1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "compiler/disassembler.hpp"
28 #include "compiler/compilerDefinitions.inline.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "gc/shared/collectedHeap.hpp"
31 #include "gc/shared/tlab_globals.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "interpreter/interp_masm.hpp"
35 #include "interpreter/templateTable.hpp"
36 #include "memory/universe.hpp"
37 #include "oops/methodData.hpp"
38 #include "oops/method.inline.hpp"
39 #include "oops/objArrayKlass.hpp"
40 #include "oops/oop.inline.hpp"
41 #include "oops/resolvedFieldEntry.hpp"
42 #include "oops/resolvedIndyEntry.hpp"
43 #include "oops/resolvedMethodEntry.hpp"
44 #include "prims/jvmtiExport.hpp"
45 #include "prims/methodHandles.hpp"
46 #include "runtime/frame.inline.hpp"
47 #include "runtime/sharedRuntime.hpp"
48 #include "runtime/stubRoutines.hpp"
49 #include "runtime/synchronizer.hpp"
50 #include "utilities/powerOfTwo.hpp"
51
52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
53
54 // Address computation: local variables
55
56 static inline Address iaddress(int n) {
57 return Address(rlocals, Interpreter::local_offset_in_bytes(n));
58 }
59
60 static inline Address laddress(int n) {
61 return iaddress(n + 1);
62 }
63
64 static inline Address faddress(int n) {
65 return iaddress(n);
66 }
67
68 static inline Address daddress(int n) {
69 return laddress(n);
70 }
71
72 static inline Address aaddress(int n) {
73 return iaddress(n);
74 }
75
76 static inline Address iaddress(Register r) {
77 return Address(rlocals, r, Address::lsl(3));
78 }
79
80 static inline Address laddress(Register r, Register scratch,
81 InterpreterMacroAssembler* _masm) {
82 __ lea(scratch, Address(rlocals, r, Address::lsl(3)));
83 return Address(scratch, Interpreter::local_offset_in_bytes(1));
84 }
85
86 static inline Address faddress(Register r) {
87 return iaddress(r);
88 }
89
90 static inline Address daddress(Register r, Register scratch,
91 InterpreterMacroAssembler* _masm) {
92 return laddress(r, scratch, _masm);
93 }
94
95 static inline Address aaddress(Register r) {
96 return iaddress(r);
97 }
98
99 static inline Address at_rsp() {
100 return Address(esp, 0);
101 }
102
103 // At top of Java expression stack which may be different than esp(). It
104 // isn't for category 1 objects.
105 static inline Address at_tos () {
106 return Address(esp, Interpreter::expr_offset_in_bytes(0));
107 }
108
109 static inline Address at_tos_p1() {
110 return Address(esp, Interpreter::expr_offset_in_bytes(1));
111 }
112
113 static inline Address at_tos_p2() {
114 return Address(esp, Interpreter::expr_offset_in_bytes(2));
115 }
116
117 static inline Address at_tos_p3() {
118 return Address(esp, Interpreter::expr_offset_in_bytes(3));
119 }
120
121 static inline Address at_tos_p4() {
122 return Address(esp, Interpreter::expr_offset_in_bytes(4));
123 }
124
125 static inline Address at_tos_p5() {
126 return Address(esp, Interpreter::expr_offset_in_bytes(5));
127 }
128
129 // Condition conversion
130 static Assembler::Condition j_not(TemplateTable::Condition cc) {
131 switch (cc) {
132 case TemplateTable::equal : return Assembler::NE;
133 case TemplateTable::not_equal : return Assembler::EQ;
134 case TemplateTable::less : return Assembler::GE;
135 case TemplateTable::less_equal : return Assembler::GT;
136 case TemplateTable::greater : return Assembler::LE;
137 case TemplateTable::greater_equal: return Assembler::LT;
138 }
139 ShouldNotReachHere();
140 return Assembler::EQ;
141 }
142
143
144 // Miscellaneous helper routines
145 // Store an oop (or null) at the Address described by obj.
146 // If val == noreg this means store a null
147 static void do_oop_store(InterpreterMacroAssembler* _masm,
148 Address dst,
149 Register val,
150 DecoratorSet decorators) {
151 assert(val == noreg || val == r0, "parameter is just for looks");
152 __ store_heap_oop(dst, val, r10, r11, r3, decorators);
153 }
154
155 static void do_oop_load(InterpreterMacroAssembler* _masm,
156 Address src,
157 Register dst,
158 DecoratorSet decorators) {
159 __ load_heap_oop(dst, src, r10, r11, decorators);
160 }
161
162 Address TemplateTable::at_bcp(int offset) {
163 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
164 return Address(rbcp, offset);
165 }
166
167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
168 Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
169 int byte_no)
170 {
171 if (!RewriteBytecodes) return;
172 Label L_patch_done;
173
174 switch (bc) {
175 case Bytecodes::_fast_aputfield:
176 case Bytecodes::_fast_bputfield:
177 case Bytecodes::_fast_zputfield:
178 case Bytecodes::_fast_cputfield:
179 case Bytecodes::_fast_dputfield:
180 case Bytecodes::_fast_fputfield:
181 case Bytecodes::_fast_iputfield:
182 case Bytecodes::_fast_lputfield:
183 case Bytecodes::_fast_sputfield:
184 {
185 // We skip bytecode quickening for putfield instructions when
186 // the put_code written to the constant pool cache is zero.
187 // This is required so that every execution of this instruction
188 // calls out to InterpreterRuntime::resolve_get_put to do
189 // additional, required work.
190 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
191 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
192 __ load_field_entry(temp_reg, bc_reg);
193 if (byte_no == f1_byte) {
194 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
195 } else {
196 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
197 }
198 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
199 __ ldarb(temp_reg, temp_reg);
200 __ movw(bc_reg, bc);
201 __ cbzw(temp_reg, L_patch_done); // don't patch
202 }
203 break;
204 default:
205 assert(byte_no == -1, "sanity");
206 // the pair bytecodes have already done the load.
207 if (load_bc_into_bc_reg) {
208 __ movw(bc_reg, bc);
209 }
210 }
211
212 if (JvmtiExport::can_post_breakpoint()) {
213 Label L_fast_patch;
214 // if a breakpoint is present we can't rewrite the stream directly
215 __ load_unsigned_byte(temp_reg, at_bcp(0));
216 __ cmpw(temp_reg, Bytecodes::_breakpoint);
217 __ br(Assembler::NE, L_fast_patch);
218 // Let breakpoint table handling rewrite to quicker bytecode
219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
220 __ b(L_patch_done);
221 __ bind(L_fast_patch);
222 }
223
224 #ifdef ASSERT
225 Label L_okay;
226 __ load_unsigned_byte(temp_reg, at_bcp(0));
227 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
228 __ br(Assembler::EQ, L_okay);
229 __ cmpw(temp_reg, bc_reg);
230 __ br(Assembler::EQ, L_okay);
231 __ stop("patching the wrong bytecode");
232 __ bind(L_okay);
233 #endif
234
235 // patch bytecode
236 __ strb(bc_reg, at_bcp(0));
237 __ bind(L_patch_done);
238 }
239
240
241 // Individual instructions
242
243 void TemplateTable::nop() {
244 transition(vtos, vtos);
245 // nothing to do
246 }
247
248 void TemplateTable::shouldnotreachhere() {
249 transition(vtos, vtos);
250 __ stop("shouldnotreachhere bytecode");
251 }
252
253 void TemplateTable::aconst_null()
254 {
255 transition(vtos, atos);
256 __ mov(r0, 0);
257 }
258
259 void TemplateTable::iconst(int value)
260 {
261 transition(vtos, itos);
262 __ mov(r0, value);
263 }
264
265 void TemplateTable::lconst(int value)
266 {
267 __ mov(r0, value);
268 }
269
270 void TemplateTable::fconst(int value)
271 {
272 transition(vtos, ftos);
273 switch (value) {
274 case 0:
275 __ fmovs(v0, 0.0);
276 break;
277 case 1:
278 __ fmovs(v0, 1.0);
279 break;
280 case 2:
281 __ fmovs(v0, 2.0);
282 break;
283 default:
284 ShouldNotReachHere();
285 break;
286 }
287 }
288
289 void TemplateTable::dconst(int value)
290 {
291 transition(vtos, dtos);
292 switch (value) {
293 case 0:
294 __ fmovd(v0, 0.0);
295 break;
296 case 1:
297 __ fmovd(v0, 1.0);
298 break;
299 case 2:
300 __ fmovd(v0, 2.0);
301 break;
302 default:
303 ShouldNotReachHere();
304 break;
305 }
306 }
307
308 void TemplateTable::bipush()
309 {
310 transition(vtos, itos);
311 __ load_signed_byte32(r0, at_bcp(1));
312 }
313
314 void TemplateTable::sipush()
315 {
316 transition(vtos, itos);
317 __ load_unsigned_short(r0, at_bcp(1));
318 __ revw(r0, r0);
319 __ asrw(r0, r0, 16);
320 }
321
322 void TemplateTable::ldc(LdcType type)
323 {
324 transition(vtos, vtos);
325 Label call_ldc, notFloat, notClass, notInt, Done;
326
327 if (is_ldc_wide(type)) {
328 __ get_unsigned_2_byte_index_at_bcp(r1, 1);
329 } else {
330 __ load_unsigned_byte(r1, at_bcp(1));
331 }
332 __ get_cpool_and_tags(r2, r0);
333
334 const int base_offset = ConstantPool::header_size() * wordSize;
335 const int tags_offset = Array<u1>::base_offset_in_bytes();
336
337 // get type
338 __ add(r3, r1, tags_offset);
339 __ lea(r3, Address(r0, r3));
340 __ ldarb(r3, r3);
341
342 // unresolved class - get the resolved class
343 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass);
344 __ br(Assembler::EQ, call_ldc);
345
346 // unresolved class in error state - call into runtime to throw the error
347 // from the first resolution attempt
348 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError);
349 __ br(Assembler::EQ, call_ldc);
350
351 // resolved class - need to call vm to get java mirror of the class
352 __ cmp(r3, (u1)JVM_CONSTANT_Class);
353 __ br(Assembler::NE, notClass);
354
355 __ bind(call_ldc);
356 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0);
357 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
358 __ push_ptr(r0);
359 __ verify_oop(r0);
360 __ b(Done);
361
362 __ bind(notClass);
363 __ cmp(r3, (u1)JVM_CONSTANT_Float);
364 __ br(Assembler::NE, notFloat);
365 // ftos
366 __ adds(r1, r2, r1, Assembler::LSL, 3);
367 __ ldrs(v0, Address(r1, base_offset));
368 __ push_f();
369 __ b(Done);
370
371 __ bind(notFloat);
372
373 __ cmp(r3, (u1)JVM_CONSTANT_Integer);
374 __ br(Assembler::NE, notInt);
375
376 // itos
377 __ adds(r1, r2, r1, Assembler::LSL, 3);
378 __ ldrw(r0, Address(r1, base_offset));
379 __ push_i(r0);
380 __ b(Done);
381
382 __ bind(notInt);
383 condy_helper(Done);
384
385 __ bind(Done);
386 }
387
388 // Fast path for caching oop constants.
389 void TemplateTable::fast_aldc(LdcType type)
390 {
391 transition(vtos, atos);
392
393 Register result = r0;
394 Register tmp = r1;
395 Register rarg = r2;
396
397 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
398
399 Label resolved;
400
401 // We are resolved if the resolved reference cache entry contains a
402 // non-null object (String, MethodType, etc.)
403 assert_different_registers(result, tmp);
404 __ get_cache_index_at_bcp(tmp, 1, index_size);
405 __ load_resolved_reference_at_index(result, tmp);
406 __ cbnz(result, resolved);
407
408 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
409
410 // first time invocation - must resolve first
411 __ mov(rarg, (int)bytecode());
412 __ call_VM(result, entry, rarg);
413
414 __ bind(resolved);
415
416 { // Check for the null sentinel.
417 // If we just called the VM, it already did the mapping for us,
418 // but it's harmless to retry.
419 Label notNull;
420
421 // Stash null_sentinel address to get its value later
422 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
423 __ ldr(tmp, Address(rarg));
424 __ resolve_oop_handle(tmp, r5, rscratch2);
425 __ cmpoop(result, tmp);
426 __ br(Assembler::NE, notNull);
427 __ mov(result, 0); // null object reference
428 __ bind(notNull);
429 }
430
431 if (VerifyOops) {
432 // Safe to call with 0 result
433 __ verify_oop(result);
434 }
435 }
436
437 void TemplateTable::ldc2_w()
438 {
439 transition(vtos, vtos);
440 Label notDouble, notLong, Done;
441 __ get_unsigned_2_byte_index_at_bcp(r0, 1);
442
443 __ get_cpool_and_tags(r1, r2);
444 const int base_offset = ConstantPool::header_size() * wordSize;
445 const int tags_offset = Array<u1>::base_offset_in_bytes();
446
447 // get type
448 __ lea(r2, Address(r2, r0, Address::lsl(0)));
449 __ load_unsigned_byte(r2, Address(r2, tags_offset));
450 __ cmpw(r2, (int)JVM_CONSTANT_Double);
451 __ br(Assembler::NE, notDouble);
452
453 // dtos
454 __ lea (r2, Address(r1, r0, Address::lsl(3)));
455 __ ldrd(v0, Address(r2, base_offset));
456 __ push_d();
457 __ b(Done);
458
459 __ bind(notDouble);
460 __ cmpw(r2, (int)JVM_CONSTANT_Long);
461 __ br(Assembler::NE, notLong);
462
463 // ltos
464 __ lea(r0, Address(r1, r0, Address::lsl(3)));
465 __ ldr(r0, Address(r0, base_offset));
466 __ push_l();
467 __ b(Done);
468
469 __ bind(notLong);
470 condy_helper(Done);
471
472 __ bind(Done);
473 }
474
475 void TemplateTable::condy_helper(Label& Done)
476 {
477 Register obj = r0;
478 Register rarg = r1;
479 Register flags = r2;
480 Register off = r3;
481
482 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
483
484 __ mov(rarg, (int) bytecode());
485 __ call_VM(obj, entry, rarg);
486
487 __ get_vm_result_metadata(flags, rthread);
488
489 // VMr = obj = base address to find primitive value to push
490 // VMr2 = flags = (tos, off) using format of CPCE::_flags
491 __ mov(off, flags);
492 __ andw(off, off, ConstantPoolCache::field_index_mask);
493
494 const Address field(obj, off);
495
496 // What sort of thing are we loading?
497 // x86 uses a shift and mask or wings it with a shift plus assert
498 // the mask is not needed. aarch64 just uses bitfield extract
499 __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift,
500 ConstantPoolCache::tos_state_bits);
501
502 switch (bytecode()) {
503 case Bytecodes::_ldc:
504 case Bytecodes::_ldc_w:
505 {
506 // tos in (itos, ftos, stos, btos, ctos, ztos)
507 Label notInt, notFloat, notShort, notByte, notChar, notBool;
508 __ cmpw(flags, itos);
509 __ br(Assembler::NE, notInt);
510 // itos
511 __ ldrw(r0, field);
512 __ push(itos);
513 __ b(Done);
514
515 __ bind(notInt);
516 __ cmpw(flags, ftos);
517 __ br(Assembler::NE, notFloat);
518 // ftos
519 __ load_float(field);
520 __ push(ftos);
521 __ b(Done);
522
523 __ bind(notFloat);
524 __ cmpw(flags, stos);
525 __ br(Assembler::NE, notShort);
526 // stos
527 __ load_signed_short(r0, field);
528 __ push(stos);
529 __ b(Done);
530
531 __ bind(notShort);
532 __ cmpw(flags, btos);
533 __ br(Assembler::NE, notByte);
534 // btos
535 __ load_signed_byte(r0, field);
536 __ push(btos);
537 __ b(Done);
538
539 __ bind(notByte);
540 __ cmpw(flags, ctos);
541 __ br(Assembler::NE, notChar);
542 // ctos
543 __ load_unsigned_short(r0, field);
544 __ push(ctos);
545 __ b(Done);
546
547 __ bind(notChar);
548 __ cmpw(flags, ztos);
549 __ br(Assembler::NE, notBool);
550 // ztos
551 __ load_signed_byte(r0, field);
552 __ push(ztos);
553 __ b(Done);
554
555 __ bind(notBool);
556 break;
557 }
558
559 case Bytecodes::_ldc2_w:
560 {
561 Label notLong, notDouble;
562 __ cmpw(flags, ltos);
563 __ br(Assembler::NE, notLong);
564 // ltos
565 __ ldr(r0, field);
566 __ push(ltos);
567 __ b(Done);
568
569 __ bind(notLong);
570 __ cmpw(flags, dtos);
571 __ br(Assembler::NE, notDouble);
572 // dtos
573 __ load_double(field);
574 __ push(dtos);
575 __ b(Done);
576
577 __ bind(notDouble);
578 break;
579 }
580
581 default:
582 ShouldNotReachHere();
583 }
584
585 __ stop("bad ldc/condy");
586 }
587
588 void TemplateTable::locals_index(Register reg, int offset)
589 {
590 __ ldrb(reg, at_bcp(offset));
591 __ neg(reg, reg);
592 }
593
594 void TemplateTable::iload() {
595 iload_internal();
596 }
597
598 void TemplateTable::nofast_iload() {
599 iload_internal(may_not_rewrite);
600 }
601
602 void TemplateTable::iload_internal(RewriteControl rc) {
603 transition(vtos, itos);
604 if (RewriteFrequentPairs && rc == may_rewrite) {
605 Label rewrite, done;
606 Register bc = r4;
607
608 // get next bytecode
609 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
610
611 // if _iload, wait to rewrite to iload2. We only want to rewrite the
612 // last two iloads in a pair. Comparing against fast_iload means that
613 // the next bytecode is neither an iload or a caload, and therefore
614 // an iload pair.
615 __ cmpw(r1, Bytecodes::_iload);
616 __ br(Assembler::EQ, done);
617
618 // if _fast_iload rewrite to _fast_iload2
619 __ cmpw(r1, Bytecodes::_fast_iload);
620 __ movw(bc, Bytecodes::_fast_iload2);
621 __ br(Assembler::EQ, rewrite);
622
623 // if _caload rewrite to _fast_icaload
624 __ cmpw(r1, Bytecodes::_caload);
625 __ movw(bc, Bytecodes::_fast_icaload);
626 __ br(Assembler::EQ, rewrite);
627
628 // else rewrite to _fast_iload
629 __ movw(bc, Bytecodes::_fast_iload);
630
631 // rewrite
632 // bc: new bytecode
633 __ bind(rewrite);
634 patch_bytecode(Bytecodes::_iload, bc, r1, false);
635 __ bind(done);
636
637 }
638
639 // do iload, get the local value into tos
640 locals_index(r1);
641 __ ldr(r0, iaddress(r1));
642
643 }
644
645 void TemplateTable::fast_iload2()
646 {
647 transition(vtos, itos);
648 locals_index(r1);
649 __ ldr(r0, iaddress(r1));
650 __ push(itos);
651 locals_index(r1, 3);
652 __ ldr(r0, iaddress(r1));
653 }
654
655 void TemplateTable::fast_iload()
656 {
657 transition(vtos, itos);
658 locals_index(r1);
659 __ ldr(r0, iaddress(r1));
660 }
661
662 void TemplateTable::lload()
663 {
664 transition(vtos, ltos);
665 __ ldrb(r1, at_bcp(1));
666 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
667 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
668 }
669
670 void TemplateTable::fload()
671 {
672 transition(vtos, ftos);
673 locals_index(r1);
674 // n.b. we use ldrd here because this is a 64 bit slot
675 // this is comparable to the iload case
676 __ ldrd(v0, faddress(r1));
677 }
678
679 void TemplateTable::dload()
680 {
681 transition(vtos, dtos);
682 __ ldrb(r1, at_bcp(1));
683 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
684 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
685 }
686
687 void TemplateTable::aload()
688 {
689 transition(vtos, atos);
690 locals_index(r1);
691 __ ldr(r0, iaddress(r1));
692 }
693
694 void TemplateTable::locals_index_wide(Register reg) {
695 __ ldrh(reg, at_bcp(2));
696 __ rev16w(reg, reg);
697 __ neg(reg, reg);
698 }
699
700 void TemplateTable::wide_iload() {
701 transition(vtos, itos);
702 locals_index_wide(r1);
703 __ ldr(r0, iaddress(r1));
704 }
705
706 void TemplateTable::wide_lload()
707 {
708 transition(vtos, ltos);
709 __ ldrh(r1, at_bcp(2));
710 __ rev16w(r1, r1);
711 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
712 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
713 }
714
715 void TemplateTable::wide_fload()
716 {
717 transition(vtos, ftos);
718 locals_index_wide(r1);
719 // n.b. we use ldrd here because this is a 64 bit slot
720 // this is comparable to the iload case
721 __ ldrd(v0, faddress(r1));
722 }
723
724 void TemplateTable::wide_dload()
725 {
726 transition(vtos, dtos);
727 __ ldrh(r1, at_bcp(2));
728 __ rev16w(r1, r1);
729 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
730 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
731 }
732
733 void TemplateTable::wide_aload()
734 {
735 transition(vtos, atos);
736 locals_index_wide(r1);
737 __ ldr(r0, aaddress(r1));
738 }
739
740 void TemplateTable::index_check(Register array, Register index)
741 {
742 // destroys r1, rscratch1
743 // sign extend index for use by indexed load
744 // __ movl2ptr(index, index);
745 // check index
746 Register length = rscratch1;
747 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
748 __ cmpw(index, length);
749 if (index != r1) {
750 // ??? convention: move aberrant index into r1 for exception message
751 assert(r1 != array, "different registers");
752 __ mov(r1, index);
753 }
754 Label ok;
755 __ br(Assembler::LO, ok);
756 // ??? convention: move array into r3 for exception message
757 __ mov(r3, array);
758 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
759 __ br(rscratch1);
760 __ bind(ok);
761 }
762
763 void TemplateTable::iaload()
764 {
765 transition(itos, itos);
766 __ mov(r1, r0);
767 __ pop_ptr(r0);
768 // r0: array
769 // r1: index
770 index_check(r0, r1); // leaves index in r1, kills rscratch1
771 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
772 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
773 }
774
775 void TemplateTable::laload()
776 {
777 transition(itos, ltos);
778 __ mov(r1, r0);
779 __ pop_ptr(r0);
780 // r0: array
781 // r1: index
782 index_check(r0, r1); // leaves index in r1, kills rscratch1
783 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
784 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
785 }
786
787 void TemplateTable::faload()
788 {
789 transition(itos, ftos);
790 __ mov(r1, r0);
791 __ pop_ptr(r0);
792 // r0: array
793 // r1: index
794 index_check(r0, r1); // leaves index in r1, kills rscratch1
795 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
796 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
797 }
798
799 void TemplateTable::daload()
800 {
801 transition(itos, dtos);
802 __ mov(r1, r0);
803 __ pop_ptr(r0);
804 // r0: array
805 // r1: index
806 index_check(r0, r1); // leaves index in r1, kills rscratch1
807 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
808 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
809 }
810
811 void TemplateTable::aaload()
812 {
813 transition(itos, atos);
814 __ mov(r1, r0);
815 __ pop_ptr(r0);
816 // r0: array
817 // r1: index
818 index_check(r0, r1); // leaves index in r1, kills rscratch1
819 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
820 do_oop_load(_masm,
821 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
822 r0,
823 IS_ARRAY);
824 }
825
826 void TemplateTable::baload()
827 {
828 transition(itos, itos);
829 __ mov(r1, r0);
830 __ pop_ptr(r0);
831 // r0: array
832 // r1: index
833 index_check(r0, r1); // leaves index in r1, kills rscratch1
834 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
835 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
836 }
837
838 void TemplateTable::caload()
839 {
840 transition(itos, itos);
841 __ mov(r1, r0);
842 __ pop_ptr(r0);
843 // r0: array
844 // r1: index
845 index_check(r0, r1); // leaves index in r1, kills rscratch1
846 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
847 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
848 }
849
850 // iload followed by caload frequent pair
851 void TemplateTable::fast_icaload()
852 {
853 transition(vtos, itos);
854 // load index out of locals
855 locals_index(r2);
856 __ ldr(r1, iaddress(r2));
857
858 __ pop_ptr(r0);
859
860 // r0: array
861 // r1: index
862 index_check(r0, r1); // leaves index in r1, kills rscratch1
863 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
864 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
865 }
866
867 void TemplateTable::saload()
868 {
869 transition(itos, itos);
870 __ mov(r1, r0);
871 __ pop_ptr(r0);
872 // r0: array
873 // r1: index
874 index_check(r0, r1); // leaves index in r1, kills rscratch1
875 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
876 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
877 }
878
879 void TemplateTable::iload(int n)
880 {
881 transition(vtos, itos);
882 __ ldr(r0, iaddress(n));
883 }
884
885 void TemplateTable::lload(int n)
886 {
887 transition(vtos, ltos);
888 __ ldr(r0, laddress(n));
889 }
890
891 void TemplateTable::fload(int n)
892 {
893 transition(vtos, ftos);
894 __ ldrs(v0, faddress(n));
895 }
896
897 void TemplateTable::dload(int n)
898 {
899 transition(vtos, dtos);
900 __ ldrd(v0, daddress(n));
901 }
902
903 void TemplateTable::aload(int n)
904 {
905 transition(vtos, atos);
906 __ ldr(r0, iaddress(n));
907 }
908
909 void TemplateTable::aload_0() {
910 aload_0_internal();
911 }
912
913 void TemplateTable::nofast_aload_0() {
914 aload_0_internal(may_not_rewrite);
915 }
916
917 void TemplateTable::aload_0_internal(RewriteControl rc) {
918 // According to bytecode histograms, the pairs:
919 //
920 // _aload_0, _fast_igetfield
921 // _aload_0, _fast_agetfield
922 // _aload_0, _fast_fgetfield
923 //
924 // occur frequently. If RewriteFrequentPairs is set, the (slow)
925 // _aload_0 bytecode checks if the next bytecode is either
926 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
927 // rewrites the current bytecode into a pair bytecode; otherwise it
928 // rewrites the current bytecode into _fast_aload_0 that doesn't do
929 // the pair check anymore.
930 //
931 // Note: If the next bytecode is _getfield, the rewrite must be
932 // delayed, otherwise we may miss an opportunity for a pair.
933 //
934 // Also rewrite frequent pairs
935 // aload_0, aload_1
936 // aload_0, iload_1
937 // These bytecodes with a small amount of code are most profitable
938 // to rewrite
939 if (RewriteFrequentPairs && rc == may_rewrite) {
940 Label rewrite, done;
941 const Register bc = r4;
942
943 // get next bytecode
944 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
945
946 // if _getfield then wait with rewrite
947 __ cmpw(r1, Bytecodes::Bytecodes::_getfield);
948 __ br(Assembler::EQ, done);
949
950 // if _igetfield then rewrite to _fast_iaccess_0
951 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
952 __ cmpw(r1, Bytecodes::_fast_igetfield);
953 __ movw(bc, Bytecodes::_fast_iaccess_0);
954 __ br(Assembler::EQ, rewrite);
955
956 // if _agetfield then rewrite to _fast_aaccess_0
957 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
958 __ cmpw(r1, Bytecodes::_fast_agetfield);
959 __ movw(bc, Bytecodes::_fast_aaccess_0);
960 __ br(Assembler::EQ, rewrite);
961
962 // if _fgetfield then rewrite to _fast_faccess_0
963 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
964 __ cmpw(r1, Bytecodes::_fast_fgetfield);
965 __ movw(bc, Bytecodes::_fast_faccess_0);
966 __ br(Assembler::EQ, rewrite);
967
968 // else rewrite to _fast_aload0
969 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
970 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
971
972 // rewrite
973 // bc: new bytecode
974 __ bind(rewrite);
975 patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
976
977 __ bind(done);
978 }
979
980 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
981 aload(0);
982 }
983
984 void TemplateTable::istore()
985 {
986 transition(itos, vtos);
987 locals_index(r1);
988 // FIXME: We're being very pernickerty here storing a jint in a
989 // local with strw, which costs an extra instruction over what we'd
990 // be able to do with a simple str. We should just store the whole
991 // word.
992 __ lea(rscratch1, iaddress(r1));
993 __ strw(r0, Address(rscratch1));
994 }
995
996 void TemplateTable::lstore()
997 {
998 transition(ltos, vtos);
999 locals_index(r1);
1000 __ str(r0, laddress(r1, rscratch1, _masm));
1001 }
1002
1003 void TemplateTable::fstore() {
1004 transition(ftos, vtos);
1005 locals_index(r1);
1006 __ lea(rscratch1, iaddress(r1));
1007 __ strs(v0, Address(rscratch1));
1008 }
1009
1010 void TemplateTable::dstore() {
1011 transition(dtos, vtos);
1012 locals_index(r1);
1013 __ strd(v0, daddress(r1, rscratch1, _masm));
1014 }
1015
1016 void TemplateTable::astore()
1017 {
1018 transition(vtos, vtos);
1019 __ pop_ptr(r0);
1020 locals_index(r1);
1021 __ str(r0, aaddress(r1));
1022 }
1023
1024 void TemplateTable::wide_istore() {
1025 transition(vtos, vtos);
1026 __ pop_i();
1027 locals_index_wide(r1);
1028 __ lea(rscratch1, iaddress(r1));
1029 __ strw(r0, Address(rscratch1));
1030 }
1031
1032 void TemplateTable::wide_lstore() {
1033 transition(vtos, vtos);
1034 __ pop_l();
1035 locals_index_wide(r1);
1036 __ str(r0, laddress(r1, rscratch1, _masm));
1037 }
1038
1039 void TemplateTable::wide_fstore() {
1040 transition(vtos, vtos);
1041 __ pop_f();
1042 locals_index_wide(r1);
1043 __ lea(rscratch1, faddress(r1));
1044 __ strs(v0, rscratch1);
1045 }
1046
1047 void TemplateTable::wide_dstore() {
1048 transition(vtos, vtos);
1049 __ pop_d();
1050 locals_index_wide(r1);
1051 __ strd(v0, daddress(r1, rscratch1, _masm));
1052 }
1053
1054 void TemplateTable::wide_astore() {
1055 transition(vtos, vtos);
1056 __ pop_ptr(r0);
1057 locals_index_wide(r1);
1058 __ str(r0, aaddress(r1));
1059 }
1060
1061 void TemplateTable::iastore() {
1062 transition(itos, vtos);
1063 __ pop_i(r1);
1064 __ pop_ptr(r3);
1065 // r0: value
1066 // r1: index
1067 // r3: array
1068 index_check(r3, r1); // prefer index in r1
1069 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
1070 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg);
1071 }
1072
1073 void TemplateTable::lastore() {
1074 transition(ltos, vtos);
1075 __ pop_i(r1);
1076 __ pop_ptr(r3);
1077 // r0: value
1078 // r1: index
1079 // r3: array
1080 index_check(r3, r1); // prefer index in r1
1081 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
1082 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg);
1083 }
1084
1085 void TemplateTable::fastore() {
1086 transition(ftos, vtos);
1087 __ pop_i(r1);
1088 __ pop_ptr(r3);
1089 // v0: value
1090 // r1: index
1091 // r3: array
1092 index_check(r3, r1); // prefer index in r1
1093 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1094 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1095 }
1096
1097 void TemplateTable::dastore() {
1098 transition(dtos, vtos);
1099 __ pop_i(r1);
1100 __ pop_ptr(r3);
1101 // v0: value
1102 // r1: index
1103 // r3: array
1104 index_check(r3, r1); // prefer index in r1
1105 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1106 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1107 }
1108
1109 void TemplateTable::aastore() {
1110 Label is_null, ok_is_subtype, done;
1111 transition(vtos, vtos);
1112 // stack: ..., array, index, value
1113 __ ldr(r0, at_tos()); // value
1114 __ ldr(r2, at_tos_p1()); // index
1115 __ ldr(r3, at_tos_p2()); // array
1116
1117 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1118
1119 index_check(r3, r2); // kills r1
1120 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1121
1122 // do array store check - check for null value first
1123 __ cbz(r0, is_null);
1124
1125 // Move subklass into r1
1126 __ load_klass(r1, r0);
1127 // Move superklass into r0
1128 __ load_klass(r0, r3);
1129 __ ldr(r0, Address(r0,
1130 ObjArrayKlass::element_klass_offset()));
1131 // Compress array + index*oopSize + 12 into a single register. Frees r2.
1132
1133 // Generate subtype check. Blows r2, r5
1134 // Superklass in r0. Subklass in r1.
1135 __ gen_subtype_check(r1, ok_is_subtype);
1136
1137 // Come here on failure
1138 // object is at TOS
1139 __ b(Interpreter::_throw_ArrayStoreException_entry);
1140
1141 // Come here on success
1142 __ bind(ok_is_subtype);
1143
1144 // Get the value we will store
1145 __ ldr(r0, at_tos());
1146 // Now store using the appropriate barrier
1147 // Clobbers: r10, r11, r3
1148 do_oop_store(_masm, element_address, r0, IS_ARRAY);
1149 __ b(done);
1150
1151 // Have a null in r0, r3=array, r2=index. Store null at ary[idx]
1152 __ bind(is_null);
1153 __ profile_null_seen(r2);
1154
1155 // Store a null
1156 // Clobbers: r10, r11, r3
1157 do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1158
1159 // Pop stack arguments
1160 __ bind(done);
1161 __ add(esp, esp, 3 * Interpreter::stackElementSize);
1162 }
1163
1164 void TemplateTable::bastore()
1165 {
1166 transition(itos, vtos);
1167 __ pop_i(r1);
1168 __ pop_ptr(r3);
1169 // r0: value
1170 // r1: index
1171 // r3: array
1172 index_check(r3, r1); // prefer index in r1
1173
1174 // Need to check whether array is boolean or byte
1175 // since both types share the bastore bytecode.
1176 __ load_klass(r2, r3);
1177 __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
1178 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit());
1179 Label L_skip;
1180 __ tbz(r2, diffbit_index, L_skip);
1181 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1182 __ bind(L_skip);
1183
1184 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
1185 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg);
1186 }
1187
1188 void TemplateTable::castore()
1189 {
1190 transition(itos, vtos);
1191 __ pop_i(r1);
1192 __ pop_ptr(r3);
1193 // r0: value
1194 // r1: index
1195 // r3: array
1196 index_check(r3, r1); // prefer index in r1
1197 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
1198 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg);
1199 }
1200
1201 void TemplateTable::sastore()
1202 {
1203 castore();
1204 }
1205
1206 void TemplateTable::istore(int n)
1207 {
1208 transition(itos, vtos);
1209 __ str(r0, iaddress(n));
1210 }
1211
1212 void TemplateTable::lstore(int n)
1213 {
1214 transition(ltos, vtos);
1215 __ str(r0, laddress(n));
1216 }
1217
1218 void TemplateTable::fstore(int n)
1219 {
1220 transition(ftos, vtos);
1221 __ strs(v0, faddress(n));
1222 }
1223
1224 void TemplateTable::dstore(int n)
1225 {
1226 transition(dtos, vtos);
1227 __ strd(v0, daddress(n));
1228 }
1229
1230 void TemplateTable::astore(int n)
1231 {
1232 transition(vtos, vtos);
1233 __ pop_ptr(r0);
1234 __ str(r0, iaddress(n));
1235 }
1236
1237 void TemplateTable::pop()
1238 {
1239 transition(vtos, vtos);
1240 __ add(esp, esp, Interpreter::stackElementSize);
1241 }
1242
1243 void TemplateTable::pop2()
1244 {
1245 transition(vtos, vtos);
1246 __ add(esp, esp, 2 * Interpreter::stackElementSize);
1247 }
1248
1249 void TemplateTable::dup()
1250 {
1251 transition(vtos, vtos);
1252 __ ldr(r0, Address(esp, 0));
1253 __ push(r0);
1254 // stack: ..., a, a
1255 }
1256
1257 void TemplateTable::dup_x1()
1258 {
1259 transition(vtos, vtos);
1260 // stack: ..., a, b
1261 __ ldr(r0, at_tos()); // load b
1262 __ ldr(r2, at_tos_p1()); // load a
1263 __ str(r0, at_tos_p1()); // store b
1264 __ str(r2, at_tos()); // store a
1265 __ push(r0); // push b
1266 // stack: ..., b, a, b
1267 }
1268
1269 void TemplateTable::dup_x2()
1270 {
1271 transition(vtos, vtos);
1272 // stack: ..., a, b, c
1273 __ ldr(r0, at_tos()); // load c
1274 __ ldr(r2, at_tos_p2()); // load a
1275 __ str(r0, at_tos_p2()); // store c in a
1276 __ push(r0); // push c
1277 // stack: ..., c, b, c, c
1278 __ ldr(r0, at_tos_p2()); // load b
1279 __ str(r2, at_tos_p2()); // store a in b
1280 // stack: ..., c, a, c, c
1281 __ str(r0, at_tos_p1()); // store b in c
1282 // stack: ..., c, a, b, c
1283 }
1284
1285 void TemplateTable::dup2()
1286 {
1287 transition(vtos, vtos);
1288 // stack: ..., a, b
1289 __ ldr(r0, at_tos_p1()); // load a
1290 __ push(r0); // push a
1291 __ ldr(r0, at_tos_p1()); // load b
1292 __ push(r0); // push b
1293 // stack: ..., a, b, a, b
1294 }
1295
1296 void TemplateTable::dup2_x1()
1297 {
1298 transition(vtos, vtos);
1299 // stack: ..., a, b, c
1300 __ ldr(r2, at_tos()); // load c
1301 __ ldr(r0, at_tos_p1()); // load b
1302 __ push(r0); // push b
1303 __ push(r2); // push c
1304 // stack: ..., a, b, c, b, c
1305 __ str(r2, at_tos_p3()); // store c in b
1306 // stack: ..., a, c, c, b, c
1307 __ ldr(r2, at_tos_p4()); // load a
1308 __ str(r2, at_tos_p2()); // store a in 2nd c
1309 // stack: ..., a, c, a, b, c
1310 __ str(r0, at_tos_p4()); // store b in a
1311 // stack: ..., b, c, a, b, c
1312 }
1313
1314 void TemplateTable::dup2_x2()
1315 {
1316 transition(vtos, vtos);
1317 // stack: ..., a, b, c, d
1318 __ ldr(r2, at_tos()); // load d
1319 __ ldr(r0, at_tos_p1()); // load c
1320 __ push(r0) ; // push c
1321 __ push(r2); // push d
1322 // stack: ..., a, b, c, d, c, d
1323 __ ldr(r0, at_tos_p4()); // load b
1324 __ str(r0, at_tos_p2()); // store b in d
1325 __ str(r2, at_tos_p4()); // store d in b
1326 // stack: ..., a, d, c, b, c, d
1327 __ ldr(r2, at_tos_p5()); // load a
1328 __ ldr(r0, at_tos_p3()); // load c
1329 __ str(r2, at_tos_p3()); // store a in c
1330 __ str(r0, at_tos_p5()); // store c in a
1331 // stack: ..., c, d, a, b, c, d
1332 }
1333
1334 void TemplateTable::swap()
1335 {
1336 transition(vtos, vtos);
1337 // stack: ..., a, b
1338 __ ldr(r2, at_tos_p1()); // load a
1339 __ ldr(r0, at_tos()); // load b
1340 __ str(r2, at_tos()); // store a in b
1341 __ str(r0, at_tos_p1()); // store b in a
1342 // stack: ..., b, a
1343 }
1344
1345 void TemplateTable::iop2(Operation op)
1346 {
1347 transition(itos, itos);
1348 // r0 <== r1 op r0
1349 __ pop_i(r1);
1350 switch (op) {
1351 case add : __ addw(r0, r1, r0); break;
1352 case sub : __ subw(r0, r1, r0); break;
1353 case mul : __ mulw(r0, r1, r0); break;
1354 case _and : __ andw(r0, r1, r0); break;
1355 case _or : __ orrw(r0, r1, r0); break;
1356 case _xor : __ eorw(r0, r1, r0); break;
1357 case shl : __ lslvw(r0, r1, r0); break;
1358 case shr : __ asrvw(r0, r1, r0); break;
1359 case ushr : __ lsrvw(r0, r1, r0);break;
1360 default : ShouldNotReachHere();
1361 }
1362 }
1363
1364 void TemplateTable::lop2(Operation op)
1365 {
1366 transition(ltos, ltos);
1367 // r0 <== r1 op r0
1368 __ pop_l(r1);
1369 switch (op) {
1370 case add : __ add(r0, r1, r0); break;
1371 case sub : __ sub(r0, r1, r0); break;
1372 case mul : __ mul(r0, r1, r0); break;
1373 case _and : __ andr(r0, r1, r0); break;
1374 case _or : __ orr(r0, r1, r0); break;
1375 case _xor : __ eor(r0, r1, r0); break;
1376 default : ShouldNotReachHere();
1377 }
1378 }
1379
1380 void TemplateTable::idiv()
1381 {
1382 transition(itos, itos);
1383 // explicitly check for div0
1384 Label no_div0;
1385 __ cbnzw(r0, no_div0);
1386 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1387 __ br(rscratch1);
1388 __ bind(no_div0);
1389 __ pop_i(r1);
1390 // r0 <== r1 idiv r0
1391 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
1392 }
1393
1394 void TemplateTable::irem()
1395 {
1396 transition(itos, itos);
1397 // explicitly check for div0
1398 Label no_div0;
1399 __ cbnzw(r0, no_div0);
1400 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1401 __ br(rscratch1);
1402 __ bind(no_div0);
1403 __ pop_i(r1);
1404 // r0 <== r1 irem r0
1405 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
1406 }
1407
1408 void TemplateTable::lmul()
1409 {
1410 transition(ltos, ltos);
1411 __ pop_l(r1);
1412 __ mul(r0, r0, r1);
1413 }
1414
1415 void TemplateTable::ldiv()
1416 {
1417 transition(ltos, ltos);
1418 // explicitly check for div0
1419 Label no_div0;
1420 __ cbnz(r0, no_div0);
1421 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1422 __ br(rscratch1);
1423 __ bind(no_div0);
1424 __ pop_l(r1);
1425 // r0 <== r1 ldiv r0
1426 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
1427 }
1428
1429 void TemplateTable::lrem()
1430 {
1431 transition(ltos, ltos);
1432 // explicitly check for div0
1433 Label no_div0;
1434 __ cbnz(r0, no_div0);
1435 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1436 __ br(rscratch1);
1437 __ bind(no_div0);
1438 __ pop_l(r1);
1439 // r0 <== r1 lrem r0
1440 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
1441 }
1442
1443 void TemplateTable::lshl()
1444 {
1445 transition(itos, ltos);
1446 // shift count is in r0
1447 __ pop_l(r1);
1448 __ lslv(r0, r1, r0);
1449 }
1450
1451 void TemplateTable::lshr()
1452 {
1453 transition(itos, ltos);
1454 // shift count is in r0
1455 __ pop_l(r1);
1456 __ asrv(r0, r1, r0);
1457 }
1458
1459 void TemplateTable::lushr()
1460 {
1461 transition(itos, ltos);
1462 // shift count is in r0
1463 __ pop_l(r1);
1464 __ lsrv(r0, r1, r0);
1465 }
1466
1467 void TemplateTable::fop2(Operation op)
1468 {
1469 transition(ftos, ftos);
1470 switch (op) {
1471 case add:
1472 // n.b. use ldrd because this is a 64 bit slot
1473 __ pop_f(v1);
1474 __ fadds(v0, v1, v0);
1475 break;
1476 case sub:
1477 __ pop_f(v1);
1478 __ fsubs(v0, v1, v0);
1479 break;
1480 case mul:
1481 __ pop_f(v1);
1482 __ fmuls(v0, v1, v0);
1483 break;
1484 case div:
1485 __ pop_f(v1);
1486 __ fdivs(v0, v1, v0);
1487 break;
1488 case rem:
1489 __ fmovs(v1, v0);
1490 __ pop_f(v0);
1491 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1492 break;
1493 default:
1494 ShouldNotReachHere();
1495 break;
1496 }
1497 }
1498
1499 void TemplateTable::dop2(Operation op)
1500 {
1501 transition(dtos, dtos);
1502 switch (op) {
1503 case add:
1504 // n.b. use ldrd because this is a 64 bit slot
1505 __ pop_d(v1);
1506 __ faddd(v0, v1, v0);
1507 break;
1508 case sub:
1509 __ pop_d(v1);
1510 __ fsubd(v0, v1, v0);
1511 break;
1512 case mul:
1513 __ pop_d(v1);
1514 __ fmuld(v0, v1, v0);
1515 break;
1516 case div:
1517 __ pop_d(v1);
1518 __ fdivd(v0, v1, v0);
1519 break;
1520 case rem:
1521 __ fmovd(v1, v0);
1522 __ pop_d(v0);
1523 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1524 break;
1525 default:
1526 ShouldNotReachHere();
1527 break;
1528 }
1529 }
1530
1531 void TemplateTable::ineg()
1532 {
1533 transition(itos, itos);
1534 __ negw(r0, r0);
1535
1536 }
1537
1538 void TemplateTable::lneg()
1539 {
1540 transition(ltos, ltos);
1541 __ neg(r0, r0);
1542 }
1543
1544 void TemplateTable::fneg()
1545 {
1546 transition(ftos, ftos);
1547 __ fnegs(v0, v0);
1548 }
1549
1550 void TemplateTable::dneg()
1551 {
1552 transition(dtos, dtos);
1553 __ fnegd(v0, v0);
1554 }
1555
1556 void TemplateTable::iinc()
1557 {
1558 transition(vtos, vtos);
1559 __ load_signed_byte(r1, at_bcp(2)); // get constant
1560 locals_index(r2);
1561 __ ldr(r0, iaddress(r2));
1562 __ addw(r0, r0, r1);
1563 __ str(r0, iaddress(r2));
1564 }
1565
1566 void TemplateTable::wide_iinc()
1567 {
1568 transition(vtos, vtos);
1569 // __ mov(r1, zr);
1570 __ ldrw(r1, at_bcp(2)); // get constant and index
1571 __ rev16(r1, r1);
1572 __ ubfx(r2, r1, 0, 16);
1573 __ neg(r2, r2);
1574 __ sbfx(r1, r1, 16, 16);
1575 __ ldr(r0, iaddress(r2));
1576 __ addw(r0, r0, r1);
1577 __ str(r0, iaddress(r2));
1578 }
1579
1580 void TemplateTable::convert()
1581 {
1582 // Checking
1583 #ifdef ASSERT
1584 {
1585 TosState tos_in = ilgl;
1586 TosState tos_out = ilgl;
1587 switch (bytecode()) {
1588 case Bytecodes::_i2l: // fall through
1589 case Bytecodes::_i2f: // fall through
1590 case Bytecodes::_i2d: // fall through
1591 case Bytecodes::_i2b: // fall through
1592 case Bytecodes::_i2c: // fall through
1593 case Bytecodes::_i2s: tos_in = itos; break;
1594 case Bytecodes::_l2i: // fall through
1595 case Bytecodes::_l2f: // fall through
1596 case Bytecodes::_l2d: tos_in = ltos; break;
1597 case Bytecodes::_f2i: // fall through
1598 case Bytecodes::_f2l: // fall through
1599 case Bytecodes::_f2d: tos_in = ftos; break;
1600 case Bytecodes::_d2i: // fall through
1601 case Bytecodes::_d2l: // fall through
1602 case Bytecodes::_d2f: tos_in = dtos; break;
1603 default : ShouldNotReachHere();
1604 }
1605 switch (bytecode()) {
1606 case Bytecodes::_l2i: // fall through
1607 case Bytecodes::_f2i: // fall through
1608 case Bytecodes::_d2i: // fall through
1609 case Bytecodes::_i2b: // fall through
1610 case Bytecodes::_i2c: // fall through
1611 case Bytecodes::_i2s: tos_out = itos; break;
1612 case Bytecodes::_i2l: // fall through
1613 case Bytecodes::_f2l: // fall through
1614 case Bytecodes::_d2l: tos_out = ltos; break;
1615 case Bytecodes::_i2f: // fall through
1616 case Bytecodes::_l2f: // fall through
1617 case Bytecodes::_d2f: tos_out = ftos; break;
1618 case Bytecodes::_i2d: // fall through
1619 case Bytecodes::_l2d: // fall through
1620 case Bytecodes::_f2d: tos_out = dtos; break;
1621 default : ShouldNotReachHere();
1622 }
1623 transition(tos_in, tos_out);
1624 }
1625 #endif // ASSERT
1626 // static const int64_t is_nan = 0x8000000000000000L;
1627
1628 // Conversion
1629 switch (bytecode()) {
1630 case Bytecodes::_i2l:
1631 __ sxtw(r0, r0);
1632 break;
1633 case Bytecodes::_i2f:
1634 __ scvtfws(v0, r0);
1635 break;
1636 case Bytecodes::_i2d:
1637 __ scvtfwd(v0, r0);
1638 break;
1639 case Bytecodes::_i2b:
1640 __ sxtbw(r0, r0);
1641 break;
1642 case Bytecodes::_i2c:
1643 __ uxthw(r0, r0);
1644 break;
1645 case Bytecodes::_i2s:
1646 __ sxthw(r0, r0);
1647 break;
1648 case Bytecodes::_l2i:
1649 __ uxtw(r0, r0);
1650 break;
1651 case Bytecodes::_l2f:
1652 __ scvtfs(v0, r0);
1653 break;
1654 case Bytecodes::_l2d:
1655 __ scvtfd(v0, r0);
1656 break;
1657 case Bytecodes::_f2i:
1658 {
1659 Label L_Okay;
1660 __ clear_fpsr();
1661 __ fcvtzsw(r0, v0);
1662 __ get_fpsr(r1);
1663 __ cbzw(r1, L_Okay);
1664 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i));
1665 __ bind(L_Okay);
1666 }
1667 break;
1668 case Bytecodes::_f2l:
1669 {
1670 Label L_Okay;
1671 __ clear_fpsr();
1672 __ fcvtzs(r0, v0);
1673 __ get_fpsr(r1);
1674 __ cbzw(r1, L_Okay);
1675 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1676 __ bind(L_Okay);
1677 }
1678 break;
1679 case Bytecodes::_f2d:
1680 __ fcvts(v0, v0);
1681 break;
1682 case Bytecodes::_d2i:
1683 {
1684 Label L_Okay;
1685 __ clear_fpsr();
1686 __ fcvtzdw(r0, v0);
1687 __ get_fpsr(r1);
1688 __ cbzw(r1, L_Okay);
1689 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
1690 __ bind(L_Okay);
1691 }
1692 break;
1693 case Bytecodes::_d2l:
1694 {
1695 Label L_Okay;
1696 __ clear_fpsr();
1697 __ fcvtzd(r0, v0);
1698 __ get_fpsr(r1);
1699 __ cbzw(r1, L_Okay);
1700 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1701 __ bind(L_Okay);
1702 }
1703 break;
1704 case Bytecodes::_d2f:
1705 __ fcvtd(v0, v0);
1706 break;
1707 default:
1708 ShouldNotReachHere();
1709 }
1710 }
1711
1712 void TemplateTable::lcmp()
1713 {
1714 transition(ltos, itos);
1715 Label done;
1716 __ pop_l(r1);
1717 __ cmp(r1, r0);
1718 __ mov(r0, (uint64_t)-1L);
1719 __ br(Assembler::LT, done);
1720 // __ mov(r0, 1UL);
1721 // __ csel(r0, r0, zr, Assembler::NE);
1722 // and here is a faster way
1723 __ csinc(r0, zr, zr, Assembler::EQ);
1724 __ bind(done);
1725 }
1726
1727 void TemplateTable::float_cmp(bool is_float, int unordered_result)
1728 {
1729 Label done;
1730 if (is_float) {
1731 // XXX get rid of pop here, use ... reg, mem32
1732 __ pop_f(v1);
1733 __ fcmps(v1, v0);
1734 } else {
1735 // XXX get rid of pop here, use ... reg, mem64
1736 __ pop_d(v1);
1737 __ fcmpd(v1, v0);
1738 }
1739 if (unordered_result < 0) {
1740 // we want -1 for unordered or less than, 0 for equal and 1 for
1741 // greater than.
1742 __ mov(r0, (uint64_t)-1L);
1743 // for FP LT tests less than or unordered
1744 __ br(Assembler::LT, done);
1745 // install 0 for EQ otherwise 1
1746 __ csinc(r0, zr, zr, Assembler::EQ);
1747 } else {
1748 // we want -1 for less than, 0 for equal and 1 for unordered or
1749 // greater than.
1750 __ mov(r0, 1L);
1751 // for FP HI tests greater than or unordered
1752 __ br(Assembler::HI, done);
1753 // install 0 for EQ otherwise ~0
1754 __ csinv(r0, zr, zr, Assembler::EQ);
1755
1756 }
1757 __ bind(done);
1758 }
1759
1760 void TemplateTable::branch(bool is_jsr, bool is_wide)
1761 {
1762 __ profile_taken_branch(r0);
1763 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1764 InvocationCounter::counter_offset();
1765 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1766 InvocationCounter::counter_offset();
1767
1768 // load branch displacement
1769 if (!is_wide) {
1770 __ ldrh(r2, at_bcp(1));
1771 __ rev16(r2, r2);
1772 // sign extend the 16 bit value in r2
1773 __ sbfm(r2, r2, 0, 15);
1774 } else {
1775 __ ldrw(r2, at_bcp(1));
1776 __ revw(r2, r2);
1777 // sign extend the 32 bit value in r2
1778 __ sbfm(r2, r2, 0, 31);
1779 }
1780
1781 // Handle all the JSR stuff here, then exit.
1782 // It's much shorter and cleaner than intermingling with the non-JSR
1783 // normal-branch stuff occurring below.
1784
1785 if (is_jsr) {
1786 // Pre-load the next target bytecode into rscratch1
1787 __ load_unsigned_byte(rscratch1, Address(rbcp, r2));
1788 // compute return address as bci
1789 __ ldr(rscratch2, Address(rmethod, Method::const_offset()));
1790 __ add(rscratch2, rscratch2,
1791 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1792 __ sub(r1, rbcp, rscratch2);
1793 __ push_i(r1);
1794 // Adjust the bcp by the 16-bit displacement in r2
1795 __ add(rbcp, rbcp, r2);
1796 __ dispatch_only(vtos, /*generate_poll*/true);
1797 return;
1798 }
1799
1800 // Normal (non-jsr) branch handling
1801
1802 // Adjust the bcp by the displacement in r2
1803 __ add(rbcp, rbcp, r2);
1804
1805 assert(UseLoopCounter || !UseOnStackReplacement,
1806 "on-stack-replacement requires loop counters");
1807 Label backedge_counter_overflow;
1808 Label dispatch;
1809 if (UseLoopCounter) {
1810 // increment backedge counter for backward branches
1811 // r0: MDO
1812 // r2: target offset
1813 __ cmp(r2, zr);
1814 __ br(Assembler::GT, dispatch); // count only if backward branch
1815
1816 // ECN: FIXME: This code smells
1817 // check if MethodCounters exists
1818 Label has_counters;
1819 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1820 __ cbnz(rscratch1, has_counters);
1821 __ push(r0);
1822 __ push(r2);
1823 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1824 InterpreterRuntime::build_method_counters), rmethod);
1825 __ pop(r2);
1826 __ pop(r0);
1827 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1828 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
1829 __ bind(has_counters);
1830
1831 Label no_mdo;
1832 int increment = InvocationCounter::count_increment;
1833 if (ProfileInterpreter) {
1834 // Are we profiling?
1835 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
1836 __ cbz(r1, no_mdo);
1837 // Increment the MDO backedge counter
1838 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
1839 in_bytes(InvocationCounter::counter_offset()));
1840 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset()));
1841 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1842 r0, rscratch1, false, Assembler::EQ,
1843 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1844 __ b(dispatch);
1845 }
1846 __ bind(no_mdo);
1847 // Increment backedge counter in MethodCounters*
1848 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1849 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset()));
1850 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
1851 r0, rscratch2, false, Assembler::EQ,
1852 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1853 __ bind(dispatch);
1854 }
1855
1856 // Pre-load the next target bytecode into rscratch1
1857 __ load_unsigned_byte(rscratch1, Address(rbcp, 0));
1858
1859 // continue with the bytecode @ target
1860 // rscratch1: target bytecode
1861 // rbcp: target bcp
1862 __ dispatch_only(vtos, /*generate_poll*/true);
1863
1864 if (UseLoopCounter && UseOnStackReplacement) {
1865 // invocation counter overflow
1866 __ bind(backedge_counter_overflow);
1867 __ neg(r2, r2);
1868 __ add(r2, r2, rbcp); // branch bcp
1869 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1870 __ call_VM(noreg,
1871 CAST_FROM_FN_PTR(address,
1872 InterpreterRuntime::frequency_counter_overflow),
1873 r2);
1874 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode
1875
1876 // r0: osr nmethod (osr ok) or null (osr not possible)
1877 // w1: target bytecode
1878 // r2: scratch
1879 __ cbz(r0, dispatch); // test result -- no osr if null
1880 // nmethod may have been invalidated (VM may block upon call_VM return)
1881 __ ldrb(r2, Address(r0, nmethod::state_offset()));
1882 if (nmethod::in_use != 0)
1883 __ sub(r2, r2, nmethod::in_use);
1884 __ cbnz(r2, dispatch);
1885
1886 // We have the address of an on stack replacement routine in r0
1887 // We need to prepare to execute the OSR method. First we must
1888 // migrate the locals and monitors off of the stack.
1889
1890 __ mov(r19, r0); // save the nmethod
1891
1892 JFR_ONLY(__ enter_jfr_critical_section();)
1893
1894 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1895
1896 // r0 is OSR buffer, move it to expected parameter location
1897 __ mov(j_rarg0, r0);
1898
1899 // remove activation
1900 // get sender esp
1901 __ ldr(esp,
1902 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
1903 // remove frame anchor
1904 __ leave();
1905
1906 JFR_ONLY(__ leave_jfr_critical_section();)
1907
1908 // Ensure compiled code always sees stack at proper alignment
1909 __ andr(sp, esp, -16);
1910
1911 // and begin the OSR nmethod
1912 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
1913 __ br(rscratch1);
1914 }
1915 }
1916
1917
1918 void TemplateTable::if_0cmp(Condition cc)
1919 {
1920 transition(itos, vtos);
1921 // assume branch is more often taken than not (loops use backward branches)
1922 Label not_taken;
1923 if (cc == equal)
1924 __ cbnzw(r0, not_taken);
1925 else if (cc == not_equal)
1926 __ cbzw(r0, not_taken);
1927 else {
1928 __ andsw(zr, r0, r0);
1929 __ br(j_not(cc), not_taken);
1930 }
1931
1932 branch(false, false);
1933 __ bind(not_taken);
1934 __ profile_not_taken_branch(r0);
1935 }
1936
1937 void TemplateTable::if_icmp(Condition cc)
1938 {
1939 transition(itos, vtos);
1940 // assume branch is more often taken than not (loops use backward branches)
1941 Label not_taken;
1942 __ pop_i(r1);
1943 __ cmpw(r1, r0, Assembler::LSL);
1944 __ br(j_not(cc), not_taken);
1945 branch(false, false);
1946 __ bind(not_taken);
1947 __ profile_not_taken_branch(r0);
1948 }
1949
1950 void TemplateTable::if_nullcmp(Condition cc)
1951 {
1952 transition(atos, vtos);
1953 // assume branch is more often taken than not (loops use backward branches)
1954 Label not_taken;
1955 if (cc == equal)
1956 __ cbnz(r0, not_taken);
1957 else
1958 __ cbz(r0, not_taken);
1959 branch(false, false);
1960 __ bind(not_taken);
1961 __ profile_not_taken_branch(r0);
1962 }
1963
1964 void TemplateTable::if_acmp(Condition cc)
1965 {
1966 transition(atos, vtos);
1967 // assume branch is more often taken than not (loops use backward branches)
1968 Label not_taken;
1969 __ pop_ptr(r1);
1970 __ cmpoop(r1, r0);
1971 __ br(j_not(cc), not_taken);
1972 branch(false, false);
1973 __ bind(not_taken);
1974 __ profile_not_taken_branch(r0);
1975 }
1976
1977 void TemplateTable::ret() {
1978 transition(vtos, vtos);
1979 locals_index(r1);
1980 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1981 __ profile_ret(r1, r2);
1982 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1983 __ lea(rbcp, Address(rbcp, r1));
1984 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1985 __ dispatch_next(vtos, 0, /*generate_poll*/true);
1986 }
1987
1988 void TemplateTable::wide_ret() {
1989 transition(vtos, vtos);
1990 locals_index_wide(r1);
1991 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1992 __ profile_ret(r1, r2);
1993 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1994 __ lea(rbcp, Address(rbcp, r1));
1995 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1996 __ dispatch_next(vtos, 0, /*generate_poll*/true);
1997 }
1998
1999
2000 void TemplateTable::tableswitch() {
2001 Label default_case, continue_execution;
2002 transition(itos, vtos);
2003 // align rbcp
2004 __ lea(r1, at_bcp(BytesPerInt));
2005 __ andr(r1, r1, -BytesPerInt);
2006 // load lo & hi
2007 __ ldrw(r2, Address(r1, BytesPerInt));
2008 __ ldrw(r3, Address(r1, 2 * BytesPerInt));
2009 __ rev32(r2, r2);
2010 __ rev32(r3, r3);
2011 // check against lo & hi
2012 __ cmpw(r0, r2);
2013 __ br(Assembler::LT, default_case);
2014 __ cmpw(r0, r3);
2015 __ br(Assembler::GT, default_case);
2016 // lookup dispatch offset
2017 __ subw(r0, r0, r2);
2018 __ lea(r3, Address(r1, r0, Address::uxtw(2)));
2019 __ ldrw(r3, Address(r3, 3 * BytesPerInt));
2020 __ profile_switch_case(r0, r1, r2);
2021 // continue execution
2022 __ bind(continue_execution);
2023 __ rev32(r3, r3);
2024 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
2025 __ add(rbcp, rbcp, r3, ext::sxtw);
2026 __ dispatch_only(vtos, /*generate_poll*/true);
2027 // handle default
2028 __ bind(default_case);
2029 __ profile_switch_default(r0);
2030 __ ldrw(r3, Address(r1, 0));
2031 __ b(continue_execution);
2032 }
2033
2034 void TemplateTable::lookupswitch() {
2035 transition(itos, itos);
2036 __ stop("lookupswitch bytecode should have been rewritten");
2037 }
2038
2039 void TemplateTable::fast_linearswitch() {
2040 transition(itos, vtos);
2041 Label loop_entry, loop, found, continue_execution;
2042 // bswap r0 so we can avoid bswapping the table entries
2043 __ rev32(r0, r0);
2044 // align rbcp
2045 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2046 // this instruction (change offsets
2047 // below)
2048 __ andr(r19, r19, -BytesPerInt);
2049 // set counter
2050 __ ldrw(r1, Address(r19, BytesPerInt));
2051 __ rev32(r1, r1);
2052 __ b(loop_entry);
2053 // table search
2054 __ bind(loop);
2055 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2056 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
2057 __ cmpw(r0, rscratch1);
2058 __ br(Assembler::EQ, found);
2059 __ bind(loop_entry);
2060 __ subs(r1, r1, 1);
2061 __ br(Assembler::PL, loop);
2062 // default case
2063 __ profile_switch_default(r0);
2064 __ ldrw(r3, Address(r19, 0));
2065 __ b(continue_execution);
2066 // entry found -> get offset
2067 __ bind(found);
2068 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2069 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
2070 __ profile_switch_case(r1, r0, r19);
2071 // continue execution
2072 __ bind(continue_execution);
2073 __ rev32(r3, r3);
2074 __ add(rbcp, rbcp, r3, ext::sxtw);
2075 __ ldrb(rscratch1, Address(rbcp, 0));
2076 __ dispatch_only(vtos, /*generate_poll*/true);
2077 }
2078
2079 void TemplateTable::fast_binaryswitch() {
2080 transition(itos, vtos);
2081 // Implementation using the following core algorithm:
2082 //
2083 // int binary_search(int key, LookupswitchPair* array, int n) {
2084 // // Binary search according to "Methodik des Programmierens" by
2085 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2086 // int i = 0;
2087 // int j = n;
2088 // while (i+1 < j) {
2089 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2090 // // with Q: for all i: 0 <= i < n: key < a[i]
2091 // // where a stands for the array and assuming that the (inexisting)
2092 // // element a[n] is infinitely big.
2093 // int h = (i + j) >> 1;
2094 // // i < h < j
2095 // if (key < array[h].fast_match()) {
2096 // j = h;
2097 // } else {
2098 // i = h;
2099 // }
2100 // }
2101 // // R: a[i] <= key < a[i+1] or Q
2102 // // (i.e., if key is within array, i is the correct index)
2103 // return i;
2104 // }
2105
2106 // Register allocation
2107 const Register key = r0; // already set (tosca)
2108 const Register array = r1;
2109 const Register i = r2;
2110 const Register j = r3;
2111 const Register h = rscratch1;
2112 const Register temp = rscratch2;
2113
2114 // Find array start
2115 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2116 // get rid of this
2117 // instruction (change
2118 // offsets below)
2119 __ andr(array, array, -BytesPerInt);
2120
2121 // Initialize i & j
2122 __ mov(i, 0); // i = 0;
2123 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
2124
2125 // Convert j into native byteordering
2126 __ rev32(j, j);
2127
2128 // And start
2129 Label entry;
2130 __ b(entry);
2131
2132 // binary search loop
2133 {
2134 Label loop;
2135 __ bind(loop);
2136 // int h = (i + j) >> 1;
2137 __ addw(h, i, j); // h = i + j;
2138 __ lsrw(h, h, 1); // h = (i + j) >> 1;
2139 // if (key < array[h].fast_match()) {
2140 // j = h;
2141 // } else {
2142 // i = h;
2143 // }
2144 // Convert array[h].match to native byte-ordering before compare
2145 __ ldr(temp, Address(array, h, Address::lsl(3)));
2146 __ rev32(temp, temp);
2147 __ cmpw(key, temp);
2148 // j = h if (key < array[h].fast_match())
2149 __ csel(j, h, j, Assembler::LT);
2150 // i = h if (key >= array[h].fast_match())
2151 __ csel(i, h, i, Assembler::GE);
2152 // while (i+1 < j)
2153 __ bind(entry);
2154 __ addw(h, i, 1); // i+1
2155 __ cmpw(h, j); // i+1 < j
2156 __ br(Assembler::LT, loop);
2157 }
2158
2159 // end of binary search, result index is i (must check again!)
2160 Label default_case;
2161 // Convert array[i].match to native byte-ordering before compare
2162 __ ldr(temp, Address(array, i, Address::lsl(3)));
2163 __ rev32(temp, temp);
2164 __ cmpw(key, temp);
2165 __ br(Assembler::NE, default_case);
2166
2167 // entry found -> j = offset
2168 __ add(j, array, i, ext::uxtx, 3);
2169 __ ldrw(j, Address(j, BytesPerInt));
2170 __ profile_switch_case(i, key, array);
2171 __ rev32(j, j);
2172 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2173 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2174 __ dispatch_only(vtos, /*generate_poll*/true);
2175
2176 // default case -> j = default offset
2177 __ bind(default_case);
2178 __ profile_switch_default(i);
2179 __ ldrw(j, Address(array, -2 * BytesPerInt));
2180 __ rev32(j, j);
2181 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2182 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2183 __ dispatch_only(vtos, /*generate_poll*/true);
2184 }
2185
2186
2187 void TemplateTable::_return(TosState state)
2188 {
2189 transition(state, state);
2190 assert(_desc->calls_vm(),
2191 "inconsistent calls_vm information"); // call in remove_activation
2192
2193 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2194 assert(state == vtos, "only valid state");
2195
2196 __ ldr(c_rarg1, aaddress(0));
2197 __ load_klass(r3, c_rarg1);
2198 __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2199 Label skip_register_finalizer;
2200 __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2201
2202 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2203
2204 __ bind(skip_register_finalizer);
2205 }
2206
2207 // Issue a StoreStore barrier after all stores but before return
2208 // from any constructor for any class with a final field. We don't
2209 // know if this is a finalizer, so we always do so.
2210 if (_desc->bytecode() == Bytecodes::_return)
2211 __ membar(MacroAssembler::StoreStore);
2212
2213 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2214 Label no_safepoint;
2215 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2216 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2217 __ push(state);
2218 __ push_cont_fastpath(rthread);
2219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2220 __ pop_cont_fastpath(rthread);
2221 __ pop(state);
2222 __ bind(no_safepoint);
2223 }
2224
2225 // Narrow result if state is itos but result type is smaller.
2226 // Need to narrow in the return bytecode rather than in generate_return_entry
2227 // since compiled code callers expect the result to already be narrowed.
2228 if (state == itos) {
2229 __ narrow(r0);
2230 }
2231
2232 __ remove_activation(state);
2233 __ ret(lr);
2234 }
2235
2236 // ----------------------------------------------------------------------------
2237 // Volatile variables demand their effects be made known to all CPU's
2238 // in order. Store buffers on most chips allow reads & writes to
2239 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2240 // without some kind of memory barrier (i.e., it's not sufficient that
2241 // the interpreter does not reorder volatile references, the hardware
2242 // also must not reorder them).
2243 //
2244 // According to the new Java Memory Model (JMM):
2245 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2246 // writes act as acquire & release, so:
2247 // (2) A read cannot let unrelated NON-volatile memory refs that
2248 // happen after the read float up to before the read. It's OK for
2249 // non-volatile memory refs that happen before the volatile read to
2250 // float down below it.
2251 // (3) Similar a volatile write cannot let unrelated NON-volatile
2252 // memory refs that happen BEFORE the write float down to after the
2253 // write. It's OK for non-volatile memory refs that happen after the
2254 // volatile write to float up before it.
2255 //
2256 // We only put in barriers around volatile refs (they are expensive),
2257 // not _between_ memory refs (that would require us to track the
2258 // flavor of the previous memory refs). Requirements (2) and (3)
2259 // require some barriers before volatile stores and after volatile
2260 // loads. These nearly cover requirement (1) but miss the
2261 // volatile-store-volatile-load case. This final case is placed after
2262 // volatile-stores although it could just as well go before
2263 // volatile-loads.
2264
2265 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2266 Register Rcache,
2267 Register index) {
2268 const Register temp = r19;
2269 assert_different_registers(Rcache, index, temp);
2270 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2271
2272 Label resolved, clinit_barrier_slow;
2273
2274 Bytecodes::Code code = bytecode();
2275 __ load_method_entry(Rcache, index);
2276 switch(byte_no) {
2277 case f1_byte:
2278 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2279 break;
2280 case f2_byte:
2281 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2282 break;
2283 }
2284 // Load-acquire the bytecode to match store-release in InterpreterRuntime
2285 __ ldarb(temp, temp);
2286 __ subs(zr, temp, (int) code); // have we resolved this bytecode?
2287 __ br(Assembler::EQ, resolved);
2288
2289 // resolve first time through
2290 // Class initialization barrier slow path lands here as well.
2291 __ bind(clinit_barrier_slow);
2292 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2293 __ mov(temp, (int) code);
2294 __ call_VM(noreg, entry, temp);
2295
2296 // Update registers with resolved info
2297 __ load_method_entry(Rcache, index);
2298 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2299 // so all clients ofthis method must be modified accordingly
2300 __ bind(resolved);
2301
2302 // Class initialization barrier for static methods
2303 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2304 __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
2305 __ load_method_holder(temp, temp);
2306 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow);
2307 }
2308 }
2309
2310 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2311 Register Rcache,
2312 Register index) {
2313 const Register temp = r19;
2314 assert_different_registers(Rcache, index, temp);
2315
2316 Label resolved;
2317
2318 Bytecodes::Code code = bytecode();
2319 switch (code) {
2320 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2321 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2322 default: break;
2323 }
2324
2325 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2326 __ load_field_entry(Rcache, index);
2327 if (byte_no == f1_byte) {
2328 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2329 } else {
2330 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2331 }
2332 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
2333 __ ldarb(temp, temp);
2334 __ subs(zr, temp, (int) code); // have we resolved this bytecode?
2335 __ br(Assembler::EQ, resolved);
2336
2337 // resolve first time through
2338 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2339 __ mov(temp, (int) code);
2340 __ call_VM(noreg, entry, temp);
2341
2342 // Update registers with resolved info
2343 __ load_field_entry(Rcache, index);
2344 __ bind(resolved);
2345 }
2346
2347 void TemplateTable::load_resolved_field_entry(Register obj,
2348 Register cache,
2349 Register tos_state,
2350 Register offset,
2351 Register flags,
2352 bool is_static = false) {
2353 assert_different_registers(cache, tos_state, flags, offset);
2354
2355 // Field offset
2356 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2357
2358 // Flags
2359 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2360
2361 // TOS state
2362 if (tos_state != noreg) {
2363 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2364 }
2365
2366 // Klass overwrite register
2367 if (is_static) {
2368 __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2369 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2370 __ ldr(obj, Address(obj, mirror_offset));
2371 __ resolve_oop_handle(obj, r5, rscratch2);
2372 }
2373 }
2374
2375 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2376 Register method,
2377 Register flags) {
2378
2379 // setup registers
2380 const Register index = flags;
2381 assert_different_registers(method, cache, flags);
2382
2383 // determine constant pool cache field offsets
2384 resolve_cache_and_index_for_method(f1_byte, cache, index);
2385 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2386 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2387 }
2388
2389 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2390 Register method,
2391 Register ref_index,
2392 Register flags) {
2393 // setup registers
2394 const Register index = ref_index;
2395 assert_different_registers(method, flags);
2396 assert_different_registers(method, cache, index);
2397
2398 // determine constant pool cache field offsets
2399 resolve_cache_and_index_for_method(f1_byte, cache, index);
2400 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2401
2402 // maybe push appendix to arguments (just before return address)
2403 Label L_no_push;
2404 __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push);
2405 // invokehandle uses an index into the resolved references array
2406 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2407 // Push the appendix as a trailing parameter.
2408 // This must be done before we get the receiver,
2409 // since the parameter_size includes it.
2410 Register appendix = method;
2411 __ load_resolved_reference_at_index(appendix, ref_index);
2412 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2413 __ bind(L_no_push);
2414
2415 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2416 }
2417
2418 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2419 Register klass,
2420 Register method_or_table_index,
2421 Register flags) {
2422 // setup registers
2423 const Register index = method_or_table_index;
2424 assert_different_registers(method_or_table_index, cache, flags);
2425
2426 // determine constant pool cache field offsets
2427 resolve_cache_and_index_for_method(f1_byte, cache, index);
2428 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2429
2430 // Invokeinterface can behave in different ways:
2431 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2432 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2433 // vtable index is placed in the register.
2434 // Otherwise, the registers will be populated with the klass and method.
2435
2436 Label NotVirtual; Label NotVFinal; Label Done;
2437 __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual);
2438 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2439 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2440 __ b(Done);
2441
2442 __ bind(NotVFinal);
2443 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2444 __ b(Done);
2445
2446 __ bind(NotVirtual);
2447 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2448 __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2449 __ bind(Done);
2450 }
2451
2452 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2453 Register method_or_table_index,
2454 Register flags) {
2455 // setup registers
2456 const Register index = flags;
2457 assert_different_registers(method_or_table_index, cache, flags);
2458
2459 // determine constant pool cache field offsets
2460 resolve_cache_and_index_for_method(f2_byte, cache, index);
2461 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2462
2463 // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2464 Label NotVFinal; Label Done;
2465 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2466 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2467 __ b(Done);
2468
2469 __ bind(NotVFinal);
2470 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2471 __ bind(Done);
2472 }
2473
2474 // The rmethod register is input and overwritten to be the adapter method for the
2475 // indy call. Link Register (lr) is set to the return address for the adapter and
2476 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered
2477 void TemplateTable::load_invokedynamic_entry(Register method) {
2478 // setup registers
2479 const Register appendix = r0;
2480 const Register cache = r2;
2481 const Register index = r3;
2482 assert_different_registers(method, appendix, cache, index, rcpool);
2483
2484 __ save_bcp();
2485
2486 Label resolved;
2487
2488 __ load_resolved_indy_entry(cache, index);
2489 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2490 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2491 __ ldar(method, method);
2492
2493 // Compare the method to zero
2494 __ cbnz(method, resolved);
2495
2496 Bytecodes::Code code = bytecode();
2497
2498 // Call to the interpreter runtime to resolve invokedynamic
2499 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2500 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic
2501 __ call_VM(noreg, entry, method);
2502 // Update registers with resolved info
2503 __ load_resolved_indy_entry(cache, index);
2504 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2505 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2506 __ ldar(method, method);
2507
2508 #ifdef ASSERT
2509 __ cbnz(method, resolved);
2510 __ stop("Should be resolved by now");
2511 #endif // ASSERT
2512 __ bind(resolved);
2513
2514 Label L_no_push;
2515 // Check if there is an appendix
2516 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2517 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push);
2518
2519 // Get appendix
2520 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2521 // Push the appendix as a trailing parameter
2522 // since the parameter_size includes it.
2523 __ push(method);
2524 __ mov(method, index);
2525 __ load_resolved_reference_at_index(appendix, method);
2526 __ verify_oop(appendix);
2527 __ pop(method);
2528 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2529 __ bind(L_no_push);
2530
2531 // compute return type
2532 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2533 // load return address
2534 // Return address is loaded into link register(lr) and not pushed to the stack
2535 // like x86
2536 {
2537 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2538 __ mov(rscratch1, table_addr);
2539 __ ldr(lr, Address(rscratch1, index, Address::lsl(3)));
2540 }
2541 }
2542
2543 // The registers cache and index expected to be set before call.
2544 // Correct values of the cache and index registers are preserved.
2545 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2546 bool is_static, bool has_tos) {
2547 // do the JVMTI work here to avoid disturbing the register state below
2548 // We use c_rarg registers here because we want to use the register used in
2549 // the call to the VM
2550 if (JvmtiExport::can_post_field_access()) {
2551 // Check to see if a field access watch has been set before we
2552 // take the time to call into the VM.
2553 Label L1;
2554 assert_different_registers(cache, index, r0);
2555 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2556 __ ldrw(r0, Address(rscratch1));
2557 __ cbzw(r0, L1);
2558
2559 __ load_field_entry(c_rarg2, index);
2560
2561 if (is_static) {
2562 __ mov(c_rarg1, zr); // null object reference
2563 } else {
2564 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it
2565 __ verify_oop(c_rarg1);
2566 }
2567 // c_rarg1: object pointer or null
2568 // c_rarg2: cache entry pointer
2569 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2570 InterpreterRuntime::post_field_access),
2571 c_rarg1, c_rarg2);
2572 __ load_field_entry(cache, index);
2573 __ bind(L1);
2574 }
2575 }
2576
2577 void TemplateTable::pop_and_check_object(Register r)
2578 {
2579 __ pop_ptr(r);
2580 __ null_check(r); // for field access must check obj.
2581 __ verify_oop(r);
2582 }
2583
2584 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2585 {
2586 const Register cache = r4;
2587 const Register obj = r4;
2588 const Register index = r3;
2589 const Register tos_state = r3;
2590 const Register off = r19;
2591 const Register flags = r6;
2592 const Register bc = r4; // uses same reg as obj, so don't mix them
2593
2594 resolve_cache_and_index_for_field(byte_no, cache, index);
2595 jvmti_post_field_access(cache, index, is_static, false);
2596 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2597
2598 if (!is_static) {
2599 // obj is on the stack
2600 pop_and_check_object(obj);
2601 }
2602
2603 // 8179954: We need to make sure that the code generated for
2604 // volatile accesses forms a sequentially-consistent set of
2605 // operations when combined with STLR and LDAR. Without a leading
2606 // membar it's possible for a simple Dekker test to fail if loads
2607 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
2608 // the stores in one method and we interpret the loads in another.
2609 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2610 Label notVolatile;
2611 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2612 __ membar(MacroAssembler::AnyAny);
2613 __ bind(notVolatile);
2614 }
2615
2616 const Address field(obj, off);
2617
2618 Label Done, notByte, notBool, notInt, notShort, notChar,
2619 notLong, notFloat, notObj, notDouble;
2620
2621 assert(btos == 0, "change code, btos != 0");
2622 __ cbnz(tos_state, notByte);
2623
2624 // Don't rewrite getstatic, only getfield
2625 if (is_static) rc = may_not_rewrite;
2626
2627 // btos
2628 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
2629 __ push(btos);
2630 // Rewrite bytecode to be faster
2631 if (rc == may_rewrite) {
2632 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2633 }
2634 __ b(Done);
2635
2636 __ bind(notByte);
2637 __ cmp(tos_state, (u1)ztos);
2638 __ br(Assembler::NE, notBool);
2639
2640 // ztos (same code as btos)
2641 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2642 __ push(ztos);
2643 // Rewrite bytecode to be faster
2644 if (rc == may_rewrite) {
2645 // use btos rewriting, no truncating to t/f bit is needed for getfield.
2646 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2647 }
2648 __ b(Done);
2649
2650 __ bind(notBool);
2651 __ cmp(tos_state, (u1)atos);
2652 __ br(Assembler::NE, notObj);
2653 // atos
2654 do_oop_load(_masm, field, r0, IN_HEAP);
2655 __ push(atos);
2656 if (rc == may_rewrite) {
2657 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2658 }
2659 __ b(Done);
2660
2661 __ bind(notObj);
2662 __ cmp(tos_state, (u1)itos);
2663 __ br(Assembler::NE, notInt);
2664 // itos
2665 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2666 __ push(itos);
2667 // Rewrite bytecode to be faster
2668 if (rc == may_rewrite) {
2669 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2670 }
2671 __ b(Done);
2672
2673 __ bind(notInt);
2674 __ cmp(tos_state, (u1)ctos);
2675 __ br(Assembler::NE, notChar);
2676 // ctos
2677 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2678 __ push(ctos);
2679 // Rewrite bytecode to be faster
2680 if (rc == may_rewrite) {
2681 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
2682 }
2683 __ b(Done);
2684
2685 __ bind(notChar);
2686 __ cmp(tos_state, (u1)stos);
2687 __ br(Assembler::NE, notShort);
2688 // stos
2689 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
2690 __ push(stos);
2691 // Rewrite bytecode to be faster
2692 if (rc == may_rewrite) {
2693 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
2694 }
2695 __ b(Done);
2696
2697 __ bind(notShort);
2698 __ cmp(tos_state, (u1)ltos);
2699 __ br(Assembler::NE, notLong);
2700 // ltos
2701 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
2702 __ push(ltos);
2703 // Rewrite bytecode to be faster
2704 if (rc == may_rewrite) {
2705 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
2706 }
2707 __ b(Done);
2708
2709 __ bind(notLong);
2710 __ cmp(tos_state, (u1)ftos);
2711 __ br(Assembler::NE, notFloat);
2712 // ftos
2713 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2714 __ push(ftos);
2715 // Rewrite bytecode to be faster
2716 if (rc == may_rewrite) {
2717 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
2718 }
2719 __ b(Done);
2720
2721 __ bind(notFloat);
2722 #ifdef ASSERT
2723 __ cmp(tos_state, (u1)dtos);
2724 __ br(Assembler::NE, notDouble);
2725 #endif
2726 // dtos
2727 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2728 __ push(dtos);
2729 // Rewrite bytecode to be faster
2730 if (rc == may_rewrite) {
2731 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
2732 }
2733 #ifdef ASSERT
2734 __ b(Done);
2735
2736 __ bind(notDouble);
2737 __ stop("Bad state");
2738 #endif
2739
2740 __ bind(Done);
2741
2742 Label notVolatile;
2743 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2744 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2745 __ bind(notVolatile);
2746 }
2747
2748
2749 void TemplateTable::getfield(int byte_no)
2750 {
2751 getfield_or_static(byte_no, false);
2752 }
2753
2754 void TemplateTable::nofast_getfield(int byte_no) {
2755 getfield_or_static(byte_no, false, may_not_rewrite);
2756 }
2757
2758 void TemplateTable::getstatic(int byte_no)
2759 {
2760 getfield_or_static(byte_no, true);
2761 }
2762
2763 // The registers cache and index expected to be set before call.
2764 // The function may destroy various registers, just not the cache and index registers.
2765 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2766 transition(vtos, vtos);
2767
2768 if (JvmtiExport::can_post_field_modification()) {
2769 // Check to see if a field modification watch has been set before
2770 // we take the time to call into the VM.
2771 Label L1;
2772 assert_different_registers(cache, index, r0);
2773 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2774 __ ldrw(r0, Address(rscratch1));
2775 __ cbz(r0, L1);
2776
2777 __ mov(c_rarg2, cache);
2778
2779 if (is_static) {
2780 // Life is simple. Null out the object pointer.
2781 __ mov(c_rarg1, zr);
2782 } else {
2783 // Life is harder. The stack holds the value on top, followed by
2784 // the object. We don't know the size of the value, though; it
2785 // could be one or two words depending on its type. As a result,
2786 // we must find the type to determine where the object is.
2787 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset())));
2788 Label nope2, done, ok;
2789 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
2790 __ cmpw(c_rarg3, ltos);
2791 __ br(Assembler::EQ, ok);
2792 __ cmpw(c_rarg3, dtos);
2793 __ br(Assembler::NE, nope2);
2794 __ bind(ok);
2795 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2796 __ bind(nope2);
2797 }
2798 // object (tos)
2799 __ mov(c_rarg3, esp);
2800 // c_rarg1: object pointer set up above (null if static)
2801 // c_rarg2: cache entry pointer
2802 // c_rarg3: jvalue object on the stack
2803 __ call_VM(noreg,
2804 CAST_FROM_FN_PTR(address,
2805 InterpreterRuntime::post_field_modification),
2806 c_rarg1, c_rarg2, c_rarg3);
2807 __ load_field_entry(cache, index);
2808 __ bind(L1);
2809 }
2810 }
2811
2812 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2813 transition(vtos, vtos);
2814
2815 const Register cache = r2;
2816 const Register index = r3;
2817 const Register tos_state = r3;
2818 const Register obj = r2;
2819 const Register off = r19;
2820 const Register flags = r0;
2821 const Register bc = r4;
2822
2823 resolve_cache_and_index_for_field(byte_no, cache, index);
2824 jvmti_post_field_mod(cache, index, is_static);
2825 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2826
2827 Label Done;
2828 __ mov(r5, flags);
2829
2830 {
2831 Label notVolatile;
2832 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2833 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2834 __ bind(notVolatile);
2835 }
2836
2837 // field address
2838 const Address field(obj, off);
2839
2840 Label notByte, notBool, notInt, notShort, notChar,
2841 notLong, notFloat, notObj, notDouble;
2842
2843 assert(btos == 0, "change code, btos != 0");
2844 __ cbnz(tos_state, notByte);
2845
2846 // Don't rewrite putstatic, only putfield
2847 if (is_static) rc = may_not_rewrite;
2848
2849 // btos
2850 {
2851 __ pop(btos);
2852 if (!is_static) pop_and_check_object(obj);
2853 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
2854 if (rc == may_rewrite) {
2855 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
2856 }
2857 __ b(Done);
2858 }
2859
2860 __ bind(notByte);
2861 __ cmp(tos_state, (u1)ztos);
2862 __ br(Assembler::NE, notBool);
2863
2864 // ztos
2865 {
2866 __ pop(ztos);
2867 if (!is_static) pop_and_check_object(obj);
2868 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2869 if (rc == may_rewrite) {
2870 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2871 }
2872 __ b(Done);
2873 }
2874
2875 __ bind(notBool);
2876 __ cmp(tos_state, (u1)atos);
2877 __ br(Assembler::NE, notObj);
2878
2879 // atos
2880 {
2881 __ pop(atos);
2882 if (!is_static) pop_and_check_object(obj);
2883 // Store into the field
2884 // Clobbers: r10, r11, r3
2885 do_oop_store(_masm, field, r0, IN_HEAP);
2886 if (rc == may_rewrite) {
2887 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2888 }
2889 __ b(Done);
2890 }
2891
2892 __ bind(notObj);
2893 __ cmp(tos_state, (u1)itos);
2894 __ br(Assembler::NE, notInt);
2895
2896 // itos
2897 {
2898 __ pop(itos);
2899 if (!is_static) pop_and_check_object(obj);
2900 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2901 if (rc == may_rewrite) {
2902 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2903 }
2904 __ b(Done);
2905 }
2906
2907 __ bind(notInt);
2908 __ cmp(tos_state, (u1)ctos);
2909 __ br(Assembler::NE, notChar);
2910
2911 // ctos
2912 {
2913 __ pop(ctos);
2914 if (!is_static) pop_and_check_object(obj);
2915 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
2916 if (rc == may_rewrite) {
2917 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
2918 }
2919 __ b(Done);
2920 }
2921
2922 __ bind(notChar);
2923 __ cmp(tos_state, (u1)stos);
2924 __ br(Assembler::NE, notShort);
2925
2926 // stos
2927 {
2928 __ pop(stos);
2929 if (!is_static) pop_and_check_object(obj);
2930 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
2931 if (rc == may_rewrite) {
2932 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
2933 }
2934 __ b(Done);
2935 }
2936
2937 __ bind(notShort);
2938 __ cmp(tos_state, (u1)ltos);
2939 __ br(Assembler::NE, notLong);
2940
2941 // ltos
2942 {
2943 __ pop(ltos);
2944 if (!is_static) pop_and_check_object(obj);
2945 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
2946 if (rc == may_rewrite) {
2947 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
2948 }
2949 __ b(Done);
2950 }
2951
2952 __ bind(notLong);
2953 __ cmp(tos_state, (u1)ftos);
2954 __ br(Assembler::NE, notFloat);
2955
2956 // ftos
2957 {
2958 __ pop(ftos);
2959 if (!is_static) pop_and_check_object(obj);
2960 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
2961 if (rc == may_rewrite) {
2962 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
2963 }
2964 __ b(Done);
2965 }
2966
2967 __ bind(notFloat);
2968 #ifdef ASSERT
2969 __ cmp(tos_state, (u1)dtos);
2970 __ br(Assembler::NE, notDouble);
2971 #endif
2972
2973 // dtos
2974 {
2975 __ pop(dtos);
2976 if (!is_static) pop_and_check_object(obj);
2977 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2978 if (rc == may_rewrite) {
2979 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2980 }
2981 }
2982
2983 #ifdef ASSERT
2984 __ b(Done);
2985
2986 __ bind(notDouble);
2987 __ stop("Bad state");
2988 #endif
2989
2990 __ bind(Done);
2991
2992 {
2993 Label notVolatile;
2994 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2995 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2996 __ bind(notVolatile);
2997 }
2998 }
2999
3000 void TemplateTable::putfield(int byte_no)
3001 {
3002 putfield_or_static(byte_no, false);
3003 }
3004
3005 void TemplateTable::nofast_putfield(int byte_no) {
3006 putfield_or_static(byte_no, false, may_not_rewrite);
3007 }
3008
3009 void TemplateTable::putstatic(int byte_no) {
3010 putfield_or_static(byte_no, true);
3011 }
3012
3013 void TemplateTable::jvmti_post_fast_field_mod() {
3014 if (JvmtiExport::can_post_field_modification()) {
3015 // Check to see if a field modification watch has been set before
3016 // we take the time to call into the VM.
3017 Label L2;
3018 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3019 __ ldrw(c_rarg3, Address(rscratch1));
3020 __ cbzw(c_rarg3, L2);
3021 __ pop_ptr(r19); // copy the object pointer from tos
3022 __ verify_oop(r19);
3023 __ push_ptr(r19); // put the object pointer back on tos
3024 // Save tos values before call_VM() clobbers them. Since we have
3025 // to do it for every data type, we use the saved values as the
3026 // jvalue object.
3027 switch (bytecode()) { // load values into the jvalue object
3028 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3029 case Bytecodes::_fast_bputfield: // fall through
3030 case Bytecodes::_fast_zputfield: // fall through
3031 case Bytecodes::_fast_sputfield: // fall through
3032 case Bytecodes::_fast_cputfield: // fall through
3033 case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3034 case Bytecodes::_fast_dputfield: __ push_d(); break;
3035 case Bytecodes::_fast_fputfield: __ push_f(); break;
3036 case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3037
3038 default:
3039 ShouldNotReachHere();
3040 }
3041 __ mov(c_rarg3, esp); // points to jvalue on the stack
3042 // access constant pool cache entry
3043 __ load_field_entry(c_rarg2, r0);
3044 __ verify_oop(r19);
3045 // r19: object pointer copied above
3046 // c_rarg2: cache entry pointer
3047 // c_rarg3: jvalue object on the stack
3048 __ call_VM(noreg,
3049 CAST_FROM_FN_PTR(address,
3050 InterpreterRuntime::post_field_modification),
3051 r19, c_rarg2, c_rarg3);
3052
3053 switch (bytecode()) { // restore tos values
3054 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3055 case Bytecodes::_fast_bputfield: // fall through
3056 case Bytecodes::_fast_zputfield: // fall through
3057 case Bytecodes::_fast_sputfield: // fall through
3058 case Bytecodes::_fast_cputfield: // fall through
3059 case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3060 case Bytecodes::_fast_dputfield: __ pop_d(); break;
3061 case Bytecodes::_fast_fputfield: __ pop_f(); break;
3062 case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3063 default: break;
3064 }
3065 __ bind(L2);
3066 }
3067 }
3068
3069 void TemplateTable::fast_storefield(TosState state)
3070 {
3071 transition(state, vtos);
3072
3073 ByteSize base = ConstantPoolCache::base_offset();
3074
3075 jvmti_post_fast_field_mod();
3076
3077 // access constant pool cache
3078 __ load_field_entry(r2, r1);
3079
3080 // R1: field offset, R2: field holder, R5: flags
3081 load_resolved_field_entry(r2, r2, noreg, r1, r5);
3082
3083 {
3084 Label notVolatile;
3085 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3086 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3087 __ bind(notVolatile);
3088 }
3089
3090 Label notVolatile;
3091
3092 // Get object from stack
3093 pop_and_check_object(r2);
3094
3095 // field address
3096 const Address field(r2, r1);
3097
3098 // access field
3099 switch (bytecode()) {
3100 case Bytecodes::_fast_aputfield:
3101 // Clobbers: r10, r11, r3
3102 do_oop_store(_masm, field, r0, IN_HEAP);
3103 break;
3104 case Bytecodes::_fast_lputfield:
3105 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3106 break;
3107 case Bytecodes::_fast_iputfield:
3108 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3109 break;
3110 case Bytecodes::_fast_zputfield:
3111 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3112 break;
3113 case Bytecodes::_fast_bputfield:
3114 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3115 break;
3116 case Bytecodes::_fast_sputfield:
3117 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3118 break;
3119 case Bytecodes::_fast_cputfield:
3120 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3121 break;
3122 case Bytecodes::_fast_fputfield:
3123 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3124 break;
3125 case Bytecodes::_fast_dputfield:
3126 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3127 break;
3128 default:
3129 ShouldNotReachHere();
3130 }
3131
3132 {
3133 Label notVolatile;
3134 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3135 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3136 __ bind(notVolatile);
3137 }
3138 }
3139
3140
3141 void TemplateTable::fast_accessfield(TosState state)
3142 {
3143 transition(atos, state);
3144 // Do the JVMTI work here to avoid disturbing the register state below
3145 if (JvmtiExport::can_post_field_access()) {
3146 // Check to see if a field access watch has been set before we
3147 // take the time to call into the VM.
3148 Label L1;
3149 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3150 __ ldrw(r2, Address(rscratch1));
3151 __ cbzw(r2, L1);
3152 // access constant pool cache entry
3153 __ load_field_entry(c_rarg2, rscratch2);
3154 __ verify_oop(r0);
3155 __ push_ptr(r0); // save object pointer before call_VM() clobbers it
3156 __ mov(c_rarg1, r0);
3157 // c_rarg1: object pointer copied above
3158 // c_rarg2: cache entry pointer
3159 __ call_VM(noreg,
3160 CAST_FROM_FN_PTR(address,
3161 InterpreterRuntime::post_field_access),
3162 c_rarg1, c_rarg2);
3163 __ pop_ptr(r0); // restore object pointer
3164 __ bind(L1);
3165 }
3166
3167 // access constant pool cache
3168 __ load_field_entry(r2, r1);
3169
3170 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3171 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3172
3173 // r0: object
3174 __ verify_oop(r0);
3175 __ null_check(r0);
3176 const Address field(r0, r1);
3177
3178 // 8179954: We need to make sure that the code generated for
3179 // volatile accesses forms a sequentially-consistent set of
3180 // operations when combined with STLR and LDAR. Without a leading
3181 // membar it's possible for a simple Dekker test to fail if loads
3182 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3183 // the stores in one method and we interpret the loads in another.
3184 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3185 Label notVolatile;
3186 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3187 __ membar(MacroAssembler::AnyAny);
3188 __ bind(notVolatile);
3189 }
3190
3191 // access field
3192 switch (bytecode()) {
3193 case Bytecodes::_fast_agetfield:
3194 do_oop_load(_masm, field, r0, IN_HEAP);
3195 __ verify_oop(r0);
3196 break;
3197 case Bytecodes::_fast_lgetfield:
3198 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3199 break;
3200 case Bytecodes::_fast_igetfield:
3201 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3202 break;
3203 case Bytecodes::_fast_bgetfield:
3204 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3205 break;
3206 case Bytecodes::_fast_sgetfield:
3207 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3208 break;
3209 case Bytecodes::_fast_cgetfield:
3210 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3211 break;
3212 case Bytecodes::_fast_fgetfield:
3213 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3214 break;
3215 case Bytecodes::_fast_dgetfield:
3216 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3217 break;
3218 default:
3219 ShouldNotReachHere();
3220 }
3221 {
3222 Label notVolatile;
3223 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3224 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3225 __ bind(notVolatile);
3226 }
3227 }
3228
3229 void TemplateTable::fast_xaccess(TosState state)
3230 {
3231 transition(vtos, state);
3232
3233 // get receiver
3234 __ ldr(r0, aaddress(0));
3235 // access constant pool cache
3236 __ load_field_entry(r2, r3, 2);
3237 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3238
3239 // 8179954: We need to make sure that the code generated for
3240 // volatile accesses forms a sequentially-consistent set of
3241 // operations when combined with STLR and LDAR. Without a leading
3242 // membar it's possible for a simple Dekker test to fail if loads
3243 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3244 // the stores in one method and we interpret the loads in another.
3245 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3246 Label notVolatile;
3247 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3248 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3249 __ membar(MacroAssembler::AnyAny);
3250 __ bind(notVolatile);
3251 }
3252
3253 // make sure exception is reported in correct bcp range (getfield is
3254 // next instruction)
3255 __ increment(rbcp);
3256 __ null_check(r0);
3257 switch (state) {
3258 case itos:
3259 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3260 break;
3261 case atos:
3262 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP);
3263 __ verify_oop(r0);
3264 break;
3265 case ftos:
3266 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3267 break;
3268 default:
3269 ShouldNotReachHere();
3270 }
3271
3272 {
3273 Label notVolatile;
3274 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3275 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3276 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3277 __ bind(notVolatile);
3278 }
3279
3280 __ decrement(rbcp);
3281 }
3282
3283
3284
3285 //-----------------------------------------------------------------------------
3286 // Calls
3287
3288 void TemplateTable::prepare_invoke(Register cache, Register recv) {
3289
3290 Bytecodes::Code code = bytecode();
3291 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3292
3293 // save 'interpreter return address'
3294 __ save_bcp();
3295
3296 // Load TOS state for later
3297 __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3298
3299 // load receiver if needed (note: no return address pushed yet)
3300 if (load_receiver) {
3301 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3302 __ add(rscratch1, esp, recv, ext::uxtx, 3);
3303 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
3304 __ verify_oop(recv);
3305 }
3306
3307 // load return address
3308 {
3309 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3310 __ mov(rscratch1, table_addr);
3311 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
3312 }
3313 }
3314
3315
3316 void TemplateTable::invokevirtual_helper(Register index,
3317 Register recv,
3318 Register flags)
3319 {
3320 // Uses temporary registers r0, r3
3321 assert_different_registers(index, recv, r0, r3);
3322 // Test for an invoke of a final method
3323 Label notFinal;
3324 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal);
3325
3326 const Register method = index; // method must be rmethod
3327 assert(method == rmethod,
3328 "Method must be rmethod for interpreter calling convention");
3329
3330 // do the call - the index is actually the method to call
3331 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3332
3333 // It's final, need a null check here!
3334 __ null_check(recv);
3335
3336 // profile this call
3337 __ profile_final_call(r0);
3338 __ profile_arguments_type(r0, method, r4, true);
3339
3340 __ jump_from_interpreted(method, r0);
3341
3342 __ bind(notFinal);
3343
3344 // get receiver klass
3345 __ load_klass(r0, recv);
3346
3347 // profile this call
3348 __ profile_virtual_call(r0, rlocals, r3);
3349
3350 // get target Method & entry point
3351 __ lookup_virtual_method(r0, index, method);
3352 __ profile_arguments_type(r3, method, r4, true);
3353 // FIXME -- this looks completely redundant. is it?
3354 // __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
3355 __ jump_from_interpreted(method, r3);
3356 }
3357
3358 void TemplateTable::invokevirtual(int byte_no)
3359 {
3360 transition(vtos, vtos);
3361 assert(byte_no == f2_byte, "use this argument");
3362
3363 load_resolved_method_entry_virtual(r2, // ResolvedMethodEntry*
3364 rmethod, // Method* or itable index
3365 r3); // flags
3366 prepare_invoke(r2, r2); // recv
3367
3368 // rmethod: index (actually a Method*)
3369 // r2: receiver
3370 // r3: flags
3371
3372 invokevirtual_helper(rmethod, r2, r3);
3373 }
3374
3375 void TemplateTable::invokespecial(int byte_no)
3376 {
3377 transition(vtos, vtos);
3378 assert(byte_no == f1_byte, "use this argument");
3379
3380 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry*
3381 rmethod, // Method*
3382 r3); // flags
3383 prepare_invoke(r2, r2); // get receiver also for null check
3384 __ verify_oop(r2);
3385 __ null_check(r2);
3386 // do the call
3387 __ profile_call(r0);
3388 __ profile_arguments_type(r0, rmethod, rbcp, false);
3389 __ jump_from_interpreted(rmethod, r0);
3390 }
3391
3392 void TemplateTable::invokestatic(int byte_no)
3393 {
3394 transition(vtos, vtos);
3395 assert(byte_no == f1_byte, "use this argument");
3396
3397 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry*
3398 rmethod, // Method*
3399 r3); // flags
3400 prepare_invoke(r2, r2); // get receiver also for null check
3401
3402 // do the call
3403 __ profile_call(r0);
3404 __ profile_arguments_type(r0, rmethod, r4, false);
3405 __ jump_from_interpreted(rmethod, r0);
3406 }
3407
3408 void TemplateTable::fast_invokevfinal(int byte_no)
3409 {
3410 __ call_Unimplemented();
3411 }
3412
3413 void TemplateTable::invokeinterface(int byte_no) {
3414 transition(vtos, vtos);
3415 assert(byte_no == f1_byte, "use this argument");
3416
3417 load_resolved_method_entry_interface(r2, // ResolvedMethodEntry*
3418 r0, // Klass*
3419 rmethod, // Method* or itable/vtable index
3420 r3); // flags
3421 prepare_invoke(r2, r2); // receiver
3422
3423 // r0: interface klass (from f1)
3424 // rmethod: method (from f2)
3425 // r2: receiver
3426 // r3: flags
3427
3428 // First check for Object case, then private interface method,
3429 // then regular interface method.
3430
3431 // Special case of invokeinterface called for virtual method of
3432 // java.lang.Object. See cpCache.cpp for details.
3433 Label notObjectMethod;
3434 __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod);
3435
3436 invokevirtual_helper(rmethod, r2, r3);
3437 __ bind(notObjectMethod);
3438
3439 Label no_such_interface;
3440
3441 // Check for private method invocation - indicated by vfinal
3442 Label notVFinal;
3443 __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal);
3444
3445 // Get receiver klass into r3
3446 __ load_klass(r3, r2);
3447
3448 Label subtype;
3449 __ check_klass_subtype(r3, r0, r4, subtype);
3450 // If we get here the typecheck failed
3451 __ b(no_such_interface);
3452 __ bind(subtype);
3453
3454 __ profile_final_call(r0);
3455 __ profile_arguments_type(r0, rmethod, r4, true);
3456 __ jump_from_interpreted(rmethod, r0);
3457
3458 __ bind(notVFinal);
3459
3460 // Get receiver klass into r3
3461 __ restore_locals();
3462 __ load_klass(r3, r2);
3463
3464 Label no_such_method;
3465
3466 // Preserve method for throw_AbstractMethodErrorVerbose.
3467 __ mov(r16, rmethod);
3468 // Receiver subtype check against REFC.
3469 // Superklass in r0. Subklass in r3. Blows rscratch2, r13
3470 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3471 r3, r0, noreg,
3472 // outputs: scan temp. reg, scan temp. reg
3473 rscratch2, r13,
3474 no_such_interface,
3475 /*return_method=*/false);
3476
3477 // profile this call
3478 __ profile_virtual_call(r3, r13, r19);
3479
3480 // Get declaring interface class from method, and itable index
3481
3482 __ load_method_holder(r0, rmethod);
3483 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
3484 __ subw(rmethod, rmethod, Method::itable_index_max);
3485 __ negw(rmethod, rmethod);
3486
3487 // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3488 __ mov(rlocals, r3);
3489 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3490 rlocals, r0, rmethod,
3491 // outputs: method, scan temp. reg
3492 rmethod, r13,
3493 no_such_interface);
3494
3495 // rmethod,: Method to call
3496 // r2: receiver
3497 // Check for abstract method error
3498 // Note: This should be done more efficiently via a throw_abstract_method_error
3499 // interpreter entry point and a conditional jump to it in case of a null
3500 // method.
3501 __ cbz(rmethod, no_such_method);
3502
3503 __ profile_arguments_type(r3, rmethod, r13, true);
3504
3505 // do the call
3506 // r2: receiver
3507 // rmethod,: Method
3508 __ jump_from_interpreted(rmethod, r3);
3509 __ should_not_reach_here();
3510
3511 // exception handling code follows...
3512 // note: must restore interpreter registers to canonical
3513 // state for exception handling to work correctly!
3514
3515 __ bind(no_such_method);
3516 // throw exception
3517 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3518 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3519 // Pass arguments for generating a verbose error message.
3520 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16);
3521 // the call_VM checks for exception, so we should never return here.
3522 __ should_not_reach_here();
3523
3524 __ bind(no_such_interface);
3525 // throw exception
3526 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3527 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3528 // Pass arguments for generating a verbose error message.
3529 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3530 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0);
3531 // the call_VM checks for exception, so we should never return here.
3532 __ should_not_reach_here();
3533 return;
3534 }
3535
3536 void TemplateTable::invokehandle(int byte_no) {
3537 transition(vtos, vtos);
3538 assert(byte_no == f1_byte, "use this argument");
3539
3540 load_resolved_method_entry_handle(r2, // ResolvedMethodEntry*
3541 rmethod, // Method*
3542 r0, // Resolved reference
3543 r3); // flags
3544 prepare_invoke(r2, r2);
3545
3546 __ verify_method_ptr(r2);
3547 __ verify_oop(r2);
3548 __ null_check(r2);
3549
3550 // FIXME: profile the LambdaForm also
3551
3552 // r13 is safe to use here as a scratch reg because it is about to
3553 // be clobbered by jump_from_interpreted().
3554 __ profile_final_call(r13);
3555 __ profile_arguments_type(r13, rmethod, r4, true);
3556
3557 __ jump_from_interpreted(rmethod, r0);
3558 }
3559
3560 void TemplateTable::invokedynamic(int byte_no) {
3561 transition(vtos, vtos);
3562 assert(byte_no == f1_byte, "use this argument");
3563
3564 load_invokedynamic_entry(rmethod);
3565
3566 // r0: CallSite object (from cpool->resolved_references[])
3567 // rmethod: MH.linkToCallSite method
3568
3569 // Note: r0_callsite is already pushed
3570
3571 // %%% should make a type profile for any invokedynamic that takes a ref argument
3572 // profile this call
3573 __ profile_call(rbcp);
3574 __ profile_arguments_type(r3, rmethod, r13, false);
3575
3576 __ verify_oop(r0);
3577
3578 __ jump_from_interpreted(rmethod, r0);
3579 }
3580
3581
3582 //-----------------------------------------------------------------------------
3583 // Allocation
3584
3585 void TemplateTable::_new() {
3586 transition(vtos, atos);
3587
3588 __ get_unsigned_2_byte_index_at_bcp(r3, 1);
3589 Label slow_case;
3590 Label done;
3591 Label initialize_header;
3592
3593 __ get_cpool_and_tags(r4, r0);
3594 // Make sure the class we're about to instantiate has been resolved.
3595 // This is done before loading InstanceKlass to be consistent with the order
3596 // how Constant Pool is updated (see ConstantPool::klass_at_put)
3597 const int tags_offset = Array<u1>::base_offset_in_bytes();
3598 __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3599 __ lea(rscratch1, Address(rscratch1, tags_offset));
3600 __ ldarb(rscratch1, rscratch1);
3601 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3602 __ br(Assembler::NE, slow_case);
3603
3604 // get InstanceKlass
3605 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3606
3607 // make sure klass is initialized
3608 assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3609 __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3610
3611 // get instance_size in InstanceKlass (scaled to a count of bytes)
3612 __ ldrw(r3,
3613 Address(r4,
3614 Klass::layout_helper_offset()));
3615 // test to see if it is malformed in some way
3616 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3617
3618 // Allocate the instance:
3619 // If TLAB is enabled:
3620 // Try to allocate in the TLAB.
3621 // If fails, go to the slow path.
3622 // Initialize the allocation.
3623 // Exit.
3624 //
3625 // Go to slow path.
3626
3627 if (UseTLAB) {
3628 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3629
3630 if (ZeroTLAB) {
3631 // the fields have been already cleared
3632 __ b(initialize_header);
3633 }
3634
3635 // The object is initialized before the header. If the object size is
3636 // zero, go directly to the header initialization.
3637 int header_size = oopDesc::header_size() * HeapWordSize;
3638 __ sub(r3, r3, header_size);
3639 __ cbz(r3, initialize_header);
3640
3641 // Initialize object fields
3642 {
3643 __ add(r2, r0, header_size);
3644 Label loop;
3645 __ bind(loop);
3646 __ str(zr, Address(__ post(r2, BytesPerLong)));
3647 __ sub(r3, r3, BytesPerLong);
3648 __ cbnz(r3, loop);
3649 }
3650
3651 // initialize object header only.
3652 __ bind(initialize_header);
3653 if (UseCompactObjectHeaders) {
3654 __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3655 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3656 } else {
3657 __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3658 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3659 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops
3660 __ store_klass(r0, r4); // store klass last
3661 }
3662
3663 if (DTraceAllocProbes) {
3664 // Trigger dtrace event for fastpath
3665 __ push(atos); // save the return value
3666 __ call_VM_leaf(
3667 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3668 __ pop(atos); // restore the return value
3669
3670 }
3671 __ b(done);
3672 }
3673
3674 // slow case
3675 __ bind(slow_case);
3676 __ get_constant_pool(c_rarg1);
3677 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3678 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3679 __ verify_oop(r0);
3680
3681 // continue
3682 __ bind(done);
3683 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3684 __ membar(Assembler::StoreStore);
3685 }
3686
3687 void TemplateTable::newarray() {
3688 transition(itos, atos);
3689 __ load_unsigned_byte(c_rarg1, at_bcp(1));
3690 __ mov(c_rarg2, r0);
3691 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3692 c_rarg1, c_rarg2);
3693 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3694 __ membar(Assembler::StoreStore);
3695 }
3696
3697 void TemplateTable::anewarray() {
3698 transition(itos, atos);
3699 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3700 __ get_constant_pool(c_rarg1);
3701 __ mov(c_rarg3, r0);
3702 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3703 c_rarg1, c_rarg2, c_rarg3);
3704 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3705 __ membar(Assembler::StoreStore);
3706 }
3707
3708 void TemplateTable::arraylength() {
3709 transition(atos, itos);
3710 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
3711 }
3712
3713 void TemplateTable::checkcast()
3714 {
3715 transition(atos, atos);
3716 Label done, is_null, ok_is_subtype, quicked, resolved;
3717 __ cbz(r0, is_null);
3718
3719 // Get cpool & tags index
3720 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3721 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3722 // See if bytecode has already been quicked
3723 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3724 __ lea(r1, Address(rscratch1, r19));
3725 __ ldarb(r1, r1);
3726 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3727 __ br(Assembler::EQ, quicked);
3728
3729 __ push(atos); // save receiver for result, and for GC
3730 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3731 __ get_vm_result_metadata(r0, rthread);
3732 __ pop(r3); // restore receiver
3733 __ b(resolved);
3734
3735 // Get superklass in r0 and subklass in r3
3736 __ bind(quicked);
3737 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3738 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3739
3740 __ bind(resolved);
3741 __ load_klass(r19, r3);
3742
3743 // Generate subtype check. Blows r2, r5. Object in r3.
3744 // Superklass in r0. Subklass in r19.
3745 __ gen_subtype_check(r19, ok_is_subtype);
3746
3747 // Come here on failure
3748 __ push(r3);
3749 // object is at TOS
3750 __ b(Interpreter::_throw_ClassCastException_entry);
3751
3752 // Come here on success
3753 __ bind(ok_is_subtype);
3754 __ mov(r0, r3); // Restore object in r3
3755
3756 // Collect counts on whether this test sees nulls a lot or not.
3757 if (ProfileInterpreter) {
3758 __ b(done);
3759 __ bind(is_null);
3760 __ profile_null_seen(r2);
3761 } else {
3762 __ bind(is_null); // same as 'done'
3763 }
3764 __ bind(done);
3765 }
3766
3767 void TemplateTable::instanceof() {
3768 transition(atos, itos);
3769 Label done, is_null, ok_is_subtype, quicked, resolved;
3770 __ cbz(r0, is_null);
3771
3772 // Get cpool & tags index
3773 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3774 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3775 // See if bytecode has already been quicked
3776 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3777 __ lea(r1, Address(rscratch1, r19));
3778 __ ldarb(r1, r1);
3779 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3780 __ br(Assembler::EQ, quicked);
3781
3782 __ push(atos); // save receiver for result, and for GC
3783 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3784 __ get_vm_result_metadata(r0, rthread);
3785 __ pop(r3); // restore receiver
3786 __ verify_oop(r3);
3787 __ load_klass(r3, r3);
3788 __ b(resolved);
3789
3790 // Get superklass in r0 and subklass in r3
3791 __ bind(quicked);
3792 __ load_klass(r3, r0);
3793 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1);
3794
3795 __ bind(resolved);
3796
3797 // Generate subtype check. Blows r2, r5
3798 // Superklass in r0. Subklass in r3.
3799 __ gen_subtype_check(r3, ok_is_subtype);
3800
3801 // Come here on failure
3802 __ mov(r0, 0);
3803 __ b(done);
3804 // Come here on success
3805 __ bind(ok_is_subtype);
3806 __ mov(r0, 1);
3807
3808 // Collect counts on whether this test sees nulls a lot or not.
3809 if (ProfileInterpreter) {
3810 __ b(done);
3811 __ bind(is_null);
3812 __ profile_null_seen(r2);
3813 } else {
3814 __ bind(is_null); // same as 'done'
3815 }
3816 __ bind(done);
3817 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass
3818 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass
3819 }
3820
3821 //-----------------------------------------------------------------------------
3822 // Breakpoints
3823 void TemplateTable::_breakpoint() {
3824 // Note: We get here even if we are single stepping..
3825 // jbug inists on setting breakpoints at every bytecode
3826 // even if we are in single step mode.
3827
3828 transition(vtos, vtos);
3829
3830 // get the unpatched byte code
3831 __ get_method(c_rarg1);
3832 __ call_VM(noreg,
3833 CAST_FROM_FN_PTR(address,
3834 InterpreterRuntime::get_original_bytecode_at),
3835 c_rarg1, rbcp);
3836 __ mov(r19, r0);
3837
3838 // post the breakpoint event
3839 __ call_VM(noreg,
3840 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3841 rmethod, rbcp);
3842
3843 // complete the execution of original bytecode
3844 __ mov(rscratch1, r19);
3845 __ dispatch_only_normal(vtos);
3846 }
3847
3848 //-----------------------------------------------------------------------------
3849 // Exceptions
3850
3851 void TemplateTable::athrow() {
3852 transition(atos, vtos);
3853 __ null_check(r0);
3854 __ b(Interpreter::throw_exception_entry());
3855 }
3856
3857 //-----------------------------------------------------------------------------
3858 // Synchronization
3859 //
3860 // Note: monitorenter & exit are symmetric routines; which is reflected
3861 // in the assembly code structure as well
3862 //
3863 // Stack layout:
3864 //
3865 // [expressions ] <--- esp = expression stack top
3866 // ..
3867 // [expressions ]
3868 // [monitor entry] <--- monitor block top = expression stack bot
3869 // ..
3870 // [monitor entry]
3871 // [frame data ] <--- monitor block bot
3872 // ...
3873 // [saved rfp ] <--- rfp
3874 void TemplateTable::monitorenter()
3875 {
3876 transition(atos, vtos);
3877
3878 // check for null object
3879 __ null_check(r0);
3880
3881 const Address monitor_block_top(
3882 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3883 const Address monitor_block_bot(
3884 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3885 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3886
3887 Label allocated;
3888
3889 // initialize entry pointer
3890 __ mov(c_rarg1, zr); // points to free slot or null
3891
3892 // find a free slot in the monitor block (result in c_rarg1)
3893 {
3894 Label entry, loop, exit;
3895 __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3896 __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3897 // c_rarg3 points to current entry, starting with top-most entry
3898
3899 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3900
3901 __ b(entry);
3902
3903 __ bind(loop);
3904 // check if current entry is used
3905 // if not used then remember entry in c_rarg1
3906 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset()));
3907 __ cmp(zr, rscratch1);
3908 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
3909 // check if current entry is for same object
3910 __ cmp(r0, rscratch1);
3911 // if same object then stop searching
3912 __ br(Assembler::EQ, exit);
3913 // otherwise advance to next entry
3914 __ add(c_rarg3, c_rarg3, entry_size);
3915 __ bind(entry);
3916 // check if bottom reached
3917 __ cmp(c_rarg3, c_rarg2);
3918 // if not at bottom then check this entry
3919 __ br(Assembler::NE, loop);
3920 __ bind(exit);
3921 }
3922
3923 __ cbnz(c_rarg1, allocated); // check if a slot has been found and
3924 // if found, continue with that on
3925
3926 // allocate one if there's no free slot
3927 {
3928 Label entry, loop;
3929 // 1. compute new pointers // rsp: old expression stack top
3930
3931 __ check_extended_sp();
3932 __ sub(sp, sp, entry_size); // make room for the monitor
3933 __ sub(rscratch1, sp, rfp);
3934 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
3935 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
3936
3937 __ ldr(c_rarg1, monitor_block_bot); // derelativize pointer
3938 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
3939 // c_rarg1 points to the old expression stack bottom
3940
3941 __ sub(esp, esp, entry_size); // move expression stack top
3942 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
3943 __ mov(c_rarg3, esp); // set start value for copy loop
3944 __ sub(rscratch1, c_rarg1, rfp); // relativize pointer
3945 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
3946 __ str(rscratch1, monitor_block_bot); // set new monitor block bottom
3947
3948 __ b(entry);
3949 // 2. move expression stack contents
3950 __ bind(loop);
3951 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3952 // word from old location
3953 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location
3954 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word
3955 __ bind(entry);
3956 __ cmp(c_rarg3, c_rarg1); // check if bottom reached
3957 __ br(Assembler::NE, loop); // if not at bottom then
3958 // copy next word
3959 }
3960
3961 // call run-time routine
3962 // c_rarg1: points to monitor entry
3963 __ bind(allocated);
3964
3965 // Increment bcp to point to the next bytecode, so exception
3966 // handling for async. exceptions work correctly.
3967 // The object has already been popped from the stack, so the
3968 // expression stack looks correct.
3969 __ increment(rbcp);
3970
3971 // store object
3972 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3973 __ lock_object(c_rarg1);
3974
3975 // check to make sure this monitor doesn't cause stack overflow after locking
3976 __ save_bcp(); // in case of exception
3977 __ generate_stack_overflow_check(0);
3978
3979 // The bcp has already been incremented. Just need to dispatch to
3980 // next instruction.
3981 __ dispatch_next(vtos);
3982 }
3983
3984
3985 void TemplateTable::monitorexit()
3986 {
3987 transition(atos, vtos);
3988
3989 // check for null object
3990 __ null_check(r0);
3991
3992 const Address monitor_block_top(
3993 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3994 const Address monitor_block_bot(
3995 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3996 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3997
3998 Label found;
3999
4000 // find matching slot
4001 {
4002 Label entry, loop;
4003 __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4004 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4005 // c_rarg1 points to current entry, starting with top-most entry
4006
4007 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4008 // of monitor block
4009 __ b(entry);
4010
4011 __ bind(loop);
4012 // check if current entry is for same object
4013 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
4014 __ cmp(r0, rscratch1);
4015 // if same object then stop searching
4016 __ br(Assembler::EQ, found);
4017 // otherwise advance to next entry
4018 __ add(c_rarg1, c_rarg1, entry_size);
4019 __ bind(entry);
4020 // check if bottom reached
4021 __ cmp(c_rarg1, c_rarg2);
4022 // if not at bottom then check this entry
4023 __ br(Assembler::NE, loop);
4024 }
4025
4026 // error handling. Unlocking was not block-structured
4027 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4028 InterpreterRuntime::throw_illegal_monitor_state_exception));
4029 __ should_not_reach_here();
4030
4031 // call run-time routine
4032 __ bind(found);
4033 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
4034 __ unlock_object(c_rarg1);
4035 __ pop_ptr(r0); // discard object
4036 }
4037
4038
4039 // Wide instructions
4040 void TemplateTable::wide()
4041 {
4042 __ load_unsigned_byte(r19, at_bcp(1));
4043 __ mov(rscratch1, (address)Interpreter::_wentry_point);
4044 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
4045 __ br(rscratch1);
4046 }
4047
4048
4049 // Multi arrays
4050 void TemplateTable::multianewarray() {
4051 transition(vtos, atos);
4052 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
4053 // last dim is on top of stack; we want address of first one:
4054 // first_addr = last_addr + (ndims - 1) * wordSize
4055 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
4056 __ sub(c_rarg1, c_rarg1, wordSize);
4057 call_VM(r0,
4058 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4059 c_rarg1);
4060 __ load_unsigned_byte(r1, at_bcp(3));
4061 __ lea(esp, Address(esp, r1, Address::uxtw(3)));
4062 }
--- EOF ---