecodes::_d2f: 1703 __ fcvtd(v0, v0); 1704 break; 1705 default: 1706 ShouldNotReachHere(); 1707 } 1708 } 1709 1710 void TemplateTable::lcmp() 1711 { 1712 transition(ltos, itos); 1713 Label done; 1714 __ pop_l(r1); 1715 __ cmp(r1, r0); 1716 __ mov(r0, (uint64_t)-1L); 1717 __ br(Assembler::LT, done); 1718 // __ mov(r0, 1UL); 1719 // __ csel(r0, r0, zr, Assembler::NE); 1720 // and here is a faster way 1721 __ csinc(r0, zr, zr, Assembler::EQ); 1722 __ bind(done); 1723 } 1724 1725 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1726 { 1727 Label done; 1728 if (is_float) { 1729 // XXX get rid of pop here, use ... reg, mem32 1730 __ pop_f(v1); 1731 __ fcmps(v1, v0); 1732 } else { 1733 // XXX get rid of pop here, use ... reg, mem64 1734 __ pop_d(v1); 1735 __ fcmpd(v1, v0); 1736 } 1737 if (unordered_result < 0) { 1738 // we want -1 for unordered or less than, 0 for equal and 1 for 1739 // greater than. 1740 __ mov(r0, (uint64_t)-1L); 1741 // for FP LT tests less than or unordered 1742 __ br(Assembler::LT, done); 1743 // install 0 for EQ otherwise 1 1744 __ csinc(r0, zr, zr, Assembler::EQ); 1745 } else { 1746 // we want -1 for less than, 0 for equal and 1 for unordered or 1747 // greater than. 1748 __ mov(r0, 1L); 1749 // for FP HI tests greater than or unordered 1750 __ br(Assembler::HI, done); 1751 // install 0 for EQ otherwise ~0 1752 __ csinv(r0, zr, zr, Assembler::EQ); 1753 1754 } 1755 __ bind(done); 1756 } 1757 1758 void TemplateTable::branch(bool is_jsr, bool is_wide) 1759 { 1760 __ profile_taken_branch(r0, r1); 1761 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1762 InvocationCounter::counter_offset(); 1763 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1764 InvocationCounter::counter_offset(); 1765 1766 // load branch displacement 1767 if (!is_wide) { 1768 __ ldrh(r2, at_bcp(1)); 1769 __ rev16(r2, r2); 1770 // sign extend the 16 bit value in r2 1771 __ sbfm(r2, r2, 0, 15); 1772 } else { 1773 __ ldrw(r2, at_bcp(1)); 1774 __ revw(r2, r2); 1775 // sign extend the 32 bit value in r2 1776 __ sbfm(r2, r2, 0, 31); 1777 } 1778 1779 // Handle all the JSR stuff here, then exit. 1780 // It's much shorter and cleaner than intermingling with the non-JSR 1781 // normal-branch stuff occurring below. 1782 1783 if (is_jsr) { 1784 // Pre-load the next target bytecode into rscratch1 1785 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); 1786 // compute return address as bci 1787 __ ldr(rscratch2, Address(rmethod, Method::const_offset())); 1788 __ add(rscratch2, rscratch2, 1789 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1790 __ sub(r1, rbcp, rscratch2); 1791 __ push_i(r1); 1792 // Adjust the bcp by the 16-bit displacement in r2 1793 __ add(rbcp, rbcp, r2); 1794 __ dispatch_only(vtos, /*generate_poll*/true); 1795 return; 1796 } 1797 1798 // Normal (non-jsr) branch handling 1799 1800 // Adjust the bcp by the displacement in r2 1801 __ add(rbcp, rbcp, r2); 1802 1803 assert(UseLoopCounter || !UseOnStackReplacement, 1804 "on-stack-replacement requires loop counters"); 1805 Label backedge_counter_overflow; 1806 Label dispatch; 1807 if (UseLoopCounter) { 1808 // increment backedge counter for backward branches 1809 // r0: MDO 1810 // w1: MDO bumped taken-count 1811 // r2: target offset 1812 __ cmp(r2, zr); 1813 __ br(Assembler::GT, dispatch); // count only if backward branch 1814 1815 // ECN: FIXME: This code smells 1816 // check if MethodCounters exists 1817 Label has_counters; 1818 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1819 __ cbnz(rscratch1, has_counters); 1820 __ push(r0); 1821 __ push(r1); 1822 __ push(r2); 1823 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1824 InterpreterRuntime::build_method_counters), rmethod); 1825 __ pop(r2); 1826 __ pop(r1); 1827 __ pop(r0); 1828 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1829 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory 1830 __ bind(has_counters); 1831 1832 Label no_mdo; 1833 int increment = InvocationCounter::count_increment; 1834 if (ProfileInterpreter) { 1835 // Are we profiling? 1836 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1837 __ cbz(r1, no_mdo); 1838 // Increment the MDO backedge counter 1839 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + 1840 in_bytes(InvocationCounter::counter_offset())); 1841 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset())); 1842 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1843 r0, rscratch1, false, Assembler::EQ, 1844 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1845 __ b(dispatch); 1846 } 1847 __ bind(no_mdo); 1848 // Increment backedge counter in MethodCounters* 1849 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1850 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset())); 1851 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, 1852 r0, rscratch2, false, Assembler::EQ, 1853 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1854 __ bind(dispatch); 1855 } 1856 1857 // Pre-load the next target bytecode into rscratch1 1858 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); 1859 1860 // continue with the bytecode @ target 1861 // rscratch1: target bytecode 1862 // rbcp: target bcp 1863 __ dispatch_only(vtos, /*generate_poll*/true); 1864 1865 if (UseLoopCounter && UseOnStackReplacement) { 1866 // invocation counter overflow 1867 __ bind(backedge_counter_overflow); 1868 __ neg(r2, r2); 1869 __ add(r2, r2, rbcp); // branch bcp 1870 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1871 __ call_VM(noreg, 1872 CAST_FROM_FN_PTR(address, 1873 InterpreterRuntime::frequency_counter_overflow), 1874 r2); 1875 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1876 1877 // r0: osr nmethod (osr ok) or null (osr not possible) 1878 // w1: target bytecode 1879 // r2: scratch 1880 __ cbz(r0, dispatch); // test result -- no osr if null 1881 // nmethod may have been invalidated (VM may block upon call_VM return) 1882 __ ldrb(r2, Address(r0, nmethod::state_offset())); 1883 if (nmethod::in_use != 0) 1884 __ sub(r2, r2, nmethod::in_use); 1885 __ cbnz(r2, dispatch); 1886 1887 // We have the address of an on stack replacement routine in r0 1888 // We need to prepare to execute the OSR method. First we must 1889 // migrate the locals and monitors off of the stack. 1890 1891 __ mov(r19, r0); // save the nmethod 1892 1893 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1894 1895 // r0 is OSR buffer, move it to expected parameter location 1896 __ mov(j_rarg0, r0); 1897 1898 // remove activation 1899 // get sender esp 1900 __ ldr(esp, 1901 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1902 // remove frame anchor 1903 __ leave(); 1904 // Ensure compiled code always sees stack at proper alignment 1905 __ andr(sp, esp, -16); 1906 1907 // and begin the OSR nmethod 1908 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); 1909 __ br(rscratch1); 1910 } 1911 } 1912 1913 1914 void TemplateTable::if_0cmp(Condition cc) 1915 { 1916 transition(itos, vtos); 1917 // assume branch is more often taken than not (loops use backward branches) 1918 Label not_taken; 1919 if (cc == equal) 1920 __ cbnzw(r0, not_taken); 1921 else if (cc == not_equal) 1922 __ cbzw(r0, not_taken); 1923 else { 1924 __ andsw(zr, r0, r0); 1925 __ br(j_not(cc), not_taken); 1926 } 1927 1928 branch(false, false); 1929 __ bind(not_taken); 1930 __ profile_not_taken_branch(r0); 1931 } 1932 1933 void TemplateTable::if_icmp(Condition cc) 1934 { 1935 transition(itos, vtos); 1936 // assume branch is more often taken than not (loops use backward branches) 1937 Label not_taken; 1938 __ pop_i(r1); 1939 __ cmpw(r1, r0, Assembler::LSL); 1940 __ br(j_not(cc), not_taken); 1941 branch(false, false); 1942 __ bind(not_taken); 1943 __ profile_not_taken_branch(r0); 1944 } 1945 1946 void TemplateTable::if_nullcmp(Condition cc) 1947 { 1948 transition(atos, vtos); 1949 // assume branch is more often taken than not (loops use backward branches) 1950 Label not_taken; 1951 if (cc == equal) 1952 __ cbnz(r0, not_taken); 1953 else 1954 __ cbz(r0, not_taken); 1955 branch(false, false); 1956 __ bind(not_taken); 1957 __ profile_not_taken_branch(r0); 1958 } 1959 1960 void TemplateTable::if_acmp(Condition cc) 1961 { 1962 transition(atos, vtos); 1963 // assume branch is more often taken than not (loops use backward branches) 1964 Label not_taken; 1965 __ pop_ptr(r1); 1966 __ cmpoop(r1, r0); 1967 __ br(j_not(cc), not_taken); 1968 branch(false, false); 1969 __ bind(not_taken); 1970 __ profile_not_taken_branch(r0); 1971 } 1972 1973 void TemplateTable::ret() { 1974 transition(vtos, vtos); 1975 locals_index(r1); 1976 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1977 __ profile_ret(r1, r2); 1978 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1979 __ lea(rbcp, Address(rbcp, r1)); 1980 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1981 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1982 } 1983 1984 void TemplateTable::wide_ret() { 1985 transition(vtos, vtos); 1986 locals_index_wide(r1); 1987 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1988 __ profile_ret(r1, r2); 1989 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1990 __ lea(rbcp, Address(rbcp, r1)); 1991 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1992 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1993 } 1994 1995 1996 void TemplateTable::tableswitch() { 1997 Label default_case, continue_execution; 1998 transition(itos, vtos); 1999 // align rbcp 2000 __ lea(r1, at_bcp(BytesPerInt)); 2001 __ andr(r1, r1, -BytesPerInt); 2002 // load lo & hi 2003 __ ldrw(r2, Address(r1, BytesPerInt)); 2004 __ ldrw(r3, Address(r1, 2 * BytesPerInt)); 2005 __ rev32(r2, r2); 2006 __ rev32(r3, r3); 2007 // check against lo & hi 2008 __ cmpw(r0, r2); 2009 __ br(Assembler::LT, default_case); 2010 __ cmpw(r0, r3); 2011 __ br(Assembler::GT, default_case); 2012 // lookup dispatch offset 2013 __ subw(r0, r0, r2); 2014 __ lea(r3, Address(r1, r0, Address::uxtw(2))); 2015 __ ldrw(r3, Address(r3, 3 * BytesPerInt)); 2016 __ profile_switch_case(r0, r1, r2); 2017 // continue execution 2018 __ bind(continue_execution); 2019 __ rev32(r3, r3); 2020 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); 2021 __ add(rbcp, rbcp, r3, ext::sxtw); 2022 __ dispatch_only(vtos, /*generate_poll*/true); 2023 // handle default 2024 __ bind(default_case); 2025 __ profile_switch_default(r0); 2026 __ ldrw(r3, Address(r1, 0)); 2027 __ b(continue_execution); 2028 } 2029 2030 void TemplateTable::lookupswitch() { 2031 transition(itos, itos); 2032 __ stop("lookupswitch bytecode should have been rewritten"); 2033 } 2034 2035 void TemplateTable::fast_linearswitch() { 2036 transition(itos, vtos); 2037 Label loop_entry, loop, found, continue_execution; 2038 // bswap r0 so we can avoid bswapping the table entries 2039 __ rev32(r0, r0); 2040 // align rbcp 2041 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2042 // this instruction (change offsets 2043 // below) 2044 __ andr(r19, r19, -BytesPerInt); 2045 // set counter 2046 __ ldrw(r1, Address(r19, BytesPerInt)); 2047 __ rev32(r1, r1); 2048 __ b(loop_entry); 2049 // table search 2050 __ bind(loop); 2051 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2052 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); 2053 __ cmpw(r0, rscratch1); 2054 __ br(Assembler::EQ, found); 2055 __ bind(loop_entry); 2056 __ subs(r1, r1, 1); 2057 __ br(Assembler::PL, loop); 2058 // default case 2059 __ profile_switch_default(r0); 2060 __ ldrw(r3, Address(r19, 0)); 2061 __ b(continue_execution); 2062 // entry found -> get offset 2063 __ bind(found); 2064 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2065 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); 2066 __ profile_switch_case(r1, r0, r19); 2067 // continue execution 2068 __ bind(continue_execution); 2069 __ rev32(r3, r3); 2070 __ add(rbcp, rbcp, r3, ext::sxtw); 2071 __ ldrb(rscratch1, Address(rbcp, 0)); 2072 __ dispatch_only(vtos, /*generate_poll*/true); 2073 } 2074 2075 void TemplateTable::fast_binaryswitch() { 2076 transition(itos, vtos); 2077 // Implementation using the following core algorithm: 2078 // 2079 // int binary_search(int key, LookupswitchPair* array, int n) { 2080 // // Binary search according to "Methodik des Programmierens" by 2081 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2082 // int i = 0; 2083 // int j = n; 2084 // while (i+1 < j) { 2085 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2086 // // with Q: for all i: 0 <= i < n: key < a[i] 2087 // // where a stands for the array and assuming that the (inexisting) 2088 // // element a[n] is infinitely big. 2089 // int h = (i + j) >> 1; 2090 // // i < h < j 2091 // if (key < array[h].fast_match()) { 2092 // j = h; 2093 // } else { 2094 // i = h; 2095 // } 2096 // } 2097 // // R: a[i] <= key < a[i+1] or Q 2098 // // (i.e., if key is within array, i is the correct index) 2099 // return i; 2100 // } 2101 2102 // Register allocation 2103 const Register key = r0; // already set (tosca) 2104 const Register array = r1; 2105 const Register i = r2; 2106 const Register j = r3; 2107 const Register h = rscratch1; 2108 const Register temp = rscratch2; 2109 2110 // Find array start 2111 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2112 // get rid of this 2113 // instruction (change 2114 // offsets below) 2115 __ andr(array, array, -BytesPerInt); 2116 2117 // Initialize i & j 2118 __ mov(i, 0); // i = 0; 2119 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); 2120 2121 // Convert j into native byteordering 2122 __ rev32(j, j); 2123 2124 // And start 2125 Label entry; 2126 __ b(entry); 2127 2128 // binary search loop 2129 { 2130 Label loop; 2131 __ bind(loop); 2132 // int h = (i + j) >> 1; 2133 __ addw(h, i, j); // h = i + j; 2134 __ lsrw(h, h, 1); // h = (i + j) >> 1; 2135 // if (key < array[h].fast_match()) { 2136 // j = h; 2137 // } else { 2138 // i = h; 2139 // } 2140 // Convert array[h].match to native byte-ordering before compare 2141 __ ldr(temp, Address(array, h, Address::lsl(3))); 2142 __ rev32(temp, temp); 2143 __ cmpw(key, temp); 2144 // j = h if (key < array[h].fast_match()) 2145 __ csel(j, h, j, Assembler::LT); 2146 // i = h if (key >= array[h].fast_match()) 2147 __ csel(i, h, i, Assembler::GE); 2148 // while (i+1 < j) 2149 __ bind(entry); 2150 __ addw(h, i, 1); // i+1 2151 __ cmpw(h, j); // i+1 < j 2152 __ br(Assembler::LT, loop); 2153 } 2154 2155 // end of binary search, result index is i (must check again!) 2156 Label default_case; 2157 // Convert array[i].match to native byte-ordering before compare 2158 __ ldr(temp, Address(array, i, Address::lsl(3))); 2159 __ rev32(temp, temp); 2160 __ cmpw(key, temp); 2161 __ br(Assembler::NE, default_case); 2162 2163 // entry found -> j = offset 2164 __ add(j, array, i, ext::uxtx, 3); 2165 __ ldrw(j, Address(j, BytesPerInt)); 2166 __ profile_switch_case(i, key, array); 2167 __ rev32(j, j); 2168 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2169 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2170 __ dispatch_only(vtos, /*generate_poll*/true); 2171 2172 // default case -> j = default offset 2173 __ bind(default_case); 2174 __ profile_switch_default(i); 2175 __ ldrw(j, Address(array, -2 * BytesPerInt)); 2176 __ rev32(j, j); 2177 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2178 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2179 __ dispatch_only(vtos, /*generate_poll*/true); 2180 } 2181 2182 2183 void TemplateTable::_return(TosState state) 2184 { 2185 transition(state, state); 2186 assert(_desc->calls_vm(), 2187 "inconsistent calls_vm information"); // call in remove_activation 2188 2189 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2190 assert(state == vtos, "only valid state"); 2191 2192 __ ldr(c_rarg1, aaddress(0)); 2193 __ load_klass(r3, c_rarg1); 2194 __ ldrw(r3, Address(r3, Klass::access_flags_offset())); 2195 Label skip_register_finalizer; 2196 __ tbz(r3, exact_log2(JVM_ACC_HAS_FINALIZER), skip_register_finalizer); 2197 2198 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2199 2200 __ bind(skip_register_finalizer); 2201 } 2202 2203 // Issue a StoreStore barrier after all stores but before return 2204 // from any constructor for any class with a final field. We don't 2205 // know if this is a finalizer, so we always do so. 2206 if (_desc->bytecode() == Bytecodes::_return) 2207 __ membar(MacroAssembler::StoreStore); 2208 2209 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2210 Label no_safepoint; 2211 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 2212 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint); 2213 __ push(state); 2214 __ push_cont_fastpath(rthread); 2215 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)); 2216 __ pop_cont_fastpath(rthread); 2217 __ pop(state); 2218 __ bind(no_safepoint); 2219 } 2220 2221 // Narrow result if state is itos but result type is smaller. 2222 // Need to narrow in the return bytecode rather than in generate_return_entry 2223 // since compiled code callers expect the result to already be narrowed. 2224 if (state == itos) { 2225 __ narrow(r0); 2226 } 2227 2228 __ remove_activation(state); 2229 __ ret(lr); 2230 } 2231 2232 // ---------------------------------------------------------------------------- 2233 // Volatile variables demand their effects be made known to all CPU's 2234 // in order. Store buffers on most chips allow reads & writes to 2235 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2236 // without some kind of memory barrier (i.e., it's not sufficient that 2237 // the interpreter does not reorder volatile references, the hardware 2238 // also must not reorder them). 2239 // 2240 // According to the new Java Memory Model (JMM): 2241 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2242 // writes act as acquire & release, so: 2243 // (2) A read cannot let unrelated NON-volatile memory refs that 2244 // happen after the read float up to before the read. It's OK for 2245 // non-volatile memory refs that happen before the volatile read to 2246 // float down below it. 2247 // (3) Similar a volatile write cannot let unrelated NON-volatile 2248 // memory refs that happen BEFORE the write float down to after the 2249 // write. It's OK for non-volatile memory refs that happen after the 2250 // volatile write to float up before it. 2251 // 2252 // We only put in barriers around volatile refs (they are expensive), 2253 // not _between_ memory refs (that would require us to track the 2254 // flavor of the previous memory refs). Requirements (2) and (3) 2255 // require some barriers before volatile stores and after volatile 2256 // loads. These nearly cover requirement (1) but miss the 2257 // volatile-store-volatile-load case. This final case is placed after 2258 // volatile-stores although it could just as well go before 2259 // volatile-loads. 2260 2261 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2262 Register Rcache, 2263 Register index) { 2264 const Register temp = r19; 2265 assert_different_registers(Rcache, index, temp); 2266 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2267 2268 Label resolved, clinit_barrier_slow; 2269 2270 Bytecodes::Code code = bytecode(); 2271 __ load_method_entry(Rcache, index); 2272 switch(byte_no) { 2273 case f1_byte: 2274 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2275 break; 2276 case f2_byte: 2277 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2278 break; 2279 } 2280 // Load-acquire the bytecode to match store-release in InterpreterRuntime 2281 __ ldarb(temp, temp); 2282 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2283 __ br(Assembler::EQ, resolved); 2284 2285 // resolve first time through 2286 // Class initialization barrier slow path lands here as well. 2287 __ bind(clinit_barrier_slow); 2288 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2289 __ mov(temp, (int) code); 2290 __ call_VM(noreg, entry, temp); 2291 2292 // Update registers with resolved info 2293 __ load_method_entry(Rcache, index); 2294 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2295 // so all clients ofthis method must be modified accordingly 2296 __ bind(resolved); 2297 2298 // Class initialization barrier for static methods 2299 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2300 __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset()))); 2301 __ load_method_holder(temp, temp); 2302 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2303 } 2304 } 2305 2306 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2307 Register Rcache, 2308 Register index) { 2309 const Register temp = r19; 2310 assert_different_registers(Rcache, index, temp); 2311 2312 Label resolved; 2313 2314 Bytecodes::Code code = bytecode(); 2315 switch (code) { 2316 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2317 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2318 default: break; 2319 } 2320 2321 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2322 __ load_field_entry(Rcache, index); 2323 if (byte_no == f1_byte) { 2324 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2325 } else { 2326 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2327 } 2328 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 2329 __ ldarb(temp, temp); 2330 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2331 __ br(Assembler::EQ, resolved); 2332 2333 // resolve first time through 2334 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2335 __ mov(temp, (int) code); 2336 __ call_VM(noreg, entry, temp); 2337 2338 // Update registers with resolved info 2339 __ load_field_entry(Rcache, index); 2340 __ bind(resolved); 2341 } 2342 2343 void TemplateTable::load_resolved_field_entry(Register obj, 2344 Register cache, 2345 Register tos_state, 2346 Register offset, 2347 Register flags, 2348 bool is_static = false) { 2349 assert_different_registers(cache, tos_state, flags, offset); 2350 2351 // Field offset 2352 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2353 2354 // Flags 2355 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2356 2357 // TOS state 2358 if (tos_state != noreg) { 2359 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2360 } 2361 2362 // Klass overwrite register 2363 if (is_static) { 2364 __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2365 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2366 __ ldr(obj, Address(obj, mirror_offset)); 2367 __ resolve_oop_handle(obj, r5, rscratch2); 2368 } 2369 } 2370 2371 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2372 Register method, 2373 Register flags) { 2374 2375 // setup registers 2376 const Register index = flags; 2377 assert_different_registers(method, cache, flags); 2378 2379 // determine constant pool cache field offsets 2380 resolve_cache_and_index_for_method(f1_byte, cache, index); 2381 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2382 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2383 } 2384 2385 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2386 Register method, 2387 Register ref_index, 2388 Register flags) { 2389 // setup registers 2390 const Register index = ref_index; 2391 assert_different_registers(method, flags); 2392 assert_different_registers(method, cache, index); 2393 2394 // determine constant pool cache field offsets 2395 resolve_cache_and_index_for_method(f1_byte, cache, index); 2396 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2397 2398 // maybe push appendix to arguments (just before return address) 2399 Label L_no_push; 2400 __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push); 2401 // invokehandle uses an index into the resolved references array 2402 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2403 // Push the appendix as a trailing parameter. 2404 // This must be done before we get the receiver, 2405 // since the parameter_size includes it. 2406 Register appendix = method; 2407 __ load_resolved_reference_at_index(appendix, ref_index); 2408 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2409 __ bind(L_no_push); 2410 2411 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2412 } 2413 2414 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2415 Register klass, 2416 Register method_or_table_index, 2417 Register flags) { 2418 // setup registers 2419 const Register index = method_or_table_index; 2420 assert_different_registers(method_or_table_index, cache, flags); 2421 2422 // determine constant pool cache field offsets 2423 resolve_cache_and_index_for_method(f1_byte, cache, index); 2424 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2425 2426 // Invokeinterface can behave in different ways: 2427 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2428 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2429 // vtable index is placed in the register. 2430 // Otherwise, the registers will be populated with the klass and method. 2431 2432 Label NotVirtual; Label NotVFinal; Label Done; 2433 __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual); 2434 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2435 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2436 __ b(Done); 2437 2438 __ bind(NotVFinal); 2439 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2440 __ b(Done); 2441 2442 __ bind(NotVirtual); 2443 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2444 __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2445 __ bind(Done); 2446 } 2447 2448 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2449 Register method_or_table_index, 2450 Register flags) { 2451 // setup registers 2452 const Register index = flags; 2453 assert_different_registers(method_or_table_index, cache, flags); 2454 2455 // determine constant pool cache field offsets 2456 resolve_cache_and_index_for_method(f2_byte, cache, index); 2457 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2458 2459 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2460 Label NotVFinal; Label Done; 2461 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal); 2462 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2463 __ b(Done); 2464 2465 __ bind(NotVFinal); 2466 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2467 __ bind(Done); 2468 } 2469 2470 // The rmethod register is input and overwritten to be the adapter method for the 2471 // indy call. Link Register (lr) is set to the return address for the adapter and 2472 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered 2473 void TemplateTable::load_invokedynamic_entry(Register method) { 2474 // setup registers 2475 const Register appendix = r0; 2476 const Register cache = r2; 2477 const Register index = r3; 2478 assert_different_registers(method, appendix, cache, index, rcpool); 2479 2480 __ save_bcp(); 2481 2482 Label resolved; 2483 2484 __ load_resolved_indy_entry(cache, index); 2485 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2486 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2487 __ ldar(method, method); 2488 2489 // Compare the method to zero 2490 __ cbnz(method, resolved); 2491 2492 Bytecodes::Code code = bytecode(); 2493 2494 // Call to the interpreter runtime to resolve invokedynamic 2495 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2496 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic 2497 __ call_VM(noreg, entry, method); 2498 // Update registers with resolved info 2499 __ load_resolved_indy_entry(cache, index); 2500 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2501 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2502 __ ldar(method, method); 2503 2504 #ifdef ASSERT 2505 __ cbnz(method, resolved); 2506 __ stop("Should be resolved by now"); 2507 #endif // ASSERT 2508 __ bind(resolved); 2509 2510 Label L_no_push; 2511 // Check if there is an appendix 2512 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2513 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push); 2514 2515 // Get appendix 2516 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2517 // Push the appendix as a trailing parameter 2518 // since the parameter_size includes it. 2519 __ push(method); 2520 __ mov(method, index); 2521 __ load_resolved_reference_at_index(appendix, method); 2522 __ verify_oop(appendix); 2523 __ pop(method); 2524 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2525 __ bind(L_no_push); 2526 2527 // compute return type 2528 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2529 // load return address 2530 // Return address is loaded into link register(lr) and not pushed to the stack 2531 // like x86 2532 { 2533 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2534 __ mov(rscratch1, table_addr); 2535 __ ldr(lr, Address(rscratch1, index, Address::lsl(3))); 2536 } 2537 } 2538 2539 // The registers cache and index expected to be set before call. 2540 // Correct values of the cache and index registers are preserved. 2541 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2542 bool is_static, bool has_tos) { 2543 // do the JVMTI work here to avoid disturbing the register state below 2544 // We use c_rarg registers here because we want to use the register used in 2545 // the call to the VM 2546 if (JvmtiExport::can_post_field_access()) { 2547 // Check to see if a field access watch has been set before we 2548 // take the time to call into the VM. 2549 Label L1; 2550 assert_different_registers(cache, index, r0); 2551 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2552 __ ldrw(r0, Address(rscratch1)); 2553 __ cbzw(r0, L1); 2554 2555 __ load_field_entry(c_rarg2, index); 2556 2557 if (is_static) { 2558 __ mov(c_rarg1, zr); // null object reference 2559 } else { 2560 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it 2561 __ verify_oop(c_rarg1); 2562 } 2563 // c_rarg1: object pointer or null 2564 // c_rarg2: cache entry pointer 2565 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2566 InterpreterRuntime::post_field_access), 2567 c_rarg1, c_rarg2); 2568 __ load_field_entry(cache, index); 2569 __ bind(L1); 2570 } 2571 } 2572 2573 void TemplateTable::pop_and_check_object(Register r) 2574 { 2575 __ pop_ptr(r); 2576 __ null_check(r); // for field access must check obj. 2577 __ verify_oop(r); 2578 } 2579 2580 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) 2581 { 2582 const Register cache = r4; 2583 const Register obj = r4; 2584 const Register index = r3; 2585 const Register tos_state = r3; 2586 const Register off = r19; 2587 const Register flags = r6; 2588 const Register bc = r4; // uses same reg as obj, so don't mix them 2589 2590 resolve_cache_and_index_for_field(byte_no, cache, index); 2591 jvmti_post_field_access(cache, index, is_static, false); 2592 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2593 2594 if (!is_static) { 2595 // obj is on the stack 2596 pop_and_check_object(obj); 2597 } 2598 2599 // 8179954: We need to make sure that the code generated for 2600 // volatile accesses forms a sequentially-consistent set of 2601 // operations when combined with STLR and LDAR. Without a leading 2602 // membar it's possible for a simple Dekker test to fail if loads 2603 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 2604 // the stores in one method and we interpret the loads in another. 2605 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){ 2606 Label notVolatile; 2607 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2608 __ membar(MacroAssembler::AnyAny); 2609 __ bind(notVolatile); 2610 } 2611 2612 const Address field(obj, off); 2613 2614 Label Done, notByte, notBool, notInt, notShort, notChar, 2615 notLong, notFloat, notObj, notDouble; 2616 2617 assert(btos == 0, "change code, btos != 0"); 2618 __ cbnz(tos_state, notByte); 2619 2620 // Don't rewrite getstatic, only getfield 2621 if (is_static) rc = may_not_rewrite; 2622 2623 // btos 2624 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 2625 __ push(btos); 2626 // Rewrite bytecode to be faster 2627 if (rc == may_rewrite) { 2628 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2629 } 2630 __ b(Done); 2631 2632 __ bind(notByte); 2633 __ cmp(tos_state, (u1)ztos); 2634 __ br(Assembler::NE, notBool); 2635 2636 // ztos (same code as btos) 2637 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg); 2638 __ push(ztos); 2639 // Rewrite bytecode to be faster 2640 if (rc == may_rewrite) { 2641 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2642 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2643 } 2644 __ b(Done); 2645 2646 __ bind(notBool); 2647 __ cmp(tos_state, (u1)atos); 2648 __ br(Assembler::NE, notObj); 2649 // atos 2650 do_oop_load(_masm, field, r0, IN_HEAP); 2651 __ push(atos); 2652 if (rc == may_rewrite) { 2653 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2654 } 2655 __ b(Done); 2656 2657 __ bind(notObj); 2658 __ cmp(tos_state, (u1)itos); 2659 __ br(Assembler::NE, notInt); 2660 // itos 2661 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 2662 __ push(itos); 2663 // Rewrite bytecode to be faster 2664 if (rc == may_rewrite) { 2665 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); 2666 } 2667 __ b(Done); 2668 2669 __ bind(notInt); 2670 __ cmp(tos_state, (u1)ctos); 2671 __ br(Assembler::NE, notChar); 2672 // ctos 2673 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 2674 __ push(ctos); 2675 // Rewrite bytecode to be faster 2676 if (rc == may_rewrite) { 2677 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); 2678 } 2679 __ b(Done); 2680 2681 __ bind(notChar); 2682 __ cmp(tos_state, (u1)stos); 2683 __ br(Assembler::NE, notShort); 2684 // stos 2685 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 2686 __ push(stos); 2687 // Rewrite bytecode to be faster 2688 if (rc == may_rewrite) { 2689 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); 2690 } 2691 __ b(Done); 2692 2693 __ bind(notShort); 2694 __ cmp(tos_state, (u1)ltos); 2695 __ br(Assembler::NE, notLong); 2696 // ltos 2697 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 2698 __ push(ltos); 2699 // Rewrite bytecode to be faster 2700 if (rc == may_rewrite) { 2701 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); 2702 } 2703 __ b(Done); 2704 2705 __ bind(notLong); 2706 __ cmp(tos_state, (u1)ftos); 2707 __ br(Assembler::NE, notFloat); 2708 // ftos 2709 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2710 __ push(ftos); 2711 // Rewrite bytecode to be faster 2712 if (rc == may_rewrite) { 2713 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); 2714 } 2715 __ b(Done); 2716 2717 __ bind(notFloat); 2718 #ifdef ASSERT 2719 __ cmp(tos_state, (u1)dtos); 2720 __ br(Assembler::NE, notDouble); 2721 #endif 2722 // dtos 2723 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2724 __ push(dtos); 2725 // Rewrite bytecode to be faster 2726 if (rc == may_rewrite) { 2727 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); 2728 } 2729 #ifdef ASSERT 2730 __ b(Done); 2731 2732 __ bind(notDouble); 2733 __ stop("Bad state"); 2734 #endif 2735 2736 __ bind(Done); 2737 2738 Label notVolatile; 2739 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2740 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2741 __ bind(notVolatile); 2742 } 2743 2744 2745 void TemplateTable::getfield(int byte_no) 2746 { 2747 getfield_or_static(byte_no, false); 2748 } 2749 2750 void TemplateTable::nofast_getfield(int byte_no) { 2751 getfield_or_static(byte_no, false, may_not_rewrite); 2752 } 2753 2754 void TemplateTable::getstatic(int byte_no) 2755 { 2756 getfield_or_static(byte_no, true); 2757 } 2758 2759 // The registers cache and index expected to be set before call. 2760 // The function may destroy various registers, just not the cache and index registers. 2761 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2762 transition(vtos, vtos); 2763 2764 if (JvmtiExport::can_post_field_modification()) { 2765 // Check to see if a field modification watch has been set before 2766 // we take the time to call into the VM. 2767 Label L1; 2768 assert_different_registers(cache, index, r0); 2769 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2770 __ ldrw(r0, Address(rscratch1)); 2771 __ cbz(r0, L1); 2772 2773 __ mov(c_rarg2, cache); 2774 2775 if (is_static) { 2776 // Life is simple. Null out the object pointer. 2777 __ mov(c_rarg1, zr); 2778 } else { 2779 // Life is harder. The stack holds the value on top, followed by 2780 // the object. We don't know the size of the value, though; it 2781 // could be one or two words depending on its type. As a result, 2782 // we must find the type to determine where the object is. 2783 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset()))); 2784 Label nope2, done, ok; 2785 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2786 __ cmpw(c_rarg3, ltos); 2787 __ br(Assembler::EQ, ok); 2788 __ cmpw(c_rarg3, dtos); 2789 __ br(Assembler::NE, nope2); 2790 __ bind(ok); 2791 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2792 __ bind(nope2); 2793 } 2794 // object (tos) 2795 __ mov(c_rarg3, esp); 2796 // c_rarg1: object pointer set up above (null if static) 2797 // c_rarg2: cache entry pointer 2798 // c_rarg3: jvalue object on the stack 2799 __ call_VM(noreg, 2800 CAST_FROM_FN_PTR(address, 2801 InterpreterRuntime::post_field_modification), 2802 c_rarg1, c_rarg2, c_rarg3); 2803 __ load_field_entry(cache, index); 2804 __ bind(L1); 2805 } 2806 } 2807 2808 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2809 transition(vtos, vtos); 2810 2811 const Register cache = r2; 2812 const Register index = r3; 2813 const Register tos_state = r3; 2814 const Register obj = r2; 2815 const Register off = r19; 2816 const Register flags = r0; 2817 const Register bc = r4; 2818 2819 resolve_cache_and_index_for_field(byte_no, cache, index); 2820 jvmti_post_field_mod(cache, index, is_static); 2821 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2822 2823 Label Done; 2824 __ mov(r5, flags); 2825 2826 { 2827 Label notVolatile; 2828 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2829 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2830 __ bind(notVolatile); 2831 } 2832 2833 // field address 2834 const Address field(obj, off); 2835 2836 Label notByte, notBool, notInt, notShort, notChar, 2837 notLong, notFloat, notObj, notDouble; 2838 2839 assert(btos == 0, "change code, btos != 0"); 2840 __ cbnz(tos_state, notByte); 2841 2842 // Don't rewrite putstatic, only putfield 2843 if (is_static) rc = may_not_rewrite; 2844 2845 // btos 2846 { 2847 __ pop(btos); 2848 if (!is_static) pop_and_check_object(obj); 2849 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 2850 if (rc == may_rewrite) { 2851 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); 2852 } 2853 __ b(Done); 2854 } 2855 2856 __ bind(notByte); 2857 __ cmp(tos_state, (u1)ztos); 2858 __ br(Assembler::NE, notBool); 2859 2860 // ztos 2861 { 2862 __ pop(ztos); 2863 if (!is_static) pop_and_check_object(obj); 2864 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 2865 if (rc == may_rewrite) { 2866 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); 2867 } 2868 __ b(Done); 2869 } 2870 2871 __ bind(notBool); 2872 __ cmp(tos_state, (u1)atos); 2873 __ br(Assembler::NE, notObj); 2874 2875 // atos 2876 { 2877 __ pop(atos); 2878 if (!is_static) pop_and_check_object(obj); 2879 // Store into the field 2880 do_oop_store(_masm, field, r0, IN_HEAP); 2881 if (rc == may_rewrite) { 2882 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); 2883 } 2884 __ b(Done); 2885 } 2886 2887 __ bind(notObj); 2888 __ cmp(tos_state, (u1)itos); 2889 __ br(Assembler::NE, notInt); 2890 2891 // itos 2892 { 2893 __ pop(itos); 2894 if (!is_static) pop_and_check_object(obj); 2895 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 2896 if (rc == may_rewrite) { 2897 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); 2898 } 2899 __ b(Done); 2900 } 2901 2902 __ bind(notInt); 2903 __ cmp(tos_state, (u1)ctos); 2904 __ br(Assembler::NE, notChar); 2905 2906 // ctos 2907 { 2908 __ pop(ctos); 2909 if (!is_static) pop_and_check_object(obj); 2910 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 2911 if (rc == may_rewrite) { 2912 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); 2913 } 2914 __ b(Done); 2915 } 2916 2917 __ bind(notChar); 2918 __ cmp(tos_state, (u1)stos); 2919 __ br(Assembler::NE, notShort); 2920 2921 // stos 2922 { 2923 __ pop(stos); 2924 if (!is_static) pop_and_check_object(obj); 2925 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 2926 if (rc == may_rewrite) { 2927 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); 2928 } 2929 __ b(Done); 2930 } 2931 2932 __ bind(notShort); 2933 __ cmp(tos_state, (u1)ltos); 2934 __ br(Assembler::NE, notLong); 2935 2936 // ltos 2937 { 2938 __ pop(ltos); 2939 if (!is_static) pop_and_check_object(obj); 2940 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 2941 if (rc == may_rewrite) { 2942 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); 2943 } 2944 __ b(Done); 2945 } 2946 2947 __ bind(notLong); 2948 __ cmp(tos_state, (u1)ftos); 2949 __ br(Assembler::NE, notFloat); 2950 2951 // ftos 2952 { 2953 __ pop(ftos); 2954 if (!is_static) pop_and_check_object(obj); 2955 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2956 if (rc == may_rewrite) { 2957 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); 2958 } 2959 __ b(Done); 2960 } 2961 2962 __ bind(notFloat); 2963 #ifdef ASSERT 2964 __ cmp(tos_state, (u1)dtos); 2965 __ br(Assembler::NE, notDouble); 2966 #endif 2967 2968 // dtos 2969 { 2970 __ pop(dtos); 2971 if (!is_static) pop_and_check_object(obj); 2972 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2973 if (rc == may_rewrite) { 2974 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); 2975 } 2976 } 2977 2978 #ifdef ASSERT 2979 __ b(Done); 2980 2981 __ bind(notDouble); 2982 __ stop("Bad state"); 2983 #endif 2984 2985 __ bind(Done); 2986 2987 { 2988 Label notVolatile; 2989 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile); 2990 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2991 __ bind(notVolatile); 2992 } 2993 } 2994 2995 void TemplateTable::putfield(int byte_no) 2996 { 2997 putfield_or_static(byte_no, false); 2998 } 2999 3000 void TemplateTable::nofast_putfield(int byte_no) { 3001 putfield_or_static(byte_no, false, may_not_rewrite); 3002 } 3003 3004 void TemplateTable::putstatic(int byte_no) { 3005 putfield_or_static(byte_no, true); 3006 } 3007 3008 void TemplateTable::jvmti_post_fast_field_mod() { 3009 if (JvmtiExport::can_post_field_modification()) { 3010 // Check to see if a field modification watch has been set before 3011 // we take the time to call into the VM. 3012 Label L2; 3013 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3014 __ ldrw(c_rarg3, Address(rscratch1)); 3015 __ cbzw(c_rarg3, L2); 3016 __ pop_ptr(r19); // copy the object pointer from tos 3017 __ verify_oop(r19); 3018 __ push_ptr(r19); // put the object pointer back on tos 3019 // Save tos values before call_VM() clobbers them. Since we have 3020 // to do it for every data type, we use the saved values as the 3021 // jvalue object. 3022 switch (bytecode()) { // load values into the jvalue object 3023 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; 3024 case Bytecodes::_fast_bputfield: // fall through 3025 case Bytecodes::_fast_zputfield: // fall through 3026 case Bytecodes::_fast_sputfield: // fall through 3027 case Bytecodes::_fast_cputfield: // fall through 3028 case Bytecodes::_fast_iputfield: __ push_i(r0); break; 3029 case Bytecodes::_fast_dputfield: __ push_d(); break; 3030 case Bytecodes::_fast_fputfield: __ push_f(); break; 3031 case Bytecodes::_fast_lputfield: __ push_l(r0); break; 3032 3033 default: 3034 ShouldNotReachHere(); 3035 } 3036 __ mov(c_rarg3, esp); // points to jvalue on the stack 3037 // access constant pool cache entry 3038 __ load_field_entry(c_rarg2, r0); 3039 __ verify_oop(r19); 3040 // r19: object pointer copied above 3041 // c_rarg2: cache entry pointer 3042 // c_rarg3: jvalue object on the stack 3043 __ call_VM(noreg, 3044 CAST_FROM_FN_PTR(address, 3045 InterpreterRuntime::post_field_modification), 3046 r19, c_rarg2, c_rarg3); 3047 3048 switch (bytecode()) { // restore tos values 3049 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; 3050 case Bytecodes::_fast_bputfield: // fall through 3051 case Bytecodes::_fast_zputfield: // fall through 3052 case Bytecodes::_fast_sputfield: // fall through 3053 case Bytecodes::_fast_cputfield: // fall through 3054 case Bytecodes::_fast_iputfield: __ pop_i(r0); break; 3055 case Bytecodes::_fast_dputfield: __ pop_d(); break; 3056 case Bytecodes::_fast_fputfield: __ pop_f(); break; 3057 case Bytecodes::_fast_lputfield: __ pop_l(r0); break; 3058 default: break; 3059 } 3060 __ bind(L2); 3061 } 3062 } 3063 3064 void TemplateTable::fast_storefield(TosState state) 3065 { 3066 transition(state, vtos); 3067 3068 ByteSize base = ConstantPoolCache::base_offset(); 3069 3070 jvmti_post_fast_field_mod(); 3071 3072 // access constant pool cache 3073 __ load_field_entry(r2, r1); 3074 3075 // R1: field offset, R2: field holder, R3: flags 3076 load_resolved_field_entry(r2, r2, noreg, r1, r3); 3077 3078 { 3079 Label notVolatile; 3080 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3081 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 3082 __ bind(notVolatile); 3083 } 3084 3085 Label notVolatile; 3086 3087 // Get object from stack 3088 pop_and_check_object(r2); 3089 3090 // field address 3091 const Address field(r2, r1); 3092 3093 // access field 3094 switch (bytecode()) { 3095 case Bytecodes::_fast_aputfield: 3096 do_oop_store(_masm, field, r0, IN_HEAP); 3097 break; 3098 case Bytecodes::_fast_lputfield: 3099 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 3100 break; 3101 case Bytecodes::_fast_iputfield: 3102 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 3103 break; 3104 case Bytecodes::_fast_zputfield: 3105 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 3106 break; 3107 case Bytecodes::_fast_bputfield: 3108 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 3109 break; 3110 case Bytecodes::_fast_sputfield: 3111 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 3112 break; 3113 case Bytecodes::_fast_cputfield: 3114 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 3115 break; 3116 case Bytecodes::_fast_fputfield: 3117 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3118 break; 3119 case Bytecodes::_fast_dputfield: 3120 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3121 break; 3122 default: 3123 ShouldNotReachHere(); 3124 } 3125 3126 { 3127 Label notVolatile; 3128 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3129 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3130 __ bind(notVolatile); 3131 } 3132 } 3133 3134 3135 void TemplateTable::fast_accessfield(TosState state) 3136 { 3137 transition(atos, state); 3138 // Do the JVMTI work here to avoid disturbing the register state below 3139 if (JvmtiExport::can_post_field_access()) { 3140 // Check to see if a field access watch has been set before we 3141 // take the time to call into the VM. 3142 Label L1; 3143 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3144 __ ldrw(r2, Address(rscratch1)); 3145 __ cbzw(r2, L1); 3146 // access constant pool cache entry 3147 __ load_field_entry(c_rarg2, rscratch2); 3148 __ verify_oop(r0); 3149 __ push_ptr(r0); // save object pointer before call_VM() clobbers it 3150 __ mov(c_rarg1, r0); 3151 // c_rarg1: object pointer copied above 3152 // c_rarg2: cache entry pointer 3153 __ call_VM(noreg, 3154 CAST_FROM_FN_PTR(address, 3155 InterpreterRuntime::post_field_access), 3156 c_rarg1, c_rarg2); 3157 __ pop_ptr(r0); // restore object pointer 3158 __ bind(L1); 3159 } 3160 3161 // access constant pool cache 3162 __ load_field_entry(r2, r1); 3163 3164 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3165 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3166 3167 // r0: object 3168 __ verify_oop(r0); 3169 __ null_check(r0); 3170 const Address field(r0, r1); 3171 3172 // 8179954: We need to make sure that the code generated for 3173 // volatile accesses forms a sequentially-consistent set of 3174 // operations when combined with STLR and LDAR. Without a leading 3175 // membar it's possible for a simple Dekker test to fail if loads 3176 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3177 // the stores in one method and we interpret the loads in another. 3178 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3179 Label notVolatile; 3180 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3181 __ membar(MacroAssembler::AnyAny); 3182 __ bind(notVolatile); 3183 } 3184 3185 // access field 3186 switch (bytecode()) { 3187 case Bytecodes::_fast_agetfield: 3188 do_oop_load(_masm, field, r0, IN_HEAP); 3189 __ verify_oop(r0); 3190 break; 3191 case Bytecodes::_fast_lgetfield: 3192 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 3193 break; 3194 case Bytecodes::_fast_igetfield: 3195 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 3196 break; 3197 case Bytecodes::_fast_bgetfield: 3198 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 3199 break; 3200 case Bytecodes::_fast_sgetfield: 3201 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 3202 break; 3203 case Bytecodes::_fast_cgetfield: 3204 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 3205 break; 3206 case Bytecodes::_fast_fgetfield: 3207 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3208 break; 3209 case Bytecodes::_fast_dgetfield: 3210 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3211 break; 3212 default: 3213 ShouldNotReachHere(); 3214 } 3215 { 3216 Label notVolatile; 3217 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3218 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3219 __ bind(notVolatile); 3220 } 3221 } 3222 3223 void TemplateTable::fast_xaccess(TosState state) 3224 { 3225 transition(vtos, state); 3226 3227 // get receiver 3228 __ ldr(r0, aaddress(0)); 3229 // access constant pool cache 3230 __ load_field_entry(r2, r3, 2); 3231 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3232 3233 // 8179954: We need to make sure that the code generated for 3234 // volatile accesses forms a sequentially-consistent set of 3235 // operations when combined with STLR and LDAR. Without a leading 3236 // membar it's possible for a simple Dekker test to fail if loads 3237 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3238 // the stores in one method and we interpret the loads in another. 3239 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3240 Label notVolatile; 3241 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3242 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3243 __ membar(MacroAssembler::AnyAny); 3244 __ bind(notVolatile); 3245 } 3246 3247 // make sure exception is reported in correct bcp range (getfield is 3248 // next instruction) 3249 __ increment(rbcp); 3250 __ null_check(r0); 3251 switch (state) { 3252 case itos: 3253 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3254 break; 3255 case atos: 3256 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP); 3257 __ verify_oop(r0); 3258 break; 3259 case ftos: 3260 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3261 break; 3262 default: 3263 ShouldNotReachHere(); 3264 } 3265 3266 { 3267 Label notVolatile; 3268 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset()))); 3269 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile); 3270 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3271 __ bind(notVolatile); 3272 } 3273 3274 __ decrement(rbcp); 3275 } 3276 3277 3278 3279 //----------------------------------------------------------------------------- 3280 // Calls 3281 3282 void TemplateTable::prepare_invoke(Register cache, Register recv) { 3283 3284 Bytecodes::Code code = bytecode(); 3285 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3286 3287 // save 'interpreter return address' 3288 __ save_bcp(); 3289 3290 // Load TOS state for later 3291 __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3292 3293 // load receiver if needed (note: no return address pushed yet) 3294 if (load_receiver) { 3295 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3296 __ add(rscratch1, esp, recv, ext::uxtx, 3); 3297 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); 3298 __ verify_oop(recv); 3299 } 3300 3301 // load return address 3302 { 3303 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3304 __ mov(rscratch1, table_addr); 3305 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); 3306 } 3307 } 3308 3309 3310 void TemplateTable::invokevirtual_helper(Register index, 3311 Register recv, 3312 Register flags) 3313 { 3314 // Uses temporary registers r0, r3 3315 assert_different_registers(index, recv, r0, r3); 3316 // Test for an invoke of a final method 3317 Label notFinal; 3318 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal); 3319 3320 const Register method = index; // method must be rmethod 3321 assert(method == rmethod, 3322 "Method must be rmethod for interpreter calling convention"); 3323 3324 // do the call - the index is actually the method to call 3325 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3326 3327 // It's final, need a null check here! 3328 __ null_check(recv); 3329 3330 // profile this call 3331 __ profile_final_call(r0); 3332 __ profile_arguments_type(r0, method, r4, true); 3333 3334 __ jump_from_interpreted(method, r0); 3335 3336 __ bind(notFinal); 3337 3338 // get receiver klass 3339 __ load_klass(r0, recv); 3340 3341 // profile this call 3342 __ profile_virtual_call(r0, rlocals, r3); 3343 3344 // get target Method & entry point 3345 __ lookup_virtual_method(r0, index, method); 3346 __ profile_arguments_type(r3, method, r4, true); 3347 // FIXME -- this looks completely redundant. is it? 3348 // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); 3349 __ jump_from_interpreted(method, r3); 3350 } 3351 3352 void TemplateTable::invokevirtual(int byte_no) 3353 { 3354 transition(vtos, vtos); 3355 assert(byte_no == f2_byte, "use this argument"); 3356 3357 load_resolved_method_entry_virtual(r2, // ResolvedMethodEntry* 3358 rmethod, // Method* or itable index 3359 r3); // flags 3360 prepare_invoke(r2, r2); // recv 3361 3362 // rmethod: index (actually a Method*) 3363 // r2: receiver 3364 // r3: flags 3365 3366 invokevirtual_helper(rmethod, r2, r3); 3367 } 3368 3369 void TemplateTable::invokespecial(int byte_no) 3370 { 3371 transition(vtos, vtos); 3372 assert(byte_no == f1_byte, "use this argument"); 3373 3374 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3375 rmethod, // Method* 3376 r3); // flags 3377 prepare_invoke(r2, r2); // get receiver also for null check 3378 __ verify_oop(r2); 3379 __ null_check(r2); 3380 // do the call 3381 __ profile_call(r0); 3382 __ profile_arguments_type(r0, rmethod, rbcp, false); 3383 __ jump_from_interpreted(rmethod, r0); 3384 } 3385 3386 void TemplateTable::invokestatic(int byte_no) 3387 { 3388 transition(vtos, vtos); 3389 assert(byte_no == f1_byte, "use this argument"); 3390 3391 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry* 3392 rmethod, // Method* 3393 r3); // flags 3394 prepare_invoke(r2, r2); // get receiver also for null check 3395 3396 // do the call 3397 __ profile_call(r0); 3398 __ profile_arguments_type(r0, rmethod, r4, false); 3399 __ jump_from_interpreted(rmethod, r0); 3400 } 3401 3402 void TemplateTable::fast_invokevfinal(int byte_no) 3403 { 3404 __ call_Unimplemented(); 3405 } 3406 3407 void TemplateTable::invokeinterface(int byte_no) { 3408 transition(vtos, vtos); 3409 assert(byte_no == f1_byte, "use this argument"); 3410 3411 load_resolved_method_entry_interface(r2, // ResolvedMethodEntry* 3412 r0, // Klass* 3413 rmethod, // Method* or itable/vtable index 3414 r3); // flags 3415 prepare_invoke(r2, r2); // receiver 3416 3417 // r0: interface klass (from f1) 3418 // rmethod: method (from f2) 3419 // r2: receiver 3420 // r3: flags 3421 3422 // First check for Object case, then private interface method, 3423 // then regular interface method. 3424 3425 // Special case of invokeinterface called for virtual method of 3426 // java.lang.Object. See cpCache.cpp for details. 3427 Label notObjectMethod; 3428 __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod); 3429 3430 invokevirtual_helper(rmethod, r2, r3); 3431 __ bind(notObjectMethod); 3432 3433 Label no_such_interface; 3434 3435 // Check for private method invocation - indicated by vfinal 3436 Label notVFinal; 3437 __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal); 3438 3439 // Get receiver klass into r3 3440 __ load_klass(r3, r2); 3441 3442 Label subtype; 3443 __ check_klass_subtype(r3, r0, r4, subtype); 3444 // If we get here the typecheck failed 3445 __ b(no_such_interface); 3446 __ bind(subtype); 3447 3448 __ profile_final_call(r0); 3449 __ profile_arguments_type(r0, rmethod, r4, true); 3450 __ jump_from_interpreted(rmethod, r0); 3451 3452 __ bind(notVFinal); 3453 3454 // Get receiver klass into r3 3455 __ restore_locals(); 3456 __ load_klass(r3, r2); 3457 3458 Label no_such_method; 3459 3460 // Preserve method for throw_AbstractMethodErrorVerbose. 3461 __ mov(r16, rmethod); 3462 // Receiver subtype check against REFC. 3463 // Superklass in r0. Subklass in r3. Blows rscratch2, r13 3464 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3465 r3, r0, noreg, 3466 // outputs: scan temp. reg, scan temp. reg 3467 rscratch2, r13, 3468 no_such_interface, 3469 /*return_method=*/false); 3470 3471 // profile this call 3472 __ profile_virtual_call(r3, r13, r19); 3473 3474 // Get declaring interface class from method, and itable index 3475 3476 __ load_method_holder(r0, rmethod); 3477 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); 3478 __ subw(rmethod, rmethod, Method::itable_index_max); 3479 __ negw(rmethod, rmethod); 3480 3481 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3482 __ mov(rlocals, r3); 3483 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3484 rlocals, r0, rmethod, 3485 // outputs: method, scan temp. reg 3486 rmethod, r13, 3487 no_such_interface); 3488 3489 // rmethod,: Method to call 3490 // r2: receiver 3491 // Check for abstract method error 3492 // Note: This should be done more efficiently via a throw_abstract_method_error 3493 // interpreter entry point and a conditional jump to it in case of a null 3494 // method. 3495 __ cbz(rmethod, no_such_method); 3496 3497 __ profile_arguments_type(r3, rmethod, r13, true); 3498 3499 // do the call 3500 // r2: receiver 3501 // rmethod,: Method 3502 __ jump_from_interpreted(rmethod, r3); 3503 __ should_not_reach_here(); 3504 3505 // exception handling code follows... 3506 // note: must restore interpreter registers to canonical 3507 // state for exception handling to work correctly! 3508 3509 __ bind(no_such_method); 3510 // throw exception 3511 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3512 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3513 // Pass arguments for generating a verbose error message. 3514 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16); 3515 // the call_VM checks for exception, so we should never return here. 3516 __ should_not_reach_here(); 3517 3518 __ bind(no_such_interface); 3519 // throw exception 3520 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3521 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3522 // Pass arguments for generating a verbose error message. 3523 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3524 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0); 3525 // the call_VM checks for exception, so we should never return here. 3526 __ should_not_reach_here(); 3527 return; 3528 } 3529 3530 void TemplateTable::invokehandle(int byte_no) { 3531 transition(vtos, vtos); 3532 assert(byte_no == f1_byte, "use this argument"); 3533 3534 load_resolved_method_entry_handle(r2, // ResolvedMethodEntry* 3535 rmethod, // Method* 3536 r0, // Resolved reference 3537 r3); // flags 3538 prepare_invoke(r2, r2); 3539 3540 __ verify_method_ptr(r2); 3541 __ verify_oop(r2); 3542 __ null_check(r2); 3543 3544 // FIXME: profile the LambdaForm also 3545 3546 // r13 is safe to use here as a scratch reg because it is about to 3547 // be clobbered by jump_from_interpreted(). 3548 __ profile_final_call(r13); 3549 __ profile_arguments_type(r13, rmethod, r4, true); 3550 3551 __ jump_from_interpreted(rmethod, r0); 3552 } 3553 3554 void TemplateTable::invokedynamic(int byte_no) { 3555 transition(vtos, vtos); 3556 assert(byte_no == f1_byte, "use this argument"); 3557 3558 load_invokedynamic_entry(rmethod); 3559 3560 // r0: CallSite object (from cpool->resolved_references[]) 3561 // rmethod: MH.linkToCallSite method 3562 3563 // Note: r0_callsite is already pushed 3564 3565 // %%% should make a type profile for any invokedynamic that takes a ref argument 3566 // profile this call 3567 __ profile_call(rbcp); 3568 __ profile_arguments_type(r3, rmethod, r13, false); 3569 3570 __ verify_oop(r0); 3571 3572 __ jump_from_interpreted(rmethod, r0); 3573 } 3574 3575 3576 //----------------------------------------------------------------------------- 3577 // Allocation 3578 3579 void TemplateTable::_new() { 3580 transition(vtos, atos); 3581 3582 __ get_unsigned_2_byte_index_at_bcp(r3, 1); 3583 Label slow_case; 3584 Label done; 3585 Label initialize_header; 3586 3587 __ get_cpool_and_tags(r4, r0); 3588 // Make sure the class we're about to instantiate has been resolved. 3589 // This is done before loading InstanceKlass to be consistent with the order 3590 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3591 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3592 __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); 3593 __ lea(rscratch1, Address(rscratch1, tags_offset)); 3594 __ ldarb(rscratch1, rscratch1); 3595 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class); 3596 __ br(Assembler::NE, slow_case); 3597 3598 // get InstanceKlass 3599 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1); 3600 3601 // make sure klass is initialized 3602 assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks"); 3603 __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case); 3604 3605 // get instance_size in InstanceKlass (scaled to a count of bytes) 3606 __ ldrw(r3, 3607 Address(r4, 3608 Klass::layout_helper_offset())); 3609 // test to see if it is malformed in some way 3610 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); 3611 3612 // Allocate the instance: 3613 // If TLAB is enabled: 3614 // Try to allocate in the TLAB. 3615 // If fails, go to the slow path. 3616 // Initialize the allocation. 3617 // Exit. 3618 // 3619 // Go to slow path. 3620 3621 if (UseTLAB) { 3622 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case); 3623 3624 if (ZeroTLAB) { 3625 // the fields have been already cleared 3626 __ b(initialize_header); 3627 } 3628 3629 // The object is initialized before the header. If the object size is 3630 // zero, go directly to the header initialization. 3631 if (UseCompactObjectHeaders) { 3632 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 3633 __ sub(r3, r3, oopDesc::base_offset_in_bytes()); 3634 } else { 3635 __ sub(r3, r3, sizeof(oopDesc)); 3636 } 3637 __ cbz(r3, initialize_header); 3638 3639 // Initialize object fields 3640 { 3641 if (UseCompactObjectHeaders) { 3642 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 3643 __ add(r2, r0, oopDesc::base_offset_in_bytes()); 3644 } else { 3645 __ add(r2, r0, sizeof(oopDesc)); 3646 } 3647 Label loop; 3648 __ bind(loop); 3649 __ str(zr, Address(__ post(r2, BytesPerLong))); 3650 __ sub(r3, r3, BytesPerLong); 3651 __ cbnz(r3, loop); 3652 } 3653 3654 // initialize object header only. 3655 __ bind(initialize_header); 3656 if (UseCompactObjectHeaders) { 3657 __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset())); 3658 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3659 } else { 3660 __ mov(rscratch1, (intptr_t)markWord::prototype().value()); 3661 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3662 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops 3663 __ store_klass(r0, r4); // store klass last 3664 } 3665 { 3666 SkipIfEqual skip(_masm, &DTraceAllocProbes, false); 3667 // Trigger dtrace event for fastpath 3668 __ push(atos); // save the return value 3669 __ call_VM_leaf( 3670 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0); 3671 __ pop(atos); // restore the return value 3672 3673 } 3674 __ b(done); 3675 } 3676 3677 // slow case 3678 __ bind(slow_case); 3679 __ get_constant_pool(c_rarg1); 3680 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3681 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3682 __ verify_oop(r0); 3683 3684 // continue 3685 __ bind(done); 3686 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3687 __ membar(Assembler::StoreStore); 3688 } 3689 3690 void TemplateTable::newarray() { 3691 transition(itos, atos); 3692 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3693 __ mov(c_rarg2, r0); 3694 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3695 c_rarg1, c_rarg2); 3696 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3697 __ membar(Assembler::StoreStore); 3698 } 3699 3700 void TemplateTable::anewarray() { 3701 transition(itos, atos); 3702 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3703 __ get_constant_pool(c_rarg1); 3704 __ mov(c_rarg3, r0); 3705 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3706 c_rarg1, c_rarg2, c_rarg3); 3707 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3708 __ membar(Assembler::StoreStore); 3709 } 3710 3711 void TemplateTable::arraylength() { 3712 transition(atos, itos); 3713 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); 3714 } 3715 3716 void TemplateTable::checkcast() 3717 { 3718 transition(atos, atos); 3719 Label done, is_null, ok_is_subtype, quicked, resolved; 3720 __ cbz(r0, is_null); 3721 3722 // Get cpool & tags index 3723 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3724 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3725 // See if bytecode has already been quicked 3726 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3727 __ lea(r1, Address(rscratch1, r19)); 3728 __ ldarb(r1, r1); 3729 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3730 __ br(Assembler::EQ, quicked); 3731 3732 __ push(atos); // save receiver for result, and for GC 3733 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3734 // vm_result_2 has metadata result 3735 __ get_vm_result_2(r0, rthread); 3736 __ pop(r3); // restore receiver 3737 __ b(resolved); 3738 3739 // Get superklass in r0 and subklass in r3 3740 __ bind(quicked); 3741 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check 3742 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass 3743 3744 __ bind(resolved); 3745 __ load_klass(r19, r3); 3746 3747 // Generate subtype check. Blows r2, r5. Object in r3. 3748 // Superklass in r0. Subklass in r19. 3749 __ gen_subtype_check(r19, ok_is_subtype); 3750 3751 // Come here on failure 3752 __ push(r3); 3753 // object is at TOS 3754 __ b(Interpreter::_throw_ClassCastException_entry); 3755 3756 // Come here on success 3757 __ bind(ok_is_subtype); 3758 __ mov(r0, r3); // Restore object in r3 3759 3760 // Collect counts on whether this test sees nulls a lot or not. 3761 if (ProfileInterpreter) { 3762 __ b(done); 3763 __ bind(is_null); 3764 __ profile_null_seen(r2); 3765 } else { 3766 __ bind(is_null); // same as 'done' 3767 } 3768 __ bind(done); 3769 } 3770 3771 void TemplateTable::instanceof() { 3772 transition(atos, itos); 3773 Label done, is_null, ok_is_subtype, quicked, resolved; 3774 __ cbz(r0, is_null); 3775 3776 // Get cpool & tags index 3777 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3778 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3779 // See if bytecode has already been quicked 3780 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3781 __ lea(r1, Address(rscratch1, r19)); 3782 __ ldarb(r1, r1); 3783 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3784 __ br(Assembler::EQ, quicked); 3785 3786 __ push(atos); // save receiver for result, and for GC 3787 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3788 // vm_result_2 has metadata result 3789 __ get_vm_result_2(r0, rthread); 3790 __ pop(r3); // restore receiver 3791 __ verify_oop(r3); 3792 __ load_klass(r3, r3); 3793 __ b(resolved); 3794 3795 // Get superklass in r0 and subklass in r3 3796 __ bind(quicked); 3797 __ load_klass(r3, r0); 3798 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); 3799 3800 __ bind(resolved); 3801 3802 // Generate subtype check. Blows r2, r5 3803 // Superklass in r0. Subklass in r3. 3804 __ gen_subtype_check(r3, ok_is_subtype); 3805 3806 // Come here on failure 3807 __ mov(r0, 0); 3808 __ b(done); 3809 // Come here on success 3810 __ bind(ok_is_subtype); 3811 __ mov(r0, 1); 3812 3813 // Collect counts on whether this test sees nulls a lot or not. 3814 if (ProfileInterpreter) { 3815 __ b(done); 3816 __ bind(is_null); 3817 __ profile_null_seen(r2); 3818 } else { 3819 __ bind(is_null); // same as 'done' 3820 } 3821 __ bind(done); 3822 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass 3823 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass 3824 } 3825 3826 //----------------------------------------------------------------------------- 3827 // Breakpoints 3828 void TemplateTable::_breakpoint() { 3829 // Note: We get here even if we are single stepping.. 3830 // jbug inists on setting breakpoints at every bytecode 3831 // even if we are in single step mode. 3832 3833 transition(vtos, vtos); 3834 3835 // get the unpatched byte code 3836 __ get_method(c_rarg1); 3837 __ call_VM(noreg, 3838 CAST_FROM_FN_PTR(address, 3839 InterpreterRuntime::get_original_bytecode_at), 3840 c_rarg1, rbcp); 3841 __ mov(r19, r0); 3842 3843 // post the breakpoint event 3844 __ call_VM(noreg, 3845 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3846 rmethod, rbcp); 3847 3848 // complete the execution of original bytecode 3849 __ mov(rscratch1, r19); 3850 __ dispatch_only_normal(vtos); 3851 } 3852 3853 //----------------------------------------------------------------------------- 3854 // Exceptions 3855 3856 void TemplateTable::athrow() { 3857 transition(atos, vtos); 3858 __ null_check(r0); 3859 __ b(Interpreter::throw_exception_entry()); 3860 } 3861 3862 //----------------------------------------------------------------------------- 3863 // Synchronization 3864 // 3865 // Note: monitorenter & exit are symmetric routines; which is reflected 3866 // in the assembly code structure as well 3867 // 3868 // Stack layout: 3869 // 3870 // [expressions ] <--- esp = expression stack top 3871 // .. 3872 // [expressions ] 3873 // [monitor entry] <--- monitor block top = expression stack bot 3874 // .. 3875 // [monitor entry] 3876 // [frame data ] <--- monitor block bot 3877 // ... 3878 // [saved rfp ] <--- rfp 3879 void TemplateTable::monitorenter() 3880 { 3881 transition(atos, vtos); 3882 3883 // check for null object 3884 __ null_check(r0); 3885 3886 const Address monitor_block_top( 3887 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3888 const Address monitor_block_bot( 3889 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3890 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3891 3892 Label allocated; 3893 3894 // initialize entry pointer 3895 __ mov(c_rarg1, zr); // points to free slot or null 3896 3897 // find a free slot in the monitor block (result in c_rarg1) 3898 { 3899 Label entry, loop, exit; 3900 __ ldr(c_rarg3, monitor_block_top); // derelativize pointer 3901 __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize))); 3902 // c_rarg3 points to current entry, starting with top-most entry 3903 3904 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3905 3906 __ b(entry); 3907 3908 __ bind(loop); 3909 // check if current entry is used 3910 // if not used then remember entry in c_rarg1 3911 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset())); 3912 __ cmp(zr, rscratch1); 3913 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); 3914 // check if current entry is for same object 3915 __ cmp(r0, rscratch1); 3916 // if same object then stop searching 3917 __ br(Assembler::EQ, exit); 3918 // otherwise advance to next entry 3919 __ add(c_rarg3, c_rarg3, entry_size); 3920 __ bind(entry); 3921 // check if bottom reached 3922 __ cmp(c_rarg3, c_rarg2); 3923 // if not at bottom then check this entry 3924 __ br(Assembler::NE, loop); 3925 __ bind(exit); 3926 } 3927 3928 __ cbnz(c_rarg1, allocated); // check if a slot has been found and 3929 // if found, continue with that on 3930 3931 // allocate one if there's no free slot 3932 { 3933 Label entry, loop; 3934 // 1. compute new pointers // rsp: old expression stack top 3935 3936 __ check_extended_sp(); 3937 __ sub(sp, sp, entry_size); // make room for the monitor 3938 __ sub(rscratch1, sp, rfp); 3939 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3940 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 3941 3942 __ ldr(c_rarg1, monitor_block_bot); // derelativize pointer 3943 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 3944 // c_rarg1 points to the old expression stack bottom 3945 3946 __ sub(esp, esp, entry_size); // move expression stack top 3947 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3948 __ mov(c_rarg3, esp); // set start value for copy loop 3949 __ sub(rscratch1, c_rarg1, rfp); // relativize pointer 3950 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 3951 __ str(rscratch1, monitor_block_bot); // set new monitor block bottom 3952 3953 __ b(entry); 3954 // 2. move expression stack contents 3955 __ bind(loop); 3956 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3957 // word from old location 3958 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3959 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3960 __ bind(entry); 3961 __ cmp(c_rarg3, c_rarg1); // check if bottom reached 3962 __ br(Assembler::NE, loop); // if not at bottom then 3963 // copy next word 3964 } 3965 3966 // call run-time routine 3967 // c_rarg1: points to monitor entry 3968 __ bind(allocated); 3969 3970 // Increment bcp to point to the next bytecode, so exception 3971 // handling for async. exceptions work correctly. 3972 // The object has already been popped from the stack, so the 3973 // expression stack looks correct. 3974 __ increment(rbcp); 3975 3976 // store object 3977 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 3978 __ lock_object(c_rarg1); 3979 3980 // check to make sure this monitor doesn't cause stack overflow after locking 3981 __ save_bcp(); // in case of exception 3982 __ generate_stack_overflow_check(0); 3983 3984 // The bcp has already been incremented. Just need to dispatch to 3985 // next instruction. 3986 __ dispatch_next(vtos); 3987 } 3988 3989 3990 void TemplateTable::monitorexit() 3991 { 3992 transition(atos, vtos); 3993 3994 // check for null object 3995 __ null_check(r0); 3996 3997 const Address monitor_block_top( 3998 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3999 const Address monitor_block_bot( 4000 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 4001 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4002 4003 Label found; 4004 4005 // find matching slot 4006 { 4007 Label entry, loop; 4008 __ ldr(c_rarg1, monitor_block_top); // derelativize pointer 4009 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 4010 // c_rarg1 points to current entry, starting with top-most entry 4011 4012 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 4013 // of monitor block 4014 __ b(entry); 4015 4016 __ bind(loop); 4017 // check if current entry is for same object 4018 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 4019 __ cmp(r0, rscratch1); 4020 // if same object then stop searching 4021 __ br(Assembler::EQ, found); 4022 // otherwise advance to next entry 4023 __ add(c_rarg1, c_rarg1, entry_size); 4024 __ bind(entry); 4025 // check if bottom reached 4026 __ cmp(c_rarg1, c_rarg2); 4027 // if not at bottom then check this entry 4028 __ br(Assembler::NE, loop); 4029 } 4030 4031 // error handling. Unlocking was not block-structured 4032 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4033 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4034 __ should_not_reach_here(); 4035 4036 // call run-time routine 4037 __ bind(found); 4038 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) 4039 __ unlock_object(c_rarg1); 4040 __ pop_ptr(r0); // discard object 4041 } 4042 4043 4044 // Wide instructions 4045 void TemplateTable::wide() 4046 { 4047 __ load_unsigned_byte(r19, at_bcp(1)); 4048 __ mov(rscratch1, (address)Interpreter::_wentry_point); 4049 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); 4050 __ br(rscratch1); 4051 } 4052 4053 4054 // Multi arrays 4055 void TemplateTable::multianewarray() { 4056 transition(vtos, atos); 4057 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions 4058 // last dim is on top of stack; we want address of first one: 4059 // first_addr = last_addr + (ndims - 1) * wordSize 4060 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); 4061 __ sub(c_rarg1, c_rarg1, wordSize); 4062 call_VM(r0, 4063 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 4064 c_rarg1); 4065 __ load_unsigned_byte(r1, at_bcp(3)); 4066 __ lea(esp, Address(esp, r1, Address::uxtw(3))); 4067 }