1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_ppc.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "oops/methodCounters.hpp" 34 #include "oops/methodData.hpp" 35 #include "oops/resolvedFieldEntry.hpp" 36 #include "oops/resolvedIndyEntry.hpp" 37 #include "oops/resolvedMethodEntry.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "prims/jvmtiThreadState.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/safepointMechanism.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/vm_version.hpp" 44 #include "utilities/macros.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 // Implementation of InterpreterMacroAssembler. 48 49 // This file specializes the assembler with interpreter-specific macros. 50 51 #ifdef PRODUCT 52 #define BLOCK_COMMENT(str) // nothing 53 #else 54 #define BLOCK_COMMENT(str) block_comment(str) 55 #endif 56 57 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) { 58 address exception_entry = Interpreter::throw_NullPointerException_entry(); 59 MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry); 60 } 61 62 void InterpreterMacroAssembler::load_klass_check_null_throw(Register dst, Register src, Register temp_reg) { 63 null_check_throw(src, oopDesc::klass_offset_in_bytes(), temp_reg); 64 load_klass(dst, src); 65 } 66 67 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 68 assert(entry, "Entry must have been generated by now"); 69 if (is_within_range_of_b(entry, pc())) { 70 b(entry); 71 } else { 72 load_const_optimized(Rscratch, entry, R0); 73 mtctr(Rscratch); 74 bctr(); 75 } 76 } 77 78 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 79 Register bytecode = R12_scratch2; 80 if (bcp_incr != 0) { 81 lbzu(bytecode, bcp_incr, R14_bcp); 82 } else { 83 lbz(bytecode, 0, R14_bcp); 84 } 85 86 dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state), generate_poll); 87 } 88 89 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 90 // Load current bytecode. 91 Register bytecode = R12_scratch2; 92 lbz(bytecode, 0, R14_bcp); 93 dispatch_Lbyte_code(state, bytecode, table); 94 } 95 96 // Dispatch code executed in the prolog of a bytecode which does not do it's 97 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr. 98 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 99 Register bytecode = R12_scratch2; 100 lbz(bytecode, bcp_incr, R14_bcp); 101 102 load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state)); 103 104 sldi(bytecode, bytecode, LogBytesPerWord); 105 ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode); 106 } 107 108 // Dispatch code executed in the epilog of a bytecode which does not do it's 109 // own dispatch. The dispatch address in R24_dispatch_addr is used for the 110 // dispatch. 111 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) { 112 if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); } 113 mtctr(R24_dispatch_addr); 114 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 115 } 116 117 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 118 assert(scratch_reg != R0, "can't use R0 as scratch_reg here"); 119 if (JvmtiExport::can_pop_frame()) { 120 Label L; 121 122 // Check the "pending popframe condition" flag in the current thread. 123 lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 124 125 // Initiate popframe handling only if it is not already being 126 // processed. If the flag has the popframe_processing bit set, it 127 // means that this code is called *during* popframe handling - we 128 // don't want to reenter. 129 andi_(R0, scratch_reg, JavaThread::popframe_pending_bit); 130 beq(CCR0, L); 131 132 andi_(R0, scratch_reg, JavaThread::popframe_processing_bit); 133 bne(CCR0, L); 134 135 // Call the Interpreter::remove_activation_preserving_args_entry() 136 // func to get the address of the same-named entrypoint in the 137 // generated interpreter code. 138 #if defined(ABI_ELFv2) 139 call_c(CAST_FROM_FN_PTR(address, 140 Interpreter::remove_activation_preserving_args_entry), 141 relocInfo::none); 142 #else 143 call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, 144 Interpreter::remove_activation_preserving_args_entry), 145 relocInfo::none); 146 #endif 147 148 // Jump to Interpreter::_remove_activation_preserving_args_entry. 149 mtctr(R3_RET); 150 bctr(); 151 152 align(32, 12); 153 bind(L); 154 } 155 } 156 157 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 158 const Register Rthr_state_addr = scratch_reg; 159 if (JvmtiExport::can_force_early_return()) { 160 Label Lno_early_ret; 161 ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 162 cmpdi(CCR0, Rthr_state_addr, 0); 163 beq(CCR0, Lno_early_ret); 164 165 lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr); 166 cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending); 167 bne(CCR0, Lno_early_ret); 168 169 // Jump to Interpreter::_earlyret_entry. 170 lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr); 171 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry)); 172 mtlr(R3_RET); 173 blr(); 174 175 align(32, 12); 176 bind(Lno_early_ret); 177 } 178 } 179 180 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) { 181 const Register RjvmtiState = Rscratch1; 182 const Register Rscratch2 = R0; 183 184 ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 185 li(Rscratch2, 0); 186 187 switch (state) { 188 case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 189 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 190 break; 191 case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 192 break; 193 case btos: // fall through 194 case ztos: // fall through 195 case ctos: // fall through 196 case stos: // fall through 197 case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 198 break; 199 case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 200 break; 201 case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 202 break; 203 case vtos: break; 204 default : ShouldNotReachHere(); 205 } 206 207 // Clean up tos value in the jvmti thread state. 208 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 209 // Set tos state field to illegal value. 210 li(Rscratch2, ilgl); 211 stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState); 212 } 213 214 // Common code to dispatch and dispatch_only. 215 // Dispatch value in Lbyte_code and increment Lbcp. 216 217 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) { 218 address table_base = (address)Interpreter::dispatch_table((TosState)0); 219 intptr_t table_offs = (intptr_t)table - (intptr_t)table_base; 220 if (is_simm16(table_offs)) { 221 addi(dst, R25_templateTableBase, (int)table_offs); 222 } else { 223 load_const_optimized(dst, table, R0); 224 } 225 } 226 227 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, 228 address* table, bool generate_poll) { 229 assert_different_registers(bytecode, R11_scratch1); 230 231 // Calc dispatch table address. 232 load_dispatch_table(R11_scratch1, table); 233 234 if (generate_poll) { 235 address *sfpt_tbl = Interpreter::safept_table(state); 236 if (table != sfpt_tbl) { 237 Label dispatch; 238 ld(R0, in_bytes(JavaThread::polling_word_offset()), R16_thread); 239 // Armed page has poll_bit set, if poll bit is cleared just continue. 240 andi_(R0, R0, SafepointMechanism::poll_bit()); 241 beq(CCR0, dispatch); 242 load_dispatch_table(R11_scratch1, sfpt_tbl); 243 align(32, 16); 244 bind(dispatch); 245 } 246 } 247 248 sldi(R12_scratch2, bytecode, LogBytesPerWord); 249 ldx(R11_scratch1, R11_scratch1, R12_scratch2); 250 251 // Jump off! 252 mtctr(R11_scratch1); 253 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 254 } 255 256 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) { 257 sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize); 258 ldx(Rrecv_dst, Rrecv_dst, R15_esp); 259 } 260 261 // helpers for expression stack 262 263 void InterpreterMacroAssembler::pop_i(Register r) { 264 lwzu(r, Interpreter::stackElementSize, R15_esp); 265 } 266 267 void InterpreterMacroAssembler::pop_ptr(Register r) { 268 ldu(r, Interpreter::stackElementSize, R15_esp); 269 } 270 271 void InterpreterMacroAssembler::pop_l(Register r) { 272 ld(r, Interpreter::stackElementSize, R15_esp); 273 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 274 } 275 276 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 277 lfsu(f, Interpreter::stackElementSize, R15_esp); 278 } 279 280 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 281 lfd(f, Interpreter::stackElementSize, R15_esp); 282 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 283 } 284 285 void InterpreterMacroAssembler::push_i(Register r) { 286 stw(r, 0, R15_esp); 287 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 288 } 289 290 void InterpreterMacroAssembler::push_ptr(Register r) { 291 std(r, 0, R15_esp); 292 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 293 } 294 295 void InterpreterMacroAssembler::push_l(Register r) { 296 // Clear unused slot. 297 load_const_optimized(R0, 0L); 298 std(R0, 0, R15_esp); 299 std(r, - Interpreter::stackElementSize, R15_esp); 300 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 301 } 302 303 void InterpreterMacroAssembler::push_f(FloatRegister f) { 304 stfs(f, 0, R15_esp); 305 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 306 } 307 308 void InterpreterMacroAssembler::push_d(FloatRegister f) { 309 stfd(f, - Interpreter::stackElementSize, R15_esp); 310 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 311 } 312 313 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) { 314 std(first, 0, R15_esp); 315 std(second, -Interpreter::stackElementSize, R15_esp); 316 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 317 } 318 319 void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) { 320 if (VM_Version::has_mtfprd()) { 321 mtfprd(d, l); 322 } else { 323 std(l, 0, R15_esp); 324 lfd(d, 0, R15_esp); 325 } 326 } 327 328 void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) { 329 if (VM_Version::has_mtfprd()) { 330 mffprd(l, d); 331 } else { 332 stfd(d, 0, R15_esp); 333 ld(l, 0, R15_esp); 334 } 335 } 336 337 void InterpreterMacroAssembler::push(TosState state) { 338 switch (state) { 339 case atos: push_ptr(); break; 340 case btos: 341 case ztos: 342 case ctos: 343 case stos: 344 case itos: push_i(); break; 345 case ltos: push_l(); break; 346 case ftos: push_f(); break; 347 case dtos: push_d(); break; 348 case vtos: /* nothing to do */ break; 349 default : ShouldNotReachHere(); 350 } 351 } 352 353 void InterpreterMacroAssembler::pop(TosState state) { 354 switch (state) { 355 case atos: pop_ptr(); break; 356 case btos: 357 case ztos: 358 case ctos: 359 case stos: 360 case itos: pop_i(); break; 361 case ltos: pop_l(); break; 362 case ftos: pop_f(); break; 363 case dtos: pop_d(); break; 364 case vtos: /* nothing to do */ break; 365 default : ShouldNotReachHere(); 366 } 367 verify_oop(R17_tos, state); 368 } 369 370 void InterpreterMacroAssembler::empty_expression_stack() { 371 addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); 372 } 373 374 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset, 375 Register Rdst, 376 signedOrNot is_signed) { 377 #if defined(VM_LITTLE_ENDIAN) 378 if (bcp_offset) { 379 load_const_optimized(Rdst, bcp_offset); 380 lhbrx(Rdst, R14_bcp, Rdst); 381 } else { 382 lhbrx(Rdst, R14_bcp); 383 } 384 if (is_signed == Signed) { 385 extsh(Rdst, Rdst); 386 } 387 #else 388 // Read Java big endian format. 389 if (is_signed == Signed) { 390 lha(Rdst, bcp_offset, R14_bcp); 391 } else { 392 lhz(Rdst, bcp_offset, R14_bcp); 393 } 394 #endif 395 } 396 397 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset, 398 Register Rdst, 399 signedOrNot is_signed) { 400 #if defined(VM_LITTLE_ENDIAN) 401 if (bcp_offset) { 402 load_const_optimized(Rdst, bcp_offset); 403 lwbrx(Rdst, R14_bcp, Rdst); 404 } else { 405 lwbrx(Rdst, R14_bcp); 406 } 407 if (is_signed == Signed) { 408 extsw(Rdst, Rdst); 409 } 410 #else 411 // Read Java big endian format. 412 if (bcp_offset & 3) { // Offset unaligned? 413 load_const_optimized(Rdst, bcp_offset); 414 if (is_signed == Signed) { 415 lwax(Rdst, R14_bcp, Rdst); 416 } else { 417 lwzx(Rdst, R14_bcp, Rdst); 418 } 419 } else { 420 if (is_signed == Signed) { 421 lwa(Rdst, bcp_offset, R14_bcp); 422 } else { 423 lwz(Rdst, bcp_offset, R14_bcp); 424 } 425 } 426 #endif 427 } 428 429 430 // Load the constant pool cache index from the bytecode stream. 431 // 432 // Kills / writes: 433 // - Rdst, Rscratch 434 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, 435 size_t index_size) { 436 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 437 // Cache index is always in the native format, courtesy of Rewriter. 438 if (index_size == sizeof(u2)) { 439 lhz(Rdst, bcp_offset, R14_bcp); 440 } else if (index_size == sizeof(u4)) { 441 if (bcp_offset & 3) { 442 load_const_optimized(Rdst, bcp_offset); 443 lwax(Rdst, R14_bcp, Rdst); 444 } else { 445 lwa(Rdst, bcp_offset, R14_bcp); 446 } 447 } else if (index_size == sizeof(u1)) { 448 lbz(Rdst, bcp_offset, R14_bcp); 449 } else { 450 ShouldNotReachHere(); 451 } 452 // Rdst now contains cp cache index. 453 } 454 455 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format) 456 // from (Rsrc)+offset. 457 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset, 458 signedOrNot is_signed) { 459 #if defined(VM_LITTLE_ENDIAN) 460 if (offset) { 461 load_const_optimized(Rdst, offset); 462 lwbrx(Rdst, Rdst, Rsrc); 463 } else { 464 lwbrx(Rdst, Rsrc); 465 } 466 if (is_signed == Signed) { 467 extsw(Rdst, Rdst); 468 } 469 #else 470 if (is_signed == Signed) { 471 lwa(Rdst, offset, Rsrc); 472 } else { 473 lwz(Rdst, offset, Rsrc); 474 } 475 #endif 476 } 477 478 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 479 // Get index out of bytecode pointer 480 get_cache_index_at_bcp(index, 1, sizeof(u4)); 481 482 // Get address of invokedynamic array 483 ld_ptr(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()), R27_constPoolCache); 484 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 485 sldi(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 486 addi(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 487 add(cache, cache, index); 488 } 489 490 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 491 // Get index out of bytecode pointer 492 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 493 // Take shortcut if the size is a power of 2 494 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 495 // Scale index by power of 2 496 sldi(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); 497 } else { 498 // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 499 mulli(index, index, sizeof(ResolvedFieldEntry)); 500 } 501 // Get address of field entries array 502 ld_ptr(cache, in_bytes(ConstantPoolCache::field_entries_offset()), R27_constPoolCache); 503 addi(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 504 add(cache, cache, index); 505 } 506 507 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 508 // Get index out of bytecode pointer 509 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 510 // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 511 mulli(index, index, sizeof(ResolvedMethodEntry)); 512 513 // Get address of field entries array 514 ld_ptr(cache, ConstantPoolCache::method_entries_offset(), R27_constPoolCache); 515 addi(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 516 add(cache, cache, index); // method_entries + base_offset + scaled index 517 } 518 519 // Load object from cpool->resolved_references(index). 520 // Kills: 521 // - index 522 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, 523 Register tmp1, Register tmp2, 524 Label *L_handle_null) { 525 assert_different_registers(result, index, tmp1, tmp2); 526 assert(index->is_nonvolatile(), "needs to survive C-call in resolve_oop_handle"); 527 get_constant_pool(result); 528 529 // Convert from field index to resolved_references() index and from 530 // word index to byte offset. Since this is a java object, it can be compressed. 531 sldi(index, index, LogBytesPerHeapOop); 532 // Load pointer for resolved_references[] objArray. 533 ld(result, ConstantPool::cache_offset(), result); 534 ld(result, ConstantPoolCache::resolved_references_offset(), result); 535 resolve_oop_handle(result, tmp1, tmp2, MacroAssembler::PRESERVATION_NONE); 536 #ifdef ASSERT 537 Label index_ok; 538 lwa(R0, arrayOopDesc::length_offset_in_bytes(), result); 539 sldi(R0, R0, LogBytesPerHeapOop); 540 cmpd(CCR0, index, R0); 541 blt(CCR0, index_ok); 542 stop("resolved reference index out of bounds"); 543 bind(index_ok); 544 #endif 545 // Add in the index. 546 add(result, index, result); 547 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, 548 tmp1, tmp2, 549 MacroAssembler::PRESERVATION_NONE, 550 0, L_handle_null); 551 } 552 553 // load cpool->resolved_klass_at(index) 554 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) { 555 // int value = *(Rcpool->int_at_addr(which)); 556 // int resolved_klass_index = extract_low_short_from_int(value); 557 add(Roffset, Rcpool, Roffset); 558 #if defined(VM_LITTLE_ENDIAN) 559 lhz(Roffset, sizeof(ConstantPool), Roffset); // Roffset = resolved_klass_index 560 #else 561 lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index 562 #endif 563 564 ld(Rklass, ConstantPool::resolved_klasses_offset(), Rcpool); // Rklass = Rcpool->_resolved_klasses 565 566 sldi(Roffset, Roffset, LogBytesPerWord); 567 addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes()); 568 isync(); // Order load of instance Klass wrt. tags. 569 ldx(Rklass, Rklass, Roffset); 570 } 571 572 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 573 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2. 574 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1, 575 Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) { 576 // Profile the not-null value's klass. 577 profile_typecheck(Rsub_klass, Rtmp1, Rtmp2); 578 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 579 } 580 581 // Separate these two to allow for delay slot in middle. 582 // These are used to do a test and full jump to exception-throwing code. 583 584 // Check that index is in range for array, then shift index by index_shift, 585 // and put arrayOop + shifted_index into res. 586 // Note: res is still shy of address by array offset into object. 587 588 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, 589 int index_shift, Register Rtmp, Register Rres) { 590 // Check that index is in range for array, then shift index by index_shift, 591 // and put arrayOop + shifted_index into res. 592 // Note: res is still shy of address by array offset into object. 593 // Kills: 594 // - Rindex 595 // Writes: 596 // - Rres: Address that corresponds to the array index if check was successful. 597 verify_oop(Rarray); 598 const Register Rlength = R0; 599 const Register RsxtIndex = Rtmp; 600 Label LisNull, LnotOOR; 601 602 // Array nullcheck 603 if (!ImplicitNullChecks) { 604 cmpdi(CCR0, Rarray, 0); 605 beq(CCR0, LisNull); 606 } else { 607 null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex); 608 } 609 610 // Rindex might contain garbage in upper bits (remember that we don't sign extend 611 // during integer arithmetic operations). So kill them and put value into same register 612 // where ArrayIndexOutOfBounds would expect the index in. 613 rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit 614 615 // Index check 616 lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray); 617 cmplw(CCR0, Rindex, Rlength); 618 sldi(RsxtIndex, RsxtIndex, index_shift); 619 blt(CCR0, LnotOOR); 620 // Index should be in R17_tos, array should be in R4_ARG2. 621 mr_if_needed(R17_tos, Rindex); 622 mr_if_needed(R4_ARG2, Rarray); 623 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 624 mtctr(Rtmp); 625 bctr(); 626 627 if (!ImplicitNullChecks) { 628 bind(LisNull); 629 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry); 630 mtctr(Rtmp); 631 bctr(); 632 } 633 634 align(32, 16); 635 bind(LnotOOR); 636 637 // Calc address 638 add(Rres, RsxtIndex, Rarray); 639 } 640 641 void InterpreterMacroAssembler::index_check(Register array, Register index, 642 int index_shift, Register tmp, Register res) { 643 // pop array 644 pop_ptr(array); 645 646 // check array 647 index_check_without_pop(array, index, index_shift, tmp, res); 648 } 649 650 void InterpreterMacroAssembler::get_const(Register Rdst) { 651 ld(Rdst, in_bytes(Method::const_offset()), R19_method); 652 } 653 654 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 655 get_const(Rdst); 656 ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst); 657 } 658 659 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 660 get_constant_pool(Rdst); 661 ld(Rdst, ConstantPool::cache_offset(), Rdst); 662 } 663 664 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 665 get_constant_pool(Rcpool); 666 ld(Rtags, ConstantPool::tags_offset(), Rcpool); 667 } 668 669 // Unlock if synchronized method. 670 // 671 // Unlock the receiver if this is a synchronized method. 672 // Unlock any Java monitors from synchronized blocks. 673 // 674 // If there are locked Java monitors 675 // If throw_monitor_exception 676 // throws IllegalMonitorStateException 677 // Else if install_monitor_exception 678 // installs IllegalMonitorStateException 679 // Else 680 // no error processing 681 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 682 bool throw_monitor_exception, 683 bool install_monitor_exception) { 684 Label Lunlocked, Lno_unlock; 685 { 686 Register Rdo_not_unlock_flag = R11_scratch1; 687 Register Raccess_flags = R12_scratch2; 688 689 // Check if synchronized method or unlocking prevented by 690 // JavaThread::do_not_unlock_if_synchronized flag. 691 lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 692 lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method); 693 li(R0, 0); 694 stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag 695 696 push(state); 697 698 // Skip if we don't have to unlock. 699 rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0. 700 beq(CCR0, Lunlocked); 701 702 cmpwi(CCR0, Rdo_not_unlock_flag, 0); 703 bne(CCR0, Lno_unlock); 704 } 705 706 // Unlock 707 { 708 Register Rmonitor_base = R11_scratch1; 709 710 Label Lunlock; 711 // If it's still locked, everything is ok, unlock it. 712 ld(Rmonitor_base, 0, R1_SP); 713 addi(Rmonitor_base, Rmonitor_base, 714 -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base 715 716 ld(R0, BasicObjectLock::obj_offset(), Rmonitor_base); 717 cmpdi(CCR0, R0, 0); 718 bne(CCR0, Lunlock); 719 720 // If it's already unlocked, throw exception. 721 if (throw_monitor_exception) { 722 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 723 should_not_reach_here(); 724 } else { 725 if (install_monitor_exception) { 726 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 727 b(Lunlocked); 728 } 729 } 730 731 bind(Lunlock); 732 unlock_object(Rmonitor_base); 733 } 734 735 // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not. 736 bind(Lunlocked); 737 { 738 Label Lexception, Lrestart; 739 Register Rcurrent_obj_addr = R11_scratch1; 740 const int delta = frame::interpreter_frame_monitor_size_in_bytes(); 741 assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); 742 743 bind(Lrestart); 744 // Set up search loop: Calc num of iterations. 745 { 746 Register Riterations = R12_scratch2; 747 Register Rmonitor_base = Rcurrent_obj_addr; 748 ld(Rmonitor_base, 0, R1_SP); 749 addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base 750 751 subf_(Riterations, R26_monitor, Rmonitor_base); 752 ble(CCR0, Lno_unlock); 753 754 addi(Rcurrent_obj_addr, Rmonitor_base, 755 in_bytes(BasicObjectLock::obj_offset()) - frame::interpreter_frame_monitor_size_in_bytes()); 756 // Check if any monitor is on stack, bail out if not 757 srdi(Riterations, Riterations, exact_log2(delta)); 758 mtctr(Riterations); 759 } 760 761 // The search loop: Look for locked monitors. 762 { 763 const Register Rcurrent_obj = R0; 764 Label Lloop; 765 766 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 767 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 768 bind(Lloop); 769 770 // Check if current entry is used. 771 cmpdi(CCR0, Rcurrent_obj, 0); 772 bne(CCR0, Lexception); 773 // Preload next iteration's compare value. 774 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 775 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 776 bdnz(Lloop); 777 } 778 // Fell through: Everything's unlocked => finish. 779 b(Lno_unlock); 780 781 // An object is still locked => need to throw exception. 782 bind(Lexception); 783 if (throw_monitor_exception) { 784 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 785 should_not_reach_here(); 786 } else { 787 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception. 788 // Unlock does not block, so don't have to worry about the frame. 789 Register Rmonitor_addr = R11_scratch1; 790 addi(Rmonitor_addr, Rcurrent_obj_addr, -in_bytes(BasicObjectLock::obj_offset()) + delta); 791 unlock_object(Rmonitor_addr); 792 if (install_monitor_exception) { 793 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 794 } 795 b(Lrestart); 796 } 797 } 798 799 align(32, 12); 800 bind(Lno_unlock); 801 pop(state); 802 } 803 804 // Support function for remove_activation & Co. 805 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, 806 Register Rscratch1, Register Rscratch2) { 807 // Pop interpreter frame. 808 ld(Rscratch1, 0, R1_SP); // *SP 809 ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp 810 ld(Rscratch2, 0, Rscratch1); // **SP 811 if (return_pc!=noreg) { 812 ld(return_pc, _abi0(lr), Rscratch1); // LR 813 } 814 815 // Merge top frames. 816 subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP 817 stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP 818 } 819 820 void InterpreterMacroAssembler::narrow(Register result) { 821 Register ret_type = R11_scratch1; 822 ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); 823 lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1); 824 825 Label notBool, notByte, notChar, done; 826 827 // common case first 828 cmpwi(CCR0, ret_type, T_INT); 829 beq(CCR0, done); 830 831 cmpwi(CCR0, ret_type, T_BOOLEAN); 832 bne(CCR0, notBool); 833 andi(result, result, 0x1); 834 b(done); 835 836 bind(notBool); 837 cmpwi(CCR0, ret_type, T_BYTE); 838 bne(CCR0, notByte); 839 extsb(result, result); 840 b(done); 841 842 bind(notByte); 843 cmpwi(CCR0, ret_type, T_CHAR); 844 bne(CCR0, notChar); 845 andi(result, result, 0xffff); 846 b(done); 847 848 bind(notChar); 849 // cmpwi(CCR0, ret_type, T_SHORT); // all that's left 850 // bne(CCR0, done); 851 extsh(result, result); 852 853 // Nothing to do for T_INT 854 bind(done); 855 } 856 857 // Remove activation. 858 // 859 // Apply stack watermark barrier. 860 // Unlock the receiver if this is a synchronized method. 861 // Unlock any Java monitors from synchronized blocks. 862 // Remove the activation from the stack. 863 // 864 // If there are locked Java monitors 865 // If throw_monitor_exception 866 // throws IllegalMonitorStateException 867 // Else if install_monitor_exception 868 // installs IllegalMonitorStateException 869 // Else 870 // no error processing 871 void InterpreterMacroAssembler::remove_activation(TosState state, 872 bool throw_monitor_exception, 873 bool install_monitor_exception) { 874 BLOCK_COMMENT("remove_activation {"); 875 876 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 877 // that would normally not be safe to use. Such bad returns into unsafe territory of 878 // the stack, will call InterpreterRuntime::at_unwind. 879 Label slow_path; 880 Label fast_path; 881 safepoint_poll(slow_path, R11_scratch1, true /* at_return */, false /* in_nmethod */); 882 b(fast_path); 883 bind(slow_path); 884 push(state); 885 set_last_Java_frame(R1_SP, noreg); 886 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), R16_thread); 887 reset_last_Java_frame(); 888 pop(state); 889 align(32); 890 bind(fast_path); 891 892 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 893 894 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 895 notify_method_exit(false, state, NotifyJVMTI, true); 896 897 BLOCK_COMMENT("reserved_stack_check:"); 898 if (StackReservedPages > 0) { 899 // Test if reserved zone needs to be enabled. 900 Label no_reserved_zone_enabling; 901 902 // check if already enabled - if so no re-enabling needed 903 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 904 lwz(R0, in_bytes(JavaThread::stack_guard_state_offset()), R16_thread); 905 cmpwi(CCR0, R0, StackOverflow::stack_guard_enabled); 906 beq_predict_taken(CCR0, no_reserved_zone_enabling); 907 908 // Compare frame pointers. There is no good stack pointer, as with stack 909 // frame compression we can get different SPs when we do calls. A subsequent 910 // call could have a smaller SP, so that this compare succeeds for an 911 // inner call of the method annotated with ReservedStack. 912 ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread); 913 ld_ptr(R11_scratch1, _abi0(callers_sp), R1_SP); // Load frame pointer. 914 cmpld(CCR0, R11_scratch1, R0); 915 blt_predict_taken(CCR0, no_reserved_zone_enabling); 916 917 // Enable reserved zone again, throw stack overflow exception. 918 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread); 919 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 920 921 should_not_reach_here(); 922 923 bind(no_reserved_zone_enabling); 924 } 925 926 verify_oop(R17_tos, state); 927 928 merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); 929 mtlr(R0); 930 pop_cont_fastpath(); 931 BLOCK_COMMENT("} remove_activation"); 932 } 933 934 // Lock object 935 // 936 // Registers alive 937 // monitor - Address of the BasicObjectLock to be used for locking, 938 // which must be initialized with the object to lock. 939 // object - Address of the object to be locked. 940 // 941 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 942 if (LockingMode == LM_MONITOR) { 943 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 944 } else { 945 // template code (for LM_LEGACY): 946 // 947 // markWord displaced_header = obj->mark().set_unlocked(); 948 // monitor->lock()->set_displaced_header(displaced_header); 949 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 950 // // We stored the monitor address into the object's mark word. 951 // } else if (THREAD->is_lock_owned((address)displaced_header)) 952 // // Simple recursive case. 953 // monitor->lock()->set_displaced_header(nullptr); 954 // } else { 955 // // Slow path. 956 // InterpreterRuntime::monitorenter(THREAD, monitor); 957 // } 958 959 const Register header = R7_ARG5; 960 const Register object_mark_addr = R8_ARG6; 961 const Register current_header = R9_ARG7; 962 const Register tmp = R10_ARG8; 963 964 Label count_locking, done; 965 Label cas_failed, slow_case; 966 967 assert_different_registers(header, object_mark_addr, current_header, tmp); 968 969 // markWord displaced_header = obj->mark().set_unlocked(); 970 971 if (DiagnoseSyncOnValueBasedClasses != 0) { 972 load_klass(tmp, object); 973 lwz(tmp, in_bytes(Klass::access_flags_offset()), tmp); 974 testbitdi(CCR0, R0, tmp, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS)); 975 bne(CCR0, slow_case); 976 } 977 978 if (LockingMode == LM_LIGHTWEIGHT) { 979 lightweight_lock(object, header, tmp, slow_case); 980 b(count_locking); 981 } else if (LockingMode == LM_LEGACY) { 982 // Load markWord from object into header. 983 ld(header, oopDesc::mark_offset_in_bytes(), object); 984 985 // Set displaced_header to be (markWord of object | UNLOCK_VALUE). 986 ori(header, header, markWord::unlocked_value); 987 988 // monitor->lock()->set_displaced_header(displaced_header); 989 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 990 const int mark_offset = lock_offset + 991 BasicLock::displaced_header_offset_in_bytes(); 992 993 // Initialize the box (Must happen before we update the object mark!). 994 std(header, mark_offset, monitor); 995 996 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 997 998 // Store stack address of the BasicObjectLock (this is monitor) into object. 999 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1000 1001 // Must fence, otherwise, preceding store(s) may float below cmpxchg. 1002 // CmpxchgX sets CCR0 to cmpX(current, displaced). 1003 cmpxchgd(/*flag=*/CCR0, 1004 /*current_value=*/current_header, 1005 /*compare_value=*/header, /*exchange_value=*/monitor, 1006 /*where=*/object_mark_addr, 1007 MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, 1008 MacroAssembler::cmpxchgx_hint_acquire_lock(), 1009 noreg, 1010 &cas_failed, 1011 /*check without membar and ldarx first*/true); 1012 1013 // If the compare-and-exchange succeeded, then we found an unlocked 1014 // object and we have now locked it. 1015 b(count_locking); 1016 bind(cas_failed); 1017 1018 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1019 // // Simple recursive case. 1020 // monitor->lock()->set_displaced_header(nullptr); 1021 1022 // We did not see an unlocked object so try the fast recursive case. 1023 1024 // Check if owner is self by comparing the value in the markWord of object 1025 // (current_header) with the stack pointer. 1026 sub(current_header, current_header, R1_SP); 1027 1028 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 1029 load_const_optimized(tmp, ~(os::vm_page_size()-1) | markWord::lock_mask_in_place); 1030 1031 and_(R0/*==0?*/, current_header, tmp); 1032 // If condition is true we are done and hence we can store 0 in the displaced 1033 // header indicating it is a recursive lock. 1034 bne(CCR0, slow_case); 1035 std(R0/*==0!*/, mark_offset, monitor); 1036 b(count_locking); 1037 } 1038 1039 // } else { 1040 // // Slow path. 1041 // InterpreterRuntime::monitorenter(THREAD, monitor); 1042 1043 // None of the above fast optimizations worked so we have to get into the 1044 // slow case of monitor enter. 1045 bind(slow_case); 1046 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 1047 b(done); 1048 // } 1049 align(32, 12); 1050 bind(count_locking); 1051 inc_held_monitor_count(current_header /*tmp*/); 1052 bind(done); 1053 } 1054 } 1055 1056 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1057 // 1058 // Registers alive 1059 // monitor - Address of the BasicObjectLock to be used for locking, 1060 // which must be initialized with the object to lock. 1061 // 1062 // Throw IllegalMonitorException if object is not locked by current thread. 1063 void InterpreterMacroAssembler::unlock_object(Register monitor) { 1064 if (LockingMode == LM_MONITOR) { 1065 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1066 } else { 1067 1068 // template code (for LM_LEGACY): 1069 // 1070 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1071 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1072 // monitor->set_obj(nullptr); 1073 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1074 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1075 // monitor->set_obj(nullptr); 1076 // } else { 1077 // // Slow path. 1078 // InterpreterRuntime::monitorexit(monitor); 1079 // } 1080 1081 const Register object = R7_ARG5; 1082 const Register header = R8_ARG6; 1083 const Register object_mark_addr = R9_ARG7; 1084 const Register current_header = R10_ARG8; 1085 1086 Label free_slot; 1087 Label slow_case; 1088 1089 assert_different_registers(object, header, object_mark_addr, current_header); 1090 1091 if (LockingMode != LM_LIGHTWEIGHT) { 1092 // Test first if we are in the fast recursive case. 1093 ld(header, in_bytes(BasicObjectLock::lock_offset()) + 1094 BasicLock::displaced_header_offset_in_bytes(), monitor); 1095 1096 // If the displaced header is zero, we have a recursive unlock. 1097 cmpdi(CCR0, header, 0); 1098 beq(CCR0, free_slot); // recursive unlock 1099 } 1100 1101 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1102 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1103 // monitor->set_obj(nullptr); 1104 1105 // If we still have a lightweight lock, unlock the object and be done. 1106 1107 // The object address from the monitor is in object. 1108 ld(object, in_bytes(BasicObjectLock::obj_offset()), monitor); 1109 1110 if (LockingMode == LM_LIGHTWEIGHT) { 1111 lightweight_unlock(object, header, slow_case); 1112 } else { 1113 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1114 1115 // We have the displaced header in displaced_header. If the lock is still 1116 // lightweight, it will contain the monitor address and we'll store the 1117 // displaced header back into the object's mark word. 1118 // CmpxchgX sets CCR0 to cmpX(current, monitor). 1119 cmpxchgd(/*flag=*/CCR0, 1120 /*current_value=*/current_header, 1121 /*compare_value=*/monitor, /*exchange_value=*/header, 1122 /*where=*/object_mark_addr, 1123 MacroAssembler::MemBarRel, 1124 MacroAssembler::cmpxchgx_hint_release_lock(), 1125 noreg, 1126 &slow_case); 1127 } 1128 b(free_slot); 1129 1130 // } else { 1131 // // Slow path. 1132 // InterpreterRuntime::monitorexit(monitor); 1133 1134 // The lock has been converted into a heavy lock and hence 1135 // we need to get into the slow case. 1136 bind(slow_case); 1137 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1138 // } 1139 1140 Label done; 1141 b(done); // Monitor register may be overwritten! Runtime has already freed the slot. 1142 1143 // Exchange worked, do monitor->set_obj(nullptr); 1144 align(32, 12); 1145 bind(free_slot); 1146 li(R0, 0); 1147 std(R0, in_bytes(BasicObjectLock::obj_offset()), monitor); 1148 dec_held_monitor_count(current_header /*tmp*/); 1149 bind(done); 1150 } 1151 } 1152 1153 // Load compiled (i2c) or interpreter entry when calling from interpreted and 1154 // do the call. Centralized so that all interpreter calls will do the same actions. 1155 // If jvmti single stepping is on for a thread we must not call compiled code. 1156 // 1157 // Input: 1158 // - Rtarget_method: method to call 1159 // - Rret_addr: return address 1160 // - 2 scratch regs 1161 // 1162 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, 1163 Register Rscratch1, Register Rscratch2) { 1164 assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr); 1165 // Assume we want to go compiled if available. 1166 const Register Rtarget_addr = Rscratch1; 1167 const Register Rinterp_only = Rscratch2; 1168 1169 ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method); 1170 1171 if (JvmtiExport::can_post_interpreter_events()) { 1172 lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 1173 1174 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 1175 // compiled code in threads for which the event is enabled. Check here for 1176 // interp_only_mode if these events CAN be enabled. 1177 Label done; 1178 cmpwi(CCR0, Rinterp_only, 0); 1179 beq(CCR0, done); 1180 ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method); 1181 align(32, 12); 1182 bind(done); 1183 } 1184 1185 #ifdef ASSERT 1186 { 1187 Label Lok; 1188 cmpdi(CCR0, Rtarget_addr, 0); 1189 bne(CCR0, Lok); 1190 stop("null entry point"); 1191 bind(Lok); 1192 } 1193 #endif // ASSERT 1194 1195 mr(R21_sender_SP, R1_SP); 1196 1197 // Calc a precise SP for the call. The SP value we calculated in 1198 // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space 1199 // if esp is not max. Also, the i2c adapter extends the stack space without restoring 1200 // our pre-calced value, so repeating calls via i2c would result in stack overflow. 1201 // Since esp already points to an empty slot, we just have to sub 1 additional slot 1202 // to meet the abi scratch requirements. 1203 // The max_stack pointer will get restored by means of the GR_Lmax_stack local in 1204 // the return entry of the interpreter. 1205 addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::top_ijava_frame_abi_size); 1206 clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address 1207 resize_frame_absolute(Rscratch2, Rscratch2, R0); 1208 1209 mr_if_needed(R19_method, Rtarget_method); 1210 mtctr(Rtarget_addr); 1211 mtlr(Rret_addr); 1212 1213 save_interpreter_state(Rscratch2); 1214 #ifdef ASSERT 1215 ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp 1216 sldi(Rscratch1, Rscratch1, Interpreter::logStackElementSize); 1217 add(Rscratch1, Rscratch1, Rscratch2); // Rscratch2 contains fp 1218 // Compare sender_sp with the derelativized top_frame_sp 1219 cmpd(CCR0, R21_sender_SP, Rscratch1); 1220 asm_assert_eq("top_frame_sp incorrect"); 1221 #endif 1222 1223 bctr(); 1224 } 1225 1226 // Set the method data pointer for the current bcp. 1227 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1228 assert(ProfileInterpreter, "must be profiling interpreter"); 1229 Label get_continue; 1230 ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method); 1231 test_method_data_pointer(get_continue); 1232 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp); 1233 1234 addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); 1235 add(R28_mdx, R28_mdx, R3_RET); 1236 bind(get_continue); 1237 } 1238 1239 // Test ImethodDataPtr. If it is null, continue at the specified label. 1240 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) { 1241 assert(ProfileInterpreter, "must be profiling interpreter"); 1242 cmpdi(CCR0, R28_mdx, 0); 1243 beq(CCR0, zero_continue); 1244 } 1245 1246 void InterpreterMacroAssembler::verify_method_data_pointer() { 1247 assert(ProfileInterpreter, "must be profiling interpreter"); 1248 #ifdef ASSERT 1249 Label verify_continue; 1250 test_method_data_pointer(verify_continue); 1251 1252 // If the mdp is valid, it will point to a DataLayout header which is 1253 // consistent with the bcp. The converse is highly probable also. 1254 lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx); 1255 ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method); 1256 addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset())); 1257 add(R11_scratch1, R12_scratch2, R12_scratch2); 1258 cmpd(CCR0, R11_scratch1, R14_bcp); 1259 beq(CCR0, verify_continue); 1260 1261 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx); 1262 1263 bind(verify_continue); 1264 #endif 1265 } 1266 1267 // Store a value at some constant offset from the method data pointer. 1268 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) { 1269 assert(ProfileInterpreter, "must be profiling interpreter"); 1270 1271 std(value, constant, R28_mdx); 1272 } 1273 1274 // Increment the value at some constant offset from the method data pointer. 1275 void InterpreterMacroAssembler::increment_mdp_data_at(int constant, 1276 Register counter_addr, 1277 Register Rbumped_count, 1278 bool decrement) { 1279 // Locate the counter at a fixed offset from the mdp: 1280 addi(counter_addr, R28_mdx, constant); 1281 increment_mdp_data_at(counter_addr, Rbumped_count, decrement); 1282 } 1283 1284 // Increment the value at some non-fixed (reg + constant) offset from 1285 // the method data pointer. 1286 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg, 1287 int constant, 1288 Register scratch, 1289 Register Rbumped_count, 1290 bool decrement) { 1291 // Add the constant to reg to get the offset. 1292 add(scratch, R28_mdx, reg); 1293 // Then calculate the counter address. 1294 addi(scratch, scratch, constant); 1295 increment_mdp_data_at(scratch, Rbumped_count, decrement); 1296 } 1297 1298 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr, 1299 Register Rbumped_count, 1300 bool decrement) { 1301 assert(ProfileInterpreter, "must be profiling interpreter"); 1302 1303 // Load the counter. 1304 ld(Rbumped_count, 0, counter_addr); 1305 1306 if (decrement) { 1307 // Decrement the register. Set condition codes. 1308 addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment); 1309 // Store the decremented counter, if it is still negative. 1310 std(Rbumped_count, 0, counter_addr); 1311 // Note: add/sub overflow check are not ported, since 64 bit 1312 // calculation should never overflow. 1313 } else { 1314 // Increment the register. Set carry flag. 1315 addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment); 1316 // Store the incremented counter. 1317 std(Rbumped_count, 0, counter_addr); 1318 } 1319 } 1320 1321 // Set a flag value at the current method data pointer position. 1322 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant, 1323 Register scratch) { 1324 assert(ProfileInterpreter, "must be profiling interpreter"); 1325 // Load the data header. 1326 lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1327 // Set the flag. 1328 ori(scratch, scratch, flag_constant); 1329 // Store the modified header. 1330 stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1331 } 1332 1333 // Test the location at some offset from the method data pointer. 1334 // If it is not equal to value, branch to the not_equal_continue Label. 1335 void InterpreterMacroAssembler::test_mdp_data_at(int offset, 1336 Register value, 1337 Label& not_equal_continue, 1338 Register test_out) { 1339 assert(ProfileInterpreter, "must be profiling interpreter"); 1340 1341 ld(test_out, offset, R28_mdx); 1342 cmpd(CCR0, value, test_out); 1343 bne(CCR0, not_equal_continue); 1344 } 1345 1346 // Update the method data pointer by the displacement located at some fixed 1347 // offset from the method data pointer. 1348 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp, 1349 Register scratch) { 1350 assert(ProfileInterpreter, "must be profiling interpreter"); 1351 1352 ld(scratch, offset_of_disp, R28_mdx); 1353 add(R28_mdx, scratch, R28_mdx); 1354 } 1355 1356 // Update the method data pointer by the displacement located at the 1357 // offset (reg + offset_of_disp). 1358 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg, 1359 int offset_of_disp, 1360 Register scratch) { 1361 assert(ProfileInterpreter, "must be profiling interpreter"); 1362 1363 add(scratch, reg, R28_mdx); 1364 ld(scratch, offset_of_disp, scratch); 1365 add(R28_mdx, scratch, R28_mdx); 1366 } 1367 1368 // Update the method data pointer by a simple constant displacement. 1369 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) { 1370 assert(ProfileInterpreter, "must be profiling interpreter"); 1371 addi(R28_mdx, R28_mdx, constant); 1372 } 1373 1374 // Update the method data pointer for a _ret bytecode whose target 1375 // was not among our cached targets. 1376 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state, 1377 Register return_bci) { 1378 assert(ProfileInterpreter, "must be profiling interpreter"); 1379 1380 push(state); 1381 assert(return_bci->is_nonvolatile(), "need to protect return_bci"); 1382 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); 1383 pop(state); 1384 } 1385 1386 // Increments the backedge counter. 1387 // Returns backedge counter + invocation counter in Rdst. 1388 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst, 1389 const Register Rtmp1, Register Rscratch) { 1390 assert(UseCompiler, "incrementing must be useful"); 1391 assert_different_registers(Rdst, Rtmp1); 1392 const Register invocation_counter = Rtmp1; 1393 const Register counter = Rdst; 1394 // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size."); 1395 1396 // Load backedge counter. 1397 lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1398 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1399 // Load invocation counter. 1400 lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) + 1401 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1402 1403 // Add the delta to the backedge counter. 1404 addi(counter, counter, InvocationCounter::count_increment); 1405 1406 // Mask the invocation counter. 1407 andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value); 1408 1409 // Store new counter value. 1410 stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1411 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1412 // Return invocation counter + backedge counter. 1413 add(counter, counter, invocation_counter); 1414 } 1415 1416 // Count a taken branch in the bytecodes. 1417 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) { 1418 if (ProfileInterpreter) { 1419 Label profile_continue; 1420 1421 // If no method data exists, go to profile_continue. 1422 test_method_data_pointer(profile_continue); 1423 1424 // We are taking a branch. Increment the taken count. 1425 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count); 1426 1427 // The method data pointer needs to be updated to reflect the new target. 1428 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch); 1429 bind (profile_continue); 1430 } 1431 } 1432 1433 // Count a not-taken branch in the bytecodes. 1434 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) { 1435 if (ProfileInterpreter) { 1436 Label profile_continue; 1437 1438 // If no method data exists, go to profile_continue. 1439 test_method_data_pointer(profile_continue); 1440 1441 // We are taking a branch. Increment the not taken count. 1442 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2); 1443 1444 // The method data pointer needs to be updated to correspond to the 1445 // next bytecode. 1446 update_mdp_by_constant(in_bytes(BranchData::branch_data_size())); 1447 bind (profile_continue); 1448 } 1449 } 1450 1451 // Count a non-virtual call in the bytecodes. 1452 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) { 1453 if (ProfileInterpreter) { 1454 Label profile_continue; 1455 1456 // If no method data exists, go to profile_continue. 1457 test_method_data_pointer(profile_continue); 1458 1459 // We are making a call. Increment the count. 1460 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1461 1462 // The method data pointer needs to be updated to reflect the new target. 1463 update_mdp_by_constant(in_bytes(CounterData::counter_data_size())); 1464 bind (profile_continue); 1465 } 1466 } 1467 1468 // Count a final call in the bytecodes. 1469 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) { 1470 if (ProfileInterpreter) { 1471 Label profile_continue; 1472 1473 // If no method data exists, go to profile_continue. 1474 test_method_data_pointer(profile_continue); 1475 1476 // We are making a call. Increment the count. 1477 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1478 1479 // The method data pointer needs to be updated to reflect the new target. 1480 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1481 bind (profile_continue); 1482 } 1483 } 1484 1485 // Count a virtual call in the bytecodes. 1486 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver, 1487 Register Rscratch1, 1488 Register Rscratch2, 1489 bool receiver_can_be_null) { 1490 if (!ProfileInterpreter) { return; } 1491 Label profile_continue; 1492 1493 // If no method data exists, go to profile_continue. 1494 test_method_data_pointer(profile_continue); 1495 1496 Label skip_receiver_profile; 1497 if (receiver_can_be_null) { 1498 Label not_null; 1499 cmpdi(CCR0, Rreceiver, 0); 1500 bne(CCR0, not_null); 1501 // We are making a call. Increment the count for null receiver. 1502 increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2); 1503 b(skip_receiver_profile); 1504 bind(not_null); 1505 } 1506 1507 // Record the receiver type. 1508 record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2); 1509 bind(skip_receiver_profile); 1510 1511 // The method data pointer needs to be updated to reflect the new target. 1512 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1513 bind (profile_continue); 1514 } 1515 1516 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) { 1517 if (ProfileInterpreter) { 1518 Label profile_continue; 1519 1520 // If no method data exists, go to profile_continue. 1521 test_method_data_pointer(profile_continue); 1522 1523 int mdp_delta = in_bytes(BitData::bit_data_size()); 1524 if (TypeProfileCasts) { 1525 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1526 1527 // Record the object type. 1528 record_klass_in_profile(Rklass, Rscratch1, Rscratch2); 1529 } 1530 1531 // The method data pointer needs to be updated. 1532 update_mdp_by_constant(mdp_delta); 1533 1534 bind (profile_continue); 1535 } 1536 } 1537 1538 // Count a ret in the bytecodes. 1539 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, 1540 Register scratch1, Register scratch2) { 1541 if (ProfileInterpreter) { 1542 Label profile_continue; 1543 uint row; 1544 1545 // If no method data exists, go to profile_continue. 1546 test_method_data_pointer(profile_continue); 1547 1548 // Update the total ret count. 1549 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 ); 1550 1551 for (row = 0; row < RetData::row_limit(); row++) { 1552 Label next_test; 1553 1554 // See if return_bci is equal to bci[n]: 1555 test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1); 1556 1557 // return_bci is equal to bci[n]. Increment the count. 1558 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2); 1559 1560 // The method data pointer needs to be updated to reflect the new target. 1561 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1); 1562 b(profile_continue); 1563 bind(next_test); 1564 } 1565 1566 update_mdp_for_ret(state, return_bci); 1567 1568 bind (profile_continue); 1569 } 1570 } 1571 1572 // Count the default case of a switch construct. 1573 void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) { 1574 if (ProfileInterpreter) { 1575 Label profile_continue; 1576 1577 // If no method data exists, go to profile_continue. 1578 test_method_data_pointer(profile_continue); 1579 1580 // Update the default case count 1581 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()), 1582 scratch1, scratch2); 1583 1584 // The method data pointer needs to be updated. 1585 update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()), 1586 scratch1); 1587 1588 bind (profile_continue); 1589 } 1590 } 1591 1592 // Count the index'th case of a switch construct. 1593 void InterpreterMacroAssembler::profile_switch_case(Register index, 1594 Register scratch1, 1595 Register scratch2, 1596 Register scratch3) { 1597 if (ProfileInterpreter) { 1598 assert_different_registers(index, scratch1, scratch2, scratch3); 1599 Label profile_continue; 1600 1601 // If no method data exists, go to profile_continue. 1602 test_method_data_pointer(profile_continue); 1603 1604 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes(). 1605 li(scratch3, in_bytes(MultiBranchData::case_array_offset())); 1606 1607 assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works"); 1608 sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1609 add(scratch1, scratch1, scratch3); 1610 1611 // Update the case count. 1612 increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3); 1613 1614 // The method data pointer needs to be updated. 1615 update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2); 1616 1617 bind (profile_continue); 1618 } 1619 } 1620 1621 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) { 1622 if (ProfileInterpreter) { 1623 assert_different_registers(Rscratch1, Rscratch2); 1624 Label profile_continue; 1625 1626 // If no method data exists, go to profile_continue. 1627 test_method_data_pointer(profile_continue); 1628 1629 set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1); 1630 1631 // The method data pointer needs to be updated. 1632 int mdp_delta = in_bytes(BitData::bit_data_size()); 1633 if (TypeProfileCasts) { 1634 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1635 } 1636 update_mdp_by_constant(mdp_delta); 1637 1638 bind (profile_continue); 1639 } 1640 } 1641 1642 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver, 1643 Register Rscratch1, Register Rscratch2) { 1644 assert(ProfileInterpreter, "must be profiling"); 1645 assert_different_registers(Rreceiver, Rscratch1, Rscratch2); 1646 1647 Label done; 1648 record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done); 1649 bind (done); 1650 } 1651 1652 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1653 Register receiver, Register scratch1, Register scratch2, 1654 int start_row, Label& done) { 1655 if (TypeProfileWidth == 0) { 1656 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1657 return; 1658 } 1659 1660 int last_row = VirtualCallData::row_limit() - 1; 1661 assert(start_row <= last_row, "must be work left to do"); 1662 // Test this row for both the receiver and for null. 1663 // Take any of three different outcomes: 1664 // 1. found receiver => increment count and goto done 1665 // 2. found null => keep looking for case 1, maybe allocate this cell 1666 // 3. found something else => keep looking for cases 1 and 2 1667 // Case 3 is handled by a recursive call. 1668 for (int row = start_row; row <= last_row; row++) { 1669 Label next_test; 1670 bool test_for_null_also = (row == start_row); 1671 1672 // See if the receiver is receiver[n]. 1673 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1674 test_mdp_data_at(recvr_offset, receiver, next_test, scratch1); 1675 // delayed()->tst(scratch); 1676 1677 // The receiver is receiver[n]. Increment count[n]. 1678 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1679 increment_mdp_data_at(count_offset, scratch1, scratch2); 1680 b(done); 1681 bind(next_test); 1682 1683 if (test_for_null_also) { 1684 Label found_null; 1685 // Failed the equality check on receiver[n]... Test for null. 1686 if (start_row == last_row) { 1687 // The only thing left to do is handle the null case. 1688 // Scratch1 contains test_out from test_mdp_data_at. 1689 cmpdi(CCR0, scratch1, 0); 1690 beq(CCR0, found_null); 1691 // Receiver did not match any saved receiver and there is no empty row for it. 1692 // Increment total counter to indicate polymorphic case. 1693 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1694 b(done); 1695 bind(found_null); 1696 break; 1697 } 1698 // Since null is rare, make it be the branch-taken case. 1699 cmpdi(CCR0, scratch1, 0); 1700 beq(CCR0, found_null); 1701 1702 // Put all the "Case 3" tests here. 1703 record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done); 1704 1705 // Found a null. Keep searching for a matching receiver, 1706 // but remember that this is an empty (unused) slot. 1707 bind(found_null); 1708 } 1709 } 1710 1711 // In the fall-through case, we found no matching receiver, but we 1712 // observed the receiver[start_row] is null. 1713 1714 // Fill in the receiver field and increment the count. 1715 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1716 set_mdp_data_at(recvr_offset, receiver); 1717 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1718 li(scratch1, DataLayout::counter_increment); 1719 set_mdp_data_at(count_offset, scratch1); 1720 if (start_row > 0) { 1721 b(done); 1722 } 1723 } 1724 1725 // Argument and return type profilig. 1726 // kills: tmp, tmp2, R0, CR0, CR1 1727 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base, 1728 RegisterOrConstant mdo_addr_offs, 1729 Register tmp, Register tmp2) { 1730 Label do_nothing, do_update; 1731 1732 // tmp2 = obj is allowed 1733 assert_different_registers(obj, mdo_addr_base, tmp, R0); 1734 assert_different_registers(tmp2, mdo_addr_base, tmp, R0); 1735 const Register klass = tmp2; 1736 1737 verify_oop(obj); 1738 1739 ld(tmp, mdo_addr_offs, mdo_addr_base); 1740 1741 // Set null_seen if obj is 0. 1742 cmpdi(CCR0, obj, 0); 1743 ori(R0, tmp, TypeEntries::null_seen); 1744 beq(CCR0, do_update); 1745 1746 load_klass(klass, obj); 1747 1748 clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 1749 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 1750 cmpd(CCR1, R0, klass); 1751 // Klass seen before, nothing to do (regardless of unknown bit). 1752 //beq(CCR1, do_nothing); 1753 1754 andi_(R0, tmp, TypeEntries::type_unknown); 1755 // Already unknown. Nothing to do anymore. 1756 //bne(CCR0, do_nothing); 1757 crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 1758 beq(CCR0, do_nothing); 1759 1760 clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 1761 orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1762 beq(CCR0, do_update); // First time here. Set profile type. 1763 1764 // Different than before. Cannot keep accurate profile. 1765 ori(R0, tmp, TypeEntries::type_unknown); 1766 1767 bind(do_update); 1768 // update profile 1769 std(R0, mdo_addr_offs, mdo_addr_base); 1770 1771 align(32, 12); 1772 bind(do_nothing); 1773 } 1774 1775 void InterpreterMacroAssembler::profile_arguments_type(Register callee, 1776 Register tmp1, Register tmp2, 1777 bool is_virtual) { 1778 if (!ProfileInterpreter) { 1779 return; 1780 } 1781 1782 assert_different_registers(callee, tmp1, tmp2, R28_mdx); 1783 1784 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1785 Label profile_continue; 1786 1787 test_method_data_pointer(profile_continue); 1788 1789 int off_to_start = is_virtual ? 1790 in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1791 1792 lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx); 1793 cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1794 bne(CCR0, profile_continue); 1795 1796 if (MethodData::profile_arguments()) { 1797 Label done; 1798 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1799 addi(R28_mdx, R28_mdx, off_to_args); 1800 1801 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1802 if (i > 0 || MethodData::profile_return()) { 1803 // If return value type is profiled we may have no argument to profile. 1804 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1805 cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count()); 1806 addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count()); 1807 blt(CCR0, done); 1808 } 1809 ld(tmp1, in_bytes(Method::const_offset()), callee); 1810 lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1); 1811 // Stack offset o (zero based) from the start of the argument 1812 // list, for n arguments translates into offset n - o - 1 from 1813 // the end of the argument list. But there's an extra slot at 1814 // the top of the stack. So the offset is n - o from Lesp. 1815 ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx); 1816 subf(tmp1, tmp2, tmp1); 1817 1818 sldi(tmp1, tmp1, Interpreter::logStackElementSize); 1819 ldx(tmp1, tmp1, R15_esp); 1820 1821 profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1); 1822 1823 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1824 addi(R28_mdx, R28_mdx, to_add); 1825 off_to_args += to_add; 1826 } 1827 1828 if (MethodData::profile_return()) { 1829 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1830 addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1831 } 1832 1833 bind(done); 1834 1835 if (MethodData::profile_return()) { 1836 // We're right after the type profile for the last 1837 // argument. tmp1 is the number of cells left in the 1838 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1839 // if there's a return to profile. 1840 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), 1841 "can't move past ret type"); 1842 sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size)); 1843 add(R28_mdx, tmp1, R28_mdx); 1844 } 1845 } else { 1846 assert(MethodData::profile_return(), "either profile call args or call ret"); 1847 update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size())); 1848 } 1849 1850 // Mdp points right after the end of the 1851 // CallTypeData/VirtualCallTypeData, right after the cells for the 1852 // return value type if there's one. 1853 align(32, 12); 1854 bind(profile_continue); 1855 } 1856 } 1857 1858 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) { 1859 assert_different_registers(ret, tmp1, tmp2); 1860 if (ProfileInterpreter && MethodData::profile_return()) { 1861 Label profile_continue; 1862 1863 test_method_data_pointer(profile_continue); 1864 1865 if (MethodData::profile_return_jsr292_only()) { 1866 // If we don't profile all invoke bytecodes we must make sure 1867 // it's a bytecode we indeed profile. We can't go back to the 1868 // beginning of the ProfileData we intend to update to check its 1869 // type because we're right after it and we don't known its 1870 // length. 1871 lbz(tmp1, 0, R14_bcp); 1872 lbz(tmp2, in_bytes(Method::intrinsic_id_offset()), R19_method); 1873 cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic); 1874 cmpwi(CCR1, tmp1, Bytecodes::_invokehandle); 1875 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1876 cmpwi(CCR1, tmp2, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1877 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1878 bne(CCR0, profile_continue); 1879 } 1880 1881 profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2); 1882 1883 align(32, 12); 1884 bind(profile_continue); 1885 } 1886 } 1887 1888 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, 1889 Register tmp3, Register tmp4) { 1890 if (ProfileInterpreter && MethodData::profile_parameters()) { 1891 Label profile_continue, done; 1892 1893 test_method_data_pointer(profile_continue); 1894 1895 // Load the offset of the area within the MDO used for 1896 // parameters. If it's negative we're not profiling any parameters. 1897 lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx); 1898 cmpwi(CCR0, tmp1, 0); 1899 blt(CCR0, profile_continue); 1900 1901 // Compute a pointer to the area for parameters from the offset 1902 // and move the pointer to the slot for the last 1903 // parameters. Collect profiling from last parameter down. 1904 // mdo start + parameters offset + array length - 1 1905 1906 // Pointer to the parameter area in the MDO. 1907 const Register mdp = tmp1; 1908 add(mdp, tmp1, R28_mdx); 1909 1910 // Offset of the current profile entry to update. 1911 const Register entry_offset = tmp2; 1912 // entry_offset = array len in number of cells 1913 ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp); 1914 1915 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1916 assert(off_base % DataLayout::cell_size == 0, "should be a number of cells"); 1917 1918 // entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field 1919 addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size)); 1920 // entry_offset in bytes 1921 sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1922 1923 Label loop; 1924 align(32, 12); 1925 bind(loop); 1926 1927 // Load offset on the stack from the slot for this parameter. 1928 ld(tmp3, entry_offset, mdp); 1929 sldi(tmp3, tmp3, Interpreter::logStackElementSize); 1930 neg(tmp3, tmp3); 1931 // Read the parameter from the local area. 1932 ldx(tmp3, tmp3, R18_locals); 1933 1934 // Make entry_offset now point to the type field for this parameter. 1935 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1936 assert(type_base > off_base, "unexpected"); 1937 addi(entry_offset, entry_offset, type_base - off_base); 1938 1939 // Profile the parameter. 1940 profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3); 1941 1942 // Go to next parameter. 1943 int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base); 1944 cmpdi(CCR0, entry_offset, off_base + delta); 1945 addi(entry_offset, entry_offset, -delta); 1946 bge(CCR0, loop); 1947 1948 align(32, 12); 1949 bind(profile_continue); 1950 } 1951 } 1952 1953 // Add a monitor (see frame_ppc.hpp). 1954 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) { 1955 1956 // Very-local scratch registers. 1957 const Register esp = Rtemp1; 1958 const Register slot = Rtemp2; 1959 1960 // Extracted monitor_size. 1961 int monitor_size = frame::interpreter_frame_monitor_size_in_bytes(); 1962 assert(Assembler::is_aligned((unsigned int)monitor_size, 1963 (unsigned int)frame::alignment_in_bytes), 1964 "size of a monitor must respect alignment of SP"); 1965 1966 resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor 1967 subf(Rtemp2, esp, R1_SP); // esp contains fp 1968 sradi(Rtemp2, Rtemp2, Interpreter::logStackElementSize); 1969 // Store relativized top_frame_sp 1970 std(Rtemp2, _ijava_state_neg(top_frame_sp), esp); // esp contains fp 1971 1972 // Shuffle expression stack down. Recall that stack_base points 1973 // just above the new expression stack bottom. Old_tos and new_tos 1974 // are used to scan thru the old and new expression stacks. 1975 if (!stack_is_empty) { 1976 Label copy_slot, copy_slot_finished; 1977 const Register n_slots = slot; 1978 1979 addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack). 1980 subf(n_slots, esp, R26_monitor); 1981 srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy. 1982 assert(LogBytesPerWord == 3, "conflicts assembler instructions"); 1983 beq(CCR0, copy_slot_finished); // Nothing to copy. 1984 1985 mtctr(n_slots); 1986 1987 // loop 1988 bind(copy_slot); 1989 ld(slot, 0, esp); // Move expression stack down. 1990 std(slot, -monitor_size, esp); // distance = monitor_size 1991 addi(esp, esp, BytesPerWord); 1992 bdnz(copy_slot); 1993 1994 bind(copy_slot_finished); 1995 } 1996 1997 addi(R15_esp, R15_esp, -monitor_size); 1998 addi(R26_monitor, R26_monitor, -monitor_size); 1999 2000 // Restart interpreter 2001 } 2002 2003 // ============================================================================ 2004 // Java locals access 2005 2006 // Load a local variable at index in Rindex into register Rdst_value. 2007 // Also puts address of local into Rdst_address as a service. 2008 // Kills: 2009 // - Rdst_value 2010 // - Rdst_address 2011 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) { 2012 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2013 subf(Rdst_address, Rdst_address, R18_locals); 2014 lwz(Rdst_value, 0, Rdst_address); 2015 } 2016 2017 // Load a local variable at index in Rindex into register Rdst_value. 2018 // Also puts address of local into Rdst_address as a service. 2019 // Kills: 2020 // - Rdst_value 2021 // - Rdst_address 2022 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) { 2023 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2024 subf(Rdst_address, Rdst_address, R18_locals); 2025 ld(Rdst_value, -8, Rdst_address); 2026 } 2027 2028 // Load a local variable at index in Rindex into register Rdst_value. 2029 // Also puts address of local into Rdst_address as a service. 2030 // Input: 2031 // - Rindex: slot nr of local variable 2032 // Kills: 2033 // - Rdst_value 2034 // - Rdst_address 2035 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, 2036 Register Rdst_address, 2037 Register Rindex) { 2038 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2039 subf(Rdst_address, Rdst_address, R18_locals); 2040 ld(Rdst_value, 0, Rdst_address); 2041 } 2042 2043 // Load a local variable at index in Rindex into register Rdst_value. 2044 // Also puts address of local into Rdst_address as a service. 2045 // Kills: 2046 // - Rdst_value 2047 // - Rdst_address 2048 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, 2049 Register Rdst_address, 2050 Register Rindex) { 2051 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2052 subf(Rdst_address, Rdst_address, R18_locals); 2053 lfs(Rdst_value, 0, Rdst_address); 2054 } 2055 2056 // Load a local variable at index in Rindex into register Rdst_value. 2057 // Also puts address of local into Rdst_address as a service. 2058 // Kills: 2059 // - Rdst_value 2060 // - Rdst_address 2061 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, 2062 Register Rdst_address, 2063 Register Rindex) { 2064 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2065 subf(Rdst_address, Rdst_address, R18_locals); 2066 lfd(Rdst_value, -8, Rdst_address); 2067 } 2068 2069 // Store an int value at local variable slot Rindex. 2070 // Kills: 2071 // - Rindex 2072 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) { 2073 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2074 subf(Rindex, Rindex, R18_locals); 2075 stw(Rvalue, 0, Rindex); 2076 } 2077 2078 // Store a long value at local variable slot Rindex. 2079 // Kills: 2080 // - Rindex 2081 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) { 2082 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2083 subf(Rindex, Rindex, R18_locals); 2084 std(Rvalue, -8, Rindex); 2085 } 2086 2087 // Store an oop value at local variable slot Rindex. 2088 // Kills: 2089 // - Rindex 2090 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) { 2091 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2092 subf(Rindex, Rindex, R18_locals); 2093 std(Rvalue, 0, Rindex); 2094 } 2095 2096 // Store an int value at local variable slot Rindex. 2097 // Kills: 2098 // - Rindex 2099 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) { 2100 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2101 subf(Rindex, Rindex, R18_locals); 2102 stfs(Rvalue, 0, Rindex); 2103 } 2104 2105 // Store an int value at local variable slot Rindex. 2106 // Kills: 2107 // - Rindex 2108 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) { 2109 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2110 subf(Rindex, Rindex, R18_locals); 2111 stfd(Rvalue, -8, Rindex); 2112 } 2113 2114 // Read pending exception from thread and jump to interpreter. 2115 // Throw exception entry if one if pending. Fall through otherwise. 2116 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) { 2117 assert_different_registers(Rscratch1, Rscratch2, R3); 2118 Register Rexception = Rscratch1; 2119 Register Rtmp = Rscratch2; 2120 Label Ldone; 2121 // Get pending exception oop. 2122 ld(Rexception, thread_(pending_exception)); 2123 cmpdi(CCR0, Rexception, 0); 2124 beq(CCR0, Ldone); 2125 li(Rtmp, 0); 2126 mr_if_needed(R3, Rexception); 2127 std(Rtmp, thread_(pending_exception)); // Clear exception in thread 2128 if (Interpreter::rethrow_exception_entry() != nullptr) { 2129 // Already got entry address. 2130 load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry()); 2131 } else { 2132 // Dynamically load entry address. 2133 int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true); 2134 ld(Rtmp, simm16_rest, Rtmp); 2135 } 2136 mtctr(Rtmp); 2137 save_interpreter_state(Rtmp); 2138 bctr(); 2139 2140 align(32, 12); 2141 bind(Ldone); 2142 } 2143 2144 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { 2145 save_interpreter_state(R11_scratch1); 2146 2147 MacroAssembler::call_VM(oop_result, entry_point, false); 2148 2149 restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true); 2150 2151 check_and_handle_popframe(R11_scratch1); 2152 check_and_handle_earlyret(R11_scratch1); 2153 // Now check exceptions manually. 2154 if (check_exceptions) { 2155 check_and_forward_exception(R11_scratch1, R12_scratch2); 2156 } 2157 } 2158 2159 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2160 Register arg_1, bool check_exceptions) { 2161 // ARG1 is reserved for the thread. 2162 mr_if_needed(R4_ARG2, arg_1); 2163 call_VM(oop_result, entry_point, check_exceptions); 2164 } 2165 2166 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2167 Register arg_1, Register arg_2, 2168 bool check_exceptions) { 2169 // ARG1 is reserved for the thread. 2170 mr_if_needed(R4_ARG2, arg_1); 2171 assert(arg_2 != R4_ARG2, "smashed argument"); 2172 mr_if_needed(R5_ARG3, arg_2); 2173 call_VM(oop_result, entry_point, check_exceptions); 2174 } 2175 2176 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2177 Register arg_1, Register arg_2, Register arg_3, 2178 bool check_exceptions) { 2179 // ARG1 is reserved for the thread. 2180 mr_if_needed(R4_ARG2, arg_1); 2181 assert(arg_2 != R4_ARG2, "smashed argument"); 2182 mr_if_needed(R5_ARG3, arg_2); 2183 assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument"); 2184 mr_if_needed(R6_ARG4, arg_3); 2185 call_VM(oop_result, entry_point, check_exceptions); 2186 } 2187 2188 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) { 2189 ld(scratch, 0, R1_SP); 2190 subf(R0, scratch, R15_esp); 2191 sradi(R0, R0, Interpreter::logStackElementSize); 2192 std(R0, _ijava_state_neg(esp), scratch); 2193 std(R14_bcp, _ijava_state_neg(bcp), scratch); 2194 subf(R0, scratch, R26_monitor); 2195 sradi(R0, R0, Interpreter::logStackElementSize); 2196 std(R0, _ijava_state_neg(monitors), scratch); 2197 if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); } 2198 // Other entries should be unchanged. 2199 } 2200 2201 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only, bool restore_top_frame_sp) { 2202 ld_ptr(scratch, _abi0(callers_sp), R1_SP); // Load frame pointer. 2203 if (restore_top_frame_sp) { 2204 // After thawing the top frame of a continuation we reach here with frame::java_abi. 2205 // therefore we have to restore top_frame_sp before the assertion below. 2206 assert(!bcp_and_mdx_only, "chose other registers"); 2207 Register tfsp = R18_locals; 2208 Register scratch2 = R26_monitor; 2209 ld(tfsp, _ijava_state_neg(top_frame_sp), scratch); 2210 // Derelativize top_frame_sp 2211 sldi(tfsp, tfsp, Interpreter::logStackElementSize); 2212 add(tfsp, tfsp, scratch); 2213 resize_frame_absolute(tfsp, scratch2, R0); 2214 } 2215 ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception). 2216 if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code. 2217 if (!bcp_and_mdx_only) { 2218 // Following ones are Metadata. 2219 ld(R19_method, _ijava_state_neg(method), scratch); 2220 ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch); 2221 // Following ones are stack addresses and don't require reload. 2222 // Derelativize esp 2223 ld(R15_esp, _ijava_state_neg(esp), scratch); 2224 sldi(R15_esp, R15_esp, Interpreter::logStackElementSize); 2225 add(R15_esp, R15_esp, scratch); 2226 ld(R18_locals, _ijava_state_neg(locals), scratch); 2227 sldi(R18_locals, R18_locals, Interpreter::logStackElementSize); 2228 add(R18_locals, R18_locals, scratch); 2229 ld(R26_monitor, _ijava_state_neg(monitors), scratch); 2230 // Derelativize monitors 2231 sldi(R26_monitor, R26_monitor, Interpreter::logStackElementSize); 2232 add(R26_monitor, R26_monitor, scratch); 2233 } 2234 #ifdef ASSERT 2235 { 2236 Label Lok; 2237 subf(R0, R1_SP, scratch); 2238 cmpdi(CCR0, R0, frame::top_ijava_frame_abi_size + frame::ijava_state_size); 2239 bge(CCR0, Lok); 2240 stop("frame too small (restore istate)"); 2241 bind(Lok); 2242 } 2243 #endif 2244 } 2245 2246 void InterpreterMacroAssembler::get_method_counters(Register method, 2247 Register Rcounters, 2248 Label& skip) { 2249 BLOCK_COMMENT("Load and ev. allocate counter object {"); 2250 Label has_counters; 2251 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2252 cmpdi(CCR0, Rcounters, 0); 2253 bne(CCR0, has_counters); 2254 call_VM(noreg, CAST_FROM_FN_PTR(address, 2255 InterpreterRuntime::build_method_counters), method); 2256 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2257 cmpdi(CCR0, Rcounters, 0); 2258 beq(CCR0, skip); // No MethodCounters, OutOfMemory. 2259 BLOCK_COMMENT("} Load and ev. allocate counter object"); 2260 2261 bind(has_counters); 2262 } 2263 2264 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, 2265 Register iv_be_count, 2266 Register Rtmp_r0) { 2267 assert(UseCompiler, "incrementing must be useful"); 2268 Register invocation_count = iv_be_count; 2269 Register backedge_count = Rtmp_r0; 2270 int delta = InvocationCounter::count_increment; 2271 2272 // Load each counter in a register. 2273 // ld(inv_counter, Rtmp); 2274 // ld(be_counter, Rtmp2); 2275 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + 2276 InvocationCounter::counter_offset()); 2277 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + 2278 InvocationCounter::counter_offset()); 2279 2280 BLOCK_COMMENT("Increment profiling counters {"); 2281 2282 // Load the backedge counter. 2283 lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int 2284 // Mask the backedge counter. 2285 andi(backedge_count, backedge_count, InvocationCounter::count_mask_value); 2286 2287 // Load the invocation counter. 2288 lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int 2289 // Add the delta to the invocation counter and store the result. 2290 addi(invocation_count, invocation_count, delta); 2291 // Store value. 2292 stw(invocation_count, inv_counter_offset, Rcounters); 2293 2294 // Add invocation counter + backedge counter. 2295 add(iv_be_count, backedge_count, invocation_count); 2296 2297 // Note that this macro must leave the backedge_count + invocation_count in 2298 // register iv_be_count! 2299 BLOCK_COMMENT("} Increment profiling counters"); 2300 } 2301 2302 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2303 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 2304 } 2305 2306 // Local helper function for the verify_oop_or_return_address macro. 2307 static bool verify_return_address(Method* m, int bci) { 2308 #ifndef PRODUCT 2309 address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci; 2310 // Assume it is a valid return address if it is inside m and is preceded by a jsr. 2311 if (!m->contains(pc)) return false; 2312 address jsr_pc; 2313 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr); 2314 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true; 2315 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w); 2316 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true; 2317 #endif // PRODUCT 2318 return false; 2319 } 2320 2321 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 2322 if (VerifyFPU) { 2323 unimplemented("verfiyFPU"); 2324 } 2325 } 2326 2327 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) { 2328 if (!VerifyOops) return; 2329 2330 // The VM documentation for the astore[_wide] bytecode allows 2331 // the TOS to be not only an oop but also a return address. 2332 Label test; 2333 Label skip; 2334 // See if it is an address (in the current method): 2335 2336 const int log2_bytecode_size_limit = 16; 2337 srdi_(Rtmp, reg, log2_bytecode_size_limit); 2338 bne(CCR0, test); 2339 2340 address fd = CAST_FROM_FN_PTR(address, verify_return_address); 2341 const int nbytes_save = MacroAssembler::num_volatile_regs * 8; 2342 save_volatile_gprs(R1_SP, -nbytes_save); // except R0 2343 save_LR_CR(Rtmp); // Save in old frame. 2344 push_frame_reg_args(nbytes_save, Rtmp); 2345 2346 load_const_optimized(Rtmp, fd, R0); 2347 mr_if_needed(R4_ARG2, reg); 2348 mr(R3_ARG1, R19_method); 2349 call_c(Rtmp); // call C 2350 2351 pop_frame(); 2352 restore_LR_CR(Rtmp); 2353 restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 2354 b(skip); 2355 2356 // Perform a more elaborate out-of-line call. 2357 // Not an address; verify it: 2358 bind(test); 2359 verify_oop(reg); 2360 bind(skip); 2361 } 2362 2363 // Inline assembly for: 2364 // 2365 // if (thread is in interp_only_mode) { 2366 // InterpreterRuntime::post_method_entry(); 2367 // } 2368 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) || 2369 // *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2) ) { 2370 // SharedRuntime::jvmpi_method_entry(method, receiver); 2371 // } 2372 void InterpreterMacroAssembler::notify_method_entry() { 2373 // JVMTI 2374 // Whenever JVMTI puts a thread in interp_only_mode, method 2375 // entry/exit events are sent for that thread to track stack 2376 // depth. If it is possible to enter interp_only_mode we add 2377 // the code to check if the event should be sent. 2378 if (JvmtiExport::can_post_interpreter_events()) { 2379 Label jvmti_post_done; 2380 2381 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2382 cmpwi(CCR0, R0, 0); 2383 beq(CCR0, jvmti_post_done); 2384 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 2385 2386 bind(jvmti_post_done); 2387 } 2388 } 2389 2390 // Inline assembly for: 2391 // 2392 // if (thread is in interp_only_mode) { 2393 // // save result 2394 // InterpreterRuntime::post_method_exit(); 2395 // // restore result 2396 // } 2397 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) { 2398 // // save result 2399 // SharedRuntime::jvmpi_method_exit(); 2400 // // restore result 2401 // } 2402 // 2403 // Native methods have their result stored in d_tmp and l_tmp. 2404 // Java methods have their result stored in the expression stack. 2405 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state, 2406 NotifyMethodExitMode mode, bool check_exceptions) { 2407 // JVMTI 2408 // Whenever JVMTI puts a thread in interp_only_mode, method 2409 // entry/exit events are sent for that thread to track stack 2410 // depth. If it is possible to enter interp_only_mode we add 2411 // the code to check if the event should be sent. 2412 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2413 Label jvmti_post_done; 2414 2415 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2416 cmpwi(CCR0, R0, 0); 2417 beq(CCR0, jvmti_post_done); 2418 if (!is_native_method) { push(state); } // Expose tos to GC. 2419 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), check_exceptions); 2420 if (!is_native_method) { pop(state); } 2421 2422 align(32, 12); 2423 bind(jvmti_post_done); 2424 } 2425 2426 // Dtrace support not implemented. 2427 }