1 /* 2 * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2022 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "memory/universe.hpp" 37 #include "nativeInst_ppc.hpp" 38 #include "oops/compressedOops.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/os.inline.hpp" 42 #include "runtime/safepointMechanism.inline.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "runtime/vm_version.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #define __ _masm-> 50 51 52 const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5; 53 54 55 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 56 Unimplemented(); return false; // Currently not used on this platform. 57 } 58 59 60 LIR_Opr LIR_Assembler::receiverOpr() { 61 return FrameMap::R3_oop_opr; 62 } 63 64 65 LIR_Opr LIR_Assembler::osrBufferPointer() { 66 return FrameMap::R3_opr; 67 } 68 69 70 // This specifies the stack pointer decrement needed to build the frame. 71 int LIR_Assembler::initial_frame_size_in_bytes() const { 72 return in_bytes(frame_map()->framesize_in_bytes()); 73 } 74 75 76 // Inline cache check: the inline cached class is in inline_cache_reg; 77 // we fetch the class of the receiver and compare it with the cached class. 78 // If they do not match we jump to slow case. 79 int LIR_Assembler::check_icache() { 80 int offset = __ offset(); 81 __ inline_cache_check(R3_ARG1, R19_inline_cache_reg); 82 return offset; 83 } 84 85 void LIR_Assembler::clinit_barrier(ciMethod* method) { 86 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 87 88 Label L_skip_barrier; 89 Register klass = R20; 90 91 metadata2reg(method->holder()->constant_encoding(), klass); 92 __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/); 93 94 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0); 95 __ mtctr(klass); 96 __ bctr(); 97 98 __ bind(L_skip_barrier); 99 } 100 101 void LIR_Assembler::osr_entry() { 102 // On-stack-replacement entry sequence: 103 // 104 // 1. Create a new compiled activation. 105 // 2. Initialize local variables in the compiled activation. The expression 106 // stack must be empty at the osr_bci; it is not initialized. 107 // 3. Jump to the continuation address in compiled code to resume execution. 108 109 // OSR entry point 110 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 111 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 112 ValueStack* entry_state = osr_entry->end()->state(); 113 int number_of_locks = entry_state->locks_size(); 114 115 // Create a frame for the compiled activation. 116 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes(), compilation()->max_monitors()); 117 118 // OSR buffer is 119 // 120 // locals[nlocals-1..0] 121 // monitors[number_of_locks-1..0] 122 // 123 // Locals is a direct copy of the interpreter frame so in the osr buffer 124 // the first slot in the local array is the last local from the interpreter 125 // and the last slot is local[0] (receiver) from the interpreter. 126 // 127 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 128 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 129 // in the interpreter frame (the method lock if a sync method). 130 131 // Initialize monitors in the compiled activation. 132 // R3: pointer to osr buffer 133 // 134 // All other registers are dead at this point and the locals will be 135 // copied into place by code emitted in the IR. 136 137 Register OSR_buf = osrBufferPointer()->as_register(); 138 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 139 int monitor_offset = BytesPerWord * method()->max_locals() + 140 (2 * BytesPerWord) * (number_of_locks - 1); 141 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 142 // the OSR buffer using 2 word entries: first the lock and then 143 // the oop. 144 for (int i = 0; i < number_of_locks; i++) { 145 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 146 #ifdef ASSERT 147 // Verify the interpreter's monitor has a non-null object. 148 { 149 Label L; 150 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 151 __ cmpdi(CCR0, R0, 0); 152 __ bne(CCR0, L); 153 __ stop("locked object is NULL"); 154 __ bind(L); 155 } 156 #endif // ASSERT 157 // Copy the lock field into the compiled activation. 158 Address ml = frame_map()->address_for_monitor_lock(i), 159 mo = frame_map()->address_for_monitor_object(i); 160 assert(ml.index() == noreg && mo.index() == noreg, "sanity"); 161 __ ld(R0, slot_offset + 0, OSR_buf); 162 __ std(R0, ml.disp(), ml.base()); 163 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 164 __ std(R0, mo.disp(), mo.base()); 165 } 166 } 167 } 168 169 170 int LIR_Assembler::emit_exception_handler() { 171 // Generate code for the exception handler. 172 address handler_base = __ start_a_stub(exception_handler_size()); 173 174 if (handler_base == NULL) { 175 // Not enough space left for the handler. 176 bailout("exception handler overflow"); 177 return -1; 178 } 179 180 int offset = code_offset(); 181 address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)); 182 //__ load_const_optimized(R0, entry_point); 183 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point)); 184 __ mtctr(R0); 185 __ bctr(); 186 187 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 188 __ end_a_stub(); 189 190 return offset; 191 } 192 193 194 // Emit the code to remove the frame from the stack in the exception 195 // unwind path. 196 int LIR_Assembler::emit_unwind_handler() { 197 _masm->block_comment("Unwind handler"); 198 199 int offset = code_offset(); 200 bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes(); 201 const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31; 202 203 // Fetch the exception from TLS and clear out exception related thread state. 204 __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 205 __ li(R0, 0); 206 __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 207 __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread); 208 209 __ bind(_unwind_handler_entry); 210 __ verify_not_null_oop(Rexception); 211 if (preserve_exception) { __ mr(Rexception_save, Rexception); } 212 213 // Perform needed unlocking 214 MonitorExitStub* stub = NULL; 215 if (method()->is_synchronized()) { 216 monitor_address(0, FrameMap::R4_opr); 217 stub = new MonitorExitStub(FrameMap::R4_opr, true, 0); 218 __ unlock_object(R5, R6, R4, *stub->entry()); 219 __ bind(*stub->continuation()); 220 } 221 222 if (compilation()->env()->dtrace_method_probes()) { 223 Unimplemented(); 224 } 225 226 // Dispatch to the unwind logic. 227 address unwind_stub = Runtime1::entry_for(Runtime1::unwind_exception_id); 228 //__ load_const_optimized(R0, unwind_stub); 229 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub)); 230 if (preserve_exception) { __ mr(Rexception, Rexception_save); } 231 __ mtctr(R0); 232 __ bctr(); 233 234 // Emit the slow path assembly. 235 if (stub != NULL) { 236 stub->emit_code(this); 237 } 238 239 return offset; 240 } 241 242 243 int LIR_Assembler::emit_deopt_handler() { 244 // Generate code for deopt handler. 245 address handler_base = __ start_a_stub(deopt_handler_size()); 246 247 if (handler_base == NULL) { 248 // Not enough space left for the handler. 249 bailout("deopt handler overflow"); 250 return -1; 251 } 252 253 int offset = code_offset(); 254 __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type); 255 256 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 257 __ end_a_stub(); 258 259 return offset; 260 } 261 262 263 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 264 if (o == NULL) { 265 __ li(reg, 0); 266 } else { 267 AddressLiteral addrlit = __ constant_oop_address(o); 268 __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg); 269 } 270 } 271 272 273 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 274 // Allocate a new index in table to hold the object once it's been patched. 275 int oop_index = __ oop_recorder()->allocate_oop_index(NULL); 276 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); 277 278 AddressLiteral addrlit((address)NULL, oop_Relocation::spec(oop_index)); 279 __ load_const(reg, addrlit, R0); 280 281 patching_epilog(patch, lir_patch_normal, reg, info); 282 } 283 284 285 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) { 286 AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation) 287 __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg); 288 } 289 290 291 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { 292 // Allocate a new index in table to hold the klass once it's been patched. 293 int index = __ oop_recorder()->allocate_metadata_index(NULL); 294 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); 295 296 AddressLiteral addrlit((address)NULL, metadata_Relocation::spec(index)); 297 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); 298 __ load_const(reg, addrlit, R0); 299 300 patching_epilog(patch, lir_patch_normal, reg, info); 301 } 302 303 304 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 305 const bool is_int = result->is_single_cpu(); 306 Register Rdividend = is_int ? left->as_register() : left->as_register_lo(); 307 Register Rdivisor = noreg; 308 Register Rscratch = temp->as_register(); 309 Register Rresult = is_int ? result->as_register() : result->as_register_lo(); 310 long divisor = -1; 311 312 if (right->is_register()) { 313 Rdivisor = is_int ? right->as_register() : right->as_register_lo(); 314 } else { 315 divisor = is_int ? right->as_constant_ptr()->as_jint() 316 : right->as_constant_ptr()->as_jlong(); 317 } 318 319 assert(Rdividend != Rscratch, ""); 320 assert(Rdivisor != Rscratch, ""); 321 assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv"); 322 323 if (Rdivisor == noreg) { 324 if (divisor == 1) { // stupid, but can happen 325 if (code == lir_idiv) { 326 __ mr_if_needed(Rresult, Rdividend); 327 } else { 328 __ li(Rresult, 0); 329 } 330 331 } else if (is_power_of_2(divisor)) { 332 // Convert division by a power of two into some shifts and logical operations. 333 int log2 = log2i_exact(divisor); 334 335 // Round towards 0. 336 if (divisor == 2) { 337 if (is_int) { 338 __ srwi(Rscratch, Rdividend, 31); 339 } else { 340 __ srdi(Rscratch, Rdividend, 63); 341 } 342 } else { 343 if (is_int) { 344 __ srawi(Rscratch, Rdividend, 31); 345 } else { 346 __ sradi(Rscratch, Rdividend, 63); 347 } 348 __ clrldi(Rscratch, Rscratch, 64-log2); 349 } 350 __ add(Rscratch, Rdividend, Rscratch); 351 352 if (code == lir_idiv) { 353 if (is_int) { 354 __ srawi(Rresult, Rscratch, log2); 355 } else { 356 __ sradi(Rresult, Rscratch, log2); 357 } 358 } else { // lir_irem 359 __ clrrdi(Rscratch, Rscratch, log2); 360 __ sub(Rresult, Rdividend, Rscratch); 361 } 362 363 } else if (divisor == -1) { 364 if (code == lir_idiv) { 365 __ neg(Rresult, Rdividend); 366 } else { 367 __ li(Rresult, 0); 368 } 369 370 } else { 371 __ load_const_optimized(Rscratch, divisor); 372 if (code == lir_idiv) { 373 if (is_int) { 374 __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 375 } else { 376 __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 377 } 378 } else { 379 assert(Rscratch != R0, "need both"); 380 if (is_int) { 381 __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1. 382 __ mullw(Rscratch, R0, Rscratch); 383 } else { 384 __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1. 385 __ mulld(Rscratch, R0, Rscratch); 386 } 387 __ sub(Rresult, Rdividend, Rscratch); 388 } 389 390 } 391 return; 392 } 393 394 Label regular, done; 395 if (is_int) { 396 __ cmpwi(CCR0, Rdivisor, -1); 397 } else { 398 __ cmpdi(CCR0, Rdivisor, -1); 399 } 400 __ bne(CCR0, regular); 401 if (code == lir_idiv) { 402 __ neg(Rresult, Rdividend); 403 __ b(done); 404 __ bind(regular); 405 if (is_int) { 406 __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 407 } else { 408 __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 409 } 410 } else { // lir_irem 411 __ li(Rresult, 0); 412 __ b(done); 413 __ bind(regular); 414 if (is_int) { 415 __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 416 __ mullw(Rscratch, Rscratch, Rdivisor); 417 } else { 418 __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 419 __ mulld(Rscratch, Rscratch, Rdivisor); 420 } 421 __ sub(Rresult, Rdividend, Rscratch); 422 } 423 __ bind(done); 424 } 425 426 427 void LIR_Assembler::emit_op3(LIR_Op3* op) { 428 switch (op->code()) { 429 case lir_idiv: 430 case lir_irem: 431 arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(), 432 op->result_opr(), op->info()); 433 break; 434 case lir_fmad: 435 __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(), 436 op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg()); 437 break; 438 case lir_fmaf: 439 __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(), 440 op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg()); 441 break; 442 default: ShouldNotReachHere(); break; 443 } 444 } 445 446 447 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 448 #ifdef ASSERT 449 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); 450 if (op->block() != NULL) _branch_target_blocks.append(op->block()); 451 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); 452 assert(op->info() == NULL, "shouldn't have CodeEmitInfo"); 453 #endif 454 455 Label *L = op->label(); 456 if (op->cond() == lir_cond_always) { 457 __ b(*L); 458 } else { 459 Label done; 460 bool is_unordered = false; 461 if (op->code() == lir_cond_float_branch) { 462 assert(op->ublock() != NULL, "must have unordered successor"); 463 is_unordered = true; 464 } else { 465 assert(op->code() == lir_branch, "just checking"); 466 } 467 468 bool positive = false; 469 Assembler::Condition cond = Assembler::equal; 470 switch (op->cond()) { 471 case lir_cond_equal: positive = true ; cond = Assembler::equal ; is_unordered = false; break; 472 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; is_unordered = false; break; 473 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 474 case lir_cond_belowEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 475 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 476 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 477 case lir_cond_aboveEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 478 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 479 default: ShouldNotReachHere(); 480 } 481 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 482 int bi = Assembler::bi0(BOOL_RESULT, cond); 483 if (is_unordered) { 484 if (positive) { 485 if (op->ublock() == op->block()) { 486 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L); 487 } 488 } else { 489 if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); } 490 } 491 } 492 __ bc_far_optimized(bo, bi, *L); 493 __ bind(done); 494 } 495 } 496 497 498 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 499 Bytecodes::Code code = op->bytecode(); 500 LIR_Opr src = op->in_opr(), 501 dst = op->result_opr(); 502 503 switch(code) { 504 case Bytecodes::_i2l: { 505 __ extsw(dst->as_register_lo(), src->as_register()); 506 break; 507 } 508 case Bytecodes::_l2i: { 509 __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage 510 break; 511 } 512 case Bytecodes::_i2b: { 513 __ extsb(dst->as_register(), src->as_register()); 514 break; 515 } 516 case Bytecodes::_i2c: { 517 __ clrldi(dst->as_register(), src->as_register(), 64-16); 518 break; 519 } 520 case Bytecodes::_i2s: { 521 __ extsh(dst->as_register(), src->as_register()); 522 break; 523 } 524 case Bytecodes::_i2d: 525 case Bytecodes::_l2d: { 526 bool src_in_memory = !VM_Version::has_mtfprd(); 527 FloatRegister rdst = dst->as_double_reg(); 528 FloatRegister rsrc; 529 if (src_in_memory) { 530 rsrc = src->as_double_reg(); // via mem 531 } else { 532 // move src to dst register 533 if (code == Bytecodes::_i2d) { 534 __ mtfprwa(rdst, src->as_register()); 535 } else { 536 __ mtfprd(rdst, src->as_register_lo()); 537 } 538 rsrc = rdst; 539 } 540 __ fcfid(rdst, rsrc); 541 break; 542 } 543 case Bytecodes::_i2f: 544 case Bytecodes::_l2f: { 545 bool src_in_memory = !VM_Version::has_mtfprd(); 546 FloatRegister rdst = dst->as_float_reg(); 547 FloatRegister rsrc; 548 if (src_in_memory) { 549 rsrc = src->as_double_reg(); // via mem 550 } else { 551 // move src to dst register 552 if (code == Bytecodes::_i2f) { 553 __ mtfprwa(rdst, src->as_register()); 554 } else { 555 __ mtfprd(rdst, src->as_register_lo()); 556 } 557 rsrc = rdst; 558 } 559 if (VM_Version::has_fcfids()) { 560 __ fcfids(rdst, rsrc); 561 } else { 562 assert(code == Bytecodes::_i2f, "fcfid+frsp needs fixup code to avoid rounding incompatibility"); 563 __ fcfid(rdst, rsrc); 564 __ frsp(rdst, rdst); 565 } 566 break; 567 } 568 case Bytecodes::_f2d: { 569 __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg()); 570 break; 571 } 572 case Bytecodes::_d2f: { 573 __ frsp(dst->as_float_reg(), src->as_double_reg()); 574 break; 575 } 576 case Bytecodes::_d2i: 577 case Bytecodes::_f2i: { 578 bool dst_in_memory = !VM_Version::has_mtfprd(); 579 FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg(); 580 Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : Address(); 581 Label L; 582 // Result must be 0 if value is NaN; test by comparing value to itself. 583 __ fcmpu(CCR0, rsrc, rsrc); 584 if (dst_in_memory) { 585 __ li(R0, 0); // 0 in case of NAN 586 __ std(R0, addr.disp(), addr.base()); 587 } else { 588 __ li(dst->as_register(), 0); 589 } 590 __ bso(CCR0, L); 591 __ fctiwz(rsrc, rsrc); // USE_KILL 592 if (dst_in_memory) { 593 __ stfd(rsrc, addr.disp(), addr.base()); 594 } else { 595 __ mffprd(dst->as_register(), rsrc); 596 } 597 __ bind(L); 598 break; 599 } 600 case Bytecodes::_d2l: 601 case Bytecodes::_f2l: { 602 bool dst_in_memory = !VM_Version::has_mtfprd(); 603 FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg(); 604 Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : Address(); 605 Label L; 606 // Result must be 0 if value is NaN; test by comparing value to itself. 607 __ fcmpu(CCR0, rsrc, rsrc); 608 if (dst_in_memory) { 609 __ li(R0, 0); // 0 in case of NAN 610 __ std(R0, addr.disp(), addr.base()); 611 } else { 612 __ li(dst->as_register_lo(), 0); 613 } 614 __ bso(CCR0, L); 615 __ fctidz(rsrc, rsrc); // USE_KILL 616 if (dst_in_memory) { 617 __ stfd(rsrc, addr.disp(), addr.base()); 618 } else { 619 __ mffprd(dst->as_register_lo(), rsrc); 620 } 621 __ bind(L); 622 break; 623 } 624 625 default: ShouldNotReachHere(); 626 } 627 } 628 629 630 void LIR_Assembler::align_call(LIR_Code) { 631 // do nothing since all instructions are word aligned on ppc 632 } 633 634 635 bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) { 636 int start_offset = __ offset(); 637 // Put the entry point as a constant into the constant pool. 638 const address entry_point_toc_addr = __ address_constant(target, RelocationHolder::none); 639 if (entry_point_toc_addr == NULL) { 640 bailout("const section overflow"); 641 return false; 642 } 643 const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr); 644 645 // Emit the trampoline stub which will be related to the branch-and-link below. 646 address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc); 647 if (!stub) { 648 bailout("no space for trampoline stub"); 649 return false; 650 } 651 return true; 652 } 653 654 655 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 656 assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype"); 657 658 bool success = emit_trampoline_stub_for_call(op->addr()); 659 if (!success) { return; } 660 661 __ relocate(rtype); 662 // Note: At this point we do not have the address of the trampoline 663 // stub, and the entry point might be too far away for bl, so __ pc() 664 // serves as dummy and the bl will be patched later. 665 __ code()->set_insts_mark(); 666 __ bl(__ pc()); 667 add_call_info(code_offset(), op->info()); 668 __ post_call_nop(); 669 } 670 671 672 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 673 __ calculate_address_from_global_toc(R2_TOC, __ method_toc()); 674 675 // Virtual call relocation will point to ic load. 676 address virtual_call_meta_addr = __ pc(); 677 // Load a clear inline cache. 678 AddressLiteral empty_ic((address) Universe::non_oop_word()); 679 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC); 680 if (!success) { 681 bailout("const section overflow"); 682 return; 683 } 684 // Call to fixup routine. Fixup routine uses ScopeDesc info 685 // to determine who we intended to call. 686 __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr)); 687 688 success = emit_trampoline_stub_for_call(op->addr(), R2_TOC); 689 if (!success) { return; } 690 691 // Note: At this point we do not have the address of the trampoline 692 // stub, and the entry point might be too far away for bl, so __ pc() 693 // serves as dummy and the bl will be patched later. 694 __ bl(__ pc()); 695 add_call_info(code_offset(), op->info()); 696 __ post_call_nop(); 697 } 698 699 void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) { 700 ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info); 701 __ null_check(addr, stub->entry()); 702 append_code_stub(stub); 703 } 704 705 706 // Attention: caller must encode oop if needed 707 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide) { 708 int store_offset; 709 if (!Assembler::is_simm16(offset)) { 710 // For offsets larger than a simm16 we setup the offset. 711 assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case"); 712 __ load_const_optimized(R0, offset); 713 store_offset = store(from_reg, base, R0, type, wide); 714 } else { 715 store_offset = code_offset(); 716 switch (type) { 717 case T_BOOLEAN: // fall through 718 case T_BYTE : __ stb(from_reg->as_register(), offset, base); break; 719 case T_CHAR : 720 case T_SHORT : __ sth(from_reg->as_register(), offset, base); break; 721 case T_INT : __ stw(from_reg->as_register(), offset, base); break; 722 case T_LONG : __ std(from_reg->as_register_lo(), offset, base); break; 723 case T_ADDRESS: 724 case T_METADATA: __ std(from_reg->as_register(), offset, base); break; 725 case T_ARRAY : // fall through 726 case T_OBJECT: 727 { 728 if (UseCompressedOops && !wide) { 729 // Encoding done in caller 730 __ stw(from_reg->as_register(), offset, base); 731 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); 732 } else { 733 __ std(from_reg->as_register(), offset, base); 734 if (VerifyOops) { 735 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 736 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0 737 } 738 } 739 break; 740 } 741 case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break; 742 case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break; 743 default : ShouldNotReachHere(); 744 } 745 } 746 return store_offset; 747 } 748 749 750 // Attention: caller must encode oop if needed 751 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) { 752 int store_offset = code_offset(); 753 switch (type) { 754 case T_BOOLEAN: // fall through 755 case T_BYTE : __ stbx(from_reg->as_register(), base, disp); break; 756 case T_CHAR : 757 case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break; 758 case T_INT : __ stwx(from_reg->as_register(), base, disp); break; 759 case T_LONG : 760 #ifdef _LP64 761 __ stdx(from_reg->as_register_lo(), base, disp); 762 #else 763 Unimplemented(); 764 #endif 765 break; 766 case T_ADDRESS: 767 __ stdx(from_reg->as_register(), base, disp); 768 break; 769 case T_ARRAY : // fall through 770 case T_OBJECT: 771 { 772 if (UseCompressedOops && !wide) { 773 // Encoding done in caller. 774 __ stwx(from_reg->as_register(), base, disp); 775 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); // kills R0 776 } else { 777 __ stdx(from_reg->as_register(), base, disp); 778 if (VerifyOops) { 779 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 780 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0 781 } 782 } 783 break; 784 } 785 case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break; 786 case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break; 787 default : ShouldNotReachHere(); 788 } 789 return store_offset; 790 } 791 792 793 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide) { 794 int load_offset; 795 if (!Assembler::is_simm16(offset)) { 796 // For offsets larger than a simm16 we setup the offset. 797 __ load_const_optimized(R0, offset); 798 load_offset = load(base, R0, to_reg, type, wide); 799 } else { 800 load_offset = code_offset(); 801 switch(type) { 802 case T_BOOLEAN: // fall through 803 case T_BYTE : __ lbz(to_reg->as_register(), offset, base); 804 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 805 case T_CHAR : __ lhz(to_reg->as_register(), offset, base); break; 806 case T_SHORT : __ lha(to_reg->as_register(), offset, base); break; 807 case T_INT : __ lwa(to_reg->as_register(), offset, base); break; 808 case T_LONG : __ ld(to_reg->as_register_lo(), offset, base); break; 809 case T_METADATA: __ ld(to_reg->as_register(), offset, base); break; 810 case T_ADDRESS: 811 __ ld(to_reg->as_register(), offset, base); 812 break; 813 case T_ARRAY : // fall through 814 case T_OBJECT: 815 { 816 if (UseCompressedOops && !wide) { 817 __ lwz(to_reg->as_register(), offset, base); 818 __ decode_heap_oop(to_reg->as_register()); 819 } else { 820 __ ld(to_reg->as_register(), offset, base); 821 } 822 if (VerifyOops) { 823 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 824 bs->check_oop(_masm, to_reg->as_register(), FILE_AND_LINE); // kills R0 825 } 826 break; 827 } 828 case T_FLOAT: __ lfs(to_reg->as_float_reg(), offset, base); break; 829 case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break; 830 default : ShouldNotReachHere(); 831 } 832 } 833 return load_offset; 834 } 835 836 837 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) { 838 int load_offset = code_offset(); 839 switch(type) { 840 case T_BOOLEAN: // fall through 841 case T_BYTE : __ lbzx(to_reg->as_register(), base, disp); 842 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 843 case T_CHAR : __ lhzx(to_reg->as_register(), base, disp); break; 844 case T_SHORT : __ lhax(to_reg->as_register(), base, disp); break; 845 case T_INT : __ lwax(to_reg->as_register(), base, disp); break; 846 case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break; 847 case T_ARRAY : // fall through 848 case T_OBJECT: 849 { 850 if (UseCompressedOops && !wide) { 851 __ lwzx(to_reg->as_register(), base, disp); 852 __ decode_heap_oop(to_reg->as_register()); 853 } else { 854 __ ldx(to_reg->as_register(), base, disp); 855 } 856 if (VerifyOops) { 857 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 858 bs->check_oop(_masm, to_reg->as_register(), FILE_AND_LINE); // kills R0 859 } 860 break; 861 } 862 case T_FLOAT: __ lfsx(to_reg->as_float_reg() , base, disp); break; 863 case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break; 864 case T_LONG : 865 #ifdef _LP64 866 __ ldx(to_reg->as_register_lo(), base, disp); 867 #else 868 Unimplemented(); 869 #endif 870 break; 871 default : ShouldNotReachHere(); 872 } 873 return load_offset; 874 } 875 876 877 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 878 LIR_Const* c = src->as_constant_ptr(); 879 Register src_reg = R0; 880 switch (c->type()) { 881 case T_INT: 882 case T_FLOAT: { 883 int value = c->as_jint_bits(); 884 __ load_const_optimized(src_reg, value); 885 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 886 __ stw(src_reg, addr.disp(), addr.base()); 887 break; 888 } 889 case T_ADDRESS: { 890 int value = c->as_jint_bits(); 891 __ load_const_optimized(src_reg, value); 892 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 893 __ std(src_reg, addr.disp(), addr.base()); 894 break; 895 } 896 case T_OBJECT: { 897 jobject2reg(c->as_jobject(), src_reg); 898 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 899 __ std(src_reg, addr.disp(), addr.base()); 900 break; 901 } 902 case T_LONG: 903 case T_DOUBLE: { 904 int value = c->as_jlong_bits(); 905 __ load_const_optimized(src_reg, value); 906 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix()); 907 __ std(src_reg, addr.disp(), addr.base()); 908 break; 909 } 910 default: 911 Unimplemented(); 912 } 913 } 914 915 916 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 917 LIR_Const* c = src->as_constant_ptr(); 918 LIR_Address* addr = dest->as_address_ptr(); 919 Register base = addr->base()->as_pointer_register(); 920 LIR_Opr tmp = LIR_OprFact::illegalOpr; 921 int offset = -1; 922 // Null check for large offsets in LIRGenerator::do_StoreField. 923 bool needs_explicit_null_check = !ImplicitNullChecks; 924 925 if (info != NULL && needs_explicit_null_check) { 926 explicit_null_check(base, info); 927 } 928 929 switch (c->type()) { 930 case T_FLOAT: type = T_INT; 931 case T_INT: 932 case T_ADDRESS: { 933 tmp = FrameMap::R0_opr; 934 __ load_const_optimized(tmp->as_register(), c->as_jint_bits()); 935 break; 936 } 937 case T_DOUBLE: type = T_LONG; 938 case T_LONG: { 939 tmp = FrameMap::R0_long_opr; 940 __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits()); 941 break; 942 } 943 case T_OBJECT: { 944 tmp = FrameMap::R0_opr; 945 if (UseCompressedOops && !wide && c->as_jobject() != NULL) { 946 AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject()); 947 // Don't care about sign extend (will use stw). 948 __ lis(R0, 0); // Will get patched. 949 __ relocate(oop_addr.rspec(), /*compressed format*/ 1); 950 __ ori(R0, R0, 0); // Will get patched. 951 } else { 952 jobject2reg(c->as_jobject(), R0); 953 } 954 break; 955 } 956 default: 957 Unimplemented(); 958 } 959 960 // Handle either reg+reg or reg+disp address. 961 if (addr->index()->is_valid()) { 962 assert(addr->disp() == 0, "must be zero"); 963 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide); 964 } else { 965 assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses"); 966 offset = store(tmp, base, addr->disp(), type, wide); 967 } 968 969 if (info != NULL) { 970 assert(offset != -1, "offset should've been set"); 971 if (!needs_explicit_null_check) { 972 add_debug_info_for_null_check(offset, info); 973 } 974 } 975 } 976 977 978 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 979 LIR_Const* c = src->as_constant_ptr(); 980 LIR_Opr to_reg = dest; 981 982 switch (c->type()) { 983 case T_INT: { 984 assert(patch_code == lir_patch_none, "no patching handled here"); 985 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); 986 break; 987 } 988 case T_ADDRESS: { 989 assert(patch_code == lir_patch_none, "no patching handled here"); 990 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); // Yes, as_jint ... 991 break; 992 } 993 case T_LONG: { 994 assert(patch_code == lir_patch_none, "no patching handled here"); 995 __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0); 996 break; 997 } 998 999 case T_OBJECT: { 1000 if (patch_code == lir_patch_none) { 1001 jobject2reg(c->as_jobject(), to_reg->as_register()); 1002 } else { 1003 jobject2reg_with_patching(to_reg->as_register(), info); 1004 } 1005 break; 1006 } 1007 1008 case T_METADATA: 1009 { 1010 if (patch_code == lir_patch_none) { 1011 metadata2reg(c->as_metadata(), to_reg->as_register()); 1012 } else { 1013 klass2reg_with_patching(to_reg->as_register(), info); 1014 } 1015 } 1016 break; 1017 1018 case T_FLOAT: 1019 { 1020 if (to_reg->is_single_fpu()) { 1021 address const_addr = __ float_constant(c->as_jfloat()); 1022 if (const_addr == NULL) { 1023 bailout("const section overflow"); 1024 break; 1025 } 1026 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 1027 __ relocate(rspec); 1028 __ load_const(R0, const_addr); 1029 __ lfsx(to_reg->as_float_reg(), R0); 1030 } else { 1031 assert(to_reg->is_single_cpu(), "Must be a cpu register."); 1032 __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0); 1033 } 1034 } 1035 break; 1036 1037 case T_DOUBLE: 1038 { 1039 if (to_reg->is_double_fpu()) { 1040 address const_addr = __ double_constant(c->as_jdouble()); 1041 if (const_addr == NULL) { 1042 bailout("const section overflow"); 1043 break; 1044 } 1045 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 1046 __ relocate(rspec); 1047 __ load_const(R0, const_addr); 1048 __ lfdx(to_reg->as_double_reg(), R0); 1049 } else { 1050 assert(to_reg->is_double_cpu(), "Must be a long register."); 1051 __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0); 1052 } 1053 } 1054 break; 1055 1056 default: 1057 ShouldNotReachHere(); 1058 } 1059 } 1060 1061 1062 Address LIR_Assembler::as_Address(LIR_Address* addr) { 1063 Unimplemented(); return Address(); 1064 } 1065 1066 1067 inline RegisterOrConstant index_or_disp(LIR_Address* addr) { 1068 if (addr->index()->is_illegal()) { 1069 return (RegisterOrConstant)(addr->disp()); 1070 } else { 1071 return (RegisterOrConstant)(addr->index()->as_pointer_register()); 1072 } 1073 } 1074 1075 1076 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1077 const Register tmp = R0; 1078 switch (type) { 1079 case T_INT: 1080 case T_FLOAT: { 1081 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1082 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1083 __ lwz(tmp, from.disp(), from.base()); 1084 __ stw(tmp, to.disp(), to.base()); 1085 break; 1086 } 1087 case T_ADDRESS: 1088 case T_OBJECT: { 1089 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1090 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1091 __ ld(tmp, from.disp(), from.base()); 1092 __ std(tmp, to.disp(), to.base()); 1093 break; 1094 } 1095 case T_LONG: 1096 case T_DOUBLE: { 1097 Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); 1098 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); 1099 __ ld(tmp, from.disp(), from.base()); 1100 __ std(tmp, to.disp(), to.base()); 1101 break; 1102 } 1103 1104 default: 1105 ShouldNotReachHere(); 1106 } 1107 } 1108 1109 1110 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 1111 Unimplemented(); return Address(); 1112 } 1113 1114 1115 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 1116 Unimplemented(); return Address(); 1117 } 1118 1119 1120 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, 1121 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 1122 1123 assert(type != T_METADATA, "load of metadata ptr not supported"); 1124 LIR_Address* addr = src_opr->as_address_ptr(); 1125 LIR_Opr to_reg = dest; 1126 1127 Register src = addr->base()->as_pointer_register(); 1128 Register disp_reg = noreg; 1129 int disp_value = addr->disp(); 1130 bool needs_patching = (patch_code != lir_patch_none); 1131 // null check for large offsets in LIRGenerator::do_LoadField 1132 bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks; 1133 1134 if (info != NULL && needs_explicit_null_check) { 1135 explicit_null_check(src, info); 1136 } 1137 1138 if (addr->base()->type() == T_OBJECT) { 1139 __ verify_oop(src, FILE_AND_LINE); 1140 } 1141 1142 PatchingStub* patch = NULL; 1143 if (needs_patching) { 1144 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1145 assert(!to_reg->is_double_cpu() || 1146 patch_code == lir_patch_none || 1147 patch_code == lir_patch_normal, "patching doesn't match register"); 1148 } 1149 1150 if (addr->index()->is_illegal()) { 1151 if (!Assembler::is_simm16(disp_value)) { 1152 if (needs_patching) { 1153 __ load_const32(R0, 0); // patchable int 1154 } else { 1155 __ load_const_optimized(R0, disp_value); 1156 } 1157 disp_reg = R0; 1158 } 1159 } else { 1160 disp_reg = addr->index()->as_pointer_register(); 1161 assert(disp_value == 0, "can't handle 3 operand addresses"); 1162 } 1163 1164 // Remember the offset of the load. The patching_epilog must be done 1165 // before the call to add_debug_info, otherwise the PcDescs don't get 1166 // entered in increasing order. 1167 int offset; 1168 1169 if (disp_reg == noreg) { 1170 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1171 offset = load(src, disp_value, to_reg, type, wide); 1172 } else { 1173 offset = load(src, disp_reg, to_reg, type, wide); 1174 } 1175 1176 if (patch != NULL) { 1177 patching_epilog(patch, patch_code, src, info); 1178 } 1179 if (info != NULL && !needs_explicit_null_check) { 1180 add_debug_info_for_null_check(offset, info); 1181 } 1182 } 1183 1184 1185 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1186 Address addr; 1187 if (src->is_single_word()) { 1188 addr = frame_map()->address_for_slot(src->single_stack_ix()); 1189 } else if (src->is_double_word()) { 1190 addr = frame_map()->address_for_double_slot(src->double_stack_ix()); 1191 } 1192 1193 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/); 1194 } 1195 1196 1197 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 1198 Address addr; 1199 if (dest->is_single_word()) { 1200 addr = frame_map()->address_for_slot(dest->single_stack_ix()); 1201 } else if (dest->is_double_word()) { 1202 addr = frame_map()->address_for_slot(dest->double_stack_ix()); 1203 } 1204 1205 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/); 1206 } 1207 1208 1209 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { 1210 if (from_reg->is_float_kind() && to_reg->is_float_kind()) { 1211 if (from_reg->is_double_fpu()) { 1212 // double to double moves 1213 assert(to_reg->is_double_fpu(), "should match"); 1214 __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg()); 1215 } else { 1216 // float to float moves 1217 assert(to_reg->is_single_fpu(), "should match"); 1218 __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg()); 1219 } 1220 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { 1221 if (from_reg->is_double_cpu()) { 1222 __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register()); 1223 } else if (to_reg->is_double_cpu()) { 1224 // int to int moves 1225 __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register()); 1226 } else { 1227 // int to int moves 1228 __ mr_if_needed(to_reg->as_register(), from_reg->as_register()); 1229 } 1230 } else { 1231 ShouldNotReachHere(); 1232 } 1233 if (is_reference_type(to_reg->type())) { 1234 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 1235 } 1236 } 1237 1238 1239 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type, 1240 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, 1241 bool wide) { 1242 assert(type != T_METADATA, "store of metadata ptr not supported"); 1243 LIR_Address* addr = dest->as_address_ptr(); 1244 1245 Register src = addr->base()->as_pointer_register(); 1246 Register disp_reg = noreg; 1247 int disp_value = addr->disp(); 1248 bool needs_patching = (patch_code != lir_patch_none); 1249 bool compress_oop = (is_reference_type(type)) && UseCompressedOops && !wide && 1250 CompressedOops::mode() != CompressedOops::UnscaledNarrowOop; 1251 bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value); 1252 bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29. 1253 // Null check for large offsets in LIRGenerator::do_StoreField. 1254 bool needs_explicit_null_check = !ImplicitNullChecks || use_R29; 1255 1256 if (info != NULL && needs_explicit_null_check) { 1257 explicit_null_check(src, info); 1258 } 1259 1260 if (addr->base()->is_oop_register()) { 1261 __ verify_oop(src, FILE_AND_LINE); 1262 } 1263 1264 PatchingStub* patch = NULL; 1265 if (needs_patching) { 1266 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1267 assert(!from_reg->is_double_cpu() || 1268 patch_code == lir_patch_none || 1269 patch_code == lir_patch_normal, "patching doesn't match register"); 1270 } 1271 1272 if (addr->index()->is_illegal()) { 1273 if (load_disp) { 1274 disp_reg = use_R29 ? R29_TOC : R0; 1275 if (needs_patching) { 1276 __ load_const32(disp_reg, 0); // patchable int 1277 } else { 1278 __ load_const_optimized(disp_reg, disp_value); 1279 } 1280 } 1281 } else { 1282 disp_reg = addr->index()->as_pointer_register(); 1283 assert(disp_value == 0, "can't handle 3 operand addresses"); 1284 } 1285 1286 // remember the offset of the store. The patching_epilog must be done 1287 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get 1288 // entered in increasing order. 1289 int offset; 1290 1291 if (compress_oop) { 1292 Register co = __ encode_heap_oop(R0, from_reg->as_register()); 1293 from_reg = FrameMap::as_opr(co); 1294 } 1295 1296 if (disp_reg == noreg) { 1297 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1298 offset = store(from_reg, src, disp_value, type, wide); 1299 } else { 1300 offset = store(from_reg, src, disp_reg, type, wide); 1301 } 1302 1303 if (use_R29) { 1304 __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit 1305 } 1306 1307 if (patch != NULL) { 1308 patching_epilog(patch, patch_code, src, info); 1309 } 1310 1311 if (info != NULL && !needs_explicit_null_check) { 1312 add_debug_info_for_null_check(offset, info); 1313 } 1314 } 1315 1316 1317 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 1318 const Register return_pc = R31; // Must survive C-call to enable_stack_reserved_zone(). 1319 const Register temp = R12; 1320 1321 // Pop the stack before the safepoint code. 1322 int frame_size = initial_frame_size_in_bytes(); 1323 if (Assembler::is_simm(frame_size, 16)) { 1324 __ addi(R1_SP, R1_SP, frame_size); 1325 } else { 1326 __ pop_frame(); 1327 } 1328 1329 // Restore return pc relative to callers' sp. 1330 __ ld(return_pc, _abi0(lr), R1_SP); 1331 // Move return pc to LR. 1332 __ mtlr(return_pc); 1333 1334 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 1335 __ reserved_stack_check(return_pc); 1336 } 1337 1338 // We need to mark the code position where the load from the safepoint 1339 // polling page was emitted as relocInfo::poll_return_type here. 1340 if (!UseSIGTRAP) { 1341 code_stub->set_safepoint_offset(__ offset()); 1342 __ relocate(relocInfo::poll_return_type); 1343 } 1344 __ safepoint_poll(*code_stub->entry(), temp, true /* at_return */, true /* in_nmethod */); 1345 1346 // Return. 1347 __ blr(); 1348 } 1349 1350 1351 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 1352 const Register poll_addr = tmp->as_register(); 1353 __ ld(poll_addr, in_bytes(JavaThread::polling_page_offset()), R16_thread); 1354 if (info != NULL) { 1355 add_debug_info_for_branch(info); 1356 } 1357 int offset = __ offset(); 1358 __ relocate(relocInfo::poll_type); 1359 __ load_from_polling_page(poll_addr); 1360 1361 return offset; 1362 } 1363 1364 1365 void LIR_Assembler::emit_static_call_stub() { 1366 address call_pc = __ pc(); 1367 address stub = __ start_a_stub(static_call_stub_size()); 1368 if (stub == NULL) { 1369 bailout("static call stub overflow"); 1370 return; 1371 } 1372 1373 // For java_to_interp stubs we use R11_scratch1 as scratch register 1374 // and in call trampoline stubs we use R12_scratch2. This way we 1375 // can distinguish them (see is_NativeCallTrampolineStub_at()). 1376 const Register reg_scratch = R11_scratch1; 1377 1378 // Create a static stub relocation which relates this stub 1379 // with the call instruction at insts_call_instruction_offset in the 1380 // instructions code-section. 1381 int start = __ offset(); 1382 __ relocate(static_stub_Relocation::spec(call_pc)); 1383 1384 // Now, create the stub's code: 1385 // - load the TOC 1386 // - load the inline cache oop from the constant pool 1387 // - load the call target from the constant pool 1388 // - call 1389 __ calculate_address_from_global_toc(reg_scratch, __ method_toc()); 1390 AddressLiteral ic = __ allocate_metadata_address((Metadata *)NULL); 1391 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true); 1392 1393 if (ReoptimizeCallSequences) { 1394 __ b64_patchable((address)-1, relocInfo::none); 1395 } else { 1396 AddressLiteral a((address)-1); 1397 success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true); 1398 __ mtctr(reg_scratch); 1399 __ bctr(); 1400 } 1401 if (!success) { 1402 bailout("const section overflow"); 1403 return; 1404 } 1405 1406 assert(__ offset() - start <= static_call_stub_size(), "stub too big"); 1407 __ end_a_stub(); 1408 } 1409 1410 1411 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1412 bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual); 1413 if (opr1->is_single_fpu()) { 1414 __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg()); 1415 } else if (opr1->is_double_fpu()) { 1416 __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg()); 1417 } else if (opr1->is_single_cpu()) { 1418 if (opr2->is_constant()) { 1419 switch (opr2->as_constant_ptr()->type()) { 1420 case T_INT: 1421 { 1422 jint con = opr2->as_constant_ptr()->as_jint(); 1423 if (unsigned_comp) { 1424 if (Assembler::is_uimm(con, 16)) { 1425 __ cmplwi(BOOL_RESULT, opr1->as_register(), con); 1426 } else { 1427 __ load_const_optimized(R0, con); 1428 __ cmplw(BOOL_RESULT, opr1->as_register(), R0); 1429 } 1430 } else { 1431 if (Assembler::is_simm(con, 16)) { 1432 __ cmpwi(BOOL_RESULT, opr1->as_register(), con); 1433 } else { 1434 __ load_const_optimized(R0, con); 1435 __ cmpw(BOOL_RESULT, opr1->as_register(), R0); 1436 } 1437 } 1438 } 1439 break; 1440 1441 case T_OBJECT: 1442 // There are only equal/notequal comparisons on objects. 1443 { 1444 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1445 jobject con = opr2->as_constant_ptr()->as_jobject(); 1446 if (con == NULL) { 1447 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1448 } else { 1449 jobject2reg(con, R0); 1450 __ cmpd(BOOL_RESULT, opr1->as_register(), R0); 1451 } 1452 } 1453 break; 1454 1455 case T_METADATA: 1456 // We only need, for now, comparison with NULL for metadata. 1457 { 1458 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1459 Metadata* p = opr2->as_constant_ptr()->as_metadata(); 1460 if (p == NULL) { 1461 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1462 } else { 1463 ShouldNotReachHere(); 1464 } 1465 } 1466 break; 1467 1468 default: 1469 ShouldNotReachHere(); 1470 break; 1471 } 1472 } else { 1473 assert(opr1->type() != T_ADDRESS && opr2->type() != T_ADDRESS, "currently unsupported"); 1474 if (is_reference_type(opr1->type())) { 1475 // There are only equal/notequal comparisons on objects. 1476 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1477 __ cmpd(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1478 } else { 1479 if (unsigned_comp) { 1480 __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1481 } else { 1482 __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1483 } 1484 } 1485 } 1486 } else if (opr1->is_double_cpu()) { 1487 if (opr2->is_constant()) { 1488 jlong con = opr2->as_constant_ptr()->as_jlong(); 1489 if (unsigned_comp) { 1490 if (Assembler::is_uimm(con, 16)) { 1491 __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con); 1492 } else { 1493 __ load_const_optimized(R0, con); 1494 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0); 1495 } 1496 } else { 1497 if (Assembler::is_simm(con, 16)) { 1498 __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con); 1499 } else { 1500 __ load_const_optimized(R0, con); 1501 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0); 1502 } 1503 } 1504 } else if (opr2->is_register()) { 1505 if (unsigned_comp) { 1506 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1507 } else { 1508 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1509 } 1510 } else { 1511 ShouldNotReachHere(); 1512 } 1513 } else { 1514 ShouldNotReachHere(); 1515 } 1516 } 1517 1518 1519 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1520 const Register Rdst = dst->as_register(); 1521 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1522 bool is_unordered_less = (code == lir_ucmp_fd2i); 1523 if (left->is_single_fpu()) { 1524 __ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg()); 1525 } else if (left->is_double_fpu()) { 1526 __ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg()); 1527 } else { 1528 ShouldNotReachHere(); 1529 } 1530 __ set_cmpu3(Rdst, is_unordered_less); // is_unordered_less ? -1 : 1 1531 } else if (code == lir_cmp_l2i) { 1532 __ cmpd(CCR0, left->as_register_lo(), right->as_register_lo()); 1533 __ set_cmp3(Rdst); // set result as follows: <: -1, =: 0, >: 1 1534 } else { 1535 ShouldNotReachHere(); 1536 } 1537 } 1538 1539 1540 inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) { 1541 if (src->is_constant()) { 1542 lasm->const2reg(src, dst, lir_patch_none, NULL); 1543 } else if (src->is_register()) { 1544 lasm->reg2reg(src, dst); 1545 } else if (src->is_stack()) { 1546 lasm->stack2reg(src, dst, dst->type()); 1547 } else { 1548 ShouldNotReachHere(); 1549 } 1550 } 1551 1552 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1553 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1554 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on ppc"); 1555 1556 if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) { 1557 load_to_reg(this, opr1, result); // Condition doesn't matter. 1558 return; 1559 } 1560 1561 bool positive = false; 1562 Assembler::Condition cond = Assembler::equal; 1563 switch (condition) { 1564 case lir_cond_equal: positive = true ; cond = Assembler::equal ; break; 1565 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; break; 1566 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 1567 case lir_cond_belowEqual: 1568 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 1569 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 1570 case lir_cond_aboveEqual: 1571 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 1572 default: ShouldNotReachHere(); 1573 } 1574 1575 // Try to use isel on >=Power7. 1576 if (VM_Version::has_isel() && result->is_cpu_register()) { 1577 bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register(); 1578 const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo(); 1579 1580 // We can use result_reg to load one operand if not already in register. 1581 Register first = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg, 1582 second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg; 1583 1584 if (first != second) { 1585 if (!o1_is_reg) { 1586 load_to_reg(this, opr1, result); 1587 } 1588 1589 if (!o2_is_reg) { 1590 load_to_reg(this, opr2, result); 1591 } 1592 1593 __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second); 1594 return; 1595 } 1596 } // isel 1597 1598 load_to_reg(this, opr1, result); 1599 1600 Label skip; 1601 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 1602 int bi = Assembler::bi0(BOOL_RESULT, cond); 1603 __ bc(bo, bi, skip); 1604 1605 load_to_reg(this, opr2, result); 1606 __ bind(skip); 1607 } 1608 1609 1610 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, 1611 CodeEmitInfo* info, bool pop_fpu_stack) { 1612 assert(info == NULL, "unused on this code path"); 1613 assert(left->is_register(), "wrong items state"); 1614 assert(dest->is_register(), "wrong items state"); 1615 1616 if (right->is_register()) { 1617 if (dest->is_float_kind()) { 1618 1619 FloatRegister lreg, rreg, res; 1620 if (right->is_single_fpu()) { 1621 lreg = left->as_float_reg(); 1622 rreg = right->as_float_reg(); 1623 res = dest->as_float_reg(); 1624 switch (code) { 1625 case lir_add: __ fadds(res, lreg, rreg); break; 1626 case lir_sub: __ fsubs(res, lreg, rreg); break; 1627 case lir_mul: __ fmuls(res, lreg, rreg); break; 1628 case lir_div: __ fdivs(res, lreg, rreg); break; 1629 default: ShouldNotReachHere(); 1630 } 1631 } else { 1632 lreg = left->as_double_reg(); 1633 rreg = right->as_double_reg(); 1634 res = dest->as_double_reg(); 1635 switch (code) { 1636 case lir_add: __ fadd(res, lreg, rreg); break; 1637 case lir_sub: __ fsub(res, lreg, rreg); break; 1638 case lir_mul: __ fmul(res, lreg, rreg); break; 1639 case lir_div: __ fdiv(res, lreg, rreg); break; 1640 default: ShouldNotReachHere(); 1641 } 1642 } 1643 1644 } else if (dest->is_double_cpu()) { 1645 1646 Register dst_lo = dest->as_register_lo(); 1647 Register op1_lo = left->as_pointer_register(); 1648 Register op2_lo = right->as_pointer_register(); 1649 1650 switch (code) { 1651 case lir_add: __ add(dst_lo, op1_lo, op2_lo); break; 1652 case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break; 1653 case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break; 1654 default: ShouldNotReachHere(); 1655 } 1656 } else { 1657 assert (right->is_single_cpu(), "Just Checking"); 1658 1659 Register lreg = left->as_register(); 1660 Register res = dest->as_register(); 1661 Register rreg = right->as_register(); 1662 switch (code) { 1663 case lir_add: __ add (res, lreg, rreg); break; 1664 case lir_sub: __ sub (res, lreg, rreg); break; 1665 case lir_mul: __ mullw(res, lreg, rreg); break; 1666 default: ShouldNotReachHere(); 1667 } 1668 } 1669 } else { 1670 assert (right->is_constant(), "must be constant"); 1671 1672 if (dest->is_single_cpu()) { 1673 Register lreg = left->as_register(); 1674 Register res = dest->as_register(); 1675 int simm16 = right->as_constant_ptr()->as_jint(); 1676 1677 switch (code) { 1678 case lir_sub: assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int 1679 simm16 = -simm16; 1680 case lir_add: if (res == lreg && simm16 == 0) break; 1681 __ addi(res, lreg, simm16); break; 1682 case lir_mul: if (res == lreg && simm16 == 1) break; 1683 __ mulli(res, lreg, simm16); break; 1684 default: ShouldNotReachHere(); 1685 } 1686 } else { 1687 Register lreg = left->as_pointer_register(); 1688 Register res = dest->as_register_lo(); 1689 long con = right->as_constant_ptr()->as_jlong(); 1690 assert(Assembler::is_simm16(con), "must be simm16"); 1691 1692 switch (code) { 1693 case lir_sub: assert(Assembler::is_simm16(-con), "cannot encode"); // see do_ArithmeticOp_Long 1694 con = -con; 1695 case lir_add: if (res == lreg && con == 0) break; 1696 __ addi(res, lreg, (int)con); break; 1697 case lir_mul: if (res == lreg && con == 1) break; 1698 __ mulli(res, lreg, (int)con); break; 1699 default: ShouldNotReachHere(); 1700 } 1701 } 1702 } 1703 } 1704 1705 1706 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { 1707 switch (code) { 1708 case lir_sqrt: { 1709 __ fsqrt(dest->as_double_reg(), value->as_double_reg()); 1710 break; 1711 } 1712 case lir_abs: { 1713 __ fabs(dest->as_double_reg(), value->as_double_reg()); 1714 break; 1715 } 1716 default: { 1717 ShouldNotReachHere(); 1718 break; 1719 } 1720 } 1721 } 1722 1723 1724 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) { 1725 if (right->is_constant()) { // see do_LogicOp 1726 long uimm; 1727 Register d, l; 1728 if (dest->is_single_cpu()) { 1729 uimm = right->as_constant_ptr()->as_jint(); 1730 d = dest->as_register(); 1731 l = left->as_register(); 1732 } else { 1733 uimm = right->as_constant_ptr()->as_jlong(); 1734 d = dest->as_register_lo(); 1735 l = left->as_register_lo(); 1736 } 1737 long uimms = (unsigned long)uimm >> 16, 1738 uimmss = (unsigned long)uimm >> 32; 1739 1740 switch (code) { 1741 case lir_logic_and: 1742 if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2(uimm)) { 1743 __ andi(d, l, uimm); // special cases 1744 } else if (uimms != 0) { __ andis_(d, l, uimms); } 1745 else { __ andi_(d, l, uimm); } 1746 break; 1747 1748 case lir_logic_or: 1749 if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); } 1750 else { __ ori(d, l, uimm); } 1751 break; 1752 1753 case lir_logic_xor: 1754 if (uimm == -1) { __ nand(d, l, l); } // special case 1755 else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); } 1756 else { __ xori(d, l, uimm); } 1757 break; 1758 1759 default: ShouldNotReachHere(); 1760 } 1761 } else { 1762 assert(right->is_register(), "right should be in register"); 1763 1764 if (dest->is_single_cpu()) { 1765 switch (code) { 1766 case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break; 1767 case lir_logic_or: __ orr (dest->as_register(), left->as_register(), right->as_register()); break; 1768 case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break; 1769 default: ShouldNotReachHere(); 1770 } 1771 } else { 1772 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() : 1773 left->as_register_lo(); 1774 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() : 1775 right->as_register_lo(); 1776 1777 switch (code) { 1778 case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break; 1779 case lir_logic_or: __ orr (dest->as_register_lo(), l, r); break; 1780 case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break; 1781 default: ShouldNotReachHere(); 1782 } 1783 } 1784 } 1785 } 1786 1787 1788 int LIR_Assembler::shift_amount(BasicType t) { 1789 int elem_size = type2aelembytes(t); 1790 switch (elem_size) { 1791 case 1 : return 0; 1792 case 2 : return 1; 1793 case 4 : return 2; 1794 case 8 : return 3; 1795 } 1796 ShouldNotReachHere(); 1797 return -1; 1798 } 1799 1800 1801 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 1802 info->add_register_oop(exceptionOop); 1803 1804 // Reuse the debug info from the safepoint poll for the throw op itself. 1805 address pc_for_athrow = __ pc(); 1806 int pc_for_athrow_offset = __ offset(); 1807 //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow); 1808 //__ relocate(rspec); 1809 //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0); 1810 __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true); 1811 add_call_info(pc_for_athrow_offset, info); // for exception handler 1812 1813 address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? Runtime1::handle_exception_id 1814 : Runtime1::handle_exception_nofpu_id); 1815 //__ load_const_optimized(R0, stub); 1816 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub)); 1817 __ mtctr(R0); 1818 __ bctr(); 1819 } 1820 1821 1822 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 1823 // Note: Not used with EnableDebuggingOnDemand. 1824 assert(exceptionOop->as_register() == R3, "should match"); 1825 __ b(_unwind_handler_entry); 1826 } 1827 1828 1829 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 1830 Register src = op->src()->as_register(); 1831 Register dst = op->dst()->as_register(); 1832 Register src_pos = op->src_pos()->as_register(); 1833 Register dst_pos = op->dst_pos()->as_register(); 1834 Register length = op->length()->as_register(); 1835 Register tmp = op->tmp()->as_register(); 1836 Register tmp2 = R0; 1837 1838 int flags = op->flags(); 1839 ciArrayKlass* default_type = op->expected_type(); 1840 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; 1841 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 1842 1843 // Set up the arraycopy stub information. 1844 ArrayCopyStub* stub = op->stub(); 1845 const int frame_resize = frame::abi_reg_args_size - sizeof(frame::jit_abi); // C calls need larger frame. 1846 1847 // Always do stub if no type information is available. It's ok if 1848 // the known type isn't loaded since the code sanity checks 1849 // in debug mode and the type isn't required when we know the exact type 1850 // also check that the type is an array type. 1851 if (op->expected_type() == NULL) { 1852 assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() && 1853 length->is_nonvolatile(), "must preserve"); 1854 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1855 assert(copyfunc_addr != NULL, "generic arraycopy stub required"); 1856 1857 // 3 parms are int. Convert to long. 1858 __ mr(R3_ARG1, src); 1859 __ extsw(R4_ARG2, src_pos); 1860 __ mr(R5_ARG3, dst); 1861 __ extsw(R6_ARG4, dst_pos); 1862 __ extsw(R7_ARG5, length); 1863 1864 #ifndef PRODUCT 1865 if (PrintC1Statistics) { 1866 address counter = (address)&Runtime1::_generic_arraycopystub_cnt; 1867 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 1868 __ lwz(R11_scratch1, simm16_offs, tmp); 1869 __ addi(R11_scratch1, R11_scratch1, 1); 1870 __ stw(R11_scratch1, simm16_offs, tmp); 1871 } 1872 #endif 1873 __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0); 1874 1875 __ nand(tmp, R3_RET, R3_RET); 1876 __ subf(length, tmp, length); 1877 __ add(src_pos, tmp, src_pos); 1878 __ add(dst_pos, tmp, dst_pos); 1879 1880 __ cmpwi(CCR0, R3_RET, 0); 1881 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry()); 1882 __ bind(*stub->continuation()); 1883 return; 1884 } 1885 1886 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point"); 1887 Label cont, slow, copyfunc; 1888 1889 bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check | 1890 LIR_OpArrayCopy::dst_null_check | 1891 LIR_OpArrayCopy::src_pos_positive_check | 1892 LIR_OpArrayCopy::dst_pos_positive_check | 1893 LIR_OpArrayCopy::length_positive_check); 1894 1895 // Use only one conditional branch for simple checks. 1896 if (simple_check_flag_set) { 1897 ConditionRegister combined_check = CCR1, tmp_check = CCR1; 1898 1899 // Make sure src and dst are non-null. 1900 if (flags & LIR_OpArrayCopy::src_null_check) { 1901 __ cmpdi(combined_check, src, 0); 1902 tmp_check = CCR0; 1903 } 1904 1905 if (flags & LIR_OpArrayCopy::dst_null_check) { 1906 __ cmpdi(tmp_check, dst, 0); 1907 if (tmp_check != combined_check) { 1908 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal); 1909 } 1910 tmp_check = CCR0; 1911 } 1912 1913 // Clear combined_check.eq if not already used. 1914 if (tmp_check == combined_check) { 1915 __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal); 1916 tmp_check = CCR0; 1917 } 1918 1919 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 1920 // Test src_pos register. 1921 __ cmpwi(tmp_check, src_pos, 0); 1922 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1923 } 1924 1925 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 1926 // Test dst_pos register. 1927 __ cmpwi(tmp_check, dst_pos, 0); 1928 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1929 } 1930 1931 if (flags & LIR_OpArrayCopy::length_positive_check) { 1932 // Make sure length isn't negative. 1933 __ cmpwi(tmp_check, length, 0); 1934 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1935 } 1936 1937 __ beq(combined_check, slow); 1938 } 1939 1940 // If the compiler was not able to prove that exact type of the source or the destination 1941 // of the arraycopy is an array type, check at runtime if the source or the destination is 1942 // an instance type. 1943 if (flags & LIR_OpArrayCopy::type_check) { 1944 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 1945 __ load_klass(tmp, dst); 1946 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1947 __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); 1948 __ bge(CCR0, slow); 1949 } 1950 1951 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 1952 __ load_klass(tmp, src); 1953 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1954 __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); 1955 __ bge(CCR0, slow); 1956 } 1957 } 1958 1959 // Higher 32bits must be null. 1960 __ extsw(length, length); 1961 1962 __ extsw(src_pos, src_pos); 1963 if (flags & LIR_OpArrayCopy::src_range_check) { 1964 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src); 1965 __ add(tmp, length, src_pos); 1966 __ cmpld(CCR0, tmp2, tmp); 1967 __ ble(CCR0, slow); 1968 } 1969 1970 __ extsw(dst_pos, dst_pos); 1971 if (flags & LIR_OpArrayCopy::dst_range_check) { 1972 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst); 1973 __ add(tmp, length, dst_pos); 1974 __ cmpld(CCR0, tmp2, tmp); 1975 __ ble(CCR0, slow); 1976 } 1977 1978 int shift = shift_amount(basic_type); 1979 1980 if (!(flags & LIR_OpArrayCopy::type_check)) { 1981 __ b(cont); 1982 } else { 1983 // We don't know the array types are compatible. 1984 if (basic_type != T_OBJECT) { 1985 // Simple test for basic type arrays. 1986 if (UseCompressedClassPointers) { 1987 // We don't need decode because we just need to compare. 1988 __ lwz(tmp, oopDesc::klass_offset_in_bytes(), src); 1989 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); 1990 __ cmpw(CCR0, tmp, tmp2); 1991 } else { 1992 __ ld(tmp, oopDesc::klass_offset_in_bytes(), src); 1993 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); 1994 __ cmpd(CCR0, tmp, tmp2); 1995 } 1996 __ beq(CCR0, cont); 1997 } else { 1998 // For object arrays, if src is a sub class of dst then we can 1999 // safely do the copy. 2000 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2001 2002 const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf 2003 assert_different_registers(tmp, tmp2, sub_klass, super_klass); 2004 2005 __ load_klass(sub_klass, src); 2006 __ load_klass(super_klass, dst); 2007 2008 __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2, 2009 &cont, copyfunc_addr != NULL ? ©func : &slow, NULL); 2010 2011 address slow_stc = Runtime1::entry_for(Runtime1::slow_subtype_check_id); 2012 //__ load_const_optimized(tmp, slow_stc, tmp2); 2013 __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false); 2014 __ mtctr(tmp); 2015 __ bctrl(); // sets CR0 2016 __ beq(CCR0, cont); 2017 2018 if (copyfunc_addr != NULL) { // Use stub if available. 2019 __ bind(copyfunc); 2020 // Src is not a sub class of dst so we have to do a 2021 // per-element check. 2022 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2023 if ((flags & mask) != mask) { 2024 assert(flags & mask, "one of the two should be known to be an object array"); 2025 2026 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2027 __ load_klass(tmp, src); 2028 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2029 __ load_klass(tmp, dst); 2030 } 2031 2032 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 2033 2034 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2035 __ load_const_optimized(tmp, objArray_lh); 2036 __ cmpw(CCR0, tmp, tmp2); 2037 __ bne(CCR0, slow); 2038 } 2039 2040 Register src_ptr = R3_ARG1; 2041 Register dst_ptr = R4_ARG2; 2042 Register len = R5_ARG3; 2043 Register chk_off = R6_ARG4; 2044 Register super_k = R7_ARG5; 2045 2046 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2047 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2048 if (shift == 0) { 2049 __ add(src_ptr, src_pos, src_ptr); 2050 __ add(dst_ptr, dst_pos, dst_ptr); 2051 } else { 2052 __ sldi(tmp, src_pos, shift); 2053 __ sldi(tmp2, dst_pos, shift); 2054 __ add(src_ptr, tmp, src_ptr); 2055 __ add(dst_ptr, tmp2, dst_ptr); 2056 } 2057 2058 __ load_klass(tmp, dst); 2059 __ mr(len, length); 2060 2061 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 2062 __ ld(super_k, ek_offset, tmp); 2063 2064 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2065 __ lwz(chk_off, sco_offset, super_k); 2066 2067 __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0); 2068 2069 #ifndef PRODUCT 2070 if (PrintC1Statistics) { 2071 Label failed; 2072 __ cmpwi(CCR0, R3_RET, 0); 2073 __ bne(CCR0, failed); 2074 address counter = (address)&Runtime1::_arraycopy_checkcast_cnt; 2075 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2076 __ lwz(R11_scratch1, simm16_offs, tmp); 2077 __ addi(R11_scratch1, R11_scratch1, 1); 2078 __ stw(R11_scratch1, simm16_offs, tmp); 2079 __ bind(failed); 2080 } 2081 #endif 2082 2083 __ nand(tmp, R3_RET, R3_RET); 2084 __ cmpwi(CCR0, R3_RET, 0); 2085 __ beq(CCR0, *stub->continuation()); 2086 2087 #ifndef PRODUCT 2088 if (PrintC1Statistics) { 2089 address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt; 2090 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2091 __ lwz(R11_scratch1, simm16_offs, tmp); 2092 __ addi(R11_scratch1, R11_scratch1, 1); 2093 __ stw(R11_scratch1, simm16_offs, tmp); 2094 } 2095 #endif 2096 2097 __ subf(length, tmp, length); 2098 __ add(src_pos, tmp, src_pos); 2099 __ add(dst_pos, tmp, dst_pos); 2100 } 2101 } 2102 } 2103 __ bind(slow); 2104 __ b(*stub->entry()); 2105 __ bind(cont); 2106 2107 #ifdef ASSERT 2108 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2109 // Sanity check the known type with the incoming class. For the 2110 // primitive case the types must match exactly with src.klass and 2111 // dst.klass each exactly matching the default type. For the 2112 // object array case, if no type check is needed then either the 2113 // dst type is exactly the expected type and the src type is a 2114 // subtype which we can't check or src is the same array as dst 2115 // but not necessarily exactly of type default_type. 2116 Label known_ok, halt; 2117 metadata2reg(op->expected_type()->constant_encoding(), tmp); 2118 if (UseCompressedClassPointers) { 2119 // Tmp holds the default type. It currently comes uncompressed after the 2120 // load of a constant, so encode it. 2121 __ encode_klass_not_null(tmp); 2122 // Load the raw value of the dst klass, since we will be comparing 2123 // uncompressed values directly. 2124 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); 2125 __ cmpw(CCR0, tmp, tmp2); 2126 if (basic_type != T_OBJECT) { 2127 __ bne(CCR0, halt); 2128 // Load the raw value of the src klass. 2129 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src); 2130 __ cmpw(CCR0, tmp, tmp2); 2131 __ beq(CCR0, known_ok); 2132 } else { 2133 __ beq(CCR0, known_ok); 2134 __ cmpw(CCR0, src, dst); 2135 __ beq(CCR0, known_ok); 2136 } 2137 } else { 2138 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); 2139 __ cmpd(CCR0, tmp, tmp2); 2140 if (basic_type != T_OBJECT) { 2141 __ bne(CCR0, halt); 2142 // Load the raw value of the src klass. 2143 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), src); 2144 __ cmpd(CCR0, tmp, tmp2); 2145 __ beq(CCR0, known_ok); 2146 } else { 2147 __ beq(CCR0, known_ok); 2148 __ cmpd(CCR0, src, dst); 2149 __ beq(CCR0, known_ok); 2150 } 2151 } 2152 __ bind(halt); 2153 __ stop("incorrect type information in arraycopy"); 2154 __ bind(known_ok); 2155 } 2156 #endif 2157 2158 #ifndef PRODUCT 2159 if (PrintC1Statistics) { 2160 address counter = Runtime1::arraycopy_count_address(basic_type); 2161 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2162 __ lwz(R11_scratch1, simm16_offs, tmp); 2163 __ addi(R11_scratch1, R11_scratch1, 1); 2164 __ stw(R11_scratch1, simm16_offs, tmp); 2165 } 2166 #endif 2167 2168 Register src_ptr = R3_ARG1; 2169 Register dst_ptr = R4_ARG2; 2170 Register len = R5_ARG3; 2171 2172 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2173 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2174 if (shift == 0) { 2175 __ add(src_ptr, src_pos, src_ptr); 2176 __ add(dst_ptr, dst_pos, dst_ptr); 2177 } else { 2178 __ sldi(tmp, src_pos, shift); 2179 __ sldi(tmp2, dst_pos, shift); 2180 __ add(src_ptr, tmp, src_ptr); 2181 __ add(dst_ptr, tmp2, dst_ptr); 2182 } 2183 2184 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2185 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2186 const char *name; 2187 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2188 2189 // Arraycopy stubs takes a length in number of elements, so don't scale it. 2190 __ mr(len, length); 2191 __ call_c_with_frame_resize(entry, /*stub does not need resized frame*/ 0); 2192 2193 __ bind(*stub->continuation()); 2194 } 2195 2196 2197 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2198 if (dest->is_single_cpu()) { 2199 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5); 2200 #ifdef _LP64 2201 if (left->type() == T_OBJECT) { 2202 switch (code) { 2203 case lir_shl: __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break; 2204 case lir_shr: __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break; 2205 case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break; 2206 default: ShouldNotReachHere(); 2207 } 2208 } else 2209 #endif 2210 switch (code) { 2211 case lir_shl: __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2212 case lir_shr: __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2213 case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2214 default: ShouldNotReachHere(); 2215 } 2216 } else { 2217 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6); 2218 switch (code) { 2219 case lir_shl: __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2220 case lir_shr: __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2221 case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2222 default: ShouldNotReachHere(); 2223 } 2224 } 2225 } 2226 2227 2228 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2229 #ifdef _LP64 2230 if (left->type() == T_OBJECT) { 2231 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). 2232 if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); } 2233 else { 2234 switch (code) { 2235 case lir_shl: __ sldi(dest->as_register_lo(), left->as_register(), count); break; 2236 case lir_shr: __ sradi(dest->as_register_lo(), left->as_register(), count); break; 2237 case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break; 2238 default: ShouldNotReachHere(); 2239 } 2240 } 2241 return; 2242 } 2243 #endif 2244 2245 if (dest->is_single_cpu()) { 2246 count = count & 0x1F; // Java spec 2247 if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); } 2248 else { 2249 switch (code) { 2250 case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break; 2251 case lir_shr: __ srawi(dest->as_register(), left->as_register(), count); break; 2252 case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break; 2253 default: ShouldNotReachHere(); 2254 } 2255 } 2256 } else if (dest->is_double_cpu()) { 2257 count = count & 63; // Java spec 2258 if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); } 2259 else { 2260 switch (code) { 2261 case lir_shl: __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2262 case lir_shr: __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2263 case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2264 default: ShouldNotReachHere(); 2265 } 2266 } 2267 } else { 2268 ShouldNotReachHere(); 2269 } 2270 } 2271 2272 2273 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 2274 if (op->init_check()) { 2275 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2276 explicit_null_check(op->klass()->as_register(), op->stub()->info()); 2277 } else { 2278 add_debug_info_for_null_check_here(op->stub()->info()); 2279 } 2280 __ lbz(op->tmp1()->as_register(), 2281 in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register()); 2282 __ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized); 2283 __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry()); 2284 } 2285 __ allocate_object(op->obj()->as_register(), 2286 op->tmp1()->as_register(), 2287 op->tmp2()->as_register(), 2288 op->tmp3()->as_register(), 2289 op->header_size(), 2290 op->object_size(), 2291 op->klass()->as_register(), 2292 *op->stub()->entry()); 2293 2294 __ bind(*op->stub()->continuation()); 2295 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE); 2296 } 2297 2298 2299 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 2300 LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); ) 2301 if (UseSlowPath || 2302 (!UseFastNewObjectArray && (is_reference_type(op->type()))) || 2303 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) { 2304 __ b(*op->stub()->entry()); 2305 } else { 2306 __ allocate_array(op->obj()->as_register(), 2307 op->len()->as_register(), 2308 op->tmp1()->as_register(), 2309 op->tmp2()->as_register(), 2310 op->tmp3()->as_register(), 2311 arrayOopDesc::header_size(op->type()), 2312 type2aelembytes(op->type()), 2313 op->klass()->as_register(), 2314 *op->stub()->entry()); 2315 } 2316 __ bind(*op->stub()->continuation()); 2317 } 2318 2319 2320 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias, 2321 ciMethodData *md, ciProfileData *data, 2322 Register recv, Register tmp1, Label* update_done) { 2323 uint i; 2324 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2325 Label next_test; 2326 // See if the receiver is receiver[n]. 2327 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2328 __ verify_klass_ptr(tmp1); 2329 __ cmpd(CCR0, recv, tmp1); 2330 __ bne(CCR0, next_test); 2331 2332 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2333 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2334 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2335 __ b(*update_done); 2336 2337 __ bind(next_test); 2338 } 2339 2340 // Didn't find receiver; find next empty slot and fill it in. 2341 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2342 Label next_test; 2343 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2344 __ cmpdi(CCR0, tmp1, 0); 2345 __ bne(CCR0, next_test); 2346 __ li(tmp1, DataLayout::counter_increment); 2347 __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2348 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2349 __ b(*update_done); 2350 2351 __ bind(next_test); 2352 } 2353 } 2354 2355 2356 void LIR_Assembler::setup_md_access(ciMethod* method, int bci, 2357 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { 2358 md = method->method_data_or_null(); 2359 assert(md != NULL, "Sanity"); 2360 data = md->bci_to_data(bci); 2361 assert(data != NULL, "need data for checkcast"); 2362 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2363 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) { 2364 // The offset is large so bias the mdo by the base of the slot so 2365 // that the ld can use simm16s to reference the slots of the data. 2366 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset()); 2367 } 2368 } 2369 2370 2371 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 2372 const Register obj = op->object()->as_register(); // Needs to live in this register at safepoint (patching stub). 2373 Register k_RInfo = op->tmp1()->as_register(); 2374 Register klass_RInfo = op->tmp2()->as_register(); 2375 Register Rtmp1 = op->tmp3()->as_register(); 2376 Register dst = op->result_opr()->as_register(); 2377 ciKlass* k = op->klass(); 2378 bool should_profile = op->should_profile(); 2379 // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps. 2380 bool reg_conflict = false; 2381 if (obj == k_RInfo) { 2382 k_RInfo = dst; 2383 reg_conflict = true; 2384 } else if (obj == klass_RInfo) { 2385 klass_RInfo = dst; 2386 reg_conflict = true; 2387 } else if (obj == Rtmp1) { 2388 Rtmp1 = dst; 2389 reg_conflict = true; 2390 } 2391 assert_different_registers(obj, k_RInfo, klass_RInfo, Rtmp1); 2392 2393 __ cmpdi(CCR0, obj, 0); 2394 2395 ciMethodData* md = NULL; 2396 ciProfileData* data = NULL; 2397 int mdo_offset_bias = 0; 2398 if (should_profile) { 2399 ciMethod* method = op->profiled_method(); 2400 assert(method != NULL, "Should have method"); 2401 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2402 2403 Register mdo = k_RInfo; 2404 Register data_val = Rtmp1; 2405 Label not_null; 2406 __ bne(CCR0, not_null); 2407 metadata2reg(md->constant_encoding(), mdo); 2408 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2409 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2410 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2411 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2412 __ b(*obj_is_null); 2413 __ bind(not_null); 2414 } else { 2415 __ beq(CCR0, *obj_is_null); 2416 } 2417 2418 // get object class 2419 __ load_klass(klass_RInfo, obj); 2420 2421 if (k->is_loaded()) { 2422 metadata2reg(k->constant_encoding(), k_RInfo); 2423 } else { 2424 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 2425 } 2426 2427 Label profile_cast_failure, failure_restore_obj, profile_cast_success; 2428 Label *failure_target = should_profile ? &profile_cast_failure : failure; 2429 Label *success_target = should_profile ? &profile_cast_success : success; 2430 2431 if (op->fast_check()) { 2432 assert_different_registers(klass_RInfo, k_RInfo); 2433 __ cmpd(CCR0, k_RInfo, klass_RInfo); 2434 if (should_profile) { 2435 __ bne(CCR0, *failure_target); 2436 // Fall through to success case. 2437 } else { 2438 __ beq(CCR0, *success); 2439 // Fall through to failure case. 2440 } 2441 } else { 2442 bool need_slow_path = true; 2443 if (k->is_loaded()) { 2444 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) { 2445 need_slow_path = false; 2446 } 2447 // Perform the fast part of the checking logic. 2448 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success_target : NULL), 2449 failure_target, NULL, RegisterOrConstant(k->super_check_offset())); 2450 } else { 2451 // Perform the fast part of the checking logic. 2452 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, failure_target); 2453 } 2454 if (!need_slow_path) { 2455 if (!should_profile) { __ b(*success); } 2456 } else { 2457 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2458 address entry = Runtime1::entry_for(Runtime1::slow_subtype_check_id); 2459 // Stub needs fixed registers (tmp1-3). 2460 Register original_k_RInfo = op->tmp1()->as_register(); 2461 Register original_klass_RInfo = op->tmp2()->as_register(); 2462 Register original_Rtmp1 = op->tmp3()->as_register(); 2463 bool keep_obj_alive = reg_conflict && (op->code() == lir_checkcast); 2464 bool keep_klass_RInfo_alive = (obj == original_klass_RInfo) && should_profile; 2465 if (keep_obj_alive && (obj != original_Rtmp1)) { __ mr(R0, obj); } 2466 __ mr_if_needed(original_k_RInfo, k_RInfo); 2467 __ mr_if_needed(original_klass_RInfo, klass_RInfo); 2468 if (keep_obj_alive) { __ mr(dst, (obj == original_Rtmp1) ? obj : R0); } 2469 //__ load_const_optimized(original_Rtmp1, entry, R0); 2470 __ calculate_address_from_global_toc(original_Rtmp1, entry, true, true, false); 2471 __ mtctr(original_Rtmp1); 2472 __ bctrl(); // sets CR0 2473 if (keep_obj_alive) { 2474 if (keep_klass_RInfo_alive) { __ mr(R0, obj); } 2475 __ mr(obj, dst); 2476 } 2477 if (should_profile) { 2478 __ bne(CCR0, *failure_target); 2479 if (keep_klass_RInfo_alive) { __ mr(klass_RInfo, keep_obj_alive ? R0 : obj); } 2480 // Fall through to success case. 2481 } else { 2482 __ beq(CCR0, *success); 2483 // Fall through to failure case. 2484 } 2485 } 2486 } 2487 2488 if (should_profile) { 2489 Register mdo = k_RInfo, recv = klass_RInfo; 2490 assert_different_registers(mdo, recv, Rtmp1); 2491 __ bind(profile_cast_success); 2492 metadata2reg(md->constant_encoding(), mdo); 2493 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2494 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, success); 2495 __ b(*success); 2496 2497 // Cast failure case. 2498 __ bind(profile_cast_failure); 2499 metadata2reg(md->constant_encoding(), mdo); 2500 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2501 __ ld(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2502 __ addi(Rtmp1, Rtmp1, -DataLayout::counter_increment); 2503 __ std(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2504 } 2505 2506 __ bind(*failure); 2507 } 2508 2509 2510 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 2511 LIR_Code code = op->code(); 2512 if (code == lir_store_check) { 2513 Register value = op->object()->as_register(); 2514 Register array = op->array()->as_register(); 2515 Register k_RInfo = op->tmp1()->as_register(); 2516 Register klass_RInfo = op->tmp2()->as_register(); 2517 Register Rtmp1 = op->tmp3()->as_register(); 2518 bool should_profile = op->should_profile(); 2519 2520 __ verify_oop(value, FILE_AND_LINE); 2521 CodeStub* stub = op->stub(); 2522 // Check if it needs to be profiled. 2523 ciMethodData* md = NULL; 2524 ciProfileData* data = NULL; 2525 int mdo_offset_bias = 0; 2526 if (should_profile) { 2527 ciMethod* method = op->profiled_method(); 2528 assert(method != NULL, "Should have method"); 2529 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2530 } 2531 Label profile_cast_success, failure, done; 2532 Label *success_target = should_profile ? &profile_cast_success : &done; 2533 2534 __ cmpdi(CCR0, value, 0); 2535 if (should_profile) { 2536 Label not_null; 2537 __ bne(CCR0, not_null); 2538 Register mdo = k_RInfo; 2539 Register data_val = Rtmp1; 2540 metadata2reg(md->constant_encoding(), mdo); 2541 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2542 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2543 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2544 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2545 __ b(done); 2546 __ bind(not_null); 2547 } else { 2548 __ beq(CCR0, done); 2549 } 2550 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2551 explicit_null_check(array, op->info_for_exception()); 2552 } else { 2553 add_debug_info_for_null_check_here(op->info_for_exception()); 2554 } 2555 __ load_klass(k_RInfo, array); 2556 __ load_klass(klass_RInfo, value); 2557 2558 // Get instance klass. 2559 __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo); 2560 // Perform the fast part of the checking logic. 2561 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, &failure, NULL); 2562 2563 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2564 const address slow_path = Runtime1::entry_for(Runtime1::slow_subtype_check_id); 2565 //__ load_const_optimized(R0, slow_path); 2566 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path)); 2567 __ mtctr(R0); 2568 __ bctrl(); // sets CR0 2569 if (!should_profile) { 2570 __ beq(CCR0, done); 2571 __ bind(failure); 2572 } else { 2573 __ bne(CCR0, failure); 2574 // Fall through to the success case. 2575 2576 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1; 2577 assert_different_registers(value, mdo, recv, tmp1); 2578 __ bind(profile_cast_success); 2579 metadata2reg(md->constant_encoding(), mdo); 2580 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2581 __ load_klass(recv, value); 2582 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done); 2583 __ b(done); 2584 2585 // Cast failure case. 2586 __ bind(failure); 2587 metadata2reg(md->constant_encoding(), mdo); 2588 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2589 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); 2590 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2591 __ addi(tmp1, tmp1, -DataLayout::counter_increment); 2592 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2593 } 2594 __ b(*stub->entry()); 2595 __ bind(done); 2596 2597 } else if (code == lir_checkcast) { 2598 Label success, failure; 2599 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success); 2600 __ b(*op->stub()->entry()); 2601 __ align(32, 12); 2602 __ bind(success); 2603 __ mr_if_needed(op->result_opr()->as_register(), op->object()->as_register()); 2604 } else if (code == lir_instanceof) { 2605 Register dst = op->result_opr()->as_register(); 2606 Label success, failure, done; 2607 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure); 2608 __ li(dst, 0); 2609 __ b(done); 2610 __ align(32, 12); 2611 __ bind(success); 2612 __ li(dst, 1); 2613 __ bind(done); 2614 } else { 2615 ShouldNotReachHere(); 2616 } 2617 } 2618 2619 2620 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 2621 Register addr = op->addr()->as_pointer_register(); 2622 Register cmp_value = noreg, new_value = noreg; 2623 bool is_64bit = false; 2624 2625 if (op->code() == lir_cas_long) { 2626 cmp_value = op->cmp_value()->as_register_lo(); 2627 new_value = op->new_value()->as_register_lo(); 2628 is_64bit = true; 2629 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 2630 cmp_value = op->cmp_value()->as_register(); 2631 new_value = op->new_value()->as_register(); 2632 if (op->code() == lir_cas_obj) { 2633 if (UseCompressedOops) { 2634 Register t1 = op->tmp1()->as_register(); 2635 Register t2 = op->tmp2()->as_register(); 2636 cmp_value = __ encode_heap_oop(t1, cmp_value); 2637 new_value = __ encode_heap_oop(t2, new_value); 2638 } else { 2639 is_64bit = true; 2640 } 2641 } 2642 } else { 2643 Unimplemented(); 2644 } 2645 2646 if (is_64bit) { 2647 __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2648 MacroAssembler::MemBarNone, 2649 MacroAssembler::cmpxchgx_hint_atomic_update(), 2650 noreg, NULL, /*check without ldarx first*/true); 2651 } else { 2652 __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2653 MacroAssembler::MemBarNone, 2654 MacroAssembler::cmpxchgx_hint_atomic_update(), 2655 noreg, /*check without ldarx first*/true); 2656 } 2657 2658 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2659 __ isync(); 2660 } else { 2661 __ sync(); 2662 } 2663 } 2664 2665 void LIR_Assembler::breakpoint() { 2666 __ illtrap(); 2667 } 2668 2669 2670 void LIR_Assembler::push(LIR_Opr opr) { 2671 Unimplemented(); 2672 } 2673 2674 void LIR_Assembler::pop(LIR_Opr opr) { 2675 Unimplemented(); 2676 } 2677 2678 2679 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { 2680 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); 2681 Register dst = dst_opr->as_register(); 2682 Register reg = mon_addr.base(); 2683 int offset = mon_addr.disp(); 2684 // Compute pointer to BasicLock. 2685 __ add_const_optimized(dst, reg, offset); 2686 } 2687 2688 2689 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2690 Register obj = op->obj_opr()->as_register(); 2691 Register hdr = op->hdr_opr()->as_register(); 2692 Register lock = op->lock_opr()->as_register(); 2693 2694 // Obj may not be an oop. 2695 if (op->code() == lir_lock) { 2696 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub(); 2697 if (!UseHeavyMonitors) { 2698 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2699 // Add debug info for NullPointerException only if one is possible. 2700 if (op->info() != NULL) { 2701 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2702 explicit_null_check(obj, op->info()); 2703 } else { 2704 add_debug_info_for_null_check_here(op->info()); 2705 } 2706 } 2707 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry()); 2708 } else { 2709 // always do slow locking 2710 // note: The slow locking code could be inlined here, however if we use 2711 // slow locking, speed doesn't matter anyway and this solution is 2712 // simpler and requires less duplicated code - additionally, the 2713 // slow locking code is the same in either case which simplifies 2714 // debugging. 2715 if (op->info() != NULL) { 2716 add_debug_info_for_null_check_here(op->info()); 2717 __ null_check(obj); 2718 } 2719 __ b(*op->stub()->entry()); 2720 } 2721 } else { 2722 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock"); 2723 if (!UseHeavyMonitors) { 2724 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2725 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2726 } else { 2727 // always do slow unlocking 2728 // note: The slow unlocking code could be inlined here, however if we use 2729 // slow unlocking, speed doesn't matter anyway and this solution is 2730 // simpler and requires less duplicated code - additionally, the 2731 // slow unlocking code is the same in either case which simplifies 2732 // debugging. 2733 __ b(*op->stub()->entry()); 2734 } 2735 } 2736 __ bind(*op->stub()->continuation()); 2737 } 2738 2739 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2740 Register obj = op->obj()->as_pointer_register(); 2741 Register result = op->result_opr()->as_pointer_register(); 2742 2743 CodeEmitInfo* info = op->info(); 2744 if (info != NULL) { 2745 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2746 explicit_null_check(obj, info); 2747 } else { 2748 add_debug_info_for_null_check_here(info); 2749 } 2750 } 2751 2752 if (UseCompressedClassPointers) { 2753 __ lwz(result, oopDesc::klass_offset_in_bytes(), obj); 2754 __ decode_klass_not_null(result); 2755 } else { 2756 __ ld(result, oopDesc::klass_offset_in_bytes(), obj); 2757 } 2758 } 2759 2760 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2761 ciMethod* method = op->profiled_method(); 2762 int bci = op->profiled_bci(); 2763 ciMethod* callee = op->profiled_callee(); 2764 2765 // Update counter for all call types. 2766 ciMethodData* md = method->method_data_or_null(); 2767 assert(md != NULL, "Sanity"); 2768 ciProfileData* data = md->bci_to_data(bci); 2769 assert(data != NULL && data->is_CounterData(), "need CounterData for calls"); 2770 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2771 Register mdo = op->mdo()->as_register(); 2772 #ifdef _LP64 2773 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); 2774 Register tmp1 = op->tmp1()->as_register_lo(); 2775 #else 2776 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated"); 2777 Register tmp1 = op->tmp1()->as_register(); 2778 #endif 2779 metadata2reg(md->constant_encoding(), mdo); 2780 int mdo_offset_bias = 0; 2781 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) + 2782 data->size_in_bytes())) { 2783 // The offset is large so bias the mdo by the base of the slot so 2784 // that the ld can use simm16s to reference the slots of the data. 2785 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset()); 2786 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2787 } 2788 2789 // Perform additional virtual call profiling for invokevirtual and 2790 // invokeinterface bytecodes 2791 if (op->should_profile_receiver_type()) { 2792 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2793 Register recv = op->recv()->as_register(); 2794 assert_different_registers(mdo, tmp1, recv); 2795 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2796 ciKlass* known_klass = op->known_holder(); 2797 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { 2798 // We know the type that will be seen at this call site; we can 2799 // statically update the MethodData* rather than needing to do 2800 // dynamic tests on the receiver type. 2801 2802 // NOTE: we should probably put a lock around this search to 2803 // avoid collisions by concurrent compilations. 2804 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2805 uint i; 2806 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2807 ciKlass* receiver = vc_data->receiver(i); 2808 if (known_klass->equals(receiver)) { 2809 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2810 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2811 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2812 return; 2813 } 2814 } 2815 2816 // Receiver type not found in profile data; select an empty slot. 2817 2818 // Note that this is less efficient than it should be because it 2819 // always does a write to the receiver part of the 2820 // VirtualCallData rather than just the first time. 2821 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2822 ciKlass* receiver = vc_data->receiver(i); 2823 if (receiver == NULL) { 2824 metadata2reg(known_klass->constant_encoding(), tmp1); 2825 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo); 2826 2827 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2828 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2829 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2830 return; 2831 } 2832 } 2833 } else { 2834 __ load_klass(recv, recv); 2835 Label update_done; 2836 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done); 2837 // Receiver did not match any saved receiver and there is no empty row for it. 2838 // Increment total counter to indicate polymorphic case. 2839 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2840 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2841 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2842 2843 __ bind(update_done); 2844 } 2845 } else { 2846 // Static call 2847 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2848 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2849 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2850 } 2851 } 2852 2853 2854 void LIR_Assembler::align_backward_branch_target() { 2855 __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary. 2856 } 2857 2858 2859 void LIR_Assembler::emit_delay(LIR_OpDelay* op) { 2860 Unimplemented(); 2861 } 2862 2863 2864 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2865 // tmp must be unused 2866 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2867 assert(left->is_register(), "can only handle registers"); 2868 2869 if (left->is_single_cpu()) { 2870 __ neg(dest->as_register(), left->as_register()); 2871 } else if (left->is_single_fpu()) { 2872 __ fneg(dest->as_float_reg(), left->as_float_reg()); 2873 } else if (left->is_double_fpu()) { 2874 __ fneg(dest->as_double_reg(), left->as_double_reg()); 2875 } else { 2876 assert (left->is_double_cpu(), "Must be a long"); 2877 __ neg(dest->as_register_lo(), left->as_register_lo()); 2878 } 2879 } 2880 2881 2882 void LIR_Assembler::rt_call(LIR_Opr result, address dest, 2883 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2884 // Stubs: Called via rt_call, but dest is a stub address (no function descriptor). 2885 if (dest == Runtime1::entry_for(Runtime1::register_finalizer_id) || 2886 dest == Runtime1::entry_for(Runtime1::new_multi_array_id )) { 2887 //__ load_const_optimized(R0, dest); 2888 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest)); 2889 __ mtctr(R0); 2890 __ bctrl(); 2891 assert(info != NULL, "sanity"); 2892 add_call_info_here(info); 2893 __ post_call_nop(); 2894 return; 2895 } 2896 2897 __ call_c_with_frame_resize(dest, /*no resizing*/ 0); 2898 if (info != NULL) { 2899 add_call_info_here(info); 2900 } 2901 __ post_call_nop(); 2902 } 2903 2904 2905 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2906 ShouldNotReachHere(); // Not needed on _LP64. 2907 } 2908 2909 void LIR_Assembler::membar() { 2910 __ fence(); 2911 } 2912 2913 void LIR_Assembler::membar_acquire() { 2914 __ acquire(); 2915 } 2916 2917 void LIR_Assembler::membar_release() { 2918 __ release(); 2919 } 2920 2921 void LIR_Assembler::membar_loadload() { 2922 __ membar(Assembler::LoadLoad); 2923 } 2924 2925 void LIR_Assembler::membar_storestore() { 2926 __ membar(Assembler::StoreStore); 2927 } 2928 2929 void LIR_Assembler::membar_loadstore() { 2930 __ membar(Assembler::LoadStore); 2931 } 2932 2933 void LIR_Assembler::membar_storeload() { 2934 __ membar(Assembler::StoreLoad); 2935 } 2936 2937 void LIR_Assembler::on_spin_wait() { 2938 Unimplemented(); 2939 } 2940 2941 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2942 LIR_Address* addr = addr_opr->as_address_ptr(); 2943 assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform"); 2944 2945 if (addr->index()->is_illegal()) { 2946 if (patch_code != lir_patch_none) { 2947 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::access_field_id); 2948 __ load_const32(R0, 0); // patchable int 2949 __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), R0); 2950 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 2951 } else { 2952 __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp()); 2953 } 2954 } else { 2955 assert(patch_code == lir_patch_none, "Patch code not supported"); 2956 assert(addr->disp() == 0, "can't have both: index and disp"); 2957 __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register()); 2958 } 2959 } 2960 2961 2962 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2963 ShouldNotReachHere(); 2964 } 2965 2966 2967 #ifdef ASSERT 2968 // Emit run-time assertion. 2969 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2970 Unimplemented(); 2971 } 2972 #endif 2973 2974 2975 void LIR_Assembler::peephole(LIR_List* lir) { 2976 // Optimize instruction pairs before emitting. 2977 LIR_OpList* inst = lir->instructions_list(); 2978 for (int i = 1; i < inst->length(); i++) { 2979 LIR_Op* op = inst->at(i); 2980 2981 // 2 register-register-moves 2982 if (op->code() == lir_move) { 2983 LIR_Opr in2 = ((LIR_Op1*)op)->in_opr(), 2984 res2 = ((LIR_Op1*)op)->result_opr(); 2985 if (in2->is_register() && res2->is_register()) { 2986 LIR_Op* prev = inst->at(i - 1); 2987 if (prev && prev->code() == lir_move) { 2988 LIR_Opr in1 = ((LIR_Op1*)prev)->in_opr(), 2989 res1 = ((LIR_Op1*)prev)->result_opr(); 2990 if (in1->is_same_register(res2) && in2->is_same_register(res1)) { 2991 inst->remove_at(i); 2992 } 2993 } 2994 } 2995 } 2996 2997 } 2998 return; 2999 } 3000 3001 3002 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 3003 const LIR_Address *addr = src->as_address_ptr(); 3004 assert(addr->disp() == 0 && addr->index()->is_illegal(), "use leal!"); 3005 const Register Rptr = addr->base()->as_pointer_register(), 3006 Rtmp = tmp->as_register(); 3007 Register Rco = noreg; 3008 if (UseCompressedOops && data->is_oop()) { 3009 Rco = __ encode_heap_oop(Rtmp, data->as_register()); 3010 } 3011 3012 Label Lretry; 3013 __ bind(Lretry); 3014 3015 if (data->type() == T_INT) { 3016 const Register Rold = dest->as_register(), 3017 Rsrc = data->as_register(); 3018 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 3019 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3020 if (code == lir_xadd) { 3021 __ add(Rtmp, Rsrc, Rold); 3022 __ stwcx_(Rtmp, Rptr); 3023 } else { 3024 __ stwcx_(Rsrc, Rptr); 3025 } 3026 } else if (data->is_oop()) { 3027 assert(code == lir_xchg, "xadd for oops"); 3028 const Register Rold = dest->as_register(); 3029 if (UseCompressedOops) { 3030 assert_different_registers(Rptr, Rold, Rco); 3031 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3032 __ stwcx_(Rco, Rptr); 3033 } else { 3034 Register Robj = data->as_register(); 3035 assert_different_registers(Rptr, Rold, Rtmp); 3036 assert_different_registers(Rptr, Robj, Rtmp); 3037 if (Robj == Rold) { // May happen with ZGC. 3038 __ mr(Rtmp, Robj); 3039 Robj = Rtmp; 3040 } 3041 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3042 __ stdcx_(Robj, Rptr); 3043 } 3044 } else if (data->type() == T_LONG) { 3045 const Register Rold = dest->as_register_lo(), 3046 Rsrc = data->as_register_lo(); 3047 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 3048 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3049 if (code == lir_xadd) { 3050 __ add(Rtmp, Rsrc, Rold); 3051 __ stdcx_(Rtmp, Rptr); 3052 } else { 3053 __ stdcx_(Rsrc, Rptr); 3054 } 3055 } else { 3056 ShouldNotReachHere(); 3057 } 3058 3059 if (UseStaticBranchPredictionInCompareAndSwapPPC64) { 3060 __ bne_predict_not_taken(CCR0, Lretry); 3061 } else { 3062 __ bne( CCR0, Lretry); 3063 } 3064 3065 if (UseCompressedOops && data->is_oop()) { 3066 __ decode_heap_oop(dest->as_register()); 3067 } 3068 } 3069 3070 3071 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3072 Register obj = op->obj()->as_register(); 3073 Register tmp = op->tmp()->as_pointer_register(); 3074 LIR_Address* mdo_addr = op->mdp()->as_address_ptr(); 3075 ciKlass* exact_klass = op->exact_klass(); 3076 intptr_t current_klass = op->current_klass(); 3077 bool not_null = op->not_null(); 3078 bool no_conflict = op->no_conflict(); 3079 3080 Label Lupdate, Ldo_update, Ldone; 3081 3082 bool do_null = !not_null; 3083 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3084 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3085 3086 assert(do_null || do_update, "why are we here?"); 3087 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3088 3089 __ verify_oop(obj, FILE_AND_LINE); 3090 3091 if (do_null) { 3092 if (!TypeEntries::was_null_seen(current_klass)) { 3093 __ cmpdi(CCR0, obj, 0); 3094 __ bne(CCR0, Lupdate); 3095 __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3096 __ ori(R0, R0, TypeEntries::null_seen); 3097 if (do_update) { 3098 __ b(Ldo_update); 3099 } else { 3100 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3101 } 3102 } else { 3103 if (do_update) { 3104 __ cmpdi(CCR0, obj, 0); 3105 __ beq(CCR0, Ldone); 3106 } 3107 } 3108 #ifdef ASSERT 3109 } else { 3110 __ cmpdi(CCR0, obj, 0); 3111 __ bne(CCR0, Lupdate); 3112 __ stop("unexpected null obj"); 3113 #endif 3114 } 3115 3116 __ bind(Lupdate); 3117 if (do_update) { 3118 Label Lnext; 3119 const Register klass = R29_TOC; // kill and reload 3120 bool klass_reg_used = false; 3121 #ifdef ASSERT 3122 if (exact_klass != NULL) { 3123 Label ok; 3124 klass_reg_used = true; 3125 __ load_klass(klass, obj); 3126 metadata2reg(exact_klass->constant_encoding(), R0); 3127 __ cmpd(CCR0, klass, R0); 3128 __ beq(CCR0, ok); 3129 __ stop("exact klass and actual klass differ"); 3130 __ bind(ok); 3131 } 3132 #endif 3133 3134 if (!no_conflict) { 3135 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { 3136 klass_reg_used = true; 3137 if (exact_klass != NULL) { 3138 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3139 metadata2reg(exact_klass->constant_encoding(), klass); 3140 } else { 3141 __ load_klass(klass, obj); 3142 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj 3143 } 3144 3145 // Like InterpreterMacroAssembler::profile_obj_type 3146 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3147 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3148 __ cmpd(CCR1, R0, klass); 3149 // Klass seen before, nothing to do (regardless of unknown bit). 3150 //beq(CCR1, do_nothing); 3151 3152 __ andi_(R0, klass, TypeEntries::type_unknown); 3153 // Already unknown. Nothing to do anymore. 3154 //bne(CCR0, do_nothing); 3155 __ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 3156 __ beq(CCR0, Lnext); 3157 3158 if (TypeEntries::is_type_none(current_klass)) { 3159 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3160 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3161 __ beq(CCR0, Ldo_update); // First time here. Set profile type. 3162 } 3163 3164 } else { 3165 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 3166 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3167 3168 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3169 __ andi_(R0, tmp, TypeEntries::type_unknown); 3170 // Already unknown. Nothing to do anymore. 3171 __ bne(CCR0, Lnext); 3172 } 3173 3174 // Different than before. Cannot keep accurate profile. 3175 __ ori(R0, tmp, TypeEntries::type_unknown); 3176 } else { 3177 // There's a single possible klass at this profile point 3178 assert(exact_klass != NULL, "should be"); 3179 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3180 3181 if (TypeEntries::is_type_none(current_klass)) { 3182 klass_reg_used = true; 3183 metadata2reg(exact_klass->constant_encoding(), klass); 3184 3185 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3186 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3187 __ cmpd(CCR1, R0, klass); 3188 // Klass seen before, nothing to do (regardless of unknown bit). 3189 __ beq(CCR1, Lnext); 3190 #ifdef ASSERT 3191 { 3192 Label ok; 3193 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3194 __ beq(CCR0, ok); // First time here. 3195 3196 __ stop("unexpected profiling mismatch"); 3197 __ bind(ok); 3198 } 3199 #endif 3200 // First time here. Set profile type. 3201 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3202 } else { 3203 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 3204 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3205 3206 // Already unknown. Nothing to do anymore. 3207 __ andi_(R0, tmp, TypeEntries::type_unknown); 3208 __ bne(CCR0, Lnext); 3209 3210 // Different than before. Cannot keep accurate profile. 3211 __ ori(R0, tmp, TypeEntries::type_unknown); 3212 } 3213 } 3214 3215 __ bind(Ldo_update); 3216 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3217 3218 __ bind(Lnext); 3219 if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit 3220 } 3221 __ bind(Ldone); 3222 } 3223 3224 3225 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3226 assert(op->crc()->is_single_cpu(), "crc must be register"); 3227 assert(op->val()->is_single_cpu(), "byte value must be register"); 3228 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3229 Register crc = op->crc()->as_register(); 3230 Register val = op->val()->as_register(); 3231 Register res = op->result_opr()->as_register(); 3232 3233 assert_different_registers(val, crc, res); 3234 3235 __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0); 3236 __ kernel_crc32_singleByteReg(crc, val, res, true); 3237 __ mr(res, crc); 3238 } 3239 3240 #undef __