1 /*
2 * Copyright (c) 2008, 2023, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.inline.hpp"
27 #include "gc/shared/barrierSet.hpp"
28 #include "gc/shared/cardTable.hpp"
29 #include "gc/shared/cardTableBarrierSet.inline.hpp"
30 #include "gc/shared/collectedHeap.hpp"
31 #include "interp_masm_arm.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "jvm.h"
35 #include "logging/log.hpp"
36 #include "oops/arrayOop.hpp"
37 #include "oops/markWord.hpp"
38 #include "oops/method.hpp"
39 #include "oops/methodData.hpp"
40 #include "oops/resolvedFieldEntry.hpp"
41 #include "oops/resolvedIndyEntry.hpp"
42 #include "oops/resolvedMethodEntry.hpp"
43 #include "prims/jvmtiExport.hpp"
44 #include "prims/jvmtiThreadState.hpp"
45 #include "runtime/basicLock.hpp"
46 #include "runtime/frame.inline.hpp"
47 #include "runtime/safepointMechanism.hpp"
48 #include "runtime/sharedRuntime.hpp"
49 #include "utilities/powerOfTwo.hpp"
50
51 //--------------------------------------------------------------------
52 // Implementation of InterpreterMacroAssembler
53
54
55
56
57 InterpreterMacroAssembler::InterpreterMacroAssembler(CodeBuffer* code) : MacroAssembler(code) {
58 }
59
60 void InterpreterMacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
61 #ifdef ASSERT
62 // Ensure that last_sp is not filled.
63 { Label L;
64 ldr(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
65 cbz(Rtemp, L);
66 stop("InterpreterMacroAssembler::call_VM_helper: last_sp != nullptr");
67 bind(L);
68 }
69 #endif // ASSERT
70
71 // Rbcp must be saved/restored since it may change due to GC.
72 save_bcp();
73
74
75 // super call
76 MacroAssembler::call_VM_helper(oop_result, entry_point, number_of_arguments, check_exceptions);
77
78
79 // Restore interpreter specific registers.
80 restore_bcp();
81 restore_method();
82 }
83
84 void InterpreterMacroAssembler::jump_to_entry(address entry) {
85 assert(entry, "Entry must have been generated by now");
86 b(entry);
87 }
88
89 void InterpreterMacroAssembler::check_and_handle_popframe() {
90 if (can_pop_frame()) {
91 Label L;
92 const Register popframe_cond = R2_tmp;
93
94 // Initiate popframe handling only if it is not already being processed. If the flag
95 // has the popframe_processing bit set, it means that this code is called *during* popframe
96 // handling - we don't want to reenter.
97
98 ldr_s32(popframe_cond, Address(Rthread, JavaThread::popframe_condition_offset()));
99 tbz(popframe_cond, exact_log2(JavaThread::popframe_pending_bit), L);
100 tbnz(popframe_cond, exact_log2(JavaThread::popframe_processing_bit), L);
101
102 // Call Interpreter::remove_activation_preserving_args_entry() to get the
103 // address of the same-named entrypoint in the generated interpreter code.
104 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
105
106 // Call indirectly to avoid generation ordering problem.
107 jump(R0);
108
109 bind(L);
110 }
111 }
112
113
114 // Blows R2, Rtemp. Sets TOS cached value.
115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
116 const Register thread_state = R2_tmp;
117
118 ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
119
120 const Address tos_addr(thread_state, JvmtiThreadState::earlyret_tos_offset());
121 const Address oop_addr(thread_state, JvmtiThreadState::earlyret_oop_offset());
122 const Address val_addr(thread_state, JvmtiThreadState::earlyret_value_offset());
123 const Address val_addr_hi(thread_state, JvmtiThreadState::earlyret_value_offset()
124 + in_ByteSize(wordSize));
125
126 Register zero = zero_register(Rtemp);
127
128 switch (state) {
129 case atos: ldr(R0_tos, oop_addr);
130 str(zero, oop_addr);
131 interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
132 break;
133
134 case ltos: ldr(R1_tos_hi, val_addr_hi); // fall through
135 case btos: // fall through
136 case ztos: // fall through
137 case ctos: // fall through
138 case stos: // fall through
139 case itos: ldr_s32(R0_tos, val_addr); break;
140 #ifdef __SOFTFP__
141 case dtos: ldr(R1_tos_hi, val_addr_hi); // fall through
142 case ftos: ldr(R0_tos, val_addr); break;
143 #else
144 case ftos: ldr_float (S0_tos, val_addr); break;
145 case dtos: ldr_double(D0_tos, val_addr); break;
146 #endif // __SOFTFP__
147 case vtos: /* nothing to do */ break;
148 default : ShouldNotReachHere();
149 }
150 // Clean up tos value in the thread object
151 str(zero, val_addr);
152 str(zero, val_addr_hi);
153
154 mov(Rtemp, (int) ilgl);
155 str_32(Rtemp, tos_addr);
156 }
157
158
159 // Blows R2, Rtemp.
160 void InterpreterMacroAssembler::check_and_handle_earlyret() {
161 if (can_force_early_return()) {
162 Label L;
163 const Register thread_state = R2_tmp;
164
165 ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
166 cbz(thread_state, L); // if (thread->jvmti_thread_state() == nullptr) exit;
167
168 // Initiate earlyret handling only if it is not already being processed.
169 // If the flag has the earlyret_processing bit set, it means that this code
170 // is called *during* earlyret handling - we don't want to reenter.
171
172 ldr_s32(Rtemp, Address(thread_state, JvmtiThreadState::earlyret_state_offset()));
173 cmp(Rtemp, JvmtiThreadState::earlyret_pending);
174 b(L, ne);
175
176 // Call Interpreter::remove_activation_early_entry() to get the address of the
177 // same-named entrypoint in the generated interpreter code.
178
179 ldr_s32(R0, Address(thread_state, JvmtiThreadState::earlyret_tos_offset()));
180 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), R0);
181
182 jump(R0);
183
184 bind(L);
185 }
186 }
187
188
189 // Sets reg. Blows Rtemp.
190 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
191 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
192 assert(reg != Rtemp, "should be different registers");
193
194 ldrb(Rtemp, Address(Rbcp, bcp_offset));
195 ldrb(reg, Address(Rbcp, bcp_offset+1));
196 orr(reg, reg, AsmOperand(Rtemp, lsl, BitsPerByte));
197 }
198
199 void InterpreterMacroAssembler::get_index_at_bcp(Register index, int bcp_offset, Register tmp_reg, size_t index_size) {
200 assert_different_registers(index, tmp_reg);
201 if (index_size == sizeof(u2)) {
202 // load bytes of index separately to avoid unaligned access
203 ldrb(index, Address(Rbcp, bcp_offset+1));
204 ldrb(tmp_reg, Address(Rbcp, bcp_offset));
205 orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
206 } else if (index_size == sizeof(u4)) {
207 ldrb(index, Address(Rbcp, bcp_offset+3));
208 ldrb(tmp_reg, Address(Rbcp, bcp_offset+2));
209 orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
210 ldrb(tmp_reg, Address(Rbcp, bcp_offset+1));
211 orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
212 ldrb(tmp_reg, Address(Rbcp, bcp_offset));
213 orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
214 } else if (index_size == sizeof(u1)) {
215 ldrb(index, Address(Rbcp, bcp_offset));
216 } else {
217 ShouldNotReachHere();
218 }
219 }
220
221 // Load object from cpool->resolved_references(index)
222 void InterpreterMacroAssembler::load_resolved_reference_at_index(
223 Register result, Register index) {
224 assert_different_registers(result, index);
225 get_constant_pool(result);
226
227 Register cache = result;
228 // load pointer for resolved_references[] objArray
229 ldr(cache, Address(result, ConstantPool::cache_offset()));
230 ldr(cache, Address(result, ConstantPoolCache::resolved_references_offset()));
231 resolve_oop_handle(cache);
232 // Add in the index
233 // convert from field index to resolved_references() index and from
234 // word index to byte offset. Since this is a java object, it can be compressed
235 logical_shift_left(index, index, LogBytesPerHeapOop);
236 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
237 load_heap_oop(result, Address(cache, index));
238 }
239
240 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
241 Register Rcpool, Register Rindex, Register Rklass) {
242 add(Rtemp, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
243 ldrh(Rtemp, Address(Rtemp, sizeof(ConstantPool))); // Rtemp = resolved_klass_index
244 ldr(Rklass, Address(Rcpool, ConstantPool::resolved_klasses_offset())); // Rklass = cpool->_resolved_klasses
245 add(Rklass, Rklass, AsmOperand(Rtemp, lsl, LogBytesPerWord));
246 ldr(Rklass, Address(Rklass, Array<Klass*>::base_offset_in_bytes()));
247 }
248
249 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
250 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
251 assert_different_registers(cache, index, Rtemp);
252
253 get_index_at_bcp(index, 1, Rtemp, sizeof(u4));
254
255 // load constant pool cache pointer
256 ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
257
258 // Get address of invokedynamic array
259 ldr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
260
261 // Scale the index to be the entry index * sizeof(ResolvedInvokeDynamicInfo)
262 // On ARM32 sizeof(ResolvedIndyEntry) is 12, use mul instead of lsl
263 mov(Rtemp, sizeof(ResolvedIndyEntry));
264 mul(index, index, Rtemp);
265
266 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
267 add(cache, cache, index);
268 }
269
270 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
271 // Get index out of bytecode pointer
272 assert_different_registers(cache, index);
273
274 get_index_at_bcp(index, bcp_offset, cache /*as tmp*/, sizeof(u2));
275
276 // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
277 // sizeof(ResolvedFieldEntry) is 16 on Arm, so using shift
278 if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
279 // load constant pool cache pointer
280 ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
281 // Get address of field entries array
282 ldr(cache, Address(cache, in_bytes(ConstantPoolCache::field_entries_offset())));
283
284 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
285 add(cache, cache, AsmOperand(index, lsl, log2i_exact(sizeof(ResolvedFieldEntry))));
286 }
287 else {
288 mov(cache, sizeof(ResolvedFieldEntry));
289 mul(index, index, cache);
290 // load constant pool cache pointer
291 ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
292
293 // Get address of field entries array
294 ldr(cache, Address(cache, in_bytes(ConstantPoolCache::field_entries_offset())));
295 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
296 add(cache, cache, index);
297 }
298 }
299
300 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
301 assert_different_registers(cache, index);
302
303 // Get index out of bytecode pointer
304 get_index_at_bcp(index, bcp_offset, cache /* as tmp */, sizeof(u2));
305
306 // sizeof(ResolvedMethodEntry) is not a power of 2 on Arm, so can't use shift
307 mov(cache, sizeof(ResolvedMethodEntry));
308 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
309
310 // load constant pool cache pointer
311 ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
312 // Get address of method entries array
313 ldr(cache, Address(cache, in_bytes(ConstantPoolCache::method_entries_offset())));
314 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
315 add(cache, cache, index);
316 }
317
318 // Generate a subtype check: branch to not_subtype if sub_klass is
319 // not a subtype of super_klass.
320 // Profiling code for the subtype check failure (profile_typecheck_failed)
321 // should be explicitly generated by the caller in the not_subtype case.
322 // Blows Rtemp, tmp1, tmp2.
323 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
324 Register Rsuper_klass,
325 Label ¬_subtype,
326 Register tmp1,
327 Register tmp2) {
328
329 assert_different_registers(Rsub_klass, Rsuper_klass, tmp1, tmp2, Rtemp);
330 Label ok_is_subtype, loop, update_cache;
331
332 const Register super_check_offset = tmp1;
333 const Register cached_super = tmp2;
334
335 // Profile the not-null value's klass.
336 profile_typecheck(tmp1, Rsub_klass);
337
338 // Load the super-klass's check offset into
339 ldr_u32(super_check_offset, Address(Rsuper_klass, Klass::super_check_offset_offset()));
340
341 // Check for self
342 cmp(Rsub_klass, Rsuper_klass);
343
344 // Load from the sub-klass's super-class display list, or a 1-word cache of
345 // the secondary superclass list, or a failing value with a sentinel offset
346 // if the super-klass is an interface or exceptionally deep in the Java
347 // hierarchy and we have to scan the secondary superclass list the hard way.
348 // See if we get an immediate positive hit
349 ldr(cached_super, Address(Rsub_klass, super_check_offset));
350
351 cond_cmp(Rsuper_klass, cached_super, ne);
352 b(ok_is_subtype, eq);
353
354 // Check for immediate negative hit
355 cmp(super_check_offset, in_bytes(Klass::secondary_super_cache_offset()));
356 b(not_subtype, ne);
357
358 // Now do a linear scan of the secondary super-klass chain.
359 const Register supers_arr = tmp1;
360 const Register supers_cnt = tmp2;
361 const Register cur_super = Rtemp;
362
363 // Load objArrayOop of secondary supers.
364 ldr(supers_arr, Address(Rsub_klass, Klass::secondary_supers_offset()));
365
366 ldr_u32(supers_cnt, Address(supers_arr, Array<Klass*>::length_offset_in_bytes())); // Load the array length
367 cmp(supers_cnt, 0);
368
369 // Skip to the start of array elements and prefetch the first super-klass.
370 ldr(cur_super, Address(supers_arr, Array<Klass*>::base_offset_in_bytes(), pre_indexed), ne);
371 b(not_subtype, eq);
372
373 bind(loop);
374
375
376 cmp(cur_super, Rsuper_klass);
377 b(update_cache, eq);
378
379 subs(supers_cnt, supers_cnt, 1);
380
381 ldr(cur_super, Address(supers_arr, wordSize, pre_indexed), ne);
382
383 b(loop, ne);
384
385 b(not_subtype);
386
387 bind(update_cache);
388 // Must be equal but missed in cache. Update cache.
389 str(Rsuper_klass, Address(Rsub_klass, Klass::secondary_super_cache_offset()));
390
391 bind(ok_is_subtype);
392 }
393
394
395 //////////////////////////////////////////////////////////////////////////////////
396
397
398 // Java Expression Stack
399
400 void InterpreterMacroAssembler::pop_ptr(Register r) {
401 assert(r != Rstack_top, "unpredictable instruction");
402 ldr(r, Address(Rstack_top, wordSize, post_indexed));
403 }
404
405 void InterpreterMacroAssembler::pop_i(Register r) {
406 assert(r != Rstack_top, "unpredictable instruction");
407 ldr_s32(r, Address(Rstack_top, wordSize, post_indexed));
408 zap_high_non_significant_bits(r);
409 }
410
411 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
412 assert_different_registers(lo, hi);
413 assert(lo < hi, "lo must be < hi");
414 pop(RegisterSet(lo) | RegisterSet(hi));
415 }
416
417 void InterpreterMacroAssembler::pop_f(FloatRegister fd) {
418 fpops(fd);
419 }
420
421 void InterpreterMacroAssembler::pop_d(FloatRegister fd) {
422 fpopd(fd);
423 }
424
425
426 // Transition vtos -> state. Blows R0, R1. Sets TOS cached value.
427 void InterpreterMacroAssembler::pop(TosState state) {
428 switch (state) {
429 case atos: pop_ptr(R0_tos); break;
430 case btos: // fall through
431 case ztos: // fall through
432 case ctos: // fall through
433 case stos: // fall through
434 case itos: pop_i(R0_tos); break;
435 case ltos: pop_l(R0_tos_lo, R1_tos_hi); break;
436 #ifdef __SOFTFP__
437 case ftos: pop_i(R0_tos); break;
438 case dtos: pop_l(R0_tos_lo, R1_tos_hi); break;
439 #else
440 case ftos: pop_f(S0_tos); break;
441 case dtos: pop_d(D0_tos); break;
442 #endif // __SOFTFP__
443 case vtos: /* nothing to do */ break;
444 default : ShouldNotReachHere();
445 }
446 interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
447 }
448
449 void InterpreterMacroAssembler::push_ptr(Register r) {
450 assert(r != Rstack_top, "unpredictable instruction");
451 str(r, Address(Rstack_top, -wordSize, pre_indexed));
452 check_stack_top_on_expansion();
453 }
454
455 void InterpreterMacroAssembler::push_i(Register r) {
456 assert(r != Rstack_top, "unpredictable instruction");
457 str_32(r, Address(Rstack_top, -wordSize, pre_indexed));
458 check_stack_top_on_expansion();
459 }
460
461 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
462 assert_different_registers(lo, hi);
463 assert(lo < hi, "lo must be < hi");
464 push(RegisterSet(lo) | RegisterSet(hi));
465 }
466
467 void InterpreterMacroAssembler::push_f() {
468 fpushs(S0_tos);
469 }
470
471 void InterpreterMacroAssembler::push_d() {
472 fpushd(D0_tos);
473 }
474
475 // Transition state -> vtos. Blows Rtemp.
476 void InterpreterMacroAssembler::push(TosState state) {
477 interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
478 switch (state) {
479 case atos: push_ptr(R0_tos); break;
480 case btos: // fall through
481 case ztos: // fall through
482 case ctos: // fall through
483 case stos: // fall through
484 case itos: push_i(R0_tos); break;
485 case ltos: push_l(R0_tos_lo, R1_tos_hi); break;
486 #ifdef __SOFTFP__
487 case ftos: push_i(R0_tos); break;
488 case dtos: push_l(R0_tos_lo, R1_tos_hi); break;
489 #else
490 case ftos: push_f(); break;
491 case dtos: push_d(); break;
492 #endif // __SOFTFP__
493 case vtos: /* nothing to do */ break;
494 default : ShouldNotReachHere();
495 }
496 }
497
498
499
500 // Converts return value in R0/R1 (interpreter calling conventions) to TOS cached value.
501 void InterpreterMacroAssembler::convert_retval_to_tos(TosState state) {
502 #if (!defined __SOFTFP__ && !defined __ABI_HARD__)
503 // According to interpreter calling conventions, result is returned in R0/R1,
504 // but templates expect ftos in S0, and dtos in D0.
505 if (state == ftos) {
506 fmsr(S0_tos, R0);
507 } else if (state == dtos) {
508 fmdrr(D0_tos, R0, R1);
509 }
510 #endif // !__SOFTFP__ && !__ABI_HARD__
511 }
512
513 // Converts TOS cached value to return value in R0/R1 (according to interpreter calling conventions).
514 void InterpreterMacroAssembler::convert_tos_to_retval(TosState state) {
515 #if (!defined __SOFTFP__ && !defined __ABI_HARD__)
516 // According to interpreter calling conventions, result is returned in R0/R1,
517 // so ftos (S0) and dtos (D0) are moved to R0/R1.
518 if (state == ftos) {
519 fmrs(R0, S0_tos);
520 } else if (state == dtos) {
521 fmrrd(R0, R1, D0_tos);
522 }
523 #endif // !__SOFTFP__ && !__ABI_HARD__
524 }
525
526
527
528 // Helpers for swap and dup
529 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
530 ldr(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
531 }
532
533 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
534 str(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
535 }
536
537
538 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
539
540 // set sender sp
541 mov(Rsender_sp, SP);
542
543 // record last_sp
544 str(Rsender_sp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
545 }
546
547 // Jump to from_interpreted entry of a call unless single stepping is possible
548 // in this thread in which case we must call the i2i entry
549 void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
550 assert_different_registers(method, Rtemp);
551
552 prepare_to_jump_from_interpreted();
553
554 if (can_post_interpreter_events()) {
555 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
556 // compiled code in threads for which the event is enabled. Check here for
557 // interp_only_mode if these events CAN be enabled.
558
559 ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
560 cmp(Rtemp, 0);
561 ldr(PC, Address(method, Method::interpreter_entry_offset()), ne);
562 }
563
564 indirect_jump(Address(method, Method::from_interpreted_offset()), Rtemp);
565 }
566
567
568 void InterpreterMacroAssembler::restore_dispatch() {
569 mov_slow(RdispatchTable, (address)Interpreter::dispatch_table(vtos));
570 }
571
572
573 // The following two routines provide a hook so that an implementation
574 // can schedule the dispatch in two parts.
575 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
576 // Nothing ARM-specific to be done here.
577 }
578
579 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
580 dispatch_next(state, step);
581 }
582
583 void InterpreterMacroAssembler::dispatch_base(TosState state,
584 DispatchTableMode table_mode,
585 bool verifyoop, bool generate_poll) {
586 if (VerifyActivationFrameSize) {
587 Label L;
588 sub(Rtemp, FP, SP);
589 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
590 cmp(Rtemp, min_frame_size);
591 b(L, ge);
592 stop("broken stack frame");
593 bind(L);
594 }
595
596 if (verifyoop) {
597 interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
598 }
599
600 Label safepoint;
601 address* const safepoint_table = Interpreter::safept_table(state);
602 address* const table = Interpreter::dispatch_table(state);
603 bool needs_thread_local_poll = generate_poll && table != safepoint_table;
604
605 if (needs_thread_local_poll) {
606 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
607 ldr(Rtemp, Address(Rthread, JavaThread::polling_word_offset()));
608 tbnz(Rtemp, exact_log2(SafepointMechanism::poll_bit()), safepoint);
609 }
610
611 if((state == itos) || (state == btos) || (state == ztos) || (state == ctos) || (state == stos)) {
612 zap_high_non_significant_bits(R0_tos);
613 }
614
615 #ifdef ASSERT
616 Label L;
617 mov_slow(Rtemp, (address)Interpreter::dispatch_table(vtos));
618 cmp(Rtemp, RdispatchTable);
619 b(L, eq);
620 stop("invalid RdispatchTable");
621 bind(L);
622 #endif
623
624 if (table_mode == DispatchDefault) {
625 if (state == vtos) {
626 indirect_jump(Address::indexed_ptr(RdispatchTable, R3_bytecode), Rtemp);
627 } else {
628 // on 32-bit ARM this method is faster than the one above.
629 sub(Rtemp, RdispatchTable, (Interpreter::distance_from_dispatch_table(vtos) -
630 Interpreter::distance_from_dispatch_table(state)) * wordSize);
631 indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
632 }
633 } else {
634 assert(table_mode == DispatchNormal, "invalid dispatch table mode");
635 address table = (address) Interpreter::normal_table(state);
636 mov_slow(Rtemp, table);
637 indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
638 }
639
640 if (needs_thread_local_poll) {
641 bind(safepoint);
642 lea(Rtemp, ExternalAddress((address)safepoint_table));
643 indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
644 }
645
646 nop(); // to avoid filling CPU pipeline with invalid instructions
647 nop();
648 }
649
650 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
651 dispatch_base(state, DispatchDefault, true, generate_poll);
652 }
653
654
655 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
656 dispatch_base(state, DispatchNormal);
657 }
658
659 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
660 dispatch_base(state, DispatchNormal, false);
661 }
662
663 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
664 // load next bytecode and advance Rbcp
665 ldrb(R3_bytecode, Address(Rbcp, step, pre_indexed));
666 dispatch_base(state, DispatchDefault, true, generate_poll);
667 }
668
669 void InterpreterMacroAssembler::narrow(Register result) {
670 // mask integer result to narrower return type.
671 const Register Rtmp = R2;
672
673 // get method type
674 ldr(Rtmp, Address(Rmethod, Method::const_offset()));
675 ldrb(Rtmp, Address(Rtmp, ConstMethod::result_type_offset()));
676
677 Label notBool, notByte, notChar, done;
678 cmp(Rtmp, T_INT);
679 b(done, eq);
680
681 cmp(Rtmp, T_BOOLEAN);
682 b(notBool, ne);
683 and_32(result, result, 1);
684 b(done);
685
686 bind(notBool);
687 cmp(Rtmp, T_BYTE);
688 b(notByte, ne);
689 sign_extend(result, result, 8);
690 b(done);
691
692 bind(notByte);
693 cmp(Rtmp, T_CHAR);
694 b(notChar, ne);
695 zero_extend(result, result, 16);
696 b(done);
697
698 bind(notChar);
699 // cmp(Rtmp, T_SHORT);
700 // b(done, ne);
701 sign_extend(result, result, 16);
702
703 // Nothing to do
704 bind(done);
705 }
706
707 // remove activation
708 //
709 // Unlock the receiver if this is a synchronized method.
710 // Unlock any Java monitors from synchronized blocks.
711 // Remove the activation from the stack.
712 //
713 // If there are locked Java monitors
714 // If throw_monitor_exception
715 // throws IllegalMonitorStateException
716 // Else if install_monitor_exception
717 // installs IllegalMonitorStateException
718 // Else
719 // no error processing
720 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
721 bool throw_monitor_exception,
722 bool install_monitor_exception,
723 bool notify_jvmdi) {
724 Label unlock, unlocked, no_unlock;
725
726 // Note: Registers R0, R1, S0 and D0 (TOS cached value) may be in use for the result.
727
728 const Address do_not_unlock_if_synchronized(Rthread,
729 JavaThread::do_not_unlock_if_synchronized_offset());
730
731 const Register Rflag = R2;
732 const Register Raccess_flags = R3;
733
734 restore_method();
735
736 ldrb(Rflag, do_not_unlock_if_synchronized);
737
738 // get method access flags
739 ldr_u32(Raccess_flags, Address(Rmethod, Method::access_flags_offset()));
740
741 strb(zero_register(Rtemp), do_not_unlock_if_synchronized); // reset the flag
742
743 // check if method is synchronized
744
745 tbz(Raccess_flags, JVM_ACC_SYNCHRONIZED_BIT, unlocked);
746
747 // Don't unlock anything if the _do_not_unlock_if_synchronized flag is set.
748 cbnz(Rflag, no_unlock);
749
750 // unlock monitor
751 push(state); // save result
752
753 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
754 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
755
756 const Register Rmonitor = R0; // fixed in unlock_object()
757 const Register Robj = R2;
758
759 // address of first monitor
760 sub(Rmonitor, FP, - frame::interpreter_frame_monitor_block_bottom_offset * wordSize + (int)sizeof(BasicObjectLock));
761
762 ldr(Robj, Address(Rmonitor, BasicObjectLock::obj_offset()));
763 cbnz(Robj, unlock);
764
765 pop(state);
766
767 if (throw_monitor_exception) {
768 // Entry already unlocked, need to throw exception
769 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
770 should_not_reach_here();
771 } else {
772 // Monitor already unlocked during a stack unroll.
773 // If requested, install an illegal_monitor_state_exception.
774 // Continue with stack unrolling.
775 if (install_monitor_exception) {
776 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
777 }
778 b(unlocked);
779 }
780
781
782 // Exception case for the check that all monitors are unlocked.
783 const Register Rcur = R2;
784 Label restart_check_monitors_unlocked, exception_monitor_is_still_locked;
785
786 bind(exception_monitor_is_still_locked);
787 // Monitor entry is still locked, need to throw exception.
788 // Rcur: monitor entry.
789
790 if (throw_monitor_exception) {
791 // Throw exception
792 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
793 should_not_reach_here();
794 } else {
795 // Stack unrolling. Unlock object and install illegal_monitor_exception
796 // Unlock does not block, so don't have to worry about the frame
797
798 push(state);
799 mov(Rmonitor, Rcur);
800 unlock_object(Rmonitor);
801
802 if (install_monitor_exception) {
803 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
804 }
805
806 pop(state);
807 b(restart_check_monitors_unlocked);
808 }
809
810 bind(unlock);
811 unlock_object(Rmonitor);
812 pop(state);
813
814 // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
815 bind(unlocked);
816
817 // Check that all monitors are unlocked
818 {
819 Label loop;
820
821 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
822 const Register Rbottom = R3;
823 const Register Rcur_obj = Rtemp;
824
825 bind(restart_check_monitors_unlocked);
826
827 ldr(Rcur, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
828 // points to current entry, starting with top-most entry
829 sub(Rbottom, FP, -frame::interpreter_frame_monitor_block_bottom_offset * wordSize);
830 // points to word before bottom of monitor block
831
832 cmp(Rcur, Rbottom); // check if there are no monitors
833 ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset()), ne);
834 // prefetch monitor's object
835 b(no_unlock, eq);
836
837 bind(loop);
838 // check if current entry is used
839 cbnz(Rcur_obj, exception_monitor_is_still_locked);
840
841 add(Rcur, Rcur, entry_size); // otherwise advance to next entry
842 cmp(Rcur, Rbottom); // check if bottom reached
843 ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset()), ne);
844 // prefetch monitor's object
845 b(loop, ne); // if not at bottom then check this entry
846 }
847
848 bind(no_unlock);
849
850 // jvmti support
851 if (notify_jvmdi) {
852 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
853 } else {
854 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
855 }
856
857 // remove activation
858 mov(Rtemp, FP);
859 ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
860 ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
861
862 if (ret_addr != LR) {
863 mov(ret_addr, LR);
864 }
865 }
866
867
868 // At certain points in the method invocation the monitor of
869 // synchronized methods hasn't been entered yet.
870 // To correctly handle exceptions at these points, we set the thread local
871 // variable _do_not_unlock_if_synchronized to true. The remove_activation will
872 // check this flag.
873 void InterpreterMacroAssembler::set_do_not_unlock_if_synchronized(bool flag, Register tmp) {
874 const Address do_not_unlock_if_synchronized(Rthread,
875 JavaThread::do_not_unlock_if_synchronized_offset());
876 if (flag) {
877 mov(tmp, 1);
878 strb(tmp, do_not_unlock_if_synchronized);
879 } else {
880 strb(zero_register(tmp), do_not_unlock_if_synchronized);
881 }
882 }
883
884 // Lock object
885 //
886 // Argument: R1 : Points to BasicObjectLock to be used for locking.
887 // Must be initialized with object to lock.
888 // Blows volatile registers R0-R3, Rtemp, LR. Calls VM.
889 void InterpreterMacroAssembler::lock_object(Register Rlock) {
890 assert(Rlock == R1, "the second argument");
891
892 if (LockingMode == LM_MONITOR) {
893 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
894 } else {
895 Label done;
896
897 const Register Robj = R2;
898 const Register Rmark = R3;
899 assert_different_registers(Robj, Rmark, Rlock, R0, Rtemp);
900
901 const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
902 const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
903 const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
904
905 Label already_locked, slow_case;
906
907 // Load object pointer
908 ldr(Robj, Address(Rlock, obj_offset));
909
910 if (DiagnoseSyncOnValueBasedClasses != 0) {
911 load_klass(R0, Robj);
912 ldr_u32(R0, Address(R0, Klass::access_flags_offset()));
913 tst(R0, JVM_ACC_IS_VALUE_BASED_CLASS);
914 b(slow_case, ne);
915 }
916
917 if (LockingMode == LM_LIGHTWEIGHT) {
918 lightweight_lock(Robj, R0 /* t1 */, Rmark /* t2 */, Rtemp /* t3 */, 0 /* savemask */, slow_case);
919 b(done);
920 } else if (LockingMode == LM_LEGACY) {
921 // On MP platforms the next load could return a 'stale' value if the memory location has been modified by another thread.
922 // That would be acceptable as ether CAS or slow case path is taken in that case.
923 // Exception to that is if the object is locked by the calling thread, then the recursive test will pass (guaranteed as
924 // loads are satisfied from a store queue if performed on the same processor).
925
926 assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
927 ldr(Rmark, Address(Robj, oopDesc::mark_offset_in_bytes()));
928
929 // Test if object is already locked
930 tst(Rmark, markWord::unlocked_value);
931 b(already_locked, eq);
932
933 // Save old object->mark() into BasicLock's displaced header
934 str(Rmark, Address(Rlock, mark_offset));
935
936 cas_for_lock_acquire(Rmark, Rlock, Robj, Rtemp, slow_case);
937
938 b(done);
939
940 // If we got here that means the object is locked by ether calling thread or another thread.
941 bind(already_locked);
942 // Handling of locked objects: recursive locks and slow case.
943
944 // Fast check for recursive lock.
945 //
946 // Can apply the optimization only if this is a stack lock
947 // allocated in this thread. For efficiency, we can focus on
948 // recently allocated stack locks (instead of reading the stack
949 // base and checking whether 'mark' points inside the current
950 // thread stack):
951 // 1) (mark & 3) == 0
952 // 2) SP <= mark < SP + os::pagesize()
953 //
954 // Warning: SP + os::pagesize can overflow the stack base. We must
955 // neither apply the optimization for an inflated lock allocated
956 // just above the thread stack (this is why condition 1 matters)
957 // nor apply the optimization if the stack lock is inside the stack
958 // of another thread. The latter is avoided even in case of overflow
959 // because we have guard pages at the end of all stacks. Hence, if
960 // we go over the stack base and hit the stack of another thread,
961 // this should not be in a writeable area that could contain a
962 // stack lock allocated by that thread. As a consequence, a stack
963 // lock less than page size away from SP is guaranteed to be
964 // owned by the current thread.
965 //
966 // Note: assuming SP is aligned, we can check the low bits of
967 // (mark-SP) instead of the low bits of mark. In that case,
968 // assuming page size is a power of 2, we can merge the two
969 // conditions into a single test:
970 // => ((mark - SP) & (3 - os::pagesize())) == 0
971
972 // (3 - os::pagesize()) cannot be encoded as an ARM immediate operand.
973 // Check independently the low bits and the distance to SP.
974 // -1- test low 2 bits
975 movs(R0, AsmOperand(Rmark, lsl, 30));
976 // -2- test (mark - SP) if the low two bits are 0
977 sub(R0, Rmark, SP, eq);
978 movs(R0, AsmOperand(R0, lsr, exact_log2(os::vm_page_size())), eq);
979 // If still 'eq' then recursive locking OK: store 0 into lock record
980 str(R0, Address(Rlock, mark_offset), eq);
981
982 b(done, eq);
983 }
984
985 bind(slow_case);
986
987 // Call the runtime routine for slow case
988 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
989 bind(done);
990 }
991 }
992
993 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
994 //
995 // Argument: R0: Points to BasicObjectLock structure for lock
996 // Throw an IllegalMonitorException if object is not locked by current thread
997 // Blows volatile registers R0-R3, Rtemp, LR. Calls VM.
998 void InterpreterMacroAssembler::unlock_object(Register Rlock) {
999 assert(Rlock == R0, "the first argument");
1000
1001 if (LockingMode == LM_MONITOR) {
1002 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
1003 } else {
1004 Label done, slow_case;
1005
1006 const Register Robj = R2;
1007 const Register Rmark = R3;
1008 assert_different_registers(Robj, Rmark, Rlock, Rtemp);
1009
1010 const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
1011 const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
1012 const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
1013
1014 const Register Rzero = zero_register(Rtemp);
1015
1016 // Load oop into Robj
1017 ldr(Robj, Address(Rlock, obj_offset));
1018
1019 // Free entry
1020 str(Rzero, Address(Rlock, obj_offset));
1021
1022 if (LockingMode == LM_LIGHTWEIGHT) {
1023
1024 // Check for non-symmetric locking. This is allowed by the spec and the interpreter
1025 // must handle it.
1026 ldr(Rtemp, Address(Rthread, JavaThread::lock_stack_top_offset()));
1027 sub(Rtemp, Rtemp, oopSize);
1028 ldr(Rtemp, Address(Rthread, Rtemp));
1029 cmpoop(Rtemp, Robj);
1030 b(slow_case, ne);
1031
1032 lightweight_unlock(Robj /* obj */, Rlock /* t1 */, Rmark /* t2 */, Rtemp /* t3 */,
1033 1 /* savemask (save t1) */, slow_case);
1034
1035 b(done);
1036
1037 } else if (LockingMode == LM_LEGACY) {
1038
1039 // Load the old header from BasicLock structure
1040 ldr(Rmark, Address(Rlock, mark_offset));
1041
1042 // Test for recursion (zero mark in BasicLock)
1043 cbz(Rmark, done);
1044
1045 bool allow_fallthrough_on_failure = true;
1046
1047 cas_for_lock_release(Rlock, Rmark, Robj, Rtemp, slow_case, allow_fallthrough_on_failure);
1048
1049 b(done, eq);
1050
1051 }
1052 bind(slow_case);
1053
1054 // Call the runtime routine for slow case.
1055 str(Robj, Address(Rlock, obj_offset)); // restore obj
1056 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
1057
1058 bind(done);
1059 }
1060 }
1061
1062 // Test ImethodDataPtr. If it is null, continue at the specified label
1063 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
1064 assert(ProfileInterpreter, "must be profiling interpreter");
1065 ldr(mdp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1066 cbz(mdp, zero_continue);
1067 }
1068
1069
1070 // Set the method data pointer for the current bcp.
1071 // Blows volatile registers R0-R3, Rtemp, LR.
1072 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1073 assert(ProfileInterpreter, "must be profiling interpreter");
1074 Label set_mdp;
1075
1076 // Test MDO to avoid the call if it is null.
1077 ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
1078 cbz(Rtemp, set_mdp);
1079
1080 mov(R0, Rmethod);
1081 mov(R1, Rbcp);
1082 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R0, R1);
1083 // R0/W0: mdi
1084
1085 // mdo is guaranteed to be non-zero here, we checked for it before the call.
1086 ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
1087 add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()));
1088 add_ptr_scaled_int32(Rtemp, Rtemp, R0, 0);
1089
1090 bind(set_mdp);
1091 str(Rtemp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1092 }
1093
1094
1095 void InterpreterMacroAssembler::verify_method_data_pointer() {
1096 assert(ProfileInterpreter, "must be profiling interpreter");
1097 #ifdef ASSERT
1098 Label verify_continue;
1099 save_caller_save_registers();
1100
1101 const Register Rmdp = R2;
1102 test_method_data_pointer(Rmdp, verify_continue); // If mdp is zero, continue
1103
1104 // If the mdp is valid, it will point to a DataLayout header which is
1105 // consistent with the bcp. The converse is highly probable also.
1106
1107 ldrh(R3, Address(Rmdp, DataLayout::bci_offset()));
1108 ldr(Rtemp, Address(Rmethod, Method::const_offset()));
1109 add(R3, R3, Rtemp);
1110 add(R3, R3, in_bytes(ConstMethod::codes_offset()));
1111 cmp(R3, Rbcp);
1112 b(verify_continue, eq);
1113
1114 mov(R0, Rmethod);
1115 mov(R1, Rbcp);
1116 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), R0, R1, Rmdp);
1117
1118 bind(verify_continue);
1119 restore_caller_save_registers();
1120 #endif // ASSERT
1121 }
1122
1123
1124 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int offset, Register value) {
1125 assert(ProfileInterpreter, "must be profiling interpreter");
1126 assert_different_registers(mdp_in, value);
1127 str(value, Address(mdp_in, offset));
1128 }
1129
1130
1131 // Increments mdp data. Sets bumped_count register to adjusted counter.
1132 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1133 int offset,
1134 Register bumped_count,
1135 bool decrement) {
1136 assert(ProfileInterpreter, "must be profiling interpreter");
1137
1138 // Counter address
1139 Address data(mdp_in, offset);
1140 assert_different_registers(mdp_in, bumped_count);
1141
1142 increment_mdp_data_at(data, bumped_count, decrement);
1143 }
1144
1145 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
1146 assert_different_registers(mdp_in, Rtemp);
1147 assert(ProfileInterpreter, "must be profiling interpreter");
1148 assert((0 < flag_byte_constant) && (flag_byte_constant < (1 << BitsPerByte)), "flag mask is out of range");
1149
1150 // Set the flag
1151 ldrb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
1152 orr(Rtemp, Rtemp, (unsigned)flag_byte_constant);
1153 strb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
1154 }
1155
1156
1157 // Increments mdp data. Sets bumped_count register to adjusted counter.
1158 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1159 Register bumped_count,
1160 bool decrement) {
1161 assert(ProfileInterpreter, "must be profiling interpreter");
1162
1163 ldr(bumped_count, data);
1164 if (decrement) {
1165 // Decrement the register. Set condition codes.
1166 subs(bumped_count, bumped_count, DataLayout::counter_increment);
1167 // Avoid overflow.
1168 add(bumped_count, bumped_count, DataLayout::counter_increment, pl);
1169 } else {
1170 // Increment the register. Set condition codes.
1171 adds(bumped_count, bumped_count, DataLayout::counter_increment);
1172 // Avoid overflow.
1173 sub(bumped_count, bumped_count, DataLayout::counter_increment, mi);
1174 }
1175 str(bumped_count, data);
1176 }
1177
1178
1179 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1180 int offset,
1181 Register value,
1182 Register test_value_out,
1183 Label& not_equal_continue) {
1184 assert(ProfileInterpreter, "must be profiling interpreter");
1185 assert_different_registers(mdp_in, test_value_out, value);
1186
1187 ldr(test_value_out, Address(mdp_in, offset));
1188 cmp(test_value_out, value);
1189
1190 b(not_equal_continue, ne);
1191 }
1192
1193
1194 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp, Register reg_temp) {
1195 assert(ProfileInterpreter, "must be profiling interpreter");
1196 assert_different_registers(mdp_in, reg_temp);
1197
1198 ldr(reg_temp, Address(mdp_in, offset_of_disp));
1199 add(mdp_in, mdp_in, reg_temp);
1200 str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1201 }
1202
1203
1204 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg_offset, Register reg_tmp) {
1205 assert(ProfileInterpreter, "must be profiling interpreter");
1206 assert_different_registers(mdp_in, reg_offset, reg_tmp);
1207
1208 ldr(reg_tmp, Address(mdp_in, reg_offset));
1209 add(mdp_in, mdp_in, reg_tmp);
1210 str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1211 }
1212
1213
1214 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1215 assert(ProfileInterpreter, "must be profiling interpreter");
1216 add(mdp_in, mdp_in, constant);
1217 str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1218 }
1219
1220
1221 // Blows volatile registers R0-R3, Rtemp, LR).
1222 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1223 assert(ProfileInterpreter, "must be profiling interpreter");
1224 assert_different_registers(return_bci, R0, R1, R2, R3, Rtemp);
1225
1226 mov(R1, return_bci);
1227 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), R1);
1228 }
1229
1230
1231 // Sets mdp, bumped_count registers, blows Rtemp.
1232 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1233 assert_different_registers(mdp, bumped_count);
1234
1235 if (ProfileInterpreter) {
1236 Label profile_continue;
1237
1238 // If no method data exists, go to profile_continue.
1239 // Otherwise, assign to mdp
1240 test_method_data_pointer(mdp, profile_continue);
1241
1242 // We are taking a branch. Increment the taken count.
1243 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()), bumped_count);
1244
1245 // The method data pointer needs to be updated to reflect the new target.
1246 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()), Rtemp);
1247
1248 bind (profile_continue);
1249 }
1250 }
1251
1252
1253 // Sets mdp, blows Rtemp.
1254 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1255 assert_different_registers(mdp, Rtemp);
1256
1257 if (ProfileInterpreter) {
1258 Label profile_continue;
1259
1260 // If no method data exists, go to profile_continue.
1261 test_method_data_pointer(mdp, profile_continue);
1262
1263 // We are taking a branch. Increment the not taken count.
1264 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Rtemp);
1265
1266 // The method data pointer needs to be updated to correspond to the next bytecode
1267 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1268
1269 bind (profile_continue);
1270 }
1271 }
1272
1273
1274 // Sets mdp, blows Rtemp.
1275 void InterpreterMacroAssembler::profile_call(Register mdp) {
1276 assert_different_registers(mdp, Rtemp);
1277
1278 if (ProfileInterpreter) {
1279 Label profile_continue;
1280
1281 // If no method data exists, go to profile_continue.
1282 test_method_data_pointer(mdp, profile_continue);
1283
1284 // We are making a call. Increment the count.
1285 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1286
1287 // The method data pointer needs to be updated to reflect the new target.
1288 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1289
1290 bind (profile_continue);
1291 }
1292 }
1293
1294
1295 // Sets mdp, blows Rtemp.
1296 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1297 if (ProfileInterpreter) {
1298 Label profile_continue;
1299
1300 // If no method data exists, go to profile_continue.
1301 test_method_data_pointer(mdp, profile_continue);
1302
1303 // We are making a call. Increment the count.
1304 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1305
1306 // The method data pointer needs to be updated to reflect the new target.
1307 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1308
1309 bind (profile_continue);
1310 }
1311 }
1312
1313
1314 // Sets mdp, blows Rtemp.
1315 void InterpreterMacroAssembler::profile_virtual_call(Register mdp, Register receiver, bool receiver_can_be_null) {
1316 assert_different_registers(mdp, receiver, Rtemp);
1317
1318 if (ProfileInterpreter) {
1319 Label profile_continue;
1320
1321 // If no method data exists, go to profile_continue.
1322 test_method_data_pointer(mdp, profile_continue);
1323
1324 Label skip_receiver_profile;
1325 if (receiver_can_be_null) {
1326 Label not_null;
1327 cbnz(receiver, not_null);
1328 // We are making a call. Increment the count for null receiver.
1329 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1330 b(skip_receiver_profile);
1331 bind(not_null);
1332 }
1333
1334 // Record the receiver type.
1335 record_klass_in_profile(receiver, mdp, Rtemp, true);
1336 bind(skip_receiver_profile);
1337
1338 // The method data pointer needs to be updated to reflect the new target.
1339 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1340 bind(profile_continue);
1341 }
1342 }
1343
1344
1345 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1346 Register receiver, Register mdp,
1347 Register reg_tmp,
1348 int start_row, Label& done, bool is_virtual_call) {
1349 if (TypeProfileWidth == 0)
1350 return;
1351
1352 assert_different_registers(receiver, mdp, reg_tmp);
1353
1354 int last_row = VirtualCallData::row_limit() - 1;
1355 assert(start_row <= last_row, "must be work left to do");
1356 // Test this row for both the receiver and for null.
1357 // Take any of three different outcomes:
1358 // 1. found receiver => increment count and goto done
1359 // 2. found null => keep looking for case 1, maybe allocate this cell
1360 // 3. found something else => keep looking for cases 1 and 2
1361 // Case 3 is handled by a recursive call.
1362 for (int row = start_row; row <= last_row; row++) {
1363 Label next_test;
1364
1365 // See if the receiver is receiver[n].
1366 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1367
1368 test_mdp_data_at(mdp, recvr_offset, receiver, reg_tmp, next_test);
1369
1370 // The receiver is receiver[n]. Increment count[n].
1371 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1372 increment_mdp_data_at(mdp, count_offset, reg_tmp);
1373 b(done);
1374
1375 bind(next_test);
1376 // reg_tmp now contains the receiver from the CallData.
1377
1378 if (row == start_row) {
1379 Label found_null;
1380 // Failed the equality check on receiver[n]... Test for null.
1381 if (start_row == last_row) {
1382 // The only thing left to do is handle the null case.
1383 if (is_virtual_call) {
1384 cbz(reg_tmp, found_null);
1385 // Receiver did not match any saved receiver and there is no empty row for it.
1386 // Increment total counter to indicate polymorphic case.
1387 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), reg_tmp);
1388 b(done);
1389 bind(found_null);
1390 } else {
1391 cbnz(reg_tmp, done);
1392 }
1393 break;
1394 }
1395 // Since null is rare, make it be the branch-taken case.
1396 cbz(reg_tmp, found_null);
1397
1398 // Put all the "Case 3" tests here.
1399 record_klass_in_profile_helper(receiver, mdp, reg_tmp, start_row + 1, done, is_virtual_call);
1400
1401 // Found a null. Keep searching for a matching receiver,
1402 // but remember that this is an empty (unused) slot.
1403 bind(found_null);
1404 }
1405 }
1406
1407 // In the fall-through case, we found no matching receiver, but we
1408 // observed the receiver[start_row] is null.
1409
1410 // Fill in the receiver field and increment the count.
1411 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1412 set_mdp_data_at(mdp, recvr_offset, receiver);
1413 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1414 mov(reg_tmp, DataLayout::counter_increment);
1415 set_mdp_data_at(mdp, count_offset, reg_tmp);
1416 if (start_row > 0) {
1417 b(done);
1418 }
1419 }
1420
1421 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1422 Register mdp,
1423 Register reg_tmp,
1424 bool is_virtual_call) {
1425 assert(ProfileInterpreter, "must be profiling");
1426 assert_different_registers(receiver, mdp, reg_tmp);
1427
1428 Label done;
1429
1430 record_klass_in_profile_helper(receiver, mdp, reg_tmp, 0, done, is_virtual_call);
1431
1432 bind (done);
1433 }
1434
1435 // Sets mdp, blows volatile registers R0-R3, Rtemp, LR).
1436 void InterpreterMacroAssembler::profile_ret(Register mdp, Register return_bci) {
1437 assert_different_registers(mdp, return_bci, Rtemp, R0, R1, R2, R3);
1438
1439 if (ProfileInterpreter) {
1440 Label profile_continue;
1441 uint row;
1442
1443 // If no method data exists, go to profile_continue.
1444 test_method_data_pointer(mdp, profile_continue);
1445
1446 // Update the total ret count.
1447 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1448
1449 for (row = 0; row < RetData::row_limit(); row++) {
1450 Label next_test;
1451
1452 // See if return_bci is equal to bci[n]:
1453 test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
1454 Rtemp, next_test);
1455
1456 // return_bci is equal to bci[n]. Increment the count.
1457 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)), Rtemp);
1458
1459 // The method data pointer needs to be updated to reflect the new target.
1460 update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)), Rtemp);
1461 b(profile_continue);
1462 bind(next_test);
1463 }
1464
1465 update_mdp_for_ret(return_bci);
1466
1467 bind(profile_continue);
1468 }
1469 }
1470
1471
1472 // Sets mdp.
1473 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1474 if (ProfileInterpreter) {
1475 Label profile_continue;
1476
1477 // If no method data exists, go to profile_continue.
1478 test_method_data_pointer(mdp, profile_continue);
1479
1480 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1481
1482 // The method data pointer needs to be updated.
1483 int mdp_delta = in_bytes(BitData::bit_data_size());
1484 if (TypeProfileCasts) {
1485 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1486 }
1487 update_mdp_by_constant(mdp, mdp_delta);
1488
1489 bind (profile_continue);
1490 }
1491 }
1492
1493
1494 // Sets mdp, blows Rtemp.
1495 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1496 assert_different_registers(mdp, Rtemp);
1497
1498 if (ProfileInterpreter && TypeProfileCasts) {
1499 Label profile_continue;
1500
1501 // If no method data exists, go to profile_continue.
1502 test_method_data_pointer(mdp, profile_continue);
1503
1504 int count_offset = in_bytes(CounterData::count_offset());
1505 // Back up the address, since we have already bumped the mdp.
1506 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1507
1508 // *Decrement* the counter. We expect to see zero or small negatives.
1509 increment_mdp_data_at(mdp, count_offset, Rtemp, true);
1510
1511 bind (profile_continue);
1512 }
1513 }
1514
1515
1516 // Sets mdp, blows Rtemp.
1517 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass)
1518 {
1519 assert_different_registers(mdp, klass, Rtemp);
1520
1521 if (ProfileInterpreter) {
1522 Label profile_continue;
1523
1524 // If no method data exists, go to profile_continue.
1525 test_method_data_pointer(mdp, profile_continue);
1526
1527 // The method data pointer needs to be updated.
1528 int mdp_delta = in_bytes(BitData::bit_data_size());
1529 if (TypeProfileCasts) {
1530 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1531
1532 // Record the object type.
1533 record_klass_in_profile(klass, mdp, Rtemp, false);
1534 }
1535 update_mdp_by_constant(mdp, mdp_delta);
1536
1537 bind(profile_continue);
1538 }
1539 }
1540
1541
1542 // Sets mdp, blows Rtemp.
1543 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1544 assert_different_registers(mdp, Rtemp);
1545
1546 if (ProfileInterpreter) {
1547 Label profile_continue;
1548
1549 // If no method data exists, go to profile_continue.
1550 test_method_data_pointer(mdp, profile_continue);
1551
1552 // Update the default case count
1553 increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()), Rtemp);
1554
1555 // The method data pointer needs to be updated.
1556 update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()), Rtemp);
1557
1558 bind(profile_continue);
1559 }
1560 }
1561
1562
1563 // Sets mdp. Blows reg_tmp1, reg_tmp2. Index could be the same as reg_tmp2.
1564 void InterpreterMacroAssembler::profile_switch_case(Register mdp, Register index, Register reg_tmp1, Register reg_tmp2) {
1565 assert_different_registers(mdp, reg_tmp1, reg_tmp2);
1566 assert_different_registers(mdp, reg_tmp1, index);
1567
1568 if (ProfileInterpreter) {
1569 Label profile_continue;
1570
1571 const int count_offset = in_bytes(MultiBranchData::case_array_offset()) +
1572 in_bytes(MultiBranchData::relative_count_offset());
1573
1574 const int displacement_offset = in_bytes(MultiBranchData::case_array_offset()) +
1575 in_bytes(MultiBranchData::relative_displacement_offset());
1576
1577 // If no method data exists, go to profile_continue.
1578 test_method_data_pointer(mdp, profile_continue);
1579
1580 // Build the base (index * per_case_size_in_bytes())
1581 logical_shift_left(reg_tmp1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1582
1583 // Update the case count
1584 add(reg_tmp1, reg_tmp1, count_offset);
1585 increment_mdp_data_at(Address(mdp, reg_tmp1), reg_tmp2);
1586
1587 // The method data pointer needs to be updated.
1588 add(reg_tmp1, reg_tmp1, displacement_offset - count_offset);
1589 update_mdp_by_offset(mdp, reg_tmp1, reg_tmp2);
1590
1591 bind (profile_continue);
1592 }
1593 }
1594
1595
1596 void InterpreterMacroAssembler::byteswap_u32(Register r, Register rtmp1, Register rtmp2) {
1597 if (VM_Version::supports_rev()) {
1598 rev(r, r);
1599 } else {
1600 eor(rtmp1, r, AsmOperand(r, ror, 16));
1601 mvn(rtmp2, 0x0000ff00);
1602 andr(rtmp1, rtmp2, AsmOperand(rtmp1, lsr, 8));
1603 eor(r, rtmp1, AsmOperand(r, ror, 8));
1604 }
1605 }
1606
1607
1608 void InterpreterMacroAssembler::inc_global_counter(address address_of_counter, int offset, Register tmp1, Register tmp2, bool avoid_overflow) {
1609 const intx addr = (intx) (address_of_counter + offset);
1610
1611 assert ((addr & 0x3) == 0, "address of counter should be aligned");
1612 const intx offset_mask = right_n_bits(12);
1613
1614 const address base = (address) (addr & ~offset_mask);
1615 const int offs = (int) (addr & offset_mask);
1616
1617 const Register addr_base = tmp1;
1618 const Register val = tmp2;
1619
1620 mov_slow(addr_base, base);
1621 ldr_s32(val, Address(addr_base, offs));
1622
1623 if (avoid_overflow) {
1624 adds_32(val, val, 1);
1625 str(val, Address(addr_base, offs), pl);
1626 } else {
1627 add_32(val, val, 1);
1628 str_32(val, Address(addr_base, offs));
1629 }
1630 }
1631
1632 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char *file, int line) {
1633 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop", file, line); }
1634 }
1635
1636 // Inline assembly for:
1637 //
1638 // if (thread is in interp_only_mode) {
1639 // InterpreterRuntime::post_method_entry();
1640 // }
1641 // if (DTraceMethodProbes) {
1642 // SharedRuntime::dtrace_method_entry(method, receiver);
1643 // }
1644 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1645 // SharedRuntime::rc_trace_method_entry(method, receiver);
1646 // }
1647
1648 void InterpreterMacroAssembler::notify_method_entry() {
1649 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1650 // track stack depth. If it is possible to enter interp_only_mode we add
1651 // the code to check if the event should be sent.
1652 if (can_post_interpreter_events()) {
1653 Label L;
1654
1655 ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
1656 cbz(Rtemp, L);
1657
1658 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1659
1660 bind(L);
1661 }
1662
1663 // Note: Disable DTrace runtime check for now to eliminate overhead on each method entry
1664 if (DTraceMethodProbes) {
1665 Label Lcontinue;
1666
1667 ldrb_global(Rtemp, (address)&DTraceMethodProbes);
1668 cbz(Rtemp, Lcontinue);
1669
1670 mov(R0, Rthread);
1671 mov(R1, Rmethod);
1672 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), R0, R1);
1673
1674 bind(Lcontinue);
1675 }
1676 // RedefineClasses() tracing support for obsolete method entry
1677 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1678 mov(R0, Rthread);
1679 mov(R1, Rmethod);
1680 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1681 R0, R1);
1682 }
1683 }
1684
1685
1686 void InterpreterMacroAssembler::notify_method_exit(
1687 TosState state, NotifyMethodExitMode mode,
1688 bool native, Register result_lo, Register result_hi, FloatRegister result_fp) {
1689 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1690 // track stack depth. If it is possible to enter interp_only_mode we add
1691 // the code to check if the event should be sent.
1692 if (mode == NotifyJVMTI && can_post_interpreter_events()) {
1693 Label L;
1694 // Note: frame::interpreter_frame_result has a dependency on how the
1695 // method result is saved across the call to post_method_exit. If this
1696 // is changed then the interpreter_frame_result implementation will
1697 // need to be updated too.
1698
1699 ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
1700 cbz(Rtemp, L);
1701
1702 if (native) {
1703 // For c++ and template interpreter push both result registers on the
1704 // stack in native, we don't know the state.
1705 // See frame::interpreter_frame_result for code that gets the result values from here.
1706 assert(result_lo != noreg, "result registers should be defined");
1707
1708 assert(result_hi != noreg, "result registers should be defined");
1709
1710 #ifdef __ABI_HARD__
1711 assert(result_fp != fnoreg, "FP result register must be defined");
1712 sub(SP, SP, 2 * wordSize);
1713 fstd(result_fp, Address(SP));
1714 #endif // __ABI_HARD__
1715
1716 push(RegisterSet(result_lo) | RegisterSet(result_hi));
1717
1718 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1719
1720 pop(RegisterSet(result_lo) | RegisterSet(result_hi));
1721 #ifdef __ABI_HARD__
1722 fldd(result_fp, Address(SP));
1723 add(SP, SP, 2 * wordSize);
1724 #endif // __ABI_HARD__
1725
1726 } else {
1727 // For the template interpreter, the value on tos is the size of the
1728 // state. (c++ interpreter calls jvmti somewhere else).
1729 push(state);
1730 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1731 pop(state);
1732 }
1733
1734 bind(L);
1735 }
1736
1737 // Note: Disable DTrace runtime check for now to eliminate overhead on each method exit
1738 if (DTraceMethodProbes) {
1739 Label Lcontinue;
1740
1741 ldrb_global(Rtemp, (address)&DTraceMethodProbes);
1742 cbz(Rtemp, Lcontinue);
1743
1744 push(state);
1745
1746 mov(R0, Rthread);
1747 mov(R1, Rmethod);
1748
1749 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), R0, R1);
1750
1751 pop(state);
1752
1753 bind(Lcontinue);
1754 }
1755 }
1756
1757
1758 #ifndef PRODUCT
1759
1760 void InterpreterMacroAssembler::trace_state(const char* msg) {
1761 int push_size = save_caller_save_registers();
1762
1763 Label Lcontinue;
1764 InlinedString Lmsg0("%s: FP=" INTPTR_FORMAT ", SP=" INTPTR_FORMAT "\n");
1765 InlinedString Lmsg(msg);
1766 InlinedAddress Lprintf((address)printf);
1767
1768 ldr_literal(R0, Lmsg0);
1769 ldr_literal(R1, Lmsg);
1770 mov(R2, FP);
1771 add(R3, SP, push_size); // original SP (without saved registers)
1772 ldr_literal(Rtemp, Lprintf);
1773 call(Rtemp);
1774
1775 b(Lcontinue);
1776
1777 bind_literal(Lmsg0);
1778 bind_literal(Lmsg);
1779 bind_literal(Lprintf);
1780
1781
1782 bind(Lcontinue);
1783
1784 restore_caller_save_registers();
1785 }
1786
1787 #endif
1788
1789 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1790 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1791 int increment, Address mask_addr,
1792 Register scratch, Register scratch2,
1793 AsmCondition cond, Label* where) {
1794 // caution: scratch2 and base address of counter_addr can be the same
1795 assert_different_registers(scratch, scratch2);
1796 ldr_u32(scratch, counter_addr);
1797 add(scratch, scratch, increment);
1798 str_32(scratch, counter_addr);
1799
1800 ldr(scratch2, mask_addr);
1801 andrs(scratch, scratch, scratch2);
1802 b(*where, cond);
1803 }
1804
1805 void InterpreterMacroAssembler::get_method_counters(Register method,
1806 Register Rcounters,
1807 Label& skip,
1808 bool saveRegs,
1809 Register reg1,
1810 Register reg2,
1811 Register reg3) {
1812 const Address method_counters(method, Method::method_counters_offset());
1813 Label has_counters;
1814
1815 ldr(Rcounters, method_counters);
1816 cbnz(Rcounters, has_counters);
1817
1818 if (saveRegs) {
1819 // Save and restore in use caller-saved registers since they will be trashed by call_VM
1820 assert(reg1 != noreg, "must specify reg1");
1821 assert(reg2 != noreg, "must specify reg2");
1822 assert(reg3 == noreg, "must not specify reg3");
1823 push(RegisterSet(reg1) | RegisterSet(reg2));
1824 }
1825
1826 mov(R1, method);
1827 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), R1);
1828
1829 if (saveRegs) {
1830 pop(RegisterSet(reg1) | RegisterSet(reg2));
1831 }
1832
1833 ldr(Rcounters, method_counters);
1834 cbz(Rcounters, skip); // No MethodCounters created, OutOfMemory
1835
1836 bind(has_counters);
1837 }
--- EOF ---